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Abstract

This work presents measurements of the parity-violation parameters Ac and Ab made at the

Z pole. These measurements include the data taken with the SLD detector at the SLAC

Linear Collider (SLC) during the period 1996-98. Heavy flavor events are selected with high

efficiency and purity by searching for displaced vertices, identified with the SLD precision

CCD vertex detector. Two methods are used for quark/antiquark discrimination: the net

charge of the displaced vertex, and tracks in the displaced vertex identified as kaons by the

SLD Cherenkov Ring Imaging Detector (CRID). The signal purities and analyzing powers

are calibrated from the data to reduce the systematic errors and avoid experimental bias.

The results are Ac = 0.673 ± 0.029 ± 0.023 and Ab = 0.919 ± 0.018 ± 0.017, where the first

error is statistical and the second systematic. Fits to the electroweak data performed by the

LEP Electroweak Working Group are used to study the consistency of the Standard Model,

and to constrain the mass of the Standard Model Higgs boson.
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Chapter 1

Introduction

Until 1956 the invariance of physical law under parity transformations (	x → −	x) had gone

unchallenged. In that year, Lee and Yang [1] proposed parity violation in the weak interac-

tions as a solution to the τ − θ puzzle. Two particles, at that time called τ and θ (now K+),

had been discovered which appeared to have the same mass, spin, charge, etc. However, the

θ decayed into two pions, while the τ decayed to three pions, states with opposite parity.

Lee and Yang proposed that the τ and θ were in fact the same particle, and that both decay

modes are allowed through violation of parity invariance in weak interactions. At that time

there was much evidence for parity invariance in strong and electromagnetic interactions,

but no direct tests for the weak force. Lee and Yang proposed a test involving the β-decay of

polarized Co60 nuclei, and in 1957 C.S. Wu reported [2] her results, which showed that Lee

and Yang were right. Confirmation of parity violation was reported in a study of μ decay

[3] soon afterwards.

These results involved only the charged weak currents. In 1973 neutral weak currents,

which had been predicted by the theory now known as the Standard Model, were discovered

in elastic νμ − e− scattering at CERN [4]. A few years later, using an innovative polarized

e− beam, parity violation in neutral weak currents was demonstrated at SLAC in deep
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inelastic e-D scattering [5]. This effect has subsequently been observed in lepton scattering

off a variety of atomic nuclei [6, 7, 8]. Parity violation has also been seen in the atomic

transitions of Cs [9] and Tl [10]. The E158 experiment [11] currently in progress at SLAC

aims to measure a parity-violating asymmetry in polarized Møller e−e− scattering.

All of the neutral weak current experiments described above suffer from contamination

by the parity-conserving electromagnetic current. At low energies, the weak interaction is

only a small part of the total neutral current, so the parity-violating effects are extremely

diluted. Using higher energy processes, such as e+e− annihilation at
√
s ∼MZ , it is possible

to study the neutral weak current with very little electromagnetic contamination. The results

presented in this Thesis comprise just such a study.

1.1 The Standard Model

The theory of elementary particles and their interactions which has come to be known as

the Standard Model began with the unification of the electromagnetic and weak interactions

by Glashow [12], Weinberg [13], and Salam [14]. Detailed descriptions of the theory can be

found in [15] and [16]. In this Section a brief overview will be presented.

The fundamental particles within the Standard Model are the quarks and leptons which

make up ordinary matter, and the gauge bosons which mediate their interactions. The

quarks and leptons, which are all spin-1
2

fermions, are summarized in Table 1.1. They are

grouped into three generations, and within each family the leptons and quarks are organized

into left-handed doublets and right-handed singlets. The electric charge Q is related to the

third component of the weak isospin T3 and the weak hypercharge Y by:

Q = T3 +
Y

2
. (1.1)
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Table 1.1: The three fermion families and select quantum numbers.

1st 2nd 3rd Q T3 Y

(
νe

e

)
L

(
νμ

μ

)
L

(
ντ

τ

)
L

(
0
−1

) (
+1

2−1
2

) ( −1
−1

)
(
u
d

)
L

(
c
s

)
L

(
t
b

)
L

(
+2

3−1
3

) (
+1

2−1
2

) (
+1

3−1
3

)

eR μR τR −1 0 −2
uR cR tR +2

3
0 +4

3

dR sR bR −1
3

0 −2
3

Table 1.2: Gauge bosons of the Standard Model.

boson spin mass force
γ 1 0 electromagnetic
W± 1 80 GeV/c2 weak
Z 1 91 GeV/c2 weak

gluon 1 0 strong

Because the neutrino is assumed to be massless in the Standard Model, there is no right-

handed neutrino singlet. Recent evidence of neutrino oscillations [17, 18], however, indicate

nonzero neutrino masses. It is not yet clear what modifications to the Standard Model are

required to accomodate this new information.

The gauge bosons which mediate the interactions between quarks and leptons are listed

in Table 1.2. The photon (γ) carries the electromagnetic force, the W± and Z bosons

are responsible for weak interactions, and the gluons carry the strong force. Not listed

is the graviton, which is thought to carry the gravitational force. Gravity has not been

incorporated into the Standard Model, but its effects are neglible in most particle physics

contexts. The neutrinos are affected only by the weak interactions, the charged leptons also

feel the electromagnetic force, and the quarks participate in all three interactions.
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1.1.1 Electroweak Interactions

The Dirac Lagrangian for a free particle can be written as:

L = iψ̄γμ∂ψ −mψ̄ψ (1.2)

where ψ is the spinor of wavefunctions, ψ̄ = ψ†γ0 is its adjoint, the γμ are the Dirac matrices,

and m is the mass of the particle. This Lagrangian is invariant under global gauge trans-

formations ψ → eiθψ, with θ real. However, if invariance under local gauge transformations

ψ → eiθ(x)ψ is demanded, the derivatives introduce extra terms which must be compensated

by adding an interaction term:

−iQψ̄γμψA
μ = −iQjem

μ Aμ (1.3)

in which the fermion fields ψ are coupled to a vector field Aμ through the current jem
μ , with

strength proportional to the fermion charge Q. The vector field Aμ is then identified with

the electromagnetic field, and in this way quantum electrodynamics can be derived from the

free-particle Langrangian.

In the electroweak Standard Model, the Lagrangian for the left-handed doublets is re-

quired to be invariant under local SU(2) rotations, and also under U(1) hypercharge trans-

formations. This introduces analogous current terms:

−ig(J i)μW i
μ − 1

2
ig′(jY )μBμ (1.4)

where the W i
μ are an SU(2) triplet of vector fields coupling with strength g to the weak

isospin currents J i
μ, and Bμ is a U(1) isosinglet vector field coupling with strength g′ to the

weak hypercharge current jY
μ .
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The gauge bosons listed in Table 1.2 are linear combinations of these fields:

Aμ = Bμ cos θW +W 3
μ sin θW (1.5)

Zμ = −Bμ sin θW +W 3
μ cos θW (1.6)

W±
μ =

1√
2
(W 1

μ ∓ iW 2
μ) (1.7)

where θW is known as the weak mixing angle. Rewriting the neutral part of the electroweak

interaction term as:

−i(g sin θWJ
3
μ +

1

2
g′ cos θW j

Y
μ )Aμ − i(g cos θWJ

3
μ − 1

2
g′ sin θW j

Y
μ )Zμ (1.8)

and comparing the first term with the electromagnetic interaction, the identifications:

jem
μ = J3

μ +
1

2
jY
μ (1.9)

g sin θW = g′ cos θW = Q (1.10)

can be made, so that the weak mixing angle is given by tan θW = g′/g. The second term

representing the weak neutral current then gives:

JNC
μ = J3

μ − jem
μ sin2 θW (1.11)

.

Replacing the current densities with their expressions in terms of the fermion fields, the

factor for a Zff̄ vertex is given by:

−i g

cos θW

JNC
μ Zμ = −i g

cos θW

ψ̄fγ
μ(

1

2
(1 − γ5)T3 −Q sin2 θW )ψfZμ (1.12)
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= −i g

2 cos θW

γμ(vf − afγ
5) (1.13)

where γ5 = iγ0γ1γ2γ3, and vf and af are the vector and axial-vector couplings at this vertex,

respectively. These couplings are therefore firmly predicted by the Standard Model:

vf = gLf + gRf = T3,f − 2Qf sin2 θW (1.14)

af = gLf − gRf = T3,f (1.15)

once sin2 θW is known. Also given are the relations to the commonly used gLf and gRf , the

left- and right-handed couplings. This addition of a vector to an axial vector is the source

of the parity violation in the neutral weak current, since they transform differently under

	x→ −	x.
The principle of local gauge invariance has allowed the derivation of the structure and

strength of the neutral weak interaction, but one problem remains. The vector fields which

are introduced must be massless, otherwise the gauge invariance is spoiled. However, it is

known that the W± and Z bosons are quite massive. This situation is resolved through the

Higgs mechanism [19]. A doublet of scalar fields is introduced, which have nonzero vacuum

expectation values. This is used to spontaneously break the SU(2)L⊗U(1)Y symmetry of

the theory, in such a way that Aμ remains massless, W±
μ and Zμ acquire mass terms in the

Lagrangian, and the gauge invariance is preserved. These Higgs fields should have associated

quanta, or particles, which so far have not been observed. Understanding the nature of this

spontaneous symmetry breaking is one of the top priorities of particle physics.
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Figure 1.1: The tree-level diagrams for s-channel e+e− annihilation.
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1.2 Electron-Positron Annihilation at
√
s ∼MZ

The process e+e− → Z/γ → ff̄ , where f is a fermion (other than an electron), at tree level

can only go through s-channel production of a virtual Z or γ. The Feynman diagrams for

these two processes are shown in Figure 1.1.

The differential cross section for a reaction expresses the rate for that process into a

particular region of the final state phase space. For annihilation in the center of momentum

frame, it can be written as:

dσ

dΩ
=

1

64π2s

pf

pe

|MZ + Mγ|2 (1.16)

where MZ and Mγ are the matrix elements for Z and γ exchange,
√
s is the total energy,

and pe and pf are the magnitudes of the incoming electron and outgoing fermion momenta.

The matrix element MZ can be written as:

MZ = − g2

4 cos2 θW

[f̄γν(vf − afγ
5)f ]

gνμ − kνkμ/M
2
Z

k2 −M2
Z + iMZΓZ

[ēγμ(ve − aeγ
5)e] (1.17)

where e and f are the electron and fermion spinors, MZ and ΓZ are the mass and width of
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the Z, and k is the four-momentum of the virtual Z. From this, differential cross sections

for left- and right-handed electrons can be calculated [20], averaging over the positron spin

and summing the final-stage fermion spins:

dσL

dΩ
∝ (g2

Lf + g2
Rf )(1 + cos2 θf ) + 2(g2

Lf − g2
Rf ) cos θf (1.18)

dσR

dΩ
∝ (g2

Lf + g2
Rf )(1 + cos2 θf ) − 2(g2

Lf − g2
Rf ) cos θf (1.19)

where L(R) refers to the electron helicity and θf is the angle between the incoming electron

and the outgoing fermion.

For an electron beam with polarization Pe, the left- and right-handed differential cross

sections can be expressed together as:

dσ

dΩ
∝ (1 − AePe)(1 + cos2 θf ) + 2(Ae − Pe)Af cos θf (1.20)

using the asymmetry parameters Ae and Af , given by:

Af =
g2

Lf − g2
Rf

g2
Lf + g2

Rf

=
2vfaf

v2
f + a2

f

. (1.21)

Values of Af for the various fermion species are shown in Table 1.3, along with their

dependence on sin2 θW (a value of sin2 θW = 0.231 was used). Because of their large depen-

dence, measurements of leptonic coupling asymmetries are sensitive probes of the value of

sin2 θW . The quark coupling asymmetries, which are less dependent upon sin2 θW , provide

tests of the flavor structure of the Standard Model.

Complementary to the coupling asymmetry is the partial width into a fermion type f :

Γf ∝ a2
f + v2

f ∝ g2
Lf + g2

Rf (1.22)
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Table 1.3: Coupling asymmetries Af for the fermions.

fermion Af ∂Af/∂ sin2 θW

νe, νμ, ντ 1 0
e, μ, τ 0.151 -7.86
u, c, t 0.669 -3.45
d, s, b 0.936 -0.64

Table 1.4: Measured values of the Z branching ratios.

fermion Γf/ΓZ (%)
e+e− 3.367±0.005
μ+μ− 3.367±0.008
τ+τ− 3.371±0.009

invisible (νν̄) 20.02±0.06
hadrons 69.89±0.07

(uū+ cc̄)/2 10.1±1.1
(dd̄+ ss̄+ bb̄)/3 16.6±0.6

cc̄ 11.68±0.34
bb̄ 15.13±0.05

which is proportional to the total strength of the vertex couplings. The measured branching

ratios Γf/ΓZ [21] for various fermions are given in Table 1.4. For quarks what is commonly

measured is the related quantity Rf = Γf/Γhadrons, the hadronic partial width. Measuring

both Rf and Af allows extraction of the two couplings gLf and gRf .

The total cross section for e+e− → Z/γ → hadrons (∼70% of Z decays) is shown in

Figure 1.2. At the Z pole, the Z-exchange term is ∼800 times the γ-exchange one, and the

contribution from γ/Z interference is exactly zero. In what follows Mγ will be neglected,

and only MZ will be considered.
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Figure 1.2: The e+e− → hadrons cross section.
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1.3 Electroweak Asymmetries

A number of observable quantities can be constructed to isolate the coupling asymmetry

parameters Af in the cross section shown in Equation 1.20. These are usually constructed

as asymmetries themselves to avoid dependence upon absolute luminosity measurements.

There are two signs which can be manipulated, that of the beam polarization Pe and that

of cos θf . Using these it is possible to construct observable asymmetries which depend only

upon either the initial-state coupling asymmetry Ae or the final-state coupling asymmetry

Af .

1.3.1 Left-Right Asymmetry ALR

The left-right asymmetry, formed using the sign of the beam polaraization Pe, is defined as:

ALR =
σL − σR

σL + σR

= |Pe|Ae (1.23)
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where σL and σR are the cross sections for Z production using a left- or right-handed electron

beam, integrated over the detector acceptance. This asymmetry is the simplest way to

measure Ae at the Z-pole, as no final-state fermion identification or angular distribution

fitting are required. The exception is that final-state electrons must be rejected due to their

additional t-channel scattering contribution, and in practice only hadronic decays of the Z

are used. The SLD measurement of ALR provides the most precise determination of sin2 θW

currently available.

1.3.2 Forward-Backward Asymmetry Af
FB

The forward-backward asymmetry, formed using the sign of cos θf , the polar angle of the

outgoing fermion w.r.t. the electron beam direction, is defined as:

Af
FB(|z|) =

σ(z > 0) − σ(z < 0)

σ(z > 0) + σ(z < 0)
= 2

Ae − Pe

1 − AePe

Af
|z|

1 + z2
(1.24)

where z = cos θf . Unlike ALR, this asymmetry can be formed for an unpolarized beam,

although a polarized beam allows for the production of much larger asymmetries as shown

in Figure 1.3. For the Pe = 0 case, Af
FB is proportional to AeAf , so the initial- and final-

state asymmetries cannot be individually extracted. If a lepton � = e, μ, τ final state is

selected and lepton universality is assumed, Af
FB will be proportional to A2

� . This allows a

direct determination of sin2 θW , although the statistics will be limited due to the small raw

asymmetry. If the Standard Model values for the quark coupling asymmetries are assumed,

the forward-backward asymmetry can be interpreted as a measurement of Ae. In the case

of down-type quarks where Af ∼ 1, the raw asymmetry is only slightly diluted and high-

statistics measurements are possible. The measurements of Ab
FB from LEP can be used to

derive a value of sin2 θW which is nearly as precise as that provided by ALR.
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Figure 1.3: Normalized fermion production cross sections for polarized and unpolarized
beams.
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1.3.3 Left-Right-Forward-Backward Asymmetry Ãf
FB

The left-right-forward-backward asymmetry is a double asymmetry formed using both the

beam polarization sign and the sign of cos θf . This asymmetry is defined as:

Ãf
FB(|z|) =

[σL(z > 0) − σR(z > 0)] − [σL(z < 0) − σR(z < 0)]

[σL(z > 0) + σR(z > 0)] + [σL(z < 0) + σR(z < 0)]

= 2|Pe|Af
|z|

1 + z2
(1.25)

where L(R) refer to left(right)-handed electron beams and z = cos θf . In contrast to Af
FB,

this asymmetry allows a measurement of Af independent of Ae. At SLD this asymmetry

has been used with lepton final states to make direct measurements of Aμ and Aτ , which are

useful both as determinations of sin2 θW and as tests of lepton universality. This observable

has also been used to make measurements of As, Ac, and Ab which provide direct tests of

the flavor structure of the Standard Model in the quark sector.

1.3.4 Radiative Corrections

The cross section given in Equation 1.20 was calculated only for the tree-level Z exchange

process. However, there are several higher-order processes that also contribute to e+e−

annihilation, which must be taken into account in measurements of Ae and Af . They include

propagator corrections, vertex corrections, and initial- and final-state radiation.

The propagator corrections are related to vacuum polarization effects. The two pro-

cesses of most interest are shown in Figure 1.4. The effect of these processes is to modify

the observed value of sin2 θW . This observable or “effective” value, denoted by sin2 θeff , is

dependent upon the top quark mass as (∝ m2
t

m2
Z
) and the Higgs mass as (∝ log

m2
H

m2
Z
). Pre-

cise determinations of sin2 θeff and mt can be used to indirectly constrain the mass of the

Standard Model Higgs boson, as will be discussed in Chapter 6.
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Figure 1.4: Propagator corrections to e+e− → Z → ff̄ .
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Figure 1.5: Vertex corrections to e+e− → Z → bb̄.
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The most important of the vertex correction processes is shown in Figure 1.5. Because

the correction scales as m2
t it is only significant for the Zbb̄ vertex. The change in Γb caused

by this process makes Rb sensitive to the value of mt. The asymmetries Ab
FB and Ãb

FB are

not sensitive to these corrections, because the increased width will cancel in the ratio of cross

sections.

The first-order initial- and final-state radiation processes are shown in Figure 1.6. In the

inital state, only photon radiation is possible. This lowers the average center-of-momentum

energy of the colliding beams by ∼20 MeV, and also broadens its width. These changes

in the energy scale affect the value of sin2 θeff which will be observed as discussed above.
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Figure 1.6: Lowest order initial- and final-state radiation diagrams.
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In addition, since the annihilation will not occur exactly at the Z-pole, the effects of γ/Z

interference in the propagator will not vanish. Because they depend upon the experimental

conditions, initial-state radiation effects are always removed from electroweak asymmetry

measurements before the results are quoted.

