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ABSTRACT: This contribution is devoted to a comparison between solitonic solutions
in noncommutative field theories and tachyonic lumps in vacuum string field theory. We
analyze in detail a sequence of the latter in the presence of a constant background B field.
We show, in particular, that there exists a remarkable isomorphism with the sequence of

so—called GMS solitons in noncommutative field theories.

1. Introduction

This contribution is devoted to a comparison between classical solutions in vacuum string
field theory (VSFT) and in scalar noncommutative field theories. In particular it is possible
to establish a one-to-one correspondence between tachyonic lumps, i.e lower dimensional
D-branes, in the former and solitonic solutions in the latter. This correspondence is fully
exposed by introducing a constant background B field.

VSFT
VSFT is a version of Witten’s open SFT [1] corresponding to the minimum of the
tachyon potential. Witten’s string field theory action is

S =~ | 2w ouy+ Lw vy (1.1)
95 L2 3

This action represents open string theory about the trivial unstable vacuum |¥g) = ¢;|0).
It was argued by A.Sen, [J], that at the minimum of the tachyon potential a dramatic
change occurs in this theory, so that corresponding to the new vacuum it represents closed
string theory rather that the open string theory we started with. In particular, this theory
is expected to host tachyonic lumps representing unstable D—branes of any dimension less
than 25. Unfortunately we have been so far unable to find an exact classical solution, say
|®g), representing the new vacuum. One can nevertheless guess the form taken by the
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theory at the new minimum, see [3]. The VSFT action has the same form as (1.1), where
the new string field is still denoted by ¥, the * product is the same as in the previous
theory, while with the BRST operator @ is replaced by a new one, usually denoted Q,
which is characterized by universality and vanishing cohomology. In the Siegel gauge,
relying on such general arguments, one can even deduce the precise form of Q ([4],[5], see

also 6, 7, 8, U, 10, 1] and [[2, 43, 14, 15, 16, 17, 18]),

Q=co+ (=)™ (con + c—2n) (1.2)

n>0

Now, the equation of motion of VSFT is
QU = —U x T (1.3)
and nonperturbative solutions are looked for in the form
T=7,07, (1.4)

where ¥, and ¥,, depend purely on ghost and matter degrees of freedom, respectively.
Then eq.(f.3) splits into

QU, = U, x T, (1.5)
U,y = Uy # U,y (1.6)

We can assume that the solution for the ghost part is calculated once and for all (this
was done in 1Y, 5]) and remains always the same, while the solution for the matter part
varies. Therefore Eq.(il.5) will not be involved in our analysis and we will concentrate on
the solutions of (iL.6).

The value of the action for such solutions is given by

S(¥) = KW |Wim) (1.7)

where K contains the ghost contribution. It must be remarked, as shown in [[2], K is
infinite unless the action is suitably regularized. The choice of a regularization should
be understood as a ‘gauge’ freedom in choosing the solutions of (.3), so that a coupled
solution of (I.5) and (1.8), even if the action is naively infinite in its ghost component, is
nevertheless a legitimate representative of the corresponding class of solutions.

Solitons in noncommutative field theories

After this short introduction to VSFT, let us now briefly describe solitons in noncom-
mutative field theories, (see [20] for a beautiful review). Noncommutative field theories
are effective low energy field theories which live on the world-volume of D—branes in the
presence of a constant background B field. To be definite, let us think of a D25-brane
in bosonic string theory. The simplest example of effective theories is a noncommutative
theory of a scalar field ¢, which is thought to represent the tachyon living on the brane
(this is an oversimplified situation, in fact one could easily take the gauge field as well into
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account, while the massive string states are thought to having been integrated out). We
concentrate on the case in which B is switched on along two space directions, which we de-
note by z = g and y = p (from now one, for simplicity, we will drop the other coordinates).
The coordinates become noncommutative and the ensuing situation can be described by
replacing the initial theory with a theory in which all products are replaced by the Moyal
* product with deformation parameter 6 (linked to B as explained below). Alternatively
one can use the Weyl map and replace the noncommutative coordinates by two conjugate
operators ¢, p, such that [¢,p] = i0. In the large 6 limit, after a suitable rescaling of the
coordinates, the kinetic part of the action becomes negligible, so only the potential part,
[ dzdy Vi(¢), is relevant. Using the Weyl correspondence, the action can be replaced by
27l TrHV(qg), where # is the Hilbert space constructed out of §,p, and ¢ is the operator
corresponding to the noncommutative field ¢. Solutions to the equations of motion take
the form

¢=\P, P*=P (1.8)

where \;, ¢ = 1,...,n are the minima of the classical commutative potential V', which is as-
sumed to be polynomial. The energy of such a solution is therefore given by 276 V' (\;) Try P.

On the basis of this discussion it is clear that, in order to know the finite energy
solutions of the noncommutative scalar theory, we have to find the finite rank projectors
in the space H. The latter can be constructed in the following way. Define the harmonic
oscillator a = (¢ + ip)/+/(20) and its hermitean conjugate a': [a,a!] = 1. By a standard
construction we can define the normalized harmonic oscillator eigenstates: |n) = (@l |0).

/!
Now, via the Weyl correspondence, we can map any operator |n)(m| to a classical function

of the coordinates z,y. In particular |n)(n|, which are rank one projectors, will be mapped
to classical functions

2

2r2\ 2

Yn(z,y) = 2(—1)"Ln<7>e 0 (1.9)
where 2 = 22 + y?. Each of these solutions, by construction, satisfy 1, * ¥, = n.
We refer to them as the GMS solitons. They can be interpreted as D23-branes. We
can of course consider any finite sum of these projectors. They will also be solutions.
They are interpreted as collapsing D23-branes. Moreover, using the shift operator S =
Y omroln + 1)(n|, one can set up a solution generating techniques, whereby a nontrivial
soliton solution can be generated starting from a trivial one by repeated application of S
(see (21).

