
P
o
S
(
L
C
P
S
2
0
0
9
)
0
0
2

Supersymmetry at Colliders

Jan Kalinowski
Faculty of Physics, University of Warsaw, Hoża 69, PL-00681 Warsaw, Poland
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Supersymmetry at Colliders

1. Introduction

1.1 Preamble

These lecture notes are not meant to give a self-contained course of supersymmetry (SUSY)
and related phenomenology. It is impossible to cover all these areas in 3 hours of lectures. They
are meant to guide the students through the first steps of learning supersymmetry and help them
understanding basic phenomenology. The discussion will also be limited to global N=1 SUSY.
There are many excellent reviews and text-books that go beyond these limits [1], and the hope is
that these notes will encourage students to broaden the knowledge on their own.

After motivating supersymmetry we discuss its formalism insection 2 with the aim of con-
structing the supersymmetric extension of the Standard Model. The structure of the minimal exten-
sion (MSSM) is the subject of the following section. The restis devoted to phenomenological stud-
ies of SUSY at present and future colliders. Since the parameter space of the MSSM is enormous
which contains different scenarios for particle physics and cosmology, we have to limit ourselves
to the simplest and well-studied that have been performed inthe past. Nevertheless, we will try
to indicate possible branches and give references to followsome alternative routes. After showing
some results of SUSY searches at existing colliders: Tevatron and HERA, the discovery potentials
of the main two LHC detectors: ATLAS and CMS, are briefly reviewed. Assuming that SUSY
is discovered at LHC we will discuss how experimentation at the ILC will help in revealing the
details of the underlying model. Finally we will address thequestion of reconstructing the SUSY
parameters and the mechanism of SUSY breaking.

1.2 Motivation for supersymmetry

The Standard Model (SM) provides a precise comprehensive description of the constituents
of matter and their interactions [2]. It is a renormalisablequantum field theory based on the local
gauge invariance under theSU(3)color ×SU(2)isospin×U(1)hypercharge ≡ SU(3)c ×SU(2)L ×
U(1)Y symmetry transformations. Once∼ 20 input parameters are fixed (coupling constants,
masses and mixing angles of fermions as well as theZ and Higgs boson masses) explicit and
precise calculations can be performed that agree with all experimental observables up to currently
probed scale of∼ 100 GeV. In a sense it is the best fundamental theory we ever had. For more than
thirty years, since the SM was established in the late 1970’s, the experimentalists desperately try to
disprove it. Why then we want to go beyond it?

In spite of all its successes the SM cannot be the ultimate theory. The local isospin and hy-
percharge gauge symmetries have to be spontaneously brokento provide masses to fermions and
electroweak gauge bosons. In the SM the sole source of symmetry breaking is an isospin doublet
of elementary scalar Higgs fields with the mass parameter squared in the Higgs potential,

V (φ) = −µ2|φ|2 + λ|φ|4, (1.1)

arranged to be negative. Sinceµ2 is a renormalisable parameter of the theory, its value including
the sign cannot be computed form the first principles, and assumingµ2 > 0 does the job. In fact
µ the only dimensionfull parameter of the theory that fixes themass scale and to fit the data it
must be of order electroweak scale|µ| ∼ 100 GeV. The problem is thatµ2 receives huge quantum
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Supersymmetry at Colliders

corrections via loop diagrams from every particle that couples to the Higgs field. For example, the
Higgs couples to the SM fermions with a term in the Lagrangian−λfφψ̄fψf and the first order
diagram with a fermion loop yields a correction

δµ2 ∼ −λ2
f

∫

d4k

(

1

k2 −m2
f

+
2m2

f

(k2 −m2
f )

2

)

(1.2)

The first integral is quadratically divergent in the ultraviolet,−λ2
fΛ

2, whereΛ as an UV cutoff up
to which the SM is considered a valid effective theory. What is Λ? If it is of the order the Planck
scaleMP l ∼ 1019 GeV, the correction is some 30 orders of magnitude larger than the required
scale. Even if we pretend the SM valid at any scale and use the dimensional regularisation, in
which quadratic divergences can be avoided, the next term ineq. (1.2) proportional tom2

f , which
is logarithmic divergent, requires fine tuning to be eliminated as well. Here we should contrast the
quantum correction to the scalar field in the above equation to the loop-correction to the fermion
propagator, where the logarithmic divergence is proportional the the fermion mass itself. Thus
the fermion receives a correction controlled by its mass, and even forΛ = MP l, the logarithmic
correction to the fermion mass is modest. The correction to the scalar is controlled by a mass of a
particle circulating in the loop, so is sensitive to the masses of heaviest particles to which the scalar
couples, directly on indirectly. Hence the effects of possible heavy states (with masses well above
currently explored region) on the Standard Model do not decouple and prevent understanding why
µ2 is so low. This is the famous gauge hierarchy problem of the Standard Model.

The origin of the smallness of quantum corrections to fermion masses is linked to the chiral
symmetry of the model. For a massless fermion the Lagrangianis invariant under chiral rotations,
ψ → e−iγ5αψ. In the limit of vanishing bare fermion mass, the quantum correction must vanish,
henceδmψ ∼ mψ, while a scalar field is not protected by any extra symmetry from receiving large
corrections.

There have been proposed many paths to solve the hierarchy problem. One is to admit a
new dynamics (’technicolor’) at a scale close to 1 TeV, in which the Higgs is a composite state
of strongly interacting techniquarks. Today this approachis disfavored since it is at odds with
electroweak measurements. The other path is to invoke a symmetry that would control the size of
quantum corrections. The ’little Higgs’ models rely on global symmetries which protect the Higgs
boson mass against quadratically divergent radiative corrections at one-loop. Models with extra
space dimensions postulate a symmetry that connects a scalar field to a gauge field, whose mass
is forbidden by gauge symmetry. Supersymmetry postulates asymmetry that connects the scalar
field to a fermion field, whose mass is controlled by the chiralsymmetry. In fact, supersymmetry
is the only mathematically self-consistent UV completion of the Standard Model up to a GUT or
Planck scale.

Apart from the hierarchy problem, there are other key questions that the SM does not address:
• why neutrinos are so different from charged fermions?
• what is the origin of matter-antimatter asymmetry?,
• do all forces, including gravity, unify?
• what is the nature of dark matter, dark energy?

All these questions seem to point to new phenomena at a TeV scale which can experimentally be
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Supersymmetry at Colliders

explored soon at the Large Hadron Collider (LHC) and in (hopefully) not too far a future at the
International Linear Collider (ILC).

Although each of the above questions could have different origin, it is interesting to note that
supersymmetry (SUSY) can provide a common base for all of them. Being almost as old as the
SM itself, SUSY [3, 4] still lacks any direct experimental evidence. Why then we do not give up?
We should remember, however, that it took some 40 years (since Fermi’s time) to formulate the
SM, 20 years from theb-quark tot-quark discovery. It was also clear from the beginning that the
required scale to study electroweak theory is TeV, and only after 70 years we are finally getting
there. But most important, SUSY turned to be able to beautifully accommodate or explain (at
least in the technical sense) some of the outstanding problems of the Standard Model, although
it was not invented or designed to do so. For example, SUSY solves the hierarchy problem, ex-
plains the gauge coupling unification, provides the radiative electroweak symmetry breaking. It
predicts the heavy top quark, provides a perfect candidate for dark matter (DM), offers new ideas
on matter-antimatter asymmetry of the universeetc.Moreover, the unique mathematical nature of
supersymmetric theories provides us a telescope to physicsat the GUT/Planck scale where particle
physics meets gravity.

2. Supersymmetry formalism1

2.1 Symmetries

A symmetry is a group of transformations that leaves the action invariant. Symmetries are very
interesting at least for two reasons: First, it seems that nature respects many symmetries. Examples
are symmetries with respect to space translations or rotations. Second, the Noether theorem states
that with each continuous symmetry we can associate a conserved quantity. Symmetry under space
translation and rotation imply conservation of momentum and angular momentum.

In a quantum mechanical system, symmetries are defined by a transformation of a state vector
ψ(~x). For example, under space translations by a vector~a and rotations described by three angles
~ϑ the stateψ(~x) transforms as

ψ(~x) → ψ′(~x) = e−i~a·
~P e−i

~ϑ· ~Jψ(~x). (2.1)

J i andP i (i ∈ {1, 2, 3}) are called the generators of the rotations and translations, respectively.
Although their explicit form depends on the precise nature (spin) of the state, they form an algebra
with a definite set of commutation relations

[P i, P j ] = 0 ,

[J i, Jj ] = i εijk Jk , (2.2)

[P i, Jj ] = i εijk P k .

In the relativistic quantum theory the symmetry group is enlarged to the Poincaré group consisting
of Lorentz transformations and space-time translations

xµ → x′µ = xµ + ωµνxν + aµ. (2.3)

1In preparing the first lecture on SUSY formalism I benefited very much from a recent paper by Adrian Signer [5].
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The transformation of a fieldΦ(x) under the Lorentz transformation and translation of eq.(2.3) can
be written as

Φ(x) → Φ′(x) = ei a
µ Pµ +i ωµν MµνΦ(x). (2.4)

This involves six generators of Lorentz transformationsMµν = −Mνµ, three for rotationsM ij =

εijkJk and three for boostsM0i, and four generators of translations,Pµ, three for spaceP i and
one for timeP 0 translations (where Latin indices run1, 2, 3 Greekµ, ν run 0, 1, 2, 3, and εijk

antisymmetric tensor). Note that the number of coordinateshas also been enlarged from~x to xµ.
Again the explicit form of the generators depends on the nature of the fieldΦ that act on. The
algebra (2.2) in this case is enlarged to the Poincaré algebra

[P ρ, P σ] = 0 ,

[P ρ,Mνσ] = i(gρνP σ − gρσP ν) , (2.5)

[Mµν ,Mρσ ] = −i(gµρMνσ + gνσMµρ − gµσMνρ − gνρMµσ) .

In quantum theory the role of symmetries is even more important: the presence of a conserved
quantity implies the invariance of the action. Apart from space-time transformations there are also
so called internal symmetry transformations. These are nottransformations in the configuration
space, but in the internal space of quantum fields specified bysome parametersαa, ψ → ψ′ =

ei T
aαa

ψ. The generatorsT a satisfy a set of commutation relations
[

T a, T b
]

= i fabcT c , (2.6)

wherefabc are the structure constants of the underlying symmetry group. For example, the con-
servation of the electric charge implies the symmetry of thequantum electrodynamics under the
change of the phase of the electron field (global gauge transformation). Other examples are baryon
number conservation, flavor symmetries or gauge symmetries. Identifying the conserved quantum
numbers and corresponding symmetries is a crucial help in constructing theories of fundamental
interactions.

The above internal symmetries extend the Poincaré symmetryin a trivial way since the genera-
tors of internal symmetries commute with the Poincaré generators. It has been proven by Coleman
and Mandula [6] that any symmetry compatible with an interacting relativistic QFT is of the form
of a direct product of the Poincaré algebra with an internal symmetry, such as gauge symmetry.
However, an implicit assumption in the proof was the bosoniccharacter of generators and their al-
gebra defined by commutation relations. However, when fermionic generators that change the spin
of the state by 1/2 unit are allowed the Coleman-Mandula theorem can be avoided and a non-trivial
extension of the Poincaré algebra, named supersymmetry, achieved [3]. With the field-theoretic
realisation of supersymmetry algebra by Wess and Zumino [4], the detailed exploration of this
symmetry and its application to particle physics has begun.

2.2 Supersymmetry

In quantum theory a symmetry that links a boson with a fermion[7] is generated by a con-
served chargeQα that carries spin-1/2

Qα|boson〉 = |fermion〉α , Qα|fermion〉α = |boson〉 , (2.7)

5
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Supersymmetry at Colliders

whereQα is a Weyl spinor; a four-component Dirac spinor is build fromQα and its Hermitian
conjugateQ̄α̇ = (Qα)†. Here we use a commonly adopted notation thatQ is written with undotted,
and Q̄ with dotted indicesα, α̇ ∈ {1, 2}. The conserved chargeQα implies the existence of a
conserved 4-vector charge defined by

{Qα, Q̄β̇} = 2(σρ)αβ̇Sρ . (2.8)

Coleman and Mandula proved that in the relativistic quantumfield theory if there exisits an addi-
tional conserved 4-vector apart from the 4-momentum, the theory is trivial. Therefore to have a
non-trivial supersymmetry we have to setSρ = Pρ, because the RHS of eq.(2.8) can only vanish
when bothQα andQ̄α̇ annihilate every state in the theory, as can be easily checked by calculating
the expectation value of (2.8) in any state forα = β̇.