Final-state radiation can either be photons, or in the case of quark decays of the Z,

gluons. Because this process occurs after the decay of the Z, it does not affect the energy

scale. The radiation increases the phase space for the Z decay, increasing its width. This

will change Rb but not the asymmetries in the same way as the vertex corrections. There

is another effect, however, which applies to Af
FB and Ãf

FB. Because these asymmetries are

functions of the outgoing fermion polar angle, the distortion of the angular spectrum from

final-state radiation will change the observed asymmetry. For photon radiation the effect is

negligible, but gluon radiation produces a significant change in Af
FB and Ãf

FB (the correction

is the same for both). Because it is universal for Rb no correction is generally made, and

the reported results include the effects of QCD radiation. The asymmetry measurements,

however, will generally have different sensitivity to QCD radiation due to differences in

experimental technique. The convention is to remove these effects before reporting results.

One last higher-order process of interest is shown in Figure 1.7. These fermion loop
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Figure 1.7: Radiative correction to the Higgs propagator.
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corrections to the Higgs propagator cause the Higgs mass to diverge quadratically if the

Standard Model is assumed valid up to the Planck scale MPl ∼ 1018 GeV/c2, where the effect

of gravity becomes comparable to the other forces. These corrections can be canceled by

fine-tuning parameters of the theory, but this unstable hierarchy between the weak scale and

the Planck scale is generally thought to indicate that the Standard Model is not a complete

theory. One solution is to cancel the divergent terms by incorporating a new symmetry, in

which each fermion has a bosonic partner. Since the bosonic loop corrections to the Higgs

propagator enter with the opposite sign, the divergent terms can be made to cancel order-by-

order without any fine-tuning. Because the Higgs is part of a symmetry group it is massless

at tree level in such a theory, with its mass generated by the breaking of the symmetry. The

Higgs mass is therefore protected against divergences above the symmetry-breaking scale,

in the same way that the photon and Z masses are protected in the Standard Model. This

“supersymmetric” extension to the Standard Model is the most popular solution to the so-

called “hierarchy problem”, although at the moment no evidence has been found for any of

the superpartner particles.

This Thesis will present an analysis of the e+e− → Z → QQ̄ process, with QQ̄ = cc̄ and

bb̄. The coupling asymmetry parameters Ac and Ab will be determined from measurements

of the left-right-forward-backward asymmetries Ac
FB and Ab

FB. The results obtained will

then be combined with other precise electroweak measurements to study the Zcc̄ and Zbb̄

vertices. Finally, the consistency of the Standard Model with these and other measurements

and the constraints which can be placed on the Higgs mass mH will be discussed.
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Chapter 2

Experimental Apparatus

The measurements presented in this thesis were made using the SLAC Large Detector at the

SLAC Linear Collider. This facility produces electron-positron annihilations at a center-of-

mass energy of 91.26 GeV, the peak of the Z resonance. The SLD detector surrounds the

collision point of the two beams, and observes the decays of the produced Z bosons. This

chapter presents a brief discussion of the elements of this experimental program.

2.1 SLAC Linear Collider

The SLAC Linear Collider (SLC) [22] is an electron-positron colliding-beams machine located

at the Stanford Linear Accelerator Center (SLAC). The SLC consists of a polarized electron

source, a two-mile-long linear accelerator (linac) which is used to accelerate both electrons

and positrons, and two arcs which transport the electron and positron bunches into the

collision region. A schematic view of the SLC is shown in Figure 2.1.

The SLC operates on a 120 Hz cycle. Two longitudinally polarized electron bunches are

produced at the source, accelerated to 1.19 GeV, and diverted into the north damping ring.

This energy was chosen such that the total field seen by the bunchs in traversing the bending
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Figure 2.1: Schematic view of the SLAC linear collider. The arrows indicate the direction
of the electron spin at each point.
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magnets will precess the electron spins so that they are transverse to the beam direction in

the horizontal plane. A spin rotation solenoid then rotates the polarization into the vertical

direction, where it can survive in the damping ring. The electron bunches are stored for one

machine cycle (8.3 ms). One positron bunch from the return line is also accelerated to 1.19

GeV and stored in the south damping ring. The positrons require two cycles of cooling (16.7

ms). After the electron bunches have been damped, the second positron bunch stored in the

damping ring during the previous cycle is extracted and inserted into the linac. Followed by

the two damped electron bunches, it is accelerated to 46.7 GeV. The spin rotation solenoids

on the damping ring return line and at the beginning of the linac shown in Figure 2.1 can

be used at this point to manipulate the electron spin into any direction. For standard SLD

operations, however, these solenoids were not used and the electron polarization was left in

the vertical direction during acceleration. The positron bunch is sent into the south arc and

the first electron bunch into the north arc by a dipole magnet in the beam switchyard at the

end of the linac. The bunches lose around 1.1 GeV of energy through synchrotron radiation

as they traverse the 1 km arcs to the interaction point (IP). The arcs of the machine do not

line in a plane, but rather follow the vertical rise and fall of the terrain. The beams must
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therefore be bent both horizontally and vertically as they traverse the arcs. The north arc

bends are equivalent to 26 rotations of the electron spin vector, and by a combination of

the horizontal bending and the vertical perturbations in the orbit (“spin bumps” [23]) the

electron spin is brought around to longitudinal at the IP.

The second electron bunch is accelerated to 30 GeV and directed onto a tungsten target.

Positrons filtered from the ensuing electromagnetic shower are accelerated into the return

line back to the front of the linac to be used in the next machine cycle.

As the electron and positron bunches enter the final focus, a series of superconducting

quadrupole magnets are used to focus them down to a 1.5×0.8×700μm (horizontal, vertical,

longitudinal) luminous region at the IP. This focusing is critical to reaching high Z boson

production rates. The luminosity history of the SLC is shown in Figure 2.2. The dramatic

improvement seen in the 1997-98 run was due to improvements in the final focus optics. The

results presented in this Thesis use only the data taken in 1996-98, a sample of ∼400,000 Z

decays.

2.1.1 Polarized Source

The electron bunches used for SLC collisions are produced using the SLC polarized source,

shown in Figure 2.3. Light from a Nd:YAG-pumped Ti:sapphire laser is passed through a

circular polarizer and brought onto a GaAs photocathode. The light excites electrons from

the valence to the conduction band. The surface of the photocathode is treated with cesium

and NF3 to attain a negative electron affinity surface, allowing the excited electrons to escape

the photocathode with a quantum efficiency of about 0.1%.

The energy level diagram of GaAs for the states of interest is shown in Figure 2.4. The

upper diagram is for bulk GaAs, the type of photocathode used in the 1992 SLC running. The

laser wavelength is tuned to 850-860 nm to match the 1.52 eV bandgap energy. A problem
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Figure 2.2: History of the SLD recorded luminosity.
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with this type of photocathode is the degeneracy between the mj = 3/2 and mj = 1/2 states

in the valence band. A right-polarized photon can excite either the mj = −3/2 → −1/2

transition, with relative strength 3, or the mj = −1/2 → +1/2 transition with relative

strength 1. Therefore the maximum polarization achievable with such a photocathode is

50%.

The lower diagram in Figure 2.4 shows the energy levels for a layer of GaAs grown upon

a substrate of GaAsP. The small difference in the lattice spacing between the two materials

is of sufficient magnitude to generate a mechanical strain on the surface large enough to

break the degeneracy between the mj = 3/2 and mj = 1/2 states in the valence band. The

laser light can now selectively pump only the mj = 3/2 → 1/2 transitions, for a theoretical

maximum polarization of 100%.

The history of SLC electron beam polarization is shown in Figure 2.5. In 1992 a bulk
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Figure 2.3: The SLC polarized source.
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Figure 2.4: Energy-level diagram for (top) bulk GaAs and (bottom) strained GaAs.
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Figure 2.5: History of the SLC electron beam polarization.
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GaAs photocathode was used to attain a polarization of 22%. In 1993 a strained photocath-

ode with a GaAs layer of 300 nm was installed, increasing the SLC polarization to 63%. A

photocathode with a thinner layer of 100 nm was introduced for the 1994-95 run, reaching

a polarization of 77%. This style of photocathode was used in the 1996 and 1997-98 runs as

well, with average polarizations of 76% and 73% respectively.

2.1.2 Compton Polarimeter

The polarization of the SLC electron beam is measured using Compton scattering. The

SLC polarimetry system is shown in Figure 2.6. Circularly polarized 2.33 eV photons from a

frequency-doubled YAG laser are collided with the electron beam at a point 33 m downstream

from the SLC interaction point. The helicity of the laser is chosen pseudorandomly pulse-

by-pulse to avoid any SLC periodicities. The backscattered electrons are separated from the

main beam by a precisely measured dipole bend magnet and directed upon a Cherenkov

detector. This detector uses a array of propane radiators coupled to PMT readouts to

measure the energy spectrum of the scattered electrons in the range 17 to 30 GeV. Each

channel of the detector is related to a range of electron energies through its distance from

the beam line and the spectrometer optics. The position of the kinematic endpoint at 17.36

GeV was found by frequent horizontal scanning of the detector position. This point was

used to calibrate the position-energy relation, which was the main source of systematic error

for the polarization measurement.

For each Cherenkov channel j an asymmetry Ameas
j is formed of the signal observed with

the electron and photon polarizations parallel and antiparallel.

Ameas
j =

σj(Jz = 3/2) − σj(Jz = 1/2)

σj(Jz = 3/2) + σj(Jz = 1/2)
= |Pe||Pγ|aj (2.1)

The analyzing power aj is the cross section weighted Compton scattering asymmetry



25

Figure 2.6: The SLC Compton polarimeter.
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calculable in QED, convoluted with the detector response function for each detector chan-

nel. These differed from the theoretical Compton asymmetry evaluated at the mean energy

accepted by that channel by typically ∼ 1%. The Pe and Pγ factors are the longitudinal

components of the electron and photon polarizations. With a known Pγ a measurement of

Pe can be extracted from the raw asymmetry observed in each channel.

Two other detectors were also used, the polarized gamma counter (PGC) and the quartz

fiber calorimeter (QFC). They work by observing the scattered photons rather than the elec-

trons, as shown in Figure 2.6. Because of bremstrahlung backgrounds these detectors could

only be operated when the beams were not in collision, but they provide useful consistency

checks of the Cherenkov analyzing power calibration.

The default polarization values are taken from the Cherenkov channel nearest the kine-

matic edge, which has the highest Compton asymmetry. The adjacent channel and the two

photon detectors are used to set a relative 0.4% systematic error due to analyzing power

determination. Other uncertainties related to electronics noise and linearity increase the

relative systematic uncertainty to 0.5% for the 1996-98 data.

Polarization data were taken continuously during SLC running, and luminosity-weighted

average polarizations 〈Pe〉 for each of the run periods were calculated. A variety of small

corrections for beam energy spread and polarization transport effects were also applied. For

the 1996 run 〈Pe〉 = 76.16 ± 0.40% and for the 1997-98 run 〈Pe〉 = 72.92 ± 0.38% [24].

To verify that the positron beam was unpolarized, a separate test was performed [25]. The

SLC positron beam was transported to End Station A, where a Møller polarimeter [26] which

had been constructed for fixed-target DIS experiments was used to measure its polarization.

The result of Pe+ = −0.02 ± 0.07% was consistent with zero as expected.



27

Figure 2.7: Schematic view of the SLC energy spectrometer.
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2.1.3 Energy Spectrometer

The energies of the electron and positron beams are measured pulse-by-pulse using spec-

trometers downstream of the IP. The layout of a spectrometer is shown in Figure 2.7. Each

spectrometer consists of a horizontal bend, a precisely calibrated vertical bending magnet,

followed by a second horizontal bend. The bursts of synchrotron radiation produced by the

horizontal bends are measured using wire chambers. The distance between the stripes gives

the vertical bending angle, and therefore the beam energy. During the 1997-98 SLD run

a scan of the Z peak was performed to verify the calibration of the spectrometers. The

resulting luminosity-weighted average center-of-momentum collision energy for the 1997-98

run was 91.237±0.029 GeV.



28

2.2 SLC Large Detector

The SLC Large Detector (SLD) [27], situated around the SLC interaction point, provides

the means to study the decays of the produced Z bosons. Isometric and sectional views

of the SLD are shown in Figure 2.8 and Figure 2.9. The SLD consists of a barrel section

and two endcaps, to achieve ∼ 98% of 4π-steradian solid-angle coverage. These sections

are built up of layers, with each layer a detector subsystem. The layer closest to the IP is

the vertex detector (VXD), used for measuring the position of charged particle trajectories.

Also at small radius is the luminosity monitor (LUM). Outside of these is the drift chamber,

in barrel (CDC) and endcap (EDC) sections. These provide measurements of both the

position and momentum of charged particles. The next layer is a Cherenkov ring-imaging

detector (CRID), which is used for particle identification. The liquid-argon calorimeter

(LAC) provides energy measurements for charged and also for neutral particles. The magnet

coil is a superconducting solenoid that produces the uniform 0.6 T field used for momentum

measurements. The final layer is the warm iron calorimeter (WIC), which is used for muon

identification and also provides the magnetic flux return. Each of these subsections will be

described in more detail later in this chapter.

The SLD coordinate system is defined so that the z-axis points north, along the positron

beam direction. The x-axis then points west and the y-axis upwards to maintain a right-

handed system.

2.2.1 Luminosity Monitor

The luminosity of the SLC is measured using the luminosity monitor, shown in Figure 2.10.

This is done by monitoring the rate of small-angle Bhabha scattering, which can be pre-

cisely calculated in QED. The LUM consists of a pair of highly-segmented tungsten-silicon

calorimeters. The luminosity monitor/small-angle trigger (LMSAT) covers the polar-angle
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Figure 2.8: Isometric view of the SLD detector.
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Figure 2.9: Sectional view of one quadrant of the SLD detector.
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Figure 2.10: The SLD luminosity monitor.

range from 28 to 68 mrad, and the medium-angle silicon calorimeter extends from 68 to

200 mrad. Because the asymmetry measurements presented in this thesis don’t depend on

absolute luminosity, the LUM results are not used.

2.2.2 Vertex Detector

The positions of charged particle trajectories are measured using the SLD vertex detector

(VXD). The SLD has had two vertex detectors, both of them based upon charge coupled

device (CCD) technology. The original detector, VXD2, was installed for the data collected

in 1992-95. Because these results only use the data collected from 1996-98 it will not be

described here. In 1996 an improved vertex detector VXD3 [28] was installed, to take

advantage of improvements in CCD technology that permit custom fabrication of much

larger active area devices.

VXD3 uses CCDs with active area measuring 80 × 16 mm2. Each individual pixel is

20×20μm2, for a total of 4000×800 pixels. Two CCDs are mounted on a beryllium substrate

to form a ladder, as shown in Figure 2.11. The two CCDs overlap by ∼1 mm to allow their

relative alignment using charged tracks. These ladders were mounted onto a series of three

concentric beryllium annuli in a shingled arrangement, so that complete azimuthal coverage

was attained, with ∼ 500μm overlap between adjacent ladders for alignment purposes. Views
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Figure 2.11: Two-CCD VXD ladder.
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of the VXD3 ladder layout transverse and parallel to the beamline are shown in Figure 2.12

and Figure 2.13. The beampipe radius of 23.2 mm was set based on accelerator-related

backgrounds, which fixes the layer one mean radius at 28 mm. The layer three mean radius

of 48.3 mm was determined by requiring three-layer acceptance for tracks with | cos θ| ≤ 0.85,

to match the effective acceptance of the central drift chamber. The layer two mean radius

of 38.2 mm provides acceptable lever arm for tracks with a missing hit on layer one or three,

and provides a third space point for enhanced pattern recognition at high | cos θ| and for

self-tracking purposes. A total of 48 ladders are used, for a net pixel count of 307 million.

Each layer contributes a radiation thickness of only 0.4%X0, which is important for reducing

the tracking errors caused by multiple scattering.

The bias voltage applied to the CCDs was ∼10 V, producing a depletion zone of around

20 μm thickness. A minimum-ionizing particle produces about 1200 electron/hole pairs. The

charge which is collected in each pixel is read out in a doubly-serial manner. Each CCD is
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Figure 2.12: Schematic layout of
VXD3 in the rφ view.

Figure 2.13: Schematic layout of
VXD3 in the rz view.

divided into four quadrants, with one output amplifier for each located at the four corners of

the CCD. One clock (the I clock) causes rows of pixel charges to shift towards the two shorter

sides of the CCD, where the readout registers are located. Once a row has been loaded into

the readout register, the R clock successively moves each pixel charge in the register into

the output amplifier. To read out the entire dectector takes 0.2 seconds or about 26 beam

crossings at 120 Hz. Because the pixel occupancy is < 10−4 rejecting the background pileup

hits is not difficult.

The full assembly is mounted in a nitrogen gas cryostat and maintained at a temperature

of around 185 K. It is necessary to operate the detector at low temperatures to reduce

lattice defects caused by radiation damage, which can cause trapping centers to develop in

the silicon. Because CCDs are read out serially, a trapping center affects not just nearby

pixels, but can impact the charge transfer out of all pixels behind it in that column.
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Figure 2.14: Miss distance of tracks in Z → μ+μ− events, in the rφ (left) and rz (right)
projections.

The detector is aligned internally using charged tracks which traverse the CCD overlap

regions, and also tracks with a hit on all three layers. The positions and orientations of

the individual CCDs are adjusted to minimized the residuals of the reconstructed to the

expected hits. An optical survey to determine the shape of each CCD after mounting on its

ladder and of the assembled ladder positions provided the starting point for this procedure.

The residuals from the best-fit alignment indicate < 4μm single-hit resolution. The track

position resolution at the IP can be estimated from the miss distance of the two tracks in

Z → μ+μ− decays, shown in Figure 2.14. The widths indicate asymptotic resolutions of 7.7

μm in rφ μm and 9.6 μm in rz.
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2.2.3 Drift Chamber

Just outside of VXD3 lie the drift chambers, used for measuring the positions and momenta

of charged particles. The SLD drift chamber system consists of a barrel-shaped central drift

chamber (CDC) and two endcap drift chamber (EDC) sections. Due to excessive backgrounds

the EDC systems have not been successfully incorporated into the SLD track reconstruction

procedure, so only the CDC will be discussed here.

