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Abstract

Low energy p̄d interaction is considered taking into account the polarization of both particles. The
corresponding cross sections are obtained using the Nijmegen nucleon–antinucleon optical potential with
shadowing effects taken into account. Double-scattering effects are calculated within the Glauber approach
and found to be about 10–20%. The cross sections are applied to the analysis of the polarization buildup
which is due to the interaction of stored antiprotons with a polarized target. It is shown that, at realistic
parameters of a storage ring and a target, the filtering mechanism may provide a noticeable polarization in
a time comparable with the beam lifetime. The energy dependence of the polarization rate for deuterium
target is similar to that for hydrogen one. However, the time of polarization for deuterium is much smaller
than that for hydrogen.
© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

An extensive research program with polarized antiprotons has been proposed recently by the
PAX Collaboration [1]. This program initiated a discussion of various methods to polarize stored
antiprotons. One of the methods being considered is to use multiple scattering off a polarized
target. If all particles remain in the beam (scattering angle is smaller than the acceptance angle
θacc), only spin flip can lead to polarization buildup, as was shown in Refs. [2,3]. However, spin-
flip cross section is negligibly small [2,4]. Hence the most realistic method is spin filtering [5].
This method implements the dependence of the cross section on orientation of the spins of the
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particles. Therefore the number of antiprotons scattered out of the beam after the interaction with
a polarized target depends on their spins, which results in the polarization buildup. The interac-
tion with atomic electrons can’t provide noticeable polarization because in this case antiprotons
will scatter only in small angles and all antiprotons remain in the beam [2]. Thus it is necessary
to study antiproton–nuclear scattering.

At present, theory can’t give reliable predictions for p̄N cross section below 1 GeV and differ-
ent phenomenological models are usually used for numerical estimations. As a result, the cross
sections obtained are model-dependent. All models are based on fitting experimental data for
scattering of unpolarized particles. These models give similar predictions for spin-independent
part of the cross sections, but predictions for spin-dependent parts may differ drastically.

Different nucleon–antinucleon potentials have similar behavior at large distance (r � 1 fm)
because long-range potentials are obtained by applying G-parity transformation to well-known
nucleon–nucleon potential. The most important difference between nucleon–antinucleon and
nucleon–nucleon scattering is existence of annihilation channels. A phenomenological descrip-
tion of annihilation is usually based on an optical potential of the form

VNN̄ = UNN̄ − iWNN̄ . (1)

Imaginary part of this potential describes annihilation into mesons and is important at small
distance. The process of annihilation has no generally accepted description, and short-range po-
tentials in various models are different.

One of the methods to polarize antiprotons being investigated is to use scattering off a polar-
ized hydrogen target. Spin-dependent parts of the cross section of p̄p interaction were previously
calculated in Ref. [6] using the Paris potential and in Ref. [7] with the help of the Nijmegen po-
tential. Similar calculations were performed in Ref. [8] where various forms of Julich potentials
were explored. All models listed above predict a possibility to obtain a noticeable beam po-
larization in a reasonable time, but the value of the polarization degree predicted is essentially
different.

Another possibility to polarize stored antiprotons being considered is to use polarized
deuteron target instead of a hydrogen target. Theoretical investigation of antiproton–deuteron
scattering is the subject present paper is devoted to. We make use of the Nijmegen model to cal-
culate p̄N scattering amplitudes. In order to calculate p̄d cross sections we utilize the Glauber
theory [9,10]. We believe that the Glauber approach has sufficient precision for the description
of p̄d scattering in the energy region concerned. The figures confirming this statement are pre-
sented in Section 3. In the present paper we show the predictions for the spin-dependent parts of
p̄d cross sections based on the Nijmegen model along with the expected antiproton beam polar-
ization degree. The comparison with the predictions from Ref. [11] based on the Julich models
is also considered in this paper.