Our purpose in this paper is to show how the soliton solutions just described arise in
VSFET. The way they can be seen is by taking the low energy limit of tachyonic lumps
representing D23-branes in VSFT [16, 117]. They are, so to speak, relics of VSFT branes
in the o — 0 limit.

The background B field
But before we turn to this, we will introduce a background field B in SFT. In ref.
[21] and [22] it was shown that, when such a field is switched on, in the low energy limit
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the string field theory star product factorizes into the ordinary Witten * product and the
Moyal * product. A related result can be obtained in the following way. The string field
theory action (il.I) can be explicitly calculated in terms of local fields, provided the string
field is expressed itself in terms of local fields

W) = (¢(z) + Au(x)ahT + .. )er|0) (1.10)

Of course this makes sense in the limit in which string theory can be approximated by a
local field theory. In this framework (1.1) takes the form of an infinite series of integrated
local polynomials (kinetic and potential terms) of the fields involved in (.10). Now, it
has been proven by [23, 24] that, when a B field is switched on, the kinetic term of ({.1)
remains the same while the three string vertex changes, being multiplied by a (cyclically
invariant) noncommutative phase factor (see ([23, 24]) and eq.(2.5) below). It is easy to see
on a general basis that the overall effect of such noncommutative factor is to replace the
ordinary product with the Moyal product in the RHS of the effective action (for a related
approach see [25]).

Therefore, we know pretty well the effects of a B field when perturbative configurations
are involved. What we wish to explore here are the effects of a B field on nonperturbative
solutions. We find that a B field has the virtue of smoothing out some of the singularities
that appear in VSFT. As for the overall star product in the presence of a background B
field, it turns out that Witten’s star product and Moyal product are completely entangled
in nonperturbative configurations. Nevertheless, in the low energy limit, we can again
witness the factorization into Witten’s star product and the Moyal one. It is exactly this
factorization that allows us to recover the noncommutative field theory solitons.

We also remark that switching on a B field in VSFT is consistent with the interpreta-
tion of VSFT. The latter is thought to describe closed string theory, and the antisymmetric
field B belongs in the massless sector of a bosonic closed string theory.

Finally we would like to stress that the Moyal star product referred to here has nothing
to do with the Moyal representation of Witten’s star product which was suggested in
[26, 27]. This representation can be seen as a confirmation of an old theorem [28] concerning
the uniqueness of the Moyal product in the class of noncommutative associative products,
however it is realized in an (unphysical) auxiliary space, see [29, 80, 81], therefore it cannot
affect the physical space—time.

Organization of the paper

This contribution is organized as follows. In section 2 we derive the new Neumann
coefficients for the three string vertex in the presence of a background B field. In section
3 we solve the projector equation (I.) for a 23—-dimensional tachyonic lump and justify
its D23-brane interpretation. In section 4 we start examining the effect of the B field on
such solution. In section 5 we generalize the lump solution of section 3. We construct
a series of solutions of the matter projector equation, which we denote by |A,) for any
natural number n. |A,) is generated by acting on a tachyonic lump solution |Ag) with
(=k)"Ly,(x/K), where L, is the n-th Laguerre polynomial, x is a quadratic expression in



Workshop on Integrable Theories, Solitons and Duality L.Bonora

the string creation operators, see below eqgs.(5.6, 5.7), and & is an arbitrary real constant.

These states satisfy the remarkable properties

[An) * [Am) = 6p,m|An) (1.11)
<An|Am> = 5n,m<AO|AO> (1.12)

Each |A,,) represents a D23-brane, parallel to all the others. In section 6 we show that
the field theory limit of |A,) factors into the sliver state (D25-brane) and the n-th GMS
soliton. Section 7 describes related results.

2. The three string vertex in the presence of a constant background B
field

The three string vertex [, 82, 33] of the Open String Field Theory is given by

V3) = /d26p(1)d26p(2)d26p(3)526(;0(1) + p(2) + p(3)) exp(—E) |0, p)123 (2.1)

where

3
1 r rs (s)v rs_(s)v 1 rs v
E= Z 5 Z nullagn)#TanagL) f + Z Uyupfr)Vo” aﬁl) f + 577“,/]7!{7,)‘/00 P(s) (2,2)

r,s=1 m,n>1 n>1

Summation over the Lorentz indices u,v = 0,...,25 is understood and 7 denotes the flat
Lorentz metric and the operators a%)“ , a%)“ f denote the non—zero modes matter oscillators

of the r—th string, which satisfy
[aDk V) = 5,007 m,n > 1 (2.3)

P(ry is the momentum of the r—th string and |0, p)123 = [p(1)) ® |p(2)) ® |p(3)) is the tensor
product of the Fock vacuum states relative to the three strings. |p(,)) is annihilated by
(r)

the annihilation operators a.;,’" and it is eigenstate of the momentum operator ﬁé‘r) with
eigenvalue pé). The normalization is

<p(r) | p/(s)> = 57’8526 (p+ p/)

The coefficients V7 (M(N) denotes from now on the couple {0,m} ({0,n})) have been
computed in [32, 33]. We will use them in the notation of Appendix A and B of [34].

Our first goal is to find the new form of the coefficients V7, when a constant B field
is switched on. We start from the simplest case, i.e. when B is nonvanishing in two space
directions, say the 24-th and 25-th ones. Let us denote these directions with the Lorentz
indices o and 3. Then, as is well-known [35, 23, 24], in these two directions we have a
new effective metric G,g, the open string metric, as well as an effective antisymmetric
parameter 0,3, given by

G*P ! ! " 00 = —(2ma’)? L _p "
= = — (27
77+27ra’B7777—27ra’B ’ n+2na/B  n—2na’B
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Henceforth we set o/ = 1, unless otherwise specified.

