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Abstract

Signals of minimal supersymmetric models with non-universalities in the gaugino sector of

the theory are analyzed at the CERN Large Hadron Collider (LHC) and in experiments

searching for dark matter. Signals of dark matter including direct and indirect detection

are investigated at depth in various supersymmetric frameworks. The parameter space of

deflected mirage mediation, in which the soft terms receive contributions from the three

main supersymmetry breaking mediation mechanisms, is investigated with emphasis on the

neutralino sector and dark matter signals. The potential for non-universal gaugino masses to

explain the recent CDMS II data is studied and possible implications for indirect dark matter

detection experiments and LHC signatures are considered. Collider implications of non-

universalities in the gaugino sector are examined with attention paid to specific signatures

which are targeted to track the non-universalities. Further, the complementarity of dark

matter and collider measurements is discussed with emphasis on breaking model degeneracies

which may arise in LHC data.
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Chapter 1

Introduction and Overview

At the time of this writing the high energy community is entering a very exciting era. Up

until now the Standard Model (SM) has been our best understanding of Nature which has

been rigorously backed up by experimental observations. The SM is not complete however as

it does not include neutrino masses (for example) and hence there must be some Beyond-the-

Standard Model (BSM) physics. With data taking at the Large Hadron Collider (LHC) on

the brink of occurring soon there may be new exciting evidence for BSM physics [1]. There

are an array of possibilities for what the BSM physics may be and many are motivated from

a high scale theory. Among the possible theories of BSM physics supersymmetry (SUSY)

is highly-motivated for reasons such as gauge coupling unification and the existence of a

solution to the hierarchy problem. Another intriguing property of SUSY is that the minimal

extension of the SM includes a possible explanation for the dark matter (DM) problem,

which was discovered after the model was proposed.

The general SUSY framework is described in terms of the Minimal Supersymmetric Stan-

dard Model (MSSM) and the parameter space is large, of dimension 124. Many possible

experimental outcomes may result within the MSSM framework, and in particular the gau-

gino sector of the theory is very compelling as it is relevant for the DM properties as well

as signatures which may arise at the LHC. By signatures we refer to distinct final state

topologies which arise from decays of supersymmetric particles such as trilepton final states,

for example. The gaugino sector of SUSY also offers clues as to the nature of SUSY breaking

which is very important to understand. It gives insight to the type of string-inspired model

or Grand Unified Theory (GUT) which may govern the nature of the SUSY breaking. The
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gaugino sector of the MSSM is intimately related to the dark matter particle within the

MSSM, as well as to understanding the nature of SUSY breaking in general, it is therefore

very interesting. In this thesis the work focuses on non-universal guagino masses (NUGM),

which result in a rich low scale gaugino sector of the MSSM and therefore of possible dark

matter observables along with corresponding LHC signatures which soon may be discovered.

From a high scale perspective SUSY is the low scale effective theory of string theory.

There are many possible string theories which currently exist and if SUSY is discovered it

may offer support in the direction of string theory. String theories generally suffer from

a stabilization problem associated with the scalar fields in the theory resulting in unstable

vacua. Recent work suggests methods for stabilizing the vacuum in a string theory require the

existence of multiple sources of SUSY breaking to contribute to the soft SUSY terms which

results in non-universal gaugino masses. One such scenario has recently been introduced

called deflected mirage mediation (DMM) in which gravity, anomaly and gauge mediated

SUSY breaking mechanisms may be simultaneously present. An analysis is given here on the

prospects of neutralino dark matter within the DMM model framework and what possible

observations are possible. It is shown that there exist regions of the parameter space where all

three mediation mechanisms are present and give a thermal relic abundance of neutralinos

in line with the Wilkinson Microwave Anisotropy Probe (WMAP). Direct detection, and

indirect detection including gamma ray, muon and anti-matter experiments are considered,

and the investigated parameter space is shown to be in line with current experimental bounds.

Discovery prospects are discussed for relevant upcoming experiments.

Recently a possible signal of dark matter may have been observed by the CDMS II direct

detection experimental group. An explanation for the observed dark matter scattering events

can be explained quite readily within the context of Minimal Supergravity (mSUGRA) with

non-universal gaugino masses. An analysis is given which can explain the possible dark

matter signal using the mSURGA + NUGM. Furthermore various other dark matter signals

are given along with a basic survey of LHC signatures expected for such models.
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There exists a string motivated framework, called mirage mediation, in which the gaugino

masses can be parametrized by a single non-universality parameter. This scenario is a

simplified version of the DMM model in which no gauge mediation contributes. This offers

a convenient way to study the effects of such non-universal gaugino masses, specifically the

resulting LHC signatures. Two possible string scenarios are parametrized in such a way and

the resulting LHC properties are given. The integrated luminosity necessary to differentiate

the values of the non-universality parameter are given for the models along with further

analysis of LHC signatures and model properties.

An important issue is also the so-called LHC inverse problem. This arises when more

than one set of model parameters can fit the LHC data, thus resulting in degenerate theory

models which describe the data. A analysis is given by which degenerate SUSY models at

the LHC are used to investigate the utility of dark matter observables to untangle the model

degeneracies. The degenerate pairs can have gaugino sectors which involve non-universalities

and hence interesting dark matter signals. Specifically direct detection and indirect gamma

ray detection experiments are investigated and it is shown that they can be quite helpful at

resolving the inverse problem. Theoretical and experimental errors are taken into account.

The analysis is compared to a study which used the same points to investigate whether the

proposed International Linear Collider can help alleviate the degeneracies.

The organization of this thesis is as follows: in Chapter 2 the basics of SUSY and the

MSSM are briefly reviewed. Chapter 3 discusses the role of the lightest supersymmetric

particle (LSP) in dark matter observables relevant for various experiments. Chapter 4 in-

troduces the Deflected Mirage Mediation (DMM) scenario and gives an overview of the

possible dark matter signals within the DMM framework. Chapter 5 discusses the relevance

of NUGM to the recent possible signal of direct detection of dark matter at CDMS II along

with a look at some resulting LHC signatures. Chapter 6 analyzes a few string motivated

benchmarks at the LHC with varying gaugino masses via a single parameter and discusses

important signatures which shed light on the non-universality parameter. In Chapter 7 the
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utility of using dark matter observations to lift possible MSSM model degeneracies at the

LHC is discussed.
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Chapter 2

The MSSM

2.1 The MSSM framework

The Standard Model (SM) [2, 3, 4],[5, 6, 7],[8, 9, 10, 11, 12] is a well established effective

theory of particle physics, but many drawbacks are inherent. Among these one might include

the lack of an understanding for neutrino masses, the absence of a cold dark matter candidate,

and no comprehensive explanation of electroweak symmetry breaking. Furthermore the Higgs

mass in the Standard Model is quadratically divergent at the quantum level. It is quite clear

that these problems need to be addressed and just how to do that brings us to the subject

of supersymmetry.

Supersymmetry [13] can resolve the problems with the Standard Model just discussed.

The Higgs mass no longer suffers from quadratic divergences as new fields enter the theory

which solve this problem. In the minimal supersymmetric Standard Model electroweak

symmetry breaking is triggered by renormalization group effects which drive the Higgs mass-

squared to negative values. A dark matter candidate is present in the MSSM if one assumes

R−parity is conserved. Neutrino masses can be included in the theory and actually fit quite

nicely when one embeds the model in a grand unified group such as SO(10). The three

gauge couplings unify in the MSSM at a high scale of QGUT ' 2 × 1016 GeV which is a

strong hint in favor of such a grand unified theory. From a high scale perspective such as

string-theory, supersymmetry is a necessary ingredient. These and many other reasons offer

a strong hint that SUSY may turn out to be the theory which describes physics beyond the

Standard Model.
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Many excellent reviews and books exist for the minimal supersymmetric standard model

(MSSM). A partial list of resources for general SUSY and the MSSM can be found in [14,

15, 16, 17, 18, 19, 20, 21]. The review of the MSSM given here is by no means complete,

but rather serves a simple reminder of the important properties of the model relevant to the

later analyses.

2.1.1 Particle content

Supersymmetry is an extension of the Poincarè group and is a space-time symmetry which

relates bosons and fermions. The action of the supersymmetry generator Q transforms

bosons into fermions and fermions into bosons via

Q|boson〉 = |fermion〉 , Q|fermion〉 = |boson〉 . (2.1)

The global supersymmetry algebra is built using anti-commuting fermionic generators Q and

Q† (here written in 2-component Weyl notation) which satisfy the following commutation

and anti-commutation relations:

{
Q,Q†

}
= 2σµp

µ , {Q,Q} =
{
Q†, Q†

}
= [Q, pµ] =

[
Q†, pµ

]
= 0 , (2.2)

where pµ is the four momentum generator of space-time translations and σµ = (12×2, ~σ) with

~σ the Pauli matrices.

Supermultiplets are the irreducible representations of the single particle states containing

both the fermionic and bosonic superpartners. Particles in the same supermultiplet have the

same mass and same gauge charges. Furthermore the particles in a supermultiplet have the

same number of bosonic and fermionic degrees of freedom.

The supersymmetric extension of the Standard Model requires an additional particle for

each SM particle but with spin differing by ~/2. The SM fermions have scalar superpartners

called sfermions and the SM gauge fields have fermionic superpartners called gauginos. The
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supermultiplet boson fermion SU(3)C SU(2)L U(1)Y

Q̂
(
ũL, d̃L

)
(uL, dL) 3 2 1

6

ˆ̄u ũ∗R u†R 3̄ 1 −2
3

ˆ̄d d̃∗R d†R 3̄ 1 1
3

L̂ (ν̃, ẽL) (ν, eL) 1 2 −1
2

ˆ̄e ẽ∗R e†R 1 1 1

Ĥu (H+
u , H

0
u)

(
H̃+
u , H̃

0
u

)
1 2 1

2

Ĥd

(
H0
d , H

−
d

) (
H̃0
d , H̃

−
d

)
1 2 −1

2

ĝ gaµ g̃a 8 1 0

Ŵ W±
µ , W 3

µ W̃±, W̃ 3 1 3 0

B̂ Bµ B̃ 1 1 0

Table 2.1: MSSM particle content. Chiral and gauge supermultiplets of the MSSM
along with the gauge charges. Supermultiplets are denoted with a hat and the EM charge
is QEM = T3 + Y .

SM fields and superpartner fields reside in either a chiral or gauge supermultiplet and since

the superpartners have the same gauge charges they couple to other fields as the SM fields

do. The minimal case of the SUSY extension to the SM (MSSM) also needs to contain two

Higgs isospin doublets rather than the single Higgs doublet in the SM. That this is necessary

stems from the necessity of the theory to remain anomaly free and two Higgs are also needed

to give masses to up and down type fermion fields. So the MSSM is made of the usual

SM quarks and leptons along with their superpartner squarks and sleptons, the SM gauge

fields and the superpartner gauginos and also two Higgs scalar doublets and their fermionic

Higgsino superpartners. The minimal field content of the MSSM is given in Table 2.1 where

the supermultiplets are denoted with a hat, e.g. Q̂ contains the left handed handed quark

and squark fields. The convention of the electric charge is QEM = T3 + Y with T3 the weak

isospin generator and Y the hypercharge.

As briefly mentioned the fields within a supermultiplet have the same mass. This is only

true if SUSY is unbroken, and since no superpartners have been discovered as of yet it means

that supersymmetry is broken and just how it is broken remains a mystery. A consequence

of SUSY being broken means that the Lagrangian for the MSSM can be written in terms of
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the SUSY invariant piece plus a piece which parametrizes the breaking of SUSY, or

L = LSUSY + Lsoft . (2.3)

The first term contains the usual gauge and Yukawa interactions and is invariant under

super-Poincarè transformations, while the second term contains terms which are not invariant

under the SUSY transformations. The second piece contains the “soft” terms with masses

and couplings of positive mass dimension less than 4 which parametrize the effects of SUSY

breaking. The most general form of Lsoft was found by Girardello and Grisaru [22].

2.1.2 Review of global and local SUSY

It is worth writing down the Lagrangian in a global supersymmetric theory which contains

chiral and gauge fields invariant under SUSY and gauge transformations. To do this we

consider a theory with i = 1, 2, . . . , n scalar fields φi and their fermionic superpartners ψi

along with gauge fields Aaµ and their corresponding spin half partner gauginos λa where a

labels the gauge group Ga with gauge couplings ga. The fermionic fields are written using

two component Weyl notation for both the chiral fields and gauginos. The Lagrangian for

this theory is written as

LSUSY = |Dµφi|2 + iψ†i σ̄
µDµψi −

1

2

(
W ijψiψj + h.c.

)
− |Wi|2

− 1

4
F a
µνF

µνa + iλa†σ̄µDµλ
a +

1

2
(Da)2

−
√

2ga ((φ∗iT
aψi)λ

a + h.c.) + ga (φ∗iT
aψi)D

a , (2.4)

where W ij = ∂2W/∂φi∂φj, W
i = ∂W/∂φi and W = W (φ) is a renormalizable holomorphic

function of the scalar fields called the superpotential. The covariant derivatives for the scalar

16



and fermionic fields are

Dµφi = ∂µφi + igaT
aAaµφi

Dµψi = ∂µψi + igaT
aAaµψi , (2.5)

where T a are the generators of the gauge group Ga. The gauge and gaugino fields have the

following covariant derivatives

F a
µν = ∂µA

a
ν − ∂νAaµ − gafabcAbµAbν

Dµλ
a = ∂µλ

a − igafabcAbµλc , (2.6)

with fabc the anti-symmetric structure constants of Ga.

The results for the interacting global SUSY theory written in equation (2.4) can be

somewhat simplified by working in superspace. In superspace one has spacetime coordinates

xµ along with two component anti-commuting spinor coordinates θ, θ̄ (Grassmann spinors)

which satisfy
{
θα, θ̄α̇

}
= 0 where α, α̇ are spinor indices. The fermionic and bosonic fields

in a supermultiplet are then combined into a single superfield Φ. Introducing a superspace

coordinate yµ = xµ − iθσµθ̄ the chiral fields are written in terms of a chiral superfield as

Φ(y) = φ(y) +
√

2θψ(y) + θ2F (y) , (2.7)

with F an auxilary field which is eliminated using the equations of motion to give W i =

F i = ∂F/∂φi. The vector superfield contains the gauge, gaugino and auxilary field Da

V a(y) = θσµθ̄Aaµ(y) + θ2θ̄λa†(y) + θθ̄2λa(y) +
1

2
θ2θ̄2Da(y) , (2.8)

where Da can be eliminated using the equations of motion to give Da = −ga (φ∗iT
aφi). It is
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also convenient to introduce the field strength superfield W a
α

W a
α(y) = −iλaα(y) + θαD

a(y)− (σµνθ)αF
a
µν(y)− θ2σµDµλ

a†(y) , (2.9)

with α a spinor index. Using the superfields in equations (2.7) and (2.9) along with the

superpotential, W (Φ) (now a function of the chiral superfields), the SUSY Lagrangian in

equation (2.4) becomes

LSUSY =

∫
d4θ
[
Φ†egaT

aV aΦ + h.c.
]

+

∫
d2θ

[
1

4
W aαW a

α +W (Φ) + h.c.

]
, (2.10)

with superspace measures d2θ = −1
4
dθdθ, d2θ̄ = −1

4
dθ̄dθ̄ and d4θ = d2θd2θ̄,1. The general

form of the global SUSY scalar potential at tree level is

V =
∑
i

∣∣∣∣∂W∂φi
∣∣∣∣2 +

1

2

∑
a

g2
a

(∑
i

φ†iT
aφi

)2

, (2.11)

where T a are the generators of the gauge group Ga to which φi belong with coupling constants

ga.

In local supersymmetry the SUSY generators are taken to depend on spacetime coordi-

nates and therefore involve gravity. Local supersymmetry implies the existence of a massless

spin 2 field which couples to matter as in General Relativity, e.g. a graviton along with its

spin 3/2 fermionic partner, the gravitino. To include the effects of supergravity equation

(2.10) is modified (working in units of MPl = 1) according to

LSUSY =

∫
d4θK

(
Φ†egaT

aV a ,Φ
)

+

∫
d2θ

[
1

4
fab (Φ)W aαW b

α +W (Φ) + h.c.

]
, (2.12)

where K is the Kähler potential, a gauge invariant and real function and fab is an arbitrary

function of the chiral superfields which is just δab in the global case. The scalar potential is

1For a single Grassmann variable, η, integration is defined as
∫
dη = 0 and

∫
ηdη = 1.

18



then

V = eK
[
(DmW )Kmn̄

(
Dn̄W̄

)
− 3|W |2

]
+
g2
a

2
Km (T aφ)m

(
φ̄T a

)n̄
Kn̄ , (2.13)

where Kmn̄ is the inverse of the Kähler metric Kmn̄ = ∂2K/∂φm∂φ̄n̄, DmW = ∂W/∂φm +

W∂K/∂φm, Dn̄W̄ = ∂W̄/∂φ̄n̄ + W̄∂K/∂φ̄n̄ and Km = ∂K/∂φm. The potential in local

SUSY can now be negative in contrast to the global case in equation (2.11). The last term

in equation (2.13) is just a D-term and the first term can be written using the F -term

Fm = eK/2Kmn̄Dn̄W̄ . (2.14)

If one or more of the Fm terms obtain a VEV, then local SUSY will be broken and the

gravitino will absorb the goldstino and obtains a mass of

m2
3/2 =

FmKmn̄F
n̄

3M2
Pl

, (2.15)

where MPl has been put back in. The gravitino mass is found from taking V = 0 in equation

(2.13) and assuming the D−term contribution to be zero.

2.1.3 WMSSM and LMSSM
soft

Returning to the discussion of the MSSM we now review the basic ingredients for the super-

potential and soft SUSY breaking terms. The MSSM superpotential is

WMSSM = ˆ̄uyuQ̂Ĥu − ˆ̄dydQ̂Ĥd − ˆ̄lyeL̂Ĥe + µĤuĤd

= ηφ
ˆ̄φyφΦ̂Ĥj + µĤuĤd , (2.16)

where a shorthand notation is used for the superfields so φ ∈ {u, d, l}, Φ ∈ {Q,L}, Hj ∈

{Hu, Hd} and ηu = +1, ηd,l = −1. The couplings in equation (2.16) are the Yukawa matrices
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yφ and the supersymmetric Higgs mass µ. The general soft SUSY Lagrangian for the MSSM

is

− LMSSM
soft =

1

2

(
Maλ̃aλ̃a + h.c.

)
+ Φ̃†m2

ΦΦ̃ + φ̃†m2
φφ̃

+
(
ηφφ̄aφΦ̃Hj + h.c.

)
+m2

j |Hj|2 + (bHuHd + h.c.) , (2.17)

where Ma are the soft gaugino masses for λa = B̃, W̃ , g̃ (a = 1, 2, 3), m2
φ,Φ are the soft scalar

squared mass matrices, aφ are the trilinear scalar couplings, b = Bµ is the soft Higgs bilinear

and a shorthand notation is used as in equation (2.16).

The superpotential in equation (2.16) is minimal enough to build models with realistic

phenomenology, but other terms could also be written down. Terms which are holomorphic

and renormalizable like αijkQiLjdk, β
ijkdidjuk are allowed (with βijk antisymmetric in the

family indices), however these type of terms violate lepton and baryon number and if such

terms did exist then the coupling βijk could mediate rapid proton decay. For example the

proton would have a half life on the order 10−12 seconds if the coupling is O(1) and the

squarks have mass around 1 TeV, while the proton is known to be very stable with a lower

bound on the half life of O(1033) years [23, 24]. This can be alleviated if the coupling βijk is

very small. Also B and L are known to be violated by non-perturbative electroweak effects.

To remedy the issue of B and L conservation a discrete Z2 symmetry is introduced to the

MSSM which eliminates the problematic terms in the superpotential. This is the so-called

R-parity defined as

PR = (−1)3(B−L)+2s , (2.18)

where B is the baryon number, L is the lepton number and s the spin of the particle. It

follows that particles in the same supermultiplet have opposite R-parity, i.e. the SM fields all

have PR = +1 (including the Higgs scalar fields) while the superpartners all have PR = −1

(including the Higgsino fields). Conservation of R-parity implies

• The lightest supersymmetric particle (LSP) must be absolutely stable and if neutral it

20



only interacts weakly, hence a DM candidate.

• Each superpartner decays to an odd number of LSPs plus SM particles.

• Superpartners are produced in pairs at colliders.

The MSSM is defined to conserve R-parity and thus can provide an explanation for the dark

matter if a neutral odd R particle is the LSP, and this comes from imposing a symmetry to

protect the proton from decaying too rapidly.

A further ansatz typically taken to study the MSSM is to eliminate potential flavor chang-

ing neutral currents and CP violation by assuming the squark and slepton mass matrices to

be diagonal at the high scale

m2
Φ = m2

Φ1 for Φ = Q̃, L̃ ,

m2
Φ = m2

Φ1 for φ = ũ, d̃ , ẽ , (2.19)

where 1 is 3× 3 unit diagonal in family space. Another assumption is that the scalar cubed

couplings are proportional to the Yukawa matrices so

aφ = Aφyφ for φ = ũ, d̃ , ẽ . (2.20)

Further typically one assumes yφ ' diag (0, 0, yφ) so that only the third family particles have

non-zero trilinears. To avoid the large new sources of CP violation the soft parameters will

be taken to not introduce complex phases; in other words LMSSM
soft needs to be real. The soft

scalar mass squares, m2
φ, are assumed real, phases of µ and b = Bµ can be eliminated by

rotating the Higgs and Higgsino fields and assuming the phases of the gaugino masses and

trilinear couplings are 0 or π.
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2.2 High scale models

Supersymmetry must be broken since no observed superpartners with the same mass as

SM fields have been measured. Somehow SUSY breaking effects are communicated to the

MSSM and just how this is done is unknown. SUSY breaking from an F or D term VEV

in the MSSM supermultiplets of the observable sector is not allowed as there are no candi-

date singlets whose F -term could develop a VEV and the D-term VEV does not lead to an

acceptable spectrum. Tree-level renormalizable terms cannot communicate breaking as this

leads to sum rules of the (simplified) form m2ee1 + m2ee2 = 2m2
e which are ruled out by exper-

iment. To construct a viable way of communicating the breaking of SUSY to the MSSM

one supposes that there is a “hidden” sector where the actual breaking of SUSY takes place

and the subsequent breaking effects are transmitted to the observable sector via possibly

flavor-blind interactions.

The interactions which mediate the breaking typically come from three types of media-

tion mechanisms: gravity, anomaly and gauge mediation. In gravity (or modulus) mediation

models [25, 26, 27] the hidden sector where the SUSY breaking takes place communicates

to the observable sector only through gravitational interactions. The supergravity effective

Lagrangian then contains non-renomralizable terms which are suppressed by powers of MPl.

Models of this type can avoid problems such as flavor changing neutral currents and CP

violation if one assumes (or can explain) family universal couplings at the high scale. Typi-

cally the high scale at which unification takes place is the scale at which the gauge couplings

unify, QGUT ' 1× 1016 GeV.

In anomaly mediation models [28, 29] the hidden sector is sequestered from the visible

sector by some distance. In this case the soft terms arise from an anomalous violation of local

superconformal invariance which is an extension of scale invariance. The soft terms which are

generated are proportional to the beta functions and anomalous dimensions. Furthermore in

theories of this type the flavor violating effects are suppressed via the exponential separation

between the two sectors. The scale at which the soft terms are generated can vary, but
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typically one assumes it to be at a high scale such as QGUT.

In gauge mediation models [30] the usual gauge interactions of the SM are responsible for

transmitting SUSY breaking to the observable sector. New messenger fields are introduced

which transmit the breaking indirectly. The soft terms arise at the loop level and the scale

at which they are generated is often much lower than QGUT. In this case dangerous flavor

violating effects are avoided as the soft terms are proportional to the gauge couplings.

Connecting high and low scales

If one assumes a high scale model then in order to study the phenomenology which is relevant

for experiments one must evolve the soft terms from the high scale down to the electroweak

scale. The evolution is done using renormalization group equations which, for example, have

been computed to the two loop level in the MSSM in [31]. Upon evolving the soft terms

down the physical masses can then be computed including the radiative corrections [32].

The electroweak symmetry breaking conditions as discussed below can then be checked for

consistency thus determining whether the model under question is viable.

2.3 Higgs potential and EWSB

Now we consider the Higgs scalar potential and conditions which arise for electroweak sym-

metry breaking. The tree level Higgs potential after setting charged Higgs components to

zero is

V =
(
|µ|2 +m2

Hu

)
|H0

u|2 +
(
|µ|2 +m2

Hd

)
|H0

d |2 +
(
bH0

uH
0
d + h.c.

