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Abstract. We have studied the geodesics of neutral particles near a non-rotating, charged five-
dimensional Reissner-Nordström Anti-de Sitter black hole using the effective potential analysis
and the dynamical systems analysis. The effective potential analysis is used to determine the
location of the horizon and to study radial and circular trajectories. The dynamical systems
method is used to determine the stability and the fixed points of the phase trajectories.

1. Introduction
With the development of string theory, the study of black holes in higher-dimensional spacetimes
[1] have gained momentum, especially in the first decade of this millennium [2]. Static,
spherically symmetric exterior vacuum solutions of the braneworld models were first proposed
by Dadhich and others [3]. Extensive studies in higher-dimensional spacetimes over the last
few decades have led many authors to investigate the geodesic motions in such spacetimes [4].
Motion of massive particles around a rotating black hole in a braneworld has been studied [5] and
the effective potentials for radial null geodesics in RN-dS and Kerr-dS spacetimes were analyzed
[6]. Analytic solutions of the geodesic equations in Schwarzschild-(Anti-)de Sitter spacetimes
[7] and the motion of massive particles in 4-dimensions and in higher dimensions, has been
analysed. Here we have investigated the radial and circular trajectories for photons and massive
particles in a five-dimensional RN-AdS spacetime and have determined the fixed points of the
phase trajectories. For such a non-rotating charged black hole in Anti-de Sitter spacetime, the
solutions are uniquely characterized by their mass, charge and the cosmological constant [8].

2. Preliminaries
We consider a 5D spacetime with negative cosmological constant Λ. The radius of curvature

l =
√
− 3

Λ of the spacetime provides the length scale necessary to have a horizon. The exterior

metric of the black hole field is given by

dS2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

3 = −4
r4
dt2 +

r4

4
dr2 + r2dΩ2

3. (1)

The Lapse function is defined as: f(r) = 1−
(

2M
r

)2
+
(
q2

r2

)2
− Λr2

6 .
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For a given M , q and Λ, the horizon function 4 depends only on r. The nature of the
intrinsic singularity at r = 0, depends on Λ and q, which we choose such that the spacetime do
not have any spacelike naked singularity. The lapse function and the effective potential vanishes
at the real, positive zeros of the horizon function 4, indicating the location of the horizons. The
variation of the effective potential Veff with specific radius r/M in the case of radial motion of
massive particles, in the field of the black hole, are shown in Fig.1 and Fig. 2 for different range
of values of the r/M . The location of the horizons can be easily identified from these figures.

Figure 1. Plot of effective
potential Veff vs radial distance
h = r/M in the case of radial
motion of massive particles with
q/M = 0.5 and Λ = −0.0005 for
r/M = 0 to 6.

Figure 2. Plot of effective
potential Veff vs radial distance
h = r/M in the case of radial
motion of massive particles with
q/M = 0.5 and Λ = −0.0005 for
r/M = 6 to 500.

3. Five-dimensional Geodesics
Due to spherical symmetry, we analyze the motion of neutral particles on the equatorial
hyperplane, θ, φ = π/2. We have the following equations:

d2t

dλ2
+
B(r)

A(r)

dt

dλ

dr

dλ
= 0,

d2ψ

dλ2
+

1

r

dr

dλ

dψ

dλ
= 0, (2)

d2r

dλ2
+A(r)B(r)

(
dt

dλ

)2

− B(r)

A(r)

(
dr

dλ

)2

+ rA(r)

(
dψ

dλ

)2

= 0, (3)

where A(r) = −f(r) and B(r) = 1
r

(
−
(

2M
r

)2
+ 2

(
q2

r2

)2
+ Λr2

6

)
.

4. Effective Potential Analysis

The Lagrangian for particle motion is:  L = −
(

1−
(

2M
r

)2
+
(
q2

r2

)2
− Λr2

6

)
ṫ2

+

 ṙ2

1−( 2M
r )

2
+

(
q2

r2

)2

−Λr2

6

+ r2(θ̇2 + sin2θφ̇2 + sin2θsin2φψ̇2)

.

There are two conserved quantities: Energy, E = gtt
dt
dλ = −f(r) dtdλ = A(r) dtdλ , and

momentum L = r2 dψ
dλ conjugate to ψ.