If we allow for one set of such fermionic generators, as shownby Haag, Łopuszánski and
Sohnius [8], the supersymmetric extension of the Poincaré algebra takes the form

[Qα, P
ρ] = 0 , (2.9)

{

Qα, Q̄β̇

}

= 2(σρ)αβ̇Pρ , (2.10)

[Mρσ, Qα] = −i(σρσ) βα Qβ , (2.11)

{Qα, Qβ} =
{

Q̄α̇, Q̄β̇

}

= 0 , (2.12)

where(σρ)αβ̇ , (σ
ρσ) βα are defined in the following subsection. One set of such generators corre-

sponds toN = 1 supersymmetry. Adding more sets of fermionic operators we would end up in
N > 1 supersymmetry, which however is ruled out as a low-energy (∼ 1 TeV) extension of the
Standard Model.

SinceQα is a ’square-root’ of the energy-momentum vector, the fermionic operator must act
on every field in the theory. Thus supersymmetry forces us to double number of known particles:
every particle must have a superpartner of opposite statistics and spin different by 1/2. We will see
later that in the supersymmetric extension of the SM we will also have to include a second Higgs
doublet (and their supersymmetric partners).

2.3 Technicalities

In order to be able to construct supersymmetric theories in an efficient way we need to discuss
first some conventions and technicalities. We will follow conventions used in Ref. [5].

In supersymmetric theories it is convenient to work with two-component Weyl spinorsψα, χα, ...
The Hermitian conjugate spinors will be denoted by the bar over the symbol and the dotted index,
i.e. ψ̄α̇ ≡ (ψα)†. If ψα transforms as{1

2 , 0} under Lorentz, then̄ψ transforms as{0, 1
2}. Using the

Pauli matrices we define

(σµ)αα̇ ≡ {1, σ1, σ2, σ3}αα̇ (σ̄µ)α̇β ≡, {1,−σ1,−σ2,−σ3}α̇β . (2.13)

It is easy to check the identity

(σµ)αα̇(σ̄ν)α̇α = Tr(σµσ̄ν) = 2gµν . (2.14)

6
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The Diracγ matrices are then defined as

γµ ≡
(

0 σµ

σ̄µ 0

)

, γ5 ≡ iγ0γ1γ2γ3 =

(

−1 0

0 1

)

, (2.15)

since the usual commutation relations{γµ, γν} = 2gµν is a consequence of (2.14) (we usegµν =

gµν = diag{1,−1,−1,−1}).
The spinor indices can be raised/lowered as follows

ψα = εαβψ
β , ψα = εαβψβ , ψ̄α̇ = εα̇β̇ψ̄

β̇ , ψ̄α̇ = εα̇β̇ψ̄β̇ , (2.16)

where the totally antisymmetricε tensor is defined asε12 = ε21 = −ε21 = −ε12 ≡ 1, 0 otherwise.
Other useful relations are

εαγεγβ = δαβ , εαγε
γβ = δ βα , εαγεβδ = δαδ δ

γ
β − δαβ δ

γ
δ , (2.17)

(σµν) βα ≡ 1
4 (σµσ̄ν − σν σ̄µ) βα , (σ̄µν)α̇

β̇
≡ 1

4 (σ̄µσν − σ̄νσµ)α̇
β̇
, (2.18)

(σµσ̄ν + σν σ̄µ) βα = 2 gµν δβα , (σ̄µσν + σ̄νσµ)α̇
β̇

= 2 gµν δα̇
β̇
. (2.19)

The Dirac four component spinorΨ can be constructed from two Weyl spinorsψ andχ as

Ψ =

(

ψα
χ̄α̇

)

, Ψ =
(

χα , ψ̄α̇
)

, (2.20)

where the bar over a Dirac spinor denotes the usual Dirac adjoint Ψ ≡ Ψ†γ0. Note the different
position of the indices in the above equation.

The chirality projection operators acting on a Dirac spinor

PLΨ ≡ 1
2(1 − γ5)Ψ = ψα , PRΨ ≡ 1

2(1 + γ5)Ψ = χ̄α̇ (2.21)

imply thatψα andχ̄α̇ are, respectively, left- and right-handed Weyl spinors.
We will use the following summation convention for the spinor indices

χψ ≡ χαψα = χαεαβψ
β , (2.22)

χ̄ψ̄ ≡ χ̄α̇ψ̄
α̇ = χ̄α̇ε

α̇β̇ψ̄β̇ . (2.23)

Since the Fermi fields anticommute, we haveχαψα = χαεαβψ
β = −ψβεαβχα = ψβεβαχ

α = ψχ,
and likewiseχ̄ψ̄ = ψ̄χ̄, as needed since these products are Lorentz invariants. Again pay attention
to the different position of the dotted and undotted indicesin the definition of the products.

The Dirac bilinears can now be written in terms of Weyl bilinears. For example, for the Dirac
fields

Φ =

(

λα
φ̄α̇

)

, Ψ =
(

χα ψ̄α̇
)

, (2.24)

the Lorentz covariant expressions can be written in two-component notation as follows:

ΨΦ = χλ+ ψ̄φ̄ = χαλα + ψ̄α̇φ̄
α̇ , (2.25)

ΨγµΦ = χσµφ̄− λσµψ̄ = χα(σµ)αα̇φ̄
α̇ − λα(σµ)αα̇ψ̄

α̇ . (2.26)
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As a result, the standard Lagrangian for a free Dirac spinor can be written in terms of Weyl spinors
as

iΨγµ∂µΨ −mΨΨ = i χσµ∂µχ̄+ i ψσµ∂µψ̄ −mχψ −mψ̄χ̄ , (2.27)

where integration by parts−i (∂µψ)σµψ̄ = i ψσµ∂µψ̄ has been used. In the case of a Majorana
spinor a single Weyl spinor is sufficient

ΨM =

(

ψα
ψ̄α̇

)

, ΨM =
(

ψα, ψ̄α̇
)

, (2.28)

and the standard Lagrangian written in terms of a Weyl spinorreads

i

2
ΨMγ

µ∂µΨM − m

2
ΨMΨM =

i

2

(

ψσµ∂µψ̄ − (∂µψ)σµψ̄
)

− m

2

(

ψψ + ψ̄ψ̄
)

. (2.29)

We also introduce a two-component Grassmann spinor variableθα and its Hermitian conjugate
θ̄α̇

θα =

(

θ1

θ2

)

, θ̄α̇ =

(

θ̄1

θ̄2

)

, (2.30)

with each entry being a Grassmann variable (which can be thought of as an anticommuting com-
plex number),i.e. {θα, θβ} = {θα, θ̄β̇} = {θ̄α̇, θ̄β̇} = 0 (α, β ∈ {1, 2}. The conventions for
raising/lowering indices and products of Grassmann variables are the same as for spinors. For ex-
ample, a product of a Grassmann componentθ1 vanishes,θ1θ1 = 0, but a product of a Grassmann
coordinate with itself isθθ = θ1θ1 + θ2θ2 = −2θ1θ2 and does not vanish. But adding one more
factor ofθα does give zero.

The derivatives with respect to a Grassmann variable are defined as follows:

∂α ≡ ∂

∂θα
, ∂̄α̇ ≡ ∂

∂θ̄α̇
. (2.31)

Using the rules for raising/lowering indices,∂αθβ = −δαβ , ∂̄α̇ ≡ εα̇β̇ ∂̄β̇ , and we find

∂αθ
β = δβα , ∂αθβ = −δαβ , ∂αθβ = εαβ , ∂αθβ = −εαβ ,

∂̄α̇θ̄
β̇ = δβ̇α̇ ; , ∂̄α̇θ̄β̇ = −δα̇

β̇
, ∂̄α̇θ̄β̇ = εα̇β̇ , ∂̄α̇θ̄β̇ = −εα̇β̇ ,

and that the derivatives also anticommute with other Grassmann variables

∂α(θθ) = (∂αθ
β)θβ − θβ(∂αθβ) = δ βα θβ − θβ(−εαβ) = θα + εαβθ

β = 2θα (2.32)

and similarly∂α(θθ) = 2θα, ∂̄α̇(θ̄θ̄) = −2θ̄α̇, ∂̄α̇(θ̄θ̄) = −2θ̄α̇.
Finally, integration with respect to Grassmann variables is defined as

∫

dθ1θ1 = −
∫

θ1dθ1 = 1 ,

∫

dθ1 = 0 , (2.33)

which in practise is the same as differentiation. For convenience we introduce the following nota-
tion

d2θ ≡ −1
4εαβ dθαdθβ , (2.34)

d2θ̄ ≡ −1
4εα̇β̇ dθ̄α̇dθ̄β̇. (2.35)
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2.4 Superspace and superfields

The concept of superspace and superfields, although not necessary, is very useful in building
supersymmetric theories. We extend the configuration spaceto superspace

x = (xµ) → X = (xµ, θα, θ̄α̇). (2.36)

The convenience of introducing superspace can be parallelled to the convenience of introducing
four-vectors~x → x = (xµ) = (t, ~x) when extending the group of space translations and rotations
to a full Poincaré group of symmetry transformations: if allLorentz indices are contracted, the
expression is invariant under Lorentz transformations. Since we added new generatorsQα andQ̄α̇
we will need a matching set of Grassmann coordinatesθα andθ̄α̇. We will take the coordinatesθα
to transform like two-component Weyl spinors.

Note that with the help of Grassmann coordinates we can formally write the super Poincaré
algebra in terms of commutator relations,e.g.eq.(2.10) takes the form

[θQ, θ̄Q̄] ≡ [θαQα, θ̄α̇Q̄
α̇] = 2 θσµθ̄ Pµ (2.37)

Since we have extended the configuration space to superspacewe will consider fields that also
depend on Grassmann coordinates,Φ(X) = Φ(xµ, θα, θ̄α̇). Such fields are calledsuperfields.
Since the product of the same Grassmann variable vanishes, the Taylor expansion in Grassmann
coordinates terminates very quickly. For example, for a superfieldΦ(xµ, θα) we have

Φ(x, θ) = φ(x) +
√

2θαψα(x) − θαθα F (x), (2.38)

i.e. it parameterized by two complex scalarφ(x) andF (x), and one complex spinorψα(x) func-
tions of space-time coordinatesx (a factor

√
2 and a minus sign in eq.(2.38) is a convention). Note

that the mass dimension of the Grassmann coordinate is givenby [θ] = [θ̄] = −1/2 to account
for different dimensions of scalar and spinor functionsφ andψ, whereas for ordinary space-time
components we have[x] = −1. Thus, assuming the mass dimension of the superfield[Φ] = 1, the
mass dimension of the component fields in the above equation are [φ] = 1, [ψ] = 3/2 and[F ] = 2.
Note thatF does not have the usual mass dimension of a scalar field. We will see later that theF
component field is unphysical and is called an auxiliary field.

Now we need to find the transformation properties of super coordinates and superfields under
susy transformations. Consider a SUSY transformation

S(a, ζ, ζ̄) ≡ ei(ζ
αQα+ζ̄α̇Q̄

α̇+aµPµ) (2.39)

parameterized by a four-vectoraµ, and a Grassmann variableζα (for simplicity we neglect Lorentz
boosts and space rotations). Withζ = ζ̄ = 0 the transformation reduces to a translation under
which a quantum field transforms as

φ(x) → S(a, 0, 0)φ(x)S−1(a, 0, 0) = eia
µPµφ(x)e−ia

µPµ = φ(x+ a). (2.40)

The differential form of the momentum operatorPµ = i∂µ is then found by Taylor expanding both
sides of

φ(x+ a) = e−ia
µPµφ(x) (2.41)

9
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and comparing the coefficients of the infinitesimalaµ. One should be aware of a convention com-
monly used for denoting with the same letter different objects. In the above expressionPµ is a
differential operator acting on a functionφ(x), while in eq.(2.40)Pµ is an operator in the Fock
space of field operatorsφ.

