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Coupled DGLAP equations involving singlet quark and gluon distributions are explored by a Taylor expansion at

small x as two first order partial differential equations in two variables: Bjorken x and t (t = lnQ2

Λ2 ). The system of

equations are then solved by the Lagrange’s method and Method of Characteristics. We obtain the proton structure

function FP
2 by combining the corresponding non-singlet and singlet structure functions by both the methods.

Analytical solutions for FP
2 thus obtained are compared with the data available and their compatibility is checked.

Data favours the analytical solution by Lagrange’s method.

1. Introduction

Solutions of DGLAP [1, 2, 3, 4] evolution equations give quark and gluon structure functions which produce

ultimately proton, neutron and deuteron structure functions. The standard program to study the x dependence of

quark and gluon PDFs is to compare the numerical solutions of the DGLAP equations with the data and so to fit the

parameters of the x profiles of the PDFs at some initial factorization scale Q2
0 and the asymptotic scale parameter Λ.

However, for analyzing exclusively the small-x region, there exists alternative simpler analysis, some of which are

the existing analytical solutions of the DGLAP equations in the small-x limit with considerable phenomenological

success [5, 6, 7, 8, 9]. In this work, we make an extensive comparative study on the applicability of two analytical

methods: Lagrange’s method [10] and method of characteristics [11, 12, 13] in context of the unpolarized proton

structure function FP
2 . This suggests utility of such approaches in understanding the dynamics of evolution of

quarks and gluons at small x.

In Section 2 we describe the formalism, Section 3 is devoted to testing our prediction’s comparison with the data,

while in Section 4, we give our conclusion.

2. Formalism

2.1 Singlet coupled DGLAP equations in Taylor approximated form

In order to get the FP
2 we need both singlet and non-singlet structure functions. In our earlier work [5] we

reported our analytical solutions by the two analytical methods . Hence we discuss only the solution for the quark

singlet part here. The coupled DGLAP equations for quark singlet (Σ(x,Q2)) and gluon (G(x,Q2)) densities are

[1, 2, 3, 4],

∂

∂ lnQ2
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Introducing the variable t = ln Q2

Λ2 and using the explicit forms of the splitting functions Pi,j(i, j = q, g), the

evolution equation for singlet distribution in LO can be written as
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Here Af = 4
3β0

, β0 = 11 − 2
3nf and αs(t) = 4π

β0t
. FS

2 (x, t) is the singlet structure functions of the proton.

Introducing a variable u defined as u = 1 − z and doing Taylor approximation we can express equation (2) in a
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more precise form as
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The exact relation between the gluon distribution function G(x, t) = xg(x, t) and quark distribution function

FS
2 (x, t) = x

∑

i e
2
i {qi(x, t) + q̄i(x, t)} is not derivable in QCD even in LO. However, simple forms of such

relation are available in literature to facilitate the analytical solution of coupled DGLAP equations [14, 15]. A

more rigorous analysis was done by Lopez and Yundurain [16] and they investigated the behaviour of the singlet

FS
2 (x,Q2) and gluon G(x,Q2) as x → 0. They observed that,

FS
2 (x,Q2)x→0 = Bs(Q

2)x−λs , (4)

G(x,Q2)x→0 = BG(Q
2)x−λs , (5)

where Bs and BG are Q2 dependent and λs is strictly positive. Thus,

G(x,Q2)

F (x,Q2)x→0

≃ f(Q2). (6)

It suggests a more general form [17],

G(x,Q2) = k(Q2)FS
2 (x,Q2). (7)

Using above relation given by equation (7), we express equation (3) as
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Which is a partial differential equation for the singlet structure function FS
2 (x, t) with respect to the variables x

and t. We solve this PDE equation (8) with the two formalisms described here, the Lagrange’s method and Method

of Characteristics. In order to do that we express equation (8) as

t
∂FS
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where
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2.2 Solution by the Lagrange’s Auxiliary Method

To solve the equation (9) by the Lagrange’s Auxiliary method [10], we write the equation in the form,

Q(x, t)
∂FS

2 (x, t)

∂t
+ P (x, t)

∂FS
2 (x, t)

∂x
= R(x, t, FS

2 (x, t)), (12)

where

Q(x, t) = t, (13)

P (x, t) = −ω1, (14)
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and

R(x, t, FS
2 (x, t)) = R′(x)FS

2 (x, t) (15)

with

R′(x) = ω2. (16)