)
+

1

8

(
g2 + g′2

) (
|H0

u|2 + |H0
d |2
)2
. (2.21)

In order to break electroweak symmetry SU(2)L×U(1)Y → U(1)EM and give masses to the

SM fermions certain stability conditions must be obeyed by the Higgs potential in equation

(2.21). For the Higgs to get a non-zero VEV the origin cannot be a stable minimum which
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is the same as requiring the matrix of second derivatives to obey ∂2V/∂H0
i ∂H

0∗
j < 0. The

potential also needs to be bounded from below for large values of the scalar fields so that

it will really have a minimum resulting in V > 0 along the D−flat directions (H0
u = H0

d).

These two conditions result in

b2 >
(
|µ|2 +m2

Hu

) (
|µ|2 +m2

Hd

)
2b < 2|µ|2 +m2

Hu +m2
Hd
, (2.22)

with the first coming from ∂2V/∂H0
i ∂H

0∗
j < 0 and the second from V (H0

u = H0
d) > 0. If

m2
Hu

= m2
Hd

then the two conditions above cannot both be satisfied. Typically in models

where the inputs are all equal at the GUT scale after evolving the parameters to the low

scale one typically finds m2
Hu

< m2
Hd

. This is a result of radiative corrections and is therefore

called radiative electroweak symmetry breaking.

We can now look at the Higgs VEVs and what relations are required based on the stability

conditions in equation (2.22). The Higgs fields in equation (2.21) are replaced with 〈H0
u〉 = vu

and 〈H0
d〉 = vd where v2

u + v2
d = v2 = 2m2

Z/(g
2 + g′2) ' (174 GeV)2 and traditionally one

defines tan β = vu/vd with 0 < β < π/2. Subsequent evaluation of ∂V/∂vi for i = u, d results

in two equations which indeed satisfy the stability conditions in equation (2.22) and can be

written as

sin(2β) =
2b

m2
Hd

+m2
Hu

+ 2µ2

µ2 =
m2
Hd
−m2

Hu
tan2 β

tan2 β − 1
− 1

2
m2
Z , (2.23)

which begs the following question: why should the SUSY preserving µ term be of the same

order of the electroweak scale and of the same order of the soft SUSY breaking parameters?

Due to the hierarchy problem the soft scalar mass squared terms are expected to beO(1 TeV),

whereas µ is not renormalized and hence can take on any value. There is no reason to expect
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µ to be near mZ , but if it is not then large cancellations are required between m2
H terms.

These arguments give an overview of the so-called µ-problem. This can be explained or

understood by requiring µ to vanish at tree-level and to be produced as a by-product of

SUSY-breaking [33, 34, 35, 36, 37].

2.4 Superpartner masses

Here we only include the tree level contributions using (mostly) the notation of [14]. The

masses are presented in the absence of CP phases, e.g. the parameters are all taken as

real valued. The scalar Higgs sector of the MSSM consists of two complex doublets with

8 degrees of freedom. After EWSB 3 of these degrees of freedom are absorbed to become

the longitudinal modes of the Z and W as they gain mass and the remaining 5 are the two

neutral Higgs fields h and H, the pseudo-scalar Higgs, A and the two charged Higgs scalars

H±. These Higgs masses are given at the tree-level by

m2
A = 2|µ|2 +m2

Hu +m2
Hd

m2
h,H =

1

2

[
m2
A +m2

Z ∓
√

(m2
A −m2

Z)
2

+ 4m2
Zm

2
A sin2 (2β)

]
m2
H± = m2

A +m2
Z . (2.24)

The two neutral Higgs mass-eigenstate fields h and H (with m2
h < m2

H by convention) are a

mix of the neutral gauge-eigenstate fields as

 h

H

 =
√

2

 cosα − sinα

sinα cosα


 ReH0

u

ReH0
d

 , (2.25)

with the mixing angle α given by

sin (2α)

sin (2β)
= −m

2
A +m2

Z

m2
H −m2

h

,
cos (2α)

cos (2β)
= −m

2
A −m2

Z

m2
H −m2

h

. (2.26)
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Next we consider the superpartners of the quarks and leptons. A common practice

is to write the squark mass eigenstates in the CKM basis, the so-called super-CKM basis

(SCKM). In this manner one diagonalizes the squarks using 6×3 Γ matrices and the sleptons

are diagonalized using 3× 3 Γ matrices [38]

f̃La =
6∑

k=1

f̃kΓ
∗ka
FL

f̃Ra =
6∑

k=1

f̃kΓ
∗ka
FR , (2.27)

where f̃k are the mass eigenstates (k = 1, . . . , 6 for ẽk, ũk, d̃k and k = 1, 2, 3 for ν̃k), f̃La

and f̃Ra are the gauge eigenstates with a = 1, 2, 3 and the subscript F = U,D,E. Here we

just review the third generation masses which are mixings of the gauge-eigenstate fields, for

example the gauge-eigenstate stop masses are from the Lagrangian term

Lmet = −
(
t̃∗L t̃∗R

)
m2et
 t̃L

t̃R

 , (2.28)

with the stop mass matrix given by

m2et =

 m2
Q3

+m2
t + δu mt (At − µ cot β)

mt (At − µ cot β) m2
ū3

+m2
t + δū

 . (2.29)

The term δf for a flavor f is given by

δf = m2
Z

(
T 3
f −Qf sin2 θW

)
cos (2β) . (2.30)

To obtain the mass-eigenstates, t̃1 and t̃2, one diagonalizes the matrix in equation (2.29)
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using  t̃1

t̃2

 =

 cos θet − sin θet
sin θet cos θet


 t̃L

t̃R

 , (2.31)

where the Γ matrices from equation (2.27) are related to θet as Γ
et1et
UL = Γ

et2et
UR = cos θet and

Γ
et2et
UL = −Γ

et1et
UR = sin θet. For the sbottom and stau masses the same general approach is taken

with the mass matrices of the same form as in equation (2.29) but with the replacements

sin β → cos β, cos β → sin β, m2
t → m2

b , At → Ab, and similarly for τ .

Finally we look in a bit of detail at the gaugino masses, as the gaugino masses are a

central part of the work presented here. In the MSSM gauge-interaction basis we have the

following forms of the gaugino sector masses

Lmeg = −1

2
M3g̃g̃ + h.c. (2.32)

Lm eN = −1

2

(
ψ0
)TM eNψ0 + h.c. (2.33)

Lm eC = −1

2

(
ψ±
)TM eCψ± + h.c. (2.34)

The gluino mass is given at tree level by M3 and the pole mass including the one-loop

radiative corrections can be found in [39]. In the gauge-eigenstate basis the wavefunctions

are ψ0 =
(
B̃, W̃ 0, H̃0

d , H̃
0
u

)
and ψ± =

(
W̃+, H̃+

u , W̃
−, H̃−d

)
. The neutralino and chargino

mass matrices are

M eN =



M1 0 −cβsWmZ sβsWmZ

0 M2 cβcWmZ −sβcWmZ

−cβsWmZ cβcWmZ δ33 −µ

sβsWmZ −sβcWmZ −µ δ44


(2.35)

M eC =

 0 XT

X 0

 X =

 M2

√
2sβmW

√
2cβmW µ

 . (2.36)
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In the mass matrices cβ = cos β, sβ = sin β, cW = cos θW , sW = sin θW where θW is

the Weinberg angle (e = g sin θW ). The diagonal δ’s are 1-loop corrections which become

important when the LSP has a sizable Higgsino and/or Wino fraction [40]. One can also

write the off diagonal terms using the SU(2)L and U(1)Y gauge couplings g and g′ via

cW = g/
√
g2 + g′2, sW = g′/

√
g2 + g′2, v =

√
v2
u + v2

d = 174 GeV, tan β = vu/vd, m
2
Z =

(g2 + g′2)v2/4 and mW = g2v2/4.

In general the parameters Ma (a = 1, 2, 3) and µ are complex. Then the neutralino

mass matrix is not Hermitian, but it is complex and symmetric, whereas the chargino mass

matrix is not Hermitian or symmetric, it is a general complex matrix. This results in different

diagonalization procedures. To diagonalize the neutralino matrix one simply rotates to the

mass eigenstate basis via a unitary matrix N. To diagonalize the chargino mass matrix one

needs two unitary matrices U and V, which are required to diagonalize a general complex

matrix via a biunitary transformation. The unitary matrices relate the gauge and mass

eigenstate bases as follows

Ñi = Nijψ
0
j , C̃+

i = Vijψ
+ , C̃−i = Uijψ

− (2.37)

where ψ+ =
(
W̃+, H̃+

u

)
and ψ− =

(
W̃−, H̃−d

)
. Therefore the mass matrices in the diagonal

basis are

MdiageN = N∗M eNN−1 (2.38)

MdiageC = U∗XV−1 . (2.39)

Diagonalizing M eN
Following [41] and [42] we review the method of diagonalizing M eN . Reference [41] notes

that if we assume CP invariance we can replace the Hermitian matrix N with a real matrix
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Z. Upon replacing N→ Z we have the following conditions for diagonalizing M eN

ZM eNZ−1 = diag
(
ε1m eN1

, ε2m eN2
, ε3m eN3

, ε4m eN4
,
)

=MdiageN ZTZ = 1 (2.40)

where εi is the sign of the ith mass eigenvalue and the eigenvalues m eNi are always positive.

The matrices N and Z are then related as Nij =
√
εiZij with no sum on i. Upon doing this

one then solves

ZM eN −MdiageN Z = 0 & ZTZ = 1 (2.41)

to obtain the analytic formula of the terms εim eNi along with the entries Zij in terms of

the entries in equation (2.35), which are assumed real. The results of this procedure for

εim eNi are rather lengthy and are given in references [41], [42] as well as in appendix A of

[43] (which is a good reference for LSP dark matter). Note the mass eigenvalues are not

necessarily ordered from least to greatest and one must do this, and shift the corresponding

eigenvectors as well.

2.5 Gaugino sector

The stance taken here is that SUSY in the form of the MSSM is the BSM effective theory that

will be discovered at the LHC. The possible parameter space of the MSSM is dimension 124,

an immense space indeed. When considering GUT’s on the other hand such as mSUGRA

[25, 44] the parameter space of SUSY is reduced to dimension 4 and a sign. Although the

high scale theories are very compelling for obvious reasons, as data reveals signals of SUSY

the general low scale effective theory will be fit using collider and dark matter detection data.

As an example this data will come in the form of various kinematic distributions of final state

decay topologies at the LHC and count rates at dark matter direct detection experiments.

Fitting the many possible explanations of signals of SUSY in general at the low scale will

indeed be a highly difficult problem.
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Bridging the gap from the SUSY effective Lagrangian at the low scale O(TeV) to some

high scale theory, at 2 × 1016 GeV for example, may not turn out to be easy. Determining

the mechanism responsible for breaking SUSY is a very important problem, and if such

information can be harvested from the low scale measurements, then this will be very useful.

For example if one could rule out gauge-mediation completely or determine that gravity-

mediation is definitely responsible for the breaking, then the possible space of high scale

theories could be vastly reduced. This information is very valuable as is the value of the µ

parameter, for example. Of all the possible superpartners which may be found one sector

of particles is very intriguing as it contains information highly correlated to the issues just

discussed. This is the gaugino sector, which contains the fermionic superpartners to the SM

gauge bosons as well as new Higgs states.

In particular the soft gaugino masses Ma with a = 1, 2, 3 for U(1)Y , SU(2)L and SU(3)C

SM gauge groups are of extreme interest. The µ parameter is also highly important along

with the value of tan β. The soft gaugino masses offer a clean window into many possible

patterns which can be tied back to the form of mediation mechanism responsible for the

breaking of SUSY. The µ parameter is an important parameter to understand as well as it

is intimately related to the issue of EWSB and to understand its origin will shed important

light on possible high scale motivated mechanisms which are responsible for its existence.

The value of tan β is also highly correlated to understanding EWSB as it governs the ratio of

the Higgs VEVs. These parameters at the tree level completely describe the gaugino sector

of the MSSM, as seen in equations (2.32), (2.35) and (2.36); therefore studying the gaugino

sector of the MSSM is highly motivated.

In particular the MSSM contains the lightest neutralino, or LSP. The LSP wavefunction

is made up at the tree level by the parameters M1, M2, µ and tan β as well as the U(1)Y and

SU(2)L gauge couplings g′ , g and the Z boson mass. Measuring the mass and understanding

the make-up of the LSP will provide important insight to the gaugino sector as a whole, as

well as the suitability of the LSP as a solution to the dark matter problem. The gluino mass
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will likely play an important role at the LHC, and if it is of low mass the possible event rates

will be largely dominated by gluino and associated production. Understanding the ratios of

M1, M2 and M3 gives information on the possible high scale model.

2.6 Signals of SUSY

Many experimental arenas can help to understand and place limits on the possible SUSY

models which may exist. Here the main focus of the experimental efforts will be on both as-

trophysical and collider measurements. Other experimental data from electroweak precision

measurements and observations of rare decays can also be useful. The basic implications for

dark matter and collider signals of SUSY are briefly introduced below.

2.6.1 Dark matter

As mentioned in the discussion of R-parity conservation the MSSM offers a possible ex-

planation for the dark matter in the cosmos. In R-parity conserving models the lightest

supersymmetric particle is stable and is an excellent candidate for a dark matter particle

[45]. Two aspects of dark matter are important and mostly disconnected: the thermal

abundance of the relic LSP and the dark matter experimental signatures that arise from

neutralinos currently in the cosmos.

The thermal relic abundance of the LSP can account for the observed abundance mea-

surement by WMAP of

Ωχh2 ' 0.11 , (2.42)

although the measurement is based on the standard cosmological model which requires basic

assumptions as to the thermal history of the universe.

Detection of LSPs is also an important probe of possible SUSY models. Detection exper-

iments include both measuring direct interaction of LSPs with terrestrial detectors as well

as measuring byproducts of LSP annihilation such as gamma rays, anti-matter and muons.
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Predictions for a given SUSY model in the direct and indirect arenas can be made, although

some of these require inferences of astrophysical properties. Identifying the dark matter as

a weakly interacting massive particle (WIMP) will be a powerful hint at the existence of

SUSY and the various observations from direct and indirect detection experiments can be

used to help reveal the properties of the LSP. Further discussion of LSP dark matter and

the relevance to detection is discussed further in the next chapter.

2.6.2 Colliders

Colliders will be the best tools with which to probe the BSM physics. The entire SUSY model

will become important for these experiments, assuming that the particles are kinematically

accessible. The focus of this work will be on the Large Hadron Collider as it will be taking

data in the near future at the highest energies yet probed in a controlled enviornment.

The basics of collider signals which are associated with SUSY can be found for example in

[46, 1, 47] and references therein.

The LHC is a proton-proton collider which is designed to reach a center of mass energy

of
√
s = 14 TeV. Distinctive signatures which arise in R−parity conserving SUSY models

are typically large missing transverse energy ( 6ET ) associated with the LSPs which escape

detection. Other channels offer promising discovery such as the trilepton signal with 6ET ,

for example. Certain kinematic distributions can offer important clues such as the dilepton

invariant mass of the effective mass of jets and missing pT . Typically one studies aspects

of SUSY models by investigating useful signatures which arise from the decays of various

produced superpartners.
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Chapter 3

Dark matter and the LSP

In this chapter basic properties relevant to the relic abundance and detection of LSPs are

discussed. In particular the detection methods and relevant calculations are discussed which

will be used later in multiple places. Many reviews exist on dark matter and the possible

explanation using the LSP of the MSSM, here is a partial list: [48, 49, 43, 50, 51].

Various SUSY particles can potentially describe the dark matter in the universe such

as the gravitino,the sneutrino and the lightest neutralino. The gravitino interacts only via

gravitational interactions and is essentially not detectable [52] while the sneutrino has mostly

been ruled out via direct searches [53]. In R−parity conserving SUSY models the lightest

neutralino is highly motivated as a dark matter particle since it is stable, weakly interacting,

it can give the right relic density [45, 54]. In this work we will assume that the LSP is the

lightest neutralino of the MSSM.

The properties of the Ñ1 are highly relevant for dark matter: its mass m eN1
and its

wavefunction composition (occasionally the notation mχ or meχ will also be used to denote the

LSP mass and it should be obvious from the context). The wavefunction composition governs

the allowed interactions of the LSP with matter and typically one discusses the gaugino

fractions: Bino fraction, fB, and Wino fraction, fW , along with the Higgsino fraction: fH .

Going back to equation (2.37) and assuming CP -invariance so the entries in equation (2.35)

are real, Ñ1 is written as a linear combination of the gauge interaction states B̃, W̃ 0, H̃0
d , H̃

0
u

Ñ1 = Z11B̃ + Z12W̃
0 + Z13H̃

0
d + Z14H̃

0
u . (3.1)

The components of Ñ1 can also written in terms of the Bino, Wino and Higgsino fractions
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as

fB = Z2
11 , fW = Z2

12 and fH = Z2
13 + Z2

14 . (3.2)

3.1 Relic density

Here we highlight some important steps of the calculation. The cosmological density of dark

matter of a WIMP, χ, is

Ωχ =
ρχ
ρc

(3.3)

where the critical closure density is ρc = 3H2

8πGN
' 1.05×10−5h2 GeV/cm3 with H the Hubble

parameter and h the scaled Hubble parameter defined by H = 100h km/(s×Mpc). The dark

matter density of mass mχ and number density nχ is ρχ = mχnχ. In order to determine

the current number density of χ one solves the Boltzmann transport equation which can be

written as [55]

dnχ
dt

+ 3Hnχ = −〈σv〉
(
n2
χ − (neq

χ )2
)
, (3.4)

with σv the total annihilation cross section (χχ→ SM) times relative velocity and the

brackets denote thermal averaging. In equation (3.4) H is the Hubble parameter, related

to the expansion of the universe, and neq
χ is the number density at thermal equilibrium.

Assuming non-relativistic particles and matching solutions for nχ before and after freezeout,

the present day thermal abundance is then

Ωχh2 ' 1.07× 109 GeV−1

√
g∗MPl

∫ yf
0
〈σv〉dy

, (3.5)

where y = T/m and with the subscript f denoting the freezeout temperature, Tf , found by

iteratively solving

y−1
f = ln

(
0.038gMPlmχ〈σv〉

√
yf√

g∗

)
, (3.6)
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where MPl = 2.4 × 1018 GeV, g is the number of degrees of freedom of χ (spin, color, etc)

and g∗ is the number of effective relativistic degrees of freedom of χ at freezeout. Note the

present day abundance is proportional to the inverse of the annihilation cross section of χ

in equation (3.7). The calculation of 〈σv〉 is crucial to determining Ωχh2 and is sometimes

approximated as 〈σv〉 = a + b〈σv2〉 + O (〈σv4〉), although important exceptions exist [56]

which need to be accounted for. These include co-annihilations of slightly heavier state(s),

χ′, when mχ′−mχ ' Tf and one must consider not only χχ→ SM but also χχ′ → SM in the

calculation of 〈σv〉. Special care also needs to be taken when computing annihilation into

forbidden channels, when the LSP is slightly below mass threshold of an annihilation channel

which would dominate the cross section, as taking the thermal average these annihilations

will take place at some rate (for example g̃g̃ (t̃1t̃1) annihilation in g̃ (t̃1) NLSP models). Lastly

if annihilation takes place near a pole in the cross section where an s−channel resonance can

occur the cross section can be approximated as

σv '
α2
φs(

m2
φ − s

)2 −m2
φΓ2

φ

, (3.7)

where φ is some gauge boson or scalar field with mass mφ and decay width Γφ, and αφ is

an O (10−2) coupling constant, e.g. of electroweak strength. In this case the value of 〈σv〉

becomes very sensitive to s-channel exchange of φ due to the pole and near 2mχ ' mφ

resonance annihilation occurs and Ωχh2 is highly depleted. In the MSSM this feature can

occur when 2m eN1
' mA [57], the so-called “Higgs-funnel”.

Various codes exist which can calculate the present day thermal abundance of relic

neutralinos in the MSSM including co-annihilations. Two of the more popular codes are

DarkSUSY [58] and micrOMEGAs [59]. In what follows DarkSUSY 5.0.4 is the code of choice

by which the thermal relic abundance will be calculated along with direct and indirect detec-

tion observables. A full list of the included co-annihilation channels considered in computing

Ωχh2 which DarkSUSY uses may be found in table 3 of [58].
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Important exceptions to the usual assumptions outlined above may result in changes to

the relic density. Non-thermal production mechanisms in the early universe may enhance

the present day WIMP abundance. Here the WIMP abundance is increased by the decay of

heavier particles such as gravitinos in supergravity models, or in SUSY models with a Peccei-

Quinn symmetry LSPs could come from decays of axinos (SUSY partner of the Peccei-Quinn

axion) [48] also see [60, 61, 62]. The presence of a scalar field in the early Universe can also

significantly alter the value of the relic density [63]. Furthermore it is likely that more than

one object make up the dark matter in the Universe today, or in other words that one should

write

Ωdm =
∑
i

Ωdm,i , (3.8)

for the different contributions Ωdm,i to the dark matter [64]. For example neutrinos con-

tribute, although a small amount, but surely one ought not rule out the possibility of other

contributions to the dark matter in the universe.

3.2 Direct detection

One of the more promising methods for detecting WIMP dark matter are direct detection

experiments. These experiments seek to detect WIMP-nucleon scattering by measuring

nuclear recoil energies from elastic scatters or by measuring ionization of the target nucleus

for inelastic scatters [65]. As experiments measure counting rates, the focus here will be on

carrying out the calculation of interaction rates of LSPs with target nuclei.

A simple estimate of the rate of neutralino-nucleon scattering events in units of events/(kg×day)

can be found from [48]

R ∼
∑
i

Φχ

σSI
χi

Mi

=
∑
i

〈vχ〉ρχσSI
χi

mχMi

, (3.9)

where Φχ is the average neutralino flux through the detector, 〈vχ〉 is the average neutralino

velocity relative to the target (around 250 km/s) and Mi is mass of nucleon species i in the

36



target. The cross section of neutralino scattering off nuclear target i is σχi and ρχ is the

local halo density of relic neutralinos.

The local density is typically quoted as ρχ = 0.3 GeV/cm3, and is related to the relic

abundance. A value of Ωχh2
min = 0.025 is a crude measure by which the relic particle under

consideration no longer adequately represents the local halo density of our galaxy [48] see

also [66]. If one takes the thermal calculation as the true amount of relic abundance and it

is Ωχh2 < Ωχh2
min, then it ought to be rescaled to reflect that the remainder of dark matter

must be from some other particle not accounted for. To this end a rescaling factor, rχ, is

sometimes used to account for an underabundant relic

rχ = Min(1, Ωχh2/0.025) . (3.10)

The cross section for interaction is computed in the non-relativistic limit. The lightest

neutralino in the MSSM is a Majorana particle and is its own antiparticle. It has no conserved

quantum number and does not have vector or tensor interactions. Furthermore the pseudo-

scalar interaction does not survive the non-relativistic limit. Hence the LSP only interacts

via scalar, spin-independent (SI), or axial-vector, spin-dependent (SD) interactions. The

scalar interactions arise via s−channel squark and t−channel Higgs exchange as well as 1-

loop scattering of LSPs from gluons in the nuclei. The axial vector interaction arises via

s−channel squark or t−channel Z boson exchange. The two cross section are

σSI
χi =

µ2
iχ

π
|ZGp

s + (A− Z)Gn
s |

2 , (3.11)

σSD
χi =

4µχi
π

J + 1

J
|〈Sp〉Gp

a + 〈Sn〉Gn
a |

2 , (3.12)

where the subscripts s and a denote scalar and axial vector interactions, the coefficients Gn,p
a,s

are the LSP-nucleon couplings, A is the number of nucleons, Z the number of protons, J

is the nuclear spin and 〈Sn,p〉 are spin expectation values in the nucleus. The term µχi =

37



mχMi/(mχ+Mi) is the reduced mass of the nucleus-neutralino system. In targets with large

atomic numbers, such as germanium (Ge) and xenon (Xe), the scalar interaction dominates

as it is coherent across all nucleons. In what follows we will consider large mass targets and

therefore only focus on the SI interaction. The LSP-nucleon couplings for the SI interactions

are

GN
s =

∑
q=u,d,s,c,b,t

〈N |q̄q|N〉 ×

(
1

2

6∑
i=1

gLeqiχqgReqiχq
m2eqi −

∑
j=h,H

gjχχgjqq
m2
j

)
, (3.13)

where the couplings g are given below and
∑

q〈N |q̄q|N〉 are the nuclear matrix elements.

The forms for the couplings g are [38]

ghχχ = (gZ12 − g′Z11) (− cosαZ13 + sinαZ14)

gHχχ = (gZ12 − g′Z11) (sinαZ13 + cosαZ14)

ghqq = −Yq
cosα√

2

gHqq = Yq
sinα√

2

gLeqiχq = − 1√
2

(
gT q3Z12 +

1

3
g′Z11

)
ΓiqQL + (−YqZ1j) ΓiqQR

gReqiχq = (−YqZ1j) ΓiqQL +
(√

2eqg
′Z11

)
ΓiqQR . (3.14)

where Yq = mq/vu , Z1j = Z13 for q = u, c, t, Yq = mq/vd , Z1j = Z14 for q = d, s, b and the

subscript on the Γ’s is Q = U,D, depending on the squark exchanged. The Higgs mixing

angle α as in (2.25) and the 6 × 3 matrices Γ diagonalize the squark mass matrices in the

SCKM basis [38] as in equation (2.27).