2. Method of calculation

Our method of calculation is similar to that described in Ref. [11]. We make use of the Glauber
theory to describe scattering by a deuteron. In the present paper we give the formulas for the
standard Glauber theory [9] which doesn’t include the D-wave contribution in the deuteron wave
function and the spin dependence of p̄N scattering amplitudes. The modification of this theory
taking these factors into account for the case of pd scattering can be found in Ref. [12]. Within
the standard Glauber theory the amplitudes for elastic and breakup scattering are given by the
following matrix elements
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p̄d
f i (q) = 〈f |F p̄d(q, s)|i〉 (2)

between initial |i〉 and final |f 〉 states of the two-nucleon system. Here the transition operator is

F p̄d(q, s) = e
1
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where q is the momentum transfer, s is the impact parameter (the transverse component of r),
fp̄N(q) are antiproton–nucleon elastic scattering amplitudes and kp̄d = √

mNTlab/2 is the an-
tiproton momentum, mN being the nucleon mass and Tlab being the antiproton kinetic energy
in the laboratory frame. Note that the antiproton momentum and antiproton–nucleon scattering
amplitudes should be calculated in the same reference system. Using Eqs. (2) and (3) one obtains
the following equation for the elastic antiproton–deuteron scattering amplitude:
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Note that the latter formula involves only the elastic deuteron form factor S(q) and amplitudes
of p̄N scattering. Elastic (p̄d → p̄d) differential cross section is given by(
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. (5)

If one neglects the energy difference of various final states then the sum of elastic plus inelastic
(p̄d → p̄pn) cross sections can be calculated in the following way:(
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(6)

The amplitudes of antinucleon–nucleon scattering were calculated with the help of the Ni-
jmegen antinucleon–nucleon optical potential [13] in the same way as in our previous work [7].

The total spin-dependent p̄d cross section can be written in the form [11]

σ = σ0 + σ1
(
P p̄ · P d

) + (σ2 − σ1)
(
P p̄ · v)(

P d · v) + σ3P
d
zz, (7)

where P i are the polarization vectors of corresponding particles, P d
zz is the component of the

deuteron tensor polarization and v is the unit momentum vector. The cross section σ3 vanishes
in the single-scattering approximation [11]. This cross section turned out to be much smaller
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than the cross sections σ1 and σ2. This statement is valid also if the shadowing effects are taken
into account. The cross section σ3 has no influence on the antiproton polarization and we neglect
this cross section in our further calculations. Spin-dependent parts of the cross section can be
expressed in terms of the scattering amplitudes gi in the following way [11]

σ0 = 2π
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Im(g1 + g2), σ1 = 4π
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Img3,
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In order to calculate these amplitudes we have substituted Eq. (4) in the latter equations. One
can see that it is necessary to calculate the matrix elements of antiproton–nucleon scattering
operators between deuteron states with definite spin projections. A convenient way to perform
such calculations is to express the deuteron spin wave functions via the proton and neutron spin
wave functions. For instance,〈
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where λ is the intermediate antiproton spin. The scattering amplitudes with other projections of
antiproton and deuteron spins have similar form.

It was shown that the interference of the Coulomb and nuclear amplitudes is important for
the description of the spin-dependent parts of the p̄p cross section (see f.i. Refs. [6,7]). One can
expect that interference is also important for the description of p̄d cross section. The formulas
for the contribution of interference to unpolarized and polarized cross sections of p̄d scattering
are taken from Ref. [11]. In terms of the amplitudes gi , they are
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]}
,
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where Ψ = −α
v

ln sin θacc/2, χ0 = arg�(1 − iα
2v

) is the Coulomb phase, α is the fine structure
constant and v is the velocity of the antiproton in the p̄p center-of-mass frame. For the pure
Coulomb interaction the cross sections σ1, σ2 are zero and σ0 is

σ C
0 = πα2

(vkp̄pθacc)2
, (12)

where kp̄p is the antiproton momentum in the p̄p center-of-mass frame and smallness of θacc is
taken into account.

One can find the discussion of antiproton beam polarization buildup in Refs. [2,6]. Shown
here is only the final result for the polarization degree at time t0 = 2τb, τb = 1/nf σ0 being the
beam lifetime subject to scattering by the target:

PB(t0) =
{−2PT

σ1
σ0

, if ζ T · v = 0,

−2PT
σ2
σ0

, if |ζ T · v| = 1.
(13)

Here v is the unit vector collinear to the antiproton momentum, ζ T is the direction of the target
polarization, PT is the value of the target polarization, n is the areal density of the target and f is
the beam revolving frequency. The equalities (13) are valid in both cases ζ T ⊥ v and ζ T ‖ v.