The CDC [29] is a cylindrical drift chamber, which extends from 0.2 m to 1.0 m in radius

and from -1.0 m to +1.0 m in z, as shown in Figure 2.9. The effective polar angle range

for charged particle tracking is therefore | cos θ| < 0.85. The chamber is arranged in ten

concentric superlayers, as shown in Figure 2.15. There are four axial layers, in which the

wires run parallel to the z-axis, and three pairs of stereo layers, in which the wires run at

angles of ±41 mrad to the z-axis. Each superlayer is divided azimuthally into cells which

measure about 6 cm in width and 5 cm in height. Each cell contains a vector of eight

sense wires surrounded by a grid of field-shaping wires, embedded within a framework of

field wires. The field wires, made of 150 μm gold-coated aluminum and held at an average

voltage of -5300 V, produce a uniform drift field of 0.9 kV/cm. The field-shaping wires, also

made of 150 μm gold-coated aluminum but held at a lower voltage of -3027 V, focus the

electric field lines to produce a charge amplification of about 105 in the region near the sense

wires. These sense wires, made of 25 μ gold-coated tungsten, are spaced at 5 mm intervals

within the cell.

The volume of the CDC is filled with a gas mixture of 75% CO2, 21% Ar, 4% isobutane,

and 0.2% H2O. The choice of CO2 was driven by its low drift velocity, about 7.9 μm/ns for

the CDC field configuration. Slower drift translates into better position resolution for a given

drift time resolution, and allows easier separation of multiple hits on a single wire. The Ar

is added to increase the gain, the isobutane acts as a quencher, and the water reduces the
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Figure 2.15: Schematic layout of the CDC in the rφ view, showing the cell structure of the
superlayers.
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effects of wire aging. An average of 16 electrons per sense wire are produced by the passage

of a minimum-ionizing particle through the CDC gas.

The waveforms of the pulses induced on the sense wires by the drifting electrons are

digitized on both ends of the wire. The time of the leading edge of a pulse is used to

estimate the distance of the particle trajectory from the wire in xy, using the known drift

field configuration and correcting for the effects of the 0.6 T SLD magnetic field. The

resolution attained for a single sense wire is ∼100 μm, although there are substaintial non-

Gaussian tails. The position of the trajectory in z is obtained from the ratio of the pulse

heights at the two ends of the wire, and is accurate to about 5 cm. Additional information

in this view is provided by the stereo layers when the tracks are fitted.

The hits within each cell are combined into vectors, which are the basic elements of track

finding. Vectors are also constructed in the VXD, where ≥3 hits line up. The algorithm starts

by finding circular segments in xy consistent with at least two of the axial superlayer vectors.

Adding the VXD and stereo vectors fixes the angle of the track candidate in rz. Once a

candidate track has been identified, a detailed fit is performed using the Billoir algorithm [30]

taking into account the effects of magnetic field variations and energy loss in the detector

material. This fit is not restricted to the hits in the vectors used to identify the candidate and

is free to drop or add VXD and CDC hits to obtain the best fit. The hits assigned to the track

are removed and the algorithm is iterated until no more tracks are found. The momentum

resolution for the fitted tracks is estimated to be (σp⊥/p
2
⊥)2 = 0.00262 +(0.0095/p⊥)2, where

p⊥ is the track momentum transverse to the beam axis measured in GeV/c. The first term

comes from the track position measurement uncertainty and the second is the contribution

from multiple scattering in the detector. For tracks with at least two VXD hits, the impact

parameter resolutions in the rφ and rz views are given by:

σ2
rφ = 7.72 +

(
33

p sin3/2 θ

)2

μm (2.2)
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σ2
rφ = 9.62 +

(
33

p sin3/2 θ

)2

μm (2.3)

where the first term is from the track position measurement uncertainty and the second

term is the contribution from multiple scattering. Vectors of ≥3 VXD hits which are not

associated with a CDC track are also retained, and can be used as tracks in certain situations

as described in Chapter 4.

2.2.4 Cherenkov Ring-Imaging Detector

Cherenkov radiation is produced when a charged particle traverses a medium at a speed

greater than the speed of light in that medium. The radiation is emitted at a characteristic

angle to the particle trajectory. This Cherenkov angle is given by:

cos θC =
1

βn
(2.4)

where β = v/c is the normalized velocity of the particle and n is the index of refraction of the

material. Measurement of θC therefore provides a measurement of the velocity of a particle,

and if its momentum is also known its mass can be extracted. This allows the determination

of the particle type.

Particle identification at the SLD using this technique is possible using the Cherenkov

Ring-Imaging Detector (CRID) [31]. The CRID is composed of separate barrel and endcap

sections, as shown in Figure 2.9. Because of the lack of charged particle tracking in that

region the endcap CRID sections were not operated, and only the barrel CRID, covering the

region | cos θ| < 0.68, will be described here.

In order to cover a wide range in momentum, the CRID employs two separate radiators,

as shown in Figure 2.16. The liquid radiator consists of 1 cm thick trays of C6F14, with

n = 1.2176. The gas radiator volume is filled with a mixture of 76% C5F12 (n = 1.0017) and
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Figure 2.16: Schematic diagram of the barrel CRID, in the rz and rφ views.
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Figure 2.17: Cherenkov angles for π/K/p in the liquid and gas radiators as a function of
momentum. The thresholds for ring production for each radiator and particle type are
visible.
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24% N2 (n = 1.00032). The Cherekov angles for π/K/p as a function of momentum for the

two radiators is shown in Figure 2.17. The combination of the two radiators provides good

π/K/p separation for the momentum range 0.3 - 30 GeV/c.

The Cherenkov photons emitted by the radiators are detected using time projection

chambers (TPCs). Each TPC consists of a photocathode/drift volume coupled to a multiwire

proportional chamber (MWPC) as shown in Figure 2.18. Photons produced in the liquid

radiator fall directly upon the TPC volume, while those produced in the gas radiator are

reflected by an array of spherical mirrors back onto the TPC. The TPC volume contains

a mixture of 85% C2H6, 15% CO2 drift gas and 0.1% Tetrakis(diMethylAmino)Ethylene

(TMAE) which acts as a photocathode. The Cherenkov photons ionize the TMAE (quantum

efficiency ∼35%), producing photoelectrons which drift in the 400 V/cm field inside the TPC

volume towards the MWPC. The MWPC consists of an array of 93 carbon wires of 7 μm
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diameter. The photon coordinates are found from the drift time (z), the address of the

hit wire (x), and the charge division at the two ends of the wire (y), with resolutions of

about 1×1×2 mm in (x, y, z). The average number of detected photons per ring produced

by a charged track is 12.8(9.2) for the liquid(gas) radiator, leading to Cherenkov angular

resolutions of 16(4.5) mrad.

2.2.5 Liquid Argon Calorimeter

The liquid argon calorimeter (LAC) is the last of the detectors inside the SLD magnet

coil, as shown in Figure 2.9. It consists of separate barrel and endcap regions. The barrel

LAC covers the polar angle range | cos θ| < 0.84 and the endcaps extend the coverage to

| cos θ| < 0.99. The LAC is a sampling calorimeter, using lead sheets as both absorbers and

electrodes immersed in liquid Ar which acts as the ionization medium. The lead plates are

alternately grounded or held at -2 kV to produce a 2 kV potential between any adjacent pair

of plates. Particles, both charged and neutral, which enter the LAC generate showers from

interactions with the lead plates. The charged component of a shower ionizes the Ar, and

the electrons and ions drifting in the field between the plates induce signals on the plates

which are digitized. To reduce the channel count, the plates are ganged together into larger

units.

The LAC is divided into four radial layers, denoted EM1, EM2, HAD1, and HAD2. The

thicknesses of the EM1 and EM2 layers, 6 and 15 radiation lengths respectively, were chosen

so that about half of an electromagnetic shower will be deposited in each, with minimal

leakage into the HAD layers. The plates are configured as projective towers pointing towards

the IP, with angular size ∼33 mrad in both polar and azimuthal angle. In the EM layers, the

lead plates are 2 mm thick, separated by 2.75 mm of Ar. The two HAD layers sit directly

behind EM2, with sufficient thickness (one interaction length each) to contain ∼95% of the
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Figure 2.18: CRID time projection chamber.
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total energy of a Z decay. In the HAD layers, the lead plates are 6 mm thick, with the same

2.75 mm of Ar between. The HAD projective towers are more coarsely segmented than those

in the EM layers, covering ∼66 mrad in polar and azimuthal angle. A section of the barrel

LAC illustrating the layered projective tower geometry is shown in Figure 2.19. The energy

resolution of the LAC is approximately 15%/
√
E for electromagnetic showers and 60%/

√
E

for hadronic showers, with E measured in GeV.

2.2.6 Warm Iron Calorimeter

The SLD is built within a steel structure which provides mechanical support, returns the flux

of the solenoidal magnet, and absorbs the residual energy which leaks through the LAC. This

steel has also been instrumented to serve as a warm iron calorimeter (WIC). Seventeen layers

of 9 mm square Iarocci streamer tubes are installed within the steel as shown in Figure 2.20.

On either side of each layer of tubes lies a sheet of plastic, on which copper electrodes have

been etched in pad and strip configurations. The pads are arranged in the same projective

tower geometry as in the LAC, to augment the shower energy reconstruction. The resolution

of this system is poor, however, and the WIC pads information is generally not used. The

strip electrodes run both longitudinal and transverse to the beamline, and are used for muon

identification.
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Figure 2.19: A section of the barrel LAC.
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Figure 2.20: Layout of the WIC showing the streamer tubes and readout electrodes.
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Chapter 3

Simulation Tools

Simulated data generated using Monte Carlo techniques is an essential component of modern

particle physics experiments, allowing the estimation of acceptances, backgrounds, and biases

that would otherwise be difficult or impossible to determine. A reliable simulation is also

useful for optimization of analysis techniques. The simulated data is produced in two steps.

The first is to simulate the production and decay of a Z boson, using fundamental physical

theory and phenomenological models. The second step is to propagate the generated particles

through the detector, simulating the response of each of the detector subsystems to their

passage. These simulated detector hits can then be reconstructed and analyzed just like the

real data, except with knowledge of the underlying physics.

3.1 Event Generation

The SLD Monte Carlo uses the JETSET 7.4 [32] program to generate physics events. The

program parameters have been to tuned to accurately model distributions of inclusive event

observables [33]. The generation proceeds in four steps, as shown in Figure 3.1. The first

step is the simulation of the e+e− → γ/Z → qq̄ process. The effects of initial-state photon
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Figure 3.1: The stages of physics event generation: (i) hard scattering, (ii) parton shower,
(iii) hadronization, (iv) unstable particle decay.
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radiation are included, and the qq̄ are generated according to the cross section given in

Equation 1.20. The flavor of the qq̄ pair is chosen randomly, weighted by the strength of the

couplings.

The second step is the generation of a parton shower to model the effects of final-state

radiation. Branchings of the type q → qg, q → qγ, g → gg, and g → qq̄ are made, based on

splitting functions Pa→bc(z). These splitting functions, which are calculated from simplified

matrix elements, express the probability for a parton a to split into bc, where b carries a

fraction z of a’s energy and c carries the remaining 1−z. At the end of the parton shower, the

event consists of a collection of quarks and gluons. Although it is not shown in Figure 3.1,

there can be more quarks than just the primary qq̄ pair at this stage, produced via g → qq̄.
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The third step involves converting the showered partons into hadrons. It is not possible to

calculate this process perturbatively, because at the energy scales involved the QCD coupling

is too large. Therefore, a phenomenological approach is used, the Lund string model. The

color fields between the quarks and gluons are modeled as connecting strings, with uniform

energy density ∼ 1 GeV/fm. As the partons move apart, the energy stored in a string grows

until there is enough to pop a qq̄ pair out of the vacuum. The initial strings are broken

end to end in this way into hadrons, with the energy of each hadron chosen according to a

fragmentation function. The fragmentation functions are distributions of z, defined as:

z =
(E + p‖)hadron

(E + p‖)quark

(3.1)

where the quark subscript refers to the quark currently at the end of the string and the

hadron subscript refers to the hadron which will be created from that quark and the q̄

pulled out of the vacuum by the string energy. The string is broken along its length into

hadrons until all of the initial z is gone. For Z decays into light quarks the Lund symmetric

function [34] is used, while for decays into c and b quarks the Peterson function [35] is used.

These functions are shown in Figure 3.2. Because the Peterson functions are peaked at high

z, the initial hadron created containing the heavy quark will carry a large fraction of the

energy of the initial heavy quark. The parameters of the JETSET model related to parton

showers and hadronization have been tuned to match inclusive event distributions in the

SLD data [33].

The last step in physics event generation is the decay of unstable particles produced in

the hadronization step. All short-lived hadrons which could only extremely rarely reach the

beampipe are forced to decay at this stage, with the decay positions distributed according to

the lifetimes of the particles. This includes all strong and electromagnetic decays, and weak

deacys of hadrons containing c and b quarks. The particle decay procedure, using tables
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Figure 3.2: Fragmentation functions for uds, c, and b events.
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of masses, lifetimes, and branching ratios, is iterated until only long-lived hadrons remain.

Unstable particles with long lifetimes such as Ks and Λ are not processed at this step, since

they may reach the detector material. They are decayed according to their lifetimes during

the detector simulation stage. Hadrons containing b quarks are processed using the CLEO

B-decay model [36] tuned to reproduce the existing data on B decays, while other particles

are handled by the internal JETSET decay machinery.

3.2 Detector Simulation

Once a physics event has been generated, the response of the detector to the resulting par-

ticles must be modeled so that the simulated data resembles the real data as closely as

possible. The SLD Monte Carlo uses the GEANT [37] program for this detector modeling.

The program uses a detailed description of the detector geometry as input, which speci-

fies the position and composition of every detector component. As GEANT tracks each

particle, it records the amount of energy deposited in each detector component by ioniza-

tion, Cherenkov radiation, synchrotron radiation, and other processes. For each component,

response functions are specified which convert the deposited energy into realistic detector

signals.

These detector signals can then be processed using the same techinques used for the real

data to find tracks, calorimeter clusters, etc. To simulate detector backgrounds and noise,

the detector is read out at random intervals during data taking. The hits from these random

events are overlaid onto the hits generated by GEANT before the event is processed.

The two aspects of detector modeling which are most important for the analysis presented

in this Thesis are tracking efficiency and track position resolution.
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3.2.1 Tracking Efficiency

Tracking efficiency is the fraction of charged particles which are reconstructed as tracks in

the detector. For the analysis presented in this Thesis, only tracks which have associated

VXD hits will be used and only the efficiency for finding these is considered. The total

efficiency is then composed of three sources: CDC track-finding, VXD-vector finding, and

CDC+VXD linking. A failure in any of these will cause the track to be lost for analysis

purposes.

One way to check the simulation against the data is to simply compare the number of

reconstructed tracks per event. However, this method suffers from significant uncertainties

associated with the number of charged particles generated by the simulation, and so is not

a test of the detector modeling alone. Two alternative methods with less dependence on the

generation phase have been developed.

The first method uses the fraction of CDC tracks which have associated VXD hits. A

loose requirement that the CDC track point towards the IP is imposed to reduce the level

of KS decay and detector interaction products, which because they do not pass through the

VXD should not have any hits. Comparison of this fraction with the data indicates that the

tracking efficiency in the simulation is 1.5% too high. An advantage of this method is that it

can be performed in bins of cos θ and phi to check for any local efficiency discrepancies. The

track linked fractions are plotted versus cos θ and φ in Figure 3.3 for the data, the standard

Monte Carlo, and the corrected Monte Carlo. A disadvantage of this method is that it gives

no information as to the source of the efficiency discrepancy. It is not possible to tell whether

the problem lies with the VXD-vector reconstruction or the linking of the CDC and VXD

segments.

The second method uses the net charge Qvtx of b-hadron vertices selected using the

procedure developed in Chapter 4. The width of the Qvtx distribution is a good probe
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Figure 3.3: Fractions of track which have associated VXD hits, in bins of cos θ (left) and φ
(right), for the data, the standard Monte Carlo, and the corrected Monte Carlo.

of the tracking efficiency and insensitive to the generated b-hadron decay charged particle

multiplicity. Comparing the Qvtx width using only the full CDC+VXD tracks contained

in the vertex indicates that the simulated tracking efficiency is 1.5% too high, in excellent

agreement with the first method. This method can also be used to check the VXD-vector

reconstruction efficiency, by converting 1.5% of the tracks in the simulation into VXD-vectors

by dropping the CDC component. Comparing the Qvtx width using both CDC+VXD tracks

and attached VXD-vectors indicates that 75% of the new VXD-vectors should be discarded.

The tracking efficiency discrepancy is therefore mostly due to VXD-vector reconstruction,

not to CDC-VXD linking. The Qvtx distributions for the data, the standard Monte Carlo,

and the corrected Monte Carlo are shown in Figure 3.4.

3.2.2 Track Position Resolution

The position and orientation of each of the CCD ladders in the VXD has been determined

using the data, following an alignment procedure described in [28]. However, evidence of
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Figure 3.4: Reconstructed vertex charge Qvtx for the data, the standard Monte Carlo, and
the corrected Monte Carlo.
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residual misalignment can be seen in the track impact parameter distributions. These effects

are particularly noticeable in the rz projection for high momentum tracks at large | cos θ|,
where differences in the average impact parameter between the Monte Carlo and data can

be as high as 40 μm. The source of this problem is thought to be related to the shapes of the

CCD ladders, which are flexible enough to curl at the edges. Due to low statistics this effect

is difficult to constrain in the alignment procedure, which makes no physics assumptions and

only uses the relative positions of VXD hits.

A set of corrections to the simulation has been constructed to mimic this misalignment.

The positions of the tracks are shifted in space to reproduce the average impact parameters

seen in the data, in bins of φ and cos θ. In contrast to the alignment procedure this method

assumes the accuracy of the generated impact parameter distribution in the simulation.

After moving the tracks, a second pass determined that no additional smearing of the VXD

hit positions was required to adequately model the data distributions. The miss distance

δzIP = ztrk − zIP of tracks to the reconstructed event e+e− interaction point (IP) in z is

plotted in Figure 3.5 for the data, the standard Monte Carlo, and the corrected Monte Carlo.

In the following chapters many comparisons between the data and Monte Carlo will be

shown. After applying the corrections described above the simulation and data are generally

found to be in excellent agreement.
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Figure 3.5: Track miss distances δzIP to the IP for the data, the standard Monte Carlo, and
the corrected Monte Carlo.
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Chapter 4

Event Selection and Tagging

In order to make a measurement of Ãf
FB, a sample of Z decays into the fermion of interest

must be isolated. The selection of events for this analysis is done in two stages. The first is

to separate hadronic decays of the Z from leptonic decays and machine-related backgrounds.

From these hadronic events, samples of Z decays to c and b quarks are selected by search-

ing for displaced vertices. Because the direction of the quark is also needed, a technique

for identifying a tagged heavy hadron as containing a heavy quark or antiquark has been

developed.