It is important to consider further the nuclear matrix elements in equation (3.13). They

have not been calculated from first principles and rather the values are inferred from pion-

nucleon scattering. The σπN term in the matrix elements is currently not well understood

and has large errors resulting in large uncertainties in the value of σSI
χp, as initially brought

up by Ellis et al. [67]. Ellis et al. showed that the uncertainties in σSI
χp could be on the

O(50%) level with similar results found by others [68]. Hopefully this uncertainty can be
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brought under control in the future so that reliable predictions can be made for the value of

σSI
χp.

To predict the rates of interaction one starts with the differential rate of interaction per

nuclear recoil energy

dR

dE
=
∑
i

ci
ρχσχi|Fi(qi)|2

2mχµ2
iχ

∫ ∞
vmin

f(~v, t)

v
d3v . (3.15)

where ci is the fraction of nuclear species i, |Fi(qi)|2 is the nuclear form factor of species i

with qi =
√

2MiE is the momentum transfer for nuclear recoil energy E. The neutralino

velocity distribution is usually taken to be Maxwellian with v the relative velocity between

the LSP and detector. The nuclear recoil energies are typically in the range O(5 − 100)

keV. To make contact with an experiment recoil energy ranges are chosen in certain ranges,

Emin ≤ E ≤ Emax, which attempt to mimic the detection capabilities of various experiments.

For example in the first run of XENON10 (Xe target) [69] and CDMS II (Ge target) [70] the

recoil energies considered were in the ranges

CDMS II : 10 keV ≤ Erecoil ≤ 100 keV

XENON10 : 4.5 keV ≤ Erecoil ≤ 26.9 keV . (3.16)

These ranges are based on the physics of the detector and seek to maximize signal significance

over background. The method employed to calculate rates is then to compute dR/dE in

equation (3.15) in 0.5 to 1 keV intervals over the ranges

R1 : 5 keV ≤ Erecoil ≤ 25 keV

R2 : 10 keV ≤ Erecoil ≤ 100 keV , (3.17)

and subsequently constructing an interpolating function, R′ (E). This interpolating function
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is then integrated over the ranges in equation (3.17)

Ri =

∫ Eimax

Eimin

R′(E)dE , (3.18)

depending on the target type (i = Ge or Xe), thereby determining a value for R in units of

events/(kg×day).

3.3 Indirect detection

Indirect detection of relic neutralinos involves detecting byproducts of neutralino pair anni-

hilation in the galactic center, or even in the center of the earth and sun. These byproducts

come in various forms: gamma rays, neutrinos, and anti-matter such as positrons and anti-

protons. Fluxes of the various types of byproducts are proportional to the pair annihilation

rate of relic neutralinos. This rate is proportional to the square of the density of relic neu-

tralinos (flux ∝ Γ ∝ ρ2
χ) and depending on the type of byproduct being searched for different

locations offer better prospects for discovery.

Gamma Rays

Cosmic gamma rays from neutralino pair annihilation offer a unique signal in that they

travel largely unimpeded from their source as they are not influenced by galactic magnetic

fields. The best place to look for these byproducts are regions of the sky where a high

density of neutralinos is expected, such as the galactic center of the Milky Way. There are

essentially two types of gamma ray photons which can result as byproducts: those resulting

from decay chains (hadronic decays leading to neutral pions which decay to 2 photons for

example) and those produced directly from 1-loop neutralino decays. At the 1-loop level the

following can occur χχ→ γγ , γZ and these photons have energies which are monochromatic,

whereas the photons produced from decay chains have a continuous spectrum of possible

energies. The monochromatic line signals occur at energies of Eγ = mx (χχ → γγ) or
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Eγ = mx − m2
Z/4m

2
χ (χχ → γZ). The continuous photons are more difficult to separate

from astrophysical backgrounds, while the monochromatic signals are easier to distinguish

from the background. However the rate of production of monochromatic photons is much

lower than the rate of production for the continuous photons.

As in the previous section, this discussion centers on how to compute the rate of photons

expected for a given SUSY model. The discussion will be similar here and we first start by

considering the differential rate of photon flux per photon energy Eγ expected at the Earth

dΦγ

dEγ
=
∑
i

〈σiv〉
4πm2

χ

dN i
γ

dEγ

∫
line of sight

ds(ψ) ρ2
χ(r) , (3.19)

with the sum over all possible final states, σi is the annihilation cross section into final state

i and dNi/dEγ is the differential spectrum of photons produced in the decay channel from

the state i. The integration is over the assumed dark matter halo profile for the region of

space considered, which will be taken as the galactic center.

One method used to determine the form of the dark matter profile uses N-body simula-

tions of galactic structure formation. Recent simulations suggest the existence of a universal

profile of dark matter [71] which is typically written in the form

ρχ(r) = (ρχ)0
(r/r0)−γ

[1 + (r/a)α]
β−γ
α

[
1 +

(r0

a

)α]β−γα
, (3.20)

where r0 is roughly the distance from the galactic center to the earth and (ρχ)0 = 0.3

GeV/cm3, which may be subjected to rescaling as in equation (3.10). The dimensionful

parameter a is related to the core radius of the halo. Some of the more common choices

for the parameters (a, r0, α, β, γ) are given in Table 3.1. The various profiles listed are the

Navarro, Frenk and White profile (NFW) [71, 72], a modified version of the NFW profile

which includes the effect of baryons, a so-called “adiabatic compression” (NFW+AC) [73, 74]

and a singular profile by Moore [75] which also includes the adiabatic compression. It is also

useful to separate the dependence of the halo profile from the SUSY dependence in the
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Model r0 (kpc) a (kpc) α β γ J(10−5 sr)
NFW 8.0 20.0 1 3 1 1.2644× 104

NFW + AC 8.0 20.0 0.8 2.7 1.45 1.0237× 106

Moore + AC 8.0 28.0 0.8 2.7 1.65 3.0896× 108

Table 3.1: Halo model parameters. The parameters which define the three halo models
we will consider in this work and the resulting value of the parameter J(∆Ω) for ∆Ω = 10−5

sr.

differential flux of equation (3.19) by constructing the parameter J(ψ) as

J(ψ) =
1

8.5 kpc

(
1

0.3 GeV cm3

)2 ∫
line of sight

ds(ψ) ρ2
χ(r) . (3.21)

In equation (3.21) s(ψ) is a parameter that runs along the line of sight at an angle ψ from

the direction of the galactic center (when looking at the galactic center ψ = 0). The value

of J(ψ) is usually averaged over a region of spherical angle ∆Ω (e.g. the finite resolution of

a detector) centered on ψ = 0 and is written as

〈J(ψ)〉∆Ω =
1

∆Ω

∫
∆Ω

dΩ′ J(ψ′) . (3.22)

The quantity in equation (3.22) is useful for comparing computed rates with different halo

profiles and the values for the profiles considered here are also listed in Table 3.1. Note the

orders of magnitude differences depending on the assumed profile.

Upon separating J̄ (∆Ω) from equation (3.19) one obtains the following form for the

differential photon flux in units of photons/(cm2 s GeV)

dΦγ

dEγ
= 0.94× 10−13

∑
i

dN i
γ

dEγ

(
〈σiv〉

10−29 cm3 s−1

)(
100 GeV

mχ

)2

J(∆Ω)∆Ω . (3.23)

The SUSY model dependence is contained in
dN i

γ

dEγ
〈σiv〉 (as well as the LSP mass mχ).

DarkSUSY is used for the calculations of the gamma flux and the method of determining

dN i
γ

dEγ
〈σiv〉 is discussed on pages 15 and 19 in [58]. Essentially eight main annihilation chan-
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nels are considered: cc̄, bb̄, tt̄, gg, ZZ, W+W−, µ+µ− and τ+τ− which are then hadronized

and/or decayed using PYTHIA 6.154 [76]. The yields of different particles per neutralino anni-

hilation are computed for 18 values of mχ with the results then tabulated and interpolated.

To compute the expected flux of gamma ray photons a similar approach is taken as in

the case of direct detection. An energy range relevant to an experiment is considered and

an interpolating function is created which is then integrated from some threshold Emin to

Emax (the smaller of mχ or the upper limit of the experiment energy resolution) thereby

determining the gamma ray photon flux at Earth for a given SUSY model. To create the

interpolating function a step size of 1 GeV is used. Also note that for the monochromatic

cases χχ → γγ , γZ no integration is necessary as dN i
γ/dEγ = 2 and 1 for these two cases,

respectively. To compute the rate one also assumes the halo profile and occasionally results

will be written in the form Φγ/J̄ so as to remain neutral as to the choice of profile.

Anti-matter

Pair annihilation of neutralinos can also result in anti-matter such as positrons or anti-

protons. These objects do no travel in a straight line to earth, rather the entire galactic

halo can contribute to the flux of these objects at Earth. As these charged objects travel

through the galaxy they interact with the galactic magnetic fields, essentially traveling along

a random walk, all the while losing energy to inverse Compton scattering and synchrotron

processes. This process is modeled via a diffusion equation which contains parameters which

are constrained from the analysis of stable nuclei in cosmic rays (see [77] and references

therein).

Not as much focus here will be given to anti-matter signals and the recent PAMELA

signal [78], although some meaningful properties of SUSY models and their relation to the

positron excess can be discussed without fully trying to fit the data. For example, the σWW

cross section and how a mostly wino LSP can give a large enough WW cross section to fit

the PAMELA data fairly well. Also boost factors are often mentioned and may be necessary
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to fit the PAMELA signal (see for example [79] and references therein).

Muons

Neutralinos can also become gravitationally trapped at the center of celestial objects where

annihilation rates will dramatically increase. Gamma ray byproducts generally cannot es-

cape from such objects, but neutrinos can and therefore offer a way to study neutralino

annihilation nearby in the sun or earth. Typically the prospects for discovery are much

greater by looking at the sun as many more neutralinos can become gravitationally trapped

in the sun compared to the earth. In SUSY no tree level diagrams exist for χχ→ νν̄, rather

the neutrinos arise via decays of heavy quarks, gauge bosons, τ ’s and Higgs states.

Neutrinos which come from neutralino annihilation in the sun can be detected at neutrino

telescopes such as IceCube [80]. These neutrino telescopes typically operate well underground

to reduce backgrounds and detect neutrinos by observing their muon tracks which are pro-

duced by charged current interactions in or near the detector. The rate of conversion muons

from neutrino annihilation in the sun may be computed and used to predict expected rates

at IceCube, for example, once a SUSY model is specified.
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Chapter 4

Dark matter signals in deflected

mirage mediation

Recently a string motivated scenario called deflected mirage mediation (DMM) has been

proposed in which the three main SUSY breaking mediation mechanisms all contribute to

the soft terms [81, 82, 83, 84]. This framework offers a rich model context with which to

study gaugino masses and the resulting dark matter signals which arise. Although the model

is string-inspired and will require some background discussion, the main interest will be on

the gaugino masses of the theory and the associated dark matter signals of the lightest

neutralino. This serves as a good starting point to the discussion of neutralino dark matter

and many of the signals which will be discussed in later chapters. The analysis given follows

the work done in [85].

4.1 DMM parameter space

DMM models are generalizations of mirage mediation models [86, 87, 88] of which models

of the type introduced by Kachru, Kallosh, Linde and Trivedi (KKLT) [89] are an example.

Mirage mediation is essentially the result of two independent mass contributions to the soft

masses at a high scale, typically taken as the GUT scale QGUT = 2 × 1016 GeV. The mass

contributions are from a universal piece as well as a term proportional to the beta function

coefficients ba = (33/5, 1,−3). The gaugino masses in mirage mediation are discussed in

more detail in Section 6.1.

The model of KKLT is based on flux compactification of Type IIB string theory in
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which the stabilization of the moduli fields is addressed while simultaneously obtaining a

cosmologically stable vacuum. As can be seen from equation (2.13) the scalar potential can

give a negative ground state, e.g. an anti-de Sitter (AdS) vacuum. To counter this problem

and obtain a phenomenologically viable positive ground state, or de Sitter (dS) vacuum,

KKLT add an uplifting potential which results in a positive value of the vacuum energy [89].

Here we focus on the gaugino sector of the theory and the subsequent dark matter signals

which arise. The model contains three different contributions to the soft SUSY masses in

the MSSM. The contribution from Planck-suppressed operators is universal and of the form

M0. The superconformal anomaly contributions will be proportional to a scale m3/2 and the

gauge mediated contributions are proportional to a third mass scale Λmess. The framework

for the DMM model is considered at the 1-loop level so that the full expressions for the

gaugino masses may be explored as one evolves them from high scale to the weak scale. In

this way the soft gaugino masses can be studied in a model-independent manner.

Taking the high scale to be QGUT the gaugino masses receive contributions from both

M0 and m3/2. At a lower scale, Qmess < QGUT, the messenger fields are integrated out and

give contributions to the soft gaugino masses proportional to Λmess. The field content of

the model is the usual MSSM particle content in addition to the messenger sector. The

messenger sector is taken to be in complete GUT representations of the Standard Model

so as to preserve the gauge coupling unification of the MSSM at QGUT. Specifically we

take Nm gauge charged messengers so that the beta functions of the MSSM above Qmess

have the form b′a = ba + Nm and the gauge couplings at the GUT scale have the form

1/g2
a (QGUT) = 1/g2

GUT −Nm ln (QGUT/Qmess) with g2
GUT ' 1/2.

The gaugino masses at the GUT scale take the form

Ma (QGUT) = M0 + g2
a (QGUT)

b′a
16π2

m3/2 . (4.1)

At the 1-loop level this expression is evolved to the intermediate scale Qmess where the
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messengers are integrated out resulting in an effective threshold contribution to the gaugino

masses of the form

∆Ma = −Nm
g2
a (Qmess)

16π2

(
Λmess +m3/2

)
. (4.2)

At this point it is convenient to exchange the three mass contributions to the soft terms for

one mass term and two dimensionless ratios. This parameterization uses the universal mass

term M0 along with

αg ≡
Λmess

m3/2

and αm ≡
m3/2

M0 ln
(
Mpl/m3/2

) , (4.3)

where MPl = 2.4 × 1018 GeV is the reduced Planck mass. The definition of αm is useful

as it gives a ratio of order 1 and is the natural parameter from the point of view of the

mirage mediation model. Further, following Choi [84] it is useful to introduce additional

dimensionless ratios

x =
1

R + αm
and y =

αm
R + αm

(4.4)

where R is given by

R = 1− Nmg
2
GUT

8π2

{
αmαg

2
ln

(
MPl

m3/2

)
+ ln

(
QGUT

Qmess

)}
. (4.5)

Upon running down the gaugino masses given in equation (4.1) and adding the threshold

correction in equation (4.2) the gaugino masses at the low scale Q < Qmess are given by the

expression

Ma(Q) = M0
1 + βa(Q)t

x

{
1 + y

[
βa(Q)t′

1 + βa(Q)t
− 1

]}
, (4.6)

where we have defined two scaling variables t and t′ via

t = ln

(
Q

Qgut

)
and t′ =

1

2
ln

(
MPl

m3/2

)
. (4.7)

To continue and discuss the properties of the gaugino sector relevant for dark matter
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observations we need to include a full model framework. This needs to be done as the

gaugino sector depends on other parameters in equations (2.35) and (2.36), most notably the

supersymmetric Higgs mass µ, which is determined via the electroweak symmetry breaking

conditions. Upon specifying the remaining soft terms the value of µ can be determined and

thus the gaugino sector will be fully defined allowing the investigation of the dark matter

properties. Moving forward we follow the work of [82, 84] to define the remaining soft terms

and trilinear couplings. The full model framework is Type IIB string theory compactified

on a Calabi-Yau orientfold with flux added in the manner of KKLT. The model framework

assumes a Kähler potential of the form

K =
∑
i

(T + T )−niΦiΦi , (4.8)

where T denotes the chiral Kähler modulus superfield whose VEV generates the universal

contribution to the gaugino masses (assuming universal gauge kinetic functions fa = T ) as

M0 =

〈
FT
t+ t̄

〉
, (4.9)

where t = T |θ=0 is the scalar component of the superfield T . The values ni in equation (4.8)

are the modular weights for the matter superfield Φi and they depend on the location of

the matter fields, e.g. the fixed points of the compactification manifold. Following other

previous works in [90] and [91] it has been argued that for models of this type the values of

ni can have values of 0, 1/2 or 1.

The order parameter in equation (4.9) will generate the remaining soft terms and trilinear

couplings at the high scale. As in the case of the soft gaugino masses the soft scalar masses

and trilinear couplings will also receive contributions at the high scale from the anomaly

mediation proportional to m3/2. The high scale soft terms are given by [82]

Aijk(QGUT) = M0

[
(3− ni − nj − nk)−

(γi + γj + γk)

16π2
αm ln

(
MPl

m3/2

)]
(4.10)
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m2
i (QGUT) = M2

0

[
(1− ni)−

θ′i
16π2

αm ln

(
MPl

m3/2

)
− γ̇′i

(16π2)2

(
αm ln

(
MPl

m3/2

))2
]
,

where αm is defined in equation (4.3) and the terms γi, θ
′
i and γ̇′i are functions of the

beta functions, SM gauge and Yukawa couplings and their expressions are given in [82]. The

primes on these indicate that the parameters take into account the presence of the messenger

sector. As in the case of the soft gaugino masses these expressions are evolved to the scale

Qmess where integrating out the messenger fields results in threshold corrections to the soft

scalar masses of the form

∆m2
i = M2

0

∑
a

(2NmCa)
g4
a(Qmess)

(16π2)2

[
αm(1 + αg) ln

(
MPl

m3/2

)]2

, (4.11)

where Ca are the quadratic Casimir operators for the gauge groups Ga in the adjoint rep-

resentation. The trilinear couplings receive no such correction since in gauge mediation the

contributions to the trilinears are non-zero only at the two-loop order and are highly sup-

pressed, so to a good approximation they receive no contribution from the gauge messengers.

Once the threshold corrections to the soft terms have been included the terms are further

evolved down to the low scale Q < Qmess where the soft terms are then passed to SuSpect

2.4 [92] to compute the physical masses and determine the values of mA and µ via the

EWSB conditions.

To investigate the DMM model and its properties relevant to dark matter we will consider

the parameter space defined by the set {M0, x, y} by setting M0 fixed at certain values so

as to look at slices in the xy plane. For this we will hold fixed tan β = 10, Qmess = 1010

GeV, Nm = 3 and use the following values for the modular weights of the matter fields in

the MSSM

{nQ, nU , nD, nL, nE, nHu , nHd} = {1/2, 1/2, 1/2, 1/2, 1/2, 1, 1} . (4.12)

Choosing the modular weights in equation (4.12) was done so as to match specific benchmark
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models from the literature. The parameter choices just described make up the “model-

dependent” scenario.

Initial scans over the parameter space in the model-dependent scenario are performed

for values M0 = 250, 500, 1000 and 2000 TeV. These scans are analyzed so as to contain

the points of interest where the spectra are physically allowed, EWSB is consistent and the

LSP is the lightest neutralino. For xy scans the primary constraints come from the mass

bounds on the gauginos. Relevant bounds concerning the lightest neutralino and chargino

are m eN1
≥ 46 GeV and m eN1

≥ 103 GeV [23]. For the gluino, the mass bounds are model

dependent and to remain conservative a lower bound of meg ≥ 200 GeV [93] is used, although

a bound of meg ≥ 300 GeV is the typical limit [94].

In Figure 4.1 the allowed regions of parameter space are shown in the xy plane for the

various choices of M0. Regions that are lightly shaded are ruled out by the direct search

limits on Ñ1, C̃1 and g̃ masses. Further the blue shaded region contains points where for

this choice of modular weights the τ̃1 is the LSP for small x and y. The hatched regions

near x = 0.4, y = 0.6 are regions where the t̃1 is the LSP. The upper left hand corners do

not break electroweak symmetry and the conditions give a tachyonic pseudo-scalar Higgs,

m2
A < 0. In the figures which follow these regions will not be considered due to the above

considerations.

As previously mentioned the (x, y) plane is convenient as the various limits of the theory

can be reached. This is demonstrated in Figure 4.1 where certain limits are sketched. Points

in the (x, y) plane which have R = 0 are on the line where x + y = 1, while points with

on the line y = x have αm = 1 for arbitrary αg. The intersection of these two lines is the

simplest prediction of the KKLT framework which inspired the mirage mediation scenario,

and so we mark this in the figure. The gauge-mediation limit of the theory is formally the

origin in the (x, y) plane where R−1 → 1 while keeping RM0 finite, so this limit cannot be

reached in the figure. The pure anomaly-mediated limit of (0, 1) can also not be reached

as this is where αm → ∞ with αmM0 held fixed. The pure modulus (or gravity) mediation
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Figure 4.1: Allowed Parameter Space for the “Model-Dependent Scenario.” Con-
tours indicate the lower bounds used on the sparticle masses with m eN1

= 46 GeV (dashed
contour), m eC1

= 103 GeV (solid contour) and meg = 200 GeV (dash-dotted contour). The
dark shaded region in the lower left corner is the area in which the stau is the LSP, while
the smaller hatched region in the center has a stop LSP for the modular weight choice of
equation (4.12). The hatched region in the upper left of each plot indicates where no EWSB
occurs. For larger values of the parameter M0 we have indicated the area in which the
gluino (or the chargino) is the LSP by the darker shaded region(s). The labeled points
are the benchmark models of Table 4.1. The intersecting lines indicate those points for
which αm = 1 (lower left to upper right) and where R = 0 (upper left to lower right). The
intersection of these two curves designates the prediction of the simplest KKLT scenario.
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Model A Model B Model C Model D Model E Model F
M0 2000 GeV 1000 GeV 1000 GeV 500 GeV 500 GeV 933 GeV
m3/2 62.6 TeV 32.0 TeV 32.0 TeV 13.2 TeV 51.3 TeV 31.7 TeV
µmess 1012 GeV 108 GeV 1012 GeV 1010 GeV 1010 GeV N/A
αm 1 1 1 0.81 3.26 1
αg 1 -1/2 -1 0.14 1.47 0
Nm 3 3 3 3 3 0
x 0.668 0.561 0.472 0.674 0.401 0.5
y 0.668 0.561 0.472 0.543 1.307 0.5

Table 4.1: Benchmark Models. The relevant mass scales are given in the first three
entries, with the parameters of Everett et al. in the second block. The final block re-casts
these parameters in terms of the parameterizations of Choi et al. from (4.4). All models are
defined with positive value of µ and tan β = 10. Models A-B were considered in [81] while
Model C was considered in [82]. Model F is a mirage model without messengers near the
prediction for the basic KKLT model.

limit can be reached and is the point (1, 0). It is also worth marking a few points in the

figures where certain benchmarks will be singled out for further study later. The parameter

values for the benchmark choice are given in Table 4.1.

The two cases M0 = 500 and 1000 TeV will be highlighted further for the various dark

matter observables and therefore we focus on the LSP properties for these mass choices in

the (x, y) plane as shown in Figure 4.2. Regions which are ruled out are in yellow (light

shading) and correspond to the marked regions in Figure 4.1. The LSP mass contours are

labeled with appropriate masses and the kinks are due to level crossings where the LSP goes

from mostly bino to mostly wino, e.g. where the M1 and M2 hierarchy flips from M1 < M2

to M2 < M1. Regions where the LSP is mostly Bino-like (over 95%) are marked along with

where the LSP is mostly wino (over 95%). In the lower mass case of M0 = 500 GeV the

hatched region is where the LSP has sizable Higgsino content (from 10% up to 50%), while

this region is not allowed in the higher mass case.

In Figure 4.3 a zoomed region from 0 to 1 in both x and y is shown for various other

superpartner masses shown only for M0 = 500 and 1000 GeV. As in Figure 4.2 the yellow

(light shaded) region is not allowed. The upper panel of the figure shows mass contours for
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Figure 4.2: LSP Properties for the “Model-Dependent Scenario.” Contours of con-
stant LSP mass mÑ1

are given for the scenario with modular weights of equation (4.12) for
mass scale M0 = 500 GeV (left panel) and M0 = 1000 GeV (right panel). The lightly shaded
region is ruled out for the reasons indicated in Figure 4.1. For both values of M0 the LSP
is primarily bino-like for y <∼ 0.6 and y >∼ 1.4. For the case of M0 = 500 GeV there is also
some parameter space where the LSP is a mixture of Higgsino and wino, indicated by the
hatched region.

the gluino (solid lines) and the light chargino (dashed) along with a curved shaded region

where 1.5 ≤ mA/m eN1
≤ 2.5. In the region where mA ' 2m eN1

the LSP undergoes the

very efficient resonant annihilation with the pseudoscalar-Higgs, thus depleting the thermal

abundance of relic neutralinos. In the lower panel of the figure we take Nm = 0 and plot

the masses as a function of x as in this case the models are pure mirage mediation. The

phenomenology of the mirage models roughly corresponds to that of the (x, y) plane where

x + y = 1 and this can be seen in the figure. Note that the correspondence is not exact

as in the upper panels we have Nm 6= 0, and the line x + y = 1 gives a solution for which

the quantity in braces in equation (6.10) equation vanishes meaning that αg is non-zero.