The three string vertex is modified only in the 24-th and 25-th direction, which, in
view of the subsequent D—brane interpretation, we call the transverse directions. We split
the three string vertex into the tensor product of the perpendicular part and the parallel
part

"/3> = "/23,J_> ® H/?),H> (24)

The parallel part is the same as in the ordinary case and will not be re-discussed here. On
the contrary we will describe in detail the perpendicular part of the vertex. We rewrite
the exponent £ as E = E| + E |, according to the above splitting. £, will be modified as

follows
3
E, - FE = Z Z Gopall r)aTVrs s),@T + ZGa,@P(r)V sls)ﬂf
r,s=1 mn>1 n>1
EG a yrs 8 E (r)eaﬁ (s) o5
+ 2 aﬁp(r) OOp(S) + 2 Zpa pﬁ ( . )
r<s

Next, as far as the zero modes are concerned, we pass from the momentum to the
oscillator basis, [32, 33]. We define

1 1 1 1
_ - NG (1 (r)at _ - NG - (r)a 2
2\/51) z\/ga: , ag 2\/51) —1—1\/53: (2.6)

where p(M2, 2 are the zero momentum and position operator of the r—th string, and we
have kept the ‘gauge’ parameter b of ref.[34] (b ~ o'). From now on Lorentz indices are
raised and lowered by means of the effective open string metric, for instance p("® = Go# p/(@r).
We have

[a$),ay") = GOP§"dy N,M >0 (2.7)

Denoting by |€2¢) the oscillator vacuum (a%|Q% ) = 0, for N > 0), the relation between
the momentum basis and the oscillator basis is defined by

P*)123 ® [p*)123 = [{p* })123 =

3 3
b 2 b
_° S (= 250G + Va0 - L et (r>m>
ex o + Qg & aBa
(2m/det(;> p[ ( 1P Pa’ ~ 35 54

r=1

|.0)

Now we insert this equation inside £/, and try to eliminate the momenta along the per-
pendicular directions by integrating them out. To this end we rewrite E’| in the following
way and, for simplicity, drop all the labels o, 3 and 7, s:

1 1 [ -
B\ =5 Y ahGVanal + D pVonal, + 5p {G H(Voo +

m,n>1 n>1

b
2)—1— Hex]p Vbpad + aGaO
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where we have set %% = €59 and introduced the matrices € with entries € (which
represent the 2 x 2 antisymmetric symbol with e'y = 1) and x with entries

0 1 -1
x?=1-1 0 1 (2.8)
1 -1 0
At this point we impose momentum conservation. There are three distinct ways to do that

and eventually one has to (multiplicatively) symmetrize with respect to them. Let us start
by setting ps = —p; — p2 in E'| and obtain an expression of the form

pXoop+ Y pYonay+ Y. ab Zynal (2.9)
N>0 M,N>0

where, in particular, Xy is given by

b 0
X3 = G (Voo + 5) n" + 7 P ers (2.10)
o 1 1/2
Here the indices r, s take only the values 1,2, and n = 12 1

Now, as usual, we redefine p so as eliminate the linear term in (2.9). At this point we
can easily perform the Gaussian integration over p(y,p(2), while the remnant of (2.9) will
be expressed in terms of the inverse of Xqo:

—1\oB,s 2471 3 o —1\rs - af rs
(Xo0") = 1753 (5(; B s —2iaeP e ) (2.11)
where
b 0

Let us use henceforth for the B field the explicit form

Bug = (_OB lg) (2.13)

so that

7[.2

DetG = (1+ (2rB)%)*, 6=—(27)°B, a= -5 B (2.14)

Now one has to symmetrize with respect to the three possibilities of imposing the
momentum conservation. Remembering the factors due to integration over the momenta
and collecting the results one gets for the three string vertex in the presence of a B field

Vs)' = Va,1)" @ [V3) (2.15)
|V3,) is the same as in the ordinary case (without B field), while

Vs ) = Kye P'|0) (2.16)
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with

V2mb3

Ko=——-+——(D 1/4 2.1

2 A2(4a2 +3)( etG) ? ( 7)
3
1 T)x TS S
E'=2 3 > Vi avay” (2.18)
r,s=1 M,N>0

and |0) = [0) ® |[Q9). The coefficients V32:'* are given by
241

V=G - (Ga%’“s - z‘ae“ﬁx’“s) (2.19)
24" 1b &
afB,rs B rt . B rt t
VOn = m ; (Ga d)r — ’LCLEa XT ) ‘/OS (220)
Y
Vol = GOV = g D Vi (G0 — i) Vi (221
t,v=1
where, by definition, V;7 = V7, and
1 -1/2 -1/2
o=\ —-1/2 1 —1/2 (2.22)

~-1/2 -1/2 1

while the matrix x has been defined above (2.8). These two matrices satisfy the algebra

=2, dx=xd=ox =30 (223)

Next, let us notice that the above results can be easily extended to the case in which
the transverse directions are more than two (i.e. the 24-th and 25-th ones) and even. The
canonical form of the transverse B field is

Bag = 0 B (2.24)

It is not hard to see that each couple of conjugate transverse directions under this decom-
position, can be treated in a completely independent way. The result is that each couple
of directions (26 — i,25 — i), corresponding to the eigenvalue B;, will be characterized by
the same formulas (2.19, 2.20, 2.21) above with B replaced by B;.

The properties of the new Neumann coefficients V77,, are analyzed in Appendix A.
Here we write down the results.

Let us introduce the twist matrix C’ by O,y = (—1)M 8y and define

X = 'V, r,s=1,2, Xt =x (2.25)
These matrices commute

[X75, X7 =0 (2.26)
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and
() = X7, fe. (X7 = X7

Moreover we have the following properties, which mark a difference with the B = 0 case,
ors =Vt OIS = X! (2.27)

where we recall that tilde denotes transposition with respect to the «, 3 indices. Finally
one can prove that

xll + x12 + x21 -1

x12x21 — (xll)Z -

(x12)2 + (x21)2 —J— (x11)2

(x12)3 4 (x21)3 — 2(x11)3 _ 3(9(:11)2 41 (2.28)

In the matrix products of these identities, as well as throughout the paper, the indices «, 8
must be understood in alternating up/down position: X%s. For instance, in (2.28) I stands
for ¢ 8 1) MN -

3. The squeezed state solution

In this section we wish to find a solution to the equation of motion |¥) x |¥) = |¥) in the
form of squeezed states [36, 87, B3, 18]. A squeezed state in the present context is written
as

1S) =1S1) ® |S)) (3.1)

where |S)) has the ordinary form, see [1Y, 34], and is treated in the usual way, while

1
1S1) = N?exp 3 Z a?\‘} SaB,MN aﬁ; |Q.0) (3.2)
M,N>0

The * product of two such states, labeled ; and 5, is

Ky (M1N3)?