The heavy flavor tagging procedure developed for this analysis makes use of artificial

neural networks. A short review of classification using neural networks is given in Section 4.2

4.1 Hadronic Event Selection

The events which were written to tape by the SLD trigger system are first passed through

a filter to improve the background rejection. This filter requires either a >1 GeV/c track

in the drift chamber or energy deposition in the LAC inconsistent with beam-gas or SLC

muon background events. The combination of the trigger system and this filter is estimated
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to be 92% efficient for hadronic Z decays [38]. The remaining events are processed by the

SLD offline reconstruction software and written to data summary tapes (DST). These tapes

contain the tracks, calorimeter clusters, etc. which are used for physics analyses.

The DSTs contain all identified Z decays, including those into lepton pairs. Hadronic

decays are isolated based on the visible energy and track multiplicity in the event. There

must be at least seven CDC tracks with p⊥ > 0.2 GeV/c and zIP < 5 cm. At least three

of the CDC tracks must have associated hits in the vertex detector. The visible energy

measured using CDC tracks must exceed 18 GeV. The event thrust vector t̂, defined as the

axis which maximizes the event thrust T :

T =

∑
i |	pi · t̂|∑

i |	pi| (4.1)

where the sum is over the reconstructed calorimeter clusters in the event, must satisfy

| cos θt̂| < 0.7 and T > 0.8 to ensure that the event is contained within the acceptance

of the tracking detector and can be separated into two well-defined hemispheres. Calorime-

ter clusters rather than CDC tracks are used to determine t̂ to avoid biases caused by the

limited CDC acceptance.

The quantities used in hadronic event selection are shown in Figure 4.1. A total of 228712

events from the SLD 1996-98 data pass this selection. Background, predominately due to τ

pairs, is estimated at < 0.1%.

4.2 Artificial Neural Networks

A common problem in the analysis of particle physics data is that of classification. From a

sample of items, such as jets or tracks, which can be grouped into a set of categories ai a

subsample enriched in one of the categories must be selected. Typically this is done using
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Figure 4.1: Distributions of event selection variables: (a) Number of CDC tracks, (b) visible
energy, (c) thrust axis polar angle, (d) thrust magnitude. The points (histogram) denote the
data (Monte Carlo). The arrows indicate the regions which pass the cuts, which are applied
cumulatively for each successive plot. Only a subset of the 1998 data is shown.
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a set of one or more variables xi, which are measureable properties of the items and which

exhibit some separation between the “signal” category and the others. A region in the xi

space is chosen which includes the desired rate of signal relative to the other categories.

In general the xi are correlated, so simply cutting on each xi ignores information which

could otherwise improve the selection. For two xi a scatter plot can be used to determine

signal regions by eye, but for more than two xi this approach becomes impractical. What is

needed is a method to combine all of the information contained in the xi into a smaller set

of variables yk, for which it is easier to find signal regions. One of the more popular of such

methods is the use of artificial neural networks.

Artificial neural network systems have found many applications in particle physics [39],

including classification, pattern recognition, and function approximation. Neural networks

can be constructed using a wide variety of architectures and learning algorithms, but the

most common for classification purposes are feed-forward networks trained using back-

propagation. The discussion here will be restricted to this type.

A typical feed-forward network architecture is shown in Figure 4.2. The basic elements

of a neural network are nodes and links. In a feed-forward network the nodes are arranged

in layers as shown, with links only between nodes in adjacent layers. The first layer of

nodes corresponds to the input variables xi, with one node for each variable. Next come any

number of hidden layers, with any number of nodes in each. In practice networks with more

than two hidden layers are rarely used, and one hidden layer with one more node than in

the input layer is sufficient for most classification problems. The last layer contains output

nodes, which contain the reduced set of variables yk discussed above. Often there will only

be one output node, although more may be used if the network is to be used to sort the

items into more categories than just signal/background.

As its name suggests, a feed-forward network is evaluated layer by layer, so that the input

variables xi are propagated step-by-step through the network to the output layer. The value
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Figure 4.2: Schematic diagram of a typical feed-forward neural network.
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of a node hj in the first hidden layer is given by the output of a function g(z):

hj = g(
∑

i

ωijxi + θj) (4.2)

where ωij is the weight assigned to each link between the input and hidden layers, θj is the

threshold for each hidden node hj, and g(z) is the node activation function. For classification

problems, a sigmoid activation function:

g(z) =
1

2
(1 + tanh z) =

1

1 + e−2z
(4.3)

is generally used, so that each node (other than the inputs) acts in an almost binary on/off

fashion. If there are more hidden layers they are evaluated in turn, replacing the input node

values xi with the appropriate hj values from the previous layer. The output layer values yk
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are given by:

yk = g

(∑
j

ωjkhj + θk

)
(4.4)

where ωjk is the weight for a link between the last hidden and output layer, and θk is

an output node threshold. The ω’s and θ’s, collectively denoted as a vector 	ω, are free

parameters of the network, which are determined by training against test samples.

The training samples are collections of items for which both the input patterns xi and

the desired network outputs tk are specified. These samples are drawn from the Monte Carlo

simulation, which provides good modeling of the data xi distributions and knowledge of

the true category for each item. The training procedure involves minimization of an error

measure, usually a mean square error:

E =
1

2Np

∑
p

∑
k

(y
(p)
k − t

(p)
k )2 (4.5)

where Np is the number of patterns (items) in the training set, and the (p) denotes the

observed and target network outputs for a particular input pattern x
(p)
i . Training is therefore

analogous to performing a χ2 fit for the parameters 	ω.

Many specialized techniques have been developed to minimize E(	ω), but the simplest

and most commonly used is gradient descent. This method involves updating 	ω by:

Δ	ω = −η∇E (4.6)

where η is the learning rate, typically ∼ 0.1. The derivatives of E are computed starting

with the links between the last hidden layer and the output layer and proceeding back to

the input layer. The intermediate layer derivatives make use of those calculated for the later

layers, allowing computation of the full ∇E in one traversal of the network. The differences

between yk and tk are thus said to be “back-propagated” through the network to update the
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weights and thresholds. The weights may be updated after any number of patterns, but the

fastest convergence is obtained by updating after each individual pattern has been presented

to the network.

Starting from an initial 	ω with elements randomly distributed in [−1, 1], the training

sample is iterated though the network and the weights updated until E is minimized. Usually

this will require many passes through the training sample, called cycles. For each cycle the

patterns are shuffled randomly to minimize the effects of false minima. Starting with a high

learning rate will allow a quick approach to the neighborhood of minimum E, where η should

be reduced to prevent oscillations about the minimum. Also recommended is to transform

and scale the xi so that they are approximately the same size and shape, so that no one

variable dominates at first. As the network is trained, the error measure E is periodically

evaulated for a separate validation sample. Comparison of this with the training sample

error allows confirmation that the network is being trained on the general characteristics of

the patterns and is not simply learning to recognize statistically insignificant features of the

training sample. Once the network has been trained and validated, the network using the

final 	ω values is ready to be used for classifying real data.

To train and evaluate the networks used in this Thesis, the Stuttgart Neural Network

Simulator [40] software package was used. All of the networks used in this Thesis are con-

figured in the N : (N + 1) : 1 topology for N variables, so that there is one hidden layer

containing one more node than in the input layer, and one output node. The networks were

trained on a subsample of the SLD Monte Carlo from the 1998 run period.

4.3 Heavy Flavor Tagging

Decays of a Z boson into charm and bottom quarks can be distinguished from those into light

flavors by searching for heavy hadrons. Because they are produced with high energy and
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have long lifetimes, heavy hadrons generally travel distances of millimeters before decaying.

The method used for these results is to search for vertices of tracks displaced from the

event interaction point (IP). Figure 4.3 illustrates the typical configuration of particle jets

produced by light-flavor (uds), charm, and bottom quarks. In a uds jet all of the tracks will

appear to come from one point in space, the event interaction point (IP). In a charm jet

some of the tracks may not point back to the IP, and if the c hadron decays into more than

one charged particle there will be a secondary vertex (SV) in addition to the IP. Bottom

jets will also exhibit secondary vertices, and if there are sufficient particles produced at the

b and c decay points it is possible to find more than one displaced vertex.

An important case for tagging b jets is when there is only one stable charged particle

produced at the b decay point. If the tracks from the c decay point form a vertex which is

successfully reconstructed, the single track from the b decay will not point to that vertex

and may be lost. The tagging algorithm described in this chapter therefore includes an extra

step beyond vertex reconstruction to recover these tracks.

4.3.1 IP Reconstruction

To search for displaced vertices the position of the IP must be precisely known. The position

of the IP in the plane transverse to the beam axis is determined by fitting all of the tracks

in an event to a common vertex. Because the SLC luminous region is small and stable

in the xy plane, sets of 30 time sequential hadronic events are averaged to obtain a more

precise determination of the xy IP position. This averaging removes any dependence of the

resolution on the cos θt̂ of the event, because t̂ is isotropic in φ. This also reduces biases

due to tracks from heavy hadron decays, which in general do not point back to the IP. The

resolution of this method can be checked in the data using decays of the Z into muon pairs.

The impact parameters of the two tracks in the xy plane to the estimated IP position are
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Figure 4.3: Schematic illustration of the track patterns in uds, c, and b quark jets.

uds jet c jet b jet
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plotted in Figure 4.4. From the width of this distribution (8.2 μm) and the tracking rφ

resolution (7.55 μm), the xy IP resolution is found to be
√

(8.20)2 − (7.55)2 = 3.2 μm.

Because the SLC luminous region is larger in z (700 μm), the z position of the IP must

be found event-by-event. Tracks with VXD hits are extrapolated to their point of closest

approach (POCA) in xy to the precisely determined transverse IP position. Tracks with

impact parameters >500 μm or > 3σ from the IP are excluded, and the z position of the IP

is taken from the median z at POCA of the remaining tracks. The resolution of this method

is found from the simulation to be 10/11/17 μm for light/charm/bottom events.

4.3.2 Secondary Vertex Reconstruction

Secondary vertices are found using a topological algorithm [41]. This method searches for

space points in 3D of large track density. Each track is parameterized by a Gaussian prob-

ability density tube f(	r) with a width equal to the uncertainty in the track position at its
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Figure 4.4: Muon-pair xy impact parameter to IP.

POCA to the IP, 	r0:

f(	r) = exp

{
−1

2

[(
x− (x0 + y2κ)

σ1

)2

+

(
z − (z0 + y tanλ)

σ2

)2
]}

. (4.7)

The first term is a parabolic approximation to the track’s circular trajectory in the xy

plane, where κ is a function of the track’s charge and transverse momentum and of the SLD

magnetic field. The second term represents the linear trajectory of the track in the rz plane,

where λ is the track dip angle from the vertical. The σ parameters are the uncertainties in

the track positions after extrapolation to 	r0 for the two projections.

The function fi(	r) is formed for each track under consideration and used to construct

the vertex probability function V (	r). Also included is f0(	r), a 7 × 7 × 20 μm (x × y × z)
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Figure 4.5: Projections onto the xy-plane of (a) track and (b) vertex functions.

Gaussian ellipsoid centered at the IP position.

V (	r) =
∑

i

fi(	r) −
∑

i f
2
i (	r)∑

i fi(	r)
(4.8)

The track and vertex functions are shown in Figure 4.5 for a simple Monte Carlo event.

Secondary vertices are found by searching for local maxima in V (	r) that are well-separated

from the peak at the IP position. The tracks whose density functions contribute to a local

maximum are then identified as originating from a secondary vertex (SV).

A loose set of cuts are applied to tracks used for secondary vertex reconstruction. Tracks

are required to have ≥ 3 VXD hits and p⊥ > 250 MeV. Tracks with 3D impact parameter

> 3 mm or consistent with originating from a γ, K0, or Λ0 decay are also removed. The

event is divided into two hemispheres using the thrust axis, and the vertexing procedure is

performed in each using only the tracks in that hemisphere.

The identified vertices are required to be within 2.3 cm of the center of the beam pipe to

remove false vertices from interactions with the detector material. A cut on the secondary
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vertex invariant mass M of |M −MK0
S
| < 0.015 removes any K0

S decays that survived the

track cuts. The remaining vertices are then passed through a neural network to further

improve the background rejection. The input variables are the flight distance from the

vertex to the IP (D), that distance normalized by its error (D/σD), and the angle between

the flight direction 	D and the total momentum vector of the vertex 	P (φPD). These quantities

are shown in Figure 4.6, along with the output value of the neural network (yvtx). A good

vertex is defined as one which contains only tracks from heavy hadron decays, with no tracks

originating from the IP, strange particle decays, or other sources. Vertices with yvtx > 0.7

are retained. At least one secondary vertex passing this cut is found in 72.7% of bottom,

28.2% of charm, and 0.41% of light quark event hemispheres in the Monte Carlo. Around

16% of the hemispheres in b events have more than one selected secondary vertex.

4.3.3 Track Attachment

Due to the cascade nature of b hadron decays, tracks from the heavy hadron may not all

originate from the same space point. Therefore, a process of attaching tracks to the secondary

vertex has been developed to recover this information using a second neural network. The

first four inputs are defined at the point of closest approach of the track to the axis joining

the secondary vertex to the IP. They are the transverse distance from the track to that axis

(T ), the distance from the IP along that axis to the POCA (L), that distance divided by

the flight distance of the SV from the IP (L/D), and the angle of the track to the IP-SV

axis (α). The last input is the 3D impact parameter of the track to the IP normalized by

its error (b/σb). These quantities are shown schematically in Figure 4.7. The distributions

are shown in Figure 4.8, along with the neural network output value (ytrk). The network is

trained to accept only tracks which come from a b or c hadron decay, and to reject tracks

from the IP or from strange particle decays. To optimize the charge reconstruction, any
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Figure 4.6: Distributions of seed vertex selection variables: (a) distance from IP D, (b)
normalized distance from IP D/σD, (c) angle between flight direction and vertex momentum
φPD, (d) neural network output yvtx. A good vertex contains only heavy hadron decay tracks.
The arrow indicates the accepted region.
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Figure 4.7: Schematic illustration of the quantities used in the track-attachment procedure
described in the text (not to scale).
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track not already part of a good SV and with ≥ 2 VXD hits is tried, including those which

were removed from the SV-finding procedure. If more than one secondary vertex was found

in the hemisphere the attachment procedure is tried for each track-SV combination. Tracks

with ytrk > 0.6 are added to the list of secondary vertex tracks.

4.3.4 VXD-alone tracking

Because the SLD tracking system is not 100% efficient, not all of the heavy hadron decay

products will be found even for perfect secondary vertex reconstruction. The Monte Carlo

indicates that ∼90% of the charged decay products of a heavy hadron produce a VXD-linked

track. Part of the inefficiency can be recovered by using tracks reconstructed in the vertex

detector alone. Vectors of VXD hits not associated with a CDC track are used, where there

is a least one hit on each of the three VXD layers. Including these vectors raises the tracking

efficiency to ∼97% for heavy hadron decay products. Using the VXD hits in the vector a

parabolic trial track is constructed. In the same way as for the cascade tracks, a third neural
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Figure 4.8: Distributions of cascade track selection variables: (a) T , (b) L, (c) L/D, (d) α,
(e) b/σb, (f) neural network output ytrk. A good track is one which originates from a heavy
hadron decay. The arrow indicates the accepted region.
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network is then used to select the trial tracks consistent with the heavy hadron decay chain,

using as inputs the first four variables used for the track attachment neural network (T , L,

L/D, α). These quantities are shown in Figure 4.9, along with the neural net output value

(yvec). The normalized impact parameter is not used because the track position error can’t

be reliably calculated for the trial tracks due to the poor momentum resolution. Vectors

with yvec > 0.5 are added to the secondary vertex track list.

Once a vector has been attached to a secondary vertex, the parabolic fit is repeated with

the vertex as an additional space point to improve the curvature determination. The charge

of the underlying particle is correctly found from this fit for ∼ 85% of the attached vectors.

Figure 4.9f shows the correct-sign probability for attached vectors as a function of the true

momentum of the underlying Monte Carlo particle, both with and without the secondary

vertex constraint. The added lever arm provided by the secondary vertex is essential for

reliably reconstructing the charge when the particle’s momentum exceeds 2 GeV/c.

4.3.5 Flavor Discrimination

At this point, for each hemisphere there is a list of selected tracks. For hemispheres with no

selected secondary vertices the list is empty, otherwise it includes the tracks in the secondary

vertices, any cascade tracks which have been attached, and any VXD-alone tracks which

have been attached. From this list several signatures can be computed to discriminate

between bottom/charm/light event hemispheres. These are the corrected invariant mass

of the selected tracks (Mhem), the total momentum sum of the selected tracks (Phem), the

distance from the IP to the vertex obtained by fitting all of the selected tracks (Dhem), and

the total number of selected tracks (Nhem). Only the last of these uses the VXD-alone tracks.

To calculate Mhem, each track is assigned the mass of a charged pion and the invariant

mass Mch of the selected tracks is calculated. This mass can be partially corrected for the
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Figure 4.9: Distributions of VXD-vector selection variables: (a) T , (b) L, (c) L/D, (d) α,
(e) neural network output yvec. A good vector is one which originates from a heavy hadron
decay. The arrow indicates the accepted region. The probability to assign the correct charge
to a vector based on its fitted curvature is shown in (f), both with and without the secondary
vertex as a constraint.
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Figure 4.10: Schematic illustration of the missing Pt determination.
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unknown contribution from neutral decay products using the vertex transverse momentum.

The minimum amount of momentum Pt required to align the momentum 	Phem with the flight

direction 	Dhem to within errors is found, as shown in Figure 4.10. The charged mass is then

corrected to obtain the Pt-corrected mass Mhem:

Mhem =
√
M2

ch + P 2
t + |Pt|. (4.9)

The magnitude of Pt is constrained to be ≤ Mch to prevent fake vertices from gaining

large masses through this correction.

The four signatures given above are used as inputs for a neural network trained to distin-

guish hemispheres in bottom/charm/light events. The four inputs and the neural network

output yhem are shown in Figure 4.11. Also shown in Figure 4.11 is the correlation between

Phem and Mhem for bottom and charm. This correlation in the low Mhem region allows the

selection of purer samples of charm than would be possible using Mhem alone.

The flavor selection neural network was trained to put charm event hemispheres near

yhem = 0, bottom event hemispheres near yhem = 1, and light-flavor background near yhem =
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Figure 4.11: Distributions of flavor discrimination variables: (a) Mhem, (b) Phem, (c) Dhem,
(d) Nhem, (e) neural network output yhem, (f) Phem vs. Mhem correlation.
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Figure 4.12: Purity vs. efficiency for hemispheres in (a) charm and (b) bottom events, as
the selection neural network cut is varied.

0.5. This allows a simple selection of charm (bottom) event hemispheres by specifying an

upper (lower) limit for the output value yhem. Figure 4.12 shows the ranges of purity vs.

efficiency which can be obtained for charm and bottom event hemisphere tagging by adjusting

only this one cut.

