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A Survey on Analog-to-Digital Converter
Performance with Respect to Ionizing Radiation

Steffen Mueller, Robert Weigel, and Alexander Koelpin

Abstract—This paper discusses radiation performance evolu-
tion of analog-to-digital converters, based on a comprehensive
empirical analysis of both, experimental reports and datasheet
specifications including commercial devices, radiation hardened
parts, and scientific converters.

Index Terms—Analog-to-digital converter, survey, radiation
effects, COTS, SEE, TID.

I. MOTIVATION

Radiation effects within analog-to-digital converters (ADCs)
have been subject to research since more than 25 years [1].
Since ADCs are complex devices that integrate both, analog
and digital circuitry, while being available at different perfor-
mance classes, architectures, and corresponding semiconductor
technologies, assessment of radiation response becomes not
intuitive. Although numerous results on individual parts have
been reported by the radiation effects community, the big
picture regarding state-of-the-art radiation performance is still
missing. This is especially severe for system designers as ADC
is a key component of digital signal processing (DSP) systems
that significantly determines system’s architecture and overall
performance. Furthermore, there is a lack for comparative
analysis of single results from previous investigations in order
to allow derivation of trends and benchmarks with respect to
advances in circuit and semiconductor technology. Goal of
this survey is to compile results for a representative number
of distinct devices in order to unveil the evolution and the
practical limits of ADC radiation performance to the present.

II. COMPILATION

A. Data Collection

In total, 149 distinct devices were identified for which
radiation data in terms of single-event effects (SEE) or total
ionizing dose (TID) results are available. The compilation
comprises different device classes grouping into commercial
off-the-shelf (COTS) components, military rated (mil) devices,
radiation hardened (radhard) parts, and scientific converter
implementations. Simulation-only results were excluded from
this study due to their limited practical relevance and lack for
comparability. Data was gathered from scientific publications
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which have been reported by the radiation effects community
since early 1980s, and supplemented by datasheet specifica-
tions in the case of commercially available radhard parts.

B. Functional Performance Limits

Fig. 1 shows the total market of 2642 commercial devices
that are available in 2016 from leading manufacturers versus
the compilation, yielding a coverage of less than 6 %. Using
(1) as a metric for functional performance (i. e. neglecting any
radiation criteria) according to Walden’s approach [2],

P = 2N · fS (1)

where N refers to the stated resolution and fs to the maximum
sampling rate, follows that the compilation is limited by the
isometric slope P = 213 · 109 while the total market is
bounded by P = 216 · 109. In other words, the compilation’s
functional performance lags 3 bit or factor 8 in sampling rate,
respectively. This corresponds to a technology gap of 12 years,
considering that the speed-resolution product given by (1)
typically doubles every four years [3]. The gap is expected
to originate from the slow adoption rate for new technology
nodes by the radiation community [4], and was similarly found
for other devices, such as microprocessors, as well [5].

From Fig. 1 get obvious that vertical resolution is virtually
bounded by 12 bit for scientific types, while the majority of
radhard parts is limited by 14 bit. The range beyond 16 bit is
covered by COTS only. One the other hand, radhard converters
are available at GSa/s performances where equivalent COTS
have been barely subject to investigations.

C. Device Classes, Converter Architectures, and Technologies

COTS and military rated devices contribute by 72 % to this
study, owed to the empirical approach for up-screening of can-
didate devices that are not hardened by design. Investigations
on scientific converters have 10 % share only, which might be a
consequence of huge efforts for application specific integrated
circuit (ASIC) design and testing, together with the fact that
results are often under disclosure, thus not available to the
general public. Radhard devices have 18 % share only, which
underlines their limited coverage of performance range.

Pipeline (42 %) and successive approximation register
(SAR) converters (45 %) taken together cover the majority of
devices, since these architectures are popular for mainstream
converter implementations. Whereas sigma-delta modulator
(5 %), flash (4 %), and folding/interpolation converters (3 %)
are rather uncommon as they apply either for high resolution or
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Figure 1. Total market of commercial ADC in 2016 (black dots) versus compilation of devices for which radiation data is available (colored symbols).

high-speed applications. Thus knowledge on radiation effects
mainly reduces to Pipline and SAR types.

More than two thirds of devices under investigation are
fabricated in CMOS technology. Thanks to its good scaling
potential together with advances in circuit design such as
switched-capacitor technology, CMOS qualifies for a broad
range of today’s converters. Bipolar (21 %) and BiCMOS
(11 %) devices typically appear either in legacy or in high-
speed converters where bipolar outperforms CMOS regarding
required switching capabilities.

According to Fig. 2 the predominant technology node is
180 nm, but even some legacy technologies are reasonably
investigated and still in use. Unfortunately, technology insight
is rather a blind spot of COTS testing, hence publications often
lack for feature size information. Nevertheless, feature sizes
could be determined for 70 % of devices of this compilation,
allowing to draw reasonable trends on scaling.