1 -
187) = [S1,1) * [S2,1) = —exp [ == > affSlgunad | 10) (3.3)
DET(I - ©V)V/ 2 oo

where, in matrix notation which includes both the indices N, M and «, 3,

21
8 =V 4 (V2 V(1 - xV)ls (312> (3.4)

In RHS of these equations

C”SlC’ 0 VH V12
Y= ( 0 018201) ’ V= (V21 V22) ’ (35)
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and Iggj ~N = 030mNn 0", 7,5 = 1,2. DET is the determinant with respect to all indices.
To reach the form (8.4) one has to use cyclicity of V" (property (ii) in Appendix A).

Let us now discuss the squeezed state solution of the equation |¥) % |¥) = |¥) in the
matter sector. In order for this to be satisfied with the above states |S), we must first
impose

81:82:8/58

and then suitably normalize the resulting state. Then (8.4) becomes an equation for §, i.e.

B V21
§ =V 4 V2 V1 -xV) iy (\712> (3.6)

where ¥,V are the same as above with §; = 83 = 8. Eq.(8.6) has an obvious (formal)
solution by iteration. However in ref. [19] it was shown that it is possible to obtain the
solution in compact form by ‘abelianizing’ the problem. Notwithstanding the differences
with that case, it is possible to reproduce the same trick on eq.(8.6), thanks to (A.17). One
denotes C'V"* by X" and C’'S by T, and assumes that [X"*,T] = 0 (of course this has to
be checked a posteriori). Notice however that we cannot assume that C’ commutes with
8, but we assume that C’S = $C’. By multiplying (8.6) from the left by C” we get:

T =21 4+ (X2, 021 - x2p) ! X 3.7
= + (%, 2050)( ) Y12 (3.7)

For instance SV!2 = §C'C'V2 = TX'2, etc. In the same way,

B I—gxll —Jxl2 -1
I-%v) 1:( g2l H_(lel)

where H%‘y MN = (55 dpn- Now all the entries are commuting matrices, so the inverse can be
calculated straight away.

From now on everything is the same as in 19, 34], therefore we limit ourselves to a
quick exposition. One arrives at an equation only in terms of T and X = X'!:

(T-I)(XT? - I+ X)T+X)=0 (3.8)
This gives two solutions:

T=1 (3.9)

T = % <]I+DC—\/(]I+35)C)(H—DC)> (3.10)

The third solution, with a 4 sign in front of the square root, is not acceptable, as explained
in [34]. In both cases we see that the solution commutes with X"*. The squeezed state
solution we are looking for is, in both cases, § = C'T. As for (3.9), it is easy to see that it
leads to the identity state. Therefore, from now on we will consider (3.10) alone.

Now, let us deal with the normalization of |S, ). Imposing |S,) * |S,) = |S|) we find

N? = K;'DET (I — V)2

,10,
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Replacing the solution in it one finds
DET(I—-XV) =Det (I-X)(I+ 7)) (3.11)

Det denotes the determinant with respect to the indices a, 8, M, N. Using this equation
and (2.17), and borrowing from [34] the expression for |S) ), one finally gets for the 23~
dimensional tachyonic lump, which we denote by

24 1 m 7
|S> _ {det(l . X)I/Zdet(l +T)1/2} exp _577;117 Z aﬁjsmnalylj |0> ® (312)
m,n>1
A2(3 + 4&2) <Det(ﬂ N x)1/2Det(]I + 3‘)1/2) exp —1 Z aaTS B MNGJBT |()>
MPaps, N ’
V2rb (DetG) 1/t ? MN50

where 8§ = C'T and T is given by (3.10). The quantities in the first line are defined in

ref.[34] with f1,7 = 0,...23 denoting the parallel directions to the lump.
The value of the action corresponding to (3.12) is easily calculated

V(24 5 24
— v . /4 1/4
85 =K i {det(l X)3/4det(1 + 3X) }
A%(3 + 4a?)? 3
o T L Det(I— X)*/*Det(I + 3X)Y4 3.13
27b3(DetG)L/2 (I = )" Det(I + 3X) (3.13)

where V(9 is the volume along the parallel directions and X is the constant of eq.(I,7).
Finally, let ¢ denote the energy per unit volume, which coincides with the brane tension
when B = 0. Then one can compute the ratio of the D23-brane energy density ¢23 to the
D25-brane energy density eos ;
€23 (271')2
P = 7(DetG)1/4 -R (3.14)
_ A*(3+4a?)? Det(I — X)¥/*Det(I + 3X)1/4
 27b3(DetG)1/4 det(1 — X)3/2det(1 4 3X)1/2

(3.15)

If the quantity R equals 1, this equation is exactly what is expected for the ratio of
a flat static D25-brane action and a D23-brane action per unit volume in the presence of

the B field (2.13)[39, 25]. In fact the DBI Lagrangian for a flat static Dp—brane is, [35],
1
————+/Det(1 +27B 3.16
— Vet + 275) (3.16)

where g; is the closed string coupling. Substituting (2.13) and taking the ratio the claim
follows. By extending the methods of [4(] (see also [41, 4
indeed being able to prove in [43] that

Lppr =

1, 42]) to the present case, we have

R=1 (3.17)

thus adding evidence to the interpretation of |S), given by (3.12), as a D23-brane in the
presence of a background B field. A further confirmation of this interpretation could

— 11 —
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be obtained from the study of the spectrum of modes leaving on the brane, which can
presumably be done along the same lines as [6, b, {1, 42, 39].

