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Abstract: We review how nuclear forces emerge from low-energy quantum chromodynamics (QCD)
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1. Historical Perspective

After the discovery of the neutron by Chadwick in 1932 [1], it was clear that the atomic nucleus is
made up from protons and neutrons. In such a system, electromagnetic forces cannot be the reason
why the constituents of the nucleus are sticking together. Therefore, the concept of a new strong
nuclear interaction was introduced. In 1935, the first theory for this new force was developed by the
Japanese physicist Yukawa [2], who suggested that the nucleons would exchange particles between
each other and this mechanism would create the force. Yukawa constructed his theory in analogy to
the theory of the electromagnetic interaction where the exchange of a (massless) photon is the cause of
the force. However, in the case of the nuclear force, Yukawa assumed that the “force-makers” carry
a mass that was in-between the masses of the electron and the proton (which is why these particles
were eventually called “mesons”). The mass of the mesons limits the effect of the force to a finite
range, since the uncertainty principal allows massive virtual particles to travel only a finite distance.
The meson predicted by Yukawa was finally found in 1947 in cosmic ray and in 1948 in the laboratory
and called the pion. Yukawa was awarded the Nobel Prize in 1949. In the 1950s and 60s more mesons
were found in accelerator experiments and the meson theory of nuclear forces was extended to include
many mesons. These models became known as one-boson-exchange models, which is a reference to
the fact that the different mesons are exchanged singly in this model. The one-boson-exchange model
is very successful in explaining essentially all properties of the nucleon-nucleon interaction at low
energies [3–9]. In the 1970s and 80s, also meson models were developed that went beyond the simple
single-particle exchange mechanism. These models included, in particular, the explicit exchange of
two pions with all its complications. Well-known representatives of the latter kind are the Paris [10]
and the Bonn potentials [11].

Since these meson models were quantitatively very successful, it appeared that they were the
solution of the nuclear force problem. However, with the discovery (in the 1970s) that the fundamental
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theory of strong interactions is quantum chromodynamics (QCD) and not meson theory, all “meson
theories” had to be viewed as models, and the attempts to derive the nuclear force from first principals
had to start all over again.

The problem with a derivation of nuclear forces from QCD is two-fold. First, each nucleon consists
of three valence quarks, quark-antiquark pairs, and gluons such that the system of two nucleons is a
complicated many-body problem. Second, the force between quarks, which is created by the exchange
of gluons, has the feature of being very strong at the low energy-scale that is characteristic of nuclear
physics. This extraordinary strength makes it difficult to find converging expansions. Therefore,
during the first round of new attempts, QCD-inspired quark models became popular. The positive
aspect of these models is that they try to explain nucleon structure (made up from three constituent
quarks) and nucleon-nucleon interactions (six quarks) on an equal footing. Some of the gross features
of the two-nucleon force, like the “hard core” are explained successfully in such models. However,
from a critical point of view, it must be noted that these quark-based approaches are yet another set
of models and not a theory. Alternatively, one may try to solve the six-quark problem with brute
computing power, by putting the six-quark system on a four dimensional lattice of discrete points
which represents the three dimensions of space and one dimension of time. This method has become
known as lattice QCD and is making progress. However, such calculations are computationally very
expensive and cannot be used as a standard nuclear physics tool.

Around 1990, a major breakthrough occurred when the nobel laureate Steven Weinberg applied
the concept of an effective field theory (EFT) to low-energy QCD [12,13]. He simply wrote down the
most general theory that is consistent with all the properties of low-energy QCD, since that would make
this theory equivalent to low-energy QCD. A particularly important property is the so-called chiral
symmetry, which is “spontaneously” broken. Massless spin- 1

2 fermions posses chirality, which means
that their spin and momentum are either parallel (“right-handed”) or anti-parallel (“left-handed”)
and remain so forever. Since the quarks, which nucleons are made of (“up” and “down” quarks),
are almost mass-less, approximate chiral symmetry is a given. Naively, this symmetry should have
the consequence that one finds in nature mesons of the same mass, but with positive and negative
parity. However, this is not the case and such failure is termed a “spontaneous” breaking of the
symmetry. According to a theorem first proven by Goldstone, the spontaneous breaking of a symmetry
creates a particle, here, the pion. Thus, the pion becomes the main player in the production of the
nuclear force. The interaction of pions with nucleons is weak as compared to the interaction of gluons
with quarks. Therefore, pion-nucleon processes can be calculated without problem. Moreover, this
effective field theory can be expanded in powers of momentum over “scale”, where scale denotes
the “chiral symmetry breaking scale” which is about 1 GeV. This scheme is also known as chiral
perturbation theory (ChPT) and allows to calculate the various terms that make up the nuclear
potential systematically power by power, or order by order. Another advantage of the chiral EFT
approach is its ability to generate not only the force between two nucleons, but also many-nucleon
forces, on the same footing [14]. In modern theoretical nuclear physics, the chiral EFT approach is
becoming increasingly popular and is applied with great success [15,16].

This article is organized as follows. In Section 2, we will present a pedagogical introduction into
the EFT approach to low-energy QCD, including the development of effective Lagrangians. Section 3
provides a broad overview of the hierarchy of nuclear forces as they emerge from EFT. Sections 4–6
then spell out in detail the development of the two-nucleon forces from long-range to short-range and
the construction of quantitative NN potentials. Section 7 concludes the article.

