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Abstract

Magnetic fields are present in galaxies, clusters of galaxies and even in the intergalactic
medium. Many different mechanisms have been proposed to explain the origin of these
fields. One suggestion, first formulated by Turner and Widrow in 1987, is that these
fields were generated during inflation. In this thesis we review this idea by studying four
different models. The first model is based on standard Maxwell electromagnetism. We
show that this model cannot generate fields of the required strength and magnitude.
Since we want to keep the idea that the fields are generated during inflation, it is
necessary to look at extensions of Maxwell electromagnetism. Three different extensions
are considered in which the magnetic field couples to the gravitational field, a scalar
field and a pseudo scalar field respectively. We show that each of these extended models
is able to generate the observed fields. We furthermore derive that the magnetic field
decays slower in a spatially open expanding universe than in a flat expanding universe.
Finally we use the existence of intergalactic magnetic fields to derive a bound on the
temperature during inflation.

i





Contents

Abstract i

1 Introduction 1

2 Introduction to cosmology 5

2.1 The FRLW universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 FRLW metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Fluids in a FLRW universe . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Temperature and entropy . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Cosmic Microwave Background . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Dipole anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Primairy fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Properties of inflation . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Reheating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Astrophysical magnetic fields 25

3.1 Measurements of astrophysical magnetic fields . . . . . . . . . . . . . . . . 25

3.2 Intergalactic magnetic fields . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Amplification of the magnetic field . . . . . . . . . . . . . . . . . . . . . . 28

3.4 CMB constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Inflation as the origin of astrophysical magnetic fields . . . . . . . . . . . 29

4 Quantum field theory in curved spacetime 33

4.1 Scalar field in Minkowski space . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Conformal transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Scalar field in curved spacetime . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

iii



CONTENTS

4.5 Particle creation in a 2d FLRW universe . . . . . . . . . . . . . . . . . . . 40

5 Electromagnetism 45

5.1 Electromagnetism in Minkowski spacetime . . . . . . . . . . . . . . . . . . 45
5.1.1 Maxwell equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.2 Vector field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1.3 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Electromagnetism in a flat FLRW spacetime . . . . . . . . . . . . . . . . . 48
5.2.1 General spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.2 Flat FLRW spacetime . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.3 High conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2.4 Co-moving fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Inflation produced magnetic fields 53

6.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 Average magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.4 Vacuum expectation value during inflation . . . . . . . . . . . . . . . . . . 55

6.5 Vacuum expectation value after reheating . . . . . . . . . . . . . . . . . . 57

6.6 Backreaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Models 61

7.1 Maxwell electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.2 The RnF 2 model, coupling to gravity . . . . . . . . . . . . . . . . . . . . . 63

7.3 The I(φ)F 2 model, coupling to a scalar field . . . . . . . . . . . . . . . . . 75

7.4 The I(φ)FF̃ model, coupling to a pseudo-scalar field . . . . . . . . . . . . 79

8 Evolution of magnetic fields in a spatially curved FLRW spacetime 93

8.1 1+3 covariant description . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.2 Electromagnetic fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.3 Gravitational field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.4 Wave equation of the magnetic field in curved spacetime . . . . . . . . . . 103

8.5 Evolution of the magnetic field in a curved FLRW spacetime . . . . . . . 108

9 Constraining the energy density during inflation 115

9.1 Upper limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
9.1.1 Derivation of the upper limit . . . . . . . . . . . . . . . . . . . . . 116
9.1.2 Why the derivation is wrong . . . . . . . . . . . . . . . . . . . . . 120

9.2 Lower limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

iv



CONTENTS

9.2.1 Perturbed Einstein equations . . . . . . . . . . . . . . . . . . . . . 121
9.2.2 Curvature perturbation . . . . . . . . . . . . . . . . . . . . . . . . 126

10 Conclusion 129

A Conventions 131

v





CHAPTER 1

Introduction

Currently more and more mysteries of the universe are getting unraveled. In the last few
centuries we have discovered that the earth is not the center of the universe and that the
universe is expanding. Still a lot of mysteries remain unsolved. One of these mysteries
is the fact that magnetic fields are present in galaxies, clusters of galaxies and in the
intergalactic medium. Up until now no one has been able to give a satisfactory answer
to the question: ‘Where do these fields come from?’.

To be able to find an answer to this question one must explain the two main remarkable
features of the magnetic fields. The most remarkable feature is the fact that the fields
exist at all in the intergalactic medium. If the magnetic fields would only exist in
galaxies and clusters of galaxies, one might expect to be able to explain their origin
using some astrophysical process, such as the formation of a galaxy. Since there is no
electrically charged matter present in the intergalactic medium, it seems that the origin
of the intergalactic magnetic fields might be a cosmological process, not an astrophysical
one.

The second remarkable feature of the magnetic fields is the fact is that they have a
very large coherence scale. The fields in galaxies and clusters are about the same scale
as the galaxies and clusters themselves and the fields in the intergalactic medium can
have a coherence scale of 1 Mpc and larger. The scale of the fields in the galaxies and
clusters could be explained by an astrophysical process, since their scale is the same as
the galaxies and clusters themselves. The difficulty lies again with the intergalactic fields
for which it is hard to find an astrophysical explanation. Therefore if one wants to find
an answer to the question where the fields come from, one needs to be able to explain
both how fields could be generated in the vacuum and how they could have such a large
coherence scale.

1



Chapter 1: Introduction

One possible answer, first formulated by Turner and Widrow in 1987 [1], is that the
magnetic fields were generated during inflation, which is a period of rapid expansions in
the early universe. During this period the magnetic fields would be generated from a small
quantum perturbation that grows very large due to the expansion of the universe. This
could first of all explain the fact that the magnetic fields are present in the intergalactic
medium, since there can always be quantum perturbations in the vacuum. Secondly the
rapid expansion of the universe during inflation could explain the large coherence scale
of the fields. The goal of this thesis is to review this suggestion and see if there is indeed
a viable mechanism that could generate magnetic fields of the required strength during
inflation.

Since magnetic fields are described by Maxwell’s theory of electrodynamics the most
logical option would be to look at a model of Maxwell electrodynamics during inflation.
However, as we will show, a model with Maxwell’s theory of electrodynamics is not
able to generate the observed fields, since the theory is conformal invariant. This has
been known for some time [2] and therefore in the past two decades people have been
searching for other models that could explain the generation of magnetic fields during
inflation.

Most of the proposed models are extensions of Maxwell’s theory. This thesis deals with
the three most common extensions found in the literature. They consist of coupling the
electromagnetic field to the gravitational field, a scalar field and a pseudo-scalar field
respectively. We will review for each of these models if they are able to generated the
observed magnetic fields. A positive result for one of the models is not only interesting
since it would give a possible explanation for the origin of the magnetic fields, but it
would also provide some evidence in favor of this extension of Maxwell theory.

In the process of dealing with the general problem of finding a theory to explain the
presence of magnetic fields, this thesis also reviews some general properties of magnetic
fields in an expanding universe. More specifically, we look at the influence of the curvature
of spacetime on the classical evolution of a magnetic field. This is interesting because if
we are able to find that the magnetic field decays slower in a universe with a particular
curvature, it is possible to generate stronger magnetic fields.

Another aspect that we study is the derivation of a bound on the energy density during
inflation by assuming that the magnetic fields were indeed generated during inflation.
This means that if we find that this assumption is true, we automatically obtain more
information about the characteristics of inflation.

The thesis is structured as follows. We start with an introduction to cosmology and
inflation in chapter 2, meant for the reader that is not familiar with this subject. In
chapter 3 we review the measurements that have been made of astrophysical magnetic
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fields and give a short argument why inflation is a good candidate for the origin of the
fields. Chapters 4 and 5 contain a review of quantum field theory in curved spacetimes
and electromagnetism in curved spacetimes respectively, to provide the necessary tools to
evaluate the evolution of the magnetic field. In chapter 6 we use these tools to describe
a formalism to derive the field strength of magnetic fields that are generated during
inflation. We calculate this strength for the different models mentioned before and review
whether these models are compatible with observations in chapter 7. In chapter 8 we give
a classical description of the evolution of magnetic fields in a spatially curved FLRW
metric and describe how this influences the strength of the field. In the last chapter
we show how the energy density during inflation can be restricted from the fact that
intergalactic magnetic fields exist. Finally, our conclusions are presented in chapter 10.
A list of conventions can be found in Appendix A.
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CHAPTER 2

Introduction to cosmology

Before we start our discussion of magnetic fields, we will give an introduction to
cosmology. This chapter is meant to give a basic overview on a level that is needed
to understand the rest of the thesis. In the first section we will derive how the universe
evolves from the Einstein equations and discuss the different eras in the history of the
universe. In the second section we will discuss the earliest information we have of our
universe, the Cosmic Microwave Background. In the last section we will introduce the
concept of inflation, an era of rapid expansion in the universe. We will show how this
concept can solve some problems of the model given in section 2.1 and discuss some
general properties.

2.1 The FRLW universe

2.1.1 FRLW metric

Observations tell us that our universe is homogeneous and isotropic on large scales, that
is, the universe looks the same everywhere and in every direction. Other observations
tell us that the universe is expanding. A homogeneous, isotropic, expanding universe can
be described by the Friedmann-Lemaitre-Robertson-Walker metric,

ds2 = −dt2 + a2(t)γ(3)
ij dx

idxj = a2(η)(−dη2 + γ
(3)
ij dx

idxj), (2.1)

where η is called conformal time, which is related to normal time by the relation η̇ = a−1.
From now on we will denote a derivative with respect to t with a dot and a derivative
with respect to η with a prime. The quantity a is called the scale factor, it is a measure
for the expansion of space. It is defined such that at present a0 = 1. The coordinates xi
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Chapter 2: Introduction to cosmology

are co-moving coordinates and are independent of time. The metric for the co-moving
spatial part is γ(3)

ij . When the universe is homogeneous and isotropic the spatial part
must have constant curvature. This can be written in spherical coordinates as [3],

γ
(3)
ij dx

idxj =
dr2

1−Kr2
+ r2dΩ, (2.2)

where dΩ = dθ2 + sin2 θdφ2 is the metric of the two sphere. The constant K takes the
values +1,0,-1 for respectively a spherical, Euclidean and hyper-spherical space.

2.1.2 Fluids in a FLRW universe

The universe is not an empty space, but filled with matter. To have a complete
description of the universe we must know how the spacetime and matter interact. This
interaction is described by the Einstein equations,

Rµν −
1
2
gµνR = 8πGTµν . (2.3)

We will first explain what the left hand side means and then the right hand side. The left
hand side describes the curvature of spacetime. In general the curvature of spacetime is
described by the Riemann tensor Rρ

σµν , defined as,

Rρ
σµν = ∂µΓρ

νσ − ∂νΓρ
µσ + Γρ

µλΓλ
νσ − Γρ

νλΓλ
µσ, (2.4)

where Γρ
µν are called Christoffel symbols. They are related to the metric,

Γρ
µν =

1
2
gρλ (∂µgνλ + ∂νgλµ − ∂λgµν) . (2.5)

From the definition is clear that Γρ
µν is symmetric in µ and ν. Christoffel symbols also

play an important role in the covariant derivative. The covariant derivative of a vector
V µ is defined as,

∇νV
µ = ∂νV

ν + Γµ
νλV

λ. (2.6)

The quantities on the left hand side of the Einstein equations (2.3) are called the Ricci
tensor Rµν and Ricci scalar R. They are related to the Riemann tensor as Rµν = Rλ

µλν

and R = Rµ
µ = Rλµ

λµ. Because of the symmetries of the Riemann tensor, the Ricci
tensor is symmetric. To evaluate the left hand side of the Einstein equations we may
calculate the explicit form of the Ricci tensor and scalar for the FRLW metric (2.1). The
first step is to calculate the Christoffel symbols. For example,

Γt
rr =

1
2
gtλ (∂rgrλ + ∂rgλr − ∂λgrr) ,

=
1
2
∂t

a2

1−Kr2
,

=
ȧa

1−Kr2
. (2.7)
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2.1 The FRLW universe

The other Christoffel symbols are calculated in the same manner. The result is:

Γt
θθ = ȧar2,

Γt
φφ = ȧar2 sin2 θ,

Γr
tr = Γθ

tθ = Γφ
tφ =

ȧ

a
,

Γr
rr =

Kr

1−Kr2
,

Γr
θθ = −r(1−Kr2),

Γr
φφ = −r(1−Kr2) sin2 θ,

Γθ
rθ = Γφ

rφ =
1
r
,

Γθ
φφ = − sin θ cos θ,

Γφ
θφ = cot θ. (2.8)

The other Christoffel symbols are zero. We can now calculate the components of the
Ricci tensor. For example,

Rtt = Rρ
tρt,

= ∂ρΓ
ρ
tt − ∂tΓ

ρ
ρt + Γρ

ρλΓλ
tt − Γρ

tλΓλ
ρt,

= 0− 3∂t
ȧ

a
+ 0− 3

(
ȧ

a

)2

,

= −3
ä

a
. (2.9)

The rest of the components are calculated in the same manner and are given by,

Rrr =
äa+ 2ȧ2 + 2K

1−Kr2
, (2.10)

Rθθ = r2(äa+ 2ȧ2 + 2K), (2.11)

Rφφ = r2 sin2 θ(äa+ 2ȧ2 + 2K). (2.12)

The other components are zero. Another way to write the spatial components is,

Rij =

[
ä

a
+ 2

(
ȧ

a

)2

+
2K
a2

]
gij , (2.13)

where gij is the spatial part of the metric. The final step is to calculate the Ricci
scalar,

R = Rµ
µ = 6

[
ä

a
+
ȧ2

a
+
K

a2

]
. (2.14)

This is everything we need to evaluate the spacetime part of the Einstein equations.
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Chapter 2: Introduction to cosmology

The right hand side of the Einstein equations (2.3) describes the matter in the universe.
From now on we will refer to the content of the universe as fluids, as we will later
use the term matter for a non-relativistic fluid. The tensor Tµν on the right hand side
is the energy momentum tensor. Since the universe is homogeneous and isotropic we
will assume that the fluids in the universe are perfect. This means that the anisotropic
pressure and the energy flux are zero. A more general review of the energy momentum
tensor is given in chapter 8. For a perfect fluid the energy momentum tensor Tµν is,

Tµν = (ρ+ p)uµuν + pgµν , (2.15)

where ρ is the energy density and p is the isotropic pressure of the fluid. The quantity
uµ is the four-velocity defined by,

uµ =
dxµ

dτ
, (2.16)

where τ is the proper time. A more extensive discussion of the four-velocity can be
found in chapter 8. In FLRW spacetime the energy density and isotropic pressure are
thus ρ = −T 0

0 and p = 1/3T i
i. The energy momentum tensor is conserved,

∇µT
µν = 0. (2.17)

This is especially true for the zero component,

0 = ∇µT
µ
0 = ∂µT

µ
0 + Γµ

µλT
λ
0 − Γλ

µ0T
µ
λ ,

= −ρ̇− 3
ȧ

a
(ρ+ p). (2.18)

This is called the fluid equation.

We now know what all the quantities in the Einstein equations are, so we can start to
evaluate them. Due to symmetries there are only two independent equations. The first
one comes from the µν = 00 component,

− 3
ä

a
= 4πG(ρ+ 3p). (2.19)

The other equation comes from the µν = ij component,

ä

a
+ 2

(
ȧ

a

)2

+ 2
K

a2
= 8πG(ρ− p). (2.20)

These are usually rewritten as,(
ȧ

a

)2

+
K

a2
=

8πG
3

ρ (2.21)

ä

a
= −4πG

3
(ρ+ 3p). (2.22)

These are called the Friedmann equations. Before we will solve the Friedmann equations,
it will turn out to be convenient to introduce a new parameter, the Hubble parame-
ter.
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2.1 The FRLW universe

The Hubble parameter

The Hubble parameter is defined as,

H =
ȧ

a
, (2.23)

and is a measure for the expansion of the universe. Historically this parameter was a
measure for the speed at which objects moved away from us, depending on their distance.
Hubble discovered that galaxies at a distance ~d = a~x are moving away from us with a
speed,

~̇d = H~d. (2.24)

It is easily checked that the Hubble parameter in definition (2.23) is the same as H in

Hubble’s law, since ~̇d = ȧ~x and H~d = ȧ~x. The Hubble constant is the value of the Hubble
parameter at present H0 ≡ H(a0). Measurements tell us that H0 = 100h km/sec/Mpc,
with h ' 0.7. Using definition (2.23) of the Hubble parameter the Friedmann equations
can be rewritten as,

H2 +
K

a2
=

8πG
3

ρ, (2.25)

ä

a
= −4πG

3
(ρ+ 3p). (2.26)

Solutions of the Friedmann equations

To be able to solve the Friedmann equations we will make the assumption that the fluids
in the universe are barotropic. That means that the energy density and the pressure are
related by an equation of state, p = γρ. The value of γ depends on the kind of fluid.
The only other thing we need to be able to solve the Friedmann equations is a relation
between the scale factor a and the density ρ. We can find this relation if we solve the
fluid equation (2.18), which for a barotropic fluid reads,

ρ̇

ρ
= −3

ȧ

a
(1 + γ). (2.27)

The solution is,
ρ ∝ a−3(1+γ). (2.28)

It is now easy to solve the second Friedmann equation (2.26), the solution is,

a ∝ t2/3(1+γ). (2.29)

We can evaluate this for different kinds of fluids.

9



Chapter 2: Introduction to cosmology

Curvature: We can view the curvature of the spacetime as a fluid. If we define,

ρK ≡ − 3K
8πGa2

, (2.30)

we can rewrite the first Friedmann equation (2.25) as,

H2 =
8πG

3
(ρ+ ρK). (2.31)

Since the curvature term is absent in the second Friedmann equation (2.26), we want
the right hand site to vanish when curvature is the only fluid present in the universe.
This happens when γ = −1/3. As a consequence ρK ∝ a−2, which is correct if we
compare it to the definition of ρK (2.30). We also find that a ∝ t, which means that an
empty universe keeps expanding at a constant rate. When the universe is flat the first
Friedmann equation becomes,

H2 =
8πG

3
ρ. (2.32)

In this case the density is often referred to as the critical density ρc. The relation also
works the other way around. If,

ρ =
3

8πG
H2 ≡ ρc, (2.33)

the universe is flat. One often defines the density parameter Ω as the ratio of the density
to the critical denstity,

Ω ≡ ρ

ρc
. (2.34)

When the universe is flat Ω = 1. With the present value of the Hubble parameter, we
can calculate that the critical density is, ρc(t0) = 1.88h2 × 1026kgm−3. Measurements
indicate that Ω = 1.02± 0.02 [4], which implicates that the universe almost flat. In the
review of the other kinds of fluids we will assume, because of this and for simplicity, that
the curvature density is zero.

Matter: Matter consists of non-relativistic particles, mainly protons, neutrons and
non-relativistic electrons. Since the particles are non-relativistic, they do not exert any
pressure, γ = 0. As a consequence ρ ∝ a−3, which is what you would expect for matter
in a volume that is expanding as V ∝ a3. The scale factor evolves as a ∝ t2/3. When
the universe is filled with matter, it is expanding, but the expansion rate is getting
smaller with time. This makes sense, since the gravitational attraction of the particles
will oppose the expansion. According to measurements Ωb ' 0.04 [4], where the index b
stands for baryons. If this was the only fluid present in the universe, it would be strongly
curved, but we know that this is not the case. Measurements of the rotation of galaxies
indicate that galaxies consist of more matter than we can see. This kind of matter is
referred to as dark matter. The same measurements indicate that Ωd = 0.23. This is
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2.1 The FRLW universe

still not enough to have a flat universe, which indicates that there must be other fluids
present in our universe.

Radiation: Radiation consists of relativistic particles, mainly photons. The equation of
state is in this case given by p = 1/3ρ. As a consequence ρ ∝ a−4 and a ∝ t1/2. This
shows that in an expanding universe radiation dilutes faster then matter. This makes
sense, because not only the density of the photons is diluted, but also the wavelengths
of the photons become stretched, which makes them lose energy. If the universe contains
both radiation and matter, eventually the matter will start to dominate. This agrees
with measurements we have of our universe. We know from observations that at early
times there was a period of radiation domination. At present the density of radiation is
negligible compared to that of matter.

Cosmological Constant: Einstein believed that the universe was static, but in the
previous sections we saw that if the universe is matter or radiation dominated, it expands.
To solve this problem Einstein introduced a cosmological constant Λ in the Einstein
equation,

Rµν −
1
2
gµνR = 8πGTµν − Λgµν . (2.35)

We can again derive the Friedmann equations, the result is,

H2 +
K

a2
=

8πG
3

ρ+
Λ
3
, (2.36)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ
3
. (2.37)

One can view the cosmological constant as an energy density ρΛ, which is defined
as,

ρΛ ≡
Λ

8πG
. (2.38)

Looking at the second Friedmann equation, we can derive that the cosmological constant
is a perfect fluid with γ = −1. Solving the fluid equation gives that ρΛ is a constant. If
we solve the second Friedmann equation for a flat universe, the result is,

ä

a
=

8πG
3

ρ = H2, (2.39)

where we used the fact that for a flat universe ρ = ρc. The solution to this equation is
a = eHt. This means that the universe is expanding exponentially, while we saw that
at the same time the density stays constant. If the universe contains both matter and a
cosmological constant the cosmological constant can counteract the influence of matter
and thus lead to a static universe. Unfortunately this is not a stable solution. When
Hubble discovered that the universe was expanding Einstein discarded the cosmological
constant and called it his biggest blunder. Recent developments have renewed the interest
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Chapter 2: Introduction to cosmology

in the cosmological constant. Observations of supernovae in distant galaxies show that
the universe was expanding more slowly in the past than at present. Since all the
other fluids we discussed slowed the expansion down, our description of the universe
must contain the cosmological constant. This is more commonly referred to as dark
energy or vacuum energy. Dark energy can also explain why our universe is almost
flat. Measurements indicate that ΩΛ ' 0.7 [4]. Together with the matter density this is
approximately equal to the critical density. The value of the density parameter for the
dark energy indicates that it is the dominating fluid at the moment. We also saw that it
was the only fluid, which density did not decrease during expansion. As a consequence
the dark energy will become more dominant in time and the universe will be expanding
faster and faster in the future.

2.1.3 Temperature and entropy

We would like to know the temperature of the universe at a certain time. This is
equivalent to obtaining the relation between the temperature and the scale factor. The
following discussion of the derivation of this relation is based on chapter 3 of the book
”The Early Universe” by Kolb and Turner [5]. A more elaborate discussion can be found
there.

To find the relation between the temperature and the scale factor we will assume that
the expansion rate of the universe is slow enough for particles to remain in local thermal
equilibrium. This means that the entropy per co-moving volume, S/a3, remains constant.
If we can find a relation between the temperature and the entropy, we automatically
have a relation between the temperature and the scale factor. From the first law of
thermodynamics we know that for an adiabatic expansion,

TdS = d(ρV ) + pdV, (2.40)

where T is the temperature and V the volume. Together with the integrability condition,
∂T∂V S = ∂V ∂TS, this gives,

S(T ) =
[ρ(T ) + p(T )]V

T
+ const. (2.41)

The entropy density is defined as,

s ≡ S

V
=
ρ+ p

T
, (2.42)

up to a constant. We have assumed that the chemical potential µ� T . One can calculate
the entropy if one knows the density for a gas of weakly interacting particles. We can
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2.1 The FRLW universe

find an expression for ρ if we recall that average number of particles with momentum p

is given by the Fermi-Dirac and Bose-Einstein distributions,

n(p) =
1

e(E−µ)/T ± 1
, (2.43)

where E2 = p2 +m2 is the energy of the particle and m is the mass of the particle. The
plus sign is for fermions, the minus sign for bosons. To find the energy density we can
integrate the energy density for momentum p, E(p)n(p), over the momentum space. If
we again assume that µ� T , the final result is,

ρ(T ) =
g

(2π)3

∫ √
p2 +m2

exp(
√

p2 +m2/T )± 1
d3p. (2.44)

The factor g is the number of internal degrees of freedom of the particles. For a gas of
relativistic particles, p2 � m2, the density expression reduces to,

Bosons : ρ =
π2g

30
T 4, (2.45)

Fermions : ρ =
7
8
π2g

30
T 4. (2.46)

Since for a relativistic gas, p = 1/3ρ, the entropy density is given by,

Bosons : s =
2π2g

45
T 3, (2.47)

Fermions : s =
7
8

2π2g

45
T 3. (2.48)

If there are different relativistic particle species in thermal equilibrium the two equations
can be combined into one,

s =
2π2

45
g∗ST

3, (2.49)

where T is the photon temperature and,

g∗S =
∑

i=bosons

gi

(
Ti

T

)3

+
7
8

∑
i=fermions

gi

(
Ti

T

)3

. (2.50)

Boson and fermion species are only included when mi � T , that is when the species
are relativistic. For example, at present, T � MeV, only the neutrinos contribute. In
this case g∗S = 3.91 [5]. In the early universe T > 300 GeV. At this temperature all
Standard Model particles are relativistic, therefore the total number of degrees of freedom
is much higher, g∗S = 106.75 [5]. As can be seen from the density equation (2.44), the
greatest contribution to the entropy density comes from relativistic particles, so we can
assume that (2.49) is also a good approximation for a combination of relativistic and
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non relativistic particles. Since s is a constant as the universe expands one can derive
that,

a ∝ g
−1/3
∗s (T )T−1. (2.51)

We could have suspected this relation between the scale factor and the temperature by
dimension analysis.

2.2 Cosmic Microwave Background

The earliest information we have of our universe is from the Cosmic Microwave
Background (CMB). It was formed during a period called ‘the time of last scattering’.
In the early days of the universe the temperature was very high and because of this the
electrons were not bound to nuclei. As a consequence electrons and photons where in
thermal equilibrium. When the universe cooled down the electrons became bound to the
nuclei and photons could no longer scatter with them. Because of this the period just
before the recombination of nuclei and electrons is called the time of last scattering. After
this time the photons could travel more or less freely, the universe became transparent.
Both before and after the time of last scattering the photons have a black-body spectrum.
The only thing that changes during the evolution of the universe is that their frequency
redshifts. The black-body radiation of these photons can be measured and was first
discovered by Arno Penzias and Robert Wilson in 1965 [6]. The CMB is not completely
isotropic, but has little temperature fluctuations around a temperature of 2.725±0.002K
[7]. These fluctuations are among others caused by fluctuations in the fluid configuration
prior to the time of last scattering. This means that the temperature fluctuations can give
us important information of the early universe and give insight in the formation of large
scale structure. Because of this important role that the CMB plays in our knowledge of
the universe, we will discuss some of its properties in this section. Our discussion is based
on the discussion in the book of Weinberg [3] and a more extensive discussion about the
history and anisotropies of the CMB can be found there. We will give an overview of
the origin of the temperature fluctuations and discuss how we can relate the fluctuations
that we measure to cosmological interesting quantities.

2.2.1 Dipole anisotropy

The biggest anisotropy in the CMB is the dipole anisotropy that originates from
the motion of the earth. To find the magnitude of this dipole we must look at the
quantity Nγ(p), which is the density of photons in phase space. In other words: per unit
spatial volume in a momentum space volume d3p there are Nγ(p)d3p photons of each
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2.2 Cosmic Microwave Background

polarization. Thus,

Nγ(p) =
number of photons of one polarization

phase space volume
. (2.52)

The phase space volume between frequencies ν and ν + dν is given by 4πν2dν. The
number of photons between ν and ν + dν is given by the black body spectrum,

nγ(ν)dν =
8πν2dν

exp(ν/kBT )− 1
. (2.53)

This includes both polarizations so we must divide by 2. For photons |p| = hν/c, which
is just ν in our units and therefore we can replace ν with |p|. We then have,

Nγ(p) =
1

exp(|p|/kBT )− 1
. (2.54)

Since both phase space and the number of photons are Lorentz invariant,

N ′
γ(p′) = Nγ(p), (2.55)

where the prime denotes that the quantity is Lorentz transformed. Inspection of (2.54)
tells us that this implies,

|p′|
T ′ =

p
T
. (2.56)

Let p be the momentum of the photon in the CMB frame and p′ the momentum that
we measure on earth. If the earth is moving in the z-direction the relation between the
two is given by,

|p| = γ(|p′|+ βpz),

= γ(1 + β cos θ)|p′|, (2.57)

where θ is the angle between the z-axis and p′. From this we can conclude that,

T ′ =
T

γ(1 + β cos θ)
. (2.58)

Since β is of order 10−3 [3] we can expand this in β. The magnitude of the dipole is,

∆T = T ′ − T = T

(
−β cos θ − 1

2
β2 + β2 cos θ + ...

)
,

= T

(
−βP1(cos θ)− 1

6
β2 +

2
3
β2P2(cos θ) + ...

)
, (2.59)

where the Pl are the Legendre polynomials. Pictures of CMB are usually corrected for
this dipole. Another source of anisotropy that does not originate from the early universe
is that of the scattering of photons with galaxies. This is called the Sunyaev-Zel’dovich
effect. We will not discuss this effect, for a discussion see [3].
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2.2.2 Primairy fluctuations

Primary fluctuations are caused by anisotropies in the early universe. There are two
main causes for these anisotropies. The first cause are fluctuations in the temperature
of the black-body spectrum of photons, electrons and nuclei before the period of last
scattering. This is for example caused by the Doppler effect of the moving photons. A
second cause is the anisotropic distribution of relativistic matter prior to the period of
last scattering. In areas of a higher density the gravitational attraction is stronger and
the photons will redshift compared to areas with lower densities. This is known as the
Sachs-Wolfe effect and shows that the temperature anisotropies are directly related to
the density isotropies of the background fluid.