To end this section let us briefly discuss the generalization of the above results to
lower dimensional lumps. As remarked at the end of section 2, every couple of transverse
directions corresponding to an eigenvalue B; of the field B can be treated in the same way
as the 24-th and 25-th directions. One has simply to replace in the above formulas B
with B;. The derivation of the above formulas for the case of 25 — 2¢ dimensional lumps is
straightforward.

4. Some effects of the B field

In this section we would like to show that what we have obtained so far is not merely a
formal replica of the same calculation without B field, but that it significantly affects the
lumps solutions. Precisely we would like to show that a B field has the effect of smoothing
out some of the singularities that appear in the VSFT, in particular in the low energy limit.

In [44] it was shown that the geometry of the lower-dimensional lump states repre-
senting Dp-branes is singular. This can be seen both in the zero slope limit o/ — 0 and
as an exact result. It can be briefly stated by saying that the midpoint of the string is
confined on the hyperplane of vanishing transverse coordinates. It is therefore interesting
to see whether the presence of a B field modifies this situation. Moreover, as explained
in the introduction, soliton solutions of field theories defined on a noncommutative space
describe Dp-branes ([d5], [20]). It is then interesting to see if we can recover the simplest
GMS soliton, using the particular low energy limit, i.e. the limit of [35], that gives a
noncommutative field theory from a string theory with a B field turned on.

We start with the limit of [35], o/ B > g, in such a way that G, § and B are kept fixed,
which we represent by means of a parameter e going to 0 as in [#4] (o/ ~ €2). We write
the closed string metric go3 as gdng. We could also choose to parametrize the o/ B > g
condition by sending B to infinity, keeping g and o’ fixed and operating a rescaling of the
string modes as in [22], of course at the end we get identical results. By looking at the
exponential of the 3-string field theory vertex in the presence of a B field

3

1
- (r)aty rs ,(s)Bt a 1/rs . (s)B1
Do |5 2o Gasa*Vinald? + Vol Y Gagpfy) Viral;
r,s=1 m,n>1 n>1
1 (e% TS v r) o s
+a S Gapply Vish(y + 5 P08 ﬁp(g)> (4.1)
r<s

we see that the limit is characterized by the rescalings

Vinn = Vinn
Vo — €Vino (42)

2
Voo — € Voo
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The dependence of G, and 6°P on g, o/ and B is understood. We will make it explicit at
the end of our calculations in the form

B (27a/ B)? 1
Ga/@ - g 511/3’ 0= B (43)

Substituting the leading behaviors of Vjsn in egs.(2.21), and keeping in mind that A =

Voo + 2, the coefficients Vﬁf]’\?s become

3, 4 .
Vgo TS, eBsrs 3 (Gaﬁd)rs _ Zaeaﬁx7"5> (4,4)
yeirs g (45)
vagrs ., gesyrs (4.6)

We see that the squeezed state (3.12) factorizes in two parts: the coefficients VBl 1o
construct the full 25 dimensional sliver, while the coeflicients \78‘5 1 take a very simple

form
20al -1
o = GoP = 5GP 4.7
00 2’a‘+1 =S ( )
In the € — 0 limit we also have
4a
Det(I — X)"/?Det (I 4 T)'/2 det(1 — X det(1+T 4.8

The complete lump state in this limit will be denoted by ]S>, and as a consequence of
eq.(8.12) and these equations, it will take the form

. 26 1
1) = {Det(l — X)'/?Det(1 + T)1/2} exp | =5CGuw Y. ablSmai! | 0)®  (4.9)
m,n>1
da b 1 oty 6t
—= G Q
%0+ 1 VarD (DeiG) 1t eXP< 550 Gapag | [0,
where p,v = 0,...25 and G, = Ny @ Gog. The first line of the RHS of this equation is
nothing but the sliver state |=), which represents the D25-brane. The norm of the lump

. . C . 2
is now regularized by the presence of a which is directly proportional to B: a = —"; B.

Using

2v/DetG 1 2 . 1,
|z) = e &P {—Exo‘Gagmﬁ — %zaoTGagx’g + §aOTGaga0’6T |Q0) (4.10)

we can calculate the projection onto the basis of position eigenstates of the transverse part
of the lump state

2v/DetG 1 o 2 a0 aP Gag
br 1+

2vDetG 1 S EN

1
— - e 2lalb

br 1+s

(wle5(®)°|0 5) =

(4.11)

,13,



Workshop on Integrable Theories, Solitons and Duality L.Bonora

The transverse part of the lump state in the x representation is then
5 1 PG ag =
(x|81) = — e 2a \bx r aﬁ|:L> (4.12)

Using now the form (£.3) of G,p and 6° and the explicit expression for a in terms of
g and o/, [40]

0 212(c’)?B
DetG = ———m—— 4.1
“T A G= bg (4.13)
we obtain the simplest soliton solution of [%_IS] (see also [?T_).'] and references therein):
;caxﬂéa
o T Gas o~ (4.14)

which corresponds to the |0)(0| projector in the harmonic oscillator Hilbert space (see
Introduction), and is a projector on a space endowed with a Moyal product.

In this way the B field provides a regularization of ({.12), as compared to [44]. This
beneficial effect of the B field is confirmed by the fact that the projector (4.9) is no longer
annihilated by g

Vb 1
-5 (ap — ag) exp <—§sa0TG 30y > |Q.0)

7 [

1 .
Ty exp <—§sa0TG 30y > ) =i

St 1] a;f) exp <—§sa0TGa5a0 > |Q.0)

Therefore, in the low energy limit, the singular structure found in [44] has disappeared in
the presence of a nonvanishing B field. This is actually not true only in the low energy
limit, but is an exact result, as was shown in [43].