2. Effective Field Theory for Low-Energy QCD

QCD is the theory of strong interactions. It deals with quarks, gluons and their interactions
and is part of the Standard Model of Particle Physics. QCD is a non-Abelian gauge field theory
with color SU(3) the underlying gauge group. The non-Abelian nature of the theory has dramatic
consequences. While the interaction between colored objects is weak at short distances or high
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momentum transfer (“asymptotic freedom”); it is strong at long distances ( >∼ 1 fm) or low energies,
leading to the confinement of quarks into colorless objects, the hadrons. Consequently, QCD allows
for a perturbative analysis at large energies, whereas it is highly non-perturbative in the low-energy
regime. Nuclear physics resides at low energies and the force between nucleons is a residual color
interaction similar to the van der Waals force between neutral molecules. Therefore, in terms of quarks
and gluons, the nuclear force is a very complicated problem that, nevertheless, can be attacked with
brute computing power on a discretized, Euclidean space-time lattice (known as lattice QCD). In a
recent study [17], the neutron-proton scattering lengths in the singlet and triplet S-waves have been
determined in fully dynamical lattice QCD, with a smallest pion mass of 354 MeV. This result is then
extrapolated to the physical pion mass with the help of chiral perturbation theory. The pion mass of
354 MeV is still too large to allow for reliable extrapolations, but the feasibility has been demonstrated
and more progress can be expected for the near future. In a lattice calculation of a very different
kind, the nucleon-nucleon (NN) potential was studied [18]. The central part of the potential shows a
repulsive core plus attraction of intermediate range. This is a very promising result, but it must be
noted that also in this investigation still rather large pion masses are being used. In any case, advanced
lattice QCD calculations are under way and continuously improved. However, since these calculations
are very time-consuming and expensive, they can only be used to check a few representative key-issues.
For everyday nuclear structure physics, a more efficient approach is needed.

The efficient approach is an effective field theory. For the development of an EFT, it is crucial to
identify a separation of scales. In the hadron spectrum, a large gap between the masses of the pions
and the masses of the vector mesons, like ρ(770) and ω(782), can clearly be identified. Thus, it is
natural to assume that the pion mass sets the soft scale, Q ∼ mπ , and the rho mass the hard scale,
Λχ ∼ mρ, also known as the chiral-symmetry breaking scale. This is suggestive of considering an
expansion in terms of the soft scale over the hard scale, Q/Λχ. Concerning the relevant degrees of
freedom, we noticed already that, for the ground state and the low-energy excitation spectrum of an
atomic nucleus as well as for conventional nuclear reactions, quarks and gluons are ineffective degrees
of freedom, while nucleons and pions are the appropriate ones. To make sure that this EFT is not just
another phenomenology, it must have a firm link with QCD. The link is established by having the
EFT observe all relevant symmetries of the underlying theory. This requirement is based upon a “folk
theorem” by Weinberg [12]:

If one writes down the most general possible Lagrangian, including all terms consistent with
assumed symmetry principles, and then calculates matrix elements with this Lagrangian to
any given order of perturbation theory, the result will simply be the most general possible
S-matrix consistent with analyticity, perturbative unitarity, cluster decomposition, and the
assumed symmetry principles.

In summary, the EFT program consists of the following steps:

1. Identify the soft and hard scales, and the degrees of freedom appropriate for (low-energy)
nuclear physics.

2. Identify the relevant symmetries of low-energy QCD and investigate if and how they are broken.
3. Construct the most general Lagrangian consistent with those symmetries and

symmetry breakings.
4. Design an organizational scheme that can distinguish between more and less important

contributions: a low-momentum expansion.
5. Guided by the expansion, calculate Feynman diagrams for the process under consideration to the

desired accuracy.

This program works well for π-π [19] and π-N [20], since in these cases the physical amplitudes
can be calculated perturbatively. However, as it turns out, the NN scenario is more complicated.
It involves a bound state (the deuteron) and large scattering lengths (in S-waves), which cannot
be explained in terms of perturbation theory. Therefore, Weinberg suggested [13] to use the above
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(perturbative) scheme to derive the NN potential and to apply this potential then in a Schrődinger
or Lippmann-Schwinger equation to obtain the NN amplitude. Notice that this procedure implies a
nonperturbative resummation of the potential. Consequently, even when the potential is calculated
at a well-defined order, the axact order of the NN amplitude is not clear due to the resummation.
This will also obscure the error estimate of the predicted observables. An exception is NN scattering in
peripheral partial waves, which can be calculated perturbatively. Therefore, later in this article, we will
first consider peripheral NN scattering (Section 5) before we discuss NN potential construction with
all its conceptual problems (Section 6, particularly, Section 6.3).

To proceed, we will now elaborate on the above-listed steps, one by one. Since we discussed the
first step already, we will address now step two.

2.1. Symmetries of Low-Energy QCD

In this section, we will give a brief introduction into (low-energy) QCD, its symmetries and
symmetry breakings. More detailed presentations of this topic are provided in Refs. [15,21].

2.1.1. Chiral Symmetry

The QCD Lagrangian reads

LQCD = q̄(iγµDµ −M)q− 1
4
Gµν,aGµν

a (1)

with the gauge-covariant derivative

Dµ = ∂µ − ig
λa

2
Aµ,a (2)

and the gluon field strength tensor

Gµν,a = ∂µAν,a − ∂νAµ,a + g fabcAµ,bAν,c (3)

(for SU(N) group indices, we use Latin letters, . . . , a, b, c, . . . , i, j, k, . . . , and, in general, do not
distinguish between subscripts and superscripts.) In the above, q denotes the quark fields and
M the quark mass matrix. Further, g is the strong coupling constant and Aµ,a are the gluon fields.
The λa are the Gell-Mann matrices and the fabc the structure constants of the SU(3)color Lie algebra
(a, b, c = 1, . . . , 8); summation over repeated indices is always implied. The gluon-gluon term in the
last equation arises from the non-Abelian nature of the gauge theory and is the reason for the peculiar
features of the color force.

The masses of the up (u), down (d), and strange (s) quarks are [22]:

mu = 2.3± 0.7 MeV (4)

md = 4.8± 0.5 MeV (5)

ms = 95± 5 MeV (6)

These masses are small as compared to a typical hadronic scale, i.e., a scale of low-mass hadrons
which are not Goldstone bosons, e.g., mρ = 0.78 GeV ≈ 1 GeV.

It is therefore of interest to discuss the QCD Lagrangian in the limit of vanishing quark masses:

L0
QCD = q̄iγµDµq− 1

4
Gµν,aGµν

a (7)

Defining right- and left-handed quark fields,

qR = PRq, qL = PLq (8)
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with
PR =

1
2
(1 + γ5) , PL =

1
2
(1− γ5) (9)

we can rewrite the Lagrangian as follows:

L0
QCD = q̄RiγµDµqR + q̄LiγµDµqL −

1
4
Gµν,aGµν

a (10)

This equation revels that the right- and left-handed components of massless quarks do not mix in the
QCD Lagrangian. For the two-flavor case, this is SU(2)R × SU(2)L symmetry, also known as chiral
symmetry. However, this symmetry is broken in two ways: explicitly and spontaneously.