The temperature fluctuations that we measure are in some sense arbitrary. The CMB
is the cumulative result of a lot of arbitrary fluctuations. These fluctuations could also
have happened in a different way, which would have changed the CMB. Our theory of
the early universe does not single out one of these processes, since the underlying physics
is the same. This means that if we want to compare our theory with the experimental
results we are not interested in specific fluctuations we measure, but in the average over
all possible configurations of fluctuations we could have measured. In the following we
will explain how we can relate the observed fluctuations to this average.

According to the ergodic theorem [3] the average over the possible configurations is
the same as the average over the positions from which one can observe the CMB. We
will denote this average with angular brackets 〈〉. The fact that the universe is rotational
invariant will give restrictions on the averages. The easiest example is that of the average
of the temperature difference in the direction n̂:

∆T (n̂) = T (n̂)− T0, (2.60)

where T0 is the average temperature defined as,

T0 ≡
1
4π

∫
d2n̂T (n̂). (2.61)

Since 〈∆T (n̂)〉 is rotational invariant it cannot depend on n̂ and,

〈∆T (n̂)〉 = 0. (2.62)

What about the average of two temperature differences? To evaluate this expression
it will turn out to be convenient to expand the temperature difference in spherical
harmonics Y m

l (n̂) as,
∆T (n̂) =

∑
lm

almY
m
l (n̂), (2.63)
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where alm are the coefficients in the expansion. Since the average of two temperatures
〈∆T (n̂1)∆T (n̂2)〉 must be rotational invariant it can only depend on the angle between
n̂1 and n̂2 and the index l. This means that we can expand the average in Legendre
polynomials Pl as,

〈∆T (n̂1)∆T (n̂2)〉 =
∑

l

AlPl(n̂1 · n̂2), (2.64)

since these form a orthonormal basis. We also know that we can rewrite expression (2.63)
into an expression for the coefficients alm:

alm =
∫
d2n̂Y m∗

l (n̂)T (n̂). (2.65)

This gives,

〈a∗lmal′m′〉 =
∫
d2n̂1d

2n̂2 〈∆T (n̂1)∆T (n̂2)〉Y m
l (n̂1)Y m′∗

l′ (n̂2). (2.66)

If we insert expression (2.64) and use the addition theorem [8],

Pl(n̂1 · n̂2) =
2π

2l + 1

∑
m

Y m∗
l (n̂1)Y m

l (n̂2), (2.67)

and the completeness relation,∑
lm

Y m∗
l (n̂1)Y m

l (n̂2) = δ2(n̂1 − n̂2), (2.68)

we can rewrite this as,

〈a∗lmal′m′〉 =
4π

2l + 1
Al

∫
d2n̂1d

2n̂2Y
m
l (n̂1)Y m′∗

l′ (n̂2),

=
4π

2l + 1
Alδll′δmm′ ,

≡ Clδll′δmm′ . (2.69)

In the second line we used the orthogonality properties of the spherical harmonics.

The coefficients Cl contain all information about the average of two temperatures and
are commonly used to characterize them. They can also be written as,

Cl =
1
4π

∫
d2n̂1d

2n̂2Pl(n̂1 · n̂2) 〈∆T (n̂1)∆T (n̂2)〉 , (2.70)

which can be found by contracting expression (2.64) with Pl(n̂1 · n̂2) and integrating
over the two angles. But this is still the average over all possible positions to observe
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the CMB. Since we can only observe from the earth we can only average over different
angles, but not over different positions, so what we measure is

Cobs
l =

1
2l + 1

∑
m

a∗lmalm,

=
1
4π

∫
d2n̂1d

2n̂2Pl(n̂1 · n̂2)∆T (n̂1)∆T (n̂2). (2.71)

The difference between these two quantities is called cosmic variance. To know how large
this difference is we can calculate the mean square fractional difference:〈(

Cl − Cobs
l

Cl

)2
〉

= 1− 2
(2l + 1)Cl

∑
m

〈a∗lmalm〉+
1

(2l + 1)2C2
l

∑
mm′

〈a∗lmalma
∗
lm′alm′〉 ,

= −1 +
1

(2l + 1)2C2
l

∑
mm′

〈a∗lmalma
∗
lm′alm′〉 . (2.72)

To calculate the last term we can use the fact that the perturbations are Gaussian and
thus,

〈a∗lmalma
∗
lm′alm′〉 = 〈a∗lmalm〉 〈a∗lm′alm′〉+ 〈a∗lma∗lm′〉 〈almalm′〉+ 〈a∗lmalm′〉 〈a∗lm′alm〉 .

(2.73)
Finally we have, 〈(

Cl − Cobs
l

Cl

)2
〉

=
2

2l + 1
. (2.74)

This shows that the fractional difference gets smaller when we go to larger l. As
a consequence measurements at large l can tell us a lot about average temperature
differences, while measurements at small l give very little information.

2.3 Inflation

The above given description of the universe has a few problems. In this section we will
address these problems and see if we can find a solution for them. The solution will be
to introduce a period of rapid expansion in the early universe: inflation. We will discuss
general properties of inflation and see how the problems can be solved. We will also
discuss the concepts of slow roll inflation and reheating.

2.3.1 Problems

There are three main problems with the description of the universe given in section 2.1.
They are called the horizon problem, the flatness problem and the relic problem. We
will discuss the first two problems and shortly mention the last problem.
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The horizon problem

We discussed before that our universe looks homogeneous and isotropic on large scales.
This is especially the case for the Cosmic Microwave Background, which would indicate
that the entire CMB was once in causal contact. To investigate if this could be true we
define the particle horizon d as the distance which light could have traveled from the
beginning of the universe till a time t,

d =
∫ t

0

dt′

a(t′)
. (2.75)

This relation can be derived from the fact that for light ds2 = 0. Looking at the definition
of the FLRW metric (2.1) one can see that this is equal to the conformal time and because
of this is also proportional to (Ha)−1. We can explicitly calculate the particle horizon
using relation (2.29),

d ∝ 3(1 + γ)
−1 + 3γ

a(1+3γ)/2. (2.76)

We can now evaluate the particle horizon during the different eras of the universe. At
the time of last scattering the dominant fluid in the universe was radiation. In that case
d ∝ a, which means that during this period the particle horizon expanded as much as
the universe expanded. After that, the universe became matter dominated, for which
d ∝ a1/2. This shows that the particle horizon expanded slower then the universe. At the
moment the universe is dominated by the cosmological constant and d ∝ a−1. While the
universe is expanding, the particle horizon shrinks. In the last two eras the part of the
universe that is able to reach us, becomes smaller while the universe expands. Combining
these results we see that parts of the sky which were not in causal contact at the time of
last scattering, will never be in causal contact. We can also reverse the calculation given
the part of the universe that is inside te particle horizon at present. It turns out that
only a patch 1.6◦ [3] would have been in causal contact at the time of last scattering.
This is what is known as the horizon problem.

The flatness problem

Measurements tell us that the universe is almost flat, Ω ' 1. This is actually quite
remarkable and to see why, we may explicitly write the density parameter as,

Ω−1 =
ρc

ρ
,

= 1 +
ρk

ρ
,

= 1− 3K
8πGa2ρ

, (2.77)
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where we used definition (2.30). We can make this more explicit if we use the relation
between the density and the scale factor (2.28),

Ω−1 = 1− 3K
8πGρ0

a1+3γ . (2.78)

For Ω to be very close to one at present, the second term on the right hand side has to
be very small. But because during radiation and matter domination γ equals 1/3 and
0 respectively, the second term grows with time. This means that a flat universe is not
a stable solution. To explain the current value of Ω, the second term had to be smaller
than 10−16 at the time of nuclei formation [9]. Although it is not impossible it seems
very unlikely that the curvature was this small by accident. This is what is known as
the flatness problem.

The relic problem

One would expect that during the Big Bang particles like magnetic monopoles were
created. At present we do not observe these kind of particles. This discrepancy is known
as the relic problem. We will not go further into this problem, a more elaborate discussion
can be found in [3].

2.3.2 Properties of inflation

To solve the above problems one can introduce a period of rapid expansion in the early
universe called inflation. The idea of inflation was first introduced by Guth [10], Albrecht
and Steinhardt [11] and Linde [12][13] around 1981. To see that such a period can indeed
solve the problems we compare expressions (2.76) and (2.78). Inspection shows that both
the horizon and the flatness problem can be solved if there was a period before the time
of last scattering, when,

1 + 3γ < 0 ⇒ γ < −1/3. (2.79)

When γ = −1, this period is called the Sitter inflation, since in that case the metric
becomes the de Sitter metric. For other values of γ, it is called Power-Law inflation.
Comparison with the second Friedmann equation (2.26) shows that the above statement
is the same as the requirement, ä > 0. The universe must have had an accelerated
expansion during inflation. This solves the horizon problem, because the particle horizon
would have decreased prior to the time of last scattering. As a consequence the area
of the present CMB could have been inside the horizon at the beginning of inflation
and a thermal equilibrium could have been formed. After that the horizon would have
decreased to the size of 1.6◦ at the time of last scattering. The flatness problem is solved
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in the same manner. During inflation the value of the second term in expression (2.78)
decreases. If the period last long enough it could have decreased to the needed value of
10−16 at nuclei formation.

Scalar field inflation

Which kind of fluid could have caused such an accelerated expansion? The simplest
model for inflation is given by a scalar field φ, often referred to as the inflaton [14]. The
action for this model is,

S = −
∫
d4x

√
−g
[
1
2
gµν∂µφ∂νφ+ V (φ)

]
. (2.80)

To find an explicit expression for the density and pressure of the scalar field we may
derive the expression for the energy momentum tensor, using,

Tµν = − 2√
−g

δS

δgµν
. (2.81)

The result is,

Tµν = ∂µφ∂νφ− gµν

[
1
2
gαβ∂αφ∂βφ+ V (φ)

]
. (2.82)

Comparison with (2.15) shows that,

ρ =
1
2
φ̇2 + V (φ), p =

1
2
φ̇2 − V (φ). (2.83)

We can insert these expressions into the fluid equation (2.18) to obtain the conservation
equation,

φ̈+ 3Hφ̇+
dV (φ)
dφ

= 0. (2.84)

We can also rewrite the first Friedmann equation (2.25) for a flat universe,

H2 =
8πG

3

(
1
2
φ̇2 + V (φ)

)
. (2.85)

These two equations will govern the evolution of the scalar field.

Slow roll inflation

The requirement for an accelerated period of expansion was given by the condition
ρ + 3p < 0. If we use the explicit expressions for the density and pressure (2.83) this
is equivalent to the condition V > φ̇2. To make this statement stronger we can require
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an almost exponential inflation, which is the same as requiring γ ' 1. In that case the
condition is,

V (φ) � 1
2
φ̇2. (2.86)

Exponential inflation occurs when the potential energy of the inflaton dominates the
kinetic energy. In other words, the inflaton must be slowly rolling down the potential.
That is why this kind of inflation is called slow roll inflation. Under this condition the
scalar field equations (2.84) and (2.85) reduce to,

φ̇ ' − 1
3H

dV (φ)
dφ

,

H2 ' 8πG
3

V (φ), (2.87)

where we assume that during slow roll inflation we need φ̈� Hφ̇, for inflation to last a
significantly long time. Another way of making sure that condition (2.86) is satisfied, is
requiring that the slow roll parameters ε, η � 1 [15], where ε and η are defined as,

ε ≡ 1
16πG

(
1
V

dV

dφ

)2

(2.88)

η ≡ 8πG
1
V

d2V

dφ2
(2.89)

2.3.3 Reheating

Inflation will end, when ε ' 1. At this point the scalar field will start to oscillate around
the minimum of V (φ). To find out how the density of the inflaton evolves during this
period, we can may combine the expression for ρ and the conservation equation for φ
(2.84) to obtain, 〈

dρ

dt

〉
= −〈6H(ρ− V )〉 ' −6H〈ρ− V 〉. (2.90)

The angle brackets denote the time average. Solving for a potential of the form V (φ) ∝
φn, the solution is [14],

ρ ∝ a−6n/(n+2). (2.91)

Assuming that the minimum of the potential can always be approximated by V ∝ φ2,
the density at the end of inflation is proportional to a−3. One can also derive the time
dependence of the scale factor, using the time averaged relation:

〈φ̇2〉T = n〈V (φ)〉T . (2.92)
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We can again solve this for a potential V (φ) ∝ φn, the result is φ ∝ t2/(2−n). An
expression for the scale factor can then be obtained by using constraint equation (2.84),
the result is [16],

a ∝ t(n+2)/3n. (2.93)

For n = 2 the scale factor evolves as t2/3.

At the end of inflation the inflaton will couple to other fields and in this way decay into
other particles. The energy density of the scalar field will decrease as,

ρφ(t) = ρφ(tI)
(
a(tI)
a(t)

)3

e−Γ(t−tI), (2.94)

where tI is the time of the beginning of the oscillation and Γ the decay rate [3]. The
energy conservation equation for the particles the inflaton decays into is,

ρ̇M + 3H(ρM + pM ) = Γρφ. (2.95)

If we assume that the inflaton will decay in relativistic particles, pM = ρM/3, the solution
to (2.95) is,

ρM (t) =
ρφ(tI)Γa3(tI)

a4(t)

∫ t

tI

a(t′)e−Γ(t′−tI)dt′. (2.96)

In the beginning the exponential term will dominate and the energy density of the new
particles will increase. At later times the a−4 behavior takes over and the density will
fall again. One can calculate the maximum density reached in two regimes: Γ � H(tI)
and Γ � H(tI).

In the limit Γ � H(tI) one can expand expression (2.96) in powers of H(tI)/Γ using
partial integration. The result is,

ρM (t) = ρφ(tI)
(
a(tI)
a(t)

)2 [
1 +

H(tI)
Γ

+ ...

]
. (2.97)

The inflaton decays almost instantly into the relativistic particles. Their density decays
as ρM ∝ a−4, which we saw was characteristic for relativistic particles.

The other limit Γ � H(tI) can be calculated by setting the exponential to zero. This can
be done because the density reaches its maximum before the exponential starts decaying.
This also means that the universe is still dominated by the inflaton and we can use the
relation a(t) = a(tI)(t/tI)2/3. In that case equation (2.96) reduces to,

ρM (t) ' 3
5
ΓtIρφ(tI)

(
tI
t

)8/3
[(

t

tI

)5/3

− 1

]
, (2.98)

The maximum density is reached when t = (8/3)3/5tI .
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CHAPTER 3

Astrophysical magnetic fields

Measurements indicate that magnetic fields are present in galaxies, clusters of galaxies
and even in the intergalactic medium. These fields can have a coherence up to a scale
of 1 Mpc and the strength of the fields at the cluster scale is of the same order as the
strength of magnetic fields at galactic scales. Both features are quite remarkable. Up
until now it is not clear where these fields come from. One of the most promising ideas
is that the fields originate from a quantum perturbation during inflation. This idea was
first formulated by Turner and Widrow in 1987 [1]. In this chapter we will briefly review
the measurements of magnetic fields and see how these measurements restrict the value
of the magnetic field at the end of inflation. We will also give a short argument, why we
believe that inflation is a good candidate to give rise to these large scale magnetic fields.
The argument will become more formal in the later chapters.

3.1 Measurements of astrophysical magnetic fields

Before we will go into the results of the measurements we will first shortly review the
methods that are used to measure astrophysical magnetic fields. A more extensive review
of both the measuring methods and the measurements themselves can be found in a
review by Widrow [17].

Measuring methods

There are four methods which are commonly used for the detection of astrophysical
magnetic fields in galaxies and clusters of galaxies: synchrotron radiation, Faraday
rotation, Zeeman splitting and polarization of optical starlight. The first two methods
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are most commonly used, since they are the easiest to observe. We will explain them in
short below. After that we will explain the method that is used to detect magnetic fields
in the intergalactic medium, the TeV blazars.

Synchrotron radiation: When an electron has an acceleration perpendicular to its
velocity it emits electromagnetic radiation. This happens for example when electrons
move in a magnetic field, since they will spiral around the field lines. When the electrons
have a relativistic speed, the radiation is called synchrotron radiation. The emitted
radiation can give information about the strength of the magnetic field perpendicular to
the radiation.

Faraday rotation: When electromagnetic waves travel trough a magnetic field in a
medium, the polarization gets rotated. This was discovered by Michael Faraday in 1845,
hence the name Faraday rotation. Astrophysical electromagnetic waves travel mostly
trough a medium of free electrons. In that case linearly polarized electromagnetic waves
get rotated by an angle,

φ =
e3λ2

2πm2
e

∫ ls

0
ne(l)B‖(l)dl, (3.1)

where λ is the wavelength of the electromagnetic wave, me the mass of the electron, ne

the density of electrons along the path l, B‖ the magnetic field parallel to the path and
ls the position of the source. This is often rewritten as,

φ = RMλ2, (3.2)

where RM is called the rotation measure. The value of the rotation measure can tell
us something about the strength of the magnetic field parallel to the electromagnetic
wave.

TeV blazars: Blazars are compact stellar like objects which can emit gamma rays
with an energy of order TeV. When these gamma rays travel through the interstellar
medium they interact with photons from the diffuse extragalactic background light. This
is radiation from objects such as active galactic nuclei and remnants of star formation.
Through the interaction an electron-positron pair is created. These pairs can scatter
in turn with photons from the CMB, which gives these photons an energy of order
GeV. This process, through which the photon gains energy, is called Inverse Compton
scattering. If there is no intergalactic magnetic field present these photons travel in a
straight line and seem to originate from the same point as the blazar. If a magnetic
field is present the path of the electron-positron pairs will be bended. Therefore the
GeV photons will seem to originate from points around the blazar. By measuring these
deflections a lower bound on the intergalactic magnetic field can be found. Since this
method of measuring intergalactic magnetic field is quite recent the method is still under
discussion. For example in [18] they argue that Inverse Compton scattering is not the
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3.2 Intergalactic magnetic fields

main process through which the electron-positron pair loses energy and therefore the
results are unreliable.

Measurements

Using the methods described above a lot of different measurements have been made of
magnetic fields in galaxies. It turns out that most of the galaxies have magnetic fields
with an average strength of B ∼ 10−6 − 10−5 G [17] and references therein. These fields
are coherent on the scale of the galaxies themselves. One has also observed these fields
in galaxies at a large redshifts, which indicates that they also existed just after galaxy
formation. There are also measurements of magnetic fields in clusters of galaxies. These
fields are coherent up to the scale of the clusters and have a strength which is only a
little smaller than the galactic magnetic fields, B ∼ 10−7 − 10−6 G [17] and references
therein.

Recently a lower bound has been found for magnetic fields in the intergalactic medium
of B ≥ 10−16 − 10−15 G, for a coherence scale of the field of 1 Mpc or larger [19][20].
For these measurements the method of TeV blazars was used under the assumption
that the strength of the emission of the gamma rays has been constant on long time
scales. Since it is not guaranteed that the emission was indeed constant others have
assumed that the emission has only been constant during the time of measuring, which
was only a few years, when this assumption could be checked. They found a lower bound
of B ≥ 10−18 − 10−17 G [21] [22][23].

3.2 Intergalactic magnetic fields

The discovery of magnetic fields in the intergalactic medium is quite remarkable since
there seems to be no explanation of how these fields were generated. The reason is
that there is no matter and especially no electrically charged matter in the intergalactic
medium. The origin of the fields in galaxies and clusters is also still under debate, but one
could think of an astrophysical process, such as the birth of a galaxy, as the generator of
the magnetic fields. Since no matter is present in the intergalactic medium there is also
no astrophysical process that could account for the presence of magnetic fields. This is
the main reason that people are looking for a more exotic origin, such as the idea that
these fields were generated during inflation. The main reason for this assumption is that
it could explain how the fields were generated in the vacuum. We explain in short how
this is possible in section 3.5 and the technical details can be found in chapters 6 and
7.
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Chapter 3: Astrophysical magnetic fields

Another thing that is remarkable about the intergalactic magnetic fields is their large
coherence scale of 1 Mpc and larger. These large scales are also found in galaxies
and clusters of galaxies, but since they are the same size as the galaxies and clusters
themselves, it is again possible to find an astrophysical explanation for these scales. The
absence of such an explanation in the case of intergalactic magnetic fields points again
in the direction of a more exotic origin. In section 3.5 we explain how the assumption
that the fields were generated during inflation is also able to explain this feature of
the intergalactic fields. For the above reasons the discovery of the intergalactic fields is
very important. It provides us with the main reason to look at inflation as the origin of
magnetic fields and discards astrophysical processes as the generator of these fields.

3.3 Amplification of the magnetic field

It is possible that the galactic magnetic fields have been amplified in the history of the
universe. One of the main mechanism to amplify the magnetic field is called the dynamo
mechanism. It arises when conducting matter moves trough a magnetic field. The motion
of the matter through the magnetic field can induce a current in the matter. This induced
current can in turn amplify the original magnetic field. When there is a magnetic field
present in a galaxy, the motion of this galaxy trough the field can amplify this magnetic
field. This is what is called the galactic dynamo mechanism. An extensive review of this
mechanism is given by Widrow [17] and we refer the reader there for more details. What
is important for our purposes is that the dynamo mechanism could have amplified a seed
magnetic field. How much depends on the specifics of the dynamo mechanism, which are
still in debate. Different values can be found in [17][24] and references therein. We will
take one of the upper limits. The advantage of taking this limit is that, if a mechanism
does not generate fields of this strength, it will not be able to generate strong enough
fields for all different theories of the dynamo mechanism. Since we will be evaluating
the strength of the magnetic field at present, without including the influence of the
dynamo mechanism, we need to know how much weaker the field would have been if
the dynamo mechanism was not present. For example if the dynamo mechanism has
amplified the magnetic field strength with a factor of 1010 and we ignore this process,
our calculated field strength will be a a factor 10−10 to small. If we assume that the
present magnetic field has a strength of B = 10−6 G, and our calculations find a field
strength of B = 10−16, our calculation is correct with observations, since the dynamo
mechanism would have amplified the field to the observed strength. The limit we will
use, is that a magnetic field strength at present of B0 ∼ 10−33 G on a scale λ = 10
kpc, could still have been amplified by the dynamo mechanism to the observed values,
as discussed in [24].
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There is also another mechanism that could cause amplification of magnetic fields.
Since the magnetic flux is conserved, the magnetic field is amplified when a protogalaxy
collapses into a galactic disc in the early ages of the universe [17]. We will again take an
upper limit, when dealing with the specifics and assume that without any amplification
the needed seed magnetic field at present would be of order B0 ∼ 10−14 G on scales of
1 Mpc, as discussed in [24]. We will use both these limits to evaluate if inflation can
indeed generate large scale magnetic fields.

It is important to notice that these amplification mechanisms are only able to amplify
the magnetic fields in galaxies and clusters of galaxies. Since there is no matter in the
intergalactic medium the intergalactic magnetic fields can not be amplified by the above
mechanisms. Therefore the measurements of intergalactic magnetic fields usualy provides
us with the strongest lower bound. Any viable theory needs to be able to produce a
present magnetic field of at least B0 ∼ 10−18 at the scale of 1 Mpc.

3.4 CMB constraints

Magnetic fields create anisotropic pressures as will be explained in chapter 8. This will
influence the gravitational field, which will also become anisotropic. The gravitational
anisotropy has an influence on the Cosmic Microwave Background as explained in section
2.2.2. This means that if the magnetic fields were generated during from inflation they
would leave an imprint on the CMB. Barrow, Ferreira and Silk analyzed 4 years of
data from the Cosmic Background Explorer (COBE) and found an upper limit of B0 <

10−9 G [25]. This is again the strength of the present magnetic field if no amplification
mechanisms would have been present.

3.5 Inflation as the origin of astrophysical magnetic fields

In 1987 Turner and Widrow [1] suggested that the observed magnetic fields could have
been generated during inflation. One reason for this suggestion was that both the
amplifying mechanisms that we have discussed in section 3.3 only work with a seed
magnetic field and are not able to create a magnetic field out of nothing. There are
different theories about how this seed magnetic field was generated. The fact that we
have observed magnetic fields in galaxies at large redshift indicates that they have been
generated in the early universe. On the other hand, the fact that magnetic fields are
present in the intergalactic medium, where no electrically charged matter is present,
suggest that the magnetic fields could not have been generated by an astrophysical
process. For this reason it was suggested that the origin of the fields is a quantum
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Chapter 3: Astrophysical magnetic fields

perturbation during inflation, since in this way the field could have been created in the
vacuum. This could also explain the fact that the magnetic fields are coherent on such
large scales. We saw in chapter 2.3, that during inflation the universe had an accelerated
expansion and therefore the particle horizon became smaller with time. Therefore, during
inflation a quantum perturbation can grow very fast and finally become larger than the
horizon. After inflation the horizon will become larger again, as we have seen, and the
‘perturbation’ will cross back in the horizon.

To make this description more formal we will first introduce the notion of the Hubble
radius. This is the distance beyond which particles are moving away from us faster than
the speed of light. Since Hubble’s law was defined as v = Hd, the Hubble radius is
H−1, if we put c to one. The Hubble radius is not equivalent to the particle horizon,
although in papers they are often interchanged [26]. If we make the assumption that the
universe was matter dominated during most of its history, then at present the particle
horizon is two times the size of the Hubble radius [15]. Therefore if one wants to know
if a perturbation is inside the particle horizon at present, it is a good approximation to
look if it is inside the Hubble radius. From now on we will often refer to the Hubble
radius as the horizon.

To find out when perturbations cross in- and outside the horizon we need to know
how the Hubble radius evolves during time. We know from the Friedmann equations
that,

H−1 ∝ a3(1+γ)/2. (3.3)

During inflation, when γ < −1/3, the Hubble radius expands less than the universe itself.
This means a co-moving scale λ can be within the horizon at early times and move outside
the horizon during inflation. After that the universe is radiation and matter dominated
and the Hubble radius is respectively proportional to a2 and a3/2. Therefore the horizon
increases and the scale λ moves back into the horizon. This is schematically depicted in
figure 3.1. One can see that larger scales exit the horizon at earlier times and cross back
in the horizon later than smaller scales.

We can calculate when the co-moving length λ crosses outside the Hubble radius, that
is when aλ = H−1. This happens N(λ) e-folds before the end of inflation, where the
number of e-folds is defined as,

N(λ) = ln
(
aend

a1

)
. (3.4)

Here a1 is the scale factor at the time of horizon crossing and aend the scale factor at
the end of inflation. Since during reheating a ∝ ρ1/3, we can rewrite this as,

N(λ) = ln

[
M2

mpl
λarad

(
ρend

ρrad

)1/3
]
, (3.5)
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3.5 Inflation as the origin of astrophysical magnetic fields

Figure 3.1 – Schematic evolution of the horizon (solid line) during de Sitter inflation
(γ = −1), the radiation- and matter dominated era. The red line corresponds to the largest
scale λ3, the green line to the smallest scale λ1. During de Sitter inflation the horizon stays
constant and because of the expansion of the universe a co-moving scale λ can cross outside
the Hubble radius. After inflation the horizon expands faster than the universe and the scales
cross back inside the horizon. Larger scales exit the horizon before smaller scales and cross
back in the horizon at later times. The dotted line indicates the evolution of the horizon in
absence of an inflationary period. Figure from [27].

where M is the temperature at the end of inflation. We used the fact that a1 = H−1
1 λ−1

and that during inflation, H2 ' ρ/mpl 'M4/m2
pl [1], since we assume that the universe

is flat and we saw in section 2.1.3 that ρ ' T 4. The subscript rad indicates the value of
the quantity at the end of reheating. Using ρend/ρrad ' M4/T 4

rad and arad ' a0T0T
−1
rad

we find,

N(λ) = ln
[
λ
T0

mpl
M2/3T

1/3
rad

]
,

= 45 + lnλMpc +
2
3

ln(M14) +
1
3

ln(T10), (3.6)

where λMpc ≡ λ/Mpc, M = M141014GeV and Trad = T101010 GeV. The current value
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of the Hubble parameter is H0 = 100hkms−1Mpc−1. This leads to a present Hubble
radius of H−1

0 ' 3000 Mpc, where we put c to one and used h ' 1. This indicates that
perturbations, which cross back into the horizon at present, left the horizon,

N(λ) = 53 +
2
3

ln(M14) +
1
3

ln(T10), (3.7)

e-folds before the end of inflation. One can calculate that at this time the density was
given by [1],

ρtot

m4
pl

= (1.6× 1026)sλs
Mpc

(
M

mpl

)4+2s/3(Trad

mpl

)s/3

, (3.8)

where s = −6(1 + γ)/(1 + 3γ).