If u(x, t, FS
2 ) = C1 and v(x, t, FS

2 ) = C2 are the two independent solutions of equation (12), then in general, the

solution of equation (12) is

F (u, v) = 0, (17)

where F is an arbitrary function of u and v. Using the physically plausible boundary conditions and solving the

auxiliary system for u and v, we obtain the solution for equation (12) as

FS
2 (x, t) = FS

2 (x, t0)
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t
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[XS(x)− ( t
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(18)

with the explicit analytical form of XS(x) in the leading ( 1
x
) approximation are,

XS(x) = exp

[
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log[log x]
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, (19)

leading to

XS(1) = 0 (20)

which yields,
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(

t

t0

)

. (21)

Equation (21) gives the t evolutions of singlet structure function at LO.

2.3 Solution by the method of characteristics

To solve the PDE equation (9) by the method of characteristics, we express it in terms of a new set of coordinates

(s, τ), such that equation (9) becomes an ODE w.r.t. one of the new variables. The characteristic equations of

equation (9) are given by,

dt

ds
= t, (22)

dx

ds
= −ω1. (23)

The left hand side of equation (9) can be expressed as an ordinary derivative with respect to t and the equation

becomes an ordinary differential equation:

dFS
2 (s, τ)

dt
+ cS (s, τ)FS

2 (s, τ) = 0, where cS(s, τ) = ω2. (24)

Integrating equation (24) over t from t0 to t along the characteristic curve, the solution of the equation for charac-

teristic equations leads us to the solution for FS
2 (x, t) as

FS
2 (x, t) = FS

2 (x, t0)(
t

t0
)n(x,t) (25)
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where,
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Figure 1. Proton structure function FP

2 (x, t) as function of Q2 at different x values using Lagrange’s method. Data are taken

from E665 [19].

2.4 The function K(Q2)

Traditional determination of quark and gluon distribution function includes simultaneous fitting of experimental

data (mainly at small x) of the proton structure function FP
2 (x,Q2) measured in deep inelastic scattering, with a

large number of values of x and Q2. The most appropriate QCD inspired functional form for the function K(Q2)
has to be of the logarithmic form and we consider it to be,

K(Q2) = (log
Q2

Λ2
)σ, (30)

where σ is a parameter to be determined. To determine the ’best-fit’ value for σ, we consider the input PDFs at

entire x region. Our analysis yields that the best-fit value of σ lies in between 2 and 3 for Q2 = 2 GeV2. For our

further calculations we take the average and fix σ = 2.5.
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Figure 2. Proton structure functionFP

2 (x, t) as function of Q2 at different x values using Method of characteristics. Data are

taken from E665 [19].

2.5 Results and Discussion

We check the compatibility of the analytical methods in terms of proton structure function FP
2 , which we derive

combining our analytical solutions for both non-singlet [5] and singlet structure functions to calculate the proton

structure function. We use the MSTW 2008 [18] input for evolution and the range of data considered for compari-

son are 0.0052 ≤ x ≤ 0.18 and 1.094 GeV2 ≤ Q2 ≤ 34.27 GeV2 for E665 [19]. Figs. 1 and 2 show comparison

of our analytical results for FP
2 obtained by Lagrange’s method and method of characteristics respectively, with

E665 experimental data within small x and low Q2 range 0.0052 ≤ x ≤ 0.04897 and 1.093 GeV2 ≤ Q2 ≤ 25
GeV2. Though the evolution of analytical result by Lagrange’s method conforms well with data, that of method

of characteristics decreases with increasing Q2, which is against the general expectations of pQCD. The Q2 de-

pendence of the function K(Q2), given by equation (7) is playing an important role in our analytical solutions.

For hence it shows in the solution by equation (25) by method of characteristics, though in case of the solution by

Lagrange’s method, equation (21), it does not have any visible effect, due to the consideration of 1
x

limit.

3. Conclusion

This work is an extension of the comparative study of the two important analytical methods, Lagrange’s and

Method of Characteristics for proton structure function FP
2 , derived from corresponding analytical solutions for

FNS
2 and FS

2 . For this part we pursue a general form as given by equation (7), relating FS
2 (x,Q2) and G(x,Q2) for

comparison with theoretical analysis of [16]. The solution by Method of Characteristics has exclusive dependence

on the relation. However, data analysed in the range 0.0052 ≤ x ≤ 0.04897 and 1.093 GeV2 ≤ Q2 ≤ 25 GeV2 is

found to favour the former (Lagrange’s method) and not the later (Method of Characteristics).
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