5. More lumps in VSFT

In the two previous sections we have constructed a 23—-dimensional lump solution, which
we have interpreted as a D23-brane. In the low energy limit this solution in the coordinate
basis, turned out to be the simplest (two—dimensional) GMS soliton multiplied by a trans-
lational invariant solution which represents the D25-brane. The question we want to deal
with here is whether there are other lump solutions that correspond to the higher order
GMS solitons. The answer is affirmative. We will construct an infinite sequence of them,
denoted |A,). These new star algebra projectors are D23-branes, constructed out of (3.12)
and parallel to it. In the low energy limit they give rise to the full series of GMS solitons.

In order to construct these new solutions we need a new ingredient, given by the
Fock space projectors similar to those introduced in [i12]. We define them only along the
transverse directions

X2 (I — TX) + T(X*)?] (5.1)

XN — TX) + T(X2)?] (5.2)
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Workshop on Integrable Theories, Solitons and Duality L.Bonora

They satisfy

pi=p, ph=psy ptp=1 (5.3)

i.e. they project onto orthogonal subspaces. Moreover, if we use the superscript 7 to denote
transposition with respect to the indices N, M and «, 3, we have

pi = p1=C'paC, py =p2=C'piC. (5.4)

and

pl=pi, ie pf=p, i=12
TPi = PiT, 1=1,2

where * denote complex conjugation and T =*7. Moreover 7 is the matrix 7 = {7,°} =

((1) _01> . We recall that in the absence of the B field, it has been shown that pi, po

projects out half the string modes, [12, 15].

With all these ingredients we can now move on, give a precise definition of the |A,,)
states and demonstrate the properties announced above.

To define the states |A,) we start from the lump solution (3.12). Le. we take |Ag) =
|IS8). However, in the following, we will limit ourselves only to the transverse part of it,
the parallel one being universal and irrelevant for our construction. We will denote the
transverse part by |8, ).

First we introduce two ‘vectors’ £ = {nq} and ¢ = {{na }, Which are chosen to satisfy
the conditions

p1€ =0, P2 =&, and p1¢ =0, p26 = ¢, (5.5)
Next we define
x = (a'7€) (a'C'¢) = (af 7o np) (af ChinrCara) (5.6)

and introduce the Laguerre polynomials L, (z), of the generic variable z. The definition of
|A,) is as follows

n X
[An) = (=#)"Ln (%) 182) (5.7)
As part of the definition of |A,) we require the two following conditions to be satisfied
1 T
T T
fr—mC=-1,  r—0(=—n (5.8)
Hermiticity for |A,) requires that

(a7€")(aC’¢Y) = (arC"¢)(aC) (5.9)

This condition admits the solution

(=71 (5.10)
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which we will assume throughout the rest of the paper, even though it will be left implicit
for notational simplicity. Eq.(5.10) is compatible with the conditions (5.5) and (5.§), see
[M7]). As a consequence of (5.10), the LHS’s of both equations (5.8) are real, so x must
be real too. Let us show this for instance for the first equation, since for the second no
significant modification is needed:

(7252¢) =€ 7ot = et = gt — €

where the second equality is obtained by replacement of (5.1(), and the third by transpo-

sition.

In Appendix B we give the rather technical proof that (1.11) is satisfied. As for the
(simpler) proof of the relations (i.12) we refer to [47].

Before we pass to the low energy limit, let us make a comment on the definition of |A,,),
wherein a central role is played by the Laguerre polynomials. While the true rationale of
this role eludes us, it is possible to prove that the form of the definition |A,) (together with

(6.5,5.8) is not only sufficient for (I.11,1.12) but also necessary. The case |[A1) = (x—£)[S 1)

was discussed in [[4]. The next most complicated state is

(a4 Bx +vx2)[81) (5.11)

n =0,1,2 are, given (5.5,6.8), by the following relations

1
22 =5, y=3 (5.12)
Then, putting a = k
|P'y = </<; — 2rx + x )ISQ (5.13)

The polynomial in the RHS is nothing but the second Laguerre polynomial of x/x multi-
plied by 2. In fact using Mathematica it is easy to extend this analysis for n as large as
one wishes.

Finally let us remark that the relations demonstrated in this section, in particular

6. The GMS solitons

In order to analyze the same limit as in section (4) for a generic |A,,), first of all we have to
find the low energy limit of the projectors p1, po. In this limit these two projectors factorize
into the zero mode and non—zero mode part. The former is given by

(0 = 5[0 +ie], (o) - 5[e — i), (6.1)

Now, we take, in the definition (5.6), & = E+&and ¢ =+ C, where &, are such
that they vanish in the limit o — 0. Then we make the choice fn = Cn 0, Vvn > 0
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o/ — 0. We are assuming here that there ex1st solutlons of the problem at o’ # 0 that
take precisely this specific form when o/ — 0. This is a plausible assumption since the o’
dependence is smooth in all the involved quantities. In any case it is not hard to construct
examples of this fact: for instance £ = pgé satisfies the above requirements to order zero
and 1 in e. More complete examples are provided in [47].

Now, in the field theory limit the conditions (5.5) become

50,24 +io.25 = 0, 50,24 + iéo,25 =0, (6.2)
From now on we set g() = 50’25 = —’L'éo724 and, similarly, CAO = 60,25 = —’L'éo724. The conditions
(5.8) become
1 1 2 .,
T
— — =-1 6.3
6 T]:[_(J-QC 1— g2 mgo@ ( )

T s 2 n n
. _ S 4
—52¢ 1—s? \/DetG&)CO " (64)

£"r
Compatibility requires

=1- 5% K=S§ (6.5)

At the same time

£0Co

MG’OTGaﬁQO (6.6)

(¢7a)(¢Cal) = —&olo((a5™)” + (ag”")?) = —
Hermiticity requires that the product &y = |&|?, in accordance with (6.3,6.4). The
solutions found in this way can be referred to as the factorized solutions, since, as will
become clear in a moment, they realize the factorization of the star product into the Moyal
* product and Witten’s % product. In order to be able to compute (z|A,) in the field theory
limit, we have to evaluate first

s gt Bt d* sqota Bt
(x| <a0TGaﬁaO ) e 2% Gasto |y q) = (—Q)kg (($|€_5a° Gasto |Qb,9>) (6.7)
~ (=2) d_k 2v/DetG 1 e_%i%ggacaﬁxﬁ
dsk bt 1+s
An explicit calculation gives

d* 1 a1

dsF <1+ oI ) - (68)
ko k-l 1)k
= - =5 ku (kil_1> (3, z) e 2 (@)
pard ]:O 1—3 1+s) 4! j—1
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. . . . . -1
where it must be understood that, by definition, the binomial coefficient ( 1> equals 1.
Moreover we have set
2r2