The above given description holds for a general perturbation. In the following chapters
we will show explicitly how the astrophysical magnetic fields arise from quantum
perturbations during inflation and what their strength is. To do this we need to know
how quantum field theory in curved spacetimes works, since the FLRW metric is not
normal Minkowski spacetime. This will be the subject of the next chapter.
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CHAPTER 4

Quantum field theory in curved

spacetime

Quantum field theory in a curved spacetime is not the same as quantum field theory
in Minkowski spacetime. One of the main differences is that the concept of a particle is
no longer well defined, as we will show. Since the FRLW metric is not the Minkowski
metric, we have to keep this in mind when we want to evaluate the magnetic fields. It
will turn out that due to symmetries of the FLRW metric it is still possible to come to a
definition of the particle concept. In this chapter we will discuss some general properties
of quantum field theory in curved spacetime, by taking the example of a scalar field. We
will use the obtained results in chapter 5 to get a description of the magnetic field in
an FLRW metric. This chapter is build op as follows: first we will recap some results
from quantum field theory in Minkowski space. Secondly we will discuss the notion of
conformal symmetry. In section 4.3 we will give properties of a scalar field in a general
curved spacetime. Last we will discuss the notion of a particle and see how particles can
be created in a 2d FLRW universe. The discussions in this chapter are based on the book
by Birrell and Davies [28]. A more extensive review of quantum field theory in curved
spacetime can be found there.

4.1 Scalar field in Minkowski space

A scalar field φ(x) in Minkowski space satisfies the Klein-Gordon equation,

(�−m2)φ = 0, (4.1)
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where � = ηµν∂µ∂ν , ηµν is the metric for Minkowski spacetime and m is the mass of the
scalar particle. A solution of the Klein-Gordon equation are the plane waves,

uk(x) ∝ eik
µxµ = eikx−iωt, (4.2)

where ω2 = k2 +m2. Because ω depends only on k up to a sign, different solutions can
be characterized by k and the sign of ω. The most general solution to the Klein-Gordon
equation can be found by constructing a complete, orthonormal set of modes in which
we can expand φ. To have an idea of what orthonormal in this case means, we may use
the inner product,

(φ1, φ2) = −i
∫

Σt

(φ1∂tφ
∗
2 − φ2∂tφ

∗
1)d

n−1x, (4.3)

where Σt is a constant-time hypersurface. We can calculate the inner product of two
plane waves,

(uk, u
′
k) ∝ −i

∫
Σt

(eikx−iωt∂te
−ik′x−iω′t − eik

′x−iω′t∂te
−ikx−iωt)dn−1x,

= (ω + ω′)ei(ω−ω′)t(2π)n−1δ(n−1)(k− k′). (4.4)

This becomes zero if the two plane waves are different, which is the same as stating that
they have different k. If we want the plane waves to form an orthonormal set of modes
we require,

(uk, u
′
k) = δ(n−1)(k− k′). (4.5)

Comparison with equation (4.4) tells us that,

uk =
1√

2ω(2π)n−1
eikx−iωt. (4.6)

Since the sign of ω is not determined by k, we can require that ω is positive. The negative
solutions can then be obtained by taking the complex conjugate of uk. From now on we
will use the following definition. A mode is a positive-frequency mode if,

∂tuk = −iωuk, ω > 0, (4.7)

and is a negative-frequency mode if,

∂tuk = iωuk, ω > 0. (4.8)

In our case the uk are the positive frequency modes and the u∗k are the negative-frequency
modes. Notice that the positive- and negative-frequency are defined using the operator
∂t, which is a timelike Killing vector in Minkowski space.
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4.1 Scalar field in Minkowski space

Quantization of the scalar field is done by imposing the equal time commutation
relations,

[φ(t,x), π(t,x′)] = iδ(3)(x− x′),[
φ(t,x), φ(t,x′)

]
= 0,[

π(t,x), π(t,x′)
]

= 0, (4.9)

where π is the conjugate variable of φ, which is defined as,

π =
∂L
∂φ̇

. (4.10)

In the case of a scalar field in Minkowski space the Lagrangian is given by,

L(x) = −1
2
ηµν∂µφ∂νφ−

1
2
m2φ2. (4.11)

It is easy to see that variation of the action with respect to φ gives back the Klein-Gordon
equation (4.1). In this case the conjugate variable is given by π = φ̇.

We saw that the plane waves (4.2) and their complex conjugates form an orthonormal
set of modes, so we can expand φ as,

φ(x) =
∑

k

[akuk(x) + a†ku
∗
k(x)]. (4.12)

Notice that the positive-frequency modes are the coefficients of the annihilation operator
and the negative-frequency modes are the coefficients of the creation operator. We can
use the above given commutation relations (4.9) to compute the commutation relations
for the creation and annihilation operators a†k and ak:

[ak, a
†
k′ ] = δkk′ , [ak, ak′ ] = [a†k, a

†
k′ ] = 0. (4.13)

The vacuum state |0
〉

is defined as,

ak|0
〉

= 0, ∀k. (4.14)

A one-particle state can be created by acting with a†k on the vacuum. The same way
multiple particle states can be constructed. The number of particles in a particular state
can be calculated with the number operator Nk = a†kak. This obeys,

Nki
|n1, n2, ...., nj

〉
= ni|n1, n2, ...., nj

〉
, (4.15)

where ni is the number of particles in the i state.
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4.2 Conformal transformations

A conformal transformation is a transformation which leaves the metric invariant up to
a scale factor,

gµν(x) → ḡµν(x) = Ω2(x)gµν(x). (4.16)

One can calculate how other quantities transform under conformal transformations. It
will turn out to be very convenient to know the transformation of,[

�− 1
4

(n− 2)
(n− 1)

R

]
φ→

[
�̄− 1

4
(n− 2)
(n− 1)

R̄

]
φ̄, (4.17)

where we conveniently define,

φ̄(x) ≡ Ω(2−n)/2(x)φ(x). (4.18)

To calculate this transformation we must start with one of the most basic quantities,
the Christoffel symbol. This changes under a conformal transformation as,

Γρ
µν → Γ̄ρ

µν =
1
2
ḡρσ [∂µḡνσ + ∂ν ḡσµ − ∂σ ḡµν ] ,

= Γρ
µν +

1
2
Ω−2gρσ

[
gνσ∂µΩ2 + gσµ∂νΩ2 − gµν∂σΩ2

]
,

= Γρ
µν + Ω−1

[
δρ
ν∂µΩ + δρ

µ∂νΩ− gµνg
ρσ∂σΩ

]
. (4.19)

Now we know how the Christoffel symbol changes we can use this to calculate what
happens to the Ricci scalar R:

R→ R̄ = ḡµα
[
∂λΓ̄λ

µα − ∂µΓ̄λ
λα + Γ̄λ

λβΓ̄β
µα − Γ̄λ

µβΓ̄β
λα

]
,

= Ω−2R− 2(n− 1)Ω−3gµν∂µ∂νΩ− (n− 1)(n− 4)Ω−4gµν∂µΩ∂νΩ, (4.20)

where n is the dimension of spacetime. The other transformation we need to know is
that of,

� → �̄ =
1√
−ḡ

∂µ

[√
−ḡḡµν∂ν

]
,

= Ω−2� + Ω−3(n− 2)gµν(∂µΩ)∂ν , (4.21)

where we used that ḡ = Ω2ng. Now we have all the ingredients to calculate the
transformation (4.17).[

�̄− 1
4

(n− 2)
(n− 1)

R̄

]
φ̄ =

[
Ω−2� + Ω−3(n− 2)gµν(∂µΩ)∂ν

− 1
4

(n− 2)
(n− 1)

Ω−2R+
1
2
(n− 2)Ω−3gµν∂µ∂νΩ

+
1
4
(n− 2)(n− 4)Ω−4gµν∂µΩ∂νΩ

]
φ̄. (4.22)
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If you calculate this the first term on the right hand side will generate Ω−(n+2)/2�φ and
three other terms which cancel exactly against the second, fourth and fifth term on the
right hand side. So the final result is,[

�̄− 1
4

(n− 2)
(n− 1)

R̄

]
φ̄ = Ω−(n+2)/2

[
�− 1

4
(n− 2)
(n− 1)

R

]
φ (4.23)

4.3 Scalar field in curved spacetime

We can generalize section 4.1 to curved spacetime characterized by the metric gµν . The
Lagrangian is in this case given by,

L = −1
2
√
−g
[
gµν∂µφ∂νφ+m2φ2 + ξRφ2

]
. (4.24)

In the case of Minkowski space, where R = 0 and gµν = ηµν this reduces to the
Lagrangian (4.11). The resulting equation of motion is,[

�−m2 − ξR
]
φ = 0. (4.25)

Again note that this reduces to the Klein-Gordon equation if R = 0 and gµν = ηµν .
There are two cases of special interest. The first is ξ = 0, this is called the minimally
coupled case. The second is called the conformally coupled case,

ξ =
1
4
n− 2
n− 1

≡ ξ(n). (4.26)

The reason for this name becomes clear if we insert this into the equation of motion
(4.25): [

�−m2 − 1
4
n− 2
n− 1

R

]
φ = 0. (4.27)

Comparison with equation (4.23) shows that the equations of motions are invariant
under conformal transformations if m = 0, since we can always multiply by Ω(n+2)/2.
We would like to find solutions ui to the equation of motion (4.25) similar to the plane
wave solutions in Minkowski space, such that we can again expand φ as,

φ(x) =
∑

i

[aiui(x) + a†iu
∗
i (x)]. (4.28)

If we then quantize the system we will get the same commutation relations for a†i and ai

as in Minkowski spacetime. How can we find these solutions? Recall that in Minkowski
spacetime the plane waves were a natural solution since they where eigenfunctions of
the timelike Killing vector ∂t. This allowed us to define positive- and negative-frequency
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modes, which were the coefficients of the creation and annihilation operators. The
problem in general curved spacetime is that there will not always be timelike Killing
vectors. As a consequence we cannot naturally define positive- and negative-frequency
modes. The result is that there is no ‘natural’ choice for the modes ui. We could also
choose a different set of modes ūi. In that case φ can be expanded as,

φ(x) =
∑

i

[āiūi(x) + ā†i ū
∗
i (x)]. (4.29)

Because both ui and ūi form a complete set of modes we can write one as an expansion
of the other,

ūj =
∑

i

(αjiui + βjiu
∗
i ), (4.30)

ui =
∑

j

(α∗jiūj − βjiū
∗
j ). (4.31)

These are called Bogoliubov transformations and the matrices α and β are Bogoliubov
coefficients. They satisfy the normalization conditions,∑

k

(αikα
∗
jk − βikβ

∗
jk) = δij , (4.32)∑

k

(αikβjk − βikαjk) = 0. (4.33)

Because both expansions of φ should be equal we can derive using the Bogoliubov
transformations that,

ai =
∑

j

(αjiāj + β∗jiā
†
j), (4.34)

āj =
∑

i

(α∗jiai − β∗jia
†
i ). (4.35)

This shows that an annihilation operator in one mode expansion is a combination of an
annihilation and a creation operator in another mode expansion if βji 6= 0. The above
story has a very important consequence if we look at the vacuum state. We have two
vacuum states |0

〉
and |0̄

〉
which are defined by,

ai|0
〉

= 0, ∀i, (4.36)

āj |0̄
〉

= 0, ∀j. (4.37)

One can use (4.34) to see what happens if we act with ai on |0̄
〉
.

ai|0̄
〉

=
∑

j

β∗jiā
†
j |0̄
〉
6= 0. (4.38)
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So what is the vacuum state in one mode expansion is a many particle state in another
mode expansion. More specifically, if one defines the number operator as Ni = a†iai, then
the number of particles in the ui mode in the vacuum state |0̄

〉
are,

〈0̄|Ni|0̄〉 =
∑

j

|βji|2. (4.39)

This means that the vacuum states are only equal if βji = 0. In the same way the
number of particles in many particle states will depend on the mode expansion that is
used.

4.4 Particles

How can we define the vacuum that lies closest to the physical vacuum? In what state
would a detector not detect particles? It turns out that even in Minkowski space there is
not one answer to this question. An accelerated observer in Minkowski space will observe
particles that an inertial observer will not. This is called the Unruh effect, a detailed
discussion is given in the book by Carroll [29].

To understand better what is going on in curved spacetime we will first have a look at
inertial observers in Minkowski spacetime. The isometry group of Minkowski spacetime
is the Pointcaré group. This consist of translations, rotations and boosts. We would like
to know what happens with the plane waves if we perform a Poincaré transformation.
The most non-trivial transformation is a boost, so lets examine what happens if we boost
by a velocity v = dx/dt. The coordinates xµ′ are then given by,

t′ = γt− γv · x, (4.40)

x′ = γx− γvt, (4.41)

where γ = (1− v2)−1/2. The inverse transformations are given by,

t = γt′ + γv · x′, (4.42)

x = γx′ + γvt′. (4.43)

Now we can calculate the time derivative of the plane wave in the boosted frame

∂′tuk =
∂xµ

∂t′
∂µuk,

= −iγ(ω − v · k)uk,

= −iω′uk. (4.44)
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This is the same as in the non boosted frame, except that the frequency changed to the
frequency in the boosted frame. If a plane wave is a positive-frequency mode in the non
boosted frame it will stay a positive-frequency mode in the boosted frame. The same is
true for the negative-frequency modes. In the previous section we saw that this has the
consequence that both the vacuum and the number operator stays the same. Thus in
Minkowski spacetime all inertial observers see the same vacuum and the same number
of particles. This is why it is natural to define the vacuum state as in (4.14), it is the
agreed vacuum for all inertial observers.

In general curved spacetime does not have Pointcaré symmetry or any other symmetry. It
is then no longer the case that inertial observers measure the same vacuum or the same
number of particles. How do we know what a particle detector measures? A detector
moves along a trajectory characterized by a proper time τ . If it is possible to find modes
that obey,

D

dτ
ui =

dxµ

dτ
∇µui = −iωui, (4.45)

we can define these as the positive frequency modes. A more general discussion about
particle detectors in curved spacetime is given in Birrell and Davies [28].

Although it is not possible to give a natural definition of the vacuum in curved spacetime,
there is one way in which we can make a natural choice. A lot of spacetimes are
asymptotically Minkowskian in the past or in the future. A natural choice for a vacuum
is the state where all inertial observers see no particles in the past or in the future. The
time in the past is usually referred to as the in-region and the time in the future as
the out-region. In some cases the in- and out-vacuum are not the same. If all inertial
observers do not see particles in the in-state, they might see particles in the out state.
One can say that in this case the particles were created by the gravitational field. To
make this idea more clear we will look at an example in the next section.

4.5 Particle creation in a 2d FLRW universe

The example we will look at is the 2d FLRW universe. We choose a 2d universe, because
this makes the calculation simpler since the conformally coupled case is equal to the
minimally coupled case. A 2d FLRW universe is described by the metric in conformal
time,

ds2 = a2(η)(−dη2 + dx2). (4.46)

One can immediately see that this is conformal to Minkowski spacetime. The metric
will become Minkowskian in the in- and out-region if a(η) becomes a constant when
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4.5 Particle creation in a 2d FLRW universe

η → ±∞. One way to realize this is to write a2(η) as,

a2(η) = A+B tanh ρη, (4.47)

where A, B and ρ are constants. Then

a2(η) → A±B, η → ±∞. (4.48)

How can we define a good basis to expand our scalar field in? A first thing to notice is
that a only depends on the conformal time, so ∂i is a Killing vector of spacetime. This
leads us to the assumption that,

uk(η, x) =
1√
2π
χk(η)eikx. (4.49)

We will try to find a solution in the conformally coupled case, which in two dimensions
is equal to ξ(n) = 0. The first step to solve the equation of motion (4.25) is to notice
that,

� = a−2(η)(−∂2
η + ∂2

x). (4.50)

Acting with this on uk gives us an equation for χ(η),

∂2
ηχk(η) + (k2 + a2(η)m2)χk(η) = 0. (4.51)

This equation is not easy to solve, but it can be done in terms of hypergeometric
functions. The first hypergeometric function is a function 2F1(a, b, c, z), which solves
the hypergeometrical differential equation,

z(1− z)y′′(z) + [c− (a+ b+ 1)z]y′(z)− aby(z) = 0. (4.52)

We will give the solution of equation (4.51) and then show that it is correct. There is
more than one solution, but we will give the solutions that behaves like positive-frequency
modes in the in and out region. The solution of the former is given by,

χin
k (η) =

1√
2ωin

exp
[
−iω+η −

iω−
ρ

ln(2 cosh ρη)
]

2F1(η), (4.53)

where

ωin = [k2 +m2(A−B)]1/2, (4.54)

ωout = [k2 +m2(A+B)]1/2, (4.55)

ω± =
1
2
(ωout ± ωin). (4.56)
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Chapter 4: Quantum field theory in curved spacetime

To see that this is indeed a solution of (4.51) we must calculate the derivatives of (4.53)
and insert them into the equation. We then get a differential equation for 2F1(η),

2F
′′
1 (η) + 22F

′
1(η)[−iω+ − iω− tanh ρ] +2 F1(η)[−iω−ρ(1− tanh2 ρη)

+ (−iω+iω− tanh ρη)2 + k2 +Am2 +Bm2 tanh ρη] = 0. (4.57)

We can make a change of coordinates,

z ≡ 1
2
(1 + tanh ρη). (4.58)

Then after some lines of calculation the differential equation becomes,

z(z − 1)2F ′′
1 (z) + [−2z − 2iω−ρ−1z + 1 + iρ(ω− − ω+)]2F ′

1(z)

+[−iω−ρ−1 + ω2
−ρ

−2]2F1(z) = 0. (4.59)

Comparison with equation (4.52) shows that the solution to this equation is indeed given
by 2F1(1 + iω−ρ

−1, iω−ρ
−1, 1 − iωinρ

−1, 1/2(1 + tanh ρη)). We can now calculate what
happens to the solution in the in-region, if η → −∞. For negative large arguments
2F1(1/2(1 + tanh ρη)) → 1 and ln[2 cosh ρη] → −ρη. So,

uin
k → (4πωin)−1/2eikx−iωinη, (4.60)

in the in-region. It is clear that this is indeed a positive-frequency mode. The solution
that behaves like a positive-frequency mode in the out-region is given by,

χout
k (η) =

1√
2ωout

exp
[
−iω+η −

iω−
ρ

ln(2 cosh ρη)
]

×

2F1(1 + iω−ρ
−1, iω−ρ

−1, 1 + iωoutρ
−1, 1/2(1− tanh ρη)). (4.61)

It is possible to check that this is indeed a solution in the same way as we did for the
previous case. Except for the pre-factor it looks similar to the expression we had for
the vacuum in the in-region. The hypergeometric function has the limit 2F1(1/2(1 −
tanh ρη)) → 1 for η → ∞, just as for the in-region. The difference in the exponent
will come from the fact that ln[2 cosh ρη] → ρη instead of −ρη, when η → ∞. In the
out-region this becomes,

uout
k → (4πωout)−1/2eikx−iωoutη. (4.62)

The two solutions are not equal, so the vacuum state in the in-region may contain
particles in the out-region. To know how many particles the out-region contains we must
now how to write uin

k in terms of uout
k .

uin
k =

∑
k′

(αkk′u
out
k′ + βkk′u

out∗
k′ ), (4.63)

χin
k e

ikx =
∑
k′

(αkk′χ
out
k′ e

ik′x + βkk′χ
out∗
k′ e−ik′x). (4.64)
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4.5 Particle creation in a 2d FLRW universe

Multiplying both sides by e−ikx and integrating both sides with respect to x gives,

χin
k =

∑
k′

(δkk′αkk′χ
out
k′ + δ−kk′βkk′χ

out∗
k′ ), (4.65)

= αkχ
out
k + βkχ

out∗
k , (4.66)

where the relation with the Bogoliubov coefficients is given by,

αkk′ = αkδkk′ , βkk′ = βkδ−kk′ . (4.67)

The coefficient χout∗
k does not have a minus sign because the value of χk can only be

determined by k up to a sign. We can now calculate the number of particles in the out
region,

∑
k′ |βk′k|2 = |βk|2. The first step is to solve equation (4.66),

1√
2ωin

ex 2F1(in) =
αk√
2ωout

ex 2F1(out) +
βk√
2ωout

e−x
2F

∗
1 (out), (4.68)

where we have defined,

ex ≡ exp
[
−iω+η −

iω−
ρ

ln(2 cosh ρη)
]
,

2F1(in) ≡ 2F1(1 + iω−ρ
−1, iω−ρ

−1, 1− iωinρ
−1, 1/2(1 + tanh ρη)),

2F1(out) ≡ 2F1(1 + iω−ρ
−1, iω−ρ

−1, 1 + iωoutρ
−1, 1/2(1− tanh ρη)). (4.69)

We can use linear transformation properties of the hypergeometric functions, which can
be found for example in Abramowitz and Stegun [30],

2F1(a, b, c, z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) 2F1(a, b, a+ b− c+ 1, 1− z)

+ (1− z)c−a−b Γ(c)Γ(a+ b− c)
Γ(a)Γ(b) 2F1(c− a, c− b, c− a− b+ 1, 1− z),

2F1(a, b, c, z) =(1− z)c−a−b
2F1(c− a, c− b, c, z), (4.70)

to rewrite,

2F1(in) =
Γ(1− iωinρ

−1)Γ(−iωoutρ
−1)

Γ(−iω+ρ−1)Γ(1− iω+ρ−1) 2F1(out)

+
(1/2(1 + tanh ρη))iωinρ−1

(1/2(1− tanh ρη))iωoutρ−1

Γ(1− iωinρ
−1)Γ(iωoutρ

−1)
Γ(iω−ρ−1)Γ(1 + iω−ρ−1) 2F

∗
1 (out),

=
Γ(1− iωinρ

−1)Γ(−iωoutρ
−1)

Γ(−iω+ρ−1)Γ(1− iω+ρ−1) 2F1(out)

+ e−2x Γ(1− iωinρ
−1)Γ(iωoutρ

−1)
Γ(iω−ρ−1)Γ(1 + iω−ρ−1) 2F

∗
1 (out). (4.71)
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Equation (4.68) can therefore be rewritten as,

Γ(1− iωinρ
−1)Γ(−iωoutρ

−1)
Γ(−iω+ρ−1)Γ(1− iω+ρ−1) 2F1(out) + e−2x Γ(1− iωinρ

−1)Γ(iωoutρ
−1)

Γ(iω−ρ−1)Γ(1 + iω−ρ−1) 2F
∗
1 (out)

=
(
ωin

ωout

)1/2 [
αk 2F1(out) + βke

−2x
2F

∗
1 (out)

]
. (4.72)

Comparison of both sides shows that,

αk =
(
ωout

ωin

)1/2 Γ(1− iωinρ
−1)Γ(−iωoutρ

−1)
Γ(−iω+ρ−1)Γ(1− iω+ρ−1)

, (4.73)

βk =
(
ωout

ωin

)1/2 Γ(1− iωinρ
−1)Γ(iωoutρ

−1)
Γ(iω−ρ−1)Γ(1 + iω−ρ−1)

. (4.74)

From this result we can calculate the number of particles in the out-region, using the
properties of the Gamma function [30],

|Γ(ix)|2 =
π

x sinh(πx)
, (4.75)

|Γ(1 + ix)|2 =
πx

sinh(πx)
. (4.76)

The result is,

|βk|2 =
sinh2(πω−ρ−1)

sinh(πωinρ−1) sinh(πωoutρ−1)
. (4.77)

This is only zero if m = 0, since for this value of m, ω− = 0. Notice that in this case the
equation of motion is conformally invariant. It turns out that this is a general feature: if
a spacetime is conformal to Minkowski spacetime and if the field equation is conformally
invariant there are no particles created by the gravitational field.
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CHAPTER 5

Electromagnetism

In the previous chapter we reviewed the properties of a scalar field in curved spacetime.
In this chapter we will do the same for the magnetic field. We will begin by a recap
of electromagnetism in Minkowski spacetime. In the second section we will generalize
this to a general curved spacetime using the concepts of chapter 4. We then make this
description more specific and describe electromagnetism in a FLRW spacetime.

5.1 Electromagnetism in Minkowski spacetime

5.1.1 Maxwell equations

The full description of electromagnetism was first given by Maxwell at the end of the
19th century. He discovered that the electric and magnetic field obeyed the following
equations,

∇×B− ∂tE = J,

∇ ·E = ρ,

∇×E + ∂tB = 0, (5.1)

∇ ·B = 0,

where E and B are the electric and magnetic field, J is the current and ρ the charge
density. It turns out to be possible to write these equation is a covariant way. To do this
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Chapter 5: Electromagnetism

we may define the field strength tensor Fµν as,

Fµν =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 . (5.2)

The electric and magnetic field are then given by,

Ei = F 0i, (5.3)

Bi =
1
2
εijkFµν , (5.4)

where εijk is the Levi-Citiva symbol. For a covariant description we must also define the
current four-vector as,

jµ = (ρ, Jx, Jy, Jz). (5.5)

The first two Maxwell equations can then be written as,

∂µF
µν = jµ. (5.6)

The last two Maxwell equations are given by the Bianchi identity:

∂µFνλ + ∂νFλµ + ∂λFµν = 0. (5.7)

5.1.2 Vector field

The Maxwell equations can also be described by a vector field Aµ, such that the electric
and magnetic field are given by,

B = ∇×A, (5.8)

E = −∇A0 − ∂tA. (5.9)

As a consequence the field tensor can be written as,

Fµν = ∂µAν − ∂νAµ. (5.10)

With this definition the Bianchi identity which described the last two Maxwell
equations becomes trivial. The first two Maxwell equations can be found by varying
the Lagrangian,

L = −1
4
FµνFµν + jµAµ, (5.11)

with respect to Aµ. If we look more closely to definition (5.10) it turns out that the
equations do not change if we perform the transformation,

Aµ → Aµ′ = Aµ + ∂µλ, (5.12)
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where λ is a scalar function. The fact that we can choose any λ is called gauge freedom
and the transformations (5.12) are called gauge transformations. A common gauge choice
is called the Lorentz gauge which is defined by,

∂µA
µ = 0. (5.13)

Another common gauge choice is the Coulomb gauge defined by

A0 = ∂iA
i = 0. (5.14)

In the next chapters we will usually use the Coulomb gauge.

5.1.3 Quantization

Since we have found a field description of electromagnetism the next step is to quantize
it. We would like to do the quantization in a way that the usual commutation relation
is realized,

[Ai(t,x), πj(t,y)] = iδijδ
3(x− y),

where πj = ∂L/∂Ȧi. We said before that we will mostly work in the Coulomb gauge,
but in that case the above expression cannot be right, since

[∇ ·A(t,x), πj(t,y)] = i∂iδ
3(x− y) 6= 0.

To solve this problem we can write the delta function in its exponential form,

δ3(x− y) =
∫

d3k

(2π)3
eik(x−y),

and replace δij with a rank 2 tensor ∆ij . If we then take the divergence the result
is,

[∇ ·A(t,x), πj(t,y)] = i

∫
d3k

(2π)3
eik(x−y)ki∆ij .

This should be zero, so we can derive the condition,

∆ij = δij −
kikj

k2
.

The right commutation relation is thus,

[Ai(t,x), πj(t,y)] = i

∫
d3k

(2π)3
eik(x−y)∆ij . (5.15)

Using this commutation relation we can expand the electromagnetic potential just as
we did for the scalar field in the previous chapter. In Minkowski spacetime the vacuum
Maxwell equations in the Coulomb gauge become,

�Ai = 0. (5.16)
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A natural solution is of the form e±ikx times a vector. Thus we can expand the
electromagnetic field as,

Ai(t,x) =
∫

d3k

(2π)3
√

2k

2∑
λ=1

εiλ(k)[aλ(k)eikx + a†λ(k)e−ikx]. (5.17)

The ελ are called polarization vectors. In the Coulomb gauge kiεiλ = 0, which means that
the ελ are transverse to the direction of propagation. Because the polarization vectors
act as a basis they satisfy the completeness relation,

2∑
λ=1

εiλ(k)εjλ(k) = δij −
kikj

k2
= ∆ij . (5.18)

If we insert the expansion into the commutation relation (5.15) we recover the usual
commutation relations for the creation and annihilation operators,

[aλ(k), a†λ′(k
′)] = (2π)3δ3(k− k′)δλλ′ ,

[aλ(k), aλ′(k′)] = 0, (5.19)

[a†λ(k), a†λ′(k
′)] = 0.

5.2 Electromagnetism in a flat FLRW spacetime

To see how the magnetic field in a FLRW universe behaves we must first find out which
of the above expressions holds for general spacetime and which are specific to Minkowski
spacetime.

5.2.1 General spacetime

The Lagrangian

L = −1
4
FµνFµν + jµAµ,

= −1
4
gµαgνβFαβFµν + jµAµ, (5.20)

where Fµν = ∂µAν − ∂νAµ is still valid in general spacetime. By varying the action
with respect to Aµ we can derive the equations of motions for the electric and magnetic
field,

− 1√
−g

∂µ[
√
−ggµνgαβFνβ] = jα. (5.21)
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These are equivalent to the first two Maxwell equations in Minkowski spacetime. Since
the expression for Fµν in terms of the vector field stays the same, the Bianchi identity
still describes the last two Maxwell equations. The expressions (5.3) and (5.4) are not
valid in general spacetime. A covariant definition for the electric and magnetic field is
given by [31],

Eµ = uνFµν , (5.22)

Bµ =
1
2
εµνκF

νκ, (5.23)

where the tensor εµνκ is given by,

εµνκ = uληλµνκ. (5.24)

In these equations uµ is the four-velocity vector and ηµνκλ is the Levi-Civita tensor,
which is defined as,

ηµνκλ =
√
−gη̃µνκλ, (5.25)

where η̃µνκλ is the Levi-Civita symbol in four dimensions. The definitions of the Lorentz
and Coulomb gauge where already described in a covariant way, so they are still valid.
What about quantization? In general spacetime we still want to satisfy the commutation
relation,

[Ai(t,x), πj(t,y)] = i

∫
d3k

(2π)3
eik(x−y)∆ij . (5.26)

The expansion of the vector field is not as straightforward as in Minkowski spacetime.
In the last chapter we saw that the equation of motion of the scalar field in curved
spacetime had different solutions which led to fundamentally different expansions. The
same is true for a vector field in curved spacetime.