4.4 Quark/Antiquark Discrimination

In order to measure the polar-angle asymmetry of heavy quarks in Z decays, it is necessary

not only to select heavy flavor events but also to find the direction of the quark (as opposed

to the antiquark). The thrust axis ±t̂ will be used for this purpose, oriented to point into

the nominal quark hemisphere. The two methods used to orient t̂ for these results are vertex

charge and identified kaons.
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4.4.1 Vertex Charge

The net charge of the selected tracks in the hemisphere Qvtx (including the attached cascade

and VXD-alone tracks) is a good estimate of the charge of the underlying heavy hadron.

For charged hadrons a non-zero vertex charge generally reflects the charge of the heavy

quark/antiquark, and can be used to orient the thrust axis. For neutral hadrons a non-zero

charge results from one or more missing or extra tracks and provides no information, diluting

the analyzing power. It is therefore important that neutral hadrons be reconstructed with

zero vertex charge to keep them out of the charged sample.

4.4.2 Identified Kaons

A second method used is to identify charged kaons from the heavy hadron decay. These

should result from the c → s and b → c → s decays of the heavy hadron and so reflect

the charge of the initial heavy quark/antiquark. It is also possible to get charged kaons

from fragmentation or from an initial s quark in Ds or Bs mesons, so this method will be

subject to physics backgrounds in addition to misidentification. The current knowledge of

heavy hadron decays to K± according to the Particle Data Group (PDG) [21] is summarized

in Table 4.1. The kaons are seen to be an especially good tag for D0 mesons, where the

branching ratio for the c → s kaons is large and the wrong-sign kaon rate is small. The

kaons therefore provide a good complement to Qvtx for c hadrons. For b hadrons the wrong-

sign kaon rates are larger, which will decrease the power of the tag as it is not possible to

distiguish these from the b → c → s kaons. In addition, in the sample with Qvtx = 0 where

the identified kaons would supplement the vertex charge method the correlation of the kaon

charge with the heavy quark charge at production will be substantially diluted by B0 − B̄0

mixing. For these reasons the charged kaons do not provide significant improvement over

Qvtx alone for b hadrons and so will not be used.
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Table 4.1: Branching ratios to K± from the PDG.

Species BR(→ K−) (%) BR(→ K+) (%)
D+ 24.2±2.8 5.8±1.4
D0 53±4 3.4±0.6
Ds 13±14 20±18

B−/B̄0 66±5 13±4

Kaons are identified track-by-track with the CRID using a standard SLD routine [42].

Tracks are first subjected to a set of cuts to ensure that they are well-reconstructed with

good CDC hits near the CRID inner wall, and that they are within the CRID acceptance.

The appropriate sector of the CRID is checked to verify that the radiators and TPC are

operational. An ionization signal in the TPC or a ring in the liquid radiator is required to

ensure that the particle passed through the CRID without scattering.

For each of the selected tracks in the hemisphere that pass these cuts, a likelihood is

calculated for each of five particle hypotheses: electron, muon, pion, kaon, and proton.

These likelihoods are constrained to sum to one. The likelihood function consists of a signal

term describing the expected number and radial distribution of Cherenkov photons for a

particular hypothesis and a uniform background term, and combines information from both

the liquid and gas radiators. To discriminate between the hypotheses the difference in the

logarithms of the likelihoods is used. Figure 4.13 shows this difference for K − π and K-

proton. To select kaons in the data a requirement of lnLK−lnLπ > 3 and lnLK−lnLp > −1

is used. For the Monte Carlo the lnLK − lnLπ cut is varied as a function of momentum to

match the pion mis-ID rate in the data, which is measured using a sample of pions from K0
S

and three-prong τ decays [42]. Also shown in Figure 4.13 are the momentum distribution

of the selected tracks and the efficiency for a kaon/non-kaon to pass these cuts. The kaon

efficiency is lower between 2 and 8 GeV/c because these tracks are above the resolution

limit for the liquid radiator and below the kaon Cherenkov threshold for the gas radiator.
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Therefore only pion rejection can be done in this region.

To assign a charge to a tagged hemisphere, a kaon charge QK is used. This QK is

calculated as the charge sum of the selected tracks in the hemisphere which pass the likelihood

cuts described above.

Distributions of the hemisphere charges Qvtx and QK are shown in Figure 4.14, for

yhem < 0.4 (mostly c), and for yhem > 0.85 (mostly b). In the Qvtx plots the Monte

Carlo distributions shown are for positive, negative, and neutral heavy hadrons, and for

the wrong-flavor background. For the QK plots the Monte Carlo distributions are for heavy

hadron decays into K+, K−, no charged kaons, and wrong-flavor background. Comparing

Figures 4.14c and 4.14d, the improvement in Qvtx from the VXD-alone tracks can clearly be

seen.
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Figure 4.13: Differences in log-likelihood for (a) kaon vs. pion and (b) kaon vs. proton.
The arrows indicate the accepted region. The K − p cut has been applied in (b). In (c) is
shown the momentum distribution of the accepted tracks, and (d) shows the fraction of K
and non-K tracks which are accepted as a function of the track momentum. The points are
data and the hatched regions show the Monte Carlo distributions for each particle type.



80

Figure 4.14: Distributions of hemisphere charge: (a) Qvtx, yhem < 0.4, (b) QK , yhem < 0.4,
(c) Qvtx, yhem > 0.85, without VXD-alone tracks, (d) Qvtx, yhem > 0.85, including VXD-
alone tracks. Points are data, hatched regions are the indicated components from the Monte
Carlo.
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Chapter 5

Asymmetry Analysis

In the previous chapter the techniques for selecting event hemispheres containing heavy

hadrons and determining their quark/antiquark nature were described. These techniques

will now be applied to measure Ac and Ab using Ãf
FB.

The flavor discrimination neural network output value yhem will be used to define tags

which isolate pure samples of charm and bottom event hemispheres. The performance of

these tags will be examined, with the expectations from the Monte Carlo simulation com-

pared to an estimation of the tag quality determined from the data.

Beyond selecting a sample of the desired quark flavor, the second necessary ingredient

for measuring Ãf
FB is to construct an estimate for the quark direction. For this analysis

the signed thrust axis t̂s = ±t̂ will be used. The sign is chosen to make t̂s point into the

hemisphere of the event thought to contain the heavy quark, using the information from

Qvtx and QK . The fraction of hemispheres for which this assignment is correctly made can

also be constrained directly from data.

Once the tags have been understood, maximum-likelihood fits are performed to extract

Ac and Ab from the samples of selected events.
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5.1 Tag Definitions

Using the flavor discrimination neural network output variable yhem described in the previous

chapter two tags are defined, one to select charm event hemispheres (the L tag, for “Low-

mass”), and the other for bottom event hemispheres (the H tag, for “High-mass”). In

addition to flavor selection, these tags must indicate whether a hemisphere contains a heavy

quark or antiquark. This is done using a tag charge Qtag, defined below for the two tags,

which combines the Qvtx and QK information. For convenience Qtag is defined so that a

correctly-tagged quark hemisphere will result in Qtag > 0. Only the sign of Qtag will be

used, not its magnitude.

The L tag, optimized to select charm event hemispheres, uses a cut of yhem < 0.4. An

additional requirement of Phem > 5 GeV/c is imposed to improve the light-flavor rejection.

The tag charge Qtag for the L tag is defined as Qtag = Qvtx − QK . The kaon charge QK is

subtracted rather than added because the K from a c → s decay will be negative, opposite

to the charge of the c quark. If both Qvtx and QK are zero, or if they are in disagreement

(Qvtx ×QK > 0), the hemisphere is not used.

The H tag, optimized to select bottom event hemispheres, uses a cut of yhem > 0.85. Tags

with Mhem > 7 GeV/c2 are rejected due to poor charge reconstruction. The tag charge is

defined as Qtag = −Qvtx, with the minus sign accounting for the negative charge of b quarks

to make Qtag correspond to the convention defined above. Hemispheres with Qvtx = 0 are

not used.

The cuts and Qtag assignments for the L and H tags are summarized in Table 5.1.
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Table 5.1: Cuts for the L and H tags. Both tags also require Qtag �= 0.

tag cuts Qtag

L yhem < 0.4 Qvtx −QK

Phem > 5 GeV/c
Qvtx ×QK ≤ 0

H yhem > 0.85 −Qvtx

Mhem < 7 GeV/c2

5.2 Tag Performance

The efficiency for a tag to select a hemisphere in an event of flavor f , represented by εtf , is

defined as:

εtf =
N t

f

2Nf

(5.1)

where t is the tag type (either L or H), N t
f is the number of hemispheres in events of flavor

f tagged as type t, and Nf is the total number of events of flavor f (two hemispheres per

event). The Nf are related to the hadronic partial widths Rf by Nf = RfNtot, where Ntot is

the total number of selected hadronic decays. For this analysis the Standard Model values

(0.6120, 0.1722, 0.2158) will be used for (Ruds, Rc, Rb). The tag efficiency εtf is therefore the

probability for a hemisphere in an event of flavor f to be tagged as t.

The flavor purity of a tag, defined as:

πt
f =

εtfRf∑
g ε

t
gRg

(5.2)

expresses how well a tag t isolates the flavor f . The hadronic partial widths must be included

to reflect the differing initial populations of the various flavors.

The last measure of the tag quality is the correct-sign probability pt
f , which expresses how

often the quark/antiquark assignment is correctly made. Because QCD radiation can cause
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Table 5.2: Total efficiency, flavor purity, and correct-charge probability for the L and H tags.

tag flavor εtf πt
f pt

f

L uds 0.001 0.023 0.414
L c 0.121 0.809 0.926
L b 0.020 0.168 0.545
H uds 0,001 0.005 0.515
H c 0.005 0.011 0.303
H b 0.323 0.984 0.805

both the quark and the antiquark to lie in the same hemisphere, defining pt
f by comparing

the observed Qtag to the heavy quark charge in that hemisphere is subject to ambiguity. A

method which considers the entire event configuration is used to avoid this problem.

To determine if a tag is correct-sign, first the event thrust vector t̂ found from calorimeter

clusters is oriented using the tag charge so that it points into the nominal quark hemisphere.

If Qtag > 0 for the hemisphere t̂ is signed so that it points into that hemisphere, while if

Qtag < 0 that hemisphere is thought to contain the antiquark, so t̂ is made to point out

of that hemisphere into the other. This signed thrust vector t̂s is now compared with the

thrust vector t̂parton found from the Monte Carlo partons, signed so that it points along the

direction of the primary quark after parton showering. A correct-sign tag is then defined

as one where t̂s · t̂parton > 0. The parton thrust vector is used because it is the quantity

for which QCD corrections have been calculated [43] which most closely approximates the

observable t̂.

The tag quality parameters εtf , π
t
f , and pt

f for both tags are summarized in Table 5.2.

5.3 Asymmetry Fits

The asymmetry parameters Ac and Ab are found using a maximum-likelihood fit to the

signed thrust-axis distributions. This is equivalent to constructing Ãf
FB(cos θ) and fitting
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for Af , but has the advantage of not requiring any binning of the events. For a likelihood

function the polarized cross section formula given in Equation 1.20 is used:

L ∼ (1 − AePe)(1 + cos2 θ) + 2(Ae − Pe)Aeff cos θ (5.3)

where Ae is the intial-state Ze+e− asymmetry, Pe is the electron beam polarization (signed

so that Pe > 0 for right-handed electrons), cos θ is the polar angle of the signed thrust axis,

and Aeff is the effective asymmetry. The effective asymmetry can be written as a sum of

contributions from each event flavor present in the sample:

Aeff =
∑

f

Πf (2Pf − 1)(1 − CQCD
f )(Af − δQED

f ) (5.4)

where Af is the Born-level asymmetry for flavor f , Πf is the fraction of that flavor in the

sample, Pf is the correct-sign probability for an event of flavor f , CQCD
f is a correction for

QCD radiation, and δQED
f is a correction for QED effects. The event correct-sign probability

enters as (2Pf − 1) to convert this probability into an asymmetry, which accounts for the

dilution of the observed effective asymmetry caused by events with the thrust axis signed

incorrectly.

Because the tagged event sample splits naturally into subsamples which are predomi-

nantly c or b, separate fits are performed on these two subsamples for Ac and Ab respectively.

Events with only a single L tag or with two L tags will be used to determine Ac, while events

with only a single H tag, one L and one H tag, or two H tags will be used in the Ab fit. In the

case of the double-L-tagged and double-H-tagged events those with same-sign Qtag values

will not be used, as there is no way to orient the thrust axis. For the mixed-LH-tag events

the Qtag value for the L-tagged hemisphere is ignored, and only the sign of the H-tagged

hemisphere is used.
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While it is a simple matter to determine Πf and Pf from the Monte Carlo, there are

significant uncertainties involved. In addition to dependences on the details of heavy hadron

production and decay, these parameters are also sensitive to detector effects such as tracking

efficiency and resolution. Therefore, it is highly desirable to constrain these parameters from

the data as much as possible using a calibration procedure to minimize the systematic errors.

This calibration procedure will also fix the central values of Πf and Pf , which could otherwise

be manipulated to produce a favored result. In this way the tag calibration procedure serves

a similar purpose as doing a blind analysis. The results of the calibration needed for the

Ac and Ab likelihood fits will be presented below. Full details of the procedure are given in

Appendix A.

It is statistically advantageous to calculate separate values of Πf and Pf for single-tagged

and double-tagged events, to add more information to the likelihood function. In the Ab

sample, the mixed-LH-tagged events are considered to be single-tagged for this purpose,

since the L-tag doesn’t contribute any useful information about the event. A superscripted

s or d will be used to indicate whether a given Πf or Pf refers to single-tagged or double-

tagged events. In the maximum likelihood fit the appropriate values will be used on an

event-by-event basis depending on the combination of tags in each event.

Because the antisymmetric term is a function of cos θ, all of the events do not have

equal weight in the fit. Events at larger cos θ have a larger raw asymmetry, and therefore

contribute more statistical power than the more central events. For this reason Πf and Pf

must be parameterized as functions of cos θ. The tagging quality is generally worse at large

polar angle, so the average values of Πf and Pf will be too high for the large-cos θ events. If

the events had equal weights this effect would be exactly compensated by correspondingly

low values for the central events, but because of the unequal weighting this is not the case.
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A shape factor derived from the Monte Carlo is applied to each:

Πf (cos θ) =

(
ΠMC

f (cos θ)

ΠMC
f

)
Πf (5.5)

Pf (cos θ) =

(
PMC

f (cos θ)

PMC
f

)
Pf (5.6)

where ΠMC
f (cos θ) and PMC

f (cos θ) refer to the Monte Carlo purity and correct-sign probabil-

ity for a particular value of cos θ. These are found by binning the Monte Carlo in cos θ and

calculating the quantity in each bin. Dividing by the average values over all cos θ ΠMC
f and

PMC
f , the resulting scale functions are used to correct the calibrated average values Πf and

Pf . These scale functions for each type of tagged event will be shown later in this chapter

for each fit.

The asymmetries caused by parity violation in Z decay are diluted by QCD radiation.

The event tagging and fitting procedure tends to be biased against events with hard gluon

radiation, however, and these biases are in general different for the different analysis tech-

niques. In order for the measurements to be comparable, therefore, either the QCD effects

must be removed or a correction must be made for the bias. The convention is to remove

the QCD effects and report the Born-level asymmetry Af .

The procedure used is that described in [44]. The theoretical O(α2
s) calculations are

used for the total corrections, while the analysis-related biases are determined from the full

JETSET parton-shower Monte Carlo. The theoretical corrections Ctheory
f for the hadron-

level thrust axis are evaulated in [45] as 4.13% (3.54%) for c (b) events, using the calculation

in [43]. These include corrections of -0.35% (-0.23%) for hadronization effects, determined

from the JETSET Monte Carlo. The results presented here use the parton-level thrust axis,

so these are removed to obtain corrections of 4.48% (3.77%).

The biased correction CQCD
f is constructed by scaling the full correction by a factor sf ,
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so that CQCD
f = sfC

theory
f . The factor sf is found from:

sf =
Af − Afit

f

Af − APS
f

(5.7)

where Af is the Born-level asymmetry in the Monte Carlo, APS
f is the parton-level thrust

axis asymmetry generated by JETSET, and Afit
f is the asymmetry obtained by fitting the

Monte Carlo using the full analysis procedure. Values of sc = 0.27±0.13 and sb = 0.53±0.08

were found, where the errors are due only to Monte Carlo statistics. A large part of the bias

comes from the event thrust T > 0.8 cut, with the rest due to tagging and thrust-axis signing.

Another effect included in sf is the cos θ dependence of the corrections Ctheory
f . Because the

effect is small and there are limited Monte Carlo statistics this dependence is absorbed into

the overall sf rather than parameterizing sf and Ctheory
f as functions of cos θ.

The QCD corrections are determined only for the signal flavors, c for Ac and b for Ab. No

QCD corrections are applied to the background asymmetries in either fit, since the effects

are expected to be very small.

The δQED
f terms contain corrections to the heavy quark asymmetries for initial-state QED

radiation and γ/Z interference. These effects are removed by convention so that Born-level

results are reported. The values of δQED
f , obtained from calculations using ZFITTER [46],

are δQED
c = 0.0012 and δQED

b = −0.0021. These corrections are also only applied to the

signal flavors.

5.3.1 Ac Fit

For the Ac fit, the single-L-tagged events and double-L-tagged events are used, discarding

the same-sign Qtag double-tagged events. The signed thrust axis distributions, for left-

and right-handed electron beams, are shown for these events in Figure 5.1. In both cases

clear forward-backward asymmetries are visible. There are more events for the left-handed
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Figure 5.1: Signed thrust-axis distributions of the events in the Ac fit, for (a) Pe < 0 and
(b) Pe > 0. The histograms show the Monte Carlo expectation for Ac = 0.667.

electron beam because of the initial-state coupling asymmetry Ae.

The likelihood function used is:

L ∼ (1 − AePe)(1 + cos2 θ) + 2(Ae − Pe) cos θ{

Πc(2Pc − 1)(1 − CQCD
c )(Ac − δQED

c )

Πb(2Pb − 1)Ab + ΠudsA
raw
uds } (5.8)

where the QCD and QED corrections are applied only to the signal flavor c. The Standard

Model value of 0.935 is used for Ab, and the raw asymmetry of the uds background Araw
uds is

set to zero for the fit but will be varied to estimate a systematic error.

The calibrated values of Πs
f and Πd

f are shown in Table 5.3, and of P s
f and P d

f in Table 5.4.

