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We investigate the thermal transition from nuclear matter to a quark gluon plasma by simula-
tions of lattice QCD with two quark species using the Wilson twisted mass formulation. A new
code based on OpenCL is presented, which can be used on either CPU or GPU of any vendor.
To optimise efficiency, we thermalise our Monte Carlo simulations using highly parallelised
code on CPU machines, whereas production runs are done using multiple Monte Carlo chains
on a GPU cluster, fitting an entire lattice on each GPU with zero overhead for communication.
We discuss preliminary results for the thermal transition obtained in this way.

1 Introduction

The fundamental theory of the strong interactions governing nuclear and subnuclear forces
is Quantum Chromodynamics (QCD). Its fundamental degrees of freedom are quarks and
gluons, which combine into numerous tightly bound states, the hadrons, among them the
familiar nucleons. A key feature of the theory is asymptotic freedom, according to which
the coupling strength depends on the energy scale of a scattering process. For energies
below 1 GeV, the coupling is too large to allow for weak coupling approximations and an-
alytic predictions. On the other hand, at large temperatures the average energy per particle
is large and the theory enters a weak coupling regime, where the quarks and gluons form
a plasma rather than bound states. The transition from the hadronic to the plasma regime
takes place at temperatures of about 170 MeV and still belongs to strong coupling physics.
However, the theory can be reformulated on a space-time lattice, whereupon it is amenable
to Monte Carlo simulations.

In this contribution we present a study of the thermal QCD transition with two mass-
degenerate quark species. The main interest is in the critical temperature and the nature
of the transition. In the limit of massless quarks, the theory has a chiral symmetry under
mixing of the quark species. This symmetry is broken spontaneously, so that the lightest
particles, the pions, are exactly massless. At finite temperature a non-analytic transition
takes place in which this symmetry gets restored. Since massless QCD cannot be simu-
lated, the order of this phase transition is not known to date. On the other hand, for finite
quark mass the chiral symmetry is explicitly broken and the pions are massive. The phase
transition then gets weakened to an analytic crossover. A first order chiral transition dis-
appears gradually in a Z(2) critical point, whereas a second order transition disappears
immediately for non-zero mass, Fig. 1.
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Figure 1. Possible scenarios for the chiral phase transition as a function of pion mass4. In the chiral (massless)
limit there must be a true transition of first or second order, whereas for finite masses the transition is merely a
smooth crossover. The boundary between the two corresponds to a critical point.

2 Twisted Mass Lattice QCD

Consider euclidean spacetime discretised on a hypercube with lattice spacing a. We denote
the spatial and temporal extent of the system with Nσ and Nτ , respectively. The QCD
action SQCD is then replaced by a lattice version afflicted by discretisation errors,

SLQCD = SQCD + aS1 + a2S2 + . . . , (1)

and continuum physics can be obtained in the limit a→ 0.
The central object in statistical physics is the partition function Z of the system, and

on the lattice, an expectation value of some observable A reads:

〈A〉 = Z−1

∫
DUDψDψA exp {−SLQCD[U ]}

= Z−1

∫
DUAdetD[U ] exp {−Sgauge[U ]} . (2)

Here, ψ and U denote the fermion and gluon fields, respectively. The latter are represented
by so-called links on the lattice. If one identifies SLQCD = βH , the exponential in the first
line is the Boltzmann factor. The fermion fields ψ can be integrated out exactly due to their
Grassmann nature, and the resulting determinant of the fermion matrix D is expressed in
terms of (pseudo fermions) φ,

detD[U ] ∼
∫
Dφ† Dφ exp

{
−φ†D−1[U ]φ

}
, (3)

yielding the effective action Seff[U, φ] = Sgauge[U ] + φ†D−1[U ]φ. Importance sampling
methods are used to evaluate this high-dimensional integral. Using the Boltzmann-weight
p[U, φ] = exp {−Seff[U, φ]} as probability measure, an ensemble of N gauge configura-
tions {Um} is generated. Then, 〈A〉 may be approximated by

〈A〉 ≈ 1

N

∑
m

A[Um] . (4)

The standard simulation algorithm to generate QCD gauge configurations is the Hybrid
Monte-Carlo (HMC) algorithm, where the effective action is embedded in a fictitious clas-
sical system evolved over a time τ according to the hamiltonian equations of motion. Since
the numerical integration is not exact, a Metropolis step is carried out in the end, thus en-
suring detailed balance. For details see Ref. 6. In order to invert the high-dimensional,
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Figure 2. Lattice spacing a as a function of lattice coupling β4.

sparse fermion matrix D, iterative Krylov space methods are used, i.e. D−1 is determined
by equations like

Dφ = ψ ⇒ φ = D−1ψ . (5)

This is the most cost-intensive part of a simulation and it is crucial to have a well tuned
implementation of the derivative term 6D.