5.2.2 Flat FLRW spacetime

Since we found the general description of the electric and magnetic field we can look at
their expressions in FLRW spacetime. Recall that the flat FLRW metric in conformal
time was given by,

ds2 = a2(η)(−dη2 + dx2). (5.27)

The determinant of the FLRW metric is g = −a8(η). The equations of motions then
become,

−a−4∂µ[a4gµνgαβFνβ] = jα, (5.28)

∂µFνλ + ∂νFλµ + ∂λFµν = 0. (5.29)
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The Coulomb gauge in conformal time is given by,

A0(η,x) = 0, (5.30)

∂jA
j(η,x) = 0. (5.31)

Since we will work in the Coulomb gauge most of the time, we will give the expressions for
the electric and magnetic field in a FLRW universe in this gauge. A co-moving observer
in conformal time is given by uµ = (a−1,0), since the definition uµu

µ = −1 must hold.
The electric and magnetic field for a co-moving observer in the Coulomb gauge is then
given by,

Ei = −a−1∂ηAi, (5.32)

Bi = a−1εijk∂jAk. (5.33)

We can also write the the equation of motion for the vector field in the Coulomb
gauge,

A′′
i − a2∂j∂

jAi = a2ji. (5.34)

In the vacuum this becomes,

A′′
i − a2∂j∂

jAi = 0. (5.35)

Since the scale factor only depends on η a solution to this equation will be of the form
A(η)eikx times a vector. So it would be natural to expand the vector field as,

Ai(η,x) =
∫

d3k

(2π)3
√

2k

2∑
λ=1

εiλ(k)[aλ(k)Ak(η)eikx + a†λ(k)A∗
k(η)e

−ikx], (5.36)

where ελ are the same polarization vectors as before. If we insert this into the
commutation relation (5.26) we can only find the usual commutation relations if we
require,

Ak(η)A∗′
k (η)−A′

k(η)A
∗
k(η) = 2ik. (5.37)

If we insert the expansion into the equation of motion for the vacuum we get an equation
of motion for Ak(η) given by,

A′′
k(η) + k2Ak(η) = 0. (5.38)

The general solution is,

Ak(η) = ck1e
ikη + ck2e

−ikη. (5.39)

50



5.2 Electromagnetism in a flat FLRW spacetime

5.2.3 High conductivity

In the last section we saw what the characteristics are of the vector field in a vacuum.
We would also like to know how the vector field behaves when the conductivity of the
surrounding matter becomes high. To see what happens we can covariantly define the
the current four-vector as [31],

jµ = ρeuµ + σcEµ, (5.40)

where ρe is the charge density, uµ is the four velocity and σc the conductivity. In the
Coulomb gauge for a co-moving observer, this becomes,

j0 = a−1ρe, (5.41)

ji = −a−1σcA
′
i. (5.42)

The equation of motion for the vector field (5.34) thus becomes,

A′′
i (η, x) + a−1σcA

′
i(η, x)− a−2∂j∂jAi(η, k) = 0. (5.43)

We can solve this exactly in the large scale and high conductivity limit. The large scale
limit makes sure we can neglect the derivatives of Ai. And in the high conductivity limit
σc � H. The solution is then,

Ai(η,x) =
ac1(x)
σc

e−σcη/a + c2(x). (5.44)

The electric and magnetic field are then,

Ei(η,x) = 0, (5.45)

Bi(η,x) = a−1 (∇× c2(x)) , (5.46)

where we used that σc � H, so the exponential goes to zero. If the conductivity becomes
high the electric field is zero and the magnetic field decays as B ∝ a−1.

5.2.4 Co-moving fields

Since we will be interested in describing magnetic fields at co-moving length scales λ is
convenient to have a co-moving description of the electric and magnetic field. This is
quite simple,

Eco−moving
i = a−1Ephysical

i , (5.47)

Bco−moving
i = a−1Bphysical

i . (5.48)

51





CHAPTER 6

Inflation produced magnetic fields

How large are the magnetic fields that were generated during inflation? The answer to
this question depends on a lot of different things. First of all it depends on the specific
model that is used for describing electromagnetism. We will look at different models
in chapter 7, but here we will give a short insight into why we use different models.
Beside the model that is used, the strength of the magnetic field also depends on the
evolution of the field during different era’s. We will give an overview of what happens to
the magnetic field from inflation till now.
Another important thing that we must think about, before we can answer the main
question, is: what do we actually measure? The answer to this consists of three parts.
First we must take into account that we cannot measure the magnetic field at exactly
one point, but always measure a little area. Secondly, what we measure is a vacuum
expectation value, and not the field itself, therefore we must find an explicit expression
for this. Lastly, since we saw in chapter 4 that the vacuum is not uniquely defined, we
must think about which vacuum we use and how this relates to what we observe. The
main part of the chapter will consist of addressing these three problems and by doing
this we will arrive at an expression for the present magnetic fields that were generated
during inflation. We will use this expression in chapter 7 to evaluate different models.
As a final step we must make sure that the assumption we made, namely that the
electromagnetic field does not influence the background, is correct. In the last section
we will develop a method to check that this is indeed the case.
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6.1 Model

Why do we have different models and do we not use normal Maxwell theory described
by the Lagrangian,

L = −1
4
FµνFµν , (6.1)

in the vacuum? We will explicitly show in chapter 7 that this theory does not produce
strong enough magnetic fields. The reason is that this Lagrangian gives rise to conformal
invariant equations of motions. In chapter 4 we saw that if the equations of motions and
the background where both conformally invariant, there were no particles produced
by the gravitational field. To produce interesting magnetic fields we must break the
conformal invariance by adding another term to the Lagrangian that is not conformal
invariant. There are different ways to do this and we will look at the most general
models in chapter 7. These models are constrained by the fact that we know that after
inflation we have the usual Maxwell electrodynamics. So all the models must reduce to
the Maxwell Lagrangian at the end of inflation.

6.2 Evolution

The evolution of the magnetic field is quite straightforward, but to simplify our
calculation we will make some assumptions.

Inflation: The magnetic field is created during inflation and during this period the
fields will cross outside the Hubble radius. While inflation lasts the magnetic field is
described by the equation of motion that can be derived from the Lagrangian, that
differs for different models. During inflation the density of particles is very low. That
is why we can use the vacuum equations of motion, i.e. jµ = 0. Also this means that
the conductivity is very low. Quantization is done exactly as described in section 5.2.2.
The only thing that is different with respect to the Maxwell model is the expression for
Ak(η) and condition (5.37).

Reheating: After inflation the universe reheats. To make things easier we will assume
instantaneous reheating. This is the same as taking the limit Γ � H as we did in
chapter 2.3. As we said in the previous section we will assume that at this point the
Lagrangian reduces to the Maxwell Lagrangian. Last we will assume that at this point
the conductivity becomes very high.

Radiation and matter domination During radiation and matter dominated eras the
conductivity will stay high. In the last chapter we saw that if the conductivity is high
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B ∝ a−2 in co-moving coordinates, so

B0
λ = a2

radBλ(ηrad), (6.2)

where the subscript rad means at the beginning of the radiation era and the superscript
0 stands for the present field. We used the fact that a0 = 1.

6.3 Average magnetic field

Now we know how the magnetic field evolves, we must address the question, what it
is we measure, when we measure large scale magnetic fields. First we will address the
fact that our measuring devices are not sensitive enough to measure the magnetic field
at one point, since the fields are far away. In the last chapter we saw that a co-moving
magnetic field in a FLRW metric is given by,

B =
1
a2
∇×A(η,x). (6.3)

To account for the fact that we do not measure one point, but a little area in space we
define the average magnetic field on a co-moving scale λ as [32][33],

Bλ(η,x) =
1
a2

∫
d3yWλ(|x− y|)∇×A(η,y), (6.4)

where Wλ is a Gaussian window function given by,

Wλ(|x|) = (2πλ2)−3/2e−|x|
2/(2λ2). (6.5)

Here λ is a measure for the area in space we average over.

6.4 Vacuum expectation value during inflation

If we measure a magnetic field we do not measure the field itself, but the vacuum
expectation value of the field. The vacuum expectation value of the co-moving average
magnetic field is defined as,

B2
λ(η) =

〈
0||Bλ(η,x)|2|0

〉
. (6.6)

In this section we will explicitly calculate this using the definition of the average magnetic
field (6.4) and the expansion (5.36). This means we want to calculate,

B2
λ(η) =

1
a4

〈
0|
∫
d3yd3y′Wλ(|x− y|)W ∗

λ (|x− y′|)(∇×A(η,y))(∇×A(η,y′))∗|0
〉
.

(6.7)
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The first step is to notice that,

(∇×A(η,y))i = ∂jAz − ∂zAj ,

=
∫

d3k

(2π)2
√

2k

∑
λ=1,2

[
εzλ(k)

(
ikjaλ(k)Ak(η)eiky

− ikja
†
λ(k)A∗

k(η)e
−iky

)
+ εjλ(k)

(
− ikzaλ(k)Ak(η)eiky

+ ikza
†
λ(k)A∗

k(η)e
−iky

)]
.

Then using that aλ|0
〉

=
〈
0|a†λ = 0 and the commutation relations for aλ one can

derive, 〈
0|(∇×A(η,y))i(∇×A(η,y′))∗i |0

〉
=
∫

d3kd3k′

(2π)32k

∑
λ,λ′

δλ,λ′δ(k− k′)×

[
AkA

∗
k′kjk

′
jεzλ(k)εzλ′(k′)ei(yk−y′k′) −AkA

∗
k′kjk

′
zεzλ(k)εjλ′(k′)ei(yk−y′k′)

−AkA
∗
k′kzk

′
jεjλ(k)εzλ(k′)ei(yk−y′k′) +AkA

∗
k′kzk

′
zεjλ(k)εjλ(k′)ei(yk−y′k′)

]
.

Performing the integral over k and k’ and summing over λ′ this reduces to,〈
0|(∇×A(η,y))i(∇×A(η,y′))∗i |0

〉
=

1
2k

∑
λ

|Ak|2δ(y − y′)×[
k2

j εzλ(k)εzλ(k)− kjkzεzλ(k)εjλ(k)− kzkjεjλ(k)εzλ(k) + k2
zεjλ(k)εjλ(k)

]
. (6.8)

Using the completeness relation (5.18) this reduces to,〈
0|(∇×A(η,y))i(∇×A(η,y′))∗i |0

〉
=

1
2k
|Ak|2δ(y − y′)×

[
k2

j

(
1− k2

z

k2

)
+ kjkz

(
kzkj

k2

)
+ kzkj

(
kzkj

k2

)
+ k2

z

(
1−

k2
j

k2

)]
,

=
1
2k
|Ak|2δ(y − y′)

(
k2

z + k2
j

)
.

The final result is,〈
0|(∇×A(η, y))(∇×A(η, y′))∗|0

〉
= k|Ak|2δ(y − y′). (6.9)

With this result we can calculate the vacuum expectation value,

B2
λ(η) =

1
a4

〈
0|
∫
d3yd3y′Wλ(|x− y|)W ∗

λ (|x− y′|)(∇×A(η,y))(∇×A(η,y′))∗|0
〉
,

=
1
a4

∫
d3yd3y′Wλ(|x− y|)Wλ(|x− y′|)× k|Ak|2δ(y − y′),

=
1
a4

∫
d3yW 2

λ (|x− y|)k|Ak|2, (6.10)
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where we have used that Wλ is real. The final step is to Fourier expand the window
function,

Wλ(x) =
∫

d3k

(2π)3
Wλ(k)eikx,

where Wλ(k) = e−λ2k2/2. Then

B2
λ(η) =

1
a4

∫
d3yd3kd3k′

(2π)6
Wλ(k)Wλ(k′)ei|x−y|(k−k′)k|Ak|2,

=
1
a4

∫
d3kd3k′

(2π)3
Wλ(k)Wλ(k′)eix(k−k′)δ(k− k′)k|Ak|2,

=
1
a4

∫
dk

k
W 2

λ (k)
k4

2π2
|Ak|2. (6.11)

So our final result is,

B2
λ(η) =

1
a4

∫
dk

k
W 2

λ (k)
k4

2π2
|Ak|2. (6.12)

6.5 Vacuum expectation value after reheating

In the previous section we used the vacuum defined as,

aλ(k)|0
〉

= 0. (6.13)

The annihilation operators where defined by the expansion of the vector field and had as
coefficients the positive frequency modes

∑2
λ=1 εiλ(k)Ak(η)eikx. These coefficients were

defined by the model during inflation. What we want to know is, how many particles we
see now, after inflation. All the different models reduce at the beginning of the radiation
era to standard Maxwell theory with the Lagrangian,

L = −1
4
FµνFµν . (6.14)

After inflation the positive-frequency mode is therefore given by,

urad
k =

2∑
λ=1

εiλ(k)e−ikη+ikx. (6.15)

Recall that we calculated the Ak part from the differential equation,

A′′
k(η) + k2A′′

k = 0, (6.16)

so the value of k in the exponential can only be calculated up to a sign. We saw in
chapter 4 that we can use this fact to require k > 0 and define the positive-frequency
mode as,

∂ηu
rad
k = −ikurad

k . (6.17)
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In general the expression for the positive-frequency mode after inflation will be different
than the expression we found during inflation. In chapter 4 we saw that we could express
the positive frequency mode in the in-region in terms of the modes in the out-region
as,

uin
k =

∑
k′

(αkk′u
out
k′ + βkk′u

out∗
k′ ). (6.18)

Since the spatial part of the modes is the same during and after inflation we can do the
same trick as in the example of the 2d FLRW universe and write,

Ainflation
k (η) = αkA

rad
k (η) + βkA

rad∗
k (η),

= αke
−ikη + βke

ikη, (6.19)

where the relation with the Bogoliubov coefficients is given by,

αkk′ = αkδkk′ , βkk′ = βkδ−kk′ . (6.20)

Just as in the example of chapter 4 the coefficient Arad∗
k (η) has a positive subscript

because we required that k > 0. The number of particles in the out-region is given
by |βk|2. Therefore the average vacuum expectation value of the magnetic field at the
beginning of the radiation era is,

B2
λ(η) =

1
a4

∫
dk

k
W 2

λ (k)
k4

2π2
|βk(η)|2. (6.21)

Finally the magnetic field we measure at present is given by,

B0
λ =

[∫
dk

k
W 2

λ (k)
k4

2π2
|βk(ηrad)|2

]1/2

, (6.22)

where we used expression (6.2).

6.6 Backreaction

In the above explained procedure we have assumed that the electromagnetic field
is a perturbation compared to the inflaton field. If this would not be the case, the
electromagnetic field would influence the spacetime and we could no longer work with
the FLRW metric (2.1). To show that we indeed could have made this assumption, we
must check that the energy density of the electromagnetic field is smaller than the total
energy density during inflation. The easiest way to check this is to calculate the energy
momentum tensor by varying the action, S,

Tµν = − 2√
−g

δS

δgµν
. (6.23)
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6.6 Backreaction

The density is then ρ = −T 0
0 . At the wavelengths we are interested in this should be

smaller then the total energy density,

ρtot =
3
8π
H2

infm
2
pl. (6.24)

We are not interested in the density above, but in the vacuum expectation value of
the co-moving average electromagnetic field. This can be found by replacing the electric
and magnetic field by their average vacuum expectation value. The expression for the
vacuum expectation value of the co-moving average electric field can be found in exactly
the same manner as we did for the magnetic field in sections 6.3 and 6.4. The result
is,

E2
λ(η) =

1
a4

∫
dk

k
W 2

λ (k)
k2

2π2
|A′

k|2, (6.25)

where Wλ(k) = e−λ2k2/2.
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CHAPTER 7

Models

We are now at a point that we can evaluate different models using the method described
in chapter 6. In this chapter we will review four different models. First we will look at
Maxwell electrodynamics and see why this model cannot generate large scale magnetic
fields. We will then review three other models, where we break the conformal invariance
of the Lagrangian. In the second model the electromagnetic field is coupled to the
gravitational field. The third model describes a coupling of the electromagnetic field to
a scalar field, for example the inflaton field. In the last model the electromagnetic field
is coupled to a pseudoscalar field, for example an axion. We will show that for certain
specifics of these three models, strong enough magnetic fields can be generated.

7.1 Maxwell electrodynamics

In chapter 5 we saw that the Lagrangian for electromagnetism was given by,

L = −1
4
FµνF

µν . (7.1)

From this we could derive the equation of motion,

1√
−g

∂µ

[√
−ggµνgαβFνβ

]
= 0. (7.2)
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If we perform a conformal transformation, gµν → ḡµν = Ω−2gµν , and, g → ḡ = Ω8g. The
transformed equation of motion is,

1√
−ḡ

∂µ

[√
−ḡḡµν ḡαβFνβ

]
= 0,

1
Ω4
√
−g

∂µ

[√
−ggµνgαβFνβ

]
= 0,

1√
−g

∂µ

[√
−ggµνgαβFνβ

]
= 0. (7.3)

The equation of motion is invariant under conformal transformations. We will show that
this indeed leads to a vanishing magnetic field as discussed in chapter 4. In chapter 5 we
calculated that in a flat FLRW spacetime the equations of motions are,

A′′
i − a2∂j∂

jAi = 0. (7.4)

where the prime denoted the derivative with respect to η. We expanded the vector field
as (5.36) and got an equation of motion for Ak(η),

A′′
k(η) + k2Ak(η) = 0, (7.5)

which had the positive-frequency solution,

Ak(η) = ce−ikη. (7.6)

To obtain the value of the constant we must use condition (5.37), which gives the
constraint,

|c|2 = 1. (7.7)

The next step to obtain the present value of the magnetic field is to obtain the Bogoliubov
coefficients (6.19), that is we must solve,

e−ikη = αke
−ikη + βke

ikη. (7.8)

Obviously βk = 0. Since the present magnetic field was given by,

B0
λ =

[∫
dk

k
W 2

λ (k)
k4

2π2
|βk(ηrad)|2

]1/2

, (7.9)

it will be zero. This explicitly shows that a conformal invariant theory leads to vanishing
magnetic fields. The only way to obtain non-vanishing fields is to break this conformal
invariance. The rest of this chapter gives a review of different models that break
conformal invariance by a coupling to the gravitational field, the inflaton field or an
axion field. In the next chapter we will break the conformal invariance of the background
spacetime and review how this influences the evolution of the magnetic field.
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7.2 The RnF 2 model, coupling to gravity

One way to break conformal invariance is to couple the electromagnetic field to the
gravitational field through the coupling RnF 2, where R is the Ricci scalar and n an
integer. This was first suggested by Turner and Widrow [1] for the case n = 1. The
general case was later investigated by Mazzitelli and Spedalieri [34]. We will follow the
discussion given by Campanelli, Cea, Fogli and Tedesco [35].

The model

The Lagrangian of this model is,

L = −1
4
FµνF

µν − c(n)
4
RnFµνF

µν , (7.10)

where c is a constant dependent on n. Dimensional analysis tells us that c(n)Rn must
be dimensionless. Since R has units m2 we can define c(n) ≡ m−2n. What this mass is,
depends on the model that is used. For example Mazzitelli and Spedalieri use in their
article [34] the electron mass, me = 0.51 MeV. We will show below that in that case the
produced magnetic fields are smaller than the dynamo limit, therefore this is not a good
model. To see if the RnF 2 model can generate strong enough magnetic fields at all, we
will also review the model for the largest possible value of m. This value can be found
as follows. We assume that during inflation the second term is dominant, which means
that R� m2. To know how R evolves we use the Einstein equation,

Rµν −
1
2
gµνR =

8π
m2

pl

Tµν . (7.11)

If we contract this with gµν and assume that the universe is filled with a perfect fluid
this can be rewritten as,

−R =
8π
m2

pl

[(1 + γ)ρuµuµ + 4γρ] ,

R =
8π
m2

pl

(1− 3γ)ρ. (7.12)

Since the density decreases with time, R will also decrease. If we want the coupling
term to be dominant during the entire inflation period we must impose that Rend ≥ m2.
Therefore the maximum value of m = R

1/2
end.
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Equation of motion

To obtain the equations of motion we must vary the second term in the action with
respect to Aµ. The result is,

a−4∂µ

[
a4 R

n

m2n
gµνgαβFνβ

]
= 0. (7.13)

In the Coulomb gauge this becomes,

A′′
i +

(Rn)′

Rn
A′

i − a2∂j∂
jAi = 0, (7.14)

where the prime denotes the derivative with respect to the conformal time. We can use
expansion (5.36) to rewrite this in terms of Ak(η). To find the normal commutation
relations (5.19) we must replace condition (5.37) with

Ak(η)A∗′
k (η)−A′

k(η)A
∗
k(η) = 2ik

m2n

Rn
. (7.15)

The equation of motion for Ak(η) is,

A′′
k(η) +

(Rn(η))′

Rn(η)
A′

k(η) + k2Ak(η) = 0. (7.16)

To find the solution we must know the explicit η dependence of Rn. If we use expression
(7.12) we find that,

(Rn(η))′

Rn(η)
=

(ρn(η))′

ρn(η)
= n

ρ′(η)
ρ(η)

. (7.17)

One can derive that ρ ∝ ηs, where s = −6(1 + γ)(1 + 3γ), so finally,

(Rn(η))′

Rn(η)
=
ns

η
, (7.18)

and the equation of motion is,

A′′
k(η) +

ns

η
A′

k(η) + k2Ak(η) = 0. (7.19)

Solution

The difficulty in solving the equation of motion lies in the fact that the coefficient
of the second term depends on η. The rest of the equation is similar to the Bessel
equation,

x2y′′(x) + xy′(x) + (x2 − ν2)y(x) = 0. (7.20)
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This equation is solved by Bessel functions Jν(x) and linear combinations of them. We
will make the assumption that the solution of (7.19) is of the form,

Ak = cηxH(1)
ν (−kη), (7.21)

whereH(1)
ν is the Hankel function of the first kind, which is a linear combination of Bessel

functions. We choose the first Hankel function since for large arguments [30],

H(1)
ν (−kη) → C(η)e−ikη, (7.22)

which resembles the positive-frequency modes in Maxwell electromagnetism. If we insert
our assumption into the equation of motion and multiply it with η−x+2 we get,

(−kη)2 ∂2

∂(−kη)2
H(1)

ν (−kη) + (2x+ ns)(−kη) ∂

∂(−kη)
H(1)

ν (−kη)

+
[
x(x− 1) + nsx+ (−kη)2

]
H(1)

ν (−kη) = 0. (7.23)

Comparison with the Bessel equation tells us that x = (1− ns)/2. This gives,

(−kη)2 ∂2

∂(−kη)2
H(1)

ν (−kη) + (−kη) ∂

∂(−kη)
H(1)

ν (−kη)

+
[
−1

4
+
ns

2
− (ns)2

4
+ (−kη2)

]
H(1)

ν (−kη) = 0. (7.24)

This is indeed the Bessel equation with

ν =
ns− 1

2
. (7.25)

The solution to the equation of motion is therefore,

Ak = cη(1−ns)/2H(1)
ν (−kη), (7.26)

where ν is given above. The constant c can be found using condition (7.15). To be able
to calculate the left hand side we need some properties of Hankel functions. The complex
conjugate of the first Hankel function is the second Hankel function. The derivative of
both is,

H
′
ν(−kη) = −k ∂

∂(−kη)
Hν(−kη)

= −k
2

[Hν−1(−kη)−Hν+1(−kη)] . (7.27)

We can now write condition (7.15) as,

|c|2

2
kη(1−ns)

[
H(1)

ν (−kη)H(2)
ν−1(−kη)−H(1)

ν (−kη)H(2)
ν+1(−kη)

−H(2)
ν (−kη)H(1)

ν−1(−kη) +H(2)
ν (−kη)H(1)

ν+1(−kη)
]

= 2ki
m2n

Rn
. (7.28)
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Notice that the terms with derivatives of η(1−ns)/2 drop out. We can combine the first and
third term and the second and fourth term and rewrite them using Wronskian identities
[30], such that,

4i|c|2

πηns
= 2ki

m2n

Rn
. (7.29)

Finally the constant becomes,

c =

√
πk

2
mn

Rn/2
ηns/2, (7.30)

up to a phase, which we will take to be zero. We can make this assumption without lose
of generality since we will be interested in the absolute value of Ak. The solution to the
equation of motion is finally given by,

Ak =
√
π

2

(
R

m2

)−n/2

(−kη)1/2H(1)
ν (−kη). (7.31)

Matching after inlation

At the end of inflation the wavelength of the magnetic field is greater then the Hubble
radius aλ � H−1. Using k = 1/λ and a ∝ η2/(1+3γ) this is equal to |kη| � (a′/a)η =
2/|(1 + 3γ)|. We can therefore expand the Hankel function for small arguments. For
example for ν > 0 [30],

H(1)
ν (x) = Jν(x) + iYν(x), (7.32)

→ 1
Γ(ν + 1)

2−νxν − i
Γ(ν)
π

2νx−ν , (7.33)

' −iΓ(ν)
π

2νx−ν , (7.34)

where Jν is the Bessel function of the first kind and Yν is the Bessel function of the second
kind and Γ(ν) the Gamma function. In the same manner one can find that the small
argument expansion for ν = 0 and ν < 0 are respectively given by H(1)

ν (x) → 2iπ−1 lnx
and H(1)

ν (x) → iπ−12−νΓ(−ν)e−iπνxν .

First we will evaluate the case ν > 0. The small argument expansion of Ak is given
by,

Ak(η) = −i
√

1
2π

2νΓ(ν)
(
R

m2

)−n/2

(−kη)1/2−ν . (7.35)

We want to calculate the Bogoliubov coefficients as we explained in chapter 6. This
means we want to solve,

− i

√
1
2π

2νΓ(ν)
(
R

m2

)−n/2

(−kη)1/2−ν = αke
−ikη + βke

ikη, (7.36)
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and the first derivative of this equation,

ik

(
1
2
− ν

)√
1
2π

2νΓ(ν)
(
R

m2

)−n/2

(−kη)−1/2−ν

+
in

2

√
1
2π

2νΓ(ν)
(
R

m2

)−n/2−1

R′(−kη)−1/2−ν = −ikαke
−ikη + ikβke

ikη. (7.37)

This can be done by rewriting the first equation into an expression for αke
−ikη and insert

it into the second equation. The result is an expression for βk,

βk = −1
2

√
1
2π

2νΓ(ν)
(
R

m2

)−n/2

(−kη)1/2−ν

[
−
(

1
2
− ν

)
(−kη)−1 − n

2k
R′

R
+ i

]
e−ikη,

= −1
2

√
1
2π

2νΓ(ν)
(
R

m2

)−n/2

(−kη)1/2−ν
[
−2ν(−kη)−1 + i

]
e−ikη. (7.38)

Since the argument (−kη) is small, we only keep the first term. Then,

|βk|2 =
22νΓ2(ν + 1)

2π

(
R

m2

)−n

|kη|−1−2ν . (7.39)

We used the fact that νΓ(ν) = Γ(ν + 1).

When ν = 0 the small argument expansion of Ak is given by,

Ak = i

√
2
π

(
R

m2

)−n/2

(−kη)1/2 ln(−kη). (7.40)

The Bogoliubov coefficients are calculated in the same way as for the previous case.
Keeping only the leading order term the result is,

|βk|2 =
1
2π

(
R

m2

)−n

|kη|−1. (7.41)

Comparison with the previous case shows that this is the same as expression (7.39) for
ν = 0.

The last case is ν < 0. The Ak small argument expansion is given by,

Ak(η) = i

√
1
2π
eiπν2−νΓ(−ν)

(
R

m2

)−n/2

(−kη)1/2+ν . (7.42)

We will neglect the phase eiπν since |βk|2 will not depend on it. Again the calculation of
the Bogoliubov coefficients is done in the exact same way. The result is,

|βk|2 =
2−2νΓ2(−ν)

4π

(
R

m2

)−n

|kη|1+2ν . (7.43)

Since we were looking at small arguments this will lead to vanishing magnetic fields.
That is why in the rest of this section we will restrict ourselves to the case ν ≥ 0 or
ns ≥ 1. During inflation s is always positive since −1 < γ < −1/3, so n must be positive
as well.

67



Chapter 7: Models

The present magnetic field

To calculate the value of the magnetic field at present we must use expression (6.22) as
explained in chapter 6.