1
= — a ﬁ —_
(x,x) s Gopx 7 (6.9)

with r? = maxﬁéaﬁ
Now, inserting (6.8) in the definition of |A,), we obtain after suitably reshuffling the

indices:
o 1— g2 o
(=) L (2 ) 395" Gt |02 ) — (@](—8)" L ( =~ 0 Gagaf )e™3575 Core0 |2y )
K S
S () ()
+9) §=0 k=j 1=j J=1) A st

2vDetG

V(g 2V o S
(1) (@2 e -

(6.10)

The expression can be evaluated as follows. First one uses the result

()-0)

Inserting this into (.10} one is left with the following summation, which contains an evident

L0 -0 61

Replacing this result into (6.10) we obtain

o 2 1 [2+/Det e 1 9:2\7 2
(x|(=K)" Ly, <z) e*%S‘loTGaﬂagT’Qhw N la| + \/G—G(_l)nz (n> 1 <_L> o

1
4|al b = \i/ !

binomial expansion,

Recalling now that the definition of |8) includes an additional numerical factor (see eq.(4.9)),
we finally obtain

(2lAn) = (elhn) = %(-1)7{6 (”) 1 (—%zye%@

|
—\i/)J

2 2
= %(—1)" Ly (%) e~ 7T|2) (6.13)
as announced in the introduction. The coefficient in front of the sliver |E) is the n — th
GMS solution. Strictly speaking there is a discrepancy between these coefficients and the
corresponding GMS soliton, given by the normalizations which differ by a factor of 2.
This can be traced back to the traditional normalizations used for the eigenstates |z) and
|p) in the SFT theory context and in the Moyal context, respectively. This discrepancy
can be easily dealt with a simple redefinition.
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7. VSFT star product and Moyal product

In the previous section we have shown that the low energy limit of <:1:]f\n> factorizes into
the product of the sliver state and v, (z,y), see (iI.9). This means, on one hand, the the
GMS solitons are the low energy remnants of corresponding D—branes in VSFT, and, on the
other hand, that, for this type of solutions, the VSFT star product factorizes into Witten’s
star product and the Moyal x product. But, actually, much more can be said about the
correspondence between the states |An> and the solitons of noncommutative field theories
with polynomial interaction.

We recall from the introduction that the latter are very elegantly constructed in terms
of harmonic oscillators eigenstates |n). In particular the v, (z,y) solutions correspond to
projectors P, = |n)(n|, via the Weyl transform. The correspondence is such that the
operator product in the Hilbert space correspond to the Moyal product in (z,y) space.
Therefore we can formalize the following correspondence

|An) * |Ap) «— PoPy  +— by *ty ‘
where x denotes the Moyal product. Moreover
<An’An/> — Tr(PnPn’) — /dxdy ¢n(x’ y)wn/ (LL‘, y) (7‘2)

up to normalization (see (I.12)). This correspondence seems to indicate that the Laguerre
polynomials hide a universal structure of these noncommutative algebras.

This parallelism can actually be pushed still further. In fact we can easily construct
the correspondents of the operators |n)(m|. Let us first define

X =dl7¢ Y =4dC%¢ (7.3)

so that x = XY . The definitions we are looking for are as follows

n' n m—-mnrm-—mn X

M) = /(=R YL (2)]81), m<m (7.4)
m' m n—mrprn—m X

M) = /T (R XL (2 [81), mzm (75)

where L "(2) = Y 1r, < m k> (—2)¥/k!. With the same techniques as in the previous
n J—

sections one can prove that
|An7m> * |Ar,s> = 6m,r|An,s> (76)

for all natural numbers n,m,r,s. It is clear that the previous states |A,) coincide with
|Apn). In view of (7.6), we can extend the correspondence (i7.1) to |n)(m| <> |Aym).
Therefore, following [#5], [20], we can apply to the construction of projectors in the VSFT
star algebra the solution generating technique, in the same way as in the harmonic oscillator
Hilbert space H. Naturally in this case we do not have any guarantee that all the projectors
are recovered in this way.
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A. Properties of the Neumann coefficients with nonzero B

In this Appendix we derive the properties of the coefficients Voj\fj\?s which are essential for
the later developments. These properties are parallel to those enjoyed by the ordinary
coefficients, 34, 33, 19, 34].
. . B,rs.
Let us quote first two straightforward properties of Vi, x"*:

e (i) they are symmetric under simultaneous exchange of the three couples of indices;

e (ii) they are endowed with the property of cyclicity in the r, s indices, i.e. V™ =
Vr+lstl where r, s = 4 is identified with r,s = 1.

The first property is immediate. We pass immediately to the derivation of the latter. To
this end we need the following representation of the coefficients V¥, derived from [32]:

on>
Zn X" dd
G i (A1)
— ﬁZn o, n  even

where

/2
Zn = 4| — BoA,, A2
3n 0 ( )

The numbers By and A, were defined in ref.[32%]. Notice that, since we have assumed
Zy? = Z;", we must have, by definition, V;? = V§ for n even and V;7 = —V§ for n odd.
Finally, for convenience, we introduce Z; = \/g .