2.1.2. Explicit Symmetry Breaking

The mass term −q̄Mq in the QCD Lagrangian Equation (1) breaks chiral symmetry explicitly. To
better see this, let’s rewriteM for the two-flavor case,

M =

(
mu 0
0 md

)

=
1
2
(mu + md)

(
1 0
0 1

)
+

1
2
(mu −md)

(
1 0
0 −1

)

=
1
2
(mu + md) I +

1
2
(mu −md) τ3 (11)

The first term in the last equation in invariant under SU(2)V (isospin symmetry) and the second
term vanishes for mu = md. Thus, isospin is an exact symmetry if mu = md. However, both terms in
Equation (11) break chiral symmetry. Since the up and down quark masses (Equations (4) and (5)) are
small as compared to the typical hadronic mass scale of ∼ 1 GeV, the explicit chiral symmetry breaking
due to non-vanishing quark masses is very small.

2.1.3. Spontaneous Symmetry Breaking

A (continuous) symmetry is said to be spontaneously broken if a symmetry of the Lagrangian is not
realized in the ground state of the system. There is evidence that the (approximate) chiral symmetry of
the QCD Lagrangian is spontaneously broken—for dynamical reasons of nonperturbative origin which
are not fully understood at this time. The most plausible evidence comes from the hadron spectrum.

From chiral symmetry, one naively expects the existence of degenerate hadron multiplets of
opposite parity, i.e., for any hadron of positive parity one would expect a degenerate hadron state
of negative parity and vice versa. However, these “parity doublets” are not observed in nature.
For example, take the ρ-meson which is a vector meson of negative parity (JP = 1−) and mass 776 MeV.
There does exist a 1+ meson, the a1, but it has a mass of 1230 MeV and, therefore, cannot be perceived
as degenerate with the ρ. On the other hand, the ρ meson comes in three charge states (equivalent
to three isospin states), the ρ± and the ρ0, with masses that differ by at most a few MeV. Thus, in
the hadron spectrum, SU(2)V (isospin) symmetry is well observed, while axial symmetry is broken:
SU(2)R × SU(2)L is broken down to SU(2)V .

A spontaneously broken global symmetry implies the existence of (massless) Goldstone bosons.
The Goldstone bosons are identified with the isospin triplet of the (pseudoscalar) pions, which explains
why pions are so light. The pion masses are not exactly zero because the up and down quark masses
are not exactly zero either (explicit symmetry breaking). Thus, pions are a truly remarkable species:
they reflect spontaneous as well as explicit symmetry breaking. Goldstone bosons interact weakly at
low energy. They are degenerate with the vacuum and, therefore, interactions between them must
vanish at zero momentum and in the chiral limit (mπ → 0).
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2.2. Chiral Effective Lagrangians

The next step in our EFT program is to build the most general Lagrangian consistent with
the (broken) symmetries discussed above. An elegant formalism for the construction of such
Lagrangians was developed by Callan, Coleman, Wess, and Zumino (CCWZ) [23,24] who worked
out the group-theoretical foundations of non-linear realizations of chiral symmetry. (An accessible
introduction into the rather involved CCWZ formalism can be found in Ref. [21].) It is characteristic
for these non-linear realizations that, whenever functions of the Goldstone bosons appear in the
Langrangian, they are always accompanied with at least one space-time derivative. The Lagrangians
given below are built upon the CCWZ formalism.

As discussed, the relevant degrees of freedom are pions (Goldstone bosons) and nucleons. Since
the interactions of Goldstone bosons must vanish at zero momentum transfer and in the chiral limit
(mπ → 0), the low-energy expansion of the Lagrangian is arranged in powers of derivatives and pion
masses. The hard scale is the chiral-symmetry breaking scale, Λχ ≈ 1 GeV. Thus, the expansion is in
terms of powers of Q/Λχ where Q is a (small) momentum or pion mass. This is chiral perturbation
theory (ChPT).

The effective Lagrangian can formally be written as,

L = Lππ + LπN + LNN + . . . (12)

where Lππ deals with the dynamics among pions, LπN describes the interaction between pions and a
nucleon, and LNN contains two-nucleon contact interactions which consist of four nucleon-fields (four
nucleon legs) and no meson fields. The ellipsis stands for terms that involve two nucleons plus pions
and three or more nucleons with or without pions, relevant for nuclear many-body forces (an example
for this in lowest order are the last two terms of Equation (18), below). The individual Lagrangians are
organized order by order:

Lππ = L(2)ππ + L(4)ππ + . . . (13)

LπN = L(1)πN + L(2)πN + L(3)πN + L(4)πN + L(5)πN + . . . (14)

and

LNN = L(0)NN + L(2)NN + L(4)NN + L(6)NN + . . . (15)

where the superscript refers to the number of derivatives or pion mass insertions (chiral dimension)
and the ellipsis stands for terms of higher dimensions.

Above, we have organized the Lagrangians by the number of derivatives or pion-mass insertions.
This is the standard way, appropriate particularly for considerations of π-π and π-N scattering. As it
turns out (cf. Section 3.1), for interactions among nucleons, it is sometimes useful to also consider the
so-called index of the interaction,

∆ ≡ d +
n
2
− 2 (16)

where d is the number of derivatives or pion-mass insertions and n the number of nucleon field
operators (nucleon legs). We will now write down the Lagrangian in terms of increasing values of the
parameter ∆ and we will do so using the so-called heavy-baryon formalism which we indicate by a
“hat” [25].
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The leading-order Lagrangian reads,

L̂∆=0 =
1
2

∂µπ · ∂µπ − 1
2

m2
ππ2

+
1− 4α

2 f 2
π

(π · ∂µπ)(π · ∂µπ)− α

f 2
π

π2∂µπ · ∂µπ +
8α− 1

8 f 2
π

m2
ππ4

+N̄
[

i∂0 −
gA
2 fπ

τ · (~σ · ~∇)π − 1
4 f 2

π
τ · (π × ∂0π)

]
N

+N̄
{

gA(4α− 1)
4 f 3

π
(τ ·π)