B0
λ =

[∫
dk

k
W 2

λ (k)
k4

2π2
|βk(ηrad)|2

]1/2

,

=
2νΓ(ν + 1)

2π

(
Rrad

m2

)−n/2

|ηrad|−1/2−ν

[
1
π

∫ ∞

0
dke−λ2k2

k2−2ν

]1/2

,

=
2ν

(2π)3/2
Γ(ν + 1)[Γ(3/2− ν)]1/2

(
Rrad

m2

)−n/2

|ηrad|−1/2−νλν−3/2. (7.44)

The unknowns in this expression are n, γ,Rrad,m and ηrad. The values of n and γ are
contained in ν. We had already restricted ν to ν ≥ 0. We can further restrict it by
noticing that for ν ≥ 3/2 the integral in expression (7.44) has an infrared divergence. To
avoid this we impose ν < 3/2. The value of Rrad can be found with the help of expression
(7.12). We can rewrite this in terms of the temperature at the end of inflation, since for
relativistic particles ρ ∼ T 4, as explained in section 2.1.3. The result is,

Rrad =
8π
m2

pl

(1− 3γ)M4, (7.45)

where M is the temperature at the end of inflation. The value of m is unknown except for
the limit, Rrad ' Rend ≥ m2. In their article Mazzitelli and Spedalieri [34] have m = me,
where, me = 0.51MeV, is the electron mass. Campanelli, Cea, Fogli and Tedesco [35]
argued that this value of m will lead to too small fields and instead use m = R

1/2
rad , the

largest possible value of m. We will evaluate expression (7.44) for both of these values of
m. The value of ηrad is a bit more involved. In section 2.1.3 we found a relation between
the scale factor and the temperature. To find an expression for ηrad in temperature, we
may calculate,

η =
2

(1 + 3γ)
a

a′
,

=
2

(1 + 3γ)aH
. (7.46)

We can rewrite this using the relation,

a ∝ g
−1/3
∗S (T )T−1, (7.47)
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which we found in section 2.1.3 and the fact that we can rewrite the Hubble parameter
as,

H =

√
8π
3

√
ρtot

mpl
,

=

√
8π
3
M2

mpl
. (7.48)

The result is,

ηrad =

√
3
2π

1
1 + 3γ

(
g∗S(Trad)
g∗S(T0)

)1/3 mpl

MT0
. (7.49)

The values of the unknown quantities are [5],

T0 = 2.35× 10−13GeV, (7.50)

g∗S(Trad) = 106.75, (7.51)

g∗S(T0) = 3.91. (7.52)

We explained the values of g∗S in section 2.1.3. We can also calculate that in Gaussian
units, that is when ε0 = (4π)−1, where ε0 is the vacuum permittivity,

1G = 6.9× 10−20GeV2, (7.53)

1Mpc = 1.56× 1038GeV−1. (7.54)

Finally,

ηrad ' 2.3× 103 1
1 + 3γ

(
M

mpl

)−1√
G. (7.55)

The larger the temperature M is, the larger the magnetic fields will be. The exact value
of M is not known, but graviton production leads to the constraint that M/mpl < 10−2

[1]. The value of M depends on the value of s, as was shown in equation (3.8). Since we
assumed that M = Trad, this equation reduces to,

ρtot

m4
pl

= (1.6× 1026)sλs
Mpc

(
M

mpl

)4+s

. (7.56)

If we use the above mentioned graviton constraint, which in terms of the density reads,
ρtot = 10−8m4

pl, at the present horizon scale, we can find the maximum value of s,

smax = −
8 + 4 log10(M/mpl)
29.8 + log10(M/mpl)

. (7.57)

When we evaluate the strength of the magnetic field for different values of M , we must
keep in mind that this also changes the maximum value of s, which in turn changes the
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value of ν. Since 0 ≤ ν < 3/2, the possible values of M are restricted. We know that
λ/|ηrad| � 1, and therefore the magnetic field gets larger for a larger ν. As a consequence
the field is maximal for s = smax. Campanelli, Cea, Fogli and Tedesco [33] evaluated the
strength of the magnetic field in the case, s = smax, for m = me and m = R

1/2
rad at a

scale of 10 kpc. The result is shown in figure 7.1. The values of M are restricted for
different n, such that 0 < ν < 1.49. The upper panel corresponds to the case m = me.
One can see that the present magnetic field lies below the dynamo limit for all values of
n and M . Therefore we can conclude that for this value of m the RnF 2 model is not a
suitable model, as we had already anticipated. The lower panel corresponds to the case
that m = R

1/2
rad , which was the largest possible value for m. The figure shows that the

magnetic field is stronger than the dynamo mechanism limit when n ≥ 2, for a certain
lower limit on M , which differs for different n. When the limit for intergalactic magnetic
fields is satisfied is not clear from this figure. As one can see for each power of n the
strongest magnetic fields is generated for the lowest value of M , which corresponds to
ν = 1.49. We have plotted the strength of the magnetic field for this value of ν for
different powers of n in figure 7.2. One can see that the intergalactic magnetic field limit
is satisfied for n ≥ 6. This corresponds to a temperature of M ≥ 10−6mpl. Therefore the
RnF 2 model is a possible model to explain the observed magnetic fields, when the power
of the Ricci scalar is n ≥ 6 and the temperature during inflation M ≥ 10−6mpl.

Backreaction

To check that our model is consistent we must check that at the wavelengths we are
interested in, the energy density of the electromagnetic field is smaller than the total
energy density, as explained in section 6.6. The energy momentum tensor Tµν is defined
as,

δS = −
∫
d4x

√
−g1

2
Tµνδg

µν . (7.58)

In the current model the left hand side is equal to,

δS =
∫
d4x

√
−g1

8

(
R

m2

)n

gµνFαβF
αβδgµν −

∫
d4x

√
−g1

2

(
R

m2

)n

FµβF
β
ν δg

µν

−
∫
d4x

√
−gn

4

(
R

m2

)n

FαβF
αβRµν

R
δgµν −

∫
d4x

n

4
√
−gR

n−1

m2n
FαβF

αβgµνδRµν .

(7.59)

We will first evaluate the last term on the right hand side. We can use the identities,

δRµν = ∇ρ(δΓρ
µν)−∇ν(δΓρ

ρµ), (7.60)

δΓλ
µν =

1
2
gλσ [∇νδgσµ +∇µδgνσ −∇σδgµν ] , (7.61)
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Figure 7.1 – The present magnetic field as a function of M at the scale λ = 10 kpc. The
upper plot is the case m = me and in the lower plot m = R

1/2
rad . The different lines are the

different values of n: n = 1 (continuous line), n = 2 (long dashed line), n = 3 (dashed line),
n = 4 (dot-dashed line) and n = 5 (dotted line). The horizontal dotted line is the dynamo
limit B0 > 10−33 G at scales λ = 10 kpc. The plots are from [35].
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Figure 7.2 – The present magnetic field as a function of n at the scale λ = 1 Mpc.

and partial integration, to calculate that,

−
∫
d4x

n

4
√
−gR

n−1

m2n
FαβF

αβgµνδRµν

= −
∫
d4x

1
2
δgµν

[
gµν∇2 −∇ν∇µ

] [n
2
√
−gR

n−1

m2n
FαβF

αβ

]
,

= −
∫
d4x

1
2
δgµν

[
gµν∂

ρ∂ρ − gµνg
ρσΓλ

σρ∂λ − ∂ν∂µ + Γλ
µν∂λ

]
×
[
n

2
√
−gR

n−1

m2n
FαβF

αβ

]
. (7.62)

We therefore find that the energy momentum tensor is given by,

Tµν =− 1
4

(
R

m2

)n

gµνFαβF
αβ +

(
R

m2

)n

FµβF
β
ν +

n

2

(
R

m2

)n

FαβF
αβRµν

R

+
1√
−g

[
gµν∂

ρ∂ρ − gµνg
ρσΓλ

σρ∂λ − ∂ν∂µ + Γλ
µν∂λ

] [n
2
√
−gR

n−1

m2n
FαβF

αβ

]
.

(7.63)
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The energy density of the electromagnetic field in the Coulomb gauge is then,

ρ = −T 0
0 ,

=
1
2

(
R

m2

)n (
B2 − E2

)
+
(
R

m2

)n

E2 − n

(
R

m2

)n (
B2 − E2

)(
1− a′2

a′′a

)
− a−4

[
∂j∂j − gρσΓλ

σρ∂λ − a−2Γλ
00∂λ

] [
na4R

n−1

m2n

(
B2 − E2

)]
,

=
1
2

(
R

m2

)n (
B2 + E2

)
− n

(
R

m2

)n (
B2 − E2

)(
1− a′2

a′′a

)
+
n

2
a′

a7
∂η

[
a7

a′′

(
R

m2

)n (
B2 − E2

)]
,

=
1
2

(
R

m2

)n (
B2 + E2

)
+
[
−n+

n

2
(9− 3n)

a′2

a′′a
+
n

2
(n− 1)

a′a′′′

a′′2

](
R

m2

)n (
B2 − E2

)
+
n

2
a′

a′′

(
R

m2

)n

∂η

(
B2 − E2

)
. (7.64)

We can get rid of the scale factor derivatives by using the fact that, a ∝ η2/(1+3γ). We
then find,

ρ =
1
2

(
R

m2

)n (
B2 + E2

)
+ n

5 + 3γ
1− 3γ

(
R

m2

)n (
B2 − E2

)
+
n

2
1 + 3γ
1− 3γ

η

(
R

m2

)n

∂η

(
B2 − E2

)
. (7.65)

Therefore the vacuum expectation value of the co-moving average electromagnetic
density on a scale λ is,

ρλ =
(
R

m2

)n [(1
2

+ n
5 + 3γ
1− 3γ

)
B2

λ +
(

1
2
− n

5 + 3γ
1− 3γ

)
E2

λ

]
+
n

2
1 + 3γ
1− 3γ

η

(
R

m2

)n

∂η

(
B2

λ − E2
λ

)
. (7.66)

We already found the expression for Ak during inflation:

Ak(η) = −i
√

1
2π

2νΓ(ν)
(
R

m2

)−n/2

(−kη)1/2−ν , (7.67)

which was the small argument expansion for ν > 0. The vacuum expectation values of
the average co-moving electric and magnetic fields during inflation can be calculated by
filling in (6.12) and (6.25):

B2
λ =

4ν [Γ(ν)]2Γ(5/2− ν)
a48π3

(
R

m2

)−n

λ−5+2νη1−2ν , (7.68)

E2
λ =

4ν [Γ(ν)]2Γ(3/2− ν)(1/2− ν)2

a48π3

(
R

m2

)−n

λ−3+2νη−1−2ν . (7.69)
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It follows that,

ρλ '
4ν [Γ(ν)]2

a48π3

(
1
2

+ n
5 + 3γ
1− 3γ

)
Γ
(

5
2
− ν

)
λ−5+2νη1−2ν

+
4ν [Γ(ν)]2

a48π3

(
1
2
− n

5 + 3γ
1− 3γ

)(
1
2
− ν

)2

Γ
(

3
2
− ν

)
λ−3+2νη−1−2ν

+
n

2
1 + 3γ
1− 3γ

η
4ν [Γ(ν)]2

a48π3

[
−4

a′

a
− n

R′

R

]
×

[
Γ
(

5
2
− ν

)
λ−5+2νη1−2ν −

(
1
2
− ν

)2

Γ
(

3
2
− ν

)
λ−3+2νη−1−2ν

]

+
n

2
1 + 3γ
1− 3γ

4ν [Γ(ν)]2

a48π3
(1− 2ν)Γ

(
5
2
− ν

)
λ−5+2νη1−2ν

− n

2
1 + 3γ
1− 3γ

4ν [Γ(ν)]2

a48π3
(−1− 2ν)

(
1
2
− ν

)2

Γ
(

3
2
− ν

)
λ−3+2νη−1−2ν . (7.70)

We can get rid of the R′ and a′ terms in the same way as before. Therefore we can
simplify the above expression to,

ρλ '
4ν [Γ(ν)]2

a48π3

[
1
2

+ n
1 + 3γ
1− 3γ

+ 3n2 1− γ

1− 3γ
+
n

2
1 + 3γ
1− 3γ

(1− 2ν)
]

× Γ
(

5
2
− ν

)
λ−5+2νη1−2ν

+
4ν [Γ(ν)]2

a48π3

[
1
2
− n

1 + 3γ
1− 3γ

− 3n2 1− γ

1− 3γ
+
n

2
1 + 3γ
1− 3γ

(1 + 2ν)
]

×
(

1
2
− ν

)2

Γ
(

3
2
− ν

)
λ−3+2νη−1−2ν . (7.71)

The terms in the square brackets are all of order 1, and therefore not important for our
purposes. We will neglect them in the following. We can rewrite a = 2[(1 + 3γ)ηH]−1.
Then,

ρλ

ρtot
'4ν [Γ(ν)]2

3π2

(1 + 3γ)4

16

(
H

mpl

)2

×[
Γ
(

5
2
− ν

)(η
λ

)5−2ν
+ Γ

(
3
2
− ν

)(
1
2
− ν

)2 (η
λ

)3−2ν
]
. (7.72)

We argued before that ν < 3/2, so the numerical factor in front will not be larger then
∼ 102. From graviton production we have the constraint that H/mpl < 10−4 [1] and
since we are in the large scale limit η/λ� 1. If we use these requirements,

ρλ

ρtot
� 1. (7.73)

This shows that we have correctly neglected the backreaction of the electromagnetic
field.
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7.3 The I(φ)F 2 model, coupling to a scalar field

Another way to break conformal invariance is to couple the electromagnetic field to the
inflaton field through the coupling I(φ)F 2, where φ is the inflaton field. This was first
done by Ratra [36][37] for the model I(φ) = ecφ, were c is an arbitrary constant. We
will show later that this is the general form of the coupling when considering Power-Law
inflation. He found that for certain values of c a magnetic field could be generated with
a strength of 10−9 G, which is well above both the dynamo limit and the protogalaxy
collapsing limit. The general case was later investigated by Martin and Yokoyama [38]
and others. We will evaluate this general case, following the paper of Campanelli, Cea,
Fogli and Tedesco [35].

The model

The electromagnetic part of the Lagrangian is,

L = −1
4
FµνF

µν − 1
4
I(φ)FµνF

µν . (7.74)

The term I(φ) must be dimensionless. We assume that during inflation the second term
is dominant and that at the end of inflation the first term will become dominant. That
is during inflation I(φ) ≥ 1.

Equation of motion

The model is similar to the RnF 2 model. Instead of recalculating the equation of motion
we can replace (R/m2)n with I(φ) in the later model. Comparison with expression (7.16)
shows that the equation of motion for Ak is given by,

A′′
k(η) +

I(φ)′

I(φ)
A′

k(η) + k2Ak(η) = 0. (7.75)

Condition (7.15) becomes,

Ak(η)A∗′
k (η)−A′

k(η)A
∗
k(η) =

2ik
I(φ)

. (7.76)

To find the solution we must know the explicit η dependence of I(φ). Martin and
Yokoyama [38] argue that it is reasonable to assume that I(η) ∝ aα. The reason is that
the magnetic fields that we measure on a galactic scale and cluster scale are almost of
the same strength. This would suggest that a correct model should have an almost scale
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invariant power spectrum for the magnetic field. In their paper Martin and Yokoyama
show that for a certain value α = αsi the power spectrum is scale invariant. That means
that I(φ) ∝ aαsi is a reasonable model and the assumption I(φ) ∝ aα is the generalization
of this. Since we know that,

a(η) ∝ η2/(1+3γ), (7.77)

the η dependence of I(φ) is given by,

I(φ) ∝ η2α/(1+3γ) ≡ ηb. (7.78)

We can use this to write the equation of motion as,

A′′
k(η) +

b

η
A′

k(η) + k2Ak(η) = 0. (7.79)

This is again similar to the RnF 2 model and we can use those results if we replace ns
by b.

Example of a particle physics model

The would like to know which particle physics models have a coupling of the form we
suggested, I(φ) ∝ ηb. We will show that the coupling is compatible with Power-Law
inflation. This is the simplest case, since an exact form of the potential is known,

V (φ) ∝ exp
[
−
√

2pφ
]
. (7.80)

If we use that a ∝ ηb/α, we can solve the Friedmann equation (2.85). The result is,

φ(η) =
1
a

√
2(αb+ b2) ln |η|. (7.81)

Therefore, if I(φ) ∝ ηb, we must have,

I(φ) ∝ exp

[
α

√
b

2(α+ b)
φ

]
. (7.82)

We can express α in terms of b and rewrite it as,

I(φ) ∝ exp

[
(1 + 3γ)

2
√

3(1 + γ)
bφ

]
. (7.83)

This is is equivalent to the coupling proposed by Ratra [36][37].
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Solution

The solution to the equation of motion is equivalent to (7.26), namely,

Ak = cη(1−b)/2H(1)
ν (−kη), (7.84)

where ν = (b − 1)/2. The constant can be determined with condition (7.76) using the
Hankel function identities just as in the previous section. The final result is,

Ak =
√
π

2
I−1/2(φ)(−kη)1/2H(1)

ν (−kη). (7.85)

Calculating the Bogoliubov coefficients is easy, since we can again use the results from
the previous section. Only ν ≥ 0 will give significant magnetic fields, namely,

B0
λ =

2ν

(2π)3/2
Γ(ν + 1)[Γ(3/2− ν)]1/2I

−1/2
rad (φ)|ηrad|−1/2−νλν−3/2. (7.86)

The unknowns in expression (7.86) are b, γ, Irad(φ) and ηrad. To avoid infrared divergence
we have the condition that ν < 3/2. Together with the condition ν ≥ 0 we can put a
limit on b, namely 1 ≤ b < 4. As before ηrad is given by expression (7.55). The value
of Irad is limited by Irad ≥ 1 as we saw before. We will take the upper limit for both
Irad = 1 and ηrad, since it will lead to an upper limit of the magnetic field. Taking the
upper limit for ηrad corresponds to taking the maximum value for M = 10−2mpl. In this
case, ηrad ' 105. We have plotted the result in figure 7.3. As one can see the dynamo
limit is satisfied for b > 2, the intergalactic field limit for b > 3.4 and the protogalaxy
collapsing limit for b > 3.7. For all values of b the strength of the magnetic field lies below
the CMB limit and is therefore in agreement with CMB observations. We can therefore
conclude that the I(φ)F 2 model is a possible explanation for the observed magnetic fields
if 3.4 < b < 4. We can also look the relation between the strength of the magnetic field
and the temperature during inflation. Since the strongest fields are obtained for b = 3.99
we have evaluated expression (7.86) for this value. The result can be seen in figure 7.4.
It shows that the intergalactic field limit is satisfied for M > 10−6mpl. Therefore the
temperature during inflation must have been at least this high for the I(φ)F 2 model to
work.

In the derivation of this result we assumed that I(φ) ∝ aα, since Martin and Yokoyama
[38] argued that in this case a scale invariant spectrum could be obtained, which is in
agreement with observations. If we look at expression (7.86) we see that the present
magnetic field is scale invariant if ν = 3/2, that is when α = 2(1 + 3γ). However at this
value the solution blows up due to the gamma function, which came from integrating
the window function, and therefore the expression becomes meaningless. We could have
avoided this problem if we would not have taken the average of the field on a scale λ, but
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Figure 7.3 – The present magnetic field as a function of b. The solid blue line corresponds
to the the scale λ = 10 kpc and the dashed purple line to λ = 1 Mpc. The thin black lines
correspond to the limits from the CMB (B < 10−9), protogalaxy collapsing (B > 10−14

for λ = 1 Mpc), intergalactic magnetic fields (B > 10−19 for λ = 1 Mpc) and the dynamo
mechanism (B > 10−33 for λ = 10 kpc).

just used the delta-function δ(k − 1/λ). This is what Martin and Yokoyama do in their
paper [38] and therefore they are able to find a scale invariant spectrum. The downside
of this approach is that one does no longer take into account the fact that observations
measure the strength of the entire field and not the strength at specific points in space.
The questions is if we can still justify the assumption I(φ) ∝ aα in our framework. The
fact that a coupling of this form is compatible with Power-Law inflation suggests that it
is.

Backreaction

As a last step we may calculate the backreaction. We can again use the similarity with
the RnF 2 model. Since we assume that I(φ) does not depend on gµν , the density is
equivalent to the first term in expression (7.64) if we replace (R/m2)n with I(φ),

ρ =
1
2
I(φ)

(
B2 + E2

)
. (7.87)
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Figure 7.4 – The present magnetic field as a function of the temperature during inflation
M . The solid blue line corresponds to the the scale λ = 10 kpc and the dashed purple line
to λ = 1 Mpc. The thin black lines correspond to the limits from the CMB (B < 10−9),
protogalaxy collapsing (B > 10−14 for λ = 1 Mpc), intergalactic magnetic fields (B > 10−19

for λ = 1 Mpc) and the dynamo mechanism (B > 10−33 for λ = 10 kpc).

We can calculate the ratio ρλ/ρtot in the same manner as for the RnF 2 model. Here we
can also use the similarity of the expression we found for Ak(η) during inflation with
that of the RnF 2 model. The final result will be,

ρλ

ρtot
'4ν [Γ(ν)]2

6π2

(1 + 3γ)4

16

(
H

mpl

)2

×[
Γ
(

5
2
− ν

)(η
λ

)5−2ν
+ Γ

(
3
2
− ν

)(
1
2
− ν

)2 (η
λ

)3−2ν
]
. (7.88)

From the same arguments as in the RnF 2 model it follows that the backreaction is
negligible. Therefore our assumption that the electromagnetic field does not influence
the background was correct.

7.4 The I(φ)FF̃ model, coupling to a pseudo-scalar field

The last model we will review is a model with a Chern-Simons term I(φ)FF̃ , where
F̃µν ∝ ηµνρσF

ρσ and I depends on a pseudo-scalar field φ. This term can cause the
magnetic field to have a non-zero helicity, as we will explain in this section. The model
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was first introduced by Turner and Widrow [1]. They suggested that the electromagnetic
field could couple to an axion field, trough the coupling I = gαφ, where gα is the coupling
constant. However they did not perform a full analysis of the model, this was done later
by Garretson, Field and Carrol in [39] and by Field and Carrol in [40]. Unfortuanately
the model did not generate large enough magnetic fields. This led people to investigate
models with other forms of I. In this section we will derive the equation of motion for
a general I and then review the model where the Fourier transform of I is of the form
Ik ∝ (−kη)b. Our discussion is based on the paper by Campanelli [33] and we will closely
follow his arguments.

Equations of motion

The Lagrangian for this model is,

L = −1
4
FµνF

µν − 1
4
I(φ)FµνF̃

µν , (7.89)

where F̃µν = ηµνρσF
ρσ/(2

√
−g) and I is a function of a pseudo-scalar field φ. The action

is then,

S =
∫
d4x

[
−
√
−g1

4
FµνF

µν − 1
8
I(η)ηµνρσFµνF̃ρσ

]
. (7.90)

Dimensional analysis tells us that I must be dimensionless. To obtain the equations of
motion we vary the action with respect to Aµ. This leads to,

∂ρ[
√
−ggµρgνσFµν ] +

1
2
∂ρ [IηµνρσFµν ] = 0. (7.91)

For σ = i, this reduces in the Coulomb gauge to the equation of motion,

A′′
i − a2∂j∂

jAi + I ′εijl∂jAl − εijl(∂jI)A′
l = 0. (7.92)

We use expansion (5.36) to rewrite this as,

∑
λ

1√
2k
εiλ(k)

(
A′′

k + k2Ak

)
aλ(k) + i

∫
d3q

(2π)3
√

2q

×
∑
λ′

(
I ′k−qεijlqjεlλ′(q)Ak − Ik−qεijl(kj − qj)εlλ′(q)A′

k

)
aλ(q) + h.c. = 0,

(7.93)

where Ik is the Fourier transform of I. To simplify the equation of motion we may assume
that I is only nonzero at small k. This is a reasonable assumption, since it means that
I is only non-zero at large wavelengths. If I would be peaked at a large k, the third and
fourth term in equation (7.92) are negligible compared to the second term at the large
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scales we are interested in. The equation of motion will then just reduce to Maxwell
electrodynamics, which led to vanishing magnetic fields. For this reason we will consider
Ik to be of the form,

Ik = (2π)3δ(k)Ik. (7.94)

The equation of motion depends on Ik−q = (2π)3δ(k− q)Ik−q. We want to consider this
function for small k. Because of the delta function we know that q also must be small.
Therefore we can expand Ik−q for small q, the result is,

Ik−q = (2π)3δ(k− q)
[
Ik − q∇kIk +O(q2)

]
. (7.95)

The equation of motion will then reduce, to leading order, to,

εiλ(k)
(
A′′

k + k2Ak

)
+ iI ′kεijlkjεlλ(k)Ak ' 0. (7.96)

The last term disappeared because of the delta function. If we choose the momentum to
lie along the x3-axis, the equations of motions for i = 1, 2 are,

ε1λ

(
A′′

k + k2Ak

)
− iε2λI

′
kkAk = 0,

ε2λ

(
A′′

k + k2Ak

)
+ iε1λI

′
kkAk = 0, (7.97)

where k = |k|. We can define circular polarization vectors as ε± = ε1λ±iε2λ. It is possible
to expand Ai in these polarization vectors as,

Ai(η,x) =
∫

d3k

(2π)3
√

2k

2∑
α=±

εiα(k)[aα(k)Akα(η)eikx + a†α(k)A∗
kα(η)e−ikx]. (7.98)

If we look at expressions (7.97) it is easy to see that in terms of the circular expansion
the equation of motion is,

A′′
k± + k2Ak± ∓ I ′kkAk± = 0. (7.99)

The model

We will assume that Ik is of the form,

Ik = c(−kη)b, (7.100)

where c is a positive constant and b an arbitrary (real) constant. The reason we take
this model is, that it is compatible with different pseudo-scalar models. For example the
model,

L =
1
2
∂µφ∂

µφ+ V (φ), (7.101)
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with,

V (φ) = m2φ2, or, (7.102)

V (φ) = ξRφ2, (7.103)

where m is the mass of the pseudo-scalar field, ξ a constant and R the Ricci scalar. The
first case corresponds to a non-coupled massive pseudo-scalar field and in the second case
the pseudo-scalar field is non-minimally coupled to gravity. For these models one can
solve the conservation equation for the pseudo-scalar field in momentum space, which in
the case of a field that has a space dependence takes the form,

φ′′k + 2
a′

a
φ′k + a2 dVk

dφk
+ k2φk = 0. (7.104)

If we assume that we have de Sitter inflation a = −1/Hη and that H is a constant
during de Sitter inflation, the conservation equation is given by,

φ′′k +
2
η
φ′k +

(
x

H2η2
+ k2

)
φk = 0, (7.105)

where x depends on which model we use, either x = m2 or x = ξR. If we have de Sitter
inflation we can write the second case as x = 12H2. The equation can be solved using
Hankel functions,

φk ∝ (−kη)3/2H(1)
ν (−kη), (7.106)

where,

ν =

√
9
4
− x

H2
. (7.107)

Since we have assumed that the coupling function is only non-zero for large scales, we
can expand the solution for small arguments. Using expansion (7.34) we find,

φk(η) ∝ (−kη)3/2−ν . (7.108)

Therefore if we take I ∝ φ, one can derive that Ik is of the form (7.100), with b =
3/2− ν.

Solution

With definition (7.100) of Ik the equation of motion becomes,

A′′
k± + k2Ak± ± k2bc(−kη)b−1Ak± = 0. (7.109)
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7.4 The I(φ)FF̃ model, coupling to a pseudo-scalar field

The equation of motion can only be solved exactly for b = ±1. The case b = 1 is
equivalent to Maxwell electrodynamics, which led to vanishing magnetic fields. When
b = −1 The equation of motion reduces to,

A′′
k± + k2Ak± ∓ k2c(−kη)−2Ak± = 0. (7.110)

We can solve this in the same manner as for the RnF 2 model by substituting,

Ak± = ckη
xH(1)

ν (−kη). (7.111)

The value of ck and x can be found in the same way as for the previous two models. The
result is,

Ak± =
√
π

2
(−kη)1/2H(1)

ν± (−kη), (7.112)

where,

ν± =

√
1
4
± c. (7.113)

For other values of b the model is not exactly solvable. To simplify the model, we may
use the fact that we are interested in large scale fields. We saw that for scales much larger
than the horizon, |kη| � 1. If we take b < 0 the second term is negligible compared to
the other terms in this limit. The equation of motion then simplifies to,

A′′
k± ± k2bc(−kη)b−1Ak± = 0. (7.114)

The solution to this equation is,

Ak± = c1(−kη)1/2H
(1)
1/(1+b)(z±), (7.115)

where c1 is a constant and,

z± =
1
√
±bc

1 + b
(−kη)(1+b)/2. (7.116)

One can check that this is correct by inserting the result into equation (7.114) and see
that one indeed recovers the Bessel equation (7.20). When b < −1, |z±| � 1, since we
were working in the limit |kη| � 1. In this case we can use the large argument expansion
of the Hankel function [30], to obtain,

Ak± = c′1(−kη)(1−b)/2eiz± , (7.117)

where c′1 is a constant. For the positive solution the exponent is just an oscillating
term, since z+ is real, and therefore not interesting. The solution is proportional to
Ak+ ∝ (−kη)(1−b)/2, but since b < −1 and |kη| � 1, this uninterestingly small. On the
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other hand z− is complex, so Ak− ∝ (−kη)(1−b)/2e|z−|. This term will diverge for small
k and is therefore not physical. For this reason will require that b > −1.