In our studies4, 5 we employ the so-called two flavour twisted mass Wilson fermions6.
Their fermion matrix reads:

D±tm = (1± 2iaκµγ5) δxyδαβδab −
κ

2

∑
µ

(1− γ±µ)αβ U±µ(x)abδn+~µ,y

= M±diag + 6D , (6)

with γ−µ = −γµ and U−µ(x) = Uµ(x− ~µ)†. γµ denotes Dirac matrices and a, b, α, β are
colour and spinor indices, respectively. The sign in M±diag corresponds to “up” and “down”
quarks. In the gauge sector, the tree-level Symanzik improved Wilson action is used,

Stlsym =
β

Nc

∑
x

(
c0
∑
µ,ν>µ

{1− Re Tr(Pµν(x))}+ c1
∑
µ,ν

{1− Re Tr(Rµν(x))}
)
.

(7)
Here, Pµν(x) and Rµν(x) denote path-ordered plaquette and rectangle products of link
variables. The parameters are the lattice coupling β = 6/g2, c0 = 1− 8c1 and c1 = 1/12.
For particular values κ = κc(β), corresponding to “maximal twist”, theO(a) discretisation
effects vanish6 and the quark mass is solely determined by µ.

A finite temperature T can be introduced by identifying

T = (a(β)Nτ )−1 . (8)

Thus, a scan in temperature equals a scan in β, and a(β) is needed to set the scale. For
this, we interpolate T = 0 data by the ETM collaboration8 as in Fig. 2. ETMC also
provides a formula from chiral perturbation theory to estimate mπ(µ) at maximal twist.
The general phase structure of Twisted Mass fermions has been investigated in Ref. 5. The
critical temperature and order of the chiral transition was studied in Ref. 4. Simulations

35



 140

 160

 180

 200

 220

 240

 260

 0  100  200  300  400  500

T c
 (M

eV
)

m
π
 (MeV)

1st order

O(4)

m
π,c = 0 MeV

m
π,c = 200 MeVZ(2)

Figure 3. Extrapolation of the transition temperature to the chiral limit for various critical exponents4.

were performed at three different pion masses (300 . mπ . 500 MeV) on lattices of
size 323 × 12 and 323 × 10. The resulting critical temperatures are shown in Fig. 3.
Extrapolations to the chiral limit for different orders of the transition with their associated
scaling behaviour and critical exponents,

Tc(mπ) = Tc(0) +Am2/(βδ)
π , (9)

are also shown. However, the combinations of exponents that go into the fit are numerically
very similar, and much lower pion masses are needed to clarify the situation. This is
exceedingly difficult, as it also implies larger lattices to fit the large correlation length of
light pions on the lattice, while the numerical costs for the HMC scales like V 5/4 andm−6

π .

3 LQCD Using OpenCL

In recent years, Graphics Processing Units (GPUs) have become an integral part of many
modern computing clusters and are used in many LQCD applications. Tab. 1 shows an
overview of available GPUs and CPUs. GPUs surpass CPUs in peak performance as well

Chip Peak SP Peak DP Peak BW
[GFLOPS] [GFLOPS] [GB/s]

AMD Radeon HD 5870 Cypress 2720 544 154
AMD FirePro S10000 Tahiti 6820 1700 480
NVIDIA Tesla M2090 Fermi 1331 665 177
NVIDIA Tesla K20 Kepler 3520 1170 208
AMD Opteron 6278 Interlagos 307 154 51.2
Intel Xeon E5-2690 Sandy Bridge EP 371 186 51.2

Table 1. Theoretical peak performance of current GPUs and CPUs. SP and DP denote single and double preci-
sion, respectively. BW denotes bandwidth. Note that the AMD S10000 is a dual GPU.
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Figure 4. Performance of 6D for various lattices sizes3.

as in memory bandwidth, however, one also notes the drop in performance when going
from single to double precision on the GPU. Current LQCD applications utilising GPUs are
predominantly written using NVIDIA CUDA9, and many routines are publicly available10.
However, CUDA is only applicable to NVIDIA hardware. Currently we have access to
two compute clusters with GPUs. One is the LOEWE-CSC (University of Frankfurt)7,
consisting of nodes with two 12-core AMD Magny-Cours CPUs and one AMD Radeon
HD 5870 GPU. The other is the SANAM supercomputer (GSI Darmstadt), which has two
AMD S10000 and two Intel Xeon E5-2650 CPUs per node.