Substituting (A.1) into eqgs.(2.21) and using (2.23), we obtain

-1
aB,rs _ { V?V%S(OO) - f£+3KgOB’TSZNZM’ N+ M even (A.3)
A VG (00) + AL HSP T (~1)N Zn Zuy, N+M odd
In these equations
K = GP¢7 —iae X (A4)
HIPr = 3GPX™  diacP 4 (A5)

and V55 (00) is

Voo ¥ (00) = GPoT
VEPTS (00) = 0 (A.6)
Vo (00) = GV,

The coefficients V,"%, are the same as in ref.[34] for n,m > 1.
Next we introduce the third root of unity w = ¢i% and notice that

d)TS — l(was + w87’r‘)’ XT‘S —

3 (W' — W), (A.7)
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Inserting these relations into (A.3) and rearranging the terms we find the basic relation

ap,rs 1 (7 S—Tq (& w3
vapr :§(CNMG B 4wt U, 4w U ) (A.8)
where
uaﬁ . GO‘BUNM(OO) —i—RO‘BZNZM, N + M even (A 9)
NM= | GBU s (00) + iR (=1)N Zn Zy, N+ M odd '
Moreover
U = (UP)* (A.10)
where * denotes complex conjugation. In (A:8) Chay = (=1)Vdnas and
6A
R = 3690 4 \V3ac? A1l
4a2+3< R G+ V3ae ) (A.11)
Moreover
UGy (00) =G, UG =0
U (00) = G*PUppm (A.12)
In the last equation Uy, coincides with the same symbol used in [34] (see eq.(B.15) in that
reference).
Let us discuss the properties of U. Since
wed ) = { U?‘VﬁM, N+ M even
NM U, N+M odd
it is easy to prove the following properties
(uaﬁ)* — Cluaﬁcl(uaﬁ)T — (uaﬁ)*T — (C/uaBC/)T _ uaﬁ (A.13)

Finally, if tilde denotes transposition in the indices «, 3, it is possible to prove that (see
Appendix A of [{6])

(U5, = (U)X, = GPonar + (RG +GR+ ARR) ZNZu (A.14)
Now, remembering that e‘”eﬁ = —G® | it is elementary to prove that
RG + GR+ %ARR =0 (A.15)
Therefore, finally,
Uy, = (W = G onu (A.16)
Eqs.(A.13,JA'13,/A'16) are the generalization of the analogous ones in [32, 83, 1Y, 34]
Using in particular (A.16), it is easy to prove that
[C'vrs V') = 0. (A.17)
This follows from
9[C'V"E, C'V ] = WS (CTUUC — UU) 4wt (UU — C'UUCT)
Notice however that, unlike refs.[32, 33, 19, 84|, we have
crs =vere! (A.18)
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B. Proof of |A,) * |Ay,) = 65 m|As)
The star product |A,) * |A,/) can be evaluated by using the explicit expression of the
Laguerre polynomials

n' ’

< = (30 () 2B s ) (o S () E s ) im

k=0 p=0
Therefore we need to compute (x*[8,)) * (xP|8,)). According to [12], this is given by

o o 0 B
xF|8 1)) * (xP[S 1)) = (67C)0 .. (ErC) (P P =
CEBLI) * (FI8L)) = (G- ErCN G- ) Oppy " Oyt ol ol

- (grChP L (ch’)gpg;il .gipail _8% _8,1 86
/"LZI 8 Zp aﬂ.}l 8—3?
exp( XK LMTVE M) [s.))| (B.2)
2 pu=p=0
where
Vll V12
IC == I[ - (‘Tx, V - (,\721 ,\722) (B3)
and
M= (Z) ;XD =@V, TKTIM =l C (o + pop)  (BA)
Now, we avail ourselves of the following identities
T
VK aal = 770" (VK™ )aa7C'( = €10/ —5¢ =0
T
gTTC/(VIC_l)aa( = §T(VIC_1)0£O¢TC,C = §TTH — TQ( =k (B'5)
for a =1,2, and
T
é—T(Vlc—l)12C — §TTC,(VIC_1)21TC/€ — _chlmC =0
1
VK )a1¢ = ETrC" (VK )127C'¢ = fTC/—H —:2¢ =0
§ VK DurC'C = rC' (VK ol = & ry—as¢ = -1
T
M0 (VK a¢ = €T (VK H)a1rC'¢ = —§TTH —pC =k (B.6)
Moreover
(EE=0,  (FEThrCE =alre
(X" 1)t =d'C', (XK 1)erC’¢ =0 (B.7)
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with analogous equations for (.

In evaluating (B.5, B.6, B.7) we have used the methods of ref.[I4] (see also [3]),
together with egs. (5.5, b.8). These results are all we need to explicitly compute (B.2). It is
easy to see that the computation can be mapped to a rather simple combinatorial problem,
introducing generic variables x,y, Z, y, and making the following formal replacements:

A=xTK'M — z(alr¢) + (o' C'0),

B=M"VKIM — (—kzy + kay — Ty — KZ7) (B.8)
and
0 0 5 0 G O
(O 5 e =00 g =0, (OO 5z=0n G—5=0, (B
O 7 o Y L opa Topf

Then (B.2) is equivalent to
okakoror e~A—2B B.10
Lo s (B.10)

This in turn can be easily calculated and gives

[p,k] [p,k]
m klp! m [k D l l—9m
E X W (—1)l+ ( l > (l ) <m> K',p+k -2 (Bl].)

m=0 l=m
where [n, m] stands for the minimum between n and m. Now we insert this back into the

original equation (B.1), we find

n n' [pk] [p—mk— m]( 1)p+k+l

A, ZZZ Z _T (B.12)

e D)

In order to evaluate these summations we split them, we replace [ — [ +m and finally

we obtain
P+k+l+m
A ZZZZ
k=0m=01l=m p=I
ntn/—1—m (T (7 k E—m\ (p\ m
L (k)(p) () () (7) =5 @
Now

S () (1) (5 ()= (Do may

This vanishes unless [ = n’. In the case n’ > n, [ < n’. Inserting this into (B.13), for n’ > n

hS]

we get 0.
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In the case n = n/, | can take the value n’. This corresponds to the case k =p=1=
n =n' in eq.(B.13). The result is easily derived

m

M) e A = S0 EU (1) wmxmls) = (Lo (2) 52) = An) (815

This proves eq.({.11).
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