When −1 < b < 0, we have |z±| � 1 and we can use the small argument expansion for
the Hankel function [30],

Ak± = c′1 + c′2(−kη). (7.118)

To find the value of the constants c′1 and c′2 we can use a trick. For small scales |kη| � 1,
the third term in the equation of motion (7.109) is negligible and we recover Maxwell
electrodynamics. We already saw that the solution in this case was Ak ∝ e−ikη. We can
determine the constants by matching these two solutions and their derivatives at the
horizon, |kη| = 1. The result is,

Ak± = e−i [1 + i(1− kη)] . (7.119)

Matching after inflation

Since we are calculating the positive and negative solution separately we cannot use
expression (6.6). Instead we want to find an expression for,

B2
λ±(η) =

〈
0||Bλ±(η,x)|2|0

〉
. (7.120)

If we look at the derivation in section 6.4, we see that the only difference is, that there
is no longer a sum over λ = ±. Instead of expression (6.8), we have,〈

0|(∇×A(η,y))i(∇×A(η,y′))∗i |0
〉

=
1
2k
|Ak|2δ(y − y′)×[

k2
j εz±(k)εz±(k)− kjkzεz±(k)εj±(k)− kzkjεj±(k)εz±(k) + k2

zεj±(k)εj±(k)
]
. (7.121)

This is the same as,〈
0|(∇×A(η,y))i(∇×A(η,y′))∗i |0

〉
=

1
2k
|Ak|2δ(y − y′)

[
(kjεz± − kzεj±)2

]
. (7.122)

All the components together are,〈
0|(∇×A(η,y))(∇×A(η,y′))∗|0

〉
=

1
2k
|Ak|2δ(y − y′)(k× ε±)2,

=
k

2
|Ak|2δ(y − y′). (7.123)

Comparison with expression (6.9) shows that,

B0
λ± =

1√
2
B0

λ,

=
[∫

dk

k
W 2

λ (k)
k4

4π2
|βk(ηrad)|2

]1/2

. (7.124)
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We can now find the present value of the magnetic field by solving Ak± = αk±e
−ikη +

βk±e
ikη and the first derivative, for βk±, as explained in chapter 6. In the case that

−1 < b < 0, the result is,

βk± =
ie−i

2
(1− kη) e−ikη. (7.125)

In the large scale limit the second term is negligible to the first term, so approxi-
mately,

|βk±|2 =
1
4
. (7.126)

We may do the same thing for the case b = −1. We will first restrict the negative solution
to c < 1/4, since for these values ν− is real and non-zero. We can use the small argument
expansion of the Hankel function to rewrite solution (7.112) as,

Ak± = i(2π)−1/22ν±Γ(ν±)(−kη)−ν±+1/2, (7.127)

up to a phase, for ν± > 0. If we solve for βk± the result is,

βk± =
2ν±Γ(ν±)√

8π
(−kη)−ν±−1/2

[
−ikη +

(
1
2
− ν±

)]
. (7.128)

The first term is negligible compared to the second, which leads to,

|βk±|2 =
22ν±Γ2(ν±)

8π

(
1
2
− ν±

)2

|kη|−2ν±−1. (7.129)

We can also evaluate the negative solution for ν− is zero or complex, that is for c ≥ 1/4.
We can expand the Hankel function for these values and solve for βk±, the results are
[33],

ν− = 0 : |βk±|2 =
ln2 |kη|
8π|kη|

, (7.130)

ν− = iν̃− : |βk±|2 =
aν− + bν− cos[2ν̃− ln(|kη|/2)]

4π|kη|
+
cν− sin[2ν̃− ln(|kη|/2)]

4π|kη|
,

(7.131)

where ν̃ is the imaginary part of ν and,

aν− =
π

ν̃−
coth(πν̃−),

bν− = (1− 4ν̃2
−)<[Γ2(ν−)] + 4ν̃−=[Γ2(ν−)],

cν− = (1− 4ν̃2
−)=[Γ2(ν−)]− 4ν̃−<[Γ2(ν−)]. (7.132)
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The present magnetic field

We can insert the results (7.126), (7.129), (7.130) and (7.131) into expression (7.124) to
obtain,

−1 < b < 0 : B0
λ± =

1
4π
√

2
λ−2, (7.133)

b = −1, ν± > 0 : B0
λ± =

2ν±Γ(ν±) [Γ(3/2− ν±)]1/2 |1/2− ν±|
(4π)3/2

|ηrad|−ν±−1/2λν±−3/2,

(7.134)

b = −1, ν− = 0 : B0
λ± =

1
2(4π)5/4

ln
(

λ

|ηrad|

)
|ηrad|−1/2λ−3/2, (7.135)

b = −1, ν− = iν̃− : B0
λ± =

(aν− + bν−/
√

2 + cν−/
√

2)1/2

√
2(4π)5/4

|ηrad|−1/2λ−3/2. (7.136)

When −1 < b < 0, the magnetic field at scales λ = 10 kpc is B0
λ± ' 10−54, which is a

lot lower then the dynamo limit, B > 10−33. therefore we can conclude that this model
does not generate large enough magnetic fields.

To evaluate the case b = −1, we can use the value of ηrad in equation (7.55). We take
the maximum value for M = 10−2mpl, to obtain an upper limit for the magnetic field.
In this case, ηrad ' 105. In figure 7.5 we have plot the strength of the positive solution
for different values of c. Just as in the RnF 2 model, we must have c < 2, since a larger
value would lead to divergent fields at large scales. The solid blue line corresponds to
the case λ = 10 kpc and the dashed purple line to λ = 1 Mpc. One can see that for
c > 0.1 the generated fields are stronger then the dynamo constraint and for c > 1.2 the
intergalactic field limit is satisfied, which is the stronger limit. When c > 1.7 the fields
are strong enough to be generated without the dynamo mechanism. For all values of c the
produced field lies below the CMB constraint and are therefore compatible with CMB
observations. The negative solution is smaller then the positive solution for all values of
ν since it is proportional to |ηrad|−1/2λ−3/2. The positive solution was minimal for ν ' 0.
At that value of ν the strength of the magnetic field was lower then the dynamo limit
and therefore the same will be true for the negative solution. As before we have also
plotted the relation between the temperature and the strength of the field for c = 1.99,
which corresponds to the strongest fields. The result can be found in figure 7.6. Again
we find that the intergalactic field limit is satisfied if the temperature during inflation
M > 10−6mpl. This is the minimal value needed for this model to work.

We can compare these results with the particle physics models we suggested in (7.102)
and (7.103). We saw that if we take the coupling I(φ) ∝ φ, then for de Sitter inflation
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Figure 7.5 – The positive present magnetic field solution for b = −1 as a function of c. The
solid blue line corresponds to the the scale λ = 10 kpc and the dashed purple line to λ = 1
Mpc. The thin black lines correspond to the limits from the CMB (B < 10−9), protogalaxy
collapsing (B > 10−14 for λ = 1 Mpc), the intergalactic field limit (B > 10−18 for λ = 1
Mpc) and the dynamo mechanism (B > 10−33 for λ = 10 kpc).

b = 3/2− ν, where,

ν =

√
9
4
− m2

H2
, (7.137)

ν =

√
9
4
− 12ξ, (7.138)

where the first value is the case that φ is a non-coupled massive pseudo-scalar field and
the second value that the pseudo-scalar field is non-minimally coupled to gravity. The
case that leads to interesting magnetic fields, b = −1, corresponds to, m2 = −4H2 and
ξ = 1/3 respectively.

Helicity

The circular polarization vectors are also called the helical polarization vectors. Helicity
is a measure of a the polarization with respect the direction of motion of the photon.
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Figure 7.6 – The positive present magnetic field solution for b = −1 as a function of the
temperature during inflation M . The solid blue line corresponds to the the scale λ = 10
kpc and the dashed purple line to λ = 1 Mpc. The thin black lines correspond to the limits
from the CMB (B < 10−9), the intergalactic field limit (B > 10−18 for λ = 1 Mpc) and the
dynamo mechanism (B > 10−33 for λ = 10 kpc).

The helicity of a magnetic field in a volume V is classically defined as,

H =
1
V

∫
V

A ·Bd3x. (7.139)

It describes the twisting of the field lines. The average vacuum value on a co-moving
scale λ of the helicity is defined, just as for the magnetic field, as,

Hλ(η) =
〈
0|
∫
d3yd3zWλ(|x− y|)Wλ(|x− z|)A(η,y) ·B(η, z)|0

〉
. (7.140)

One can calculate this explicitly, just as we did for B2
λ in chapter 6. The result is,

Hλ(η) =
1
a2

∫ ∞

0

dk

k
W 2

λ (k)
k3

4π2

[
|Ak+|2 − |Ak−|2

]
. (7.141)

The helicity is proportional to the difference between the positive polarized and negative
polarized photons, as one would expect. The helicity is zero if the positive and negative
helicity solution are equal, as was the case for −1 < b < 0. One can calculate the
helicity in the case b = −1. We already saw that the negative helicity solution was much
smaller then the positive solution. The difference is proportional to (λ/ηrad)ν , which for
λ = 10kpc is proportional to 1021ν . This difference is so large that we can neglect the

88



7.4 The I(φ)FF̃ model, coupling to a pseudo-scalar field

negative solution and,

H0
λ(ηrad) '

∫ ∞

0

dk

k
W 2

λ (k)
k3

4π2
|Ak+|2. (7.142)

Comparison with expression (7.124) shows that,

H0
λ(ηrad) ' (B0

λ+)2λ. (7.143)

Unfortunately up until now the measurements of helicity of magnetic fields in the CMB
and galaxies are not precise enough to detect this strength of helicity [33]. If this would
become possible in the future, it may give us a reason to accept or refute the IF F̃

model.

Backreaction

Lastly we must check that our assumptions are still correct, as explained in section 6.6.
That is we must check that the energy density of the electromagnetic field is smaller
then the total energy density. The energy momentum tensor is,

Tµν = − 2√
−g

∂S

gµν
,

= −1
4
gµνFαβF

αβ + FµβF
β
ν , (7.144)

which is the same as for the Maxwell theory, since in the case we evaluated I(φ) does not
depend on gµν . The energy density of the electromagnetic field in the Coulomb gauge is
then,

ρ = −T 0
0 ,

=
1
2
(
B2 − E2

)
+ E2,

=
1
2
(
B2 + E2

)
. (7.145)

We can now deduce that the vacuum expectation value of the co-moving average
electromagnetic density on a scale λ is,

ρλ± '
1
2

∑
±

(
B2

λ± + E2
λ±
)
. (7.146)

The expression for Eλ± can be found just as we did for Bλ± above. The result is,

E2
λ± =

1
2
E2

λ,

=
1
a4

∫
dk

k
W 2

λ (k)
k2

4π2
|A′

k±|2. (7.147)
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We will evaluate the density for both −1 < b < 0 and b = −1.

For −1 < b < 0, we found that in the large scale limit, during inflation,

Ak± = e−i [1 + i(1− kη)] . (7.148)

Using this, we can calculate the vacuum expectation values of the average co-moving
electric and magnetic fields during inflation,

B2
λ± '

1
a44π2

λ−6η2, (7.149)

E2
λ± '

1
a48π2

λ−4, (7.150)

where we only kept the leading terms. It follows that,

ρλ '
1

a44π2

(
λ−6η2 +

1
2
λ−4

)
. (7.151)

We can rewrite a = 2[(1 + 3γ)ηH]−1. Then,

ρλ

ρtot
' (1 + 3γ)4

64π2

(
H

mpl

)2 [(η
λ

)6
+

1
2

(η
λ

)4
]
. (7.152)

We have the constraint that H/mpl < 10−4 from graviton production [1] and since we
are in the large scale limit, η/λ� 1. If we use these requirements,

ρλ

ρtot
� 1. (7.153)

This shows that we have correctly neglected the backreaction of the electromagnetic
field, when −1 < b < 0.

In the case that b = −1 we found the solution,

Ak± =
√
π

2
(−kη)1/2H(1)

ν± (−kη). (7.154)

We saw that only the positive solution led to interesting fields, so we will only evaluate
the positive solution and assume that the negative solution is negligible. We can use the
small argument expansion, to find,

B2
λ =

4ν+ [Γ(ν+)]2Γ(5/2− ν+)
a44π3

λ−5+2ν+η1−2ν+ , (7.155)

E2
λ =

4ν+ [Γ(ν+)]2Γ(3/2− ν+)(1/2− ν+)2

a44π3
λ−3+2ν+η−1−2ν+ . (7.156)
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Following the same steps as above, we finally arrive at,

ρλ

ρtot
'4ν+ [Γ(ν+)]2

3π2

(1 + 3γ)4

16

(
H

mpl

)2

×[
Γ
(

5
2
− ν+

)(η
λ

)5−2ν+

+ Γ
(

3
2
− ν+

)(
1
2
− ν+

)2 (η
λ

)3−2ν+

]
. (7.157)

For the same reasons as before this is vanishingly small and we have correctly neglected
the backreaction of the electromagnetic field.
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CHAPTER 8

Evolution of magnetic fields in a

spatially curved FLRW spacetime

In the previous chapter we saw how magnetic fields arise if we break the conformal
invariance of the field equations. There is another way to break conformal invariance.
We can look at a background that is no longer conformal to Minkowski spacetime. In this
chapter we will qualitatively evaluate how this influences the strength of the magnetic
field. For simplicity we will keep the discussion classical.
Before we can start the discussion we must introduce a new description for spacetime
and fluids. This description is called the 1 + 3 covariant description. We will go through
the basics of this description in section 8.1. In the next two sections we will apply
this description to the electromagnetic field and the gravitational field. At that point we
have all our ingredients to derive the wave equation for the magnetic field in an arbitrary
curved spacetime. The derivation is done explicitly in section 8.4. The result is evaluated
for the case of a constant spatially curved FLRW spacetime in section 8.5. We compare
the result of a flat universe with a spatially open or closed universe and show that in
the case of an open universe the magnetic field decays slower. For simplicity we will set
8πG = 1. In this chapter we mainly follow the discussion of Tsagas [31]. Another, more
extensive review can be found in [41].

8.1 1+3 covariant description

The description of spacetime we used before contained the metric gµν , which is coordinate
dependent. Since all the physical quantities do not depend on the coordinate system that
is used, we would like to have a description that is coordinate independent. A description
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that has this property is the 1 + 3 covariant description. In this chapter we will often
refer to this description just as covariant. The main idea is that it separates a timelike
direction along the four-velocity, which will be defined below, and spacelike direction
orthogonal to the four-velocity. In this section we will give the basic ingredients for such
a description and show how kinematical quantities and the energy momentum tensor can
be expressed. This section is based on [42], a more elaborate discussion and applications
can be found there.

Four-velocity

Consider a particle that moves through spacetime. The path of the particle can be
parametrized by the proper time τ and is called a worldline. The vector tangent to the
path of the particle is called the four-velocity and defined by,

uµ =
dxµ

dτ
. (8.1)

Since the proper time is defined as dτ2 = −gµνdx
µdxν , one can derive that,

uµu
µ = −1. (8.2)

If the metric is known one can derive the explicit expression for the four-velocity of a co-
moving observer. For example for Minkowski spacetime the four-velocity of a co-moving
observer has the form,

uµ = (1,0). (8.3)

In cosmology we have to deal with fluids instead of single particles, therefore one
considers the worldlines that describe the average motion of the fluid at each point
[42].

Projection tensors

To be able to project along and orthogonal to the four-velocity we define projection
tensors as,

Uµ
ν = −uµuν ,

hµν = gµν + uµuν . (8.4)

The projection tensor Uµ
ν projects along the four-velocity and hµν projects orthogonal to

the four-velocity into what is called the observers instantaneous rest space. We will show
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this explicitly by letting the operators act on a vector V µ and taking the inner-product
with the four-velocity,

(UµνV
µ)uν = −uµuνV

µuν ,

= uµV
µ, (8.5)

and,

(hµνV
µ)uν = gµνV

µuν + uµuνV
µuν ,

= V µuµ − V µuµ,

= 0. (8.6)

This is the behavior we expect from projection tensors. We can also calculate that the the
tensors satisfy the relations below, as one would expect from projection tensors,

Uµ
ν U

ν
σ = Uµ

σ , Uµ
µ = 1, Uµνu

ν = uµ,

hµ
νh

ν
σ = hµ

σ, hµ
µ = 3, hµνu

ν = 0. (8.7)

The orthogonal projection tensor hµν can been viewed as the metric of the spatial sections
orthogonal to uµ since [43],

ds2 = gµνdx
µdxν = −(uµdx

µ)2 + hµνdx
µdxν . (8.8)

From now on we will denote the orthogonal projection of vectors and the orthogonally
projected symmetric trace free part of tensors with angle brackets,

v〈µ〉 = hµ
νv

ν ,

T 〈µν〉 =
[
h

(µ
λ h

ν)
σ − 1

3
hµνhλσ

]
T λσ. (8.9)

Volume element

There is a volume element for the observers instantaneous rest space given by,

εµνκ = uληλµνκ, (8.10)

where ηµνκλ is the Levi-Civita tensor. Recall that it is defined as,

ηµνκλ =
√
−gη̃µνκλ, (8.11)

where η̃µνκλ is the Levi-Civita symbol in four dimensions. Since ηµνκλ is antisymmetric
under exchange of indices, the same is true for εµνκ. Looking at the definition of εµνκ it
is easy to see that the identity εµνκu

µ = 0 holds.
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Chapter 8: Evolution of magnetic fields in a spatially curved FLRW spacetime

Derivatives

We also define two derivatives. The first one is a covariant derivative in the timelike
direction, along the wordline,

˜̇T ν1ν2...
µ1µ2... = uλ∇λT

ν1ν2...
µ1µ2..., (8.12)

where T can be any tensor. The second is fully orthogonal projected derivative, which
operates in the observers rest space,

∇̃ρT
ν1ν2...
µ1µ2... = hλ1

µ1
hλ2

µ2
...hν1

σ1
hν2

σ2
...hκ

ρ∇κT
σ1σ2...
λ1λ2... . (8.13)

Kinematical quantities

To obtain a covariant description for∇µuν we may split it into its irreducible parts,

∇µuν = −uµ
˜̇uν + ∇̃µuν

= −uµ
˜̇uν +

1
3
Θhνµ + σνµ + ωνµ,

= −uµ
˜̇uν +

1
3
Θhµν + σµν − ωµν . (8.14)

The first line can be checked using the definitions of the derivatives (8.12) and (8.13).
The second line is equivalent to the decomposition into the trace, the symmetric trace
free part and the anti-symmetric part. In this case Θ = ∇̃µu

µ is the trace. This quantity
can be interpreted as the rate of volume expansion of the fluid. This means that we
can connect it to the Hubble parameter, which was the rate of coordinate expansion,
by H = Θ/3. The quantity σµν = ∇̃〈νuµ〉 is the trace free symmetric part, which,
because of this symmetry, obeys the relations σµν = σ(µν), σµνu

ν = 0 and σµ
µ = 0.

This quantity is called the rate of shear tensor, which can be interpreted as the rate
of distortion of the fluid. The fourth quantity ωµν = ∇̃[νuµ] is the anti-symmetric part
and is called the vorticity tensor, which obeys the relations ωµν = ω[µν], ωµνu

ν = 0. It
can be interpreted as the rotation of the fluid with respect to a non rotating frame. A
schematical interpretation of the decomposition into irreducible parts is given in figure
8.1. It will turn out to be usefull to define ωµ = 1/2ηµνλωνλ called the vorticity vector.
This vector has the properties ωµu

µ = ωµνω
ν = 0. The quantity ˜̇uµ can be interpreted

as the relativistic acceleration due to forces other than gravity or inertia. If the fluid is
in free fall this quantity is zero.
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8.2 Electromagnetic fields

Figure 8.1 – A schematic interpretation of the decomposition into an expansion rate, rate
of shear tensor and a vorticity tensor.

The energy momentum tensor

The energy momentum tensor Tµν can be decomposed with respect to uµ into its
irreducible parts as,

Tµν = ρuµuν + phµν + 2q(µuν) + πµν , (8.15)

where ρ = Tµνu
µuν is the energy density and p = 1

3Tµνh
µν is the isotropic pressure

of the fluid. The quantity πµν = Tλκh
λ
〈µh

κ
ν〉 is the trace free anisotropic pressure, also

referred to as stress. It is symmetric so it has the properties πµν = π(µν) and πµ
µ = 0.

The quantity qµ = −Tνλu
νhλµ is the momentum density or the energy-flux relative to

uµ. From the definitions of πµν and qµ it is easy to see that they obey the relations
qµu

µ = πµνu
ν = 0.

A perfect fluid is defined as,

πµν = qµ = 0 ⇒ Tµν = ρuµuν + phµν . (8.16)

If we go to the rest frame of a co-moving observer in a Minkowski spacetime,

Tµν = diag(ρ, p, p, p). (8.17)

This shows that we can indeed identify ρ with the energy density of the fluid and p with
the isotropic pressure. A perfect fluid is called barotropic if ρ and p are related by an
equation of state p = p(ρ).

8.2 Electromagnetic fields

The electromagnetic field can be thought of as an imperfect fluid. To show this we
may split the field strength tensor Fµν into an electric and magnetic part relative to uµ
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Chapter 8: Evolution of magnetic fields in a spatially curved FLRW spacetime

as,
Fµν = 2u[µEν] + εµνλB

λ, (8.18)

where Eµ = Fµνu
ν is the electric field and Bµ = εµνλF

νλ/2 is the magnetic field seen
by the observer moving along the worldline. One can check that this is indeed the case
by going to the rest space of the observer in Minkowski spacetime, where uµ = (1,0).
The equations will then reduce to the normal definitions of the electric and magnetic
field. From the covariant definitions it follows that Eµu

µ = Bµu
µ = 0, so both fields are

indeed vectors in the observers instantaneous rest space.

The energy momentum tensor of the electromagnetic field is obtained by varying the
usual Maxwell action,

Tµν = − 2√
−g

δS

δgµν
,

= −FµλF
λ
ν −

1
4
FλκF

λκgµν . (8.19)

Using (8.18) this can be written after some lines of calculations as,

Tµν =
1
2
(E2 +B2)uµuν +

1
6
(E2 +B2)hµν + 2Q(µuν) + Pµν , (8.20)

where,

Qµ = εµνλE
νBλ, (8.21)

Pµν = P〈µν〉 =
1
3
(E2 +B2)hµν − EµEν −BµBν . (8.22)

The quantity Qµ is called the electromagnetic Poynting vector. Comparison with
equation (8.15) shows that the electromagnetic field can indeed be described as an
imperfect fluid with energy density (E2 + B2)/2, isotropic pressure (E2 + B2)/6,
anisotropic pressure Pµν and energy-flux vector Qµ.

We would like to put the Maxwell equations into a covariant form. Recall that they are
given by,

∇[µFνλ] = 0, (8.23)

∇νFµν = jµ. (8.24)

Just as we did for the field strength tensor we can split jµ into irreducible parts relative
to uµ,

jµ = ρeuµ + Jµ, (8.25)

where ρe = −jµuµ is the charge density and Jµ = h ν
µ jν is the orthogonally projected

current, which implies that Jµu
µ = 0. There is also another interpretation we can assign
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8.2 Electromagnetic fields

to Jµ. We know that the relation between the conductivity, the current and the electric
field is given by Ohm’s law, which takes the covariant form [31][41],

jµ = ρeuµ + σcEµ, (8.26)

where σc is the conductivity. If we act on this with the orthogonal projection tensor the
result is,

Jµ = σcEµ. (8.27)

When the conductivity is zero, the current in the observers instantaneous rest space will
be zero. On the other hand, if the conductivity is infinite, a finite current implies that
the electric field will go to zero.

We can separate both Maxwell equations into a component along the four-velocity
and orthogonal to the four-velocity. These components can be found by acting with
the projection tensors on the equations. This results in to two propagation equations
[31][41],

˜̇E〈µ〉 =
(
σµν + εµνλω

λ − 2
3
Θhµν

)
Eν + εµνλ

˜̇uνBλ + curlBµ − Jµ, (8.28)

˜̇B〈µ〉 =
(
σµν + εµνλω

λ − 2
3
Θhµν

)
Bν − εµνλ

˜̇uνEλ − curlEµ, (8.29)

and two constraints,

∇̃µEµ + 2ωµBµ = ρe, (8.30)

∇̃µBµ − 2ωµEµ = 0. (8.31)

Here curl vµ ≡ εµνλ∇̃νvλ for any orthogonally projected vector vµ. Notice that these four
equations resemble the non-covariant Maxwell equations (5.1) plus terms which originate
from the observers motion. There is also another conservation law, which comes from
the fact that jµ is a conserved current,

∇µjµ = 0. (8.32)

That this is indeed the case can easily be derived by acting with ∇µ on the second
Maxwell equation (8.24). The field strength tensor is anti-symmetric and both covariant
derivatives are symmetric, so the left hand side becomes zero. We can write this
conservation law in a covariant way using the decomposition of jµ (8.25):

0 = ∇µjµ = ∇µ(ρeuµ) +∇µJµ,

= ˜̇ρe + ρe∇µuµ +∇µJµ. (8.33)

99



Chapter 8: Evolution of magnetic fields in a spatially curved FLRW spacetime

The second term on the right hand side can be rewritten using decomposition (8.14).
We can also rewrite the third term by noticing that(

∇̃µ + ˜̇uµ
)
Jµ = hµ

λh
σ
µ∇λJσ + uλ (∇λu

µ)Jµ

=
(
hλµ − uλuµ

)
∇λJµ

= ∇µJµ. (8.34)

In the second line we used the chain rule and the fact that uµJµ = 0. The final result
is,

˜̇ρe = −Θρe − ∇̃µJµ − ˜̇uµJµ. (8.35)

8.3 Gravitational field

Information about the curvature of spacetime is contained in the Riemann tensor Rσµλν .
We can can decompose it, just as we did for the other tensors. The usual decomposition
is done into the Ricci tensor Rµν = Rλ

µλν , the Ricci scalar R = Rµ
µ and the Weyl tensor

Cσµλν . The first two contain the traces of the Riemann tensor and the latter is the trace
free part. The exact decomposition takes the form,

Rσµλν = Cσµλν +
1
2

(gσλRµν + gµνRσλ − gµλRσν − gσνRµλ)− 1
6
R (gσλgµν − gσνgµλ) .

(8.36)

Weyl Tensor

First we will look at the covariant description of the Weyl tensor. To get a covariant
expression we must decompose the Weyl tensor further into its irreducible parts as,

Cσµλν = (gσµαβgλνγδ−ησµαβηλνγδ)uαuγEβδ−(ησµαβgλνγδ+gσµαβηλνγδ)uαuγHβδ, (8.37)

where gσµαβ = gσαgµβ−gσβgµα. The quantity Eµν is called the electric Weyl component
and is given by,

Eµν = Cµνρσu
ρuσ. (8.38)

The quantity Hµν is the magnetic Weyl component and is given by,

Hµν =
1
2
ε σρ
µ Cσρνλu

λ. (8.39)

Because all the information about the contractions of the Riemann tensor is contained
in the Ricci tensor and Ricci scalar, the Weyl tensor is trace free. This means that also
the electric and magnetic Weyl components are trace free. Further we can deduce from
the definitions of the later that Eµνu

ν = Hµνu
ν = 0.
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8.3 Gravitational field

Einstein equations

The next step is to obtain a covariant description of the Ricci tensor and Ricci scalar.
We know from general relativity that the curvature of spacetime and matter influence
each other. The exact relations between these two quantities are given by the Einstein
equations,

Rµν −
1
2
gµνR = Tµν . (8.40)

Since we are interested in the evolution of magnetic fields in curved spacetime, we
want the energy momentum tensor to contain both the fluid that is dominant in the
universe and the electric and magnetic fields. Combining the expressions for the energy
momentum tensor of a general fluid (8.15) and of the electromagnetic field (8.20) we
have,

Tµν =
(
ρ+

1
2
B2 +

1
2
E2

)
uµuν +

(
p+

1
6
B2 +

1
6
E2

)
hµν +2

(
q(µ +Q(µ

)
uν) +πµν +Pµν .

(8.41)
To obtain an expression for the relation between the Ricci tensor and the properties of
the fluids it will be convenient to rewrite the Einstein equations as,

Rµν = Tµν −
1
2
Tgµν , (8.42)

where T = Tµ
µ is the trace of the energy momentum tensor. One can check that this

expression is correct by taking the trace of the original expression (8.40), which gives
R = −T , and insert it into the equation above. The result is the original equation. The
trace of (8.41) is given by,

T = −ρ+ 3p. (8.43)

We used the fact that uµu
µ = −1 and hµ

µ = 3. Also we used that,

qµu
µ = −uµhν

µTνλu
λ = 0,

Qµu
µ = uσuµησµνλE

νBλ = 0. (8.44)

We can now derive 1+3 covariant equations from the Einstein equations by contracting
with two times uµ, once uµ and once hµ

ν or two times hµ
ν . The first one is given by,

Rµνu
µuν = Tµνu

µuν − 1
2
Tgµνu

µuν ,

=
(
ρ+

1
2
B2 +

1
2
E2

)
+

1
2

(−ρ+ 3p) ,

=
1
2
(
ρ+ 3p+B2 + E2

)
. (8.45)
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In the second line we used the fact that hµνu
µ = qµu

µ = Qµu
µ = πµνu

µ = Pµνu
µ = 0.