However the phenomenology of the models is similar and so the line x + y = 1 can be used

as a reasonable comparison for a mirage model.

It is important to note that the modular weight choices made in the model-dependent
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Figure 4.3: Key Superpartner Masses for the “Model-Dependent Scenario.” Upper
panels give various masses for the {x, y} plane, while the lower panels plot masses along the
line x+ y = 1 with Nm = 0. Panels on the left take M0 = 500 GeV while those on the right
take M0 = 1000 GeV. The lightly shaded region in all plots is phenomenologically forbidden.
The darker shaded region in the upper plots shows the area where 1.5 ≤ mA/mÑ1

≤ 2.5,
with mA = 2mÑ1

given by the curved dashed line. In the upper plot heavy solid lines are
contours of constant mg̃ while dashed lines are contours of constant mC̃1

. All masses are in
GeV.
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scenario can haveO(1) effects on the high scale inputs in the theory as can be seen in equation

(4.10). Choosing different values for the modular weights will result in different values in the

low scale physical masses which in turn affects the derived value of the µ parameter upon

imposing EWSB conditions. The allowed parameter space shown for the model dependent

scenario is dependent on the choices of modular weights as discussed in [95, 96, 97]. Therefore

also investigated is a “model independent” scenario in which model properties are considered

using low scale gaugino masses as in equation (4.6) along with just fixing at the low scale

µ = mA = 1 TeV with all other soft scalar masses set to Max (M3, 1 TeV). In Figure 4.4 we

show allowed regions in the (x, y) plane for M0 = 500 and 1000 GeV. The dotted line is the

contour where m eN1
= 1 TeV and where a scalar particle in this case would become the LSP.

That this happens is due to the gauginos becoming very massive as x → 0. As the gluino

becomes more massive it induces large radiative corrections to the Higgs potential and as a

result a light Higgs mass results in the upper left corner where mh ≤ 100 GeV and in the

lower left corner m2
A < 0.

4.2 Survey of DM signatures

Now that the basic properties of the model have been discussed we move on to consider

various dark matter signatures of the DMM model. To start the thermal relic density is

considered followed by the direct and indirect detection prospects. For all calculations the

physical mass spectrum is computed using Suspect 2.4 and then passed to DarkSUSY 5.0.4

[58] for calculation of the relic density along with the dark matter observables.

4.2.1 Relic density

In what follows the analysis is based on the scans in the (x, y) plane using the two values

of M0 = 500 and 1000 GeV whose properties are shown in Figures 4.1, 4.2 and 4.3. The
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Figure 4.4: Allowed Parameter Space for the “Model-Independent Scenario.” Gau-
gino mass contours are the same as Figure 4.1. The darker shaded region is the area in
which the gluino is the LSP. The dotted line on the left of each plot is the contour where
m eN1

= 1 TeV. The hatched region in the lower left of each plot indicates where m2
A < 0 and

no EWSB occurs for a value µ = 1 TeV. We have indicated the area in the upper left where
mh ≤ 100 GeV due to large radiative corrections.

WMAP three year data [98] at the 2σ level is

0.0855 ≤ Ωχh2 ≤ 0.1189 , (4.13)

In the figure a “WMAP” preferred range is shown for which

0.07 ≤ Ωχh2 ≤ 0.14 , (4.14)

which is a bit easier to resolve than the value in equation (4.13). The thermal relic abundance

in the (x, y) plane is shown in Figure 4.5 where the “WMAP preferred” region is indicated by

the narrow red shaded region. Inside the parameter space with a wino-like LSP, and within

the A-funnel region, the relic density drops below the value of Ωχh2 = 0.025, indicated by

the yellow shading. The intermediate regime of 0.025 ≤ Ωχh2 ≤ 0.07 is indicated by blue
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Figure 4.5: Thermal Relic Density in Deflected Mirage Mediation. Left panel takes
M0 = 500 GeV, right panel takes M0 = 1000 GeV. The “WMAP preferred” region of
0.07 ≤ Ωχh2 ≤ 0.14 of equation (4.13) is here indicated by the narrow red shaded region.
For the wino-like LSP and within the A-funnel region the relic density drops below the
critical value of Ωχh2 = 0.025, indicated by the yellow (very light) shading. The remaining
regions are 0.025 ≤ Ωχh2 ≤ 0.07 (blue), 0.14 ≤ Ωχh2 ≤ 1 (green) and Ωχh2 > 1 (gray).

shading. The green area in the plot has 0.14 ≤ Ωχh2 ≤ 1 while the gray area has Ωχh2 > 1.

The transition from heavily wino-like LSP to heavily bino-like LSP occurs near y ' 1.4

where the relic density rapidly changes from far too low to far too high. In between these

extremes there exists a narrow region with Ωχh2 ' 0.10.

As discussed in Section 3.1, the relic LSP need not account for all dark matter necessary

to make up the WMAP measurement. In what follows we will remain neutral on this issue

as the physics of the early universe is not the main focus of this analysis and we do not

eliminate parameter space where the Ωχh2 is outside of the range in equation (7.4). Non-

thermal mechanisms are well-motivated within string models such as the KKLT framework

[99, 100] and so may be applicable here. Too large a value of Ωχh2 is more difficult to address

but mechanisms do exist which can lower the value to be closer in line to the WMAP results

[101, 102, 103]. In the survey of detection experiments that follows we will rescale the

assumed local density of ρχ = 0.3 GeV/cm3 by the factor rχ = Min(1, Ωχh2/0.025) from
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equation (3.10). To negate the rescaling, one may estimate the necessary factor based on

Figure 4.5.

4.2.2 Direct detection

First direct detection of the neutralino LSP will be considered. The method used will be to

compute the rate of interaction with xenon and germanium targets as discussed in Chapter

3. The integration ranges will be RXe = R1, RGe = R2 as in equation (3.17). Here we

focus on the predicted rates in current and future large scale experiments as listed in Table

4.2. For experiments that have already reported data the fiducial mass times given exposure

time is used, while for future experiments the fiducial mass is taken as 80% of the nominal

mass. One should also keep in mind the large uncertainties associated with the nuclear form

factors when considering the rates. The rates computed here use the default values of the

form factors as in DarkSUSY 5.0.4 (while similar rates computed in micrOMEGA’s can be

about twice as large).

Ref. Experiment Name Exposure [kg×yr] R10 [counts/(kg yr)]
[69] XENON10 5.4 × 0.16 11.54
[104] XENON100 170 × 0.8 × 1 7.35× 10−2

[105] LUX 350 × 0.8 × 3 1.19× 10−2

[104] XENON1T 1000 ×0.8 × 5 2.50× 10−3

[106] CDMS II 3.75 × 0.29 9.18
[107] SuperCDMS (SNOlab) 27 × 0.8 × 3 0.15
[107] SuperCDMS (DUSEL) 1140 × 0.8 × 5 2.19× 10−3

Table 4.2: Rate Estimates for Various Experiments. The minimum threshold rate R10

necessary to produce 10 events in a given experiment for the fiducial mass and exposure
time given is tabulated in the final column. Note that for Xenon10 and CDMS II we use
the experimentally quoted fiducial masses. For all other (future) experiments we assume a
fiducial mass equivalent to 80% of the nominal quoted target mass.

Bounds on the experiments considered here have been set by Xenon10 [69] and CDMS

II [106] (although newer CDMS II [70] data have been reported as discussed below) with

exposures of 316.4 kg×days and 397.8 kg×days, respectively. Expected backgrounds for
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these two experiments were on the order of 10 events or less with backgrounds expected

to be much lower at future installments. The rate to produce 10 events, R10 in units of

counts/ (kg × yr), is considered for the given experiments using the exposure time listed in

Table 4.2. Limits can be placed on a model by requiring R ≤ R10 for a given experiment.

Model points in the (x, y) plane scans are grouped according to the potential visibility at

the experiments considered as shown in Figure 4.6 for both target types. None of the model

points considered here were found to be in disagreement with the upper bounds of R10 for

the Xenon10 and CDMS II bounds considered in Table 4.2. The yellow (light shading) in

all the plots means that the rates are too low to be seen in any of the experiments listed in

Table 4.2. A decent amount of the parameter space becomes detectable at about the 100

kg×year level. This is indicated by the green (medium shading) in all the panels for 11.54 >

RXe
10 ≥ 0.0735 counts/kg-yr and 9.18 > RGe

10 ≥ 0.15 counts/kg-yr for xenon and germanium

targets, respectively. This level of exposure can be reached by the Xenon100 experiment

after about 1 year and can be reached after about 4 years of exposure by SuperCDMS at

SNOlab. Detection prospects are better for the larger installation xenon targets such as

LUX after about 3 years of data taking can probe models in the red (dark shading) region

for 0.0735 > RXe
10 ≥ 0.0119 counts/ (kg × yr). Regions which can be probed at about the 5

ton×year level using xenon are shown in blue with 0.0119 > RXe
10 ≥ 0.0025 counts/ (kg × yr).

Using a germanium target the red region also shows models which can be probed at about

the 5 ton×year level with 0.15 > RGe
10 ≥ 0.00219 counts/ (kg × yr). Recall also that the

model points have been rescaled using rχ, and therefore would require less exposure to be

probed if the rescaling is not enforced.

The various regions which arise from the rate calculations in the (x, y) plane are due

to many factors. The rates depend on basic parameters like mχ and the target mass for

example in a straightforward way in equation (3.12) and (3.15). However the couplings in

equation (3.14) are more complicated functions of the LSP wavefunction, the scalar Higgs

mixing angle and masses, and the squark masses and mixings. Regions with higher rates are
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Figure 4.6: Neutralino Recoil Rates on Xenon (top) and Germanium (bottom).
Left panels set M0 = 500 GeV, right panels set M0 = 1000 GeV. Phenomenologically
allowed areas are enclosed by the heavy dashed lines. Colored shading indicates the reach of
future direct detection experiments, as computed in Table 4.2. Yellow in all panels indicates
parameter space that will be inaccessible to any of the future experiments in Table 4.2. For
xenon targets, green indicates 11.54 > RXe

10 ≥ 0.0735, red indicates 0.0735 > RXe
10 ≥ 0.0119

and blue indicates 0.0119 > RXe
10 ≥ 0.0025 in recoils per kg-year. For germanium targets,

green indicates 9.18 > RGe
10 ≥ 0.15 and red indicates 0.15 > RGe

10 ≥ 0.00219 recoils per
kg×year.
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typical for a Higgsino-like LSP, and a mixed LSP can also achieve higher rates. The smaller

rate regions can be attributed to Bino like LSPs which have the smallest interaction cross

sections σSI
χp as well as other factors.

4.2.3 Gamma rays

Two types of gamma ray signals are considered here: diffuse and monochromatic. First the

diffuse signals will be investigated using the Fermi/GLAST satellite as an experimental guide

and later a generic air Cherenkov telescope (ACT) will be the guide for the monochromatic

signals.

For the diffuse gamma ray signals we consider the Fermi/GLAST satellite [108] which

has an effective area of about 1 m2 and an angular resolution of ∆Ω = 10−5 steradians.

Typical energies are in the 10-100 GeV range and we integrate the differential photon flux

in equation (3.23) over the range 1 GeV ≤ Eγ ≤ 200 GeV. Note that the energy range of

Fermi/GLAST is typically much lower than the masses of the neutralino LSPs which are

considered. In order to discuss the prospects of signals from diffuse gamma rays one needs to

assume a dark matter halo profile. Both the NFW and NFW+AC profiles will be considered

here.

Furthermore the expected backgrounds need to be considered over the energy range

relevant. For this the background estimation of [109] is used which gives a background flux

of Φbkgrnd = 5.06 × 10−10 photons/cm2/sec which is O(100) photons/year for the aperture

and energy range of Fermi/GLAST. This is in agreement with quoted sensitivity of the

photon flux at Fermi/GLAST [108, 110]. The Fermi/GLAST experiment can also use the

shape of the photon spectrum to enhance the signal extraction and the possibility may also

exist that large background sources can be identified and subtracted to further increase the

signal over background. Therefore a flux which can give 100 events in a given exposure

will be considered as a potentially visible signal. The various exposures considered for this

analysis are given in Table 4.3. Depending on the assumed halo profile the exposures result
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Exposure [m2 yr] Halo Profile Φ100 [counts/(cm2 s)]
1 NFW 5.79× 10−10

5 NFW 1.16× 10−10

1 NFW+AC 7.15× 10−12

5 NFW+AC 1.43× 10−12

Table 4.3: Reach Estimates in the Continuous Gamma Ray Flux for the
Fermi/GLAST Experiment. The quantity Φ100 is the flux needed for 100 signal events
at Fermi/GLAST assuming various exposure times and halo profiles.

in different values for the flux necessary to give 100 events, Φ100.

The resulting photon fluxes relevant to the Fermi/GLAST experiment are as shown

in the (x, y) planes in Figure 4.7. In the framework under investigation and using the

NFW or NFW+AC halo profiles the prospects for discovery are challenging using diffuse

gamma rays. For the overall lower mass case of M0 = 500 GeV a few points (in red)

near the A-funnel are potentially visible after 1 m2-yr of exposure using the NFW profile,

e.g. have Φ100 ≥ 5.79 × 10−10 counts/ (m2 × yr). The green shaded region is visible at

the 5 m2-yr level assuming the NFW profile with 5.79 × 10−10 > Φ100 ≥ 1.16 × 10−10

counts/ (m2 × yr). Upon assuming the NFW+AC profile the necessary flux to give 100

events after some exposure decreases by about a factor of 100 as this profile gives much larger

signals. In the case of the NFW+AC profile the blue region denotes where points become

visible after 1 m2-yr of exposure with 1.16× 10−10 > Φ100 ≥ 7.15× 10−12 counts/ (m2 × yr).

Again using the NFW+AC profile the points in yellow are visible after about 5 m2-years with

7.15 × 10−12 > Φ100 ≥ 1.43 × 10−12 counts/ (m2 × yr). The light gray region is not visible

at 5 m2-years assuming the NFW+AC profile, if one used an even more favorable profile

like the Moore profile then the prospects would be better. Again note that the rescaling has

been done and if its removed then models in the Wino-like LSP region have a better chance

of being seen as they annihilate the most effectively.

Moving on the the monochromatic photons the treatment will be different. These photons

have energies of Eγ = mχ for χχ → γγ or Eγ = mχ − m2
z

4mχ
for χχ → Zγ, and we have seen

that in the DMM model space the neutralino LSP can become rather massive. Typically
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Figure 4.7: Reach of the Fermi/GLAST Experiment for Integrated Gamma Ray
Flux. Left panel is for M0 = 500 GeV, right panel is for M0 = 1000 GeV. Phenomenolog-
ically allowed areas are enclosed by the heavy dashed lines. For M0 = 500 GeV the green
shaded region has 5.79 × 10−10 > Φ100 ≥ 1.16 × 10−10 photons/cm2/sec and therefore may
be visible at Fermi/GLAST after five years of exposure with the NFW profile. If the fluxes
are rescaled to the NFW+AC profile we obtain the reach shaded in blue (one year of data-
taking) and yellow (five years of data-taking). The gray shaded area has an effective flux
below Φγ = 0.014× 10−10 and is unlikely to yield a visible signal for diffuse gamma rays at
Fermi/GLAST.

the energies associated with the monochromatic signals will likely be at energies too large

to be detected at Fermi/GLAST. However ground based atmospheric Cherenkov telescopes

(ACTs) such as CANGAROO [111], HESS [112], MAGIC [113] and VERITAS [114] have

thresholds for photon detection in the 100 GeV range and can detect energetic photons up

to O(10 TeV). Data taking for these experiments is only done on dark, cloudless nights but

the effective area of the telescopes are generally quite large.

To investigate the prospects for observing the monochromatic signals we need to consider

the possible backgrounds and assume certain halo profiles. As in the case of the continuous

photons here we will assume either the NFW or NFW+AC halo profiles. The backgrounds for

the monochromatic photons are rather low especially at higher photon energies. Therefore we

calculate the minimum flux to observe 10 events for a given exposure (in units of area×time)
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Exposure [m2 yr] Halo Profile Φ10 [counts/(cm2 s)]
1000 NFW 31.7× 10−15

100 NFW+AC 3.92× 10−15

500 NFW+AC 7.83× 10−16

1000 NFW+AC 3.92× 10−16

Table 4.4: Reach Estimates in the Monochromatic Gamma Ray Flux for a Generic
ACT Experiment. Flux needed for 10 signal events at a generic ACT assuming various
exposures and halo profiles. Note that we are here taking one year of data-taking to be
365 days.

which coincides with the energy resolution of a typical ACT. We will consider a generic

ACT with effective area of Aeff = 2× 108 cm2 with energy resolution of ∆E/E = 0.15. The

estimated fluxes necessary to produce 10 events in a given exposure and halo profile that

will be used are given in Table 4.4.

The results for the monochromatic signals are shown in Figure 4.8. In the figure models

with LSP mass below 100 GeV have not been included as ACTs typically do not record

data below 100 GeV. The signals from both the γγ and γZ fluxes have been combined

as using the resolution of 15% is not sufficient to be able to differentiate between the two

monochromatic signals for LSP masses above about 200 GeV. As in the continuous photon

case the prospects are not very good for the monochromatic photons in the parameter space

considered. Regions colored in red correspond to the highest fluxes with Φ10 ≥ 31.7× 10−15

photons/cm2/sec and may be visible with the NFW profile given 1000 m2-years of exposure.

The larger mass case of M0 = 1 TeV has a better chance of observability as the photons are

more energetic for the larger LSP mass case. Using now the NFW+AC profile the regions

of green, blue and yellow correspond to 31.7× 10−15 > Φ10 ≥ 3.91× 10−15 photons/cm2/sec,

3.91× 10−15 > Φ10 ≥ 0.78× 10−15 photons/cm2/sec and 0.78× 10−15 > Φ10 ≥ 0.39× 10−15

photons/cm2/sec, respectively. These regions are potentially visible after 1000 m2-years of

exposure, while the remaining gray regions do not give large enough fluxes to be seen at the

largest exposure considered here. As in the case of the diffuse fluxes, the Wino-like LSP and

mixed Wino-Higgsino LSP regions have much larger signals when the rescaling is not done.
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Figure 4.8: Reach of a generic ACT experiment for Monochromatic Gamma Ray
Flux. Left panel is for M0 = 500 GeV, right panel is for M0 = 1000 GeV. Red shaded regions
near the edge of the allowed area in the two plots have Φ10 ≥ 31.7× 10−15 photons/cm2/sec.
Rescaled to the NFW+AC profile we obtain the reach shaded in green (100 m2-yr exposure),
blue (500 m2-yr exposure) and yellow (1000 m2-yr exposure). Note that some of the indicated
regions of the parameter space give photon energies below the lower threshold of Eγ =
100 GeV and are therefore invisible to our generic ACT. The gray shaded region has a
monochromatic flux Φ10 ≤ 0.39 × 10−15 photons/cm2/sec and is unlikely to give a visible
signal without a more favorable set of halo assumptions.

4.2.4 Muons

Neutrinos from neutralino annihilation in the sun are considered here and the focus is on the

IceCube experiment [80]. For these calculations the differential flux of muons is integrated

over a energy range of 50 GeV ≤ Eµ ≤ 300 GeV, assuming an angular resolution of 3 degrees.

IceCube has a nominal area of 1 km2, but the effective detection area is smaller and is

dependent on the muon energy [115, 116, 117]. The estimated background of muon events

in a year of data taking at IceCube is expected to be O(10) [117]. Therefore we estimate the

flux necessary to get 10 events during various exposures (in km2×yr) at IceCube in Table

4.5.

The results for the (x, y) planes considered are not very promising for the higher mass

case of M0 = 1 TeV, and therefore the results shown in Figure 4.9 are only for the lower
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Exposure [km2 yr] Φ10 [counts/(km2 yr)]
0.2 50
0.5 20
1.5 6.7
10 1.0

Table 4.5: Muon Flux Estimates for IceCube. Flux of muons needed to produce 10
signal events at IceCube assuming various exposures.

mass M0 = 500 GeV case. The figure shows the number of muon events at IceCube in

units of counts/
(
km2 × yr

)
where the combination of muons from the earth and sun are

considered (earth born neutrinos offer much lower fluxes and can essentially be ignored).

A recent report using 22-strings at IceCube constrain the muon flux to be below 300-500

muons per km2×yr [118]. A conservative upper limit of 400 muons per km2-yr is used and

none of the points in the (x, y) plane for M0 = 500 GeV are found to violate this. Some

of the points shown can produce a muon flux on the order of 50 or more muons per km2-

yr as indicated by the red shaded region where 400 > Φ10 ≥ 50 counts/
(
km2 × yr

)
. The

region of flux for 50 > Φ10 ≥ 20 counts/
(
km2 × yr

)
is shown in green corresponding to

about 0.5 km2×yr exposure at IceCube. The remaining two regions of 20 > Φ10 ≥ 6.7

counts/
(
km2 × yr

)
and 6.7 > Φ10 ≥ 1.0 counts/

(
km2 × yr

)
are shown in blue and yellow,

respectively. Points which will not be probed at the 10 km2-year level are shown in gray. The

regions of the parameter space which have the best prospects for discovery are consistent

with mixed Higgsino/gaugino LSP and light supersymmetric Higgs sector.

4.2.5 Anti-Matter from cosmic rays

Here we will just be brief and comment on the positron and anti-proton fluxes in the DMM

model from [85]. There has been evidence for an excess of positrons in the 10-100 GeV

range [119, 120] as reported by the HEAT experiment in the 1990’s and more recently the

satellite based PAMELA experiment [78] seems to confirm the earlier excesses. There have

been many studies (see for example [121, 79] and references therein) which have shown that
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Figure 4.9: Upward Going Muon Rates at IceCube. The IceCube reach is shown for
M0 = 500 GeV. The red shaded region is detectable with 0.2 km2-years of exposure. Green
and blue shaded regions would require 0.5 and 1.5 km2-years of exposure, respectively. The
yellow region gives a visible signal after 10 km2-years of exposure. The gray region has a
flux below 1 muon per km2-yr and is likely undetectable at IceCube.

MSSM models can fit the PAMELA data, although the fits require considerable effort and

involve boost factors as well as adjusting the parameters in the diffusion equation. Fitting

the PAMELA data becomes more difficult if one also takes into account the recent data

from the ATIC experiment [122] which reports an excess in the positron signal at even

higher energies. Some attempts to explain both the PAMELA and ATIC data can be found

in [123, 124, 125]. Indeed it is possible that the reported excesses are not even due to dark

matter, but rather due to other astrophysical backgrounds, and understanding the reason

for the excess is an ongoing problem.

To investigate the DMM parameter space and how well it may be able to fit the PAMELA

data we performed an analysis in [85] which used a boost factor and a chi-squared like variable

to pick out regions of the parameter space that were most promising to fit the signal. Using

the NFW halo profile along with the default diffusion parameters in DarkSUSSY 5.0.4 the

results of the analysis pointed to regions of the DMM parameter space where the LSP is

mostly Wino with a low mass which best can explain the signal. These regions of mostly
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Wino LSP required boost factors of O(1) (when no rescaling is done) and are consistent

with results from other studies [121, 79]. The analysis done was a quick estimate and a more

sophisticated analysis for the positron flux may be interesting in this model space.

The PAMELA satellite also recorded data on anti-protons which is consistent with ex-

pected backgrounds and previous data [126]. A simple procedure was performed to check

the consistency of the anti-proton signal in the DMM parameter space. The differential flux

of anti-protons was computed using the NFW profile with default diffusion parameters and

the results were checked to be in agreement with the PAMELA data. None of the parameter

space was found to be in conflict with the data. However if the boost factor found in the

positron analysis is naively applied to the anti-proton signal then much of the parameter

space was found to disagree with the PAMELA anti-proton data. Again the analysis was

rather simple and if modifications were made to the diffusion parameters then perhaps the

conflict could be resolved. Furthermore it is not clear if the same boost factor should be

used as the two types of anti-matter are known to propagate differently through the galaxy

[127].

4.2.6 Benchmarks

We now turn back to look at the benchmark models which were outlined in Table 4.1. As

a reminder models A, B and C are specific examples presented in the original papers on

deflected mirage mediation [81, 82], models D and E are chosen from the results of our

parameter space scans, while model F is a point without gauge-charged messengers with

αm = 1 as in the KKLT model. In Table 4.6 the neutralino LSP properties are highlighted

along with masses of other key particles and the values of the thermal relic abundance.