Let us repeat the same steps with non-zeroζ, ζ̄ to find the differential forms of the SUSY
generatorsQ andQ̄. Combining two SUSY transformations we obtain

S(a, ζ, ζ̄)S(x, θ, θ̄) = S(xµ + aµ + i ζσµθ̄ − i θσµζ̄, θ + ζ, θ̄ + ζ̄), (2.42)

as can easily be checked by using the Baker-Campbell-Hausdorff formula eAeB = eA+B+[A,B]/2

when[A, [A,B]] = 0. Thus, starting from a pointX = (xµ, θα, θ̄α̇) in superspace, under a SUSY
transformation of eq.(2.42), we have

X → X ′ = (xµ + aµ + i ζσµθ̄ − i θσµζ̄, θ + ζ, θ̄ + ζ̄). (2.43)

Note that even foraµ = 0, a translation is induced under eq.(2.39).
Let us now consider a superfieldΦ(xµ, θα, θ̄α̇) under the SUSY transformation eq.(2.39)

Φ(x, θ, θ̄) → ei(ζ
αQα+ζ̄α̇Q̄

α̇+aµPµ) Φ(x, θ, θ̄) e−i(ζ
αQα+ζ̄α̇Q̄

α̇+aµPµ)

= Φ(xµ + aµ + i ζσµθ̄ − i θσµζ̄ , θ + ζ, θ̄ + ζ̄). (2.44)

Expanding both sides of

Φ(xµ + aµ + i ζσµθ̄ − i θσµζ̄, θ + ζ, θ̄ + ζ̄) = e−i(ζ
αQα+ζ̄α̇Q̄

α̇+aµPµ)Φ(x, θ, θ̄) (2.45)

and comparing the coefficients of the infinitesimal parameters a, ζ andζ̄ we find

Pµ = i∂µ , (2.46)

Qα = i ∂α − σµαα̇θ̄
α̇ ∂µ , (2.47)

Q̄α̇ = −i ∂̄α̇ + θασµαα̇ ∂µ . (2.48)

In the construction of gauge theories a very useful tool is the covariant derivative defined such
that the field and its covariant derivative transform in the same way under gauge transformation.
Therefore we define the covariant derivatives as

Dα ≡ ∂α − i σµαα̇θ̄
α̇ ∂µ D̄α̇ ≡ ∂̄α̇ − i θασµαα̇ ∂µ . (2.49)

We leave to the reader to check that indeedΦ andDαΦ (andDα̇Φ) transform in the same way
under SUSY and that e.g.{Dα, Qβ} = {Dα, Q̄β̇} = 0, or refer to [5].

2.5 Chiral superfields

We have seen that the superfieldΦ(xµ, θα) in eq.(2.38) is parameterized in terms of a complex
functionφ and a chiral spinorψ (and an additional complex scalarF that will turn to be an auxiliary
field). Therefore it can be used to implement the quark or lepton and their scalar superpartners in
a supersymmetric construction. A more general superfieldΦ(x, θ, θ̄) has too many degrees of
freedom for that purpose. To reduce the number of degrees of freedom in a self consistent way

10
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Supersymmetry at Colliders

the covariant derivativesDα and D̄α̇ can be used. A superfieldΦ(x, θ, θ̄) is called aleft-chiral
superfield(LcSF) if D̄α̇ Φ(x, θ, θ̄) = 0. This property is invariant under SUSY transformation. It
is also interesting to note that the product of LcSF is also the LcSF. The right-chiral superfields
(RcSF) are defined by the conditionDα Φ(x, θ, θ̄) = 0. Obviously, ifΦ(x, θ, θ̄) is a LcSF, thenΦ†

is the RcSF.
SinceD̄α̇θ

α = 0 andD̄α̇ y
µ = 0, whereyµ ≡ xµ − i θσµθ̄, the most general function that

satisfies satisfies̄Dα̇ Φ = 0 has the form

Φ(y, θ) ≡ φ(y) +
√

2 θψ(y) − θθ F (y) , (2.50)

√
2 and the minus sign are conventions. Expanding this back inx, θ andθ̄ we obtain

Φ(x, θ, θ̄) = φ(x) +
√

2θψ(x) − iθσµθ̄ ∂µφ(x) +
i√
2
(θθ)(∂µψ(x)σµθ̄)

− 1
4(θθ)(θ̄θ̄)∂µ∂µφ(x) − (θθ)F (x) (2.51)

The spinorsψ of a LcSF willrepresent the left-handed quarks and leptons of a SUSY extension of
the Standard Model and theφ fields their supersymmetric partners, the squarks and sleptons. The
Higgs bosons and their SUSY partners (higgsinos) will also form chiral superfields.

Using the explicit representation ofQ andQ̄ on the LcSF, we find the explicit form of SUSY
transformations of the component fieldsφ(x) → φ(x) + δφ(x) etc..,

δφ =
√

2 ζψ ,

δψα = −
√

2F ζα − i
√

2σµαα̇ζ̄
α̇ ∂µφ , (2.52)

δF = −i
√

2 ∂µψσ
µζ̄ = ∂µ(−i

√
2ψσµζ̄) .

As expected, the change in the bosonic (fermionic) component fields is proportional to the fermionic
(bosonic) fields. The important point is thatδF is a total derivative. Therefore theF component of
the LcSF (or products of LcSF) can be used to construct SUSY Lagrangians. They can easily be
singled out by integrating over Grassmann variables, sincefrom the definition eq.(2.33) we find

F (x) =

∫

Φ(x, θθ̄) d2θ = [Φ(x, θ, θ̄)]θθ , (2.53)

where on the RHS we introduce a common notation to denote theθθ component of the argument.

2.6 Vector superfields

To construct the supersymmetric gauge theory we need a superfield with a spin 1 vector com-
ponentvµ, which is a real field. A superfieldV (x, θ, θ̄) defined by the constraintV (x, θ, θ̄) =

V †(x, θ, θ̄), called avector superfield(VSF), has a required component. ExpandingV in terms of
components we find

V (x, θ, θ̄) = c(x) + i θχ(x) − i θ̄χ̄(x) + θσµθ̄ vµ(x) + i (θθ)N(x) − i (θ̄θ̄)N †(x)

+ i (θθ)θ̄
(

λ̄(x) + i
2∂µχ(x)σµ

)

− i (θ̄θ̄)θ
(

λ(x) − i
2σ

µ∂µχ̄(x)
)

+ 1
2(θθ)(θ̄θ̄)

(

D(x) − 1
2∂

µ∂µc(x)
)

(2.54)
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Supersymmetry at Colliders

Note that the definitionV = V † is invariant under SUSY transformations, as required. The factors
i and some overall signs in the above expansion are simply conventions. The component fieldsc,D
andv are real. Apart from the vector component fieldvµ that we wanted, the vector superfield also
contains two fermions,χ andλ and a whole set of scalar fields. If we assume the mass dimension
of the vector superfield[V ] = 0, the various component fields have dimensions[c] = 0, [χ] = 1/2,
[v] = [N ] = 1, [λ] = 3/2 and[D] = 2. Only v andλ have the expected mass dimensions. As in
the case of the LcSF, all other component fields will turn out to be unphysical. In fact, when we
generalize the gauge symmetry to the supersymmetric case, the component fieldsc, N andλ can
be ’gauged away’.

The transformation properties of the component fields ofV under SUSY transformations can
be found similarly to the case of a LcSF. Here we will limit ourselves to noting that theD(x)

component field transformsD → D + δD with

δD = ζσµ∂µλ̄(x) + ∂µλ(x)σµζ̄ = ∂µ
(

ζσµλ̄(x) + λ(x)σµζ̄
)

. (2.55)

As for theF component field of a chiral superfield, the change in theD field of a VSF is a total
derivative. This will again be exploited in constructing supersymmetric Lagrangians by singling
out theD components

D(x) =

∫

V (x, θ, θ̄) d2θd2θ̄ = [V (x, θ, θ̄)]θθ θ̄θ̄. (2.56)

2.7 Gauge symmetry

In the Standard Model the vector fields are the Yang-Mills gauge fields. Therefore we need to
combine the gauge symmetry with SUSY. Under the local gauge transformation the vector fields
are shifted by a derivative of a scalar gauge functionf ,

vµ → vµ + ∂µf. (2.57)

Recalling that the chiral supermultiplet contains a termiθσµθ̄ ∂µφ(x), eq.(2.51), we can try to
define a gauge transformation of a vector superfield as

V → V ′ = V − iΛ† + iΛ, (2.58)

whereΛ is a LcSF. However, since the mass dimension of a VSF is zero, theΛ superfield has to
have a ’wrong’ mass dimension as well,[Λ] = 0. Therefore its scalar and spinor components must
have mass dimension 0 and 1/2, respectively, and cannot represent physical fields. In fact they can
be chosen to eliminate the unphysical component fields from the vector superfield. If we choose
Λ(x, θ, θ̄) as in eq.(2.51) but with the replacementsψ → −χ/

√
2, F → N andIm(ϕ) → c/2 ,

thenV ′ reduces to a simple expression

V ′ ≡ VWZ(x, θ, θ̄) = θσµθ̄ vµ(x) + i(θθ) θ̄λ̄(x) − i(θ̄θ̄) θλ(x) + 1
2(θθ)(θ̄θ̄)D(x) (2.59)

Thus, in the so calledWess-Zumino gauge, the vector field exposes only four (three invµ one inD)
real bosonic and four real fermionic degrees of freedom. It is reminiscent of the unitary gauge, in
which the unphysical components ofV are ’gauged away’. We should remark however, that this

12
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Supersymmetry at Colliders

gauge choice is not invariant under SUSY transformations. Nevertheless, by a proper choice of a
new gauge transformation the Wess-Zumino gauge can be restored.

Actually, the transformation rule in eq.(2.58) is sufficient for an Abelian gauge group (when
all SF commute). For the non-Abelian group, it turns that to restore gauge invariance of the kinetic
terms of chiral scalars and fermions the definition of the gauge transformation of the VSF has to be
changed to

eV → e−iΛ
†(x) eV eiΛ(x). (2.60)

HereV ≡ V aT a andΛ ≡ ΛaT a with the sum over the gauge indicesa is understood. Of course,
in the Abelian case, where all superfields commute, this is equivalent to eq.(2.58).

2.8 Towards the supersymmetric Lagrangian

When we discussed scalar and vector superfields, the crucialobservation was that theF -terms
of the LcSF’s and their products (i.e. theθθ components) and the D-terms of the VSF’s (theθθ θ̄θ̄

components) under SUSY transform into themselves and a total derivative. Thus if we define a
Lagrangian as a sum ofF - andD-terms,

L = LF + LD (2.61)

the action
∫

d4xL will remain invariant under SUSY transformations. Before we formulate the
supersymmetric extension of the Standard Model in the next chapter, we will consider toy models
with a single chiral matter superfield, a vector field and combining the gauge and matter superfields.

2.9 The Wess-Zumino model of one chiral superfield

Let us consider a single left-chiral superfield

Φ = φ+
√

2 θψ − θθ F. (2.62)

Using the identityθζ θξ = 1
2θθ ζξ it is easy to calculate theF -terms of the products ofΦ,

[ΦΦ]F = −2φF − ψψ,

[ΦΦΦ]F = −3φφF − 2φψψ.

The first line contains a mass term for the Weyl spinorψψ, while the second a Yukawa coupling
of a scalar to a fermionφψψ. TheF -terms of the higher powers ofΦ would be of the mass
dimension >4, and thus non-renormalizable. Restricting tothe renormalizable case, we can define
thesuperpotentialW (Φ) as a polynomial inΦ of degree at most 3,

W (Φ) = aΦ +
1

2
mΦΦ +

1

3!
yΦΦΦ, (2.63)

where the parameters are of mass dimension[a] = 2, [m] = 1 and [y] = 0. The resulting La-
grangian has the form

LWZ,F =

∫

d2θW (Φ) +

∫

d2θ̄(W (Φ))† ≡ [W (Φ)]F + h.c.

= −aF −mφF − m

2
ψψ − y

2
φφF − y

2
φψψ + h.c (2.64)
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and contains the desired terms of a massive Weyl fermion coupled to a massive scalar. Observe
that the fermion and the scalar appear in eq.(2.64) with the same massm, which is a consequence
of SUSY. Another consequence is that we cannot include in thesuperpotential a term of the form
Φ†Φ since itsθθ component does not transform into itself plus a total derivative. In other words,
the superpotential has to be aholomorphicfunction of the LcSF,i.e. it may depend only onΦ but
not onΦ†. If we remember that in the Standard Model masses of all fermions are generated by
the Yukawa terms that involve a Higgsand its Hermitian conjugate, then we see the origin why
in the supersymmetric extension we will have to employ two doublets of Higgses (with opposite
hypercharges) to give masses to up- and down-type quarks.

So far so good, but we also need a dynamical part that would contain kinetic terms as well.
However, since theΦ†Φ term is a vector superfield,(Φ†Φ)† = Φ†Φ, its D-term can be used.
Defining aKähler potentialK = K(Φ†,Φ) asK = Φ†Φ, we find

LD,WZ =

∫

d4θ K = F †F + (∂µφ) (∂µφ)† + i
2 ψσ

µ(∂µψ̄) − i
2 (∂µψ)σµψ̄. (2.65)

As wanted, theD-term gives rise to canonical kinetic terms of theφ and theψ component fields. (A
more general Kähler potential leads to more complicated terms in the Lagrangian, and at a quantum
level it contains information on the wave-function renormalization).