[
π · (~σ · ~∇)π

]
+

gAα

2 f 3
π

π2
[
τ · (~σ · ~∇)π

]}
N

−1
2

CSN̄NN̄N − 1
2

CT(N̄~σN) · (N̄~σN) + . . . (17)

and subleading Lagrangians are,

L̂∆=1 = N̄

{
~∇2

2MN
− igA

4MN fπ
τ ·
[
~σ ·
(←
∇ ∂0π − ∂0π

→
∇
)]

− i
8MN f 2

π
τ ·
[←
∇ ·(π × ~∇π)− (π × ~∇π)·

→
∇
]}

N

+N̄

[
4c1m2

π −
2c1

f 2
π

m2
π π2 +

(
c2 −

g2
A

8MN

)
1
f 2
π
(∂0π · ∂0π)

+
c3

f 2
π
(∂µπ · ∂µπ)−

(
c4 +

1
4MN

)
1

2 f 2
π

εijkεabcσiτa(∂jπb)(∂kπc)

]
N

− D
4 fπ

(N̄N)N̄
[
τ · (~σ · ~∇)π

]
N − 1

2
E(N̄N)(N̄τN) · (N̄τN) + . . . (18)

L̂∆=2 = L(4)ππ + L̂(3)πN + L̂(2)NN + . . . (19)

L̂∆=3 = L̂(4)πN + . . . (20)

L̂∆=4 = L̂(5)πN + L̂(4)NN + . . . (21)

L̂∆=6 = L̂(6)NN + . . . (22)

where we included terms relevant for a calculation of the two-nucleon force up to sixth order.
The Lagrangians L̂(3)πN and L̂(4)πN can be found in Ref. [26] and NN contact Lagrangians are given below.
The pion fields are denoted by π and the heavy baryon nucleon field by N (N̄ = N†). Furthermore, gA,
fπ , mπ , and MN are the axial-vector coupling constant, pion decay constant, pion mass, and nucleon
mass, respectively. Numerical values for these quantities will be given later. The ci are low-energy
constants (LECs) from the dimension two πN Lagrangian and α is a parameter that appears in the
expansion of the pion fields, see Ref. [15] for more details. Results are independent of α.

The lowest order (or leading order) NN Lagrangian has no derivatives and reads [13]

L̂(0)NN = −1
2

CSN̄NN̄N − 1
2

CT(N̄~σN) · (N̄~σN) (23)

where CS and CT are unknown constants which are determined by a fit to the NN data.
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The second order NN Lagrangian can be stated as follows [27]

L̂(2)NN = −C′1
[
(N̄~∇N)2 + (~∇NN)2

]
− C′2(N̄~∇N) · (~∇NN)− C′3N̄N

[
N̄~∇2N + ~∇2NN

]
−iC′4

[
N̄~∇N · (~∇N ×~σN) + (~∇N)N · (N̄~σ× ~∇N)

]
−iC′5N̄N(~∇N ·~σ× ~∇N)− iC′6(N̄~σN) · (~∇N × ~∇N)

−
(

C′7δikδjl + C′8δilδkj + C′9δijδkl

) [
N̄σk∂i NN̄σl∂jN + ∂i Nσk N∂jNσl N

]
−
(

C′10δikδjl + C′11δilδkj + C′12δijδkl

)
N̄σk∂i N∂jNσl N

−
(

1
2

C′13(δikδjl + δilδkj) + C′14δijδkl

) [
∂i Nσk∂jN + ∂jNσk∂i N

]
N̄σl N (24)

Similar to CS and CT of Equation (23), the C′i of Equation (24) are unknown constants which are
fixed in a fit to the NN data. Obviously, these contact Lagrangians blow up quite a bit with increasing
order, which is why we do not give L̂(4)NN and L̂(6)NN explicitly here. The NN contact potentials that
emerge from the NN Lagrangians are given in Section 6.1.

3. Nuclear Forces from EFT: Overview

In the beginning of Section 2, we listed the steps we have to take for carrying out the EFT program
of a derivation of the nuclear potential. So far, we discussed steps one to three. What is left are steps
four (low-momentum expansion) and five (Feynman diagrams). In this section, we will say more
about the expansion we are using and give an overview of the Feynman diagrams that arise order
by order.

3.1. Chiral Perturbation Theory and Power Counting

Effective Langrangians have infinitely many terms, and an unlimited number of Feynman graphs
can be calculated from them. Therefore, we need a scheme that makes the theory manageable and
calculable. This scheme which tells us how to distinguish between large (important) and small
(unimportant) contributions is chiral perturbation theory (ChPT).

In ChPT, graphs are analyzed in terms of powers of small external momenta over the large scale:
(Q/Λχ)ν, where Q is generic for a momentum (nucleon three-momentum or pion four-momentum)
or a pion mass and Λχ ∼ 1 GeV is the chiral symmetry breaking scale (hadronic scale, hard scale).
Determining the power ν has become known as power counting.

For the moment, we will consider only so-called irreducible graphs. By definition, an irreducible
graph is a diagram that cannot be separated into two by cutting only nucleon lines. Following the
Feynman rules of covariant perturbation theory, a nucleon propagator is Q−1, a pion propagator Q−2,
each derivative in any interaction is Q, and each four-momentum integration Q4. This is also known
as naive dimensional analysis. Applying then some topological identities, one obtains for the power of
an irreducible diagram involving A nucleons [15]

ν = −2 + 2A− 2C + 2L + ∑
i

∆i (25)

with
∆i ≡ di +

ni
2
− 2 (26)

where C denotes the number of separately connected pieces and L the number of loops in the diagram;
di is the number of derivatives or pion-mass insertions and ni the number of nucleon fields (nucleon
legs) involved in vertex i; the sum runs over all vertices i contained in the diagram under consideration.
Note that ∆i ≥ 0 for all interactions allowed by chiral symmetry. Purely pionic interactions have at
least two derivatives (di ≥ 2, ni = 0); interactions of pions with a nucleon have at least one derivative
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(di ≥ 1, ni = 2); and nucleon-nucleon contact terms (ni = 4) have di ≥ 0. This demonstrates how chiral
symmetry guarantees a low-energy expansion.

An important observation from power counting is that the powers are bounded from below and,
specifically, ν ≥ 0. This fact is crucial for the convergence of the low-momentum expansion.