The first block of entries in Table 4.6 give the mass and wavefunction composition of

the LSP, with the wavefunction composition denoted as in equation (3.2). The second block

contains the next-to-lightest-superpartner (NLSP) as well as the masses of the light and

pseudo-scalar Higgs bosons, which can have important effects on the thermal relic density.
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Model A Model B Model C Model D Model E Model F

m eN1
1009 626.6 772.8 257.2 193.2 710.8

fB 0.912 0.989 0.983 0.914 0.000 0.932
fW 0.071 0.001 0.001 0.030 0.997 0.004
fH 0.017 0.009 0.017 0.057 0.003 0.064

NLSP eC1
eC1 eτ1 eC1

eC1 eτ1
mNLSP 1026 743.8 781.3 302.6 193.3 762.8
mh 119.5 120.6 121.5 112.1 119.8 119.9
mA 1559 1043 1136 473.5 1518 1136

Ωχh2 0.117 0.891 0.517 0.088 0.001 0.537
RXe 0.046 0.022 0.032 1.182 7× 10−5 0.178
RGe 0.037 0.018 0.025 0.881 6× 10−5 0.140
Φγγ 1.778× 10−17 3.517× 10−17 2.734× 10−17 4.128× 10−16 2.071× 10−15 2.267× 10−17

ΦγZ 9.169× 10−17 3.244× 10−18 3.326× 10−18 8.868× 10−16 6.399× 10−15 1.157× 10−17

Φtot 1.846× 10−12 2.260× 10−12 2.041× 10−12 1.449× 10−10 1.463× 10−11 4.319× 10−12

Φµ 0.738 0.194 0.495 11.766 0.016 3.616
ΦD̄ 8.096× 10−15 2.155× 10−14 1.195× 10−14 1.631× 10−12 2.824× 10−14 2.560× 10−14

Φp̄ 7.438× 10−11 9.979× 10−11 8.923× 10−11 6.523× 10−9 8.617× 10−10 1.887× 10−10

B 4774 5156 5145 102.9 1147 2510

Table 4.6: Characteristics of Benchmark Models From Table 4.1. All masses are
given in GeV and we denote wave-function components as fB = |N11|2, fW = |N12|2 and
fH = |N13|2 + |N14|2. Direct detection rates Ri have units of recoils/kg-year. Photon fluxes
are given in units of photons/cm2/sec and Φtot represents the diffuse gamma flux integrated
from 1 to 200 GeV. The muon flux is given in units of muons/km2-year. ΦD̄ is given in
units of anti-deuterons/(GeV s cm2 sr) and is computed at 0.25 GeV. Φp̄ is given in units of
anti-protons/(GeV s cm2 sr) and is computed at 10 GeV.

All of the benchmarks listed have a value of Ωχh2 < 1, while only models A and D are in the

WMAP window of Ωχh2 ' 0.11, and model E has Ωχh2 < 0.025 and therefore has the local

halo density rescaled by the factor rχ = 0.04. For all of the models the thermal relic density

is affected by coannihilation to varying degrees, and model D is an example of a model in

the A−funnel region with 2mχ ' mA.

All of the models, except for the mostly wino LSP in model E, have decent prospects

for discovery in direct detection experiments. In terms of the rates mentioned in Table 4.2,

the models should be probed in the few hundred kg×year level, while models D and E offer

the best prospects for discovery. It is worth noting that both model D and E have mixed

bino/Higgsino LSPs with model D also containing a few percent of Wino (and a lower value

of LSP mass). As will be discussed in the next chapter these type of mixed cases typically

give rise to the largest rates as both the Higgs exchange and the squark exchange diagrams

contribute to the scattering and hence give larger cross sections. The rather low rate of model
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E is due to the large Wino content which reduces the Higgs exchange diagrams and if the

rescaling is not done the rates are still low, being 1.75×10−3 and 1.5×10−3 counts/(kg×yr)

on xenon and germanium, respectively.

For the gamma ray photon signals the halo profile used is the NFW profile. To convert

to the NFW+AC profile one must simply multiply the fluxes by the conversion factor of

J̄ |NFW+AC/J̄ |NFW ' 81 using the values in Table 3.1. Model D gives the best signal for

the continuous gamma flux at Fermi/GLAST, Φtot, possibly visible at 1 m2×year over the

backgrounds. If the NFW+AC profile is used all of the models have signals which may be

observed with 1 m2×year of exposure. Model E gives the largest monochromatic photon

fluxes as the Wino LSP annihilates at a higher rate through the 1-loop diagrams (of which

many involve C̃’s circulating in the loops) and is possibly visible at 5000 m2×year of exposure

(i.e. (10 events)/(5000 m2×yr) = 6.34×10−15 events/(cm2×sec) ). If one uses the NFW+AC

profile then models A and D also become promising with Φmono = Φγγ + ΦγZ ' 1.1 ×

10−16 , 13.0× 10−16 photons/(cm2×sec), respectively.

Turning to the muon fluxes from neutralino annihilation in the sun, Φµ, only models

D and F have promising rates which may be detected at IceCube based on the estimates

in Table 4.5. To give rates which may be detected at IceCube one needs to have an LSP

with sizable Higgsino content as both these models have. Models A, B, C and E are not

very promising and give rates which are most likely not detectable at IceCube even at 10

km2×years.

The lowest block of Table 4.6 gives the anti-matter fluxes of anti-protons, the boost factor

to fit the PAMELA positron data, B, and (for completeness) the fluxes of anti-deuterons for

the benchmarks. Beginning with the anti-proton flux, Φp̄, all of the models are below the

expected background value of O(10−7)p̄/(GeV×s×cm2×sr) [128] at a reference point of 10

GeV for the kinetic energy of the anti-proton. All of the models save for model D require

rather large boost factors to fit the PAMELA data, however the models were rescaled and if

this is not done then the Wino model of point E has a smaller boost. Naively applying the
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boost factors to the anti-proton data would give anti-proton fluxes in conflict with the data

with signals about an order of magnitude above the background. The anti-deuteron flux,

ΦD̄, is also included which is computed at a value of kinetic energy of 0.25 GeV for the D̄

which is relevant for the planned GAPS experiment [129]. Only model D is likely to give an

observable signal of anti-deuterons.

4.3 Summary

Deflected mirage mediation is motivated from realistic string-inspired model building in

which the moduli are stabilized and a positive vacuum energy is obtained. The model is

also very interesting as it contains contributions to the soft terms which come from gravity,

anomaly and gauge mediation. If supersymmetry is discovered in the coming era determining

just how the SUSY breaking is transmitted is a highly important question which will need

to be addressed. By studying a model which contains the three mediation mechanisms one

can build up intuition as to the types of dark matter signals which can be obtained when

all three mediation mechanisms are present, as compared to studies which assume a sole

contribution to the breaking.

Various regions of the parameter space within the DMM model have been investigated. It

has been demonstrated that regions of the parameter space exist in which all three mediation

mechanisms contribute to the soft terms and the thermal relic abundance is in agreement with

the WMAP measurements. Furthermore regions of the parameter space will be probed at

upcoming dark matter experiments and have the potential to be visible above backgrounds.

More specifically the parameter space has been shown to give regions which have mixed

Higgsino/Wino LSPs which are good candidates to give large event rates at direct detection

experiments.
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Chapter 5

Dark matter signals of non-universal

gaugino masses?

This chapter will focus on neutralino dark matter along with some basic LHC collider phe-

nomenology. The focus on dark matter and collider phenomenology in this chapter serves as

a link to the following chapter in which the focus will be on non-universal gaugino masses

and important LHC signatures which help reveal the level of non-universality which may be

present. It is also important to consider not just one arena of observations but to look at

both dark matter and LHC observables to better understand the models under study.

The CDMS II experiment recently reported the observation of two nuclear recoil events

in 612 kg-days of exposure [70]. The events are consistent with scattering of a WIMP with

the germanium nuclei used in the experiment. They measured recoil energies of 12.3 and

15.5 keV, which is near the lower threshold for the experiment. They estimate a signal

efficiency of no less than 25% with a maximum of 32% at 20 keV in this energy range.

Prior to unblinding the expected background events were ∆N = 0.6 ± 0.1 (stat), which

can be due to mis-identified electron or neutron scatters from radioactive decays and/or

cosmic rays. After investigating the events more closely the background estimate becomes

∆N = 0.8± 0.1 (stat)± 0.2 (syst), so it is quite possible that the two reported events could

just be mis-identified background events. If one or both are taken as signal events from

WIMP nucleon scattering, it implies a spin independent cross section at the level of few

×10−44 cm2.

Assuming that one or both of the reported events are indeed due to the scattering of
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the lightest neutralino in the MSSM, then exciting implications will follow. Some interest-

ing supersymmetric scenarios to explain the events have been investigated, for early works

see [130, 131, 132, 133]. In the analysis presented here we highlight the ability of non-

universalities within the gaugino sector of the MSSM to explain the events. Specific bench-

mark models are analyzed which can explain the event(s) reported at CDMS and which make

predictions for the upcoming germanium and xenon based direct detection experiments. Also

considered are indirect signal predictions for gamma-ray experiments such as Fermi/GLAST

[108] and the neutrino experiment at IceCube [80]. The signal from the PAMELA experi-

ment [78] will be discussed, along with the compatibility of the benchmarks to accommodate

the relic abundance as favored by WMAP. Also some basic LHC predictions for these bench-

marks will be given for center of mass energies of
√
s = 7, 10 and 14 TeV for 1 fb−1 of

luminosity. This analysis is based on the work in [134].

5.1 Benchmark models for CDMS II signal

The sensitivity of the CDMS II experiment can be translated to the spin independent (SI)

cross section for proton-neutralino scattering, σSI
χp and is dependent on the mass of the

neutralino. For LSPs with masses between 100 and 300 GeV a detectable event rate at

CDMS II implies a cross-section σSI
χp
>∼ few× 10−44 cm2. Assuming a signal efficiency of 30%

at the CDMS II experiment then the effective exposure is 184 kg-days. A cross section of

σSI
χp = 10−44 cm2 for mχ ' 150 GeV implies about 0.5 events in this 184 kg-day exposure,

which is useful to compare to the data. In supersymmetry models with universal gaugino

masses which have mostly bino-like LSPs the interaction cross sections are generally too low

[135, 136] to be able to explain the CDMS II data. In particular the SI cross section can be

dominated by t-channel diagrams involving Higgs exchange, which depend on the Higgsino

content of the LSP. Neutralino LSPs with a sizable mixture of non-Bino components, in

particular Higgsino, can give σSI
χp values in the range favored by CDMS II [137, 138, 139,
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140, 141, 142].

The supersymmetric model framework considered here is the mSUGRA model [25, 44]

with non-universal gaugino masses (NUGM) [143]. The mSUGRA model is defined at

QGUT ' 2× 1016 GeV via the universal scalar mass, m0, the universal gaugino mass, m1/2,

the universal trilinear coupling, A0, tan β and sign(µ). To introduce the non-universalities

we use

Ma = m1/2(1 + δa) (5.1)

and only consider δ2, δ3 6= 0. The approach here is similar to the method explored in [139, 140]

and has been shown to give SUSY models compatible with direct and indirect constraints

while having relatively large values of σSI
χp [144, 145]. The neutralino wavefunction also

depends on the supersymmetric Higgs mass µ which is determined by solving the EWSB

conditions at the low scale. The soft gluino mass M3 is important to the LSP in an indirect

way as it influences the eventual value of µ via the RGE effects on the running of the Higgs

soft scalar masses [146, 147, 148].

The dependence of σSI
χp on the LSP wavefunction is given explicitly in equations (3.13)

and (3.14). As a demonstration of how the cross section depends on the LSP wavefunction

we show in Figure 5.1 a sample of model points within the framework considered here,

plotted as mχ vs σSI
χp. No constraint on Ωχh2 is imposed and points are grouped according to

wavefunction composition. Blue circles have fB ≥ 95%, red fW ≥ 95%, green fH ≥ 95% and

gray are otherwise, e.g. mixed LSP states. This figure demonstrates how the mixed LSPs

may better account for the CDMS II signal and is a guide to choosing specific benchmark

models of which can explain the CDMS II signal. Points in Figure 5.1 satisfy current collider

searches for superpartner masses using the approach of [149] which takes bounds from [23].

The light Higgs mass lower bound is relaxed a bit, and the bounds used with masses in GeV

are

mh > 110
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Figure 5.1: Neutralino-proton spin independent scattering cross sections for
NUGM. Prediction for the neutralino-proton spin independent scattering cross section σSI

χp,
as computed by DarkSUSY, is displayed as a function of the LSP mass mχ.
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meτ1 >

 82 meτ1 −m eN1
≥ 10

72 meτ1 −m eN1
< 10 .

(5.2)

The points shown in Figure 5.1 also satisfy electroweak precision bounds. We impose a 3σ

bound on br (b→ sγ) using the recent HFAG measurement [150].

2.77× 10−4 < br (b→ sγ) < 4.27× 10−4 , (5.3)

as well as a conservative bound [151] on aµ and ∆ρ

− 5.7× 10−10 <
gµ − 2

2
< 47.0× 10−10 (5.4)

∆ρ < 2.2× 10−3 (5.5)

and a 95% CL upper bound [152] on (Bs → µ+µ−) of

br
(
Bs → µ+µ−

)
< 5.8× 10−8 . (5.6)

Table 5.1 contains five benchmark points with event rates in a similar range to the events

reported by CDMS II. The upper portion gives the GUT scale inputs and all points have

positive µ. The consistent choice of δ3 < 0 is preferred as it tends to decrease the value of

µ, and therefore increase the LSP Higgsino content. The lower portion of the table gives

the relevant information to connect these models to the CDMS II signal. The LSP mass

and wavefunction composition is given as well as the value of σSI
χp and the expected event

rate over a recoil energy range of 10 ≤ E ≤ 100 keV on a germanium target in an exposure

of 0.3 × 612 = 183.6 kg-days. Furthermore the benchmarks were chosen to have varying

wavefunctions as can be seen in the table. The inputs are run to the low scale using Suspect

2.4 and fed to DarkSUSY.

Due to the low statistics reported by the data any one of these points could be interpreted
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Point A B C D E

m0 750 500 350 350 350
m1/2 750 500 575 575 575
A0 370 270 150 150 100

tan β 25 15 30 30 30
δ2 0.65 0.62 -0.6 0.82 -0.47
δ3 -0.35 -0.3 -0.3 -0.35 -0.3

mχ0
1

(GeV) 138 190 175 112 230

B% 3.0% 70.2% 0.3% 5.4% 40.9%
W% 0.4% 0.4% 95.8% 0.5% 53.0%
H% 96.6% 29.4% 3.9% 94.1% 6.1%

σSI
χp × 1045 (cm2) 11.9 44.4 41.3 35.3 74.8

NGe (184 kg-days) 0.51 1.36 1.30 1.65 1.90

Table 5.1: Soft term parameters for selected benchmark points are shown in the upper
portion. All masses are given in units of GeV and all points were picked to have µ >
0. In the lower portion masses and LSP properties were computed using SuSpect 2.41,
while scattering cross-sections and the expected number of events were computed using
default values in DarkSUSY 5.0.4. These scattering cross sections and event rates carry
uncertainties associated with certain nuclear matrix elements, as mentioned in the text. The
event rates on germanium nuclei assume an effective exposure of 183.6 kg-days as appropriate
for the CDMS II data.

to give rise to the signal. It is important to note also that the uncertainties involved with the

calculation of the interaction rates can be quite large. As a comparison using MicrOmegas

[59] one finds that the rates predicted for germanium are about twice as large. That this

happens is due to a different value of the πN Σ term which leads to different values in the

strange quark hadronic form factor. With the statistical and theoretical uncertainties in

mind the benchmark models have been chosen to have 0.5 ≤ NGe ≤ 2.0 to be conservative.

It is noted that recent calculations of the matrix element 〈n|ss̄|n〉 [153] may imply an even

lower value for σSI
χp which would make the interpretation of CDMS II data as scattering of

neutralino LSPs more difficult.
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5.2 Other DM signals

Upon selecting candidate models as outlined in Table 5.1, which give reasonable rate pre-

dictions which can be interpreted to give rise to the signal at CDMS II, we now look at

other experimental predictions relevant to other dark matter detection experiments. Based

on the low statistics given from the CDMS II experiment it is not clear whether the events

truly correspond to neutralino nucleon scattering. The choice of benchmark models given

in Table 5.1 also represents a variety of LSP possibilities which can explain the signal. It is

important to be able to use data from other experiments to help confirm if these are truly

SUSY events. Here we consider the implications on upcoming direct and indirect detection

experiments for the benchmark models considered. To begin we first look at the rates pre-

dicted by the benchmarks on xenon targets, as Xenon10 has already published limits [69]

and soon Xenon100 will probe further into the SUSY parameter space.

Using the Xenon10 reported limits we first check that the models put forth are in agree-

ment with what was reported in [69]. The rate calculation for the xenon targets are performed

in the same manner as the germanium rates although for the Xenon10 and Xenon100 ex-

periments we perform the integration over a smaller range from 5 to 25 keV as this is quite

similar to the range of recoils considered in [69]. The initial reported data from Xenon10

utilized an exposure of 316.4 kg×days and the group reported about 10 events where the

signal was expected, although these events were consistent with their background estimation.

As can be seen in Table 5.2 the predicted rates of the benchmarks at Xenon10 are in the one

to five event range in the exposure of 316.4 kg×days, and therefore are consistent with what

that experiment measured. In the future upgrade of Xenon100 the predictions for the event

rates of the candidate models are much larger, as the exposure can increase significantly. For

the Xenon100 predictions we assume a fiducial mass of 80% of the nominal mass target of

100 kg as well as 60 days of exposure time, thus the predicted number of events at Xenon100

are for an exposure of 13.15 kg×years. Assuming a reliable method of background rejection

at Xenon100, the benchmark models ought to give clear signals of LSP-nucleon scattering
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Point A B C D E

RXe (kg−1-yr−1) 1.32 3.64 3.66 4.63 5.15
NXe (Xenon10) 1.14 3.16 3.17 4.01 4.47
NXe (Xenon100) 17.4 47.9 48.1 60.9 67.7

(Φint/J̄)× 1015 (cm−2 s−1) 196.8 9.27 1020.4 243.8 164.1
Φγγ/Φγ Z 0.52 0.20 0.33 0.57 0.31

Φµ (km−2 yr−1) 114.0 171.3 63.4 130.7 123.5
〈σv〉WW × 1025 (cm3/s) 1.9 0.1 23.8 2.0 4.5

Ω h2|thermal 0.005 0.112 0.001 0.006 0.003

Table 5.2: Predictions of the benchmark models in Table 5.1 for other dark matter search ex-
periments including the thermal relic density of neutralinos. All calculations were performed
using DarkSUSY 5.0.4.

events at the upcoming Xenon100 experiment as can be seen in Table 5.2.

If a clear signal above background is observed in the upcoming liquid xenon direct de-

tection experiments then it provides more evidence that the CDMS II experiment indeed

observed a dark matter scattering event. It would also lend evidence that the events are

truly the result of neutralino-nucleon scattering consistent with the LSP of the MSSM. How-

ever if it is indeed the case that a supersymmetric neutralino is responsible then many models

(of which Table 5.1 are just a few) may give rise to compatible signals in the direct detection

experiments. It would be desirable to obtain some further evidence from the dark matter ex-

perimental efforts to try to reduce the possible models within supersymmetry which may be

responsible for the observed signals. As the benchmarks given in Table 5.1 are quite different

especially in regard to the LSP wavefunction and mass one ought to look at what types of

predictions can be made for the indirect detection signals and what types of differences are

expected.

The Fermi/GLAST satellite is currently observing the flux of gamma ray photons from

the galactic center, and some of these photons may be the result of neutralino annihilation.

It may be possible to observe a significance of the photons from neutralino annihilation over

the astrophysical backgrounds. As has been discussed previously in the Chapter 3 the flux of

gamma ray photons from neutralino annihilation depends on both the supersymmetric model
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inputs as well as the assumed dark matter halo profile at the center of the galaxy. Assuming

an angular resolution of ∆Ω = 10−5 steradians which corresponds to the Fermi/GLAST

satellite the choices of the NFW halo profile gives J̄ = 1.2644 × 104. To compute the

expected continuum photon flux at Fermi/GLAST we use the NFW profile and integrate

the differential photon flux over the energy range 1 to 200 GeV. The results for the continuum

photon flux are given in Table 5.2 where the halo dependence has been factored out, e.g.

we give the value of Φγ/J̄ and one may estimate the fluxes for different halo profiles using

the values of J̄ in Table 3.1. Using the predicted background flux of Φ100 = 5.79 × 10−10

photons/(cm2×sec) necessary to give 100 photon events for 1 m2×yr at Fermi/GLAST (from

Table 4.3) we can convert this to
(
Φ100/J̄NFW

)
× 1015 = 45.8 photons/(cm2×sec). All the

benchmark models except for model B are above this value and hence have good discovery

prospects at Fermi/GLAST for the NFW profile, however we stress that the estimates can

vary across many orders of magnitude depending on the halo profile employed.

Along with the diffuse gamma ray photons just described the smoking gun signals of 1-

loop neutralino annihilation to γγ and γZ can offer other important experimental evidence

for the existence of neutralino dark matter [154, 155, 156]. To investigate these signals in

Table 5.2 we compute the ratio of these line fluxes as it eliminates the halo dependence and

it is known that this ratio is correlated with the wavefunction of the LSP [157]. The ratio

of Φγγ/Φγ Z varies by as much as a factor of 2 across the different benchmarks and gives

important information as to the type of LSP which may be responsible for the scattering.

However the ability of the atmospheric Cherenkov telescopes to measure these signals will

require a favorable halo profile as well as very good energy resolution to be able to resolve

the two independent line signals.

Another promising signal of neutralino dark matter can arise from neutrinos which arise

from LSP annihilation in the sun. For these signals the halo profile issues are no longer

present and the signals can vary quite a bit based on the makeup of the LSP. Some fraction

of the neutrinos which are produced from neutralino annhilation in the sun will escape and
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travel to the Earth where they can be detected, for example at IceCube [80] via the conversion

of muon neutrinos into muons. Using an angular resolution of 3 degrees appropriate for

IceCube we integrate the differential flux of conversion muons from both the sun and Earth

over the muon energy range of 50 to 300 GeV. IceCube has a nominal target area of 1 km2,

although the effective area for muon detection is smaller and dependent on the muon energy

[115, 116, 117]. As can be seen in Table 5.2 the conversion muon flux, Φµ, for the benchmark

models are below the limit of about 300-400 muons/(km2×year) which was set based on a

22-string run at IceCube. These models are promising for the upcoming runs at IceCube

and using an exposure of 0.2 km2-years all of the benchmarks can produce at least 10 signal

events (an estimate of the background expected at IceCube).

Anti-matter from cosmic rays offer further evidence for the existence of neutralino dark

matter. Here we focus on the positron flux and implications to the recent PAMELA data

of positrons in the 10-100 GeV energy range [78]. It is now understood that standard

MSSM models can fit the apparent positron excess at PAMELA, but doing so requires

some difficulty. In order to fit the data it has been pointed out that a thermally averaged

annihilation cross section into W+W− final states is necessary. Models with significant Wino

or Higgsino content are able to give 〈σv〉WW ∼ 10−24 cm3/s and thus may be able to explain

the positron excess [123, 121]. Looking at Table 5.2, it is apparent that model C has the

best prospects to agree with the PAMELA data, while the others have a bit too low of value

of 〈σv〉WW (although still in the right neighborhood). Typically models which do give large

annihilation rates to W+W− also annihilate very effectively in the early universe and thus

deplete the value of Ωχh2, as is seen for the mostly Wino benchmark of model C. Only one

of the models, model B, gives a value of Ωχh2 in the range of 2σ WMAP three year data [98]

of

0.0855 ≤ Ωχh2 ≤ 0.1189 , (5.7)

while the other models are well below this. The other model points ought to be able to fit the

measured value of Ωχh2 ' 0.11 if one applies non-thermal production mechanisms [62, 99,
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Point A B C D E

mχ0
1

138 190 175 112 230

mχ0
2

152 254 235 130 239

mχ0
3

326 261 505 252 504

mχ0
4

1008 663 513 846 515

mχ±1
146 243 175 123 234

mχ±2
1008 663 514 846 515

mg̃ 1156 847 952 890 951
mt̃1 826 607 719 544 709
mt̃2 1284 925 862 964 865
mb̃1

1155 853 809 766 812
mb̃2

1271 903 874 943 871
mτ̃1 740 520 344 338 352
mτ̃2 1079 724 414 752 424
mh 115 112 113 114 113

σ7 TeV
susy (pb) 1.3 0.3 1.2 2.7 0.4

σ10 TeV
susy (pb) 2.3 1.2 2.5 5.1 1.3
σ14 TeV

susy (pb) 4.0 4.1 5.7 10.0 3.7

Table 5.3: Relevant SUSY mass spectra and total production cross sections at the LHC, for
the benchmark models in Table 5.1. All masses are in GeV.