III. RADIATION PERFORMANCE ANALYSIS

A. Total Ionizing Dose

1) Scaling: Fig. 3 depicts feature size versus TID threshold
for functional failure1 with respect to different device classes

1In this context, functional failure is considered as the threshold dose up
to which the device is usable to its intended functionality, including possible
parameter degradation. For radhard devices it is regarded as the minimum
specified dose for radiation tolerance given in the datasheet.
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Figure 2. Compilation’s distribution by feature size.

and process technologies. Apparently TID is inversely propor-
tional to feature size L squared. This trend can be related
to the effect of gate threshold voltage shift ∆Vth due to
charge buildup in oxides which is considered as the primary
mechanism for degradation in MOS platforms [6]. It is known
from [7] that ∆Vth is proportional to gate oxide thickness tox
according to

∆Vth ∝ t2ox (2)

Regarding ∆Vth as a measure for radiation-induced damage,
it follows that TID tolerance is the reciprocal of ∆Vth. Taking
Dennard’s concept of constant field scaling [8] into account,
i. e. all physical dimensions of transistors (including L and
tox) are reduced by the same factor, Eq. (2) can be rewritten
to

TID ∝ 1

L2
(3)

From Fig. 3 gets obvious that commercial CMOS technologies
clearly benefit from scaling, although performances scatter
partly by factor 10 from the expected projection. Scientific
converters mainly stick close to the trend. Radhard devices
are not expected to follow the trend strictly, as these parts are
usually specified and optimized for TID tolerances between 1
to 3 kGy which are common values for space qualified devices.

Eq. (3) is expected to be not necessarily valid for deep
sub-micron nodes (<100 nm), as additional effects may arise
for these technologies affecting TID response, e. g. tunnel
annealing in very thin oxides (< 20 nm) [9] or increased 1/f
noise that scales with 1/L3 in MOS devices [10].

2) Device Properties: Fig. 4 shows device properties in
terms of sampling rate and resolution compared to TID for
functional failure, where closed symbols represent COTS and
open symbols denote either radhard or scientific parts. TID
tolerance appears to be relatively independent from device
resolution, whereas it seems to increase with sampling rate.
The latter is consequence of the fact that high-speed devices
are usually based on latest technologies with small feature
sizes.
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Figure 3. Feature size versus TID threshold for functional failure with respect
to different device classes and technologies (dashed line is not a fit).
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Figure 4. Sampling rate versus TID for functional failure with respect to
different resolutions and device classes (filled symbols represent COTS, open
symbols denote radhard or scientific parts).

B. Single-Event Effects (SEE)

Fig. 5 shows the LET threshold for single event latchup
(SEL). Although being widespread, the expected trend of
increased SEL sensitivity with respect to smaller feature sizes
is observable. Best performers of COTS category achieve an
LET threshold of 60 MeVcm2mg−1 at small feature sizes.

C. Combined Performance

Fig. 6 shows the combined TID and SEL performance
from previous sections. The leading edge towards the upper
right corner is given through scientific converters and CMOS
radhard parts. As expected COTS are widespread and bounded
by upper performance limit at LET of ~85 MeVcm2mg−1 and
TID of 1 kGy. A few bipolar COTS are fairly competitive com-
pared to dedicated radhard parts by achieving LET immunity
at 120 MeVcm2mg−1 together with high TID at 10 kGy.
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Figure 5. LET threshold for single event latchup versus feature size with
respect to different device classes and technologies.
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Figure 6. TID threshold for functional failure versus LET threshold for single
event latchup with respect to different device classes and technologies.

IV. COMPARABILITY

Correlation of large amount of data from different investi-
gations makes a discussion on comparability necessary.

A. Device Classes

Comparison of different device classes is not fair per se.
COTS are intentionally not hardened by design, while radhard
and scientific converters apply sophisticated circuit techniques
together with special process technology in order to mitigate
radiation effects. In addition, radhard devices feature a spec-
ified performance with a design margin usually on top, thus
their absolute performance may be underestimated. Scientific
converters are typically at early experimental stage where
detailed device characterization (electrical, environmental, ra-
diation) is often pending, making comparison difficult.

B. Experimental Conditions

COTS and scientific devices are usually experimentally in-
vestigated by different research groups and at distinct facilities.
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Several factors introduce variability to experiments that may
alter radiation responses and lead to over- or underestimation
of results, e. g. facility configuration (calibration, dosime-
try, ambient temperature), beam factors (uniformity, particle
species and energy spectra, dose rate, flux, angle of incidence),
electrical configuration (bias vs. unbiased operation, static
vs. dynamic input), die preparation (delidding, burn-in), test
procedure (standardized vs. non-standardized), data acquisition
method (manually vs. online), definition of failure criteria and
thresholds.

V. CONCLUSION

Assessment of ADC radiation performance is complex
due highly individualized investigations on a broad range of
devices. Based on a large compilation of devices, trends and
limits could be derived that make ADC performance evolution
and state-of-the-art visible. However, discussion on compa-
rability is necessary when correlating results. As far as the
authors are aware, this is the most comprehensive collection
and comparative analysis on ADC radiation performance to
this date that may serve as baseline for future investigations.
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