3. Results

In this section we present numerical results for the spin-dependent parts of the cross sections
of p̄p, p̄n and p̄d scattering along with the predictions for the beam polarization degree obtained
with the help of the Nijmegen model [13]. The results for total unpolarized p̄p and p̄n cross
sections are in good agreement with all available experimental data. Unpolarized cross sections
were studied both theoretically and experimentally by many authors so there is no necessity to
present the corresponding figures here. However, the situation is different for the spin-dependent
parts of the cross sections because they were not studied experimentally and different theoretical
models provide essentially different predictions. The predictions of the Nijmegen model for the
spin-dependent parts of p̄p cross section were previously presented in Ref. [7], but we show
them here for completeness. The dependence of the spin-dependent parts of the cross section
of p̄p and p̄n scattering on the antiproton energy is shown in Fig. 1. One can see that σ2 is
of the same order for these two processes, but σ1 for p̄n scattering is smaller than that for p̄p

scattering. Note that the sign of the interference contribution to p̄n scattering differs from that to
p̄p scattering. It results in smaller interference contribution to p̄d scattering.

In order to estimate the role of double-scattering mechanism in p̄d scattering we have calcu-
lated the total unpolarized p̄d cross section, see Fig. 2(a). One can see that the shadowing effects
decrease the total cross section at about 15% in the whole energy region and that was the case
for the Julich potential too, see Ref. [11]. The line obtained in the current work approximates the
experimental data [15–19] quite accurately.

We also present here the differential elastic (p̄d → p̄d) and elastic plus inelastic (p̄d → p̄pn)
cross sections, see Fig. 3. These quantities are interesting for us because the double-scattering
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Fig. 1. The dependence of hadronic cross sections σ h
1 , σ h

2 (thick line) and the Coulomb-hadronic interference contri-

butions σ int
1 , σ int

2 (thin lines) on Tlab for p̄p scattering (upper row) and p̄n scattering (lower row). The interference
contribution in the lower row is the interference of the Coulomb p̄p and strong p̄n amplitudes for p̄d scattering. The

acceptance angles in the lab frame are θ
(l)
acc = 10 mrad (solid line), θ(l)

acc = 20 mrad (dashed line), θ(l)
acc = 30 mrad (dashed-

dotted line).

Fig. 2. (a) The dependence of the total p̄d cross section on plab within the single-scattering approximation (dashed line)
and including shadowing effects (solid line). Data are taken from Refs. [15–19]. (b) The dependence of the polarization
time t0 on Tlab for n = 1014 cm−2 and f = 106 c−1 for p̄d scattering (thick lines) and p̄p scattering (thin lines).

The acceptance angles in the lab frame are θ
(l)
acc = 10 mrad (solid line), θ

(l)
acc = 20 mrad (dashed line), θ

(l)
acc = 30 mrad

(dashed-dotted line).

mechanism is very important for accurate description of non-forward p̄d scattering and we can
test the applicability of the Glauber theory to low-energy p̄d scattering comparing our results
with the existing experimental data. We have included the D-wave contribution with the method
described in Ref. [10] while calculating the elastic differential cross sections. In order to calculate
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Fig. 3. The dependence of elastic (dashed lines) and elastic plus inelastic (solid lines) p̄d differential cross sections on the
momentum transfer. Dotted line for Tlab = 179.3 MeV corresponds to the cross section calculated without the inclusion
of the D-wave contribution. Data for the elastic scattering cross section (squares) are taken from Ref. [20] and for elastic
plus inelastic cross sections (dots) from Ref. [15].

the two form-factors needed by the theory, the numerical values for the deuteron wave function
calculated in Ref. [14] using the Paris model were used. In order to estimate the role of the
D-wave contribution we present the cross section without D-wave being included in the same
figure. As we expected, the D-wave contribution proved to be significant only for scattering
with large momentum transfer because the corresponding form-factor vanishes in the case of
forward scattering. Experimental data for the elastic p̄d scattering exist only at 180 MeV [20]
(squares in Fig. 3) and are nicely reproduced by our line. Experimental data for elastic plus
inelastic scattering [15] are also reproduced quite well, see Fig. 3. The Glauber theory seems to
be applicable for the description of unpolarized p̄d cross sections at rather low energies down
to 50 MeV.