100, 101]. Note that the models which have Ωχh2 < Ωχh2
min = 0.025 have not been rescaled

by the factor rχ in equation (3.10) as the assumption is that the non-thermal mechanisms

can bring them in line with the WMAP measurement and thus not require the rescaling.

5.3 LHC signatures

Here we consider some common search strategies at the LHC and indicate which signals

may help reveal the models considered in Table 5.1. In Table 5.3 the key physical masses

of the benchmark models are given following renormalization group evolution from QGUT

to the low scale using Suspect 2.41. A common feature is a compressed gaugino sector,

specifically the mass gap ∆± ≡ mχ±1
−mχ0

1
is rather small. This mass gap is crucial to many

standard SUSY search channels at the LHC involving leptons and can result in soft leptons

which do not trigger and escape detection.
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The analysis of the models at the LHC involves generating the events using PYTHIA [158]

with the detector simulator PGS4 [159]. Prior to inputing the models to PYTHIA the Higgs

and superpartner masses are calculated using SUSYHIT [160] which includes important loop

decays not implemented in PYTHIA. For each of the benchmark models considered 1 fb−1 of

data was generated at center of mass energies of
√
s = 7, 10 and 14 TeV. Also 1 fb−1 samples

of Standard Model background processes were also considered which consist of Drell-Yan,

QCD dijet, tt̄, bb̄, W/Z+jets and diboson production at the same three values of
√
s. These

backgrounds are further discussed in the Appendix 9. The level 1 (L1) triggers in PGS are

used which were designed to mimic the CMS trigger tables [161].

The last line of Table 5.3 gives the total tree-level SUSY production at the LHC for center

of mass energies
√
s = 7, 10 and 14 TeV. The discovery prospects at the LHC at

√
s = 7 TeV

for these models is not so good, especially if the missing energy, 6ET , and pT measurements

are not reliable. Also the leptonic signatures suffer in these models (to be discussed below)

and as so we consider the higher energies which have better discovery prospects.

To gain some basic insight to these models we consider standard SUSY discovery modes

[162, 163] which are slightly modified to maximize the signal significance. Table 5.4 gives

the five signatures which are considered along with the number of signal events and signal

significance, S/
√
B, at

√
s = 10 TeV. Results are also shown in Table 5.5 for a center of mass

energy
√
s = 14 TeV. For all events an initial cut is applied on the post L1 data of transverse

sphericity ST ≥ 0.2 and 6ET ≥ 250 GeV for all signatures except the trilepton signal where

we only require 6ET ≥ 200 GeV. The multijet signature requires no isolated leptons and

requires at least four jets with transverse momenta satisfying pT ≥ 200, 150, 50, 50 GeV,

respectively. For the leptonic signatures we consider only ` = e, µ and require at least two

jets with pT ≥ 100, 50 GeV, respectively.

The multijet signal gives the best prospect for signal significance for these models. In

Table 5.4 we see that for all models except A the multijet signature gives the best discovery

channel at
√
s = 10 TeV. Model A has the heaviest gluino and therefore the multijet events
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Numbers of Events
Point A B C D E

Multijets 16 68 72 114 57
1` + jets 17 78 61 70 19

OS 2` + jets 0 14 2 12 1
SS 2` + jets 0 1 2 4 0

3` + jets 0 4 0 4 0

Significance S/
√
B

Point A B C D E

Multijets 2.0 8.4 8.9 14.0 7.0
1` + jets 1.1 5.2 4.1 4.7 1.7

OS 2` + jets NA 4.4 0.6 3.8 0.3
SS 2` + jets NA 1.0 2.0 4.0 NA

3` + jets NA 2.9 NA 2.9 NA

Table 5.4: Number of signal events for standard discovery channels at the LHC for
√
s =

10 TeV for the benchmark models of Table 5.1.

are more suppressed than the other benchmarks. The leptonic signatures are best for model

B which has the largest value of ∆± at about 50 GeV. When this value gets much below

about 10 GeV the leptonic signatures can become less effective as the leptons generally have

too little pT to be triggered. This reduction in the leptonic signal is likely to be a generic

property of non universalities in the gaugino sector. As the energy increases to
√
s = 14

TeV the models become visible in at least two of the five channels at least 4.5σ level, except

for model A which does have a 2.5σ significance in the 1 lepton + jets channel. Also of note

is that in all models m eC1
and m eN2

do not get heavier than about 250 GeV, which indicates

the states should be accessible at a
√
s = 500 GeV e+e− linear collider.

5.4 Summary

If the CDSM-II data is indeed due to the scattering of neutralinos from nuclei then the

analysis presented here suggests that within the MSSM non-universalities in the gaugino

sector are highly likely, although not necessary. The CDMS II data seems to prefer MSSM

models with a suppression of the gluino mass as compared to typical predictions made
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Numbers of Events
Point A B C D E

Multijets 99 321 402 436 298
1` + jets 62 336 202 310 111

OS 2` + jets 8 45 12 45 7
SS 2` + jets 2 19 6 16 3

3` + jets 3 8 4 6 1

Significance S/
√
B

Point A B C D E

Multijets 6.6 21.4 26.9 29.1 19.9
1` + jets 2.5 13.6 8.2 12.5 4.5

OS 2` + jets 1.3 7.4 2.0 7.4 1.2
SS 2` + jets 0.8 7.2 2.3 6.0 1.1

3` + jets 1.2 3.3 1.6 2.5 0.4

Table 5.5: Number of signal events for standard discovery channels at the LHC for
√
s =

14 TeV for the benchmark models of Table 5.1.

such as in mSUGRA. The data may also favor a compression in the electroweak gaugino

masses which would lead to diminished lepton-based discovery modes at the LHC. We have

chosen some benchmarks which give event rates favorable to the reported data by CDMS

II and we have given some basic predictions for other dark matter experiments and LHC

signatures. These predictions are important as they serve to give a picture of what to expect

at future experiments if the events reported at CDMS II are indeed due to neutralino-nucleon

scattering. Furthermore if the neutralino turns out to be mostly Wino or Higgsino then it

appears that scenarios with non-thermal production mechanisms will become more likely.

The models considered here are predicted to have clear signals at the upcoming XENON100

experiment along with the IceCube experiment and therefore positive results from those

experiments will further lend evidence to non-universalities in the gaugino sector.
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Chapter 6

LHC phenomenology of non-universal

gaugino masses

In this chapter the focus is on collider aspects of non-universal gaugino masses. Here interest

is on how a specific string-based non-universality in the gaugino sector may reveal itself at the

LHC. This is a convenient parameterization for non-universal gaugino masses as it involves

a single parameter α which relates the three soft gaugino masses along with an overall mass

scale. The models under consideration here are simple versions of the DMM parameter space

of Chapter 4 with Nm = 0. Specific signatures are investigated which have been shown to be

useful for models with non-universalities in the gaugino sector [164]. Two specific benchmark

models are studied and the resulting LHC phenomenology is studied for varying values of

the α parameter. It is shown that certain signatures are more effective at tracking changes

in the value of α, and among the most important is the effective mass variable.

First the parametrization of the gaugino masses is briefly discussed followed by a de-

scription of the two benchmark models which the analysis is based upon. These benchmark

models will form the base models by which α-lines are set up. Next certain signatures are

highlighted which have been shown to be effective in tracking the variations of the α param-

eter along with comments on how to distinguish different values of α for the same model.

Last the LHC signatures under consideration are analyzed for the two model lines investi-

gated here and the amount of luminosity required to differentiate models along the α-lines

are shown.
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6.1 Background

Before discussing the benchmark models it is necessary to briefly go over the non-universal

gaugino mass parameterization considered here. The parametrization considered is based on

work in [88] and references therein. The authors of [88] considered many classes of string

motivated models and in particular one called mirage mediation provides a nice way to

introduce gaugino mass non-universalities via a single parameter α. The name mirage comes

from the fact that for non-zero values of α the gaugino masses unify at a scale which is

different from QGUT ' 2× 1016 GeV where the gauge couplings continue to unify.

The theoretical background for the mirage pattern are string motivated scenarios like

KKLT modulus stabilization in D-brane models [89, 165] as well as Kähler stabilization in

heterotic string theory [166]. It is also worth noting that this scenario can also arise in non

string based models like deflected-anomaly mediation [167, 168]. As in the models of Chapter

4 a universal contribution to the gaugino masses at the high scale (taken as QGUT) is balanced

by a contribution proportional to the beta function coefficients of the three Standard Model

gauge groups. The universal contribution is associated with Planck-suppressed operators

(gravity mediation) while the contribution proportional to the beta function coefficients is

associated with anomaly mediation. The mirage parametrization is a tunable scenario which

allows one to move between the two mediation mechanisms. The focus here will be on small

deviations from universality, and the benchmark models give rise to specific predictions of

the α parameter.

It is instructive to outline the manner in which the mirage pattern arises for the gaugino

masses. Here we will be general and not adhere to any underlying string framework. Assume

that the supersymmetry breaking effects are transmitted to the observable sector at a high

scale QGUT and that the gaugino masses get two contributions: a universal contribution

Mu as well as a contribution from anomaly mediation m3/2. The anomaly contribution is

proportional to the beta function coefficients and appears at the 1-loop [169, 170] level so
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we can write

Ma (QGUT) = Mu + g2
a (QGUT)

ba
16π2

m3/2 . (6.1)

Subsequent renormalization group evolution to a lower scale Q < QGUT along with some

new definitions gives

Ma (Q)

g2
a (Q)

=
Mu

g2
GUT

(
1 + g2

GUTbaα
ln
(
MPl/m3/2

)
16π2

)
, (6.2)

where g2
a (QGUT) = g2

GUT ' 1/2 is the unified gauge coupling and the O(1) parameter α is

defined as

α ≡
m3/2

Mu ln
(
Mpl/m3/2

) . (6.3)

The definition of α follows [88] and is seen to be αm of equation (4.3) with Mu = M0. The

gaugino masses no longer unify at QGUT for α 6= 0, rather they unify at some other scale

Qmir

Qmir = QGUT

(
m3/2

Mpl

)α/2
(6.4)

which for values of 0 ≤ α ≤ 2 happens at a scale between the weak scale (1 TeV) and QGUT,

hence “mirage”. Models which exhibit mirage unification result in compressed gaugino mass

values at the low scale relative to the universal case. The parametrization in equation (6.2)

is theoretically quite interesting and also offers a nice way to parametrize non-universalities

in the gaugino sector at the low scale as the ratios of the three soft gaugino masses at 1 TeV

are

M1 : M2 : M3 = (1.0 + 0.66α) : (1.93 + 0.19α) : (5.87− 1.76α) . (6.5)

The single parameter α can be varied continuously so as to study how non universalities in

the gaugino sector will be revealed at the LHC. Model lines will be constructed using small

ranges 0 ≤ α ≤ 1 and the resulting collider signatures will be investigated for two specific

benchmark models described next.
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Parameter Point A Point B Parameter Point A Point B
α 0.3 1.0 m2

Q3
(1507)2 (430.9)2

m3/2 1.5 TeV 16.3 TeV m2
U3

(1504)2 (610.3)2

M1 198.7 851.6 m2
D3

(1505)2 (352.2)2

M2 172.1 553.3 m2
L3

(1503)2 (381.6)2

M3 154.6 339.1 m2
E3

(1502)2 (407.9)2

At 193.0 1309 m2
Q1,2

(1508)2 (208.4)2

Ab 205.3 1084 m2
U1,2

(1506)2 (302.7)2

Aτ 188.4 1248 m2
D1,2

(1505)2 (347.0)2

m2
Hu

(1500)2 (752.0)2 m2
L1,2

(1503)2 (379.8)2

m2
Hd

(1503)2 (388.7)2 m2
E1,2

(1502)2 (404.5)2

Table 6.1: Benchmark model soft term inputs. High scale values of supersymmetry
breaking soft terms at QGUT = 2 × 1016 GeV. Both points are taken to have µ > 0 and
tan β = 10 and all masses are given in GeV.

6.2 Benchmarks

Two distinct string based benchmark models will be considered around which to form α

lines. The first is from a class of heterotic string models studied in [171, 172, 166] with

Kähler stabilization of the dilaton. This first benchmark model, labeled A, used here is from

[173] and predicts a value of α = 0.3. The second is from a class of Type IIB string theory

with flux compactification as in KKLT [89]. This second benchmark model, labeled B, was

studied in [87] and predicts a value of α = 1. For further details on the benchmarks see

appendix A of [164].

In Table 6.1 the high scale model inputs are given for each of the benchmark models.

Both of the models considered are examples of the mirage pattern, although the predicted

soft scalar masses are quite different. The unification scale of the gaugino masses are at

Qmir = 2.0 × 1014 GeV for model A and at Qmir = 1.5 × 109 GeV for model B. These soft

terms are run down to the electroweak scale (here taken as 1 TeV) using Suspect [92] with

the resulting low scale physical masses given later in Table 6.4. Two loop running was used

for all but the gaugino masses so that the 1-loop results are still applicable for the gaugino

mass parametrization in terms of α. The resulting low scale models will be perturbed around
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Object Minimum pT Minimum |η|
Photon 20 GeV 2.0
Electron 20 GeV 2.0

Muon 20 GeV 2.0
Tau 20 GeV 2.4
Jet 50 GeV 3.0

Table 6.2: Initial cuts to keep an object in the event record. After event reconstruction
using PGS4 with L1 triggers we apply additional cuts listed to the individual objects in the
event record. Detector objects which do not satisfy the above criteria are removed from the
event record and do not enter our signature analysis.

the predicted value of α and specific signatures will be used to determine the level of gaugino

mass non-universality present in the model. In the next section the specific signature lists

used will be introduced along with the criterion used for distinguishing between models with

different values of α.

6.3 Signature lists and distinguishing models

Here we provide a brief discussion about the distinguishability criterion and the signature lists

used for studying the α lines; for a thorough discussion see [164]. There are many possible

signatures which may be considered at the LHC, and specific signatures were designed in

[164] to track small changes in the α parameter. This was done using many random low

scale MSSM models with α lines constructed.

There are three lists of signatures which were found and they were constructed to try to

keep the correlations between the signatures small and hence the final state topologies are

grouped according to

Njets ≤ 4 versus Njets ≥ 5,

Nleptons = 0 versus Nleptons ≥ 1.
(6.6)

The signatures considered are built up from events from a simulation using PYTHIA [158] +

PGS4 [159], where the level 1 (L1) triggers are imposed in PGS4. Following the L1 triggers

object level cuts are imposed as in Table 6.2. Events passing the object level cuts are
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furthermore required to have 6ET > 150 GeV, transverse sphericity ST > 0.1, and HT >

600 GeV (400 GeV for events with 2 or more leptons) where HT =6ET +
∑

Jets p
jet
T . The three

signature lists constructed are given in Table 6.3.

Signature List A
Description Min Value Max Value

1 Many
eff = 6ET +

∑
all p

all
T [All events] 1250 GeV End

Signature List B
Description Min Value Max Value

1 M jets
eff [0 leptons, ≥ 5 jets] 1100 GeV End

2 Many
eff [0 leptons, ≤ 4 jets] 1450 GeV End

3 Many
eff [≥ 1 leptons, ≤ 4 jets] 1550 GeV End

4 pT (Hardest Lepton) [≥ 1 lepton, ≥ 5 jets] 150 GeV End
5 M jets

inv [0 leptons, ≤ 4 jets] 0 GeV 850 GeV
Signature List C

Description Min Value Max Value
Counting Signatures

1 N` [≥ 1 leptons, ≤ 4 jets]
2 N`+`− [M `+`−

inv = MZ ± 5 GeV]
3 NB [≥ 2 B-jets]

[0 leptons, ≤ 4 jets]
4 Many

eff 1000 GeV End
5 M jets

inv 750 GeV End
6 6ET 500 GeV End

[0 leptons, ≥ 5 jets]
7 Many

eff 1250 GeV 3500 GeV
8 rjet [3 jets > 200 GeV] 0.25 1.0
9 pT (4th Hardest Jet) 125 GeV End
10 6ET /Many

eff 0.0 0.25
[≥ 1 leptons, ≥ 5 jets]

11 6ET /Many
eff 0.0 0.25

12 pT (Hardest Lepton) 150 GeV End
13 pT (4th Hardest Jet) 125 GeV End
14 6ET + M jets

eff 1250 GeV End

Table 6.3: Signature Lists.

Signature list A was found to be the best single signature to differentiate models with

different values of α and is built from the effective mass of everything in an event

Many
eff =6ET +

∑
all

pall
T , (6.7)

integrated over a specific range from 1250 GeV on up. The single signature in list A is

sensitive to mass differences between the gluino and the lighter electroweak gauginos, and
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these mass gaps are governed by changes in α. In fact many of the signatures considered

in Table 6.3 are kinematic distributions which are integrated over specific ranges. For list

A no partitioning of the data is performed, while for lists B and C partitioning of the data

is performed according to equation (6.6). Signature list B contains signatures which are

correlated to the less than 10% level, while list C contains signatures which are correlated

at a level of 30% or less. Furthermore list C contains the first examples of true counting

signatures. List C also contains some normalized signatures, such as rjet defined as

rjet ≡
pjet3
T + pjet4

T

pjet1
T + pjet2

T

. (6.8)

Given the signatures listed in Table 6.3 we now turn to how to use them to tell apart

the same base model along the α lines based on [164]. The distinguishability criterion of two

models is based on signature lists with n signatures and separated to a confidence level p.

The models will be separated to a confidence level p with a 95% probability that the models

are truly different using n uncorrelated signatures after a minimum amount of luminosity

according to

Lmin(p) =
λmin(n, p)

RAB

. (6.9)

The criterion in equation (6.9) involves the use of the non-central chi-square distribution,

with non-centrality parameter λ(n, p), which is a calculable quantity given n and p. For

example the relevant values of this parameter for lists A and B at the p = 95% confidence

level are λ(1, 0.95) = 12.99 and λ(5, 0.95) = 19.78. The quantity RAB in equation (6.9)

contains the physics of models A and B and is given by

RAB =
∑
i

(RAB)i =
∑
i

(σAi − σBi )2

σAi + σBi
(6.10)

where the sum is over the number of signatures n considered. The value of the cross sections

are σi = Ni/L, where Ni is the number of events for signature i and L is the luminosity
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Parameter Point A Point B Parameter Point A Point B
m eN1

85.5 338.7 mt̃1 844.7 379.9
m eN2

147.9 440.2 mt̃2 1232 739.1
m eN3

485.3 622.8 mc̃L , mũL 1518 811.7
m eN4

494.0 634.3 mc̃R , mũR 1520 793.3
m eC±1 147.7 440.1 mb̃1

1224 676.8

m eC±2 494.9 635.0 mb̃2
1507 782.4

mg̃ 510.0 818.0 ms̃L , md̃L
1520 815.4

µ 476.1 625.2 ms̃R , md̃R
1520 793.5

mh 115.2 119.5 mτ̃1 1487 500.4
mA 1557 807.4 mτ̃2 1495 540.4
mH0 1557 806.8 mµ̃L , mẽL 1500 545.1
mH± 1559 811.1 mµ̃R , mẽR 1501 514.6

Table 6.4: Low energy physical masses for benchmark models. Low energy physical
masses (in units of GeV) are given at the scale 1 TeV. All points have µ > 0.

used to generate the data. The cross sections also include estimates of the Standard Model

background via σi = σSUSY
i +σSM. The SM backgrounds are based on the approach taken in

the LHC Olympics [174] and further discussion is given in the Appendix 9. In what follows

we will use p = 95% and each of the signature lists in Table 6.3 to determine the minimum

amount of luminosity required to separate a given benchmark model for different values of

α.

6.4 Benchmark model LHC analysis

The low scale physical masses in Table 6.4 are used as starting points for setting up α lines.

To do this the gaugino masses at the low scale are adjusted via equation (6.5) for 0 ≤ α ≤ 1.

This is done so that the signatures introduced in the previous section can be studied which

have been shown to be sensitive to changes in α. The distinguishability methods previously

introduced will be used to determine how much luminosity is required to separate α = 0.3

from α = 1, for example.

Prior to looking into how well the signature lists can track changes in α it is useful to
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Figure 6.1: Total cross sections for model A (solid) and model B (dashed) along the α line.

look into some important properties of the benchmark models. First we can consider the

total SUSY cross sections at the LHC which are shown in Figure 6.1. Model A (solid line)

has heavy squarks with mass around 1.5 TeV, but it has a lighter gluino of 510 GeV and

hence has the larger cross section compared to Model B (dashed line). For both models the

cross sections diminish for larger values of α and essentially the only important changes as

one varies α are the masses of Ñ1, Ñ2, and C̃1 which grow larger as α increases. The three

largest SUSY subprocess cross sections at a few points along the α line are given in Table

6.5. Model B has a light stop whose production is a dominant mode along the α line with

model A model B
α mode σ [pb] mode σ [pb]

gg → g̃g̃ 13.4 qg → q̃Rg̃ 1.6

0.0 qq̄′ → Ñ2C̃1 6.2 qg → q̃Lg̃ 1.5

qq̄ → C̃1C̃1 3.2 gg → t̃1t̃1 1.5
gg → g̃g̃ 13.4 qg → q̃Rg̃ 1.6

0.3 qq̄′ → Ñ2C̃1 4.0 qg → q̃Lg̃ 1.5

qq̄ → C̃1C̃1 2.0 gg → t̃1t̃1 1.5
gg → g̃g̃ 13.4 qg → q̃Rg̃ 1.6

1.0 qq̄′ → g̃g̃ 1.4 qg → q̃Lg̃ 1.5

qq̄ → C̃1C̃1 1.2 gg → t̃1t̃1 1.5

Table 6.5: Dominant production SUSY subprocess cross sections for the benchmark models.

the other modes staying mostly constant as one changes α.
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Figure 6.2: Benchmark model distributions of Many
eff from signature List A. The left

panel is model A and the right panel is model B. The solid filled histogram is the case for
α = 0 and dotted histogram is the case for α = 1. The lower bound for the integration region
is indicated by the dotted line at 1250 GeV. The sharp lower bound in the distribution is an
artifact of the event-level cuts imposed on the data using L1 triggers in PGS.

Moving on we now consider the effective mass distributions for the two benchmark models.

These are shown in Figures 6.2 with the integration region marked which is relevant for

computing the Many
eff value of signature list A. The distributions are quite different between

the two cases. Model A shows little change above the integration region between α = 0 and

1, while model B shows much more change. Model A produces mostly gluinos which decay

via three body decays to lighter electroweak gauginos and quarks. These decays remain

mostly constant across the α line and the effective mass distribution essentially tracks the

production and decay of the gluino. In the case of model B the effective mass distribution

tracks the production and decays of the gluinos and squarks which have more substantial

decays changing along the line and hence the Many
eff variable is more interesting.

After gaining a bit of familiarity with the variable considered in signature list A we now

consider the minimum luminosity required to separate the models using the three signature

lists. The procedure is as described earlier in Section 6.3 where the quantities RAB are

computed for two points on an α line for the same benchmark model. Upon then using

the necessary value for λ(n, 0.95) for a signature list of n signatures one can then compute

the minimum luminosity required to say the two model points have a probability of 95% of
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Figure 6.3: Lmin as a function of α for the benchmark models. The three shaded
regions correspond to the three signature lists as indicated in the legend. The lower bound
of each shaded region indicates the minimum integrated luminosity Lmin needed to separate
the model with the specified α from α = 0 (top panels) or the predicted value of α (lower
panels). The upper bound of the shaded region represents an estimate of the 1 sigma upper
bound on the calculated value of Lmin caused by statistical fluctuations.

being different models at a confidence level of 95%. The results of the calculations for both

benchmark models using the three signature lists given in Table 6.3 are shown in Figure 6.3.

Using the distinguishability criterion, a base model corresponding to one point along an α

line for both of the benchmarks is chosen. In the upper panel of Figure 6.3 we use the base

model point for both benchmarks as the α = 0 point. In the lower panel the base model

is chosen as the predicted value of α from the theory which is α = 0.3 for model A and

α = 1 for model B. All of the signature lists save for list A for model A do a good job of

distinguishing points along the α lines for both benchmark models.

Looking at the results in Figure 6.3 one can see that the signature list A does a good

job for model B, but not for model A. This is expected based on the distributions of Many
eff
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Figure 6.4: Lmin as a function of α for benchmark model A with relaxed lower
bound on Many

eff . The three shaded regions correspond to the three signature lists as in the
upper left panel of Figure 6.3. In this case the lower bound of the integration range for the
single observable of List A has been relaxed to 500 GeV.

as shown in Figure 6.2, where model B showed large differences between α = 0 and α = 1

above the integration boundary, while model A did not. The small fluctuations in the count

rates for this signature in model A results in instability in computing the Lmin values along

the α line. The signature lists that are used here were optimized over a large set of randomly

chosen base models for which α lines were then created. Model B is similar to the types of

random models chosen for the optimization, whereas model A is not similar to the random

models and hence it is an example for which the optimization will not work. Had the random

models been chosen so as to include the type of model which represents model A then the

optimization likely would have found a better signature to use. For example looking at

Figure 6.2, model A does show the most difference in the distribution at smaller values of

Meff and if the integration region was chosen differently the results can get better. As a

demonstration of this in Figure 6.4 we show the same figure as in the upper left panel of

Figure 6.3 but with the lower bound of integration for Many
eff of 500 GeV. Relaxing the lower

bound to 500 GeV clearly increases the utility of list A for model A.