On the equatorial hyperplane we have,
(
dr
dλ

)2
= E2 − 4

r4

(
ε+ L2

r2

)
= E2 +A(r)

(
ε+ L2

r2

)
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so that 1
2

(
dr
dλ

)2
= Eeff − Veff (r), where Eeff = 1

2E
2 and

Veff (r) = 4
2r4

(
ε+ L2

r2

)
= 1

2

(
1−

(
2M
r

)2
+
(
q2

r2

)2
− Λr2

6

)(
ε+ L2

r2

)
.

Radial motion: Here L = 0. For bound states of massive particles, we have 4M2

r3 > 2q4

r5 + Λr
6 .

Figure 3. Veff vs radial dis-
tance h = r/M in the case of
radial motion of massive particles
with q/M = 1/

√
2 and Λ =

−0.5,−0.0005 (orange and black).

Figure 4. Veff vs radial distance
for circular motion of massive
particles with q/M = 1.1 and Λ =
−0.05,−0.0005 (orange and black).

Circular motion: We now introduce the variable change u = r−1. For equilibrium circular
orbits,we have

L2 = ε[6q4u6−12M2u4+Λ/2]
3u4[−3q4u4+8M2u2−1]

and E2 = ε[6q4u6−24M2u4+6u2−Λ][3q4u6−12M2u4+3u2−Λ]
18u4[3q4u4−8M2u2+1]

.

For photons, we have u2 =
4M2±

√
16M4−3q4

3q4 . Therefore, circular orbits occur for only two

values of u in the case of photons.

4.1. Stability of the orbits
The stable circular orbits occur for those values of r which are located at the local minimum of
the potential. Here we obtain

Veff (r) =
1

2

1−
(

2M

r

)2

+

(
q2

r2

)2

− Λr2

6

(1 +
L2

r2

)
. (4)

For 4M2L2 = q4 and 4M2 6= L2, we have r2
ISCOM =

√
30Lq2

(4M2−L2)+
√

(4M2−L2)2+30L2q4Λ
, giving only

two real values of r for massive particles, if (4M2 − L2)2 > |30L2q4Λ|.
The minimum radius of stable circular orbits of photons is obtained as:

rmc >
√

15q2√
12M2−

√
144M4−15q4

.

5. Dynamical Systems Analysis
Let us define three new variables [9]: U = dt

dλ , V = dr
dλ and W = dψ

dλ .
Thus the geodesics equations are:
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dU
dλ + B(r)

A(r)UV = 0, dW
dλ + 1

rVW = 0 and dV
dλ +A(r)B(r)U2− B(r)

A(r)V
2 + rA(r)W 2 = 0,

which are related through A(r)U2 − 1
A(r)V

2 + r2W 2 = −ε.
Real non-linear dynamical system:

We now assume dU
dλ = H(U, V, r), dr

dλ = V and dV
dλ = J(U, V, r), where H(U, V, r) = −B(r)

A(r)UV ,

J(U, V, r) = εA(r)
r − A(r)

r (rB(r)−A(r))U2 − 1
rA(r)(A(r)− rB(r))V 2.

Fixed Points: For a black hole with a given M and q, (0,0) is the unique fixed point on the
(U -V ) plane for null geodesics. The timelike geodesics possess definite fixed points.

The phase evolution of the system on the (U -V ) phase plane is determined from the
condition dV

dU = J
H , provided H 6= 0 (except at the point (0,0) for null geodesics). Simplifying,

we get f1U
2 − f2V

2 − f3 = 0, where f1, f2 and f3 are functions of r. For null geodesics, we get
f3 = 0.

Thus the geodesics of massive particles near a black hole in a RN-AdS5 possesses definite
fixed points and the orbits are either elliptic (periodic bound) or hyperbolic (escape orbits).
Moreover, for a black hole of a given charge and mass, the null geodesics possesses a unique
fixed point (U0 = 0, V0 = 0, r0). The trajectories are linear, with their slopes changing according
to the values of the parameters f1 and f2. Hence the null geodesics are terminating orbits.

6. Conclusions
We have determined the location of the black hole horizons from the plot of effective potential.
The nature of the trajectories depend upon the particle energies and their angular momenta,
as well as on Λ and q. The radius of the innermost stable circular orbit of massive particles is
totally defined in terms of their angular momenta and M and q of the black hole. Photons trace
out circular trajectories for only two distinct values of r. The geodesics of massive particles near
a black hole in a RN-AdS5 are either periodic bound or escape orbits and these have definite
fixed points. The null geodesics have a unique fixed point and these are terminating orbits.
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