Also shown in both cases are the Monte Carlo expectations. The calibrated values will be

used in the likelihood fit, with either the single-tag or double-tag values chosen event-by-

event.
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Table 5.3: Single-tag and double-tag purities Πs
f and Πd

f used in the Ac fit. The quoted
errors are due only to the statistical uncertainties of the calibrated quantities. Also shown
are the Monte Carlo expectations.

flavor MC Πs
f calibrated Πs

f MC Πd
f calibrated Πd

f

c 0.8519 0.8355±0.0058 0.9810 0.9751±0.0025
b 0.1312 0.1470±0.0058 0.0190 0.0249±0.0025
uds 0.0169 0.0175 0 0

Table 5.4: Single-tag and double-tag correct-sign probabilities P s
f and P d

f used in the Ac fit.
The quoted errors are due only to the statistical uncertainties of the calibrated quantities.
Also shown are the Monte Carlo expectations.

flavor MC P s
f calibrated P s

f MC P d
f calibrated P d

f

c 0.9251 0.9117±0.0097 0.9946 0.9921±0.0021
b 0.548 0.543±0.032 0.610 0.586±0.063

The polar-angle shape corrections to Πf and Pf discussed above are shown in Figure 5.2.

As expected, both the purity and the correct-sign probability for c events decrease at large

polar angles. Not including these shapes would incorrectly lower the measured value of Ac

by 0.9%

The sample selected for the Ac fit consists of a total of 9970 events. The likelihood fit to

the signed cos θ distributions yields:

Ac = 0.673 ± 0.029 (5.9)

where the error is statistical only.

5.3.2 Ab Fit

For the Ab fit the single-H-tagged events, the mixed-LH-tagged events, and the double-H-

tagged events are used, discarding the same-sign Qtag double-H-tagged events and the L-tag

information in the mixed-tagged events. The signed thrust axis distributions, for left- and
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Figure 5.2: Polar angle shape corrections to the average (a) Πs
f , (b) Πd

f , (c) P s
f , and (d) P d

f

for the Ac fit. The widths of the bands reflect the uncertainties due to Monte Carlo statistics.
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Figure 5.3: Signed thrust-axis distributions of the events in the Ab fit, for (a) Pe < 0 and
(b) Pe > 0. The histograms show the Monte Carlo expectation for Ab = 0.935.

right-handed electron beams, are shown for these events in Figure 5.3.

The likelihood function used is:

L ∼ (1 − AePe)(1 + cos2 θ) + 2(Ae − Pe) cos θ{

Πb(2Pb − 1)(1 − CQCD
b )(Ab − δQED

b )

Πc(2Pc − 1)Ac + ΠudsA
raw
uds } (5.10)

where the QCD and QED corrections are applied only to the signal flavor b. The Standard

Model value of 0.667 is used for Ac, and the raw asymmetry of the uds background Araw
uds is

set to zero for the fit but will be varied to estimate a systematic error.

The calibrated values of Πs
f and Πd

f are shown in Table 5.5, and of P s
f and P d

f in Table 5.6.

Also shown in both cases are the Monte Carlo expectations. The values of Pc are a special

case, in that they are not calibrated from the data but rather constrained through other

means as described in Appendix A. The calibrated values will be used in the likelihood fit,
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Table 5.5: Single-tag and double-tag purities Πs
f and Πd

f used in the Ab fit. The quoted
errors are due only to the statistical uncertainty of the calibrated efficiencies. Also shown
are the Monte Carlo expectations.

flavor MC Πs
f calibrated Πs

f MC Πd
f calibrated Πd

f

b 0.9764 0.9724±0.0071 0.9999 0.9998±0.0002
c 0.0169 0.0210±0.0071 0.0001 0.0002±0.0002
uds 0.0067 0.0066 0 0

Table 5.6: Single-tag and double-tag correct-sign probabilities P s
f and P d

f used in the Ab fit.
The quoted errors are due only to the statistical uncertainty of the calibrated probabilities.
Also shown are the Monte Carlo expectations.

flavor MC P s
f calibrated P s

f MC P d
f calibrated P d

f

b 0.8033 0.8168±0.0049 0.9459 0.9545±0.0029
c 0.303 0.25 0.086 0.10

with either the single-tag or double-tag values chosen event-by-event.

The polar-angle shape corrections to Πf and Pf are shown in Figure 5.4. For the double-

tagged events the Monte Carlo statistics are insufficient to determine shapes for the c back-

ground, so the average values of Πd
c and P d

c are used for all cos θ. Not including these shapes

would incorrectly lower the measured value of Ab by 1.6%

The sample selected for the Ab fit consists of a total of 25917 events. The likelihood fit

to the signed cos θ distributions yields:

Ab = 0.919 ± 0.018 (5.11)

where the error is statistical only.
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Figure 5.4: Polar angle shape corrections to the average (a) Πs
f , (b) Πd

f , (c) P s
f , and (d) P d

f

for the Ab fit. The widths of the bands reflect the uncertainties due to Monte Carlo statistics.
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5.4 Systematic Errors

A variety of sources of systematic error have been considered. The sources along with the

resulting variations in Ac and Ab are summarized in Table 5.7. Although multiple sources

have been investigated, the total systematic uncertainty is dominated by the uncertainty on

Pf obtained from the calibration procedure. A brief description of each source follows.

5.4.1 Calibration Statistics

The calibration statistics category includes the uncertainties due to the statistical errors

on Pf and Πf obtained from the calibration procedure. These uncertainties are essentially

uncorrelated between Ac and Ab.

5.4.2 Electroweak Parameters

These results depend upon other parameters of the electroweak Standard Model, namely Rc

and Rb. In addition values of Ac and Ab are needed for the Ab and Ac fits, respectively. The

values and variations used are shown in Table 5.7, along with the changes in Ac and Ab.

The Standard Model values were used with variations determined by the precision of the

combined LEP results, to avoid correlations with other SLD measurements which are made

using essentially the same tagged hemispheres as these results.

For the initial-state asymmetry Ae where there is no Standard Model prediction a vari-

ation consistent with the SLD and LEP leptonic measurements was applied and found to

have no effect, as expected for Ãf
FB.
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Table 5.7: Systematic errors for the Ac and Ab measurements.

source variation δAc/Ac (%) δAb/Ab (%)
Calibration statistics
Pf data statistics 2.96 1.41
Πf data statistics 0.68 0.63

Electroweak parameters
Rc 0.1722±0.0048 0.28 0.11
Rb 0.2158±0.0008 0.30 0.29
Ac 0.667±0.035 0.00 0.05
Ab 0.935±0.035 0.10 0.00

Detector modeling
tracking efficiency remove correction 0.36 0.34
tracking resolution remove correction 0.49 0.04
CRID π mid-ID data ±1σ 0.12 0.00

QCD correction

Ctheory
f ±0.0063 0.18 0.35

sf ±0.13, ±0.08 0.59 0.31
Backgrounds
pH

c 0.25±0.14 0.83 0.56
g → cc̄ 2.96±0.38% 0.22 0.01
g → bb̄ 0.254±0.051% 0.06 0.02
non-g → QQ̄ εuds ±25% 0.13 0.01
non-g → QQ̄ Araw

uds ±0.6 0.43 0.09
Tagging correlations

same-hemisphere cc̄ 2.82±1.13% 0.33 0.01
same-hemisphere bb̄ 2.45±0.74% 0.04 0.21
c energy correlation 1.4±2.6% 0.48 0.14
b energy correlation 1.4±0.3% 0.07 0.10

Other
Beam polarization ±0.5% 0.50 0.50
MC statistics ±1σ 0.64 0.34

Total 3.48 1.89
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5.4.3 Detector Modeling

The uncertainties due to tracking efficiency and tracking resolution were determined by

removing the corrections described in Chapter 3. The full difference was taken as the sys-

tematic error in each case. The small error for tracking efficiency demonstates the benefit of

calibration, for if Pf were taken from the simulation the tracking efficiency correction would

be a 3% effect for Ab.

A described in Section 4.4.2, the kaon identification cuts used for the Monte Carlo are

different than those used for the data. These differences are tuned to reproduce the rate

of pion misidentification observed in pion samples selected in the data using K0
S and three-

prong τ decays. To estimate the uncertainty the Monte Carlo cut adjustments were varied

through a range consistent with the statistical errors on the data pion samples.

5.4.4 QCD correction

The systematic error for the QCD correction has two components. The first is the uncertainty

on the theoretical correction itself. This has been estimated in [45], taking into account

uncertainties in αs, quark masses, and missing higher-order terms. An uncertainty of ±0.0063

is used for both Ctheory
c and Ctheory

b . The second component comes from the scale factors sf .

This uncertainty is due solely to Monte Carlo statistics.

5.4.5 Backgrounds

The most significant background-related systematic error is due to the correct-sign proba-

bility pH
c of the charm background under the H tag. As discussed in Appendix A pH

c can

be constrained uniformly in [0, 0.5], equivalent to 0.25 ± 0.14 which is the variation used to

estimate the systematic errors.

The uds background has two components. The most important is gluons which are far



98

enough off-shell to decay into cc̄ or bb̄ pairs. The rates suggested by the LEWWG in [47] are

used, which indicate a g → cc̄(bb̄) pair in 2.96±0.38%(0.254±0.051%) of hadronic events.

The SLD Monte Carlo was reweighted to these central values, and the variations used to

set the systematic errors. The simulation indicates that the g → QQ̄ (Q = c, b) process

accounts for 81%(88%) of the uds background under the L(H) tag.

The other component is fake secondary vertices, containing misrecontructed and/or

strange particle decay tracks. To check the simulation a sample of hemispheres enriched

in uds fakes was selected in both the Monte Carlo and the data. The cuts are Mhem < 2

GeV/c2, Phem < 4 GeV/c, and no secondary vertex in the opposite hemisphere. The Monte

Carlo Mhem distributions for true heavy flavor and fakes were normalized to the same num-

ber of hadronic events as the data. A fit was then performed to the data Mhem distribution

for a scale factor for the Monte Carlo fake vertex contribution. The fitted Monte Carlo and

data distributions are shown in Figure 5.5. The best-fit scale factor for the Monte Carlo

fake level is 1.14±0.08. Based upon this, the Monte Carlo level was used, and a conservative

variation of ±25% was applied to cover extrapolation of this constraint to regions of higher

Mhem and Phem.

The asymmetry of the uds background from g → QQ̄ was assumed to be zero, since the

directions of the resulting hadrons are uncorrelated with the polarization of the Z. No such

argument can be made for the fake-vertex background. High-momentum tracks are needed

to pass the L or H tag cuts, so leading-particle effects could produce an asymmetry. For

the L tag, charged kaons attached to the fake vertex could also exhibit an asymmetry. No

such effects are seen in the SLD Monte Carlo, but since the level of this background is low a

simple argument can be used to set a conservative variation. The raw asymmetry Araw
uds for

the fake-vertex part of the uds background was assumed to be uniformly distributed in the

interval [−1,+1]. The variance was then computed as [(+1) − (−1)]/
√

12, or equivalently

Araw
uds = 0.0 ± 0.6. The effective asymmetry for the fake-vertex background contribution was
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Figure 5.5: Distribution of Mhem in the uds-enriched sample.

varied through this range to set systematic errors for Ac and Ab.

5.4.6 Tagging Correlations

These uncertainties are related to the sources of the tagging correlations and single/double

correct-sign probability corrections used in Appendix A. The variations are constrained by

the data as described in Appendix B.

5.4.7 Heavy Hadron Physics

A variety of simulation parameters related to the physics of heavy hadrons were varied and

found to have negligible effect, due to the calibration of the tags from the data. These

included the hadron lifetimes, energy spectra, production fractions of the different hadron

species, and hadron decay charged particle multiplicities according to the prescriptions given

in [48]. Also varied were the branching rates of the hadron species into charged kaons

according to the values listed in [21], again with negligible effect on Ac and Ab.
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5.5 Full Results

The full results, including both statistical and systematic errors, are:

Ac = 0.673 ± 0.029stat ± 0.023syst (5.12)

Ab = 0.919 ± 0.018stat ± 0.017syst (5.13)

with a total uncertainty on Ac(Ab) of 5.5%(2.7%).
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Chapter 6

Conclusion

Besides the work presented in this Thesis, the SLD experiment has made measurements of

Ac and Ab using other techniques which are discussed briefly below. The current status of

Ac measurements is shown in Figure 6.1 and of Ab measurements in Figure 6.2. The results

presented in this Thesis represent the most precise single determinations of each parameter.

The SLD combined values for both asymmetries are also shown and seen to be in good

agreement with the Standard Model. Correlations in the statistical and systematic errors

between the measurements are accounted for in these combinations, with the most significant

being a 35% correlation in the statistical error between the results in this Thesis and the

“JetC” Ab measurements. Also plotted for comparison purposes are values of Ac and Ab

which have been extracted from the LEP measurements of Ac
FB and Ab

FB. These use the

relation Af
FB = 3

4
AeAf , with the value of A� = 0.1501±0.0016 coming from the combination

of the SLD ALR and Ã�
FB measurements and the LEP A�

FB and τ -polarization measurements.

In this chapter lepton universality will always be assumed, so that Ae = Aμ = Aτ = A�.

The value of the SLC polarized electron beam for electroweak asymmetry measurements is

apparent, as SLD obtains comparable precision with a factor of ∼ 30 fewer events.
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Figure 6.1: Summary of Ac measurements at SLD and LEP. The vertical line indicates the
Standard Model value. The LEP Ac

FB measurements have been converted to Ac values for
comparison.

Ac Measurements (Summer-2001)

Ac

LEP Average 0.608 ± 0.032

OPAL D* 0.628 ± 0.104 ± 0.050

DELPHI D* 0.635 ± 0.083 ± 0.025

ALEPH D* 0.617 ± 0.080 ± 0.024

OPAL Lepton 0.575 ± 0.054 ± 0.039

L3 Lepton 0.774 ± 0.314 ± 0.160

DELPHI Lepton 0.645 ± 0.080 ± 0.061

ALEPH Lepton 0.580 ± 0.047 ± 0.040

This Thesis 0.673 ± 0.029 ± 0.023

SLD Lepton 0.589 ± 0.055 ± 0.053

SLD D*,D+ 0.690 ± 0.042 ± 0.021

SLD soft π* 0.685 ± 0.052 ± 0.038

SLD Average 0.670 ± 0.027

SM

LEP Measurements: Ac = 4 Ac
FB / 3 Ae

Using Ae=0.1501±0.0016 (Combine SLD ALR and LEP Al)

0.4 0.5 0.6 0.7 0.8 0.9
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Figure 6.2: Summary of Ab measurements at SLD and LEP. The vertical line indicates the
Standard Model value. The LEP Ab

FB measurements have been converted to Ab values for
comparison.

Ab Measurements (Summer-2001)

Ab

LEP Average 0.880 ± 0.018

DELPHI NN 0.883 ± 0.032 ± 0.021

OPAL JetC 0.894 ± 0.049 ± 0.036

L3 JetC 0.843 ± 0.090 ± 0.050

DELPHI JetC 0.892 ± 0.042 ± 0.016

ALEPH JetC 0.911 ± 0.024 ± 0.014

OPAL Lept 0.851 ± 0.038 ± 0.021

L3 Lept 0.873 ± 0.058 ± 0.029

DELPHI Lept 0.918 ± 0.052 ± 0.022

ALEPH Lept 0.886 ± 0.035 ± 0.020

SLD Average 0.916 ± 0.021

This Thesis 0.919 ± 0.018 ± 0.017

SLD K± tag 0.855 ± 0.088 ± 0.102

SLD Lepton 0.924 ± 0.030 ± 0.023

SLD JetC 0.907 ± 0.020 ± 0.024

SM

LEP Measurements:  Ab = 4 Ab
FB / 3 Ae

Using Ae=0.1501±0.0016 (Combine SLD ALR and LEP Al)

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
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6.1 Other SLD Measurements

Measurements of both Ac and Ab have been made using identified leptons [49]. This method

tags heavy flavor using high-momentum electrons and muons, with the charge of the lepton

providing the quark/antiquark separation. Multivariate techniques are used to sort the

selected leptons into categories such as b → �, b → c → �, c → �, and misidentifications,

from which fits for Ac and Ab are performed.

A method which has been used to measure Ac is to fully reconstruct charmed mesons [50].

For charged mesons the net charge provides quark/antiquark discrimination, while for neutral

mesons the charge of the track thought to be a kaon is used. A semi-inclusive sample of

charmed mesons selected using the slow pion from D∗ decays has also been used to measure

Ac [50].

The jet charge method of measuring Ab uses the difference in a momentum-weighted track

charge between the two hemispheres to find the quark direction [51]. This measurement uses

a mass tagging technique similar to that described in this Thesis to select pure samples of b

events. The analyzing power of the quark/antiquark separation is calibrated from the data

to minimize the systematic errors, although the uncertainties associated with the hemisphere

correlations are somewhat larger than for the method presented in the Thesis.

Also shown in the table is a measurement of Ab using charged kaons which used only

the 1993-95 SLD data [52]. The large systematic error is related to the uncertainties asso-

ciated with K± production in B decays, since this method is not efficient enough to permit

calibration of the analyzing power from the data.
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6.2 Global Analysis

The LEP Electroweak Working Group (LEWWG) has performed a global analysis of all of

the precision electroweak data from LEP, SLD, and other experiments. Details of the fitting

procedure and the experimental inputs can be found in [47]. This fit tests the consistency of

the Standard Model, and also yields a prediction for the mass of the Standard Model Higgs

boson. The first step in the fit is the combination of all results for each observable, taking

into account all systematic errors which are correlated between separate experiments, and

including the interdependences of the parameters (i.e. the measured value of Ab depends

upon the value of Rb that is assumed). The combined parameter values are shown in Ta-

ble 6.1. The value of Ab obtained by the LEWWG combination is slightly different from

that shown in Figure 6.2. This difference is caused by the SLD measurement of Ac using

identified leptons. Because it has a much stronger dependence on Ab than the other Ac

determinations the combination procedure prefers to push Ab higher to bring the Ac value

for this method closer to the others, an effect which is not included in the SLD combination.

The best-fit Standard Model predictions for each of these observables were calculated

using ZFITTER [46] and are also shown in Table 6.1. The ZFITTER program calculates all

of the Standard Model parameters at one-loop order using six inputs: The Fermi constant

GF = (1.16637 ± 0.00001) × 10−5 GeV−2, the Z mass mZ , the top quark mass mt, the

Higgs mass mH , the strong coupling αs = 0.118 ± 0.003, and the light-quark contribution

to the photon vacuum polarization Δα
(5)
had(m

2
Z). The top quark contribution to the vacuum

polarization can be calculated, but for the lighter quarks (udscb) a dispersion relation is used

to derive Δα
(5)
had(m

2
Z) from measurements of R = e+e−→hadrons

e+e−→μ+μ− at lower energies. The value

derived in [53] is used for the fit.