Looking at the left panels of Figure 6.3 also shows that the largest signature list C is not

able to distinguish models along the α line using the least amount of integrated luminosity.

List B in this case is able to distinguish points along the line using the least amount of data.
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For this model the jet invariant mass variables in both lists as well as the normalized 6ET

signatures and pT (jet , 4) observable of list C are more sensitive to the changes in α than

the single variable of list A. In this case the largest possible signature list is not the most

effective at tracking changes in α as most of the signatures in list C are not very helpful.

Model A again does not reflect the random models chosen for the optimization and as a

results many of the signatures in list C are not effective in tracking the variations associated

with changes in α for this model.

Moving on to benchmark model B we see in Figure 6.3 that all of the lists do pretty well

to distinguish points along the α line. This model is a good example for which to understand

the utility of the various signatures in the three lists and how they track important properties

which vary along the α line. The sparticle spectrum for this model is richer than the case of

model A and many important thresholds are crossed as one moves along the α line. As has

been mentioned already list A does a good job in this case at distinguishing points along the

α line which is expected based on the distribution of Many
eff shown in Figure 6.3. In this case

signature list C is the most effective at distinguishing points along the α line as most of the

signatures in the list contribute to distinguishing points along the line. List B does a good

job at distinguishing points also and it is easier to consider the 5 signatures in the list and

what properties of the model cause the signatures to be so effective.

Still considering model B it is useful to look at some of the important branching fractions

which change along with the individual (RAB)i values. Considering the signatures in list B

we plot each of the 5 (RAB)i values as a function of α in Figure 6.5 where the base model

is chosen to be the model point with α = 0. As one moves away from α = 0 the signatures

clearly show separation as each of the individual (RAB)i values grow, thus contributing to

the overall lowering of the necessary Lmin needed to distinguish points along the α line. The

two most powerful signatures for this model are signature 1 and 5 of list B which are given

in the left panel of Figure 6.5, with the other three signatures shown in the right panel.

To understand what causes some of the signatures to change as they do we can look at the
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Figure 6.5: Values of (RAB)i for the five signatures of List B as a function of α for
benchmark model B. The ability of each individual signature from List B to resolve the
case α = 0 from the indicated value of α is given by the height of the curve (RAB)i in the
above plots. In the left panel we display signature 1 (solid curve) and signature 5 (dashed
curve). In the right panel we display signature 2 (solid curve), signature 3 (dashed curve)
and signature 4 (dotted curve).

decays of the light stop which is one of the dominantly produced superpartners with the

decays shown in the left panel of Figure 6.6.

Figure 6.6: Branching fractions for principal decay modes of lightest stop (left
panel) and lightest chargino (right panel) as a function of α for benchmark
model B. In the left panel the decay modes are t̃1 → Ñ1t (dashed curve), t̃1 → C̃1b (solid
curve), and t̃1 → Ñ1c (dashed curve). In the right panel the decay modes are C̃1 → Ñ1W
(solid curve) and C̃1 → t̃1b̄ (dashed curve).

For smaller values of α . 0.35 the stop decays mostly to Ñ1t as well as C̃1b, as the Ñ1

and C̃1 are sufficiently light. The decay to light charginos drops off first at α = 0.4 as it

becomes too massive to be a decay product and the lightest neutralino decay with a bottom
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Figure 6.7: Branching fraction for next-to-lightest neutralino (left) and (RAB)i
values for key counting signatures from List C (right). The branching fraction of the
next-to-lightest neutralino Ñ2 for benchmark model B is plotted as a function of α in the
left panel. The decay modes are Ñ2 → Ñ1 h (dashed curve) and Ñ2 → Ñ1 Z (solid curve).
In the right panel the (RAB)i values for the opposite sign leptons from Z decays counting
signature (signature 2 – solid curve) and the inclusive B-jet counting signature (signature 3
– dashed curve) are plotted as function of α.

quark drops off at α = 0.65 as it becomes too massive. About half of the time the W decays

from the t will decay hadronically and hence help populate the jet variables in list B. For

values of α & 0.6 the dominant decay mode of the stop is Ñ1c. The right panel of Figure 6.6

shows the decays of the light chargino which decays purely to Ñ1W up to α = 0.7 when the

decay mode t̃1b̄ opens up as the chargino becomes more massive. All of these various decays

contribute to the various signatures considered in list B.

It is also useful to consider a few of the signatures from list C which track some important

properties of model B along the α line. For this we consider the signatures 2 and 3 of list

C which are plotted against α in Figure 6.7 along with the decays of the second lightest

neutralino. These signatures are related to the “spoiler” modes for the trilepton signal and

essentially count on-shell Z and h boson decays. In this figure we have shown two of the

simpler variables from list C which are both affected by the decays of Ñ2 which decays to

both Ñ1Z and Ñ1h for values of α . 0.7 and after α = 0.7 only the decay of Ñ2 to Ñ1h

is allowed. In this model the h decays about 70% of the time to bb̄, while the Z decays to

`¯̀ about 10% and bb̄ about 15% of the time. One can readily see the correlation between

the effectiveness of these spoiler mode signatures and the daughters produced from the Ñ2
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decays. Similar arguments can be made using the superpartner decays for the various other

signatures in the lists.

6.5 Summary

In this chapter we have discussed in some detail the LHC phenomenology of an example of

non-universal gaugino masses. Two string-motivated benchmark models were used as base

models by which small perturbations on the non-universality parameter α were performed

to study the resulting LHC signatures. Using specific signature lists which were constructed

to efficiently track the variations in α we have shown that these targeted observables can

determine non-universalities in the gaugino sector using a minimum amount of integrated

luminosity. When taking the universal case as the point of reference the signature lists can

reveal the presence of non-universalities of α & 0.2 using 10-20 fb−1 of LHC data for the

benchmark models. If the predicted values of α are used for the benchmarks then a similar

statement holds when one moves more than 0.2 in α away from the predicted value.
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Chapter 7

Lifting model degeneracies in LHC

data using dark matter observations

The previous chapters have focused on both dark matter and collider signatures of non-

universal gaugino masses. Other than suggesting possible correlations between the dark

matter and collider signatures in Chapter 5 the two experimental arenas have been mostly

separate. In this final chapter we investigate how dark matter signatures can help alleviate

possible model degeneracies which can arise in LHC data. This serves as a study of the com-

plementarity of both LHC and dark matter data and how it can be used to help understand

which SUSY models are good fits to data.

7.1 LHC inverse problem

If BSM physics is established at the LHC the community will be faced with the task of recon-

structing an underlying theoretical framework. Under the assumption that the BSM physics

is SUSY, in [175] the authors argue that within a reduced 15 dimensional parameter space of

the MSSM many possible candidate models may give rise to indistinguishable signatures at

the LHC. Sets of parameters may have many pairs of “degenerate twins” which give similar

fits to the data and how to differentiate these degenerate models is the LHC inverse problem.

The degenerate pairs discovered in [175] are used as the basis for a study on the ability to

separate the degenerate models using observations from dark matter experiments.

We now give a brief description of how the models were simulated and then deemed

degenerate in [175]. These degenerate pairs were the result of simulating 10fb−1 of LHC
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data for over 43,000 points within the MSSM. These points were defined at the weak scale

via the 15 parameters


tan β, µ, M1, M2, M3

mQ1,2 , mU1,2 , mD1,2 , mL1,2 , mE1,2

mQ3 , mU3 , mD3 , mL3 , mE3

 , (7.1)

while holding fixed mA = 850 GeV, A = 800 GeV for third generation squarks and A = 0

GeV for all others. For the LHC simulations PYTHIA [158] + PGS4 [159] was used and no

Standard Model background was used. Two classes of LHC signatures were considered to

describe the data: simple counting signatures of final state topologies and shapes of kinematic

distributions of final state decay products. The distributions were parametrized so as to be

able to be combined into a χ2-like variable. In all 1808 signatures si were used to classify

each SUSY model.

The authors of [175] grouped the si values into a χ2-like variable,

(∆SAB)2 =
1

Nsig

∑
i

(
sAi − sBi
σABi

)2

, (7.2)

where A and B represent two different models, Nsig is the total number of signatures con-

sidered and σABi is a measure of the error associated with the i-th signature

σABi =

√
(δsAi )2 + (δsBi )2 +

(
fi
sAi + sBi

2

)2

. (7.3)

Invariably some SM background may remain in the data samples and the quantity fi repre-

sents the error associated with this. A value of fi = 0.01 was used for individual signatures

while fi = 0.15 was used for the overall event rate. In this way equation (7.2) represents

a metric on the signature space of models. To determine whether two models are dis-

tinct using (∆SAB)2 the same model was simulated many times and the 95th percentile of
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the distribution of (∆SAB)2 values was used as a lower bound for distinguishing models,

(∆SAB)2|95th = 0.285. In other words if two distinct models gave (∆SAB)2 < 0.285 they

were considered degenerate.

Of the over 43,000 models considered using the separability criterion 283 pairs of these

models were deemed indistinguishable using the criterion outline above. These 283 pairs

were comprised of 384 individual sets of input parameters which we were provided by the

authors of [175]. Using the same method for LHC simulation, 50k events were generated

and a smaller sample of 36 signatures were considered by which it was deemed that the pairs

were indeed degenerate using a separation criterion of (∆SAB)2|95th = 0.63.

These same degenerate pairs were recently studied by [176, 177], where the authors

looked at the utility of the international linear collider (ILC) in distinguishing the models.

A general conclusion of this study is that if the charged superpartners were kinematically

accessible they were usually detectable above Standard Model backgrounds, while if only

neutral superpartners were accessible then the models were usually not detectable. If one

or both degenerate models had an accessible and visible charged superpartner they were

generally distinguishable at a 500 GeV linear collider. The result is that 57 (63) model pairs

were distinguishable at the 5σ (3σ) level. If the center of mass energy is increased to 1

TeV, then many more pairs can be distinguished as the degenerate models generally have

relatively higher mass lighter gaugino states.

It is important to note here that (µ,M1,M2,M3) and tan β are varied randomly resulting

in non-universal gaugino sectors of the models. That dark matter observables can help lift

LHC degeneracies is of no surprise as the signals are sensitive to the make-up of the LSP, of

which LHC signals are much less so. Here we outline the utility of dark matter observables

to lift LHC degeneracies following [178].
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7.2 Classifying degenerate pairs

Before proceeding to the dark matter observables of the models there are a few basic proper-

ties which will be addressed. To calculate the mass spectrum of the degenerate pairs PYTHIA

was used to compute the tree-level masses and mixings. When this is done the lightest

chargino can sometimes be slightly lighter than the lightest neutralino and to approximate

the radiative correction PYTHIA adds twice the neutral pion mass. In the initial model set

149 of the 384 models had just such an issue, which caused these model points to be jetti-

soned by the ILC study. In contrast these points are kept for the dark matter observables

as the small mas gap only affects the calculation of the thermal relic density of the lightest

neutralino.

The thermal relic density is an important cosmological quantity which is related in an

indirect way to dark matter calculations relevant for interpreting observations. The local

halo density of neutralinos is important to the observables that are considered and the

relationship between it and the thermal relic density is not so precise. The relic density is

a highly sensitive calculation of masses and mixings from the SUSY model as well as SM

inputs and furthermore the assumptions governing the calculation are not well understood.

In moving forward with the analysis we will be unbiased about the predicted thermal relic

abundance and display results both utilizing the relic calculation and not. It is understood

that the model points under study may well be replaced with a similar model set whose

points have a sensible value of the relic density while remaining degenerate at the LHC.

Using the low scale model input parameters we use the computer package DarkSUSY [58]

to compute the thermal relic density. Of the 384 models originally considered 6 gave a τ̃1

LSP with the specrum computed in DarkSUSY. To continue we demand that the LSP be the

Ñ1 and so we drop these 6 models and continue with 378 models. The resulting values for

the degenerate models are shown in Figure 7.1. The horizontal lines bound the three year
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Figure 7.1: Thermal relic abundance of neutralino LSPs for the 378 models
from [175]. Prediction for the thermal relic abundance Ωχh2, as computed by DarkSUSY,
plotted as a function of the LSP mass mχ. The solid horizontal lines indicate the 2σ band fa-
vored by the WMAP three-year data. The region below the horizontal dashed line represents
those models where the local density of neutralinos should be rescaled.

2σ WMAP favored value [98]

0.0855 < Ωχh2 < 0.1189 . (7.4)

Of the 378 models only 1 lies within WMAP range, 145 are above the upper value and 232

fall below the lower bound. Of the 232 models below the lower bound 224 have Ωχh2 ≤ 0.025.

We will consider all 378 models regardless of the Ωχh2 values and group the pairs who have

Ωχh2 > 0.1189 separately. For models who have Ωχh2 < 0.025 we will rescale the local halo

density of ρχ = 0.3 GeV/cm3 by the multiplicative factor rχ = Min(1, Ωχh2/0.025) as in

equation (3.10). Results will be shown in which the rescaling is done as well as for which no

rescaling is done.

As further classification of the model pairs we consider the bounds on the light Higgs

mass as well as indirect constraints. Bounds on mh, Br (b→ sγ) and the SUSY contribution
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to the anomalous magnetic moment of the muon from [151] are

mh ≥ 114.4 GeV

2.65× 10−4 ≤ Br(b→ sγ) ≤ 4.45× 10−4

aµ|SUSY ≤ 4.7× 10−9 .

(7.5)

Of the 378 models considered 43 violate the mh bound, 101 violate the b→ sγ bound and 6

violate the aµ bound. These constraints are not so important for the dark matter signatures

we consider and so we will consider all 378 models moving forward, but they will be grouped

according to the value of Ωχh2 as well as the bounds given in equation (7.5). A subset

of 127 models (77 degenerate pairs) is deemed “physical” if they have Ωχh2 < 0.1189 and

satisfy all three constraints in equation (7.5). Furthermore the results of the ILC study of

[176, 177] are considered to compare how well the dark matter observations can complement

in model distinguishability. To estimate which models would be distinguishable at the ILC

we simply require a charged superpartner be kinematically accessible at
√
s = 500 GeV and

use a conservative estimate of 240 GeV in mass to be visible. Using this estimate 190 models

are deemed visible of which 68 have no chargino mass warning from PYTHIA1. This initial

division of the 378 models is given in Table 7.1.

The assumptions going forward are that several years of data taking and subsequent

analysis has been performed using a broad set of global observables as in the previous chapter

or as in [175]. The values of the superpartner masses will not be assumed to be known here

so as to truly be model independent. Furthermore we assume that a fit has been performed

in which many degenerate model pairs can fit the data equally well. To proceed we take these

models as inputs and look at the resulting dark matter signatures and whether degenerate

models may be separated.

1The physical gaugino masses are computed at the tree level in PYTHIA and sometimes the
lightest chargino is slightly lighter than the lightest neutralino. PYTHIA fixes this problem
by making the lightest chargino mass to be twice the neutral pion mass plus the lightest
neutralino mass. In models where this happens PYTHIA issues a warning flag.
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Models Pairs
Initial Set 378 276
PYTHIA chargino warnings 149 124

Relic Density
Ωχh2 > 0.1189 145 116
Ωχh2 < 0.0250 224 164

Additional Constraints
mh < 114.4 GeV 43 52
Br(b→ sγ) > 4.45× 10−4 101 98
aµ|SUSY > 4.7× 10−9 6 6

Visible at 500 GeV ILC 190 173
Remove PYTHIA chargino warnings 68 65

All Physical Conditions Satisfied 127 77

Table 7.1: Summary of global properties of the 378 models. The column labeled
“Models” gives the number of individual models which satisfy the given property. The
column labeled “pairs” gives the number of model pairs where at least one of the two models
in the pair satisfies the given property. If a model passes all of the tests listed in the table
and has Ωχh2 < 0.1189 it is then counted in the last row. If both models in a degenerate pair
pass the given tests and have Ωχh2 < 0.1189 then the pair is counted in the last row.

7.3 Direct detection

We begin by looking at the ability of direct detection experiments to differentiate the model

pairs. The method for distinguishing model pairs involves comparing the two degenerate

model inputs “A” and “B” and computing relevant dark matter signatures si for both models.

To claim that an experiment can distinguish two model pairs we require both sAi and sBi

to be detectable above background and that the values are sufficiently separated to have

a statistically significant difference with respect to the error σABi . For the case of direct

detection we consider a single type of observable: count rates.

The experiments which are considered are listed in Table 7.2 and are chosen for the relia-

bility of background estimation and simplicity of presentation. All of the listed experiments

have either cryogenic germanium bolometers or dual-phase liquid/gas xenon targets and

hence mainly probe the spin-independent scattering of neutralinos with nucleons. For both

target types at the time of this investigation the experiments listed in the upper portion of
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Ref. Experiment Name Target Mass (kg) Detected Object(s)
[106] CDMS II Ge 3.75 ap, ic
[69] XENON10 Xe 5.4 sp, ic
[179] ZEPLIN II Xe 7.2 sp, ic

[107] SuperCDMS (Soudan) Ge 7.5 see CDMS II
[107] SuperCDMS (SNOlab) Ge 27 see CDMS II
[107] SuperCDMS (DUSEL) Ge 1140 see CDMS II
[180] EDELWEISS-2 Ge 9 ap, ic
[104] XENON100 Xe 170 see XENON10
[181] ZEPLIN III Xe 8 see ZEPLIN II
[181] ZEPLIN IV Xe 1000 see ZEPLIN II

Table 7.2: List of direct detection experiments considered. The first three experiments
listed (CDMS II, XENON10 and ZEPLIN II) have reported limits on neutralino-nucleus in-
teraction rates. The masses given for these three experiments are the reported fiducial
masses, while the masses for the other experiments are the nominal masses proposed. De-
tected objects are athermal phonons (ap), scintillation photons (sp) and ionization charge
(ic).

the table have been operational with larger installations planned. The table lists the target

types as well as the fiducial mass for currently running experiments and nominal masses for

planned experiments. For the planned experiments the fiducial mass will be taken to be

80% of the nominal mass. The method of detecting the scattering events is also listed and is

either via athermal phonons and/or ionization charge. The experiments which have already

reported data give background estimations which we will extrapolate to the larger mass

targets. Using the two target types of germanium and xenon we will present the resolving

power of multiple experiments as a function of exposure (mass×time) on a given target.

An important property of a given model will be the spin-independent cross section for

neutralino-nucleon scattering. Using the default nuclear form factors in DarkSUSY we com-

pute σSI
χp according to equation (3.12) with the results shown in Figure 7.2. The points are

grouped according to the value of the thermal relic abundance with: Ωχh2 > 0.1189 (darker

filled triangles), 0.025 < Ωχh2 < 0.1189 (lighter inverted triangles) and Ωχh2 < 0.025 (filled

circles). Also shown are the reaches associated with some of the experiments listed in Table

7.2 with the lines labeled by the appropriate experiment. For the XENON10 and CDMS II
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Figure 7.2: Spin independent neutralino-proton interaction cross-section as a func-
tion of mχ for the 378 models. The 378 models are divided into three groups: those
with Ωχh2 > 0.1189 (darker filled triangles), 0.025 < Ωχh2 < 0.1189 (lighter inverted trian-
gles) and Ωχh2 < 0.025 (filled circles). Sensitivity curves for several of the experiments in
Table 7.2 are overlaid on the plot with the curves taken from the web-based utility [182].

experiment the lines are the actual exclusion curves, while for the future experiments they

are the range which is expected to be probed. The ZEPLIN II data is not shown as it is

weaker, on the order of 10−42 cm2.

Based on the cross sections shown in Figure 7.2, it seems that some of the models ought to

have already been ruled out by direct detection experiments. Here it is argued that the plot

is somewhat deceptive in this regard as the experiments do not measure the cross sections,

rather they measure count rates of scattering events. The true relationship between the

event rates and the cross sections involves further assumptions about the local density of

relic neutralinos and the LSP velocity distribution. For the models considered here about

60% of the models have Ωχh2 ≤ 0.025 – including all of the models whose cross sections are
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above the XENON10 and CDMS II reach curves in Figure 7.2. If one rescales the models

with rχ in equation (3.10) where necessary then none of the models give rates which should

have been seen already, an example of why it is important to work with the count rates

rather than using just the cross sections.

As described in Chapter 3 the interaction rates of the degenerate pairs are computed via

integration of the interpolating function built by computing dR/dE from equation (3.15) in

0.5 keV intervals. The rates which are employed here reflect the range used by Xenon10 and

CDMS II in equation (3.16) so that the targets are considered for ranges

R1 : 5 keV ≤ Erecoil ≤ 25 keV

R2 : 10 keV ≤ Erecoil ≤ 100 keV , (7.6)

with RXe = R1 and RGe = R2. To compute the rates the default values of DarkSUSY 4.1

are used here and for the rest of the analysis. Proceeding with the analysis we now discuss

the expected background rates at the experiments considered.

The experiments considered all use similar background rejection methods involving the

collection of ionization charge. There are essentially two types of backgrounds “true” and

“fake” neutron recoils. The true background recoils happen when a neutron recoil occurs

though not via interaction from a neutralino, e.g. neutron interacts with alpha particles or

cosmic rays. These backgrounds can be reduced with proper shielding and by choosing a

sufficiently deep experiment site. The fake recoils refer to when electric charge is collected in

the correct time window with the other data signaling the recoil, but when the electric charge

is induced from something other than the neutron recoil. These electron recoil backgrounds

are harder to eliminate, but hopefully the necessary improvements can be made which are

anticipated in the reach curves shown in Figure 7.2.

In what follows a single overall background figure will be used for each type of target.

This is done so that one may use the entire collection of future experiments as an ensemble in
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order to try to resolve degeneracies. Projections for large scale germanium-based detectors

are for background event rates of no more than a few events per year of exposure. The

liquid xenon detectors project a slightly higher rate, but still on the order of 10-20 events

per year of exposure (mostly of the electron recoil variety). To be conservative, the following

requirements are used on two potential signals s to proclaim them distinguishable:

1. The count rates for the two experiments (NA and NB), obtained from integrating

equation (3.15) over the appropriate range in equation (7.6), must both exceed N events

when integrated over the exposure time considered. We will usually consider N = 100,

but also show results for the weaker condition N = 10.

2. The two quantities NA and NB must differ by at least nσAB, where we will generally

take n = 5.

The error term σAB is crucial to the ability of the experiments to be able to resolve degenera-

cies. We compute σAB in a manner similar to equation (7.3) by assuming that the statistical

errors associated with the measurement are purely
√
N

σAB =
√

(1 + f)(NA +NB) , (7.7)

and the overall multiplicative factor (1+f) allows us to be even more conservative by taking

into account a nominal background rate or allow for uncertainties in the local halo den-

sity. The theoretical errors associated with the uncertainties in the nuclear matrix elements

necessary to the calculation of σSI
χp are not included here but will be addressed later.

Using the distinguishability criteria none of the 378 models would have been distinguished

already in CDMS II, XENON10 or ZEPLIN II. Nine models would have given at least ten

events in 316.4 kg-days of exposure time in the Xenon10 experiment, and five would have

given at least ten events in 397.8 kg-days of exposure time in the CDMS II experiment. These

are models that could have been discovered at CDMS II (where no signal-like events were

observed in the data prior to [70] where they may have seen something) or nearly discovered
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at Xenon10 (where ten signal-like events were reported). However these models all have

Ωχh2 < 0.025 and upon rescaling ρχ by rχ none of the models give rates which should have

been detected.

In Figures 7.3 and 7.4 we show the percentage of 276 degenerate pairs which can be

distinguished as exposure time is accumulated in xenon and germanium targets. In both

figures we use a separation criterion of 5σ and assume no theoretical uncertainty. Heavy

(red) lines are labeled for xenon, thinner (blue) lines are labeled for germanium. Solid lines

have not been rescaled by the relic density ratio rχ, dashed lines have been rescaled. The

upper four lines are obtained by requiring only N ≥ 10 recoil events for both models. The

lower four lines are obtained by requiring N ≥ 100 recoil events for both models. The

predicted exposure after one year for three projected liquid xenon experiments is indicated

by the vertical lines as labeled, with the assumption of 200 days of data-taking per calendar

year with 80% of the mass from Table 7.2 used as a fiducial target mass.