However, the above formula does not contain a kinetic term for theF component field. There-
fore the equation of motion forF (andF †) reduces to an algebraic equation

0 = ∂µ
∂L

∂(∂µF )
− ∂L
∂F

= −∂L
∂F

= −F † + a+mφ+
y

2
φφ, (2.66)

which can be solved

F † = −a−mφ− y

2
φφ ≡ −∂W (φ)

∂φ
(2.67)

and theF andF † components eliminated from the Lagrangian. This is why theF component field
is called an auxiliary and there are no particles associatedwith this field. The terms containingF
andF † in eqs.(2.64) and (2.65) then read

F †F −
(

aF +mφF + y
2 φφF + h.c.

)

= −
∣

∣a+mφ+ y
2 φφ

∣

∣

2 ≡ −
∣

∣

∣

∣

∂W (φ)

∂φ

∣

∣

∣

∣

2

(2.68)

In the above equationsW (φ) is treated as a function of the scalar component fieldφ only, rather
than the full superfieldΦ. In practice it is more useful for writing a Lagrangian in terms of com-
ponent fields. Since thea term can be eliminated by a simple shift of variables, we seta = 0 and
write the Lagrangian in the full glory

LWZ = (∂µφ) (∂µφ)† +
i

2
ψσµ(∂µψ̄) − i

2
(∂µψ)σµψ̄

− |M |2φφ† − |y|2
4
φφφ†φ† − (

m

2
ψψ +

m∗y

2
φφφ† +

y

2
φψψ + h.c.). (2.69)

It describes a system of spin 0 and spin 1/2 particles and three-point and four-point interactions be-
tween scalars and scalar-fermion-fermion Yukawa interactions. The masses of scalars and fermions
and coupling strengths are all related and fully determinedby the superpotential.
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Let us count degrees of freedom of component fields of the chiral supermultiplet. Before elim-
inating theF component field,i.e. off-shell, we have two complex scalarsφ andF , and therefore
4 bosonic degrees, and a Weyl spinor with 4 fermionic degrees. When the equation of motion for
theF component is used,i.e. on-shell, we have two bosonicφ and two fermionicψ degrees of
freedom, so again the number of bosonic and fermionic degrees of freedom match.

The above argument can easily be generalized to a case of several left-chiral superfieldsΦi.
The most general superpotential takes the form

W (Φi) ≡ ai Φi +
1

2
mij ΦiΦj +

1

3!
yijk ΦiΦjΦk, (2.70)

where the sum
∑

ijk over all possible combinations of LcSF is understood andai,mij andyijk are
constants. The resulting Lagrangian reads

LWZ = (∂µφi) (∂µφi)
† +

i

2
ψiσ

µ(∂µψ̄i) −
i

2
(∂µψi)σ

µψ̄i

−
∑

i

∣

∣

∣

∣

∂W

∂φi

∣

∣

∣

∣

2

− 1

2

∂2W

∂φi ∂φj
ψiψj −

1

2

∂2W †

∂φ†i ∂φ
†
j

ψ̄iψ̄j . (2.71)

2.10 Non-renormalization of the superpotential

Let us come back to the point that we started with, namely the absence of quadratically di-
vergent radiative correction to the scalar mass. To simplify things consider the case of a single
superfield, eq.(2.69). First, notice that there are no diagrams that would contribute to the fermion
mass correction; simply, the arrows in the the loops cannot match appropriately. For the one-loop
correction to the scalar mass there are two diagrams: with the scalar circulating in the loop coupled
via the quartic scalar coupling, and with the fermion coupled by the Yukawas. However, since the
masses and couplings are correlated, the two diagrams cancel completely. In this way supersym-
metry does indeed control radiative corrections to the scalar masses.

In fact, it can be shown that not only the mass term but the whole superpotentialW receives
no additive radiative corrections in any order of perturbation theory [9]. Following Shirman [10],
here we give the argument due to Seiberg [11]. It exploits thesymmetries and holomorphy of
superpotential. To this end we define aU(1)R-symmetry that acts on superspace coordinatesθ and
θ̄, θ → eiαθ and θ̄ → e−iαθ̄. If the R-charge ofθ is takenRθ = 1, different components of the
superfields transform differently underR-symmetry. For example, assigning anR-chargeR to the
chiral superfieldΦ in eq.(2.62), its lowest componentφ has the sameR-charge as the superfield
itself, itsθ componentψ hasR-chargeR− 1 and itsθ2 componentF hasR-chargeR− 2.

From the integration rules eq.(2.33) it follows thatRdθ = −1. As a result, kinetic terms of
the Lagrangian arising the from Kähler potential are alwaysinvariant under theR-symmetry since
Φ†Φ andd4θ are real. On the other hand, the full Lagrangian is invariantunderR-symmetry only
if the superpotential transforms with the charge 2,W → e2iαW . Imposing such a requirement
on the superpotential determinesR-symmetry charges of the superfields. However, a consistent
assignment ofR-charges may not exist and thenR-symmetry is explicitly broken by some terms
in the Lagrangian. For example, in a massless Wess-Zumino model of eq.(2.63) witha = m = 0,
assigning anR-charge of 2/3 toΦ gives the Lagrangian invariant underR-symmetry, while with
m 6= 0 there is no charge assignment which leaves the Lagrangian invariant.
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To prove the non-renormalization theorem we promote the superpotential parameters to back-
ground superfields [11]. The model of eq.(2.63) (witha = 0, since as we said,a can be eliminated
by a shift of variables) is considered as an effective low-energy description of a more fundamental
theory in which parametersm andy arise as vacuum expectation values of the lowest components
of heavy superfields (spurions). As a result, with the charges of the dynamical superfieldΦ and
spurions as follows

U(1)R U(1)

Φ 1 1

m 0 −2

λ −1 −3

the theory has aU(1) × U(1)R global symmetry (spontaneously broken by expectation values of
the spurionsm andy).

In this approach superpotential must be described by a holomorphic function of both the dy-
namical and background superfieldsW (Φ,m, y). To have the correct transformation properties
under global symmetries, its form is restricted to be

W =
m

2
Φ2f

(

yΦ

m

)

. (2.72)

In the weak coupling limit the effective superpotential should approach the classical one and there-
fore there should exist a Taylor series expansion off in yΦ/m:

W =
m

2
Φ2

(

1 +
2

3!

yΦ

m
+ O(

y2Φ2

m2
)

)

=
m

2
Φ2 +

y

3!
Φ3 + O(y2) . (2.73)

Thus

f

(

yΦ

m

)

= 1 +
2

3!

yΦ

m
+ O(y2) . (2.74)

Furthermore, them→ 0 limit must be regular, and thereforeW should not contain negative powers
of m. Thus (2.63) is exact [11]. No higher dimension terms are generated. This, in particular,
means that there are no counterterms leading to renormalization ofm or y.

2.11 The gauge sector

The product of the VSF is also a VSF. However, itsD-term, although supersymmetric, does
not provide a kinetic term for the corresponding spin 1 vector field vµ in the Lagrangian. Let us
begin with the Abelian gauge symmetry. To write down kineticterms for the vector superfields we
define a chiralspinorsuperfield

Wα ≡ −1

4
(D̄D̄)DαV , W̄α̇ ≡ −1

4
(DD)D̄α̇V . (2.75)

Wα is a LcSF becausēDα̇D̄D̄ = 0, which impliesD̄α̇Wα = 0. Correspondingly,W̄α̇ is a RcSF.
In terms of component fields it reads (we refer to [5] for details of the calculations)

Wα = −i λα − θθ σν
αβ̇
∂ν λ̄

β̇ − i

2
θβ (σµσ̄ν) βα Fµν + θαD (2.76)
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whereFµν ≡ ∂µvν − ∂νvµ is the usual field strength tensor and the component fields arefunctions
of yµ = xµ − iθσµθ̄. The lowest component field ofWα is a spinor, giving the name to this LcSF.
Note thatWα andW̄α̇ are gauge independent, as suggested by the presence of the field strength
tensor. This can be verified by using the definition ofWα and gauge transformation, eq.(2.58) and
usingD̄α̇ Λ = 0. From the spinor LcSF (and RcSF) we can form the Lorentz scalar by contracting
the spinor indices and find that, indeed, theF -terms[WαWα]θθ+[W̄α̇W̄ α̇]θ̄θ̄ do contain the desired
kinetic terms

1

4
[WαWα]θθ +

1

4
[W̄α̇W̄ α̇]θ̄θ̄ = −1

4
FµνFµν −

i

2
(∂µλ)σµλ̄+

i

2
λσµ(∂µλ̄) +

1

2
D2 (2.77)

for the gauge boson fieldvµ and its fermionic partnerλ.
We already mentioned that theR-charges of matter fields may depend on the model under

consideration. In contrast, theR-charges of the fields in a vector multiplet are uniquely fixed.
IndeedWαWα hasR-charge 2. Since gaugino is the lowest component ofWα its R-charge is1
while theD-term and the gauge fieldvµ are neutral (as expected for real fields).

Since there is no kinetic term forD in eq.(2.77), theD component field is an auxiliary, like the
F component field of the LcSF, and can be eliminated using the equation of motion. First, however,
we need to find all other terms containingD. For an Abelian gauge field, theD component field
of V under gauge transformation obtains a total derivative, as can be seen by inspecting eq.(2.58),
and therefore we can add to the Lagrangian a term

LFI = 2 [ξ V ]θθ θ̄θ̄ = ξ D , (2.78)

whereξ is a constant with mass dimension[ξ] = 2 and the factor 2 is added for convenience. Such
a term is called aFayet-Iliopoulosterm [12] and is important when spontaneous breaking of SUSY
is considered. For the non-Abelian gauge group the FI term isforbidden since the VSFV a, and
theDa component field, carries a group indexa. Nevertheless, when we couple the gauge sector
to the matter superfields, other terms containingD will appear.

Since these lectures are addressed mainly to the experimentalists attending the school, we
refrain from going into details and simply state the results.

For the non-Abelian gauge group we have already introduced the compact notationV ≡ V aT a

for the gauge VSF, whereT a are the generators in the adjoint representation. We also introduce
the short-hand notation for the spinor chiral superfieldsWα ≡ Wa

αT
a andW̄α ≡ W̄a

α̇T
a. Their

definition has to be modified to

Wα = − 1

8 g
D̄D̄ e−2g VDα e

2g V , W̄α̇ ≡ 1

8 g
DD e2g V D̄α̇ e

−2g V , (2.79)

whereg is the gauge coupling constant. In terms of the component fieldsWa
α reads

Wa
α = − i

2
θβ(σ

µσ̄ν) βα F aµν − θθ σµαα̇(Dµλ̄
a)α̇ − i λaα + θαD

a , (2.80)

where the field-strength tensor and the (gauge) covariant derivatives are given by

F aµν = ∂µv
a
ν − ∂νv

a
µ − gfabc vbµ v

c
ν , (Dµλ̄a)α̇ = (∂µλ̄a)α̇ − gfabc (vb)µ(λ̄c)α̇ (2.81)

and the component fields are functions ofyµ = xµ − iθσµθ̄.
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The above expressions make it explicit thatWα (andW̄α̇) is not any more gauge invariant
under non-Abelian transformations. In fact they transformas

Wα → e−2igΛ Wα e
2igΛ , W̄α̇ → e−2igΛ† W̄α̇ e

2igΛ†

, (2.82)

which is analogous to the non-susy case. Therefore the traceover the group indices TrWαWα =
1
2WaαWa

α is gauge and Lorentz invariant, and itsθθ component SUSY invariant. Therefore in the
non-Abelian case the Lagrangian for the pure gauge sector takes the form

Lgauge =
1

4
[WaαWa

α]θθ +
1

4
[W̄a

α̇W̄a α̇]θ̄θ̄ (2.83)

Let us now add a set of LcSFΦi that transform under a certain representation of the gauge
group asΦ → Φ′ = e2igΛΦ, or more explicitly

Φi → Φ′
i =

(

e−2igΛaTa)

ij
Φj , (2.84)

with the generatorsT a in the corresponding representation. For the Hermitian conjugate SF we
haveΦ† → Φ′† = Φ† e2igΛ

†
. SinceΛ is a set of LcSF,Λ† is a RcSF, and the Kähler potential

transforms non-trivially

Φ† Φ → Φ′† Φ′ = Φ† e2igΛ
†(x) e−2igΛ(x) Φ 6= Φ† Φ (2.85)

because for a local transformationΛ(x) 6= Λ†(x). The remedy is to redefine the kinetic part for the
chiral superfields as