For these architectures we developed a new HMC for twisted mass Wilson
fermions2, 1, 3: CL2QCD. It is based on OpenCL11, an open standard for parallel computing
that provides an alternative to the vendor-bound CUDA. All operations are carried out in
double precision. Fig. 4 demonstrates excellent performance of the 6D for the GPUs used in
LOEWE-CSC and SANAM. 70 and 100 GFLOPS are achieved, respectively, over a wide
range of lattice sizes. Also shown are results on NVIDIA GTX 680. Due to lack of optimi-
sation the performance is poor, but it demonstrates the platform independence of OpenCL,
which can also be run on CPUs. The limitation of applicability is mostly given by the GPU
memory. For example, the AMD Radeon HD 5870 has only 1 GByte of memory which
limits its performance when the entire lattice is put on one card.

The good performance of the 6D carries over to the full HMC, Fig. 5. It shows three
different setups corresponding to different pion masses1 executed with CL2QCD compared
to a reference code6 run on the CPUs of one node in LOEWE-CSC. The performance
shows a speedup of two for the AMD Radeon HD 5870, and a speedup of four for the
newer AMD S1000 with respect to the reference code. This means that one GPU is able to
perform the HMC algorithm much more efficiently than two CPU nodes. In addition, the
acquisition costs of a GPU is typically lower than those of a server CPU.
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Figure 5. HMC performance compared to reference code tmlqcd6 for different setups on a 243 ∗ 8 lattice3.

4 First Results formπ ≈ 270 MeV

To further improve the results obtained in Ref. 4, we started simulations at a smaller pion
mass of around 270 MeV on 323 × 12 lattices. The extrapolations of Fig. 3 predicts a
critical β near 3.85.

We thermalised HMC chains using the tmlqcd CPU code6 in highly parallelised fashion
on LOEWE-CSC and JUGENE in Jülich14. On the other hand, the computer SANAM can
fit the entire lattice in the memory of each GPU. We thus used this machine for production
in “pedestrian parallelism”: From each thermalised chain we started new chains at the same
parameters, separated by sufficiently many trajectories to rule out autocorrelations. In order
to reduce wall-time, we have also started to implement Multi-GPU usage in CL2QCD, too3

and are using it in current runs. However, this is only expected to be efficient once lattices
are too large to fit into the memory of one unit.
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Figure 6. The susceptibility of the chiral condensate, σ2
ψψ

. The left curve corresponds to the preliminary
mπ ≈ 270 MeV results, the right one to the previous mπ ≈ 316 MeV.
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Figure 7. Preliminary results for the renormalised chiral condensate, 〈ψ̄ψ〉ren, for the lightest pion.

In this way we could effectively gather statistics of O(60k) trajectories for the 10 β
values around the estimated βc. The order parameter for the chiral transition is the chiral
condensate 〈ψψ〉. A peak in its susceptibility,

σ2
ψψ

= V/T
(
〈ψψ2〉 − 〈ψψ〉2

)
, (10)

signals maximal fluctuations and thus the location of the transition. This is shown in Fig. 6,
corresponding to the lowest mass point in Fig. 3. Unfortunately, the new data do not show
a pronounced peak, only a plateau around β ≈ 3.85. On the other hand, we note that
simulations for β < 3.83 become increasingly unreliable in the current setup, since the
lattice spacing is only known for β ≥ 3.9 and thus the pion mass cannot be held fixed
reliably for smaller values. Clearly, additional simulations are necessary in order to clarify
this issue.

Fig. 7 shows the renormalised chiral condensate4,

〈ψψ〉ren =
〈ψψ〉(T, µ)− 〈ψψ〉(0, µ) + 〈ψψ〉(0, 0)

〈ψψ〉(0, 0)
, (11)

which may serve as an indicator for the transition. Again, the signal for an inflection point
around β ≈ 3.85 is very weak, but consistent with that of the susceptibility.

5 Conclusions

We have developed a lattice QCD code for twisted mass Wilson fermions based on
OpenCL1, CL2QCD, which is able to utilise GPUs and CPUs in a vendor-independent way.
It shows excellent performance on various generations of AMD GPUs. An HMC can be
shown to be up to four times as fast as a reference code running on the CPUs of a whole
LOEWE-CSC node. Currently, we are refining Multi-GPU usage3.

We have used CL2QCD on SANAM together with highly parallel CPU code on
JUQUEEN to investigate the chiral transition in two-flavour QCD at finite temperature.
Unfortunately, the current setup does not allow to investigate the full temperature range
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needed for the transition at the lightest pion mass. Thus, enlarging the temporal extent
Nτ is the next step. In addition, an analysis of the generated data of the Polyakovloop
regarding the deconfinement transition is under way.
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