The spin-dependent parts of the cross section of p̄d scattering were calculated with the
double-scattering mechanism taken into account. However, the contribution of D-wave in the
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Fig. 4. The dependence of σ1, σ2 (thick line) and interference contributions σ int
1 , σ int

2 (thin lines) on Tlab for p̄d scatter-
ing. Lower dotted line corresponds to the cross section calculated in the single-scattering approximation. The acceptance

angles in the lab frame are θ
(l)
acc = 10 mrad (solid line), θ

(l)
acc = 20 mrad (dashed line), θ

(l)
acc = 30 mrad (dashed-dotted

line).

deuteron wave function was omitted because we expect it to be less important. The spin-
dependent parts of p̄d cross section are presented in Fig. 4. The interference contribution to
p̄d cross section proved to be less significant in most part of the energy range than it was for p̄p

scattering. The validity of this conclusion for the Julich model was previously shown in Ref. [11].
Shadowing effects turned out to decrease the absolute value of the cross sections σ1 and σ2 at
about 20–25% level, see Fig. 4.

Let us proceed now to the discussion of the polarization buildup. The dependence of the time
of polarization t0 on the antiproton energy is presented in Fig. 2(b). Note that the number of
antiprotons at time t0 equals to 14% of the initial number. The dependence of transverse and
longitudinal polarization degrees on the antiproton energy is shown in Fig. 5. Analogous results
from Ref. [7] for p̄p scattering are also shown in that figure with the thin lines. One can see
that the transverse polarization in the case of deuterium target is smaller than that in the case
of hydrogen target. However, it is almost the same for energies below 50 MeV. The picture is
different for longitudinal polarization. The longitudinal polarization degree in the case of p̄d

scattering is larger for low energies, but it is almost the same as for p̄p scattering in most of
energy range concerned.

It is important to note that theoretical predictions for the spin-dependent parts of p̄d cross
section exhibit fairly strong model dependence. One can compare the predictions for the polar-
ization degree following from the Nijmegen model with that from the Julich models, see Fig. 6.
The predictions following from the Julich models are taken from Ref. [21]. Note that they are dif-
ferent from that in Ref. [11]. The polarization degree predicted by the Nijmegen model is about
two or three times larger than that predicted by the Julich models and transverse polarization
degree even has different sign.

4. Conclusion

We have calculated the cross section of antiproton–deuteron scattering making use of the Ni-
jmegen nucleon–antinucleon potential and the Glauber theory for describing the scattering by a
deuteron. The results obtained show the possibility to describe total and differential unpolarized
p̄d cross sections in the whole energy region where the experimental data exist. The standard
Glauber approach turned out to be sufficient for precise description of the scattering data with
low momentum transfer. Taking into consideration the contribution of the spin-dependent parts
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Fig. 5. The dependence of PB(t0) for PT = 1 on Tlab for ζT · v = 0 (P⊥) and |ζT · v| = 1 (P‖) for p̄d scattering (thick
lines) in comparison with p̄p scattering (thin lines). Note that the polarization degree for p̄p scattering is shown with

the opposite sign for simplicity. The acceptance angles in the lab frame are θ
(l)
acc = 10 mrad (solid lines), θ

(l)
acc = 20 mrad

(dashed lines), θ
(l)
acc = 30 mrad (dashed-dotted lines). Low energy region is shown again in the lower row.

Fig. 6. The dependence of PB(t0) for PT = 1 on Tlab for ζT · v = 0 (P⊥) and |ζT · v| = 1 (P‖) for p̄d scattering for
different models: Nijmegen model (solid line), Julich A model (dashed line) and Julich D model (dashed-dotted line).

The acceptance angle in the lab frame is θ
(l)
acc = 10 mrad.

of the nucleon–antinucleon amplitudes as well as D-wave part of the deuteron wave function to
unpolarized p̄d cross section is important only for describing large-angle scattering. We con-
firm the conclusion about the applicability of the Glauber theory for the calculation of total and
differential p̄d cross sections at rather low energies down to 50 MeV made in Refs. [11,21].

We have also calculated the spin-dependent parts of p̄d cross section taking shadowing ef-
fects into account and compared them with the results obtained in Refs. [11,21]. In contrast to
the authors of those papers we have made an attempt to take the double-scattering contribution
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into account while calculating the spin-dependent parts of p̄d cross section. We conclude that
polarized deuterium target can be used instead of the hydrogen target with similar or even higher
efficiency. However, one can see fairly strong model dependence of the spin-dependent parts of
the cross section. The Nijmegen model predicts higher polarization degree than the other models
and this was the case for p̄p scattering too. Only experimental investigation of polarized p̄p or
p̄d cross sections can show us what model is closer to the reality.
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