Φ†Φ → Φ† e2gV Φ, (2.86)

where the group indices are understood. Then the Lagrangianreads

L =
1

4
[WaWa]θθ +

1

4
[W̄aW̄a]θ̄θ̄ + [Φ† e2g V Φ]θθ θ̄θ̄ + [W (Φ)]θθ + [W †(Φ†)]θ̄θ̄ (2.87)

In terms of the component fields for the chiral superfieldsΦi transforming under the gauge group
with the gauge vector superfieldsV a

WZ for a general gauge group with the generatorsT aij satisfying
[T a, T b] = ifabcT c algebra, it takes the form

L = (Dµφ)†i (D
µφ)i +

i

2
ψiσ

µ(Dµψ̄)i −
i

2
(Dµψ)iσ

µψ̄i

− 1

4
F aµν(F

a)µν +
i

2
λaσµ(Dµλ̄)a − i

2
(Dµλ)aσµλ̄a

−
√

2ig ψ̄iλ̄
aT aijϕj +

√
2ig φ†iT

a
ijψjλ

a

− 1

2

∂2W

∂φi∂φj
ψiψj −

1

2

∂2W †

∂φ†i∂φ
†
j

ψ̄iψ̄j − V (φi, φ
†
j) (2.88)

The scalar potential is the sum of theF -terms andD-terms and reads

V (φi, φ
†
j) = F †

i Fi +
1

2
(Da)2 =

∑

i

∣

∣

∣

∣

∂W

∂φi

∣

∣

∣

∣

2

+
1

2

∑

a

(g φ†i T
a
ij φj + ξa)2. (2.89)

The Fayet-Iliopoulos termLFI = 2
∑

a ξ
a[V a]θθ θ̄θ̄ can be present only forU(1) gauge factors, and

W is the most general superpotential consistent with the assumed gauge symmetry.
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Supersymmetry at Colliders

3. The Minimal supersymmetric extension of the Standard Model

3.1 Particle content

The minimally supersymmetrized SM is uniquely defined: the particle content and couplings
are fixed with no new parameters introduced. Each SM particlep has a partner with the same
quantum numbers but with spin differing by 1/2 – called a spartner and denoted by a tilde over the
symbol p̃. Following a common convention of considering the left-chiral Weyl fermions as basic
particles, the left-chiral quarks and leptons (doublets under SU(2)L) and left-chiral antiquarks
and antileptons (singlets underSU(2)L) are assigned to be fermions in the corresponding left-
chiral superfieldsQ,L andU c, Ec, respectively. There are three copies of the quark and lepton
superfields, one for each generation. The right-chiral fermions are the conjugates of the left-chiral
antifermions. Here the chirality refers to the transformation properties under the weakSU(2)L
gauge group. For a massless fermion chirality is equivalentto helicity, while for the spinless
sfermions such a parallel does not exist.

The gauge bosons are placed in the vector supermultiplet andeach one is accompanied by a
spin 1/2 Weyl fermion called a gaugino. Thus we have gluinos,winos and a bino as superpartners
of the gluons and electroweakW andB gauge bosons.

We already mentioned that in the supersymmetric version we will need two doublets of the
Higgs fields to give masses to both up- and down-type fermions. However, there is another argu-
ment why we need an even number of Higgs doublets which is related to the axial vector anomaly
cancelation. In the SM the anomaly cancels non-trivially between the quarks and leptons. When
we promote a Higgs field to a superfield it comes with its fermion partner (higgsino). Each hig-
gsino makes a non-zero contribution to this anomaly. These contributions cancel if we include pairs
of higgsinos with opposite hypercharges. The minimal supersymmetric standard model (MSSM)
employs two Higgs doublet superfieldsH1,H2 with hypercharges−1/2, +1/2, respectively, con-
taining scalar Higgses accompanied by spin 1/2 higgsinosH̃1, H̃2.

3.2 Construction of the MSSM Lagrangian

Once the choice of the gauge groupSU(3)c × SU(2)L × U(1)Y and the content of the mat-
ter chiral fields with definite quantum numbers has been made,the kinetic terms and the gauge
couplings of the MSSM Lagrangian are fully determined by supersymmetry. The Lagrangian is a
sum of terms of the form eq.(2.87). The only parameters that need to be introduced are the gauge
couplingsg1, g2 andg3. Also the superpotentialW has to be specified. Since it provides the source
for non-linear scalar-fermion-fermion couplings, we should include the appropriate terms that pro-
vide the right Yukawa couplings to generate fermion masses via the spontaneous gauge symmetry
breaking. The superpotential has to bo holomorphic in LcSF.

The right choice is

W = hEH1LE
c + hDH1QD

c + hUH2QU
c − µH1H2 (3.1)

where color, SU(2) and generation indices are suppressed. HereL,Ec,Q,Dc, U c,Hi denote left-
chiral superfields with self-obvious (s)particle content,hi are the corresponding Yukawa couplings
(matrices in the generation space). Apart from the trilinear terms withhi, the term with dimension-
full Higgs(ino) mass parameterµ is gauge invariant and can be included inW . Actually this is the
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Supersymmetry at Colliders

only parameter of mass dimension 1. Since this is in the superpotential, it does not receive additive
radiative corrections. If it is set to zero, a higgsino statewould be massless and should have been
already detected. So it is needed for phenomenological reasons.

In principle the superpotential can contain other terms

W 6R = λabdLaLbE
c
d + λ′abdLaQbD

c
d + εaLaH2 + λ′′abdU

c
aD

c
bD

c
d (3.2)

with the generation indicesa, b, d explicitly written. The first three terms generate lepton-number
(L) and the last term baryon-number (B) violating interactions in the Lagrangian. In SM such
interactions are forbidden by Lorentz invariance and particle content. In the SUSY version with
scalar superpartners, such interactions are fully consistent with all symmetries. Phenomenologi-
cally the presence of both L- and B-number violating interactions is disastrous since it leads to fast
proton decay. The simplest, and most popular, solution is tosuppress allW 6R terms by imposing a
symmetry, calledR-parity [13], defined as

Rp = (−1)3B−L+2s (3.3)

ImposingR-parity has important consequences: sparticles are created in pairs in particle collisions,
among the decay products of a sparticle there is always a sparticle, and the lightest sparticle (LSP) is
stable. This makes the LSP, in many SUSY models the lightest neutralino, an attractive candidate
for the dark matter particle – which is one of the most welcomefeatures of the supersymmetric
extension of the SM.

Negative results of SUSY searches indicate that sparticlescannot be degenerate in mass with
corresponding particles and supersymmetry must be broken.Since no viable model of SUSY
breaking within the MSSM itself can be constructed, the mostpopular scenario is to invoke the so-
calledhidden sectorwhere spontaneous supersymmetry breaking occurs and with the help of some
messenger fields it is mediated to the visible sector generating in the MSSM Lagrangian terms that
break SUSY explicitly. To maintain the cancelation of quadratic divergencies needed for solving
the hierarchy problem, SUSY breaking terms must besoft, i.e. of dimension less than 4. The most
general form of soft terms includes gaugino (λ̃a) and scalar (φi) masses (Ma, M2

ij), and scalar
bilinear (bij) and trilinear (Aijk) couplings [14]

−Lsoft =
1

2
M2
a λ̃aλ̃a +M2

ijφ
†
iφj + bijφiφj +Aijkφiφjφk + h.c. (3.4)

Before SUSY breaking terms have been introduced, the supersymmetric Lagrangian contained as
parameters only the gauge and Yukawa couplings and theµ mass parameter. AddingLsoft brings
in 105 new parameters The unconstrained MSSM (uMSSM) is usually understood as an effec-
tive low-energy model at a TeV scale defined by three assumptions: a) minimal particle content,
b)R-parity conservation, c) most general soft-supersymmetrybreaking terms. The number of pa-
rameters could be further enlarged by relaxing a) and/or b),or reduced by constraining c) with
additional assumptions on SUSY breaking mechanism.

After the gauge symmetry breaking, the superpotential generates terms that mix the elec-
troweak gauginos and higgsinos giving rise to mass eigenstates: two charged (charginos̃χ±

1,2) and
four neutral (neutralinos̃χ0

1,2,3,4). The particle content of the MSSM is illustrated in fig.1. For the
complete list of Feynman rules of the MSSM we refer to Rosiek [15]
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Figure 1: Particle and sparticle content of the MSSM

As the soft SUSY breaking is explicit, the Appelquist-Carazzone theorem [16] applies to the
superpartner spectrum. Thus, SUSY virtual effects disappear at least as an inverse of the SUSY
breaking scale,O(1/MSUSY ), and can naturally be arranged compatible with the electroweak
(EW) precision data. It is nevertheless interesting to notethat global fits to EW and DM data [17],
at least in the constrained MSSM (defined below), usually referred to as mSUGRA, point to a
rather low values of SUSY breaking parameters [18], which interestingly enough are close to the
benchmark point SPS1a of [19]. Together with the strong indication for a light Higgs boson it fuels
hopes for a discovery of the Higgs boson(s) and at least some of supersymmetric particles at the
LHC.

However, with that many new parameters it is hard to accept the unconstrained MSSM as
a fundamental theory. Moreover, in most of the 105-parameter space the model exhibits phe-
nomenologically bad features, like unsuppressed FCNC and CP-violating phenomena, color or
charge breaking vacuaetc.The MSSM is viable only in some regions of the parameter spacewith
a certain degree of universality.

Since the gauge coupling unification suggests that physics might be simpler at or near the
unification scale, renormalization-group equations (RGE)can be used to provide the link between
low- and high-scale theories. In thetop-downapproach a plethora of theoretical scenarios of hid-
den sectors and mediation of SUSY-breaking has been examined, like gravity-, gauge-, anomaly-,
mixed-, ..., mediation. Then the RGE are used to derive the low-energy MSSM parameters. It turns
out that phenomenological Lagrangian depends crucially only on gross features: which hidden-
sector fields develop the largest F- or D-term vacuum expectation values, what is the mediation
mechanism, what are dominant effects producing hidden-visible sector couplings: at tree level,
or loop-inducedetc.As a result, each scenario can be characterized by a handful of independent
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parameters which makes the phenomenological analyses of low-energy theory much simpler and
more predictive. For example, the mSUGRA scenario mentioned above is defined by universal
scalar (M0) and gaugino (M1/2) masses and universal trilinear (A0) scalar couplings at some uni-
fication scale, while the universal bilinear parameter is traded for the ratio of the Higgs vacuum
expectation valuestan β = v2/v1 from the condition of reproducing the correct mass of theZ-
boson, and sign of the higgsino-mass parameterµ .

However the top-down approach may be too restrictive: the phenomenologically viable region
of the parameter space is larger than any RGE-derived regionof the above scenarios. Moreover,
our imagination of devising high-scale supersymmetry-breaking scenarios is certainly limited.

At present only the experimental limits on the parameter space can be used to gain some insight
on the SUSY breaking. The non-discovery of SUSY and a light Higgs boson at LEP2, Tevatron and
HERA puts the solution of the naturalness problem in a subtleposition: fine tuning of order a few
percent is required to reproduce the EW scale and evade experimental constraints. This problem,
called the supersymmetric fine-tuning, has attracted much attention and is one of the main driving
forces to go beyond the MSSM2

Once supersymmetry is discovered, we will have to face the problem of reconstructing the low-
energy supersymmetry Lagrangian parameters from experimental measurements with minimum of
theoretical assumptions. Only then in thebottom-upapproach [20] we can attempt use the RGE as
a telescope to explore the high-energy physics by exploiting the low-energy experimental input to
the maximum extent possible.

4. Phenomenology of SUSY at colliders3

At present the most restrictive direct limits on the SUSY parameter space come from negative
results of SUSY searches at two colliders: Tevatron at Fermilab and HERA at DESY. HERA
already finished its operation in 2007, but Tevatron still collects new data. With the start of the
LHC at the end of 2009 significant improvements, and hopefully many new discoveries can be
expected in coming months and years.

4.1 SUSY searches at Tevatron and HERA

The Tevatron experiments have investigated various SUSY scenarios: a more or less con-
strained MSSM with a neutralino LSP assumed - bothR-parity conserving and violating cases
have been considered; gauge-mediated SUSY breaking (GMSB)with a gravitino LSP and a neu-
tralino NLSP (next-to-lightest SUSY particle); anomaly-mediated SUSY breaking (AMSB) with a
wino LSP and a long-lived chargino; split-SUSY with heavy scalars and a long-lived gluino. Be-
cause of lower kinematic reach, the HERA experiments concentrated on single sparticle production
processes in theR-parity violated cases: light stop production in uMSSM; squark production in
mSUGRA; gaugino production in uMSSM and GMSB. Below only selected results are presented;
more results can be found in Ref.[21].