Working under the assumption of perfect theoretical inputs, when two models are visible

above the background, they are easily distinguished. It is worthwhile to look at an example

of the degenerate pairs listed in Table 7.3. The two models were deemed indistinguishable at

Mass Parameters (GeV) LSP Wave Function

mN1 mN2 mC1 mτ̃1 mh µ B̃% W̃% H̃% Ωχh2

Point A 237 240 239 261 117.4 991 78% 21% 1% 0.0054
Point B 260 749 260 450 117.4 949 0% 99% 1% 0.0026

Table 7.3: Pair 212 of the 276 degenerate pairs. Some key parameters for the two
models making up degenerate pair #212. This particular case is an example of a “squeezer”
degeneracy, as so dubbed by the authors of [175].

the LHC by the authors of [175] and such a model was dubbed a “squeezer” as the mass gaps

in the electroweak gauginos in one model is small giving very soft, essentially undetectable

leptons. The other model has similar lepton signatures due to the stau masses which happens

by accident. Both models are physically acceptable although Ωχh2 is rather small due to the

Wino content of the LSP. The SI cross sections for the two models are σAχp = 3.61 × 10−45
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Figure 7.3: Distinguishability analysis in 500 kg-years of exposure. Plotted are the
number of degenerate pairs and the percentage of the total that can be distinguished as a
function of integrated exposure time. Both the exposure of germanium and xenon targets are
shown with heavy (red) lines corresponding to xenon and thinner (blue) lines corresponding
to germanium. The solid lines have not been rescaled by rχ, while the dashed lines have
been rescaled. The upper four lines require only N ≥ 10 recoil events for both models and
the lower four lines require N ≥ 100 recoil events for both models. The vertical lines are the
predicted exposure after one year for three xenon experiments as indicated and for this we
assume 200 days of data taking per year with 80% of the mass from Table 7.2 used as the
fiducial target mass.

cm2 and σBχp = 4.56 × 10−45 cm2. Without rescaling and using a xenon target we estimate

that after 1 ton×year exposure (not the same as “Xenon1T”) the number of events would

be NA = 1310 and NB = 1517. If the rates are rescaled then the numbers become NA = 282

and NB = 157 which using f = 0 (0.5) is a separation of 6.4σ (5.3σ).

The model pair just discussed is typical of the other degenerate pairs. The results are

further shown using various values for the factor f in equation (7.7) at different exposures

in Table 7.4. The models are still distinguishable to a good degree when f = 0.5, although

this has all been done assuming perfect knowledge of the nuclear matrix elements. These

tables indicate how well the experiments can potentially do to resolve the degeneracies but,

as we will discuss next, without improving the uncertainties in the nuclear matrix elements
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Figure 7.4: Distinguishability analysis in 5 ton-years of exposure. Same as Figure 7.3
but now for much larger exposures. The vertical line is our projection for one year of data
taking at the XENON1T experiment where again we assume 200 days of data taking per
year with 80% of the mass from Table 7.2 used as the fiducial target mass.

these results will be severely reduced.

Now we investigate the effects of the above analysis if we were to include uncertainties in

the nuclear matrix elements. Initially this issue was brought up by Ellis et al. [67] by looking

at the variation of σSI
χp which results from different inputs of the πN Σ term. We initially

looked into this by using the range of inputs of the πN Σ term as in Ellis et al. and found

an error in σSI
χp could occur as large as 50%, which was similar to the results of Ellis et al. as

well as others [68]. To look at the effect of the errors on the ability of the direct detection

experiments to distinguish models, uncertainties in the cross section are introduced via

(
δσSI

χ

)
theor

= ε× σSI
χ . (7.8)

For the moment assuming this is the only source of error then σAB becomes

σAB = ε
√
N2
A +N2

B , (7.9)
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With Density Rescaling

Require 100 Events Require 10 Events
Xenon Germanium Xenon Germanium

f = 0 f = 0.5 f = 0 f = 0.5 f = 0 f = 0.5 f = 0 f = 0.5
3σ 8 8 8 7 3σ 24 22 24 21

0.1 ton-yr
5σ 6 4 5 3 5σ 14 9 14 8
3σ 79 71 69 58 3σ 164 148 157 136

1 ton-yr
5σ 52 43 48 37 5σ 112 81 105 73
3σ 199 182 187 178 3σ 217 199 212 201

5 ton-yr
5σ 170 159 162 151 5σ 187 175 183 172

Without Density Rescaling

Require 100 Events Require 10 Events
Xenon Germanium Xenon Germanium

f = 0 f = 0.5 f = 0 f = 0.5 f = 0 f = 0.5 f = 0 f = 0.5
3σ 51 41 49 41 3σ 116 102 111 98

0.1 ton-yr
5σ 36 29 32 25 5σ 81 69 77 63
3σ 177 168 168 161 3σ 210 200 208 198

1 ton-yr
5σ 154 144 147 134 5σ 181 165 175 155
3σ 242 235 240 234 3σ 242 235 240 234

5 ton-yr
5σ 224 216 217 211 5σ 224 216 217 211

Table 7.4: Direct detection summary table. Shown are the number of pairs distinguish-
able after a given accumulated exposure in xenon or germanium, based on the integration
ranges specified in the text. Numbers in the upper table were computed with interaction
rates scaled by the quantity rχ, while those in the lower table are not rescaled.

which can be a huge number compared to that in equation (7.7)! Adding the new source of

error from equation (7.8) in quadrature with equation (7.7) now eliminates the potential for

the direct detection experiments to resolve degenerate pairs. The results of including various

values of ε for the analysis done above is summarized in Table 7.5. The values in the table

Require 10 Events, Xenon
ε = 0 ε = 0.1 ε = 0.25 ε = 0.5

3σ 164 118 13 0
1 ton-yr

5σ 112 46 0 0
3σ 217 149 25 0

5 ton-yr
5σ 187 77 0 0

Table 7.5: Effect of including theoretical uncertainties associated with nuclear
matrix elements. The number of pairs distinguishable after a given accumulated exposure
in xenon when the theoretical uncertainty from equation (7.8) is included. The experimental
error is taken to be purely statistical (f = 0) and require 10 signal events. Numbers in this
table were computed with interaction rates scaled by the quantity rχ.

can be compared to the upper right portion in Figure 7.4, which uses the same assumptions

for ε = 0. It is quiet clear that without improved values of the nuclear matrix elements
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then the direct detection experiments will be unable to distinguish models. However if the

errors can be reduced to the 10% level then there is hope for direct detection experiments

to possibly lift model degeneracies which may arise at the LHC.

7.4 Gamma rays

Here the ability to distinguish models using continuous photon signals from neutralino anni-

hilation in the galactic center is investigated. Monochromatic photons are also investigated

in [178], but this will not be discussed here. The focus will be on the Fermi/GLAST exper-

iment for the continuous photon signal. As in the case for the direct detection experiments

we will calculate the continuous photon flux and then proceed to turn this into a number of

photons in a given exposure (in units of area×time). The backgrounds will be outlined and

then a method of distinguishability will be introduced. Reach curves similar to those in the

previous section will be shown and finally the effect of considering a theoretical error in the

calculation from not knowing exactly the precise dark matter halo profile.

The method of computing the rates has been explained in Chapter 3. A given halo

model (from the choice of three in Table 3.1) will be assumed and then using equation (3.23)

the differential photon flux is computed. An interpolating function of dΦ/dE is then built

in 1 GeV steps over the range from 1 GeV to 200 GeV as appropriate for Fermi/GLAST.

Integrating the interpolation function over appropriate ranges will then give the photon flux,

Φγ. The photon flux has units of photons/(cm2×seconds) and choosing an effective area

for Fermi/GLAST for a given time of data acquisition one can create a number of expected

photons for a given model. These numbers of expected photons for the two degenerate model

pairs can then be compared to deem if the models are distinguishable using the photon signal.

The backgrounds of continuous photons from other astrophysical sources are not as easy

to deal with as the backgrounds in the direct detection experiments. The background photons

can be rather substantial and furthermore one needs accurate and reliable modeling of the
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background photon rate in order to be able to distinguish models. Gamma ray photons

which contribute to the background can be produced in a variety of ways; for some examples

see [183]. For photon energies in the range from 100 MeV to 1 TeV, which is relevant for

the neutralino annihilation, the sum of the various backgrounds can be modeled in terms of

the differential spectrum of the form [109]

d2Φbkg
γ

dΩdEγ
=

(
dΦbkg

γ

dΩdEγ

)
0

(
Eγ

1 GeV

)−2.7

(7.10)

in units of photons/(cm2×sec×sr×GeV). A reasonable value for the prefactor is

(
d2Φbkg

γ

dΩdEγ

)
0

' 9× 10−5 photons/cm2/s/sr/GeV (7.11)

in the direction of the galactic center. Using equation (7.11) and integrating equation

(7.10) over an energy range of 1 GeV ≤ Eγ ≤ 200 GeV with an angular resolution of

∆Ω = 10−5 sr gives about 100 photon events per m2×year of exposure. Typically a given

model is considered to be visible over the backgrounds if the flux is of order Φγ ' 10−10

photons/(cm2×sec×sr×GeV) [108, 110].

The backgrounds are not quite as straightforward as discussed above [183, 184, 185, 186].

The satellite-based experiment EGRET [187] found a higher than expected photon flux in

the direction of the galactic center for photons with energy in the range 100 MeV to 10 GeV.

Ground based ACT experiments have also observed large photon fluxes in the direction of the

galactic center for photons with energies in the range 200 GeV to 10 TeV [188, 189, 190, 191].

A good possibility for these large backgrounds in both cases may be new point sources near

the galactic center [192, 193] and it is expected that these point sources can be subtracted

from the diffuse signal expected from the neutralino annihilation. In [194] the dark matter

signals were separated from the background sources and we follow the method from [194] to

account for the EGRET signal.

To proceed we consider two types of background sources. The first is the “low” back-
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ground modeled by equation (7.10) using the prefactor as in equation (7.11). The second

is the “high” background modeled as in the low background case along with adding an

additional contribution

dΦEG
γ

dEγ
= 2.2× 10−7 × exp

(
− Eγ

30 GeV

)
×
(

Eγ
1 GeV

)−2.2

photons/cm2/s/GeV . (7.12)

to account for the EGRET measurement. The low and high backgrounds can now be used

along with the signal calculations in order to distinguish models.

The Fermi/GLAST satellite will be the experimental proxy from which we base the study.

The relevant parameters for the experiment are given in Table 7.6. The photon flux signal,

Emin Emax σE/E Aeff ∆Ω

GLAST 50 MeV 300 GeV 10% 1× 104 cm2 1× 10−5 sr

Table 7.6: Gamma ray Fermi/GLAST experiment. For the analysis presented in
this section we consider the gamma ray observatory of the Fermi/GLAST satellite-based
experiment.

Φγ, is found for six energy bins: 1-10 GeV, 10-30 GeV, 30-60 GeV, 60-100 GeV, 100-150

GeV and 150-200 GeV. The total gamma ray flux is also found for each model over the range

1 to 200 GeV. The following conditions are required in order for two degenerate models to

be deemed distinguishable using the continuous photon flux:

1. The total number of gamma ray photons Nγ collected by the experiment over the full

energy range 1 GeV ≤ Eγ ≤ 200 GeV must satisfy Nγ > 100. We require this to be

true of both models in the model pair.

2. We require in addition that a significant excess of gamma ray photons above back-

ground is observed in multiple, adjacent energy bins. The premise behind this re-

quirement is the desire to have some spectral information on the component of the

flux arising from dark matter annihilation to better separate this source from other

astrophysical sources. Specifically, if i = 1, . . . , 6 labels our six energy bins, then we
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demand Ni > m
√
Nbkg
i for at least three adjacent bins. Here Ni is the number of pho-

tons observed in that energy bin, Nbkg
i is the expected background count (computed

either with the “low” or the “high” background model), and m is the significance level

in units of signal/
√

bkgrnd. In what follows we will demand m = 2.

3. If the above two conditions are satisfied by models A and B then we will say that the

two potential signals are detectable. We will further say that they are distinguishable

if the condition |NA
i − NB

i | > n
√
NA
i +NB

i + 2Nbkg
i holds for at least three adjacent

bins, simultaneously. Results will be given for significance levels n = 3 and n = 5.

To get a sense of the signals which arise from the degenerate pairs we consider the total

integrated flux from 1 to 200 GeV. First we use the NFW profile and do not rescale the

local halo density by rχ with the total gamma ray flux shown in Figure 7.5. Also shown in

the figure are the various backgrounds integrated over the range 1 to 200 GeV. In the case

of the NFW profile if one includes the rescaling then the typical signals are on the order of

10−11 photons/(cm2×second) and are not easily visible above the backgrounds. In Figure

7.6 we show the total flux of the degenerate pairs using the NFW+AC halo profile and now

the models are rescaled by rχ if necessary. Using the more favorable profile results in more

models which can potentially be seen above background.

Using the distinguishability conditions we can now determine how well the models can

be separated as Fermi/GLAST accumulates data, with the exposure in units of m2×years.

In Figure 7.7 we show how well the models can be separated with the NFW+AC profile

using the low and high backgrounds as well as rescaling and not rescaling the data. Keep

in mind that an exposure of 1 m2×year does not translate into 1 year of data acquisition at

Fermi/GLAST since, for example, the telescope does not point in the direction of the galactic

center at all times. The solid lines use the low background estimation, while the dashed lines

use the high background estimation. The upper curves have not been rescaled by rχ while

the lower curves have been rescaled. The more conservative assumptions of rescaling with the
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Figure 7.5: Integrated photon flux for NFW profile. The differential photon flux is
integrated over the energy range 1 GeV ≤ Eγ ≤ 200 GeV for the NFW profile. In this plot
none of the rates have been rescaled by rχ. The flux from background sources are indicated
by the horizontal dotted lines for our “low” and “high” background models. Also shown is
the nominal sensitivity threshold claimed by the Fermi/GLAST collaboration.

high background result in only about 20% of the models being distinguished in 5 m2×years

of exposure. If we consider the rescaling and only the low backgrounds then about 40% of

the models can be distinguished in 5 m2×years. Relaxing the rescaling requirement results

in even more models which can be distinguished. Some further results are given in Table 7.7

for various halo profiles both for rescaled and not-rescaled models. Depending on the halo

profile used the results can vary quite a bit, and this brings us to the issue of just how to

interpret and use a halo profile.

The results which have been considered to this point have worked under the assumption

that one and only one halo profile describes the dark matter distribution in the galactic

center. Depending on the profile used the value for J̄ can vary quite a bit (see Table 3.1)

and the results clearly change with the choice of profile. Whether the halo model is made of
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Figure 7.6: Integrated photon flux for NFW profile + adiabatic compression.
Same as Figure 7.5 but with the addition of adiabatic compression. Here we have rescaled
the annihilation rate by the factor rχ.

one of a set of discrete options is not entirely clear either. If one treats the value of J̄ as an

undetermined free parameter we can then ask how well it needs to be determined in order

to distinguish models. In other words we consider an error on the halo profile by using

(
δJ
)

theory
= ε× J(∆Ω) , (7.13)

in a similar manner to the uncertainties in σSI
χp as discussed in the previous section. Using

the NFW+AC profile we computed the total gamma ray flux from 1 to 200 GeV with no

rescaling and considered the total number of photons collected after 3 m2×years. Then using

a 3σ separation we looked at how many models could be distinguished using various values of

ε. Using ε = 5%, 152, 102 and 22 model pairs of 276 total can be distinguished for the cases

of no, low and high backgrounds, respectively (for comparison look at the corresponding
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Figure 7.7: Distinguishability analysis at Fermi/GLAST. The lower two curves rescale
the local halo density by the factor rχ while the upper two curves have no rescaling. The
solid lines give the number of distinguished pairs using the “low” background estimate, while
dashed lines are for the “high” background estimate.

column in Table 7.7). Distinguishing models becomes steadily more difficult as ε increases,

for example ε ' 32% (low background) and ε ' 26% (high background) results in no models

being distinguishable under the assumptions here. Understanding the halo profile to the

5 − 10% level will be necessary in order to utilize Fermi/GLAST to resolve any degenerate

models.

7.5 Summary

Supersymmetry is a leading candidate for physics beyond the Standard Model and is likely

to be discovered at the LHC. Based on the results of [175] it is quite probable that more

than one candidate SUSY model will give a good fit to the ensemble of measurements which

will be made. If more than one model is a good fit to the data then orthogonal information

from other experimental arenas will be needed to break the degeneracies. Assuming that
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NFW NFW Moore
NFW adiab. comp. adiab. comp. adiab. comp.

not rescaled rescaled not rescaled rescaled

Background: low high low high low high low high
3σ 4 0 98 29 148 133 220 165

1 m2 yr
5σ 0 0 60 14 131 122 196 151
3σ 22 0 135 49 160 145 232 186

3 m2 yr
5σ 9 0 95 33 144 134 185 173
3σ 35 0 147 62 167 147 207 194

5 m2 yr
5σ 13 0 111 42 154 139 194 183

Table 7.7: Summary of integrated gamma ray fluxes.. Listed are the number of
pairs distinguishable at the n = 3σ and 5σ level for three different integrated exposures
at Fermi/GLAST. The four halo models assumptions are NFW without halo rescaling,
NFW plus adiabatic compression (with and without halo rescaling) and Moore et al. with
halo rescaling. Both the low (or standard) background estimate along with the EGRET-
normalized higher background are considered. Here the theoretical uncertainties for the halo
models are neglected.

the LSP is stable and the lightest neutralino then dark matter experiments offer just such

orthogonal information.

We have investigated a subset of the information from dark matter experiments which

may be available in the near future. When considering the direct detection and indirect

detection gamma ray experiments together one can generally do well at untangling the

degenerate models. Of course this statement assumes that near perfect understanding exists

of the theoretical inputs such as the nuclear matrix elements or the dark matter halo profile

at the galactic center. It is our hope that these uncertainties can be overcome by the time

that accurate measurements would be needed to break any potential degeneracies in the

LHC data.

Assuming that the theoretical uncertainties have been overcome we now summarize the

basic results. To discuss the results as a whole we also include the monochromatic gamma

ray experiment results from [178] which were not discussed here. The monochromatic signals

rely on atmospheric Cherenkov telescopes (ACTs) which have a much larger area and energy
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range than Fermi/GLAST, but they are ground based and only take data on clear nights.

For further information regarding the method of distinguishability and other details for the

monochromatic signals, see [178]. Three viewpoints are used to classify the results:

Conservative All the rates are rescaled by rχ = Min(1, Ωχh2/0.025). For the direct detec-

tion experiments at least 100 scattering events are required with 5σ separation between

the models including a factor of f = 0.2 and we assume 100 kg-years of exposure in

germanium and 1 ton-year of exposure in xenon. For the photon signals we assume a

NFW halo profile with adiabatic compression and signals are required to be separable

by 5σ (2σ) and be above background by 2σ (5σ) for the continuous gamma ray obser-

vations (monochromatic lines). The continuous photon signals are required to have at

least 100 photons with energy between 1 and 200 GeV and the “high” background is

used for 5 m2×years of exposure. The monochromatic photon signals are required to

have at least 10 photons and the “high” background is used for the generic ACT with

1000 m2×years of exposure.

Moderate The same as the conservative criteria, but now the background requirements are

relaxed. For direct detection experiments we require 10 events and set f = 0. For the

photon signals the “low” backgrounds are used and the ACT exposure is taken to be

2500 m2×years.

Optimistic The same as the moderate criteria but now no rescaling by rχ is done. The

germanium experiments are assumed to reach 1 ton×year of exposure, liquid xenon

experiments will have 5 ton×years of exposure and the ACT experiment will have

10000 m2×years of exposure.

Using these criteria the number of distinguishable pairs out of the 276 considered are tab-

ulated in Table 7.8. Again we stress that we assume the theoretical uncertainties as in

equations (7.8) and (7.13) have been brought under control.
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Conservative Moderate Optimistic
All Pairs

Direct detection, xenon 48 112 224
Direct detection, germanium 4 14 147
Gamma rays, continuum 56 115 158
Gamma rays, monochromatic 23 34 36

All Pairs, All Signals 101 186 245
Physical Pairs Only 34 55 77
ILC Inseparable Only 32 62 81

Table 7.8: Final distinguishability results. The final number of pairs from the original
set of 276 pairs which can be distinguished using all of the experimental data considered
here. In the upper section of the table the total number is broken down by the experiments,
note that many pairs can be distinguished by more than one set of observations. The set
of 77 physical pairs were defined in Section 7.2. The set denoted “ILC Inseparable” are the
103 pairs for which neither model had a charged superpartner below 240 GeV in mass. The
set of assumptions which define the Conservative, Moderate and Optimistic scenarios are
described in the text.
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Chapter 8

Conclusions

This thesis has focused on various aspects of dark matter and LHC phenomenology of non-

universal gaugino masses. Non-universalities in the gaugino sector are theoretically well

motivated as specific patterns can relate back to the mechanism responsible for mediating

supersymmetry breaking. Obtaining ratios of the soft SUSY breaking gaugino masses at the

low scale will offer important information as to the possible high scale models which may be

favored.

The string-motivated scenario of deflected mirage mediation was investigated with em-

phasis on the neutralino sector and the resulting dark matter signals. This model is intriguing

in its own right as gravity, anomaly and gauge mediated SUSY breaking contribute to the

soft terms. The gaugino sector of the theory is quite rich resulting in areas which give Bino,

Wino and mixed LSPs for a variety of LSP masses. This leads to a quite complex array of

predictions in the dark matter arena for the model. Regions of the parameter space where

the three mediation mechanisms are all operative are found in which the relic neutralino

is found with a thermal abundance in agreement with recent WMAP measurements. The

direct detection prospects are best for regions with mixed LSPs and may soon be probed at

the XENON100 experiment. There are regions of the space too which can possibly explain

the recent CDMS II data. Gamma ray signals have the best opportunities to be seen in the

near future in regions where the LSP is mostly Wino. Prospects for the signals at IceCube

are best for a mixed Higgsino/Wino LSP.

The recent CDMS II direct detection experiment reported the observation of two events

which are consistent with neutralino scattering from nucleons. We highlighted the ability of
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non-universalities in the gaugino masses to account for this signal as these types of models

have the largest spin independent cross sections. These models are in agreement with earlier

data from XENON10 and predict rates which ought to be clear signals at XENON100.

The gamma ray signals ought to be detectable over the astrophysical backgrounds at the

Fermi/GLAST experiment if one assumes a favorable dark matter halo such as the NFW

+ adiabatic compression. The models also have good prospects for detection at IceCube.

Some basic collider implications are that the models will likely not have as good of discovery

prospects using leptonic signatures at the LHC due to the compressed gaugino sector masses,

while the multijet signatures give strong signal significance. If models of these types are

favored as data is collected then they may offer a strong hint at the presence of non-thermal

production of relic neutralinos.

A simple parametrization of gaugino mass non-universalities was investigated for two

string-inspired benchmarks at the LHC. A single parameter α is used to make small pertur-

bations on the gaugino mass non-universalities in order to study the resulting LHC signa-

tures. Specific signature lists were analyzed which were constructed to track small variations

in α. These targeted observables can determine non-universalities in the gaugino sector using

a minimum amount of integrated luminosity. When taking the universal case as the point

of reference the signature lists can reveal the presence of non-universalities of α & 0.2 using

10-20 fb−1 of LHC data for the benchmark models. If the predicted values of α are used for

the benchmarks then a similar statement holds when one moves more than 0.2 in α away

from the predicted value.

If supersymmetry is discovered at the LHC then it is likely that more than one candidate

model may be able to describe the data. This scenario is called the LHC inverse problem

and we investigated the utility of dark matter observables to break these possible model

degeneracies. Using models pairs which were deemed degenerate we showed that a large

number of model pairs can indeed be distinguished using dark matter signatures from direct

detection and indirect gamma ray experiments. This relies on good knowledge of the back-
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grounds as well as assuming that theoretical uncertainties associated with nuclear matrix

elements and the dark matter halo can be brought under control. Often a model pair that

is not distinguishable involves neutralinos which are not of the same makeup and hence the

dark matter observables do quite well at revealing this fact, whereas the LHC does not.
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Chapter 9

Appendix

SM backgrounds

The SM backgrounds which are considered here are based off of the approach taken in the

LHC Olympics and the PYTHIA input cards for the SM processes can be found here [174].

The backgrounds consist of the following production modes: bb̄, tt̄, dijets, Drell-Yan, single

W , single Z, WW leptonic, ZZ leptonic and WZ leptonic. As an aid to help understand

the nature of the backgrounds used in the various analysis we show the 6ET distributions for

the various SM processes. The cuts applied to the LHC data sets typically rely quite heavily

on the 6ET cut as it greatly increases the signal significance.

The backgrounds were generated at the LHC for
√
s = 14 TeV using L1 triggers in PGS

for 5fb−1 of integrated luminosity. The WW , ZZ and WZ leptonic data sets are combined

into the XX leptonic backgrounds. In Figures 9.1 and 9.2 we show the normalized 6ET

distributions for the backgrounds, where an additional cut of 6ET ≥ 100 GeV has been

applied.

bb̄ tt̄ dijets Drell-Yan W Z WW ZZ WZ
σ [pb] 4200 540 4270 4980 3110 2590 20 0.2 2

Table 9.1: SM background cross sections.
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Figure 9.1: SM background 6ET distributions.
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Figure 9.2: SM background 6ET distributions.
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