The fit pulls, shown in the last column of Table 6.1, result in a total fit χ2 of 22.9 for 15

degrees of freedom (8.6% probability). Overall, the Standard Model successfully explains all
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Table 6.1: Measured electroweak parameters and Standard Model predictions.

measured SM prediction pull
mZ 91.1875 ± 0.0021 91.1874 0.03
ΓZ 2.4952 ± 0.0023 2.4963 -0.48
σ0

h 41.540 ± 0.037 41.481 1.60
R� 20.767 ± 0.025 20.739 1.11
A�

FB 0.01714 ± 0.00095 0.01649 0.69
A� (from Pτ ) 0.1465 ± 0.0033 0.1483 -0.54

Rb 0.21646 ± 0.00065 0.21573 1.12
Rc 0.1719 ± 0.0031 0.1723 -0.12
Ab

FB 0.0990 ± 0.0017 0.1039 -2.90
Ac

FB 0.0685 ± 0.0034 0.0743 -1.71
Ab 0.922 ± 0.020 0.935 -0.64
Ac 0.670 ± 0.026 0.668 0.06
A� 0.1513 ± 0.0021 0.1483 1.47

Δα
(5)
had(m

2
Z) 0.02761 ± 0.00036 0.02774 -0.35

sin2 θeff (from 〈QFB〉) 0.2324 ± 0.0012 0.2314 0.86
mt 174.3 ± 5.1 175.8 -0.30

mW (LEP-II) 80.450 ± 0.039 80.398 1.32
mW (pp̄) 80.454 ± 0.060 80.398 0.93

sin2 θW (from νN) 0.2255 ± 0.0021 0.2226 1.22
QW (from Cs) -72.50 ± 0.70 -72.89 0.56

of the precision electroweak data.

6.2.1 Heavy Quark Couplings

Using the combined measurements tests of the Zcc̄ and Zbb̄ vertices were performed. The

two observables of interest are Rf and Af , which are proportional to g2
Lf +g2

Rf and g2
Lf −g2

Rf ,

respectively. In order to include the LEP Af
FB measurements, the Ae measurements must

also be included as described above to isolate Af . The relationship between A�, Af , and

Af
FB for f = c, b is shown in Figure 6.3. In both cases the measurements are consistent

with each other, however for f = b the measurements appear to be inconsistent with the

Standard Model. Alternatively, if the Standard Model values for Ac and Ab are assumed the
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Figure 6.3: Relationship between SLD+LEP A� measurements (vertical band), SLD Af

measurements (horizontal band), and LEP Af
FB measurements (diagonal band) for c (left)

and b (right). The line segments indicate the Standard Model predictions for mH = 300+700
−205

GeV/c2 (longer segment) and mt = 174.3 ± 5.1 GeV/c2 (short segment). Lower mH is on
the right.
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measurements of A� and Af
FB appear to prefer disparate ranges of mH .

From the measurements of Rf , Af , A
f
FB, and A� fits were performed for the left-handed

couplings gLf and the right-handed couplings gRf . The results are plotted in Figure 6.4

and compared to the Standard Model expectations in Table 6.2. The Zcc̄ couplings are in

good agreement with the Standard Model predictions, but there is a 3σ discrepancy in gRb.

This effect is driven entirely by the value of Ab extracted from Ab
FB and A�, as the Rb and

direct Ab measurements are in good agreement with the Standard Model. Because of the

tight constraint imposed upon the sum of the couplings by the Rb measurements, attempts

to interpret this discrepancy as possible evidence of new physics in gRb involve unnatural

fine-tuning of gLf to maintain this sum at its Standard Model value. For this reason, it seems

more likely that the effect is a statistical fluctuation rather than evidence of new physics.

For the remainder of this chapter these couplings will be assumed to have their Standard
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Figure 6.4: Results of the fit for the left- and right-handed couplings gLf and gRf for f = c
(left) and f = b (right).
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Table 6.2: Results of the fit for left- and right-handed couplings gLf and gRf for f = c, b,
along with their Standard Model predictions.

Standard Model Fit Result
gLc 0.3464 0.3443±0.0037
gRc 0.1550 0.1600±0.0048
gLb -0.4207 -0.4183±0.0015
gRb -0.0776 -0.0962±0.0064

Model values, so that Af
FB can be treated as a measurement of sin2 θeff .

6.2.2 Prediction of mW and mt

An important test of the Standard Model is the prediction of the W and top quark masses

from the precision electroweak data. This is done by performing the fit without the mW and

mt measurement constraints. The preferred range of mW versus mt is shown in Figure 6.5,

along with the values measured at LEP-II and the TeVatron. The fitted values of mW =

80.363 ± 0.032 GeV/c2 and mt = 169.0 ± 9.9 GeV/c2 are in excellent agreement with the
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Figure 6.5: Results of the fit for mW and mt from the electroweak precison data, compared
to the direct measurements from LEP-II and TeVatron experiments. The diagonal band
shows the dependence of the Higgs mass mH on mW and mt.
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measured values ofmW = 80.451±0.033 GeV/c2 andmt = 174.3±5.1 GeV/c2, demonstrating

the success of the Standard Model in explaining the precision electroweak data.

6.2.3 Higgs Mass Fit

Including the measured values of mW and mt, the electroweak precision data can be used to

constrain the mass of the Higgs boson. The sensitivity to mH for the most significant param-

eters measured at LEP and SLD is shown in Figures 6.6 and 6.7. All of the measurements

prefer a Higgs mass lower than 200 GeV/c2 except for the heavy quark forward-backward

asymmetries Ac
FB and Ab

FB. This is the same effect mentioned in connection with Figure 6.3.
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Figure 6.6: Sensitivity of selected electroweak parameters to mH .
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Figure 6.7: Sensitivity of selected electroweak parameters to mH .
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Figure 6.8: Results of the Standard Model fit for mh.
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The mass of the Standard Model Higgs extracted from the fit is mH = 88+53
−35 GeV/c,

with the asymmetric error resulting from the logarithmic dependence of sin2 θeff on mH .

The χ2 of the fit versus mH is shown in Figure 6.8. From the χ2 surface an upper limit

of mH < 196 GeV/c2 at 95% CL can be derived. The dotted curve results from using an

alternate determination of Δα
(5)
had [54], in which case the 95% CL limit is mH < 222 GeV/c2.

The shaded region on Figure 6.8 indicates the region which has been excluded by direct

searches at LEP-II [55], mH < 114.1 GeV/c2 at 95% CL. These searches prefer a Higgs mass

of 115.6 GeV/c2, although the signal significance is low with a 3.4% chance of consistency

with background.

Whether or not the LEP-II results represent a real signal, the indirect constraints from

the precision electroweak data indicate a relatively light Higgs mass which may be accessible
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to the Run-II program at the TeVatron. This sets up interesting possibilities. If the TeVatron

searches were to make a 3σ observation of the Higgs in the same mass region as LEP-II, the

combination of the direct results with the indirect constraints would provide strong evidence

of the existence of a low -mass Higgs. On the other hand, if the TeVatron searches do not see

any such evidence and instead exclude more of the range favored by the indirect constraints,

this would indicate a problem with the Standard Model picture of a single Higgs boson. In

either case, the information provided by the precision electroweak measurements constitute

an indispensible part of the effort to understand electroweak spontaneous symmetry breaking.
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Appendix A

Tag Calibration

The tag calibration procedure is performed in two steps. The first calibrates the tag effi-

ciences εHb , εHc , εLc , and εLb . In the second step, the correct-sign probabilities pH
b , pL

c , and pL
b

are found.

From the calibrated hemisphere efficiencies and correct-sign probabilities, the event puri-

ties and correct-sign probabilities needed for the likelihood fits can be calculated. As noted

in the text, separate values for single-tagged and double-tagged events are determined.

A.1 Efficiency Calibration

From the two tags L and H, five event types of interest can be constructed. They are:

single-H-tagged (XH), double-H-tagged (HH), mixed-tagged (LH), single-L-tagged (XL),

and double-L-tagged (LL). The symbols in parentheses denote the combination of the tags

in the two hemispheres for each, with X representing a hemisphere which passes neither the

L nor the H tag. The fractions Ft1t2 of all hadronic events constituted by each of these event

types, shown in Table A.1, are the observable inputs to the efficiency tagging procedure.

The efficiency εtf is the probability to tag a hemisphere in an event of flavor f with the



115

Table A.1: Number observed Nt1t2 and fraction of the Ntot = 228712 selected hadronic events
Ft1t2 in the data for each of the five event types.

t1t2 Nt1t2 Ft1t2

XH 21473 0.0939
HH 5236 0.0229
LH 748 0.0033
XL 9504 0.0416
LL 558 0.0024

tag t, so the probability to tag an event with tag combination t1t2 should be proportional to

the product of the individual probabilities εt1f ε
t2
f . For example, the double-H-tagged fraction

would be proportional to (εHb )2, neglecting the small c background. The single-H-tagged

fraction would be proportional to εHb (1 − εLb − εHb ), where the term in parentheses is the

probability to not tag a hemisphere as L or H, and again the c background is omitted. In

this way it is a simple matter to write expressions for each of the event fractions in terms

of the efficiencies εtf and also the hadronic partial widths Rf which express the initial flavor

probabilities.

In writing the event fractions as products of the hemisphere tagging efficiencies, the

implicit assumption is that the hemispheres are independent. This means that the tagging

outcome in one hemisphere is unaffected by the outcome in the other. The simulation was

used to check this assumption, by comparing the tagging efficiencies for all hemispheres to

the efficiencies for hemispheres opposite an L or H tag. Two moderate discrepancies were

found, for εHb opposite another H-tagged b event hemisphere and for εLc opposite another

L-tagged c event hemisphere. These effects are parameterized by factors ξt
f , which express

the enhancement in the tagging efficiency εtf when it is opposite another t-tagged hemispere.

By this is meant that in a b event, for example, if one hemisphere has been H-tagged

the efficiency for the other hemisphere to also be H-tagged is ξH
b ε

H
b rather than just εHb .

Quantitatively, ξH
b = 1.005± 0.002 and ξL

c = 1.029± 0.007 respectively, where the errors are
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from Monte Carlo statistics only. The predictions for the event fractions must be corrected

for these enhancements, so that the examples given above would now be written as FHH ∝
ξH
b (εHb )2 and FXH ∝ εHb (1− εLb − ξH

b ε
H
b ). A full accounting of the causes of these hemisphere

tagging correlations is given in Appendix B. Omitting these corrections would incorrectly

lower the measured values of Ac and Ab by 0.4%.

The calibration procedure starts with the fractions of single-H-tagged and double-H-

tagged events FXH and FHH observed in the data. Using the ideas discussed above, these

can be written as:

FXH = 2
[
εHb (1 − εLb − ξH

b ε
H
b )Rb + εHc (1 − εLc − εHc )Rc + εHuds(1 −Rb −Rc)

]
(A.1)

FHH = ξH
b (εHb )2Rb + (εHc )2Rc (A.2)

where the factor of two in FXH accounts for the possibility to have the H tag in either

hemisphere. Terms quadratic in εtuds have been omitted from the analysis for simplicity,

since their contribution is always negligible. The parameter ξH
b is inserted to account for the

slightly higher probability to tag a b event hemisphere as H when the opposite hemisphere

has also been tagged as H as discussed above. In the sum over flavors the hadronic partial

widths Rf are inserted to reflect the differing initial populations in the sample. Because

the double-H-tagged events are overwhelmingly b, FHH can be used to extract εHb with very

little background. Once εHb is known, its contribution can be subtracted from FXH to yield

εHc , although the statistical power is limited. In this way, both the signal efficiency εHb and

the main background level εHc can be constrained from the data.

The next step uses the fraction of all events in the data in which one hemisphere is tagged

as L and the other is tagged as H. Denoted FLH , it can be written as:

FLH = 2
(
εLb ε

H
b Rb + εLc ε

H
c Rc

)
(A.3)
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Table A.2: Results of the efficiency calibration procedure. Shown for comparison are the
expectations from the Monte Carlo simulation.

efficiency MC calibrated
εHb 0.323 0.325±0.002
εHc 0.005 0.006±0.002
εLc 0.121 0.115±0.002
εLb 0.020 0.022±0.001

with the factor of two accounting for the two ways in which the L and H tags can be

distributed over the two hemispheres. Because the H tag has higher efficiency and purity

than the L tag these events are ∼90% b. Inserting the calibrated value of εHb allows extraction

of εLb , the level of b background under the L tag.

The last step uses the fractions of single-L-tagged and double-L-tagged events FXL and

FLL observed in the data. These can be written as:

FXL = εLc (1 − ξL
c ε

L
c − εHc )Rc + εLb (1 − εLb − εHb )Rb + εLuds(1 −Rc −Rb) (A.4)

FLL = ξL
c (εLc )2Rc + (εLb )2Rb (A.5)

where the order of the flavors has been reversed to reflect the predominantly c composition of

these samples. The parameter ξLL
c is inserted to account for the double-L-tag enhancement

discussed above. Because εLc is not large, the efficiency cannot be calibrated from FLL alone

as was done for εHb . However, since the background level εLb is already known from FLH , the

single-L-tag fraction FXL can be used to extract εLc with good statistics.

In practice a fit is used to simultaneously extract all four efficiencies from the observed

rates. It is useful to consider the procedure in this sequential manner, however, as it better

illustrates the sensitivity of each tagging rate to the efficiencies. The resulting calibrated

efficiencies are shown in Table A.2. Also shown are the expectations from the simulation,

which are in very good agreement.
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Table A.3: Number observed Nt1t2 and fraction with opposite-sign Qtag values rt1t2 in the
data for each of the the double-tag event types.

t1t2 Nt1t2 rt1t2

HH 5236 0.706
LH 748 0.511
LL 558 0.835

A.2 Correct-Sign Probability Calibration

The calibration of the tag correct-sign probabilities is done by comparing the signs of the

Qtag values in double-tagged events. Because of the way Qtag and pt
f have been defined, in an

event with both hemispheres tagged correctly the Qtag values will always have opposite signs

regardless of the event flavor or tag combination. However, events with both hemispheres

tagged incorrectly will also have opposite-sign Qtag values, so this possibility must be taken

into account. Using a joint probability principle analogous to that used in the efficiency

calibration, the fraction of t1t2-tagged events which have opposite-sign Qtag values, denoted

as rt1t2 , should be proportional to pt1
f p

t2
f +(1−pt1

f )(1−pt2
f ). The numbers of events and values

of rt1t2 for the three double-tagged event types HH, LH, and LL are given in Table A.3.

It should be noted that this method automatically accounts for the effects of neutral-

meson mixing. An event in which one meson mixes may have both hemispheres tagged with

the correct charge sign for the quark/antiquark content at the time of the heavy meson decay,

producing a same-sign event in apparent contradiction to what was stated above. However,

what is needed for these measurements is the quark/antiquark nature of the hemisphere at

the time of the Z decay. Therefore, the mixed hemisphere with a correctly charged final

state is in fact incorrect by this standard, and is properly treated as such by this method.

An important caveat is that this procedure calibrates the correct-sign probabilities in

double-tagged event hemispheres. It is natural to ask if these values are representative of

all hemispheres. The simulation was used to compare the value of pt
f for all hemispheres
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to that found in hemispheres opposite the various tags. As in the efficiency calibration, the

double-L-tagged and double-H-tagged events were found to differ from the single-tagged

and mixed-tagged events. In this case, rather than the difference between a hemisphere in a

double-tagged event compared to any hemisphere, it is simpler to use the difference between

a t-tagged hemisphere in a double-t-tagged event and a t-hemisphere in a single-t-tagged

or mixed-tagged event. These differences are represented by the parameters ζH
b and ζL

c , so

that pHX+HL
b = ζH

b p
HH
b and pLX+LH

c = ζL
c ε

LL
c . The notation pt1t2

f expresses the correct-sign

probability for a tag of type t1 when the opposite hemisphere has been tagged as t2. The

simulation indicates that ζH
b = 0.995 ± 0.001 and ζL

c = 0.993 ± 0.002, where the errors are

due only to Monte Carlo statistics. The main effect causing these differences is having both

heavy hadrons in the same hemisphere of an event, due to hard QCD radiation. A full

account of this and other sources is given in Appendix B. Omitting this correction would

incorrectly lower the measured values of Ac and Ab by 1.1%.

For the background correct-sign probabilities pH
c and pL

b , no significant effects were seen

in the simulation and no corrections are made. The notation pt1t2
f will therefore not be used

for these, since they are always assumed to equal pt1
f .

The procedure starts with the events in the data in which both hemispheres are tagged

as H. The fraction of these events in which the Qtag values are opposite-sign, denoted rHH ,

can be written as:

rHH = ΠHH
b

[
(pHH

b )2 + (1 − pHH
b )2

]
+ ΠHH

c

[
(pH

c )2 + (1 − pH
c )2
]

(A.6)

where ΠHH
b and ΠHH

c are the fractions of the double-H-tagged sample composed of b and c,

respectively. These can be computed from:

ΠHH
b =

ξH
b (εHb )2 Rb

ξH
b (εHb )2Rb + (εHc )2Rc

(A.7)
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ΠHH
c =

(εHc )2 Rc

ξH
b (εHb )2Rb + (εHc )2Rc

(A.8)

using the calibrated efficiencies. The correlation parameter ξH
b is used here to obtain the

correct double-tag efficiency for b events. Once these are known, pHH
b can be extracted with

only a small correction from pH
c .

The next step uses the events in the data in which both hemispheres are tagged as L.

The fraction of these events in which the Qtag values are opposite-sign, denoted rLL, can be

written as:

rLL = ΠLL
c

[
(pLL

c )2 + (1 − pLL
c )2

]
+ ΠLL

b

[
(pL

b )2 + (1 − pL
b )2
]

(A.9)

where ΠLL
c and ΠLL

b are the fractions of this sample composed of c and b, respectively. They

can be computed from:

ΠLL
c =

ξL
c (εLc )2 Rc

ξL
c (εLc )2Rc + (εLb )2Rb

(A.10)

ΠLL
b =

(εLb )2 Rb

ξL
c (εLc )2Rc + (εLb )2Rb

(A.11)

using the calibrated efficiencies and the correlation parameter ξL
c . Although the statistics

available are much smaller than for rHH , the very high value of pLL
c allows its calibration

with an uncertainty comparable to that for pHH
b .