2The discussion of Beyond MSSM is beyond the scope of these lectures.
3This chapter is based on the updated version of my lectures given at the APCTP Summer Institute 2006 in Pohang,

August 23-30, 2006, Korea, http://apctp.org/conferences/SI2006/index.htm.
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Figure 2: Exclusion plots in the plane of generic squark and gluino masses.

If squarks are lighter than gluinos, they are expected to decay according tõq → qχ̃0
1, while

gluinos, if they are lighter that squarks, are expected to decay according tõg → qq̄χ̃0
1. Pair pro-

duction of light squarks leads to≥ two jets; pair production of light gluinos leads to≥ four jets;
the associated production of a squark and a gluino of similarmasses leads to≥ three jets. Pos-
sible cascade decays, for exampleq̃ → q′χ̃±, complicate the picture and a specific model, such
as mSUGRA, is needed to interpret the search results. Multi-jet events with fake missingET due
to jet energy mismeasurements and the associated production ofW+jets with missed lepton from
W → `ν constitute instrumental background, while irreducible comes from the associated produc-
tion of Z+jets withZ → νν̄. The generic search assumes a number of cuts on: minimum number
of jets, missingET , and the sum of jet transverse energies, a veto on isolated leptons, and cuts on
angles between the missingET and jet directions. The inclusive search for squarks and gluinos has
been performed by CDF and D0 with data samples of about 2 fb−1. Since no excess is seen in data
over expected background, exclusion domains in the plane ofthe squark and gluino masses have
been computed, Fig. 2. Masses below < 280 GeV (CDF), <308 GeV (D0) for gluino, and <380
GeV (CDF,D0) for squarks, are excluded [22].

Electron-proton collisions at HERA are well suited to the search for squarks, since such states
can be produced by an appropriate coupling of the incoming lepton and a quark in the proton.
Events with isolated high-pT leptons, jet(s) and missing energy, have been observed at HERA in
e+p collisions, and created a lot of excitement. With the increased statistics no significant deviation
from the SM has been observed, and exclusion limits were determined in the framework of the
MSSM [23]. Nevertheless, some puzzling H1 events with isolated muons, not easily explained by
the SM mechanisms, still invite speculations on their origin [24].

4.2 Expectations at the LHC

The strongly interacting squarks and gluinos (q̃ andg̃), with masses in the TeV range, will be
copiously produced at the LHC. Their production cross sections (typically in the picobarn range)
are comparable to cross sections of jets with transverse momentapt ∼ SUSY masses. Rates of
directly produced weakly interacting sparticles are much lower. Squarks and gluinos will promptly
decay into jets and lighter SUSY particles which will further decay. Their decay chains are model
dependent, but generically one can expect in the final state high-pt jets and leptons, possibly large
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missing energy6Et, or displaced verticesetc.Since the LHC detectors are designed to detect jets,
isolated leptons and photons, displaced vertices, measureenergies and transverse momenta and
missing transverse energy, they are well equipped to cover abroad spectrum of possible decay
modes of SUSY particles. There have been many experimental analyses demonstrating the capa-
bilities of LHC detectors ATLAS and CMS [25, 26], to which we refer for details.

4.2.1 Inclusive searches at LHC

Sparticle production inpp collisions at the LHC is dominated bỹq and g̃. Leptonic decays
may or may not be large but jets are always produced with transverse momentapt of the order
of sparticle masses. If the LSP is stable, as in scenarios with R-parity conserved, it will escape
undetected giving large6Et. The SM background events from top quark,W andZ boson decays do
not have such high-pt objects.

Motivated by these observations, a set of simple cuts can be designed to enhance the signal
over the background in inclusive “transverse” searches forSUSY particles. For example, it has
been demonstrated [25] that in typical mSUGRA scenarios, requiring at least four jets with large
pit and large

Meff =
∑

i=1,...4

pit+ 6Et (4.1)

and selecting events spherical in the transverse plane (where specific cuts on6Et, pit, Meff and
sphericity depend on details of the model) can be sufficient to discover new particles. To reduce
the background further, hard, isolated lepton(s) may be required and theirpt is then included in the
definition ofMeff . The reach of inclusive searches at 10−1 fb is illustrated in Fig. 3; and squarks
and gluinos with masses up to∼ 2.5 TeV can be found at LHC with 100 fb−1. Monte Carlo studies
have also shown that the position of the peak inMeff distribution correlates quite well with sparticle
masses, namelyMeff ∼ min(mq̃,mg̃), providing a first estimate of the overall SUSY mass scale,
Fig. 3 right panel.
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Figure 3: ATLAS and CMS search limits for various channels in the mSUGRA parameter space (left and
middle).Meff distribution for a mSUGRA point and SM background after cuts.

When the sparticle masses become degenerate a reduced probability of events with highpt
jets is then expected as well as lowerMeff and 6Et making them less “transverse”. This means that
standard SUSY cuts reduce the signal sample and SUSY discovery is more affected by the SM
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background. Ife.g.mχ̃0

1

>∼ mq̃,g̃/2, the signalMeff distribution becomes quite similar to that of the
background. However, it has been found [27] that the SUSY signal in the degenerate case exhibits
a special universal pattern inMeff and 6Et plane which may help to identify the signal region and
discriminate signal from background better.

While otherR-parity conserving models of SUSY breaking are quite different, like the anomaly-
mediation, the reach inmq̃, mg̃ is similar∼ 2 TeV. It follows from the fact that the overall reach
depends mainly on the production cross section as long as there are sufficiently large mass gaps
between sparticle masses.

4.2.2 Sparticle mass measurements

If R-parity is conserved, all SUSY particles decay into invisible LSP, so no mass peaks can
be identified. Nevertheless, it might be possible to identify particular decay chains and exploit
the “endpoint method” to measure combinations of masses [28]. For example, a relatively clean
channel is provided by the three-body decay or, if the slepton can be on-shell, the cascade of two-
body decays of the heavier neutralino

χ̃0
i → (˜̀̀ ) → ``χ̃0

1 (4.2)

The di-lepton mass distribution endpoints depend on the sparticle masses

m``(3-body) = mχ̃0

i
−mχ̃0

1

(4.3)

m``(2-body) =
√

(m2
χ̃0

i

−m2
˜̀)(m

2
˜̀ −mχ̃0

1

)/m˜̀ (4.4)

The events can be searched for by requiring two isolated leptons in addition to multi-jet and6Et
cuts like those described above. If lepton flavors are separately conserved, then contributions from
two uncorrelated decays cancel in the combination ofe+e− + µ+µ− − e±µ∓ giving a very clean
signal and allowing a precise endpoint measurement. The shape of the distribution also allows us
to distinguish two-body from three-body decays.

Long decay chains allow more endpoint measurements. For example, in the SPS1a mSUGRA
scenario the following decay chain

g̃ → j1q̃ → χ̃0
2j1j2 → ˜̀̀

1j1j2 → χ̃0
1`1`2j1j2 (4.5)

can be exploited. With two jets and two leptons in the final state it should be possible to measure
the endpoints of invariant mass distributions``, ``j, `j. These endpoints are smeared by jet re-
construction, hadronic resolution, and miss-assignment of the jets that come from squark decays.
Nevertheless, it has been shown [29] that for the integratedluminosity of 300 fb−1 these endpoints
should be measured at the level of 1%,i.e. determining mass relations to 1-2%. In fact, with so
many endpoints one can solve for the absolute values of the unknown masses of̃g, q̃, χ̃0

2, ˜̀andχ̃0
1

within 5–10% accuracy. This is a general feature of the determination of sparticle masses when
the LSP momentum cannot be measured directly. Nevertheless, O(5)% accuracy in the mass of
sleptons and the lightest neutralino provides a link to cosmology. With this information one can
calculate the neutralino annihilation rate at the time of decoupling and estimate the amount of DM
at the level of 7% [30].
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It is notable that the LHC can access the mass of the heaviest neutralino χ̃0
4 which in this

model is too heavy to be produced at the 500 GeVe+e− collider. The measured mass difference
mχ̃0

4

−mχ̃0

1

, in the same decay chain as in eq.(4.5), but withχ̃0
4 replacingχ̃0

2, directly constrains the
µ parameter. The errors for the MSSM Lagrangian parameters would significantly be reduced if the
measurements at the LHC and ILC could be combined [31]. The LHC/ILC interplay is even more
important in scenarios with heavy sparticles, like in the cosmology-motivated focus-point scenario
[32] in which only limited amount of complementary information from each collider alone can be
exploited [33].

If the LSP mass could be measured at the ILC, then errors on thesparticle masses would
be reduced significantly, to∼1% for squark and gluino masses (dominated by the 1% jet scaling
error), and well below 1% level for weakly interacting sparticles in the SPS1a scenario [34]. In
such a case the collider-based calculations of the DM could match the expected accuracy of the
Planck probe [35] providing a strong consistency test of particle physics and cosmology.

The mass determination through the endpoint method has several shortcomings: the LSP mo-
mentum cannot be reconstructed except for a few very specialpoints in the parameter space, only
events near endpoints are used neglecting independent information contained in events away, and
the selected events may contain contributions from severalcascade decays causing additional sys-
tematic uncertainties. These problems can be ameliorated by using the “mass relation” method [36].
In this method the on-shell conditions for sparticle massesin the decay chain are used to solve for
the kinematics and reconstruct the SUSY masses as peaks in certain distributions. For example, in
the cascade decay eq.(4.5) five on-shell conditions can be written for g̃, q̃, χ̃0

2, ˜̀andχ̃0
1 in terms of

the measured momenta of leptons, jets and 4 unknown momentumcomponents of the undetected
neutralino. Each event, therefore, spans a 4-dim hypersurface in a 5-dim mass space, and in princi-
ple 5 events would be enough to solve for masses of involved sparticles. Note that events need not
be close to endpoints of the decay distributions,i.e. the method can be used even if the number of
signal events is small.

4.2.3 Is it SUSY?

After careful calibration of LHC detectors and years of collecting data and determining masses
of new particles, can we be sure that we see sparticles? Establishing SUSY at the LHC will require
not only to discover new particles, measure their masses, decay branching ratios, production cross
sections, but also to verify that they are superpartners,i.e. measure their spins and parities, gauge
quantum numbers and couplings. A generic weak-scale SUSY signal of large6Et arises in almost
any model with the lightestO(100 GeV) particle stable and neutral, as suggested by the dark matter
of the universe. Therefore, we should be able to distinguishthe SUSY decay chain eq.(4.5) from,
e.g., the cascade decay

g′ → j1q
′ → Z ′j1j2 → `′`1j1j2 → γ′`1`2j1j2 (4.6)

that arises in the universal extra-dimension model (UED) [37]. Here the primes denote the first
excited Kaluza-Klein states of the corresponding SM particles with the mass spectrum similar to
the SUSY case. In both cases the final state is the same`1`2j1j2 with either theχ̃0

1 or theγ′ escaping
detection. What differentiates the decays in eqs.(4.5,4.6) is the spins of intermediate states and the

26



P
o
S
(
L
C
P
S
2
0
0
9
)
0
0
2

Supersymmetry at Colliders

chiral structure of couplings. Note that in contrast to the UED case, the SUSY particles are naturally
polarized in many processes. For example, in the sub-chainq̃L → χ̃0

2qL → ˜̀
R`Rq → χ̃0

1``q the
χ̃0

2 is polarized as right-handed, opposite toqL, because thẽqχ̃q Yukawa coupling flips chirality.
The polarized neutralino further decays into either˜̀

R`
+ or ˜̀∗

R`
− with equal rates (because of the

Majorana character of neutralinos). However, due to the chiral nature of the Yukawà̃χ̃` coupling,
the`+ is likely to fly in the neutralino direction in the squark restframe, while thè− in the direction
of the quark jet. The difference in the angular distributionis reflected as a charge asymmetry in the
invariant mass distribution of the jet-lepton system [38].

Figure 4: Detector-level charge asymmetries with
respect to the jet+lepton rescaled invariant mass,
for UED- (left) and SUSY-like (right) mass spec-
tra. Dashed: SUSY. Solid/red: UED.

Although the charge asymmetry forq̃∗L decay is just opposite, inpp collisions more squarks
than anti-squarks are expected and theχ̃0

2 production from squark decays is dominant. The amount
of charge asymmetry in them(j`) is model dependent, Fig. 4. Nevertheless it remains allowing
to resolve the fermionic nature of the neutralino from the vector nature of theZ ′ and confirm the
chiral structure of couplings [39, 40]. Certainly, new ideas to exploit specific features of SUSY at
the LHC, for example how to measure the jet charge, are very much welcome.