The second relation is given by,

hν
µRνλu

λ = hν
µTνλu

λ − 1
2
Thν

µgνλu
λ,

= 2hν
µ

(
q(ν +Q(ν

)
uλ)u

λ − 1
2
Thµλu

λ,

= −hν
µ (qν +Qν) ,

= − (qµ +Qµ) . (8.46)

In the last line we used the fact that qµuµ = Qµu
µ = 0. The last relation is,

hλ
µh

σ
νRλσ = hλ

µh
σ
νTλσ −

1
2
Thλ

µh
σ
νgλσ,

=
(
p+

1
6
B2 +

1
6
E2

)
hµν + hλ

µh
σ
ν (πλσ + Pλσ)− 1

2
Thµν ,

=
(

1
2
ρ− 1

2
p+

1
6
B2 +

1
6
E2

)
hµν + πµν + Pµν . (8.47)

In the last line we used the explicit expressions for πλσ and Pλσ and the fact that
Eµu

µ = Bµu
µ = 0.

Ricci identies

For any vector vµ there exist the Ricci identity,

[∇µ,∇µ] vλ = Rµνλσv
σ. (8.48)

This identity also holds for the four-velocity,

[∇µ,∇µ]uλ = Rµνλσu
σ. (8.49)

From this identity a number of propagation and constraint equations can be derived.
To find them one may project the identity in to the observers instantaneous rest space
and parallel to the four-velocity. To evaluate the left hand side one can use the identity
(8.14). The right hand side can be evaluated using the decomposition of the Riemann
tensor (8.36), the decomposition of the Weyl tensor (8.37) and the identities (8.47), (8.45)
and (8.43). Finally one can split the resulting equations into the trace, the symmetric
trace free part and the antisymmetric part. The final results are three propagation
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equations,

˜̇Θ− ∇̃µ
˜̇uµ = −1

3
Θ2 − 1

2
(ρ+ 3p+ E2 +B2)− 2(σ2 + ω2) + ˜̇uµ

˜̇uµ, (8.50)

˜̇ω<µ> +
1
2

curl˜̇uµ = −2
3
Θωµ + σµνω

ν , (8.51)

˜̇σ<µν> − ∇̃<µ
˜̇uν> = −2

3
Θσµν − σλ<µσ

λ
ν> − ω<µων> − ˜̇u<µ

˜̇uν> − Eµν +
1
2

(πµν + Pµν) ,

(8.52)

where σ2 = 1/2σµνσµν and ω2 = 1/2ωµνωµν = ωµωµ. The other part of the result are
three constraint equations,

0 =
2
3
∇̃µΘ− ∇̃νσµν + curlωµ + 2εµνσ

˜̇uνωσ − qµ −Qµ, (8.53)

0 = ∇̃µωµ − ˜̇uµωµ, (8.54)

0 = Hµν − curlσµν − ∇̃<µων> − 2˜̇u<µων>. (8.55)

It will turn out to be convenient to have a Ricci identity for the orthogonal projected
derivatives of the electric and magnetic field. The identity for the electric field is
[31], [

∇̃µ, ∇̃ν

]
Eσ = −2εµνλω

λ ˜̇E<σ> +RλσνµE
λ. (8.56)

The same equation holds for the magnetic field. Rλσνµ is the orthogonal projected
Riemann tensor defined by,

Rλσνµ = hα
λh

β
σh

γ
νh

δ
µRαβγδ − vλνvσµ + vλµvσν , (8.57)

where vµν = ∇̃νuµ.

8.4 Wave equation of the magnetic field in curved space-

time

We now have all the ingredients to derive how the magnetic field evolves in a general
spacetime. This evolution is described by the wave equation for the magnetic field,
therefore we want an equation of the form ˜̈B<µ> − ∇̃2Bµ = (...). We will derive the
wave equation for the case that both the background matter and the electromagnetic
field have a perfect fluid form, (qµ = πµν = Qµ = Pµν = 0). We will also assume that
the background fluid is barotropic with the explicit relation p = γρ. To find the wave
equation we must take the time derivative of equation (8.29) and project it orthogonal
to uµ. If we do this we are calculating,

h ν
µ u

λ∇λh
σ
ν u

ρ∇ρBσ = ˜̈B<µ> + ˜̇uµuν
˜̇Bν . (8.58)
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Under these operations the right hand side of equation (8.29) will become,

h σ
µ u

λ∇λ

[(
σσν + εσνρω

ρ − 2
3
Θhσν

)
Bν

]
− h σ

µ u
λ∇λεσνρ

˜̇uνEρ − h σ
µ u

λ∇λεσνρ∇̃νEρ.

(8.59)
We will evaluate this term by term. First we will let the derivative act on the terms in
the brackets,

h σ
µ

˜̇σσνB
ν = ˜̇σ<µν>B

ν ,

= −2
3
ΘσµνB

ν − σρ<µσ
ρ
ν>B

ν − ω<µων>B
ν + ∇̃<µ

˜̇uν>B
ν

+ ˜̇u<µ
˜̇uν>B

ν − EµνB
ν . (8.60)

In the second line we used propagation equation (8.52) and hµνB
ν = Bµ. We can

rewrite,

∇̃<µ
˜̇uν>B

ν =
1
2

(
∇̃µ

˜̇uν + ∇̃ν
˜̇uµ

)
Bν − 1

3
Bµ∇̃ν ˜̇uν . (8.61)

The term with the time derivative of εσνρ is zero. The next term in the brackets is,

h σ
µ εσνρ

˜̇ωρBν = εµνρ
˜̇ω<ρ>Bν ,

= −2
3
Θεµνρω

ρBν − 1
2
εµνρB

ν curl˜̇uρ + εµνρσ
ρσωσB

ν . (8.62)

In the second line we used propagation equation (8.51). The second term in this
expression can be rewritten using the identity,

εµνρε
ρσλ = uτuκηρτµνη

ρκσλ,

= ukuκ(−1)3! δ[κk δ
σ
µδ

λ]
ν ,

= δσ
µδ

λ
ν + uσuµδ

ν
λ − uσuνδ

λ
µ + uλuνδ

σ
µ − uλuµδ

σ
ν − δλ

µδ
σ
ν , (8.63)

as,

− 1
2
εµνρB

ν curl˜̇uρ =
1
2

(
∇̃ν

˜̇uµ − ∇̃µ
˜̇uν

)
Bν . (8.64)

The last term in the brackets is given by,

−2
3
h σ

µ
˜̇ΘhσνB

ν = −2
3

˜̇ΘBµ,

=
2
9
Θ2Bµ +

1
3
[
ρ(1 + 3γ) + E2 +B2

]
Bµ +

4
3
(σ2 − ω2)Bµ

− 2
3
∇̃ν ˜̇uνBµ −

2
3

˜̇uν
˜̇uνBµ. (8.65)

To obtain this we used propagation equation (8.50). To complete the calculation of the
first term of expression (8.59) we may let the derivative act on Bν . This will give the
term,

h σ
µ

(
σσν + εσνρω

ρ − 2
3
Θhσν

)
˜̇Bν =

(
σµν + εµνρω

ρ − 2
3
Θhµν

)
˜̇Bν . (8.66)
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Combining the results we arrive at an expression for the first term:

h σ
µ u

λ∇λ

[(
σσν + εσνρω

ρ − 2
3
Θhσν

)
Bν

]
=

1
3
[
ρ(1 + 3γ) + E2 +B2

]
Bµ +

(
σµν + εµνρω

ρ − 2
3
Θhµν

)
˜̇Bν

− 2
3

(
Θσµν + εµνρω

ρ − 1
3
Θ2hµν

)
Bν +

4
3
(σ2 − ω2)Bµ − σρ<µσ

ρ
ν>B

ν − ω<µων>B
ν

+ εµνρσ
ρσωσB

ν − EµνB
ν +Bν∇̃ν

˜̇uµ − ∇̃ν ˜̇uνBµ + ˜̇u<µ
˜̇uν>B

ν − 2
3

˜̇uν
˜̇uνBµ.

(8.67)

The second term in expression (8.59) is,

− h σ
µ u

λ∇λεσνρ
˜̇uνEρ = −εµνρ

˜̈uνEρ − hσ
µεσνρ

˜̇uν ˜̇Eρ. (8.68)

The term with the time derivative of εµνρ is zero. The second term on the right hand
side can be rewritten using the propagation equation for the electric field (8.28),

−h σ
µ εσνρ

˜̇uν ˜̇Eρ = −εµνρ
˜̇uν ˜̇E<ρ>,

= −εµνρ
˜̇uν

(
σρσ + ερσλωλ −

2
3
Θhρσ

)
Eσ − εµνρε

ρσλ ˜̇uν ˜̇uσBλ

− εµνρ
˜̇uνcurlBρ + εµνρ

˜̇uνJ ρ. (8.69)

The second term in the brackets can be rewritten using identity (8.63) and the fact that
uµE

µ = uµω
µ = ˜̇uµuµ = 0,

− εµνρ
˜̇uνερσλωλEσ = ωµ

˜̇uνEν − ˜̇uνωνEµ. (8.70)

In the same way we can rewrite the second term,

−εµνρε
ρσλ ˜̇uν ˜̇uσBλ = −˜̇uµ

˜̇uνBν + ˜̇uν
˜̇uνBµ,

= −˜̇u<µ
˜̇uν>B

ν +
2
3

˜̇uν
˜̇uνBµ, (8.71)

where we used that uµB
µ = ˜̇uµuµ = 0. We can also rewrite the third term in the same

manner,
− εµνρ

˜̇uνcurlBρ = ˜̇uν∇̃νBµ − ˜̇uν∇̃µBν . (8.72)

Finally the total second term of expression (8.59) is,

−h σ
µ u

λ∇λεσνρ
˜̇uνEρ =− εµνρ

˜̈uνEρ − εµνρ
˜̇uν

(
σρσ − 2

3
Θhρσ

)
Eσ + ˜̇uν∇̃νBµ − ˜̇uν∇̃µBν

+ εµνρ
˜̇uνJ ρ + ωµ

˜̇uνEν − ˜̇uνωνEµ − ˜̇u<µ
˜̇uν>B

ν +
2
3

˜̇uν
˜̇uνBµ.

(8.73)
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The third term of expression (8.59) is a bit more complicated. It is given by,

−h σ
µ u

λ∇λεσνρ∇̃νEρ = −εµνρu
λ∇λh

ν
κh

ρ
τ∇κEτ ,

= −εµνρu
λ(∇λh

ν
κ)∇κEρ − εµνρu

λ(∇λh
ρ
τ )∇νEτ

− εµνρu
λ∇λ∇νEρ,

= −εµνρ
˜̇uνĖρ + εµνρ

˜̇uρEσ(∇νuσ)− εµνρu
λ [∇λ,∇ν ]Eρ

− εµνρu
λ∇ν∇λE

ρ. (8.74)

We will again evaluate this expression term by term. The first term is exactly the same
as expression (8.69). The second term can be found with the help of (8.14),

εµνρ
˜̇uρEσ(∇νuσ) = εµνρEσ

˜̇uρσνσ + ˜̇uνEµων − ˜̇uνEνωµ +
1
3
εµνρΘEν

˜̇uρ. (8.75)

We used the fact that ωνσ = ελνσωλ. The third term can be found using the Ricci identity
(8.48),

− εµνρu
λ [∇λ,∇ν ]Eρ = −εµνρu

λR ρν
σ λE

σ. (8.76)

Since the Riemann tensor is coordinate dependent we want to rewrite it in terms
of covariant quantities. This can be done using the relations (8.36) and (8.37). This
gives,

−εµνρu
λR ρν

σ λE
σ = −εµνρuλEσC

σρνλ − 1
2
εµνρuλE

νRρλ,

= −εµνρε
σρτEσH

ν
τ + 0,

= HµνE
ν . (8.77)

In the second line we used the relation (8.46) and the fact that Qµ = 0, since we were
looking at perfect fluids. The last term of expression (8.74) is,

−εµνρu
λ∇ν∇λE

ρ = −εµνρ∇ν ˜̇Eρ + εµνρ(∇νuλ)∇λE
ρ,

= −εµνρ∇ν ˜̇E<ρ> + εµνρuσ
˜̇Eσ∇νuρ + εµνρ(∇νuλ)∇λE

ρ. (8.78)

The second of these terms can be evaluated using identity (8.14), the fact that ωνρ =
εµνρωµ and identity (8.63),

εµνρuσ
˜̇Eσ∇νuρ = εµνρuσ

˜̇Eσωρν ,

= −2uν
˜̇Eνωµ,

= 2Eν ˜̇uνωµ. (8.79)

The last term in expression (8.78) can be calculated using the same identities,

εµνρ(∇νuλ)∇λE
ρ = εµνρ∇λE

ρ

(
σνλ − ωνλ +

1
3
Θhνλ

)
,

= εµνρσ
νλ∇̃λE

ρ − ωµ∇̃νE
ν + ων∇̃µE

ν +
1
3
Θεµνρ∇̃νEρ. (8.80)
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The first term of expression (8.78) can be calculated with the propagation equation
(8.28),

−εµνρ∇̃ν ˜̇E<ρ> = −εµνρ∇̃ν

(
σρσ + ερσλωλ −

2
3
Θhρσ

)
Eσ − εµνρ∇̃νερσλ ˜̇uσBλ

− εµνρ∇̃νcurlBρ + εµνρ∇̃νJ ρ. (8.81)

The term in the brackets can be written out as,

−εµνρ∇̃ν

(
σρσ + ερσλωλ −

2
3
Θhρσ

)
Eσ

= −εµνρσ
ρσ∇̃νEσ − ων∇̃νEµ + ωµ∇̃νEν +

2
3
εµνρΘ∇̃νEρ − εµνρEσ∇̃νσρσ

− Eµ∇̃νων + Eν∇̃νωµ +
2
3
εµνρE

ρ∇̃νΘ. (8.82)

The second term is,

−εµνρ∇̃νερσλ ˜̇uσBλ = ∇̃ν
(˜̇uνBµ

)
− ∇̃ν

(˜̇uµBν

)
,

= Bµ∇̃ν ˜̇uν −Bν∇̃ν ˜̇uµ + ˜̇uν∇̃νBµ − ˜̇uµ∇̃νBν . (8.83)

The third term is,

−εµνρ∇̃νcurlBρ = −∇̃ν∇̃µBν + ∇̃2Bµ,

= −
[
∇̃ν , ∇̃µ

]
Bν − ∇̃µ∇̃νBν + ∇̃2Bµ,

= −2εµνρω
ρ ˜̇Bν −RµνB

ν − 2Eν∇̃µω
ν − 2ων∇̃µEν + ∇̃2Bµ. (8.84)

In the last line we used identities (8.56) and (8.31). Finally we can combine these results
to get the the total third term of expression (8.59). The result is,

−h σ
µ u

λ∇λεσνρ∇̃νEρ =εµνρ
˜̇uνJ ρ − ˜̇u<µ

˜̇uν>B
ν +

2
3

˜̇uν
˜̇uνBµ − 2εµνρω

ρ ˜̇Bν −RµνB
ν

+ 2εµνρEσ
˜̇uρσνσ − 1

3
εµνρΘEν

˜̇uρ +HµνE
ν + εµνρ∇̃νJ ρ

+ 2Eν ˜̇uνωµ + εµνρσ
νλ∇̃λE

ρ − εµνρσ
ρσ∇̃νEσ + Θεµνρ∇̃νEρ

− εµνρEσ∇̃νσρσ +
2
3
εµνρE

ρ∇̃νΘ + ∇̃2Bµ

+Bµ∇̃ν ˜̇uν −Bν∇̃ν ˜̇uµ + 2˜̇uν∇̃νBµ − ˜̇uµ∇̃νBν − ˜̇uν∇̃µBν

− Eµ∇̃νων + Eν∇̃νωµ − 2Eν∇̃µω
ν − ων∇̃µEν − ων∇̃νEµ.

(8.85)
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The last step is to combine the results of the three terms (8.67), (8.73) and (8.85). The
final result is,

˜̈B<µ> − ∇̃2Bµ =
1
3
[
ρ(1 + 3γ) + E2 +B2

]
Bµ +

(
σµν − εµνρω

ρ − 2
3
Θhµν

)
˜̇Bν

− 2
3

(
Θσµν + εµνρω

ρ − 1
3
Θ2hµν

)
Bν +

4
3
(σ2 − ω2)Bµ − σρ<µσ

ρ
ν>B

ν

− ω<µων>B
ν + εµνρσ

ρσωσB
ν − EµνB

ν + εµνρ∇̃νJ ρ + 2εµνρ
˜̇uνJ ρ

+ ˜̇uν
˜̇uνBµ + 3˜̇uν∇̃νBµ − ˜̇uµ∇̃νBν − 2˜̇uν∇̃µBν −RµνB

ν +HµνE
ν

+ 3εµνρEσ
˜̇uρσνσ − εµνρΘEν

˜̇uρ + 3Eν ˜̇uνωµ − ˜̇uνωνBµ − εµνρ
˜̈uνEρ

+ εµνρσ
νλ∇̃λE

ρ − εµνρσ
ρσ∇̃νEσ + Θεµνρ∇̃νEρ − εµνρEσ∇̃νσρσ

+
2
3
εµνρE

ρ∇̃νΘ− Eµ∇̃νων + Eν∇̃νωµ − 2Eν∇̃µω
ν − ων∇̃µEν

− ων∇̃νEµ. (8.86)

8.5 Evolution of the magnetic field in a curved FLRW space-

time

In the previous section we found the wave equation for the magnetic field in a general
curved spacetime. We are interested in cosmological magnetic fields, therefore we want
to consider a FLRW spacetime. We already saw in the previous chapter that, if we
consider a spacetime that is conformal to Minkowski spacetime, we will not obtain
interesting magnetic fields. On the other had we want our model to be compatible with
the observations of the curvature of our universe. Taking both arguments into account we
will look at an isotropic and homogeneous FLRW spacetime with curved spatial sections.
When the model is isotropic the universe looks the same in every direction. Recall that
the dynamics of the background fluid where governed by the quantities Θ, σµν , ωµν and ˜̇u.
If the fluid is isotropic σµν = ωµν = ˜̇u = 0. When the background spacetime is isotropic
the Weyl tensor vanishes, so Eµν = Hµν = 0. If the model is homogeneous the universe
looks the same everywhere. This means that the properties of the background fluid are
the same everywhere, so ∇̃ρ = 0. We do not need to specify the other quantities since
our model had a perfect barotropic fluid. The fact that the model is homogeneous also
means that the expansion of the universe must be the same everywhere, ∇̃Θ = 0. Since
the conductivity during inflation is negligible expression (8.27) tells us that Jµ = 0. If
we put these requirements into the wave equation of the magnetic field (8.86) the result
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is,

˜̈Bµ − ∇̃2Bµ =
1
3
[
ρ(1 + 3γ) + E2 +B2

]
Bµ −

2
3
Θ ˜̇Bµ +

2
9
Θ2Bµ −RµνB

ν + Θεµνλ∇̃νEλ.

(8.87)
In the first term on the left hand side we have used the fact that ˜̇uµ = 0 and therefore
the angle brackets have vanished. The last term can be rewritten using the propagation
equation for the magnetic field (8.29), which in this model reduces to,

˜̇Bµ = −2
3
ΘBµ − εµνλ∇̃νEλ. (8.88)

If we insert this into expression (8.87) the result is,

˜̈Bµ − ∇̃2Bµ =
1
3
[
ρ(1 + 3γ) + E2 +B2

]
Bµ −

5
3
Θ ˜̇Bµ −

4
9
Θ2Bµ −RµνB

ν . (8.89)

The first term on the right hand side can be rewritten using the propagation equation
for Θ (8.50), which in this model reduces to,

˜̇Θ = −1
3
Θ2 − 1

2
[
ρ(1 + 3γ) + E2 +B2

]
. (8.90)

The wave equation becomes,

˜̈Bµ − ∇̃2Bµ = −5
3
Θ ˜̇Bµ −

2
3
Θ2Bµ −

2
3

˜̇ΘBµ −RµνB
ν . (8.91)

The next step is to obtain an expression for Rµν . From definition (8.57) we know
that,

Rλ
σλµ = hλ

αh
β
σh

γ
λh

δ
µR

α
βγδ − vλ

λvσµ + vλ
µvσλ,

= hγ
αh

β
σh

δ
µR

α
βγδ +

2
9
Θ2hσµ,

= hβ
σh

δ
µRβδ + uγuαh

β
σh

δ
µR

α
βγδ +

2
9
Θ2hσµ. (8.92)

In the second line we used the explicit expression for vµν = ∇̃νuµ and identity (8.14)
which in this model reduces to,

∇̃µuν =
1
3
Θhµν . (8.93)

The second term can be evaluated using identity (8.36), where one may recall that the
Weyl tensor is zero,

uγuαh
β
σh

δ
µR

α
βγδ = −1

2
hβ

σh
δ
µRβδ +

1
2
uαuγhσµRαγ +

1
6
Rhσµ. (8.94)
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The terms on the right hand side and the first term of equation (8.92) can be evaluated
using expressions (8.47) and (8.45),

Rµν =
1
3

(
E2 +B2 + 2ρ+

2
3
Θ2

)
hµν . (8.95)

We can contract the indices to obtain an expression for R:

R = E2 +B2 + 2ρ+
2
3
Θ2. (8.96)

This shows that we can write Rµν = 1/3Rhµν . We can also explicitly calculate R with
definition (8.57),

Rλµ
λµ = hλ

αh
µ
βh

γ
λh

δ
µR

αβ
γδ − vλ

λv
µ
µ + vλ

µv
µ
λ,

= hγ
αh

δ
βR

αβ
γδ −Θ2 +

1
3
Θ2. (8.97)

The first term can be evaluated using identity (8.36), just as we did in the case of
Rµν ,

hγ
αh

δ
βR

αβ
γδ = 2hαβRαβ −R,

= R+ 2uαuβRµν

= R+ ρ (1 + 3γ) + E2 +B2. (8.98)

In the last line we used identity (8.45). The right hand side of expression (8.98) can be
rewritten using the propagation equation for Θ (8.90). Finally R is given by,

R = R− 4
3
Θ2 − 2 ˜̇Θ. (8.99)

If we combine this result with the fact that Rµν = 1/3Rhµν , the wave equation for the
magnetic field becomes,

˜̈Bµ − ∇̃2Bµ = −5
3
Θ ˜̇Bµ −

2
9
Θ2Bµ −

1
3
RBµ. (8.100)

At this point we would like to make the connection with the previous chapters. We
want to describe the field seen by a co-moving observer, uµ = (1,0). The covariant time
derivative reduces to ˜̇V µ = uν∇νV

µ = ∂tV
µ. The orthogonal projected derivative is a

little bit more involved. We are only interested in ∇̃2Bµ. For a co-moving observer this
reduces to,

∇̃ν∇̃νBµ = hσ
ρh

λ
µ∇ρhα

σh
β
λ∇αBβ

= hα
ρh

β
µ∇ρ∇αBβ

= hβ
µ∇j∇jBβ. (8.101)

110



8.5 Evolution of the magnetic field in a curved FLRW spacetime

In the second line we used the fact that for a co-moving observer the derivatives of hµν

are zero. If µ = 0 this expression is zero, if µ = i,

∇̃ν∇̃νBi = ∇j∇jBi. (8.102)

We can now write down the wave equation for Bi for a co-moving observer,

B̈i −∇j∇jBi = −5
3
ΘḂi −

2
9
Θ2Bi −

1
3
RBi. (8.103)

In a curved FLRW spacetime R is given by,

R = 6
[
ä

a
+
ȧ2

a2
+
K

a2

]
. (8.104)

Recall also that Θ = 3H = 3ȧ/a. In terms of the scale factor a the wave equation
is,

B̈i −∇j∇jBi = −5
ȧ

a
Ḃi − 4

(
ȧ

a

)2

Bi − 2
ä

a
Bi −

2K
a2
Bi. (8.105)

We want to change to conformal time, such that ∂t = a−1∂η. In these variables the wave
equation is,

B′′
i − a2∇j∇jBi = −4

a′

a
B′

i − 2
(
a′

a

)2

Bi − 2
a′′

a
Bi − 2KBi, (8.106)

where we multiplied the entire equation with a2. Following the article by Tsagas [31] we
decompose Bi in vector spherical harmonics Qn

i . They form a orthonormal basis, just as
the spherical harmonics in the case of scalars. The decomposition is defined as,

Bi =
∑

n

Bn(η)Qn
i . (8.107)

The vector spherical harmonics Qn
i are eigenfunctions of the Laplace-Beltrami operator,

which is the generalization of the Laplace operator in curved spacetime, ∇2, just as the
spherical harmonics. The co-moving eigenvalues of the n-th harmonic component is n, so
in the case of a FLRW metric ∇2Qn

i = −(n/a)2Qn
i . For the case K = 1, the eigenvalues

take the form n2 = ν(ν + 1), with ν a positive integer. In the other cases K = −1 and
K = 0, we have respectively n2 = ν2 + 1 and n2 = ν2 [31], where ν can have any real
continuous value. Under this decomposition the wave equation of the n-th component
takes the form,

B′′
n + n2Bn = −4

a′

a
B′

n − 2
(
a′

a

)2

Bn − 2
a′′

a
Bn − 2KBn. (8.108)

This simplifies if we define,
Bn ≡ a−2Bn(η), (8.109)
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to,
B′′n + (n2 + 2K)Bn = 0. (8.110)

In chapter 7, we saw that if spacetime was flat, K = 0, the magnetic fields vanished.
Since the discussion in this chapter is classical, we can only describe the evolution of
an already existing magnetic field. To find the effect of a constantly curved universe, we
must compare it to the flat case. When K = 0 the wave equation reduces to,

B′′n + n2Bn = 0. (8.111)

Since we had the restriction that n ≥ 0, the total magnetic field evolves as,

Bn =
1
a2

[
c1e

inη + c2e
−inη

]
. (8.112)

The exponentials are just oscillating terms, so on average the magnetic fields decays
proportional to a−2.

When the universe is closed, K = 1, the wave equation takes the form,

B′′n + (ν(ν + 1) + 2)Bn = 0. (8.113)

Since the minimum value of ν = 1, the factor in front of the second term is positive and
the solution is,

Bn = c1 exp[i(ν(ν + 1) + 2)1/2η] + c2 exp[−i(ν(ν + 1) + 2)1/2η]. (8.114)

This is also just an oscillatory term and the magnetic field will decay as B ∝ a−2. On
average the fields will be as small as in the caseK = 0 and therefore not interesting.

For a spatially open universe, K = −1, the wave equation is,

B′′n + (ν2 − 1)Bn = 0. (8.115)

When ν2 > 1 the solutions are again oscillatory and not interesting. This can be
explained by the fact that this limit corresponds to short wavelengths. Curvature
becomes less important on short length scales and therefore has less influence on the
fields. When evaluating the case ν2 < 1 it is convenient to define k2 = 1− ν2, following
[44][45]. The restriction −1 < ν2 < 1 translates to 0 < k < 2. Recall that k is related to
the physical wavelength by λphys = a/k. The solution of the wave equation is,

Bk = c1e
kη + c2e

−kη. (8.116)

To evaluate this further we must find a relation between the conformal time and the scale
factor in a open universe. When K = −1 the first Friedmann equation (2.25) is,

a′2 − a2 = ca1−3γ , (8.117)
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where c is a constant. The solution to this equation is,

a(η) = ±
√
c
[(
eη(1+3γ)/2 − e−η(1+3γ)/2

)]2/(1+3γ)
. (8.118)

This can be rewritten as,

a(η) = a0

[
1− e−η(1+3γ)

1− e−η0(1+3γ)

]2/(1+3γ)

eη−η0 . (8.119)

One can derive that (1 + 3γ)η > 0 [46]. For this reason, when |η| � 0 the scale factor
reduces to,

a(η) ∝ eη. (8.120)

We can substitute this result into expression (8.116) and redefine the constants such
that,

Bk = c1e
ka−1 + c3e

ka−3. (8.121)

This result is true for all values of γ as long as |η| � 0. In a spatially open universe the
magnetic field will decay slower then in a flat universe, since the decay is proportional
to a−1 and a−2 respectively. As a consequence the strength of the magnetic field at the
end of inflation we found in chapter 7 could be larger than we calculated.
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CHAPTER 9

Constraining the energy density

during inflation

The presence of magnetic fields in the intergalactic medium can constrain the energy
density during inflation, if we assume that the fields are generated during inflation. In
this chapter we will review two recent papers that derive a limit for the energy density.
In the first section we will review the paper by Fujita and Mukohyama [47] that claims
to be able to derive an upper bound on the energy density. In the second section we
review the paper by Suyama and Yokoyama [48] and see how they derive a lower limit
on the energy density.

9.1 Upper limit

First we will review the paper by Fujita and Mukohyama [47]. In this paper they claim
to have found a way to derive an upper limit for the energy density during inflation.
However it turns out that their derivation is not valid using our assumptions as described
in chapter 6. In this section we will first present their argument and then show why it is
not valid in our case.
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Figure 9.1 – The bending angle θ of a charged particle in a homogeneous magnetic field
B. L is the distance traveled by the particle and RL is called the Larmor radius.

9.1.1 Derivation of the upper limit

Constraining the Power spectrum

The first step Fujita and Mukohyama take to derive an upper limit is to re-express the
limit on the magnetic fields, given by observations, into a limit on the power spectrum.
The limits found by observations are all expressed in terms of the coherence scale of the
magnetic field. These limits were derived from the fact that the path of the electron-
positron pair, created from the interaction between the gamma-rays and photons from
the diffuse extragalactic background light, is bended in the presence of a magnetic field
(see section 3.1). To derive an expression in terms of the power spectrum they consider
how large the bending angle θ is in the presence of a homogeneous magnetic field with
an effective strength B2

eff . The following discussion is in the classical limit v � c.