Moreover, the power formula Equation (25) allows to predict the leading orders of connected
multi-nucleon forces. Consider a m-nucleon irreducibly connected diagram (m-nucleon force) in an
A-nucleon system (m ≤ A). The number of separately connected pieces is C = A−m + 1. Inserting
this into Equation (25) together with L = 0 and ∑i ∆i = 0 yields ν = 2m− 4. Thus, two-nucleon forces
(m = 2) start at ν = 0, three-nucleon forces (m = 3) at ν = 2 (but they happen to cancel at that order),
and four-nucleon forces at ν = 4 (they don’t cancel). More about this in the next sub-section.

For later purposes, we note that for an irreducible NN diagram (A = 2, C = 1), the power formula
collapses to the very simple expression

ν = 2L + ∑
i

∆i (27)

In summary, the chief point of the ChPT expansion is that, at a given order ν, there exists only
a finite number of graphs. This is what makes the theory calculable. The expression (Q/Λχ)ν+1

provides a rough estimate of the relative size of the contributions left out and, thus, of the accuracy at
order ν. In this sense, the theory can be calculated to any desired accuracy and has predictive power.

3.2. The Hierarchy of Nuclear Forces

Chiral perturbation theory and power counting imply that nuclear forces emerge as a hierarchy
controlled by the power ν, Figure 1.

In lowest order, better known as leading order (LO, ν = 0), the NN amplitude is made up by
two momentum-independent contact terms (∼ Q0), represented by the four-nucleon-leg graph with a
small-dot vertex shown in the first row of Figure 1, and static one-pion exchange (1PE), second diagram
in the first row of the figure. This is, of course, a rather rough approximation to the two-nucleon force
(2NF), but accounts already for some important features. The 1PE provides the tensor force, necessary
to describe the deuteron, and it explains NN scattering in peripheral partial waves of very high orbital
angular momentum. At this order, the two contacts which contribute only in S-waves provide the
short- and intermediate-range interaction which is somewhat crude.

In the next order, ν = 1, all contributions vanish due to parity and time-reversal invariance.
Therefore, the next-to-leading order (NLO) is ν = 2. Two-pion exchange (2PE) occurs for

the first time (“leading 2PE”) and, thus, the creation of a more sophisticated description of the
intermediate-range interaction is starting here. Since the loop involved in each pion-diagram implies
already ν = 2 (cf. Equation (27)), the vertices must have ∆i = 0. Therefore, at this order, only the
lowest order πNN and ππNN vertices are allowed which is why the leading 2PE is rather weak.
Furthermore, there are seven contact terms of O(Q2), shown by the four-nucleon-leg graph with a
solid square, which contribute in S and P-waves. The operator structure of these contacts include a
spin-orbit term besides central, spin-spin, and tensor terms. Thus, essentially all spin-isospin structures
necessary to describe the two-nucleon force phenomenologically have been generated at this order.
The main deficiency at this stage of development is an insufficient intermediate-range attraction.

This problem is finally fixed at order three (ν = 3), next-to-next-to-leading order (NNLO).
The 2PE involves now the two-derivative ππNN seagull vertices (proportional to the ci LECs)
denoted by a large solid dot in Figure 1. These vertices represent correlated 2PE as well as
intermediate ∆(1232)-isobar contributions. It is well-known from the meson phenomenology of
nuclear forces [10,11] that these two contributions are crucial for a realistic and quantitative 2PE model.
Consequently, the 2PE now assumes a realistic size and describes the intermediate-range attraction of
the nuclear force about right. There are no new contacts.
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+... +... +...

+... +... +...

+... +... +... +...

2N Force 3N Force 4N Force 5N Force

LO

(Q/Λχ)
0

NLO

(Q/Λχ)
2

NNLO

(Q/Λχ)
3

N3LO
(Q/Λχ)

4

N4LO
(Q/Λχ)

5

N5LO
(Q/Λχ)

6

Figure 1. Hierarchy of nuclear forces in chiral perturbation theory (ChPT). Solid lines represent
nucleons and dashed lines pions. Small dots, large solid dots, solid squares, triangles, diamonds, and
stars denote vertices of index ∆ = 0, 1, 2, 3, 4, and 6, respectively. Further explanations are given in
the text.

The reason why we talk of a hierarchy of nuclear forces is that two- and many-nucleon forces are
created on an equal footing and emerge in increasing number as we go to higher and higher orders.
At NNLO, the first set of nonvanishing three-nucleon forces (3NF) occur [28,29], cf. column “3N Force”
of Figure 1. In fact, at the previous order, NLO, irreducible 3N graphs appear already, however, it has
been shown by Weinberg [14] that these diagrams all cancel. Since nonvanishing 3NF contributions
happen first at order (Q/Λχ)3, they are very weak as compared to the 2NF which starts at (Q/Λχ)0.

More 2PE is produced at ν = 4, next-to-next-to-next-to-leading order (N3LO), of which we show
only a few symbolic diagrams in Figure 1. There is a large attractive one-loop 2PE contribution (the
bubble diagram with two large solid dots ∼ c2

i ), which is slightly over-doing the intermediate-range
attraction of the 2NF. Two-loop 2PE graphs show up for the first time and so does three-pion exchange
(3PE) which necessarily involves two loops. 3PE was found to be negligible at this order [30,31]. Most
importantly, 15 new contact terms ∼ Q4 arise and are represented by the four-nucleon-leg graph with
a solid diamond. They include a quadratic spin-orbit term and contribute up to D-waves. Mainly due
to the increased number of contact terms, a quantitative description of the two-nucleon interaction up
to about 300 MeV lab. energy is possible, at N3LO [15,32]. Besides further 3NF, four-nucleon forces
(4NF) start at this order. Since the leading 4NF come into existence one order higher than the leading
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3NF, 4NF are weaker than 3NF. Thus, ChPT provides a straightforward explanation for the empirically
known fact that 2NF� 3NF� 4NF . . . .

Further, 2PE and 3PE occur at N4LO (fifth order). The contribution to the 2NF at this order has
been first calculated by Entem et al. [33]. It turns out to be moderately repulsive, thus, compensating
for the attractive surplus generated at N3LO by the bubble diagram with two solid dots. The long- and
intermediate-range 3NF contributions at this order have been evaluated [26], but not applied yet in
nuclear structure calculations. They are expected to be sizeable. Moreover, a new set of 3NF contact
terms appear [34]. The N4LO 4NF has not been derived yet. Due to the subleading ππNN seagull
vertex (large solid dot ∼ ci), this 4NF could be sizeable.

Finally turning to N5LO (sixth order): The dominant 2PE and 3PE contributions to the 2NF have
been derived by Entem et al. in Ref. [35], which represents the most sophisticated investigation ever
conducted in chiral EFT for the NN system. The effects are small indicating the desired trend towards
convergence of the chiral expansion for the 2NF. Moreover, a new set of 26 NN contact terms ∼ Q6

that contribute up to F-waves occurs (represented by the NN diagram with a star in Figure 1) bringing
the total number of NN contacts to 50 [36]. The three-, four-, and five-nucleon forces of this order have
not yet been derived.

This section has provided an overview. In the following sections, we will fill in all the details
involved. We start by talking about the various pion-exchange contributions to the two-nucleon force.

4. Pion-Exchange Contributions to the NN Interaction

The various pion-exchange contributions to the NN potential may be analyzed according to the
number of pions being exchanged between the two nucleons:

V = V1π + V2π + V3π + V4π + . . . (28)

where the meaning of the subscripts is obvious and the ellipsis represents 5π and higher pion exchanges.
For each of the above terms, we have a low-momentum expansion:

V1π = V(0)
1π + V(2)

1π + V(3)
1π + V(4)

1π + V(5)
1π + V(6)

1π + . . . (29)

V2π = V(2)
2π + V(3)

2π + V(4)
2π + V(5)

2π + V(6)
2π + . . . (30)

V3π = V(4)
3π + V(5)

3π + V(6)
3π + . . . (31)

V4π = V(6)
4π + . . . (32)

where the superscript denotes the order ν of the expansion and the ellipses stand for contributions
of seventh and higher orders. Due to parity and time-reversal, there are no first order contributions.
Moreover, since n pions create L = n − 1 loops, the leading order for n-pion exchange ocurrs at
ν = 2n− 2 (cf. Equation (27)).

Order by order, the pion-exchange part of the NN potential builds up as follows:

VLO ≡ V(0) = V(0)
1π (33)

VNLO ≡ V(2) = VLO + V(2)
1π + V(2)

2π (34)

VNNLO ≡ V(3) = VNLO + V(3)
1π + V(3)

2π (35)

VN3LO ≡ V(4) = VNNLO + V(4)
1π + V(4)

2π + V(4)
3π (36)

VN4LO ≡ V(5) = VN3LO + V(5)
1π + V(5)

2π + V(5)
3π (37)

VN5LO ≡ V(6) = VN4LO + V(6)
1π + V(6)

2π + V(6)
3π + V(6)

4π (38)

where LO stands for leading order, NLO for next-to-leading order, etc.



Symmetry 2016, 8, 26 12 of 43

The explicit expressions for the potentials will be stated in terms of contributions to the
momentum-space NN amplitudes in the center-of-mass system (CMS), which arise from the following
general decomposition:

V(~p ′,~p) = VC + τ1 · τ2 WC

+ [VS + τ1 · τ2 WS ] ~σ1 ·~σ2

+ [VLS + τ1 · τ2 WLS]
(
−i~S · (~q×~k)

)
+ [VT + τ1 · τ2 WT ] ~σ1 ·~q ~σ2 ·~q
+ [VσL + τ1 · τ2 WσL ] ~σ1 · (~q×~k ) ~σ2 · (~q×~k ) (39)

where ~p ′ and ~p denote the final and initial nucleon momenta in the CMS, respectively. Moreover,
~q = ~p ′ − ~p is the momentum transfer,~k = (~p ′ + ~p)/2 the average momentum, and ~S = (~σ1 +~σ2)/2
the total spin, with ~σ1,2 and τ1,2 the spin and isospin operators, of nucleon 1 and 2, respectively.
For on-shell scattering, Vα and Wα (α = C, S, LS, T, σL) can be expressed as functions of q = |~q | and
p = |~p ′| = |~p |, only.

We will now discuss the contributions order by order.

4.1. Leading Order (LO)

At leading order, there is only the 1π-exchange contribution, cf. Figure 1. The charge-independent
1π-exchange is given by

V(CI)
1π (~p ′,~p) = −

g2
A

4 f 2
π

τ1 · τ2
~σ1 ·~q ~σ2 ·~q

q2 + m2
π

(40)

Higher order corrections to the 1π-exchange are taken care of by mass and coupling constant
renormalizations which, in turn, are accounted for by working with the physical values. Note also that,
on shell, there are no relativistic corrections. Thus, we apply 1π-exchange in the form Equation (40)
through all orders.

We use gA = 1.290 (instead of gA = 1.276 [37]) to account for the so-called Goldberger-Treiman
discrepancy. Via the Goldberger-Treiman relation, gπNN = gA MN/ fπ , our value for gA together
with fπ = 92.4 MeV and MN = 938.918 MeV implies g2

πNN/4π = 13.67 which is consistent with the
empirical values obtained from πN and NN data analysis [38,39].

For results presented below, we will be specifically calculating neutron-proton (np) scattering and
take the charge-dependence of the 1π-exchange into account. Thus, the 1π-exchange potential that we
actually apply reads

V(np)
1π (~p ′,~p) = −V1π(mπ0) + (−1)I+1 2 V1π(mπ±) (41)

where I = 0, 1 denotes the total isospin of the two-nucleon system and

V1π(mπ) ≡ −
g2

A
4 f 2

π

~σ1 ·~q ~σ2 ·~q
q2 + m2

π
(42)

We use mπ0 = 134.9766 MeV and mπ± = 139.5702 MeV. Formally speaking, the
charge-dependence of the 1PE exchange is of order NLO [15], but we include it already at leading
order to make the comparison with the np phase shifts more meaningful.
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4.2. Next-to-Leading Order (NLO)

The 2PE contributions that occur at NLO (cf. Figure 1) are given by [40]:

WC =
L(Λ̃; q)

384π2 f 4
π

[
4m2

π(1 + 4g2
A − 5g4

A) + q2(1 + 10g2
A − 23g4

A)−
48g4

Am4
π

w2

]
(43)

VT = − 1
q2 VS = −

3g4
A

64π2 f 4
π

L(Λ̃; q) (44)

where the (regularized) logarithmic loop function is given by:

L(Λ̃; q) =
w
2q

ln
Λ̃2(2m2

π + q2)− 2m2
πq2 + Λ̃

√
Λ̃2 − 4m2

π q w
2m2

π(Λ̃2 + q2)
(45)

with w =
√

4m2
π + q2. Λ̃ denotes the cutoff of the spectral-function renormalization (SFR) [41].

Note that
lim

Λ̃→∞
L(Λ̃; q) =

w
q

ln
w + q
2mπ

(46)

is the logarithmic loop function of dimensional regularization.

4.3. Next-to-Next-to-Leading Order (NNLO)

The 2PE contributions to the 2NF at NNLO consist of a bubble diagram and a triangle diagram
(cf. Figure 1). The bubble vanishes, because the loop integral involves an odd power of the time
component the loop momentum. The triangle contribution is given by [40]:

VC =
3g2

A
16π f 4

π

[
2m2

π(c3 − 2c1) + c3q2
]
(2m2

π + q2)A(Λ̃; q) (47)

WT = − 1
q2 WS = −

g2
A

32π f 4
π

c4w2 A(Λ̃; q) (48)

The loop function that appears in the above expressions, regularized by spectral-function cut-off
Λ̃, is

A(Λ̃; q) =
1
2q

arctan
q(Λ̃− 2mπ)

q2 + 2Λ̃mπ
(49)

and
lim

Λ̃→∞
A(Λ̃; q) =

1
2q

arctan
q

2mπ
(50)

yields the loop function used in dimensional regularization.

4.4. Next-to-Next-to-Next-to-Leading Order (N3LO)

The 2PE contributions at N3LO are shown in Figure 2. They consist of three parts, which we will
discuss now one by one.

4.4.1. Football diagram at N3LO

The football diagram at N3LO, Figure 2a, generates [42]:

VC =
3

16π2 f 4
π

[( c2

6
w2 + c3(2m2

π + q2)− 4c1m2
π

)2
+

c2
2

45
w4

]
L(Λ̃; q) (51)

WT = − 1
q2 WS =

c2
4

96π2 f 4
π

w2L(Λ̃; q) (52)
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(a)

(b)

(c)

= + + +

+ + + +

+ + + + . . .

3

3 3 3 3

Figure 2. Next-to-Next-to-Next-to-Leading Order (N3LO) two-pion exchange contributions with (a) the
N3LO football diagram; (b) the leading 2PE two-loop contributions; and (c) the relativistic corrections
of NLO diagrams. Notation as in Figure 1. Shaded ovals represent complete πN-scattering amplitudes
with their order specified by the number in the oval. Open circles denote relativistic 1/MN corrections.
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4.4.2. Leading Two-Loop Contributions

The leading order 2π-exchange two-loop diagrams are shown in Figure 2b. In terms of spectral
functions, the results are [42]:

Im VC =
3g4

A(2m2
π − µ2)

πµ(4 fπ)6

[
(m2

π − 2µ2)

(
2mπ +

2m2
π − µ2

2µ
ln

µ + 2mπ

µ− 2mπ

)
+ 4g2

Amπ(2m2
π − µ2)

]
(53)

Im WC =
2κ

3µ(8π f 2
π)3

∫ 1

0
dx
[

g2
A(µ

2 − 2m2
π) + 2(1− g2

A)κ
2x2
]

×
{

96π2 f 2
π

[
(2m2

π − µ2)(d̄1 + d̄2)− 2κ2x2d̄3 + 4m2
π d̄5

]
+
[
4m2

π(1 + 2g2
A)− µ2(1 + 5g2

A)
] κ

µ
ln

µ + 2κ

2mπ
+

µ2

12
(5 + 13g2

A)− 2m2
π(1 + 2g2

A)

− 3κ2x2 + 6κx
√

m2
π + κ2x2 ln

κx +
√

m2
π + κ2x2

mπ

+g4
A

(
µ2 − 2κ2x2 − 2m2

π

) [5
6
+

m2
π

κ2x2 −
(

1 +
m2

π

κ2x2

)3/2

ln
κx +

√
m2

π + κ2x2

mπ

]}
(54)

Im VS = µ2 Im VT =
g2

Aµκ3

8π f 4
π

(
d̄15 − d̄14

)
+

2g6
Aµκ3

(8π f 2
π)3

∫ 1

0
dx(1− x2)

[
1
6
− m2

π

κ2x2 +

(
1 +

m2
π

κ2x2

)3/2

ln
κx +

√
m2

π + κ2x2

mπ

]
(55)

Im WS = µ2 Im WT(iµ) =
g4

A(4m2
π − µ2)

π(4 fπ)6

[(
m2

π −
µ2

4

)
ln

µ + 2mπ

µ− 2mπ
+ (1 + 2g2

A)µmπ

]
(56)

where κ =
√

µ2/4−m2
π .

The momentum space amplitudes Vα(q) and Wα(q) are obtained from the above expressions by
means of subtracted dispersion integrals:

VC,S(q) = −2qm+3

π

∫ Λ̃

nmπ

dµ
Im VC,S(iµ)

µm+2(µ2 + q2)

VT(q) =
2qm+1

π

∫ Λ̃

nmπ

dµ
Im VT(iµ)

µm(µ2 + q2)
(57)

and similarly for WC,S,T . We use m = 3 for the dispersion integrals that contribute at N3LO and N4LO,
and m = 5 at N5LO. Moreover, n = 2 is applied for two-pion exchange and n = 3 for three-pion
exchange. For Λ̃→ ∞ the above dispersion integrals yield the results of dimensional regularization,
while for finite Λ̃ ≥ nmπ we have what has become known as spectral-function regularization
(SFR) [41]. The purpose of the finite scale Λ̃ is to constrain the imaginary parts to the low-momentum
region where chiral effective field theory is applicable. In practice, we will keep Λ̃ <∼ 1.5 GeV. Ideally,
one may wish to take Λ̃→ ∞. However, it turns out that this leads to unrealistic results for reasons
that are not fully understood at this time. This issue warrants further investigation.
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4.4.3. Leading Relativistic Corrections

Counting Q/MN ∼ Q2/Λ2
χ, the relativistic corrections of the NLO diagrams, which are shown in

Figure 2c, are of order N3LO and are given by [15]:

VC =
3g4

A
128π f 4

π MN

[
m5

π

2w2 + (2m2
π + q2)(q2 −m2

π)A(Λ̃; q)
]

(58)

WC =
g2

A
64π f 4

π MN

{
3g2

Am5
π

2ω2 +
[
g2

A(3m2
π + 2q2)− 2m2

π − q2](2m2
π + q2)A(Λ̃; q)

}
(59)

VT = − 1
q2 VS =

3g4
A

256π f 4
π MN

(5m2
π + 2q2)A(Λ̃; q) (60)

WT = − 1
q2 WS =

g2
A

128π f 4
π MN

[
g2

A(3m2
π + q2)− w2]A(Λ̃; q) (61)

VLS =
3g4

A
32π f 4

π MN
(2m2

π + q2)A(Λ̃; q) , (62)

WLS =
g2

A(1− g2
A)

32π f 4
π MN

w2 A(Λ̃; q) (63)

4.4.4. Leading Three-Pion Exchange Contributions

The leading 3π-exchange contributions that occur N3LO are shown in Figure 3. They have been
calculated in Refs. [30,31] and are found to be negligible. We, therefore, omit them.

Figure 3. N3LO three-pion exchange contributions. Notation as in Figure 1.

4.5. Next-to-Next-to-Next-to-Next-to-Leading Order (N4LO)

4.5.1. Two-Pion Exchange Contributions at N4LO

The 2π-exchange contributions that occur at N4LO are displayed graphically in Figure 4. We can
distinguish between three groups of diagrams.
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(a)

(b)

(c)

= + + +

+ + + . . .

4

4 4 4 4

3 3

3
Figure 4. N4LO two-pion-exchange contributions. (a) The leading one-loop πN amplitude is folded
with the chiral ππNN vertices proportional to ci; (b) The one-loop πN amplitude proportional to ci is
folded with the leading order chiral πN amplitude; (c) Relativistic corrections of next-to-next-to-leading
order (NNLO) diagrams. Notation as in Figures 1 and 2.

First, there are the N4LO 2π-exchange two-loop contributions of class (a), Figure 4a. For this class
the spectral functions are obtained by integrating the product of the leading one-loop πN amplitude
and the chiral ππNN vertex proportional to ci over the Lorentz-invariant 2π-phase space.

Second, we have the N4LO 2π-exchange two-loop contributions of class (b), Figure 4b. Here, the
product of the one-loop πN amplitude proportional to ci (see Ref. [26] for details) and the leading
order chiral πN amplitude is integrated over the 2π-phase space.

The analytic expressions for the spectral functions of class (a) and (b) are very involved, which is
why we do not reprint them here. The interested reader is referred to Ref. [33].

Finally, there also some relativistic corrections. This group consists of diagrams with one vertex
proportional to ci and one 1/MN correction. A few representative graphs are shown in Figure 4c. Since
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in this investigation we count Q/MN ∼ (Q/Λχ)2, these relativistic corrections are formally of order
N4LO. The result for this group of diagrams is [42]:

VC =
g2

A L(Λ̃; q)
32π2MN f 4

π

[
(6c3 − c2)q4 + 4(3c3 − c2 − 6c1)q2m2

π + 6(2c3 − c2)m4
π − 24(2c1 + c3)m6

πw−2
]
(64)

WC = − c4

192π2MN f 4
π

[
g2

A(8m2
π + 5q2) + w2

]
q2 L(Λ̃; q) (65)

WT = − 1
q2 WS =

c4

192π2MN f 4
π

[
w2 − g2

A(16m2
π + 7q2)

]
L(Λ̃; q) (66)

VLS =
c2 g2

A
8π2MN f 4

π

w2L(Λ̃; q) (67)

WLS = − c4

48π2MN f 4
π

[
g2

A(8m2
π + 5q2) + w2

]
L(Λ̃; q) (68)

4.5.2. Three-Pion Exchange Contributions at N4LO

The 3π-exchange of order N4LO is shown in Figure 5. The spectral functions for these diagrams
have been calculated in Ref. [43]. We use here the classification scheme introduced in that reference
and note that class XI vanishes. Moreover, we find that the class X and part of class XIV make only
negligible contributions. Thus, we include in our calculations only class XII and XIII, and the VS
contribution of class XIV. For the very involved expressions, we refer the interested reader to Ref. [33].

Class X Class XI

Class XII Class XIII Class XIV

Figure 5. N4LO three-pion exchange contributions. Roman numerals refer to sub-classes following the
scheme introduced in Refs. [33,43]. Notation as in Figure 1.

4.6. Next-to-Next-to-Next-to-Next-to-Next-to-Leading Order (N5LO)

4.6.1. Two-Pion Exchange Contributions at N5LO

The 2π-exchange contributions that occur at N5LO are displayed graphically in Figure 6. We will
now discuss each class separately.

The N5LO 2π-exchange two-loop contributions, denoted by class (a), are shown in Figure 6a.
For this class the spectral functions are obtained by integrating the product of the subleading one-loop
πN-amplitude (see Ref. [26] for details) and the chiral ππNN-vertex proportional to ci over the
Lorentz-invariant 2π-phase space [35].

A first set of 2π-exchange contributions at three-loop order, denoted by class (b), is displayed in
Figure 6b. Here, the leading one-loop πN-scattering amplitude is multiplied with itself and integrated
over the 2π-phase space [35].
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(a)

(b)

(c)

4 4

3 3

5 5 5 5

Figure 6. N5LO two-pion-exchange contributions. (a) The subleading one-loop πN-amplitude is
folded with the chiral ππNN-vertices proportional to ci; (b) The leading one-loop πN-amplitude is
folded with itself; (c) The leading two-loop πN-amplitude is folded with the tree-level πN-amplitude.
Notation as in Figures 1, 2, and 4.

Further 2π-exchange three-loop contributions at N5LO, denoted by class (c), are shown in