4.3 Searches at linear colliders

If the superpartner masses (at least some of them) are in the TeV range, LHC will certainly
see SUSY. Many different channels, in particular from squark and gluino decays will be explored
and many interesting quantities measured, as discussed in the previous chapter. However, to prove
SUSY one has to scrutinize its characteristic features in asmodel-independent a way as possible.
We will have to:

- measure sparticle masses, their decay widths, productioncross sections, mixing angles etc.,
- prove they are superpartners: check their spin, parity, quantum numbers and couplings,
- reconstruct the low-energy SUSY breaking parameters withminimum assumptions,
- and ultimately shed light on physics at the high (GUT?, Planck?) scale.

In answering all the above points ane+e− LC would be an indispensable tool [41]. First, the LC
will provide independent checks of the LHC findings. Second,thanks to the LC unique features:
clean environment, tunable collision energy, high luminosity, polarized incoming beams, and pos-
sibly e−e−, eγ andγγ modes, it will offer precise measurements of masses, couplings, quantum
numbers, mixing angles, CP phases etc. Last, but not least, it will provide additional experimental
input to the LHC analyses, like the mass of the LSP. Coherent analyses of data from the LHCand
LC would thus allow for a better, model independent reconstruction of low-energy SUSY param-
eters, and connect low-scale phenomenology with the high-scale physics. The interplay between
LHC and LC is investigated in detail in the LHC/LC Study Group[42].
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An intense R&D process and physics studies since 1992 has lead to world-wide consensus
that the next high energy machine after the LHC should be an International Linear Collider (ILC).
Planning, designing and funding the ILC requires global participation and global organization.
Therefore the Global Design Effort for the ILC [43], headed by Barry Barish, has been established
with the goal of producing an ILC Reference Design Report by the beginning of 2007, an ILC
Technical Design Report by the end of 2008 and be ready for construction around 2010. The ILC
baseline design foresees:

- CM energy adjustable from 200 to 500 GeV, and atMZ for calibration,
- integrated luminosity of at least 500 fb−1 in first 4 years,
- beam energy stability and precision below 1%,
- electron beam polarization of at least 80%,
- upgradeability to CM energy of 1 TeV.

The choice of options, like GigaZ (high luminosity run atMZ ), positron polarization,e−e−, eγ or
γγ, will depend on LHC+ILC physics results.

Many detailed physics calculations and simulations have been performed and presented during
numerous ECFA, ACFA and ALCPG workshops and LCWS conferences [44]. Below only some
highlights are presented. For more examples and referencesI refer to my reviews [45].

4.3.1 Mass measurements

Sparticle masses can be measured in threshold scans or in continuum. For first 2 genera-
tions, whereR-L mixing can be neglected, the shape of the production cross section near thresh-
old is sensitive to the masses and quantum numbers. For example, for selectrons and smuons,
µ̃+
L µ̃

−
L , µ̃

+
Rµ̃

−
R , ẽ

+
L ẽ

−
L and ẽ+R ẽ

−
R pairs are excited in a P-wave characterized by a slow rise of the

cross sectionσ ∼ β3 with slepton velocityβ. On the other hand, ine+Le
−
L / e

+
Re

−
R → ẽ+Rẽ

−
L / ẽ

+
L ẽ

−
R

ande−Le
−
L / e

−
Re

−
R → ẽ−L ẽ

−
L / ẽ

−
R ẽ

−
R sleptons are excited in the S-wave giving steep rise of the cross

sectionsσ ∼ β. The expected experimental precision requires higher order corrections, and finite
sfermion width effects to be included. Examples of simulations for the SPS1a point are shown in
Fig. 5 [46]. Using polarizede+e− beams and 50 fb−1 the ẽR mass can be determined to 2 per mil;
the resolution deteriorates by a factor of∼ 2 for µ̃+

Rµ̃
−
R production. Fore−Re

−
R → ẽRẽR the gain

in resolution is a factor∼ 4 with only a tenth of the luminosity, compared toe+e− beams. Above
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Figure 5: Cross sections at threshold for the re-
actionse+

L
e−

R
→ ẽ+

R
ẽ−

R
(left) ande−

R
e−

R
→ ẽ−

R
ẽ−

R

(right) in the SPS1a scenario, including back-
ground. Error bars correspond to a luminosity of
10 fb−1 (left) and 1 bf−1 (right) per point.

the threshold, slepton masses can be obtained from the endpoint energies of leptons coming from
slepton decays. In the case of two-body decays,˜̀− → `−χ̃0

i and ν̃` → `−χ̃+
i the lepton energy

spectrum is flat with endpoints (the minimumE− and maximumE+ energies)

E± = 1
4

√
s (1 ± β)(1 −m2

χ̃/m
2
˜̀) (4.7)
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providing an accurate determination of the masses of the primary slepton and the secondary neu-
tralino/chargino.

Simulations of thee andµ energy spectra of̃eRẽR andµ̃Rµ̃R (respectively) production, includ-
ing beamstrahlung, QED radiation, selection criteria and detector resolutions, are shown in Fig. 6
assuming mSUGRA scenario SPS1a [47]. With a moderate luminosity of 200 fb−1 at

√
s = 400

GeV one findsmẽR
= 143± 0.10 GeV,mµ̃R

= 143± 0.10 GeV andmχ̃0

1

= 96± 0.10 GeV from
selectron, ormχ̃0

1

= 96 ± 0.18 GeV from smuon production processes. Assuming the neutralino
mass is known, one can improve slepton mass determination bya factor 2 from reconstructed kine-
matically allowed minimummmin(˜̀). The partner̃µL is more difficult to detect because of large
background fromWW pairs and SUSY cascades. However, with the high luminosity of TESLA
one may select the rare decay modesµ̃L → µχ̃0

2 andχ̃0
2 → `+`− χ̃0

1, leading to a unique, back-
ground free signatureµ+µ− 4`± 6E. The achievable mass resolutions formµ̃L

andmχ̃0

2

is of the
order of 0.4 GeV [48].

Figure 6: Lepton energy spectra in
the processese−

R
e+

L
→ ẽ−

R
ẽ+

R
→

e−χ̃0
1e

+χ̃0
1 (left) ande−

R
e+

L
→ µ̃−

R
µ̃+

R
→

µ−χ̃0
1 µ

+χ̃0
1 → µ−χ̃0

1µ
+χ̃0

1 (right) at√
s = 400 GeV and luminosity 200 fb−1;

scenario SPS1a.

In a similar fashion the chargino masses can be measured veryprecisely at threshold: simula-
tions for the reactione+Re

−
L → χ̃+

1 χ̃
−
1 → `±ν`χ̃

0
1 qq̄

′χ̃0
1 show that the mass resolution is excellent

of O(50 MeV), degrading to the per mil level for the higherχ̃±
2 state. Above threshold, from the

di-jet energy distribution one expects a mass resolution ofδmχ̃±
1

= 0.2 GeV, while the di-jet mass

distributions constrains thẽχ±
1 −χ̃0

1 mass splitting within about 100 MeV. Similarly to the chargino
case, the di-lepton energy and mass distributions in the reaction e+e− → χ̃0

2χ̃
0
2 → 4`± 6E can be

used to determinẽχ0
1 andχ̃0

2 masses. Previous analyses of the di-lepton mass and di-lepton energy
spectra performed in thetan β = 3 case showed that uncertainties in the primary and secondaryχ̃0

2

andχ̃0
1 masses of about 2 per mil can be expected [41, 48]. Higher resolution of order 100 MeV

for mχ̃0

2

can be obtained from a threshold scan ofe+e− → χ̃0
2χ̃

0
2; heavier states̃χ0

3 and χ̃0
4, if

accessible, can still be resolved with a resolution of a few hundred MeV.

4.3.2 Measuring couplings and mixings

In contrast to the first two generations, theL-R mixing for the third generation can be non-
negligible due to the large Yukawa coupling. Therefore theτ̃ , t̃ and b̃ are very interesting to
study to determine their mixing and chiral quantum numbers.Similarly, it is very important to
measure the gaugino and higgsino composition of charginos and neutralinos. Last, but not least,
we have to verify SUSY mass relations and exact equality (at tree level) of gauge couplings and
their supersymmetric Yukawa counterparts.

In this respect the ability of havingbothbeams, positrons and electrons, polarised is particu-
larly important [49], since for many measurements even 100%electron polarisation is insufficient.
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The couplings and mixing angles can be extracted from production cross sections measured
with polarized beams. For example, experimental analyses of stop quarks with small stop-neutralino
mass difference have been performed [50]. Such analyses aremotivated by the stop-neutralino co-
annihilation scenario consistent with dark matter relic density and EW baryogenesis. With small
stop-neutralino mass difference, the stop decays into neutralino and charm making the analysis
very demanding. Nevertheless, the stop parameters can be determined precise enough, Fig. 7, and
precisions for the dark matter predictions comparable to that from direct WMAP measurements in
the region down to mass differences∼ O(5 GeV) can be achieved [50].
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Figure 7: Power of polarization – bounds on: (a) light stop massm
t̃1

and stop mixing angleθ
t̃

from
σ(e+e− → t̃1t̃

∗

1); (b) on supersymmetric Yukawa couplingsĝ1 andĝ2 from selectron cross-section measure-
ments; (c) onYL = ĝ2/g2 andYR = ĝ1/g1 from neutralino pair–production with polarized beams. (d)Φ1

dependence of the CP–odd asymmetryACP.

The Yukawa couplings of scalar fermions can be precisely determined by measuring the pro-
duction cross-sections with polarized beams. For example,in the electroweak sector, the relation
between the hypercharge U(1)Y coupling g1 and the SU(2)L coupling g2 and the corresponding
Yukawa couplingŝg1 and ĝ2 can accurately be tested by measuring the pair-production cross-
sections of scalar leptons. The resulting constraints on from selectron cross-section measurements
are depicted in Fig. 7(b), from [51]. The identity of the SUSYYukawa and gauge couplings can
also be independently checked in neutralino pair–production. Combining the measurements ofσR
andσL for the processe+e− → χ̃0

1 χ̃
0
2, the Yukawa couplings can be determined to quite a high

precision, as demonstrated in Fig. 7(c) [52].

Polarisation is a very powerful tool not only for preparing the desirable initial state, but also
as a diagnosis tool of final states. For example, neutralinosχ̃0

2 produced iñe±L decays are 100%
polarized [53]. Furthermore, ine+e− → ẽ+L ẽ

−
L → e+χ̃0

1e
−χ̃0

2 followed by the three–body decay
χ̃0

2 → χ̃0
1µ

+µ− it is possible to reconstruct the rest frame of the neutralino χ̃0
2 as shown in Ref. [54].

Such a perfect neutralino polarization combined with the study of angular correlations in the neu-
tralino rest frame can provide us with ways for probing the Majorana nature of the neutralinos and
CP violation in the neutralino system. With the neutralino spin vectorn̂ and two final lepton mo-
mentum directionŝq+ andq̂− the CP–odd asymmetry can be constructed by comparing numberof
events withOCP = n̂ · (q̂+ × q̂−) positive and negative, normalized to the sum. Fig. 7(d) shows
the dependence of the CP-odd asymmetry on the phaseΦ1 of the Bino mass parameterM1 [55].
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4.3.3 Beyond the kinematic reach

The precision measurements offered by the ILC allow us to infer indirect information on heavy
states not directly accessible at the first stage ILC. I will present two examples.

If the heavier stop̃t2 is too heavy for the ILC, and due to huge background invisibleat the
LHC, the precise measurement of the Higgs boson massmh together with measurements from the
LHC can be used to obtain indirect limits onmt̃2

[56]. Intersection of the measured valuemh =

115.5 ± 0.05 GeV with the allowedmt̃2
–mh region, Fig. 8 (left), gives an indirect determination

of mt̃2
.

There are interesting scenarios in which scalar sparticle sector is heavy while the gaugino
masses are kept relatively small, like for instance in focus-point scenarios. Precision analyses of
cross sections for light chargino production and forward–backward asymmetries of decay leptons
at the first stage of the ILC, Fig. 8 (right), together with mass information onχ̃0

2 and squarks from
the LHC, show that the underlying fundamental gaugino/higgsino MSSM parameters and con-
strains on the heavy, kinematically inaccessible sparticles with massesO(2 TeV), can be obtained
nevertheless [33].

300 400 500 600 700 800
m t2 

~ [GeV]

105

110

115

120

125

130

m
h [G

eV
]

extraction of m t2 
~

δmt
exp

 = 2.0 GeV

δmt
exp

 = 0.1 GeV

∆mh
exp

without spin correlations
with spin correlations

AFB [%]

mν̃e
[GeV]

2500200015001000500

20

15

10

5

0

√
s = 350 GeV

Figure 8: Indirect determination of: m
t̃2

from themh measurement (left);mν̃e
from the

forward–backward asymmetry ofe− in the pro-
cesse+e− → χ̃+

1 χ̃
−

1 , χ̃−

1 → χ̃0
1`

−ν̄ (right).

The above examples stress again the important role of the LHC/ILC interplay, since neither
of these colliders alone can provide us with the data needed to determine the SUSY parameters in
such scenarios. Also the derived constraints on heavy, kinematically inaccessible sparticles may
provide the physics argument for a second stage of the ILC.

4.3.4 e−e−, eγ and γγ options

Compton back-scattering of the laser light on the electron beam(s) opens a possibility of con-
verting thee−e− collider to aneγ andγγ collider with energies and luminosities comparable to
those ofe+e− collider [57]. If realized, these options may open new discovery channels. Again I
will take two specific examples to illustrate the point.

If the mass difference between the lightest neutralino and the selectron is a few hundred GeV, it
may happen that chargino pair production at the ILC is possible, while selectron pair production is
kinematically forbidden. However,mχ̃0

1

+mẽ can still be below 90% of the centre-of-mass energy,
so that the processeγ → χ̃0

1 ẽ
− is possible at aneγ collider. If the photon energy were known,

the selectron and neutralino masses could be determined from the endpoints of the decay electron
distribution, like ine+e− collisions. Although the variable photon energy smears theendpoints,
simulations have shown (Fig. 9) that with themχ̃0

1

determined ine + e− running, the selectron
mass can be reconstructed from the position of the lower edgewithin 0.3% [58].
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γγ collider offers a unique possibility of producing ass-channel resonances neutral Higgs
bosonsH,A that areboth too heavy to be produced in associatedHA or ZH processes ate+e−

collider and lay in the so called “LHC-wedge” of intermediate values oftan β, to which LHC is
blind. Results of a simulation for the combinedγγ → H,A → bb̄ analyses are shown in Fig. 9,
since in this region theH andA bosons are almost mass-degenerate [59]. Other decay modes
(WW , ZZ, tt̄) can provide a means to determine the Higgs-boson CP properties [60], and theτ -
fusion process,γγ → ττH,A, can serve to measuretan β [61], the parameter that is notoriously
difficult to determine experimentally.
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H,A→ bb̄ and and background (right).

4.4 Beyond the ILC

It is expected that higher energy colliders will be needed tohelp unravel the multi-TeV physics
left unveiled either by the LHC or by the ILC. Further progress in particle physics may require
clean experiments at a lineare+e− collider at multi-TeV energies, like CLIC [62]. With tunable
energy and beam polarisation to disentangle various channels, and high luminosity for precision
measurements, CLIC would be the ideal machine to complementthe the LHC and ILC physics
program. Simulations for CLIC concentrated on such scenarios with sparticles beyond the LHC
and ILC reach.

Fig. 10 (left) shows simulations of the muon energy spectrumfrom a 1150 GeV selectron
decaying to a muon and a 660 GeV LSP neutralino. The endpointsare clearly seen allowing a
2-3% accuracy on the selectron and neutralino mass determination. Likewise, in Fig. 10(middle)
the di-muon invariant mass distribution from̃χ0

2 → µ+µ−χ̃0
1 exhibits a pronounced edge which,

together with results from selectron decay make a measurement ofmχ̃0

2

up to 2% accuracy possible.
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Figure 10: Muon energy spectrum from̃µL → µχ̃0
1 (left), and di-muon invariant mass spectrum from

χ̃0
2 → µ+µ−χ̃0

1 (middle) at CLIC. Separation ofA andH signals at a muon collider (right).

In more distant future a muon collider with extremely good beam energy resolution and en-
hanced couplings of muons to Higgs bosons will provide a toolto explore Higgs (and Higgs-like
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objects) by directs-channel fusion, much like LEP explored theZ. Right panel of Fig. 10 demon-
strates how well two almost mass-degenerate Higgs bosonsH andA can be resolved [63].

5. Reconstructing the underlying SUSY model

The LHC experiments in the supersymmetric particle sector offer not only the discovery po-
tential but also many high precision measurements of massesand couplings. The next step to-
wards establishing SUSY is the reconstruction of low-energy SUSY breaking Lagrangian param-
eters without assuming a specific scenario. This is a highly non-trivial task [64] stressed recently
in [65]. This task will be greatly ameliorated by experimenting at the ILC where the experimental
accuracies at the per-cent down to the per-mill level are expected [41]. The ultimate goal of all
experimental efforts will be to unravel the SUSY breaking mechanism sheding light on physics at
high (GUT?, Planck?) scale.

The expected high experimental accuracies at the LHC/ILC should be matched from the the-
oretical side. This calls for a well defined theoretical framework for the calculational schemes in
perturbation theory as well as for the input parameters. Motivated by the experience in analyzing
data at the formere+e− colliders LEP and SLC, the SPA Convention and Project [34] has been
proposed. It provides: a convention for high-precision theoretical calculations, a program reposi-
tory of numerical codes, a list of tasks needed further improvements and a SUSY reference point
SPS1a′ as a test-bed.

The SPA Convention and Project is a joint inter-regional effort that could serve as a forum to
discuss future improvements on both experimental and theoretical sides to exploit fully the physics
potential of LHC, and ILC. The current status of the project is documented on the routinely updated
web-pagehttp://spa.desy.de/spa/

5.1 SPA Convention

Building on vast experience in SUSY calculations and data simulations and analyses, the SPA
Convention consists of the following propositions:
• The masses of the SUSY particles and Higgs bosons are defined as pole masses.
• All SUSY Lagrangian parameters, mass parameters and couplings, includingtan β, are given

in theDR scheme at the scalẽM = 1 TeV.
• Gaugino/higgsino and scalar mass matrices, rotation matrices and the corresponding angles are

defined in theDR scheme atM̃ , except for the Higgs system in which the mixing matrix is defined
in the on-shell scheme, the scale parameter chosen as the light Higgs mass.
• The Standard Model input parameters of the gauge sector are chosen asGF , α, MZ and
αMS
s (MZ). All lepton masses are defined on-shell. Thet quark mass is defined on-shell; the
b, c quark masses are introduced inMS at the scale of the masses themselves while taken at a
renormalization scale of 2 GeV for the lightu, d, s quarks.
• Decay widths, branching ratios and production cross sections are calculated for the set of pa-

rameters specified above.
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5.2 Program repository

The repository contains links to codes grouped in several categories: scheme translation tools
for definitions and relations between on-shell,DR andMS parameters; spectrum calculators from
the Lagrangian parameters; calculators of various observables: decay tables, cross sections, low-
energy observables, cold dark matter relics, cross sections for CDM particle searches; event gener-
ators; analysis programs to extract the Lagrangian parameters from experimental data; RGE codes;
as well as some auxiliary programs and libraries.

The responsibility for developing codes and maintaining them up to the current theoretical
state-of-the-art precision rests with the authors. The SLHA [66] convention is recommended for
communication between the codes.

5.3 The test-bed: Ref. Point SPS1a′

The SPA Convention and Project is set up to cover general SUSYscenarios. However, to
perform first checks of its internal consistency and to explore the potential of such coherent data
analyses a MSSM Reference Point SPS1a′ has been proposed as a testing ground. Of course, in
future the SPA has to be tested in more complicated scenarios.

The roots defining the Point SPS1a′ are the mSUGRA parametersM1/2 = 250 GeV,M0 = 70

GeV,A0 = −300 GeV defined at the GUT scale, andtan β(M̃ ) = 10, µ > 0. The point is close
to the original Snowmass point SPS1a [19] and to pointB′ of [67].

If SPS1a′, or a SUSY scenario with mass scales similar to this point, isrealized in nature, a
plethora of interesting channels can be exploited to extract the basic supersymmetry parameters
when combining experimental information from mass distributions at LHC with measurements of
decay spectra and threshold excitation curves at ane+e− collider with energy up to 1 TeV. Recently
global analysis programs have become available [68] in which the whole set of data, masses, cross
sections, branching ratiosetc., is exploited coherently to extract the Lagrangian parameters in the
optimal way after including the available radiative corrections.

5.4 Future developments

Although current SPA studies are very encouraging, much additional work both on the theo-
retical as well as on the experimental side will be needed to achieve the SPA goals. In particular
– The present level of theoretical calculations still does not match the expected experimental pre-
cision, particularly in coherent LHC+ILC analyses. – Thereis no complete proof thatDR scheme
preserves supersymmetry and gauge invariance in all cases.
– A limited set of observables included in experimental analyses by no means exhausts the oppor-
tunities which data at LHC and at ILC are expected to provide.Most experimental analyses not
include the theoretical errors which must be improved considerably before matching the experi-
mental standards.
– The parameter set SPS1a′ chosen for a first study provides a benchmark for developing and testing
the tools needed for a successful analysis of future SUSY data. However, neither this specific point
nor the MSSM itself may be the correct model for low-scale SUSY. While versions of mSUGRA
and of gaugino mediation have also been analyzed in some detail, the analyses have to be extended
systematically to other possibilities. In particular, CP violation, R-parity violation, flavor violation,
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NMSSM and extended gauge groups are among scenarios which might be realized in the SUSY
sector. The SPA conventions are general enough to cover all these scenarios.

5.5 Cosmology connection

Among the many possible models of dark matter, interesting are models in which the dark
matter particle is a massive neutral weakly interacting particle (WIMP) with a mass of the order of
100 GeV. In supersymmetry the LSP, neutralino in many SUSY incarnations, can serve as a perfect
candidate for WIMP. If so, these particles should be produced in reactions at the next generation
of high-energy accelerators. Astrophysical data, therefore, play an increasingly important role in
confronting supersymmetry with experiments. On the one hand the relic DM abundance imposes
crucial limits on supersymmetric scenarios, on the other, the comprehensive parameter analysis of
high-energy experiments should provide insight into the nature of the cold dark matter particles.

Since, by definition, not directly visible to high-energy physics experiments, determination of
their properties is necessarily indirect. Moreover, the WIMP cross sections have a complicated
dependence on the underlying spectrum parameters, and manyof those parameters cannot realis-
tically be measured in high-energy physics experiments. Hopefully, the large number of specific
and precision measurements at the LHC and ILC will allow us todetermine the underlying particle
physics model well enough to predict the microscopic properties of the dark matter. From this, we
can predict the cosmic density, the annihilation cross sections, and the cross sections relevant to
direct detection.

Last year at Snowmass a set of four benchmarks in mSUGRA has been proposed for detailed
simulations [69]. Point LCC1 is identical to SPS1a, in whichthe dominant channel is the neu-
tralino annihilation to lepton pairs. Point LCC2 has substantial gaugino-higgsino mixing making
the annihilation processes toW+W−, Z0Z0 andZ0h0 dominant. Point LCC3 is characterized by
small neutralino-stau mass difference and therefore the coannihilation withτ̃ is important. Finally,
for point LCC4 theA0 resonance makes an important contribution to the neutralino annihilation
cross section.

In some scenarios (for example LCC1) the measurements at theLHC combined with the as-
sumption that supersymmetry is the correct model of new physics provides quite accurate pre-
diction of the WIMP relic density. In most scenarios, however, the LHC data alone will not be
sufficient even if SUSY is assumed to be the underlying theory. Fortunately, the estimates of the
neutralino properties would be dramatically improved whenthe neutralino and the other light spar-
ticles are observed ine+e− annihilation at the ILC [34, 35, 70].

6. Summary

Much progress has been achieved during last years in constraining SUSY at existing colliders
and preparing the physics programme for new machines. At thebeginning the LHC has been
considered merely as a discovery machine. However, over theyears many techniques have been
developed for extracting masses and couplings, and in some cases the Lagrangian parameters. On
the theory side many higher-order calculations have been completed and implemented in numerical
codes. New theoretical ideas are popping up that deserve experimental analyses. To complete the
task of exploring all masses and couplings of SUSY particlesis probably impossible by the LHC
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alone. The ILC will extend the discovery reach, in particular in the electroweak sector, and greatly
improve on precision SUSY measurements. We still need new ideas and techniques to explore fully
the opportunities offered to us by the LHC and ILC, and in a distant future at CLIC. But most of
all, we need data, and first hints of SUSY at the LHC.
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