If we assume that the angle θ is small it can be approximated by θ = L/RL, see figure
9.1, where L is the distance traveled by the particle and RL is called the Larmor radius.
This last quantity can be found by equating the Lorentz force with the centripetal force.
One then finds,

B⊥ =
mv

eL
θ, (9.1)
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where v is the speed of the particle, m the mass and e the charge. The subscript ⊥
denotes the perpendicular component with respect to the plane of motion. If we take
into account that we need the vacuum expectation value of the magnetic field and the
fact that the variance of the magnetic field in three dimensions is three halves times the
variance of the magnetic field perpendicular the plane of motion, we find,

B2
eff =

3
2

(mv
eL

)2
〈θ2〉. (9.2)

We can rewrite this equation by recalling that the bending angle θ is also given by,

θ =
v(t1)− v(t2)

v
, (9.3)

where v(t) is the velocity of the particle at time t. Using the expression for the Lorentz
force, we can write this as,

θ =
1
v

∫ t2

t1

dt v̇(t),

=
e

mv

∫ t2

t1

dt v(t)×B(t),

=
e

mv

∫ L

0
dx×B(x). (9.4)

Since θ is small and we can approximate x(t) = x1ê1. We then find,

B2
eff =

3
2L2

∫ L

0
dx1dx

′
1〈(ê1 ×B(x1ê1))(ê1 ×B(x′1ê1))〉,

=
3

2L2

∫ L

0
dx1dx

′
1(δij − δi1δj1)〈Bi(x1ê1)Bj(x′1ê1)〉,

=
3

2L2

∫ L

0
dx1dx

′
1〈B2(x1ê1)B2(x′1ê1) +B3(x1ê1)B3(x′1ê1)〉. (9.5)

In section 6.4 we computed the vacuum expectation value of one component of the
magnetic field. We can use these results to find,

B2
eff(η) =

3
2L2

1
a4

∫ L

0
dx1dx

′
1

∫
d3yd3kd3k′

(2π)6

×Wλ(k)Wλ(k′)|Ak(η)|2
k2

1 + k2

2k
eik1x1+ik′1x′1e−iy(k+k′). (9.6)

Performing the integral over y and k′ this is equal to,

B2
eff(η) =

3
2L2

1
a4

∫ L

0
dx1dx

′
1

∫
d3k

(2π)3
W 2

λ (k)|Ak(η)|2
k2

1 + k2

2k
eik1(x1−x′1). (9.7)
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We can also perform the integral over x1 and x′1, then,

B2
eff(η) =

3
2L2

1
a4

∫
d3k

(2π)3
W 2

λ (k)|Ak(η)|2
k2

1 + k2

2k

(
eik1L − 1
ik1

)(
e−ik1L − 1
−ik1

)
,

=
3

2L2

1
a4

∫
d3k

(2π)3
W 2

λ (k)|Ak(η)|2
k2

1 + k2

kk2
1

[1− cos(k1L)] . (9.8)

Finally performing the integral over the angular parts of k one finds [47],

B2
eff(η) =

1
a4

∫
dk

k
W 2

λ (k)F (kL)
k4

2π2
|Ak(η)|2, (9.9)

where,

F (z) =
3
2

1
z2

[
cos(z)− sin(z)

z
+ z

∫ z

0
dz′

sin(z′)
z′

]
. (9.10)

Although the function F (z) looks complicated, it has the useful property that for z ≥
0,

0 ≤ zF (z) ≤ α ' 2.48. (9.11)

Comparison with expression (6.12) shows us that expression (9.9) is equal to the power
spectrum during inflation times the function F (kL). To intuitively understand where
this function comes from we can use the expansions,

F (z) ' 1 +O(z2), (z � 1),

F (z) ' 3π
4z

+O(z−2), (z � 1). (9.12)

We can then write,

B2
eff '

∫ 1/L

0

dk

k
PB(η, k) +

∫ ∞

1/L

dk

k

1
kL
PB(η, k), (9.13)

where,

PB(η, k) = W 2
λ (k)

k4

2π2
|Ak(η)|2. (9.14)

If the path of the particle is smaller than the coherence length (1/k) of the magnetic
field, that is if k < 1/L, the particle just feels like it is traveling through a homogeneous
magnetic field. Therefore the first term on the right hand side in expression (9.13) is
equal to expression (6.12). If the path is longer than the coherence length, that is if
k > 1/L, the particle is traveling trough N = kL different homogeneous fields. Each of
these fields can be in a different random direction and therefore the bending angle is on
average

√
N times smaller than if the particle would travel through only one field. For

this reason the second term in expression (9.13) has an additional factor of 1/N = 1/kL.
Fujita and Mukohyama finally re-express the limit on the intergalactic magnetic fields
found by observations as,(

B0
eff

)2 =
∫
dk

k
W 2

λ (k)F (kL)
k4

2π2
|Ak(ηrad)|2 ≥ 10−36. (9.15)
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9.1 Upper limit

Constraining the energy density

Using the found expression for the magnetic field, Fujita and Mukohyama, derive an
upper limit for the energy density during in inflation, by looking at the equality,

|Ak(ηend)|2 − |Ak(ηi)|2 =
∫ ηend

ηi

dη 2|Ak(η)||Ak(η)|′, (9.16)

which is true for any function Ak. In this case the subscript i denotes the beginning of
inflation and end the end of inflation as usual. Using the inequality 2xy ≤ x2 + y2 for
real numbers, they rewrite the equality as,

|Ak(ηend)|2 − |Ak(ηi)|2 ≤
∫ ηend

ηi

dη

k
2k|Ak(η)||A′

k(η)|,

≤
∫ ηend

ηi

dη

k

(
k2|Ak(η)|+ |A′

k(η)|
)
. (9.17)

As a next step they multiply both sides with W 2
λ (k)F (kL)k3/2π2 and integrate over k.

The result is,

a4
endB

2
eff(ηend)− a4

iB
2
eff(ηi) ≤

∫ ηend

ηi

dη

∫
dk

k
W 2

λ (k)F (kL)
k3

2π2

(
k2|Ak(η)|+ |A′

k(η)|
)
.

(9.18)
They then use inequality (9.11) to rewrite the right hand side as,

a4
endB

2
eff(ηend)− a4

iB
2
eff(ηi) ≤

α

L

∫ ηend

ηi

dη a4(η)
(
B2

λ(η) + E2
λ(η)

)
, (9.19)

where they used definitions (6.12) and (6.25). Notice that they could only express the
terms on the right hand side in the electric and magnetic field, because of the properties
of F (kL) ≤ α/k. In chapter 7 we saw that for every model we used B2

λ(η) + E2
λ(η) '

ρem < ρinf , where ρem is the energy density of the electromagnetic field and ρinf the
energy density during inflation, which we assume to be a constant. This, together with
the fact that a4

endB
2
eff(ηend) � a4

iB
2
eff(ηi), is used to rewrite the inequality as,

a4
endB

2
eff(ηend) <

α

L
ρinf

∫ ηend

ηi

dη a4(η). (9.20)

They then integrate the last term using the fact that H = a′/a2 is constant during
inflation and that aend > ai. The result is,

B2
eff(ηnow) <

α

3LHinf
ρinfa

3
end,

=

√
1

24π
αmpl

L
ρ
1/2
inf a

3
end. (9.21)
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Chapter 9: Constraining the energy density during inflation

They rewrite aend using the relation a ∝ g
−1/3
∗S (T )T−1 and the fact that Tend = ρ

1/4
inf .

They then find that,

ρ
1/4
inf <

√
1

24π
αmpl

L

g∗S(T0)
g∗S(Tend)

T 3
0

(
B0

eff

)−2
,

' 1.8× 10−4mpl

(
B0

eff

10−18G

)−2

. (9.22)

Where they took a coherence length of L = 1 Mpc. So they finally find,

ρinf < 10−15m4
pl

(
B0

eff

10−18G

)−8

. (9.23)

If this would be true, we have a maximum temperature during inflation of M < 10−4mpl.
This is not a problem for the models in chapter 7, since we derived that for all the models
we must have M > 10−6mpl. It does restrict our models further, since we used before
the upper limit of M < 10−2mpl.

9.1.2 Why the derivation is wrong

We will now show why the argument of Fujita and Mukohyama does not hold in our
framework. Not only during but also after inflation Fujita and Mukohyama use the
following definition of the magnetic field,

B2
eff(η) =

a4(ηend)
a4(η)

∫
dk

k
W 2

λ (k)F (kL)
k4

2π2
|Ak(ηend)|2. (9.24)

In our framework after inflation the magnetic field is given by,

B2
eff(η) =

a4(ηend)
a4(η)

∫
dk

k
W 2

λ (k)F (kL)
k4

2π2
|βk(ηend)|2. (9.25)

Comparing the expressions for βk(η) and Ak(η) in all three models of chapter 7 we find
that for all the models,

|Ak(η)|2 ' (ηk)2|βk(η)|2, (9.26)

and therefore, (
B0

eff

)2
FM

'
(ηrad

λ

)2 (
B0

eff

)2
ACT

, (9.27)

where FM denotes the value found by Fujita and Mukohyama and ACT the actual value
in our framework. The limit (9.23) in our framework is therefore,

ρinf < 10−15m4
pl

(
λ

ηrad

)8( B0
eff

10−18G

)−8

. (9.28)
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9.2 Lower limit

For a coherence scale of λ = 1 Mpc, λ/|ηrad| � 1 and so the limit will be considerably
higher then found by Fujita and Mukohyama. We can calculate it explicitly using the
value of ηrad (7.55) and find,

ρinf < 1063m4
pl

(
B0

eff

10−18G

)−8/3

. (9.29)

This will lead to a temperature limit of M < 1016mpl, which is a much higher limit than
the limit from graviton production and therefore not very useful.

9.2 Lower limit

In this section we will explain the recent paper of Suyama and Yokoyama [48], where they
derive a lower limit on the energy density during inflation. They derive this limit from the
fact that the amplitude of the metric perturbation can be observed in the CMB. Since, as
explained in chapter 8, a magnetic field perturbs the metric, the presence of a magnetic
field during inflation would be party responsible for this amplitude. Observations indicate
that the amplitude has a value of ∼ 10−5 [49] and to derive a lower limit on the energy
density Suyama and Yokoyama assume that this is solely caused by the magnetic field.
Before we will show how this limit is derived we will first give a short overview of how
one can derive the perturbed Einstein equations, which tell us how a fluid can influence
metric perturbations.

9.2.1 Perturbed Einstein equations

Perturbations in a fluid and of the metric are related to each other through the Einstein
equations. In this section we will give a short introduction to perturbations of both
the metric and the energy momentum tensor and then derive the perturbed Einstein
equations and conservation equations. These are all the tools we need to calculate the
amplitude of the metric perturbation due to a magnetic field.

Metric perturbations

If we assume that the metric perturbations are small, we can treat them as first order
perturbations. We can then write the metric as,

gµν = ḡµν + hµν , (9.30)
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Chapter 9: Constraining the energy density during inflation

where ḡµν is the unperturbed FLRW metric and hµν is a small perturbation. In the
following all the unperturbed quantities will be denoted with a bar. The inverse metric
perturbation is defined as,

hµν ≡ gµν − ḡµν = −ḡµρḡνσhρσ. (9.31)

such that,
h00 = −h00, hi0 = a−2hi0, hij = −a−4hij , (9.32)

if we use normal time coordinates. Because of the symmetries of the FLRW metric it is
always possible to write the metric perturbation in the form [3],

h00 = −2A, (9.33)

hi0 = a2 [∂iF +Gi] , (9.34)

hij = a2 [2ψδij + 2∂i∂jK + 2∂jCi + 2∂iCj +Dij ] , (9.35)

with the additional constraints,

∂iCi = ∂iGi = ∂iDij = Dii = 0. (9.36)

It turns out that the Einstein equations can be decoupled in a scalar, vector and tensor
part. Therefore we can evaluate these parts separately. We will focus on the scalar part
and therefore have,

h00 = −2A, (9.37)

hi0 = a2∂iF, (9.38)

hij = 2a2 [ψδij + ∂i∂jK] . (9.39)

Energy momentum tensor perturbations

As explained in chapter 8 the energy momentum tensor is given by,

Tµν = pgµν + (ρ+ p)uµuν + 2q(µuν) + πµν . (9.40)

Due to the symmetries of the universe the unperturbed energy momentum tensor is a
perfect fluid,

T̄µν = p̄ḡµν + (ρ̄+ p̄)ūµūν . (9.41)

The energy-flux and anisotropic pressure are therefore considered to be perturbations.
Since we are interested in the scalar perturbations we only have to consider the scalar
part of the anisotropic stress,

πi S
j ≡

(
1
3
δij −

∂i∂j

∇2

)
Π. (9.42)
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9.2 Lower limit

Since we assume that the anisotropy is only created by the magnetic field, this scalar
part of the anisotropic stress is solely due to the magnetic field. To be able to describe the
perturbations of the energy momentum tensor we need to know how the perturbations
of the four-velocity behave. The four-velocity satisfies the condition uµuµ = −1. In a
FLRW spacetime using normal time coordinates ūi = 0 and ū0 = −1. Using this we can
calculate that,

gµνuµuν = −1,

(ḡµν + hµν)(ūµūν + 2ūµδuν) = −1,

hµν ūµūν + 2ḡµν ūµδuν) = 0,

δu0 =
1
2
h00. (9.43)

In the same way one can calculate that δu0 = h00/2 and δui ≡ a2∂iv is an independent
variable. The perturbed energy momentum tensor is given by,

Tµν = (p̄+ δp)(ḡµν + hµν) + (ρ̄+ p̄+ δρ+ δp)(ūµūν + 2ūµδuν) + πS
µν , (9.44)

such that the first order perturbation is,

δTµν = p̄hµν + 2(ρ̄+ p̄)ūµδuν + δρūµūν + δp(ḡµν + ūµūν) + πS
µν . (9.45)

It is then easy to compute that,

δT00 = δρ− ρ̄h00, (9.46)

δT0i = −(ρ̄+ p̄)a2∂iv + p̄h0i (9.47)

δTij = p̄hij + δpa2δij + πS
ij , (9.48)

or

δT 0
0 = −δρ, (9.49)

δT 0
i = (ρ̄+ p̄)a2∂iv, (9.50)

δT i
0 = −(ρ̄+ p̄)∂i(v − hi0), (9.51)

δT i
j = δpδi

j + πi S
j , (9.52)

and
δT = −δρ+ 3δp. (9.53)

Einstein equations

With these ingredients we can compute how the perturbations in the fluids influence
the metric trough the Einstein equations. The Einstein equations can be written in the
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form,

Rµν = 8πG
[
Tµν −

1
2
gµνT

]
. (9.54)

We want to calculate the perturbations given by,

δRµ
ν = 8πG

[
δTµ

ν −
1
2
ḡµ

νδT

]
. (9.55)

The first step is to notice that δRµ
ν = δ(gµλRλν) = hµλR̄λν + ḡµλδRλν . To be able to

calculate δRλν we first have to calculate the perturbation of the Christoffel symbols,
which is given by,

δΓµ
νλ =

1
2
ḡµν

[
−2hρσΓ̄σ

νλ + ∂λhρν + ∂νhρλ − ∂ρhλν

]
. (9.56)

It is easy to calculate that for a flat FLRW metric,

Γ̄i
j0 = Γ̄i

0j =
ȧ

a
δij = Hδij , (9.57)

Γ̄0
ij = ȧaδij = a2Hδij , (9.58)

and therefore the perturbations of the Christoffel symbols are,

δΓi
jk =

1
2a2

[
−2a2Hhi0δjk + ∂khij + ∂jhik − ∂ihjk

]
, (9.59)

δΓi
j0 =

1
2a2

[
−2Hhij + ḣij + ∂jhi0 − ∂ihj0

]
, (9.60)

δΓ0
ij =

1
2

[
2a2Hδijh00 − ∂jhi0 − ∂ihj0 + ḣij

]
, (9.61)

δΓi
00 =

1
2a2

[
2ḣi0 − ∂ih00

]
, (9.62)

δΓ0
i0 = Hhi0 −

1
2
∂ih00, (9.63)

δΓ0
00 = −1

2
ḣ00. (9.64)

The perturbation of Rµν is given by,

δRµν = ∂λδΓλ
µν − ∂νδΓλ

µλ + δΓα
µν Γ̄

λ
λα + δΓα

αλΓ̄λ
µν − δΓα

µλΓ̄λ
να − δΓα

νλΓ̄λ
µα. (9.65)
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9.2 Lower limit

Using the explicit expressions of the Christoffel symbols one finds,

δR00 =− 1
2a2

∇2h00 −
3
2
Hḣ00 +

1
a2
∂iḣi0 −

1
2a2

[
ḧii − 2Hḣii − 2Ḣhii

]
, (9.66)

δR0i =δRi0 = −H∂ih00 −
1

2a2

[
∇2hi0 − ∂i∂khk0

]
+ (Ḣ + 3H2)hi0

− 1
2
∂0

[
1
a2

(∂ihkk − ∂khki)
]

(9.67)

δRij =
1
2
∂i∂jh00 + a2(Ḣ + 3H2)δijh00 +

1
2
a2Hδij ḣ00

− 1
2a2

[
∇2hij − ∂k∂ihjk − ∂k∂jhkj + ∂i∂jhkk

]
+

1
2
ḧij

− 1
2
H
[
ḣij − δij ḣkk

]
−H2 [−2hij + δijhkk] +Hδij∂khk0

− 1
2

[
∂iḣj0 + ∂j ḣi0

]
+

1
2
H [∂ihj0 + ∂jhi0] . (9.68)

We now have all the ingredients to explicitly calculate the perturbations of the Einstein
equation for a FLRW metric. Using the specific forms of the metric perturbations one
finds after some lines of calculations that the respectively 00, 0i, ii and ij-component,
where in the last case i 6= j, of the perturbed Einstein equation (9.55) are,

4πG(δρ+ 3δp) = 6(Ḣ +H2)A+
∇2

a2
A+ 3HȦ+∇2σ̇ + 2H∇2σ − 3ψ̈ − 6Hψ̇,

(9.69)

−4πG(ρ̄+ p̄)a2∂iv = H∂iA− ∂iψ̇, (9.70)

4πG(δp− δρ) = −1
3
∇2

a2
A+ 2(Ḣ + 3H2)A+ 3HȦ− 4

3
∇2

a2
ψ − ψ̈ − 6Hψ̇

+ 2H∇2σ +
1
3
∇2σ̇, (9.71)

8πGπi S
j = − 1

a2
∂i∂j(A+ ψ)− ∂i∂j(σ̇ + 3Hσ), (9.72)

where we have defined σ = F − K̇. We can rewrite this by combining expression (9.69)
and (9.71) in Fourier space as,

4πGδρ =
k2

a2
+Hk2σ − 3H2A+ 3Hψ̇, (9.73)

−4πG(ρ̄+ p̄)a2v = HA− ψ̇, (9.74)

4πGδp = −1
3
k2

a2
(A+ ψ) + (2Ḣ + 3H2)A+HȦ− ψ̈ − 3Hψ̇ − 1

3
k2(σ̇ + 3Hσ),

(9.75)

−8πGΠ =
k2

a2
(A+ ψ) + k2(σ̇ + 3Hσ). (9.76)
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Conservation equations

Since the energy momentum tensor is conserved, ∇µT
µ
ν = 0, we can derive two

conservation equations for ν = 0, i. The perturbed conservation law is,

δ (∇µT
µ
ν ) = ∂µδT

µ
ν + Γ̄µ

µλδT
λ
ν + δΓµ

µλT̄
λ
ν − Γ̄µ

µνδT
µ
λ − δΓλ

µν T̄
µ
λ = 0. (9.77)

Using the expressions we found for the Christoffel symbols and energy momentum tensor
one can derive after some lines of calculation the following conservation laws in Fourier
space,

δρ̇+ 3H(δρ+ δp) + 3ψ̇(ρ̄+ p̄)− (ρ̄+ p̄)k2(v − σ) = 0, (9.78)

∂0

[
(ρ̄+ p̄)a2v

]
+ δp− 2

3
Π + 3H(ρ̄+ p̄)a2v + (ρ̄+ p̄)A = 0. (9.79)

9.2.2 Curvature perturbation

We now have all the ingredients to calculate the amplitude of the curvature perturbation
and derive a limit on the energy density. The intrinsic curvature of the spatial
hypersurface R(3) is in our coordinate definition,

R(3) = − 4
a2
∇2ψ. (9.80)

Unfortunately this quantity is gauge dependent, because under the transformation t→
t+ δt,

ψ → ψ −Hδt. (9.81)

It will be more convenient to find a gauge invariant curvature parameter. We know that
the energy density transforms as,

δρ→ δρ− ρ̇δt. (9.82)

We can therefore construct the gauge invariant curvature perturbation on uniform energy
density hypersurfaces as [50][51],

ζ = ψ −H
δρ

ρ̇
. (9.83)

To find the evolution of this curvature perturbation we can use the first conservation
law (9.78). Since we are working on a uniform energy density hypersurface δρ = 0 and
ξ = ψ. Therefore the first conservation law can be rewritten as,

3Hδp+ 3ζ̇(ρ̄+ p̄)− (ρ̄+ p̄)k2(v − σ) = 0. (9.84)
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9.2 Lower limit

The pressure perturbation can always be split in adiabatic and non-adiabatic part,
as

δp = c2sδρ+ ṗΓ, (9.85)

where c2s ≡ ṗ/ρ̇ is the adiabatic sound speed and δpnad ≡ ṗΓ is the non-adiabatic
pressure, with Γ = δp/ṗ− δρ/ρ̇. Since we are on a uniform energy density hypersurface
δp = δpnad. The evolution equation of the curvature perturbation is then,

ζ̇ = − H

ρ̄+ p̄
δpnad +

1
3
k2(v − σ), (9.86)

which in the large scale limit reduces to,

ζ̇ = − H

ρ̄+ p̄
δpnad. (9.87)

In their paper Suyama and Yokoyama derive a more complicated evolution equation
which has an extra term proportional to Π. This term originates from the term
proportional to k2 in expression (9.86). Since they also work in the large scale limit
and later argue that the term proportional to Π is negligible compared to the other
terms, we choose to neglect it from the start. The solution to the evolution equation
is,

ζ(t) = −
∫ t

t∗

dt′
H(t′)

ρ̄(t′) + p̄(t′)
δpnad(t′), (9.88)

where t∗ is at horizon crossing and we assume ζ(t∗) = 0. To solve this equation we will
assume that we have de Sitter inflation. Therefore ṗ = −ρ̇ and H, ρ̄ and p̄ are constant
during inflation. Since we are deriving an upper limit, we will assume that the entire
anisotropic pressure is caused by the electromagnetic field, such that δpnad = δpnad−em.
We saw in chapter 8 that pem = 1/3ρem, so we can write,

δpnad−em =
4
3
δρem. (9.89)

We can then write the solution as,

ζ(t) = −4
3

H

ρ̄+ p̄

∫ t

t∗

dt′δρem(t′),

=
4H2

˙̄ρ

∫ t

t∗

dt′δρem(t′),

=
16πG

3
H

Ḣ

∫ t

t∗

dt′δρem(t′),

= −2
H

ε

1
ρinf

∫ t

t∗

dt′δρem(t′). (9.90)
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Chapter 9: Constraining the energy density during inflation

where we used the fluid equation (2.18) in the second line, the first Friedmann equation
(2.32) in the third and fifth line and ε = −Ḣ/H2 is the first slow roll parameter. If we
assume that also δρem is constant during inflation the solution is simply,

ζ = −2
ε

δρem

ρinf
H(t− t∗),

= −2N
ε

δρem

ρinf
(9.91)

To account for the fact that δρem does change during inflation we can change this into
the limit [48],

|ζ| > 1
ε

∣∣∣∣δρem(tend)
ρinf

∣∣∣∣ . (9.92)

As mentioned before observations of the CMB show that the amplitude of the curvature
perturbation is |ζ| ∼ 10−5 [49], therefore,

ε > 105

∣∣∣∣δρem(tend)
ρinf

∣∣∣∣ . (9.93)

The same observations show that [49],

ρinf

2πm4
pl

1
ε
' 2.4× 10−9. (9.94)

We can then replace ε in expression (9.93) and find,

ρ2
inf

m4
pl

> 2.3× 10−3|δρem(tend)|. (9.95)

Recall that after inflation the electromagnetic field is described by Maxwell theory and
therefore the energy density is ρem = 1

2(E2 +B2). Because of the high conductivity after
inflation we saw in chapter 5 that E = 0 and B ∝ a−2. We can therefore rewrite,

ρ2
inf

m4
pl

> 1.2× 10−3B2
0a

−4
end. (9.96)

Using relation (2.51) and the fact that ρ = M4, where M was the temperature during
inflation, we find,

ρinf

m4
pl

> 1.2× 10−3B2
0

(
g∗S(Trad)
g∗S(T0)

)4/3 1
T0
. (9.97)

Finally using the explicit expressions for g∗S and T0 given in section 7.2 we find,

ρinf > 1.4× 10−25m4
pl

(
B0

10−18 G

)2

. (9.98)

This is the same as having a limit on the temperature during inflation of M > 10−6mpl,
which is the same limit that we found for each of our models to be valid in chapter
7.
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CHAPTER 10

Conclusion

Observations of galaxies at high redshifts show that magnetic fields were already present
in galaxies at early times. This suggests that the origin of these magnetic fields lies
in the early universe. Inflation seems to be a good candidate for their origin, since it
could explain their large coherence scale and the fact that they are also present in the
intergalactic medium.

We have evaluated the magnetic field strength, assuming that the field was generated
during inflation, using four different models. The first model was Maxwell electrody-
namics. However, the conformal invariance of the theory led to vanishing magnetic fields
and therefore Maxwell electrodynamics alone is not able to explain this phenomenon.
To solve this problem and to still be able to maintain the assumption that the fields
were generated during inflation we broke the conformal invariance in the other three
models.

In the first model the electromagnetic field was coupled to the gravitational field through
the coupling (R/m2)nF 2. We saw that this model could generate the intergalactic
magnetic fields when n ≥ 6 in the case m2 = Rrad, where rad denotes the value at
the end of reheating. We also found that for this model to work the temperature during
inflation must have been at least 10−6mpl.

The next model we reviewed contained a coupling of the electromagnetic field to a scalar
field. We took the example of the a inflaton field φ in Power-Law inflation with a coupling
of the form I(φ) ∝ exp[(1 + 3γ)/(2

√
3(1 + γ)) bφ]. We argued that this was equivalent

to having a coupling I(η) = ηb. We found that intergalactic magnetic fields could be
generated when 3.4 < b < 4 and there was a minimum temperature during inflation of
10−6mpl.
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Chapter 10: Conclusion

Finally we looked at the model where the electromagnetic field was coupled to a pseudo-
scalar field φ, through the coupling I(φ)FF̃ . We looked at an example where the coupling
was of the form I(φ) ∝ φ. We showed that in the case of a massive pseudo-scalar field or
a massless pseudo-scalar field that is non-minimally coupled to gravity, with respective
potentials m2φ2 and ξRφ2, that this corresponded to taking the Fourier transform of
the coupling Ik = c(2π)3δ(k)(−kη)b. Calculations showed that only strong enough fields
could be generated in the case b = −1, which corresponds to m2 = −4H2 and ξ = 1/3
depending on the model used. Again a minimum temperature during inflation of 10−6mpl

was needed.

Besides reviewing these models we looked at the classical evolution of a magnetic field in a
spatially curved FLRW metric. We found that for a spatially open universe the magnetic
field decays proportional to a−1, which is slower than the rate in flat spacetime (a−2).
This shows that an open universe could lead to stronger magnetic fields.

We also reviewed two suggestions to derive a bound on the temperature during inflation
from the fact that intergalactic magnetic fields exist. We showed that the derivation of
an upper limit by Fujita and Mukohyama [47] was not valid in our framework and we
calculated a new limit of M < 1016mpl, which is well above the limit from graviton
production and therefore not interesting. The derivation of a lower limit by Suyama and
Yokoyama [48] was more promising and we found a limit of M > 10−6mpl, which is
equivalent to the limits found in the evaluated models.

Our results show that all three models in which the conformal invariance is broken are
able to generate the required fields. It would therefore be interesting to conduct further
research to be able to single out one of these models. This further research could both be
observational and theoretical. One way to single out one of the models is to get a stronger
observational limit on either intergalactic fields, which gives a stronger restriction on the
models, or the helicity in the CMB, which could distinguish between the last model
and the rest. Theoretically it would be interesting to evaluate the different models for
a non-instantaneous reheating stage. This would influence the strength of the fields and
might therefore be able to single out one of the models.
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APPENDIX A

Conventions

In this thesis we will use the following conventions:

• We will use units in which c = ~ = kB = 1.

• We will use Gaussian units, which means that ε0 = 1/(4π), where ε0 is the vacuum
permittivity. In these units the electron charge is equal to e =

√
α ∝

√
1/137. For

this reason the magnitude of a magnetic field may be expressed in Gauss (G).

• We use Greek indices to indicate a four dimensional space and Latin indices for
the spacelike parts.

• We define:

ẋ =
dx

dt
,

x′ =
dx

dη
,

where t is the normal time coordinate and η is the conformal time.
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