The last step uses the events in the data in which one hemisphere is tagged as L and the

other is tagged as H. The fraction of these events in which the Qtag values are opposite-sign,

denoted rLH , can be written as:

rLH = ΠLH
b

[
pL

b ζ
H
b p

HH
b + (1 − pL

b )(1 − ζH
b p

HH
b

]
+ ΠLH

c

[
ζL
c p

LL
c pH

c + (1 − ζL
c p

LL
c )(1 − pH

c

]
(A.12)

where the parameters ζH
b and ζL

c defined above has been used to convert pHH
b and pLL

c into
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Table A.4: Results of the correct-sign calibration procedure. Shown for comparison are the
expectations from the Monte Carlo simulation.

probability MC calibrated
pHH

b 0.807 0.821±0.005
pLL

c 0.932 0.918±0.010
pL

b 0.545 0.543±0.031

values appropriate for this sample. ΠLH
b and ΠLH

c are the fractions of this sample of b and c

events, respectively. They can be computed from:

ΠLH
b =

εLb ε
H
b Rb

εLb ε
H
b Rb + εLb ε

H
b Rb

(A.13)

ΠLH
b =

εLc ε
H
c Rc

εLb ε
H
b Rb + εLb ε

H
b Rb

(A.14)

using the calibrated efficiencies. Again, because this sample is ∼90% b, the value of pL
b can

be extracted using the known pHH
b with only a small correction needed for the c background.

This ability to constrain the correct-sign probability of the b background under the L tag

is very important for the measurement of Ac. Otherwise, the systematic errors associated

with such a significant background could be quite sizable if this number were taken from the

simulation.

As for the efficiency calibration, in practice these correct-sign probabilities are determined

using a simultaneous fit to all three of the opposite-sign fractions. The results of the correct-

sign probability calibration are shown in Table A.4. Also shown are the expections from the

simulation, which again are in very good agreement.

In contrast to the efficiency εHc , the correct-sign probability pH
c for the c background

under the H tag cannot be calibrated from the data. Therefore, another approach must be

used to constrain it. Estimating pH
c from the simulation would be difficult, as it is likely quite

dependent upon non-Gaussian tails in the tracking resolution. Instead, a simple argument
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is used to constrain pH
c ≤ 0.5.

The statement that pH
c ≤ 0.5 implies that Qtag for the c background under the H tag will

be predominantly negative for quark hemispheres rather than positive (wrong-sign). One

way for c event hemispheres to leak into the H-tagged sample is when all of the correct

tracks are selected, but Mhem is incorrectly calculated, for example if the missing neutral

pT is misestimated. These will always be wrong-sign since the c quark is positive while the

b quark is negative. Another source is when the c event hemisphere track list includes an

incorrect track from the IP. For neutral c hadrons, the misattached track should be more-or-

less randomly charged, so these should have pH
c ∼ 0.5. For charged c hadrons, the extra track

can either be oppositely-charged to the hadron, producing net charge zero and rejection of

the vertex, or the same charge as the hadron, leaving the vertex wrong-sign. For more than

one misattached track the pattern holds that there are always more ways to get a wrong-sign

charged vertex. Therefore, pH
c can be constrained in [0, 0.5], equivalent to pH

c = 0.25 ± 0.14

for a uniform distribution. This is in good agreement with the value of 0.30 indicated by

the simulation. The value pH
c = 0.25 is used in both the calibration procedure and in the

likelihood fit for Ab, with the uncertainty of ±0.14 used to set systematic errors on Ac and

Ab.

A.3 Ac Fit Parameters

What will be needed for the likelihood fit for Ac are the purity and correct-sign probability

for the event types used in the fit. In the case of Ac these are XL (single-tagged) and

LL (double-tagged), where in the LL subsample the events with same-sign Qtag values are

discarded.
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Table A.5: Single-tag and double-tag purities Πs
f and Πd

f used in the Ac fit. The quoted
errors are due only to the statistical uncertainties of the calibrated quantities. Also shown
are the Monte Carlo expectations.

flavor MC Πs
f calibrated Πs

f MC Πd
f calibrated Πd

f

c 0.8519 0.8355±0.0058 0.9810 0.9751±0.0025
b 0.1312 0.1470±0.0058 0.0190 0.0249±0.0025
uds 0.0169 0.0175 0 0

The three single-tagged flavor purities Πs
f for the Ac fit can be computed from:

Πs
c =

εLc (1 − ξL
c ε

L
c − εHc )Rc

εLc (1 − ξL
c ε

L
c − εHc )Rc + εLb (1 − εLb − εHb )Rb + εLuds(1 −Rc −Rb)

(A.15)

Πs
b =

εLb (1 − εLb − εHb )Rb

εLc (1 − ξL
c ε

L
c − εHc )Rc + εLb (1 − εLb − εHb )Rb + εLuds(1 −Rc −Rb)

(A.16)

Πs
uds =

εLuds(1 −Rc −Rb)

εLc (1 − ξL
c ε

L
c − εHc )Rc + εLb (1 − εLb − εHb )Rb + εLuds(1 −Rc −Rb)

(A.17)

using the calibrated efficiencies and the correlation parameter ξL
c . The two double-tagged

purities (the uds contribution is assumed to be zero) are:

Πd
c =

ξL
c (εLc )2[(pLL

c )2 + (1 − pLL
c )2]Rc

ξL
c (εLc )2[(pLL

c )2 + (1 − pLL
c )2]Rc + (εLb )2[(pL

b )2 + (1 − pL
b )2]Rb

(A.18)

Πd
b =

(εLb )2[(pL
b )2 + (1 − pL

b )2]Rb

ξL
c (εLc )2[(pLL

c )2 + (1 − pLL
c )2]Rc + (εLb )2[(pL

b )2 + (1 − pL
b )2]Rb

(A.19)

using the calibrated correct-sign probabilities as well to account for the dropping of the

same-sign Qtag events. These expressions are very similar to those used in the efficiency

calibration procedure. The calculated values of Πs
f and Πd

f are summarized in Table A.5,

along with the expectations from the simulation.

The single-tagged correct-sign probabilities P s
f are given by:

P s
c = ζL

c p
LL
c (A.20)



124

Table A.6: Single-tag and double-tag correct-sign probabilities P s
f and P d

f used in the Ac fit.
The quoted errors are due only to the statistical uncertainties of the calibrated quantities.
Also shown are the Monte Carlo expectations.

flavor MC P s
f calibrated P s

f MC P d
f calibrated P d

f

c 0.9251 0.9117±0.0097 0.9946 0.9921±0.0021
b 0.548 0.543±0.032 0.610 0.586±0.063

P s
b = pL

b (A.21)

where the calibrated values of pLL
c and pL

b are used, and the factor ζL
c is inserted to convert

the pLL
c calibrated from double-tagged events into a value suitable for single-tags. The

double-tagged correct-sign probabilities P d
f are computed from:

P d
c =

(pLL
c )2

(pLL
c )2 + (1 − pLL

c )2
(A.22)

P d
b =

(pL
b )2

(pL
b )2 + (1 − pL

b )2
(A.23)

again using the calibrated values of pLL
c and pL

b . The calculated values of P s
f and P d

f are

summarized in Table A.6, along with the expectations from the simulation.

A.4 Ab Fit Parameters

The events used in the Ab fit are XH and LH (single-tagged), and HH (double-tagged),

where in the LH events the Qtag in the L hemisphere is ignored and the HH events with

same-sign Qtag values are discarded.

The flavor purities for the Ab fit are computed in the same way as for the Ac fit. The
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Table A.7: Single-tag and double-tag purities Πs
f and Πd

f used in the Ab fit. The quoted
errors are due only to the statistical uncertainty of the calibrated efficiencies. Also shown
are the Monte Carlo expectations.

flavor MC Πs
f calibrated Πs

f MC Πd
f calibrated Πd

f

b 0.9764 0.9724±0.0071 0.9999 0.9998±0.0002
c 0.0169 0.0210±0.0071 0.0001 0.0002±0.0002
uds 0.0067 0.0066 0 0

mixed-LH-tagged events are treated as single-tagged events here.

Πs
b =

εHb (1 − ξH
b ε

H
b )Rb

εHb (1 − ξH
b ε

H
b )Rb + εHc (1 − εHc )Rc + εHuds(1 −Rb −Rc)

(A.24)

Πs
c =

εHc (1 − εHc )Rc

εHb (1 − ξH
b ε

H
b )Rb + εHc (1 − εHc )Rc + εHuds(1 −Rb −Rc)

(A.25)

Πs
uds =

εHuds(1 −Rb −Rc)

εHb (1 − ξH
b ε

H
b )Rb + εHc (1 − εHc )Rc + εHuds(1 −Rb −Rc)

(A.26)

Πd
b =

ξH
b (εHb )2[(pHH

b )2 + (1 − pHH
b )2]Rb

ξH
b (εHb )2[(pHH

b )2 + (1 − pHH
b )2]Rb + (εHc )2[(pH

c )2 + (1 − pH
c )2]Rc

(A.27)

Πd
c =

ξH
c (εHc )2[(pHH

c )2 + (1 − pHH
c )2]Rc

ξH
b (εHb )2[(pHH

b )2 + (1 − pHH
b )2]Rb + (εHc )2[(pH

c )2 + (1 − pH
c )2]Rc

(A.28)

The calculated values of Πs
f and Πd

f are summarized in Table A.7, along with the expec-

tations from the simulation.

The correct-sign probabilities P s
f are also computed as for Ac.

P s
b = ζH

b p
HH
b (A.29)

P s
c = pH

c (A.30)

P d
b =

(pHH
b )2

(pHH
b )2 + (1 − pHH

b )2
(A.31)

P d
c =

(pH
c )2

(pH
c )2 + (1 − pH

c )2
(A.32)

using the calibrated value of pHH
b , the constrained value of pH

c = 0.25, and the factor ζH
b to
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Table A.8: Single-tag and double-tag correct-sign probabilities P s
f and P d

f used in the Ab fit.
The quoted errors are due only to the statistical uncertainty of the calibrated probabilities.
Also shown are the Monte Carlo expectations.

flavor MC P s
f calibrated P s

f MC P d
f calibrated P d

f

b 0.8033 0.8168±0.0049 0.9459 0.9545±0.0029
c 0.303 0.25 0.086 0.10

convert pHH
b into a value suitable for single-tagged events. The calculated values of P s

f and

P d
f are summarized in Table A.8, along with the expectations from the simulation.
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Appendix B

Tagging Correlations

It is useful to investigate the sources of the tagging correlations ξt
f and the single/double

correct-sign probability corrections ζt
f , to ensure that they are well-modeled in the simulation

and so that appropriate systematic errors can be evaluated. A procedure will be described

that allows the estimation of the contribution from an individual source. The significant

sources will be enumerated, and a completeness test will be presented showing that these

sources account for the total effect. Procedures to estimate the systematic uncertainties for

each source will also be described.

B.1 Source Estimation

To estimate the contribution from a source, each hemisphere of the event is characterized

by a variable xi (i = 1, 2) which probes that source. For example, xi could be the energy of

the heavy hadron in hemisphere i.

For the tagging correlations ξt
f , the necessary items are a parameterization εtf (x) of the

tag efficiency for all f event hemispheres, the normalized distributionNf (x) of x in all f event

hemispheres, and the normalized distribution N t
f (x) of x in f event hemispheres opposite
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those tagged as t. The correlation due to a particular source can then be computed from:

ξt
f,x =

∫
εtf (x)N

t
f (x)dx∫

εtf (x)Nf (x)dx
=

∫
εtf (x)N

t
f (x)dx

εtf
(B.1)

where ξt
f,x is the correlation due only to the source probed by x.

For the correct-sign probability corrections ζt
f , the ingredients are a parameterization

pt
f (x) of the correct-sign probability in all t-tagged f event hemispheres, the normalized

distribution N tt
f (x) of x in t-tagged f event hemispheres opposite those tagged as t, and

the normalized distribution N t�t
f (x) of x in t-tagged f event hemispheres opposite those not

tagged as t. The single/double correction due to a particular source can then be computed

from:

ζt
f,x =

∫
pt

f (x)N
t�t
f (x)dx∫

pt
f (x)N

tt
f (x)dx

(B.2)

where ζt
f,x is the single/double correction due only to the source probed by x.

B.2 Sources

Four significant sources have been found and are detailed below.

B.2.1 CRID uptime

For the L tag, the efficiency depends upon whether the CRID is active. When the CRID is

on the efficiency will be higher, as there is a second way (QK) to sign the tag. Therefore,

if one hemisphere has been L tagged there is a greater chance that the other will also be

tagged, since in these events the CRID is more often active. The ingredients for this source

are shown in Figure B.1, where x = 1 if the CRID is active and x = 0 when it is turned off.
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Figure B.1: Parameterizations and distributions used in estimating the contributions from
CRID uptime. Top row is for the L tag, bottom row is for the H tag.
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B.2.2 Same-hemisphere Hadron Production

The most important source, particularly for the single/double corrections, is events which

have both heavy hadrons produced in the same hemisphere with respect to the thrust axis.

These are caused by the emission of energetic gluon radiation and suppressed by the cut on

the thrust magnitude, but still present in the sample. The ingredients for this source are

shown in Figure B.2, where x is the number of heavy hadrons in a hemisphere.

B.2.3 Hadron Energy Correlation

The energies of the two heavy hadrons in the event are correlated through the emission of

gluon radiation. The ingredients for this source are shown in Figure B.3, where x is the

energy of the heavy hadron in a hemisphere. In order to avoid overestimating this effect the

events with both hadrons in the same hemisphere are removed before estimating this source.

B.2.4 Polar Angle Correlation

The two hadrons generally are produced back-to-back in polar angle, which introduces a

tagging correlation due to the limited acceptance of the detector. The ingredients for this

source are shown in Figure B.4, where x is the cosine of the polar angle of the heavy hadron

in the hemisphere.

B.3 Correlation Source Results

The contributions to ξt
f and ζt

f from each source are shown in Table B.1. The sum of the

four contributions is also compared to the totals obtained directly from the simulation, and

seen to be in good agreement in all cases.
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Figure B.2: Parameterizations and distributions used in estimating the contributions from
same-hemisphere hadron production. Top row is for the L tag, bottom row is for the H tag.
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Figure B.3: Parameterizations and distributions used in estimating the contributions from
hadron energy correlation. Top row is for the L tag, bottom row is for the H tag.
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Figure B.4: Parameterizations and distributions used in estimating the contributions from
polar angle correlation. Top row is for the L tag, bottom row is for the H tag.
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Table B.1: Summary of the contributions of the correlation sources, along with their sums.
Also shown for comparison are the direct determinations of the correlation parameters.

source ξL
c,x − 1 (%) ξH

b,x − 1 (%) ζL
c,x − 1 (%) ζH

b,x − 1 (%)

CRID uptime 1.20 0.00 -0.08 -0.00
same-hemisphere hadrons 0.38 0.16 -0.35 -0.30
hadron energy correlation 0.74 0.05 -0.02 -0.05
polar angle correlation 0.70 0.09 -0.05 -0.04
sum 3.02 0.30 -0.50 -0.39
direct 2.91±0.70 0.45±0.19 -0.69±0.15 -0.50±0.11

B.4 Systematic Uncertainties

For the four significant sources, it is desirable to verify that the simulation is properly mod-

eling the effects, and to set reasonable variations for the purposes of estimating systematic

errors. For the CRID uptime, this involves simply checking that the simulated CRID-on

fraction is the same as in the data. The polar angle contributions are assumed to be strictly

detector effects, which are already included in the tracking efficiency and resolution sys-

tematic errors. This leaves the same-hemisphere hadrons and hadron energy sources, which

depend upon the JETSET parton shower model. Because these have never been measured,

techniques for constraining them from the data has been developed. These techniques are

not true measurements but only simple checks.

B.4.1 Same-hemisphere Hadron Production

The SLD simulation indicates that 2.82%(2.45%) of c(b) events have both heavy hadrons in

the same hemisphere. To check the simulation against the data, samples of three-jet events

were selected in both. The Durham algorithm [56] was used, with parameter y = 0.015.

Charged tracks were used as input, and each jet was required to have | cos θJET | < 0.75 to

permit tagging. No cut on the thrust magnitude T was imposed. The secondary vertex

search and track attachment procedure was performed on the set of tracks assigned to each
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Figure B.5: Distributions of φ12.

of the three jets, and the pt-corrected mass Mjet was computed for each jet with a secondary

vertex. Events with two jets in the same hemisphere w.r.t. the thrust axis t̂, with Mjet > 0.5

GeV/c2 in both, and with no secondary vertex in the third jet were considered candidates

for same-hemiphere heavy hadron production. To separate c from b the events were split

into three classes (M1 is the lesser of the two Mjet): M1 < M2 < 2, M1 < 2 < M2, and

M2 > M1 > 2. Within each of these classes the angle φ12 between the two found secondary

vertices gives additional information about the type of event. Four types were considered:

same-hemisphere primary cc̄ production, same-hemisphere primary bb̄ production, events

with a g → cc̄ or g → bb̄ pair, and “other” which are mostly one B decay which has been

split into two jets by the jet finder.

Distributions of φ12 for each of the four event types were obtained from the simulation

and normalized by the total number of three-jet events in the data. A fit to the data φ12

distributions was performed to find scale factors for each component. The fitted and data

φ12 distributions are shown in Figure B.5, and the results of the fit are given in Table B.2.

The “other” rate is consistent with the data, and the g → cc̄, bb̄ rate is consistent with
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Table B.2: Results of the fit to the φ12 distributions.

event type s = Nfit/NMC

same hemisphere bb̄ 0.82±0.09
same hemisphere cc̄ 1.15±0.37
event with g → cc̄, bb̄ 1.57±0.42
other 1.14±0.24

the adjustment required to match the simulation to the current world average rates. For the

same hemisphere cc̄ rate, the simulated rate was varied by ±40% to estimate a systematic

error. Because the Monte Carlo rate for same hemisphere bb̄ events is not as consistent with

the data, a conservative variation of ±30% was applied to the simulated rate.

B.4.2 Hadron Energy Correlation

The SLD simulation generates heavy hadrons with energy correlation γE = 〈E1E2〉 / 〈E〉2 =

1.014, for both c and b events. This is in excellent agreement with an O(α2
s) calculation [57].

Appropriate uncertainties were determined by comparing the simulation and data. Samples

of double-tagged events were selected, with the charged vertex momentum Phem used as an

energy estimate. The quantity γP = 〈P1P2〉 / 〈P 〉2 was computed for both the simulation

and the data, and the results compared. To isolate c events, both hemispheres were required

to have yhem < 0.3. This tighter cut relative to the L-tag is used because b background

biases the extracted γP . For b events a cut of yhem > 0.85 was used. The values of γP

observed in the Monte Carlo and data are summarized in Table B.3. The Monte Carlo is in

good agreement with the data, although the errors are large and the tagging efficiency and

energy resolution significantly dilute the observed correlation. In order to vary the observed

Monte Carlo γP values within the uncertainties on the data values, the true Monte Carlo

correlations γE were varied by ±0.026 for c and ±0.003 for b. These variations were then

used to estimate systematic errors for Ac and Ab.
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Table B.3: The γP − 1 correlation parameters observed in the Monte Carlo and data.

yhem < 0.3 yhem > 0.85
Monte Carlo γP − 1 (%) 0.46±0.17 0.72±0.06

data γP − 1 (%) 0.52±0.43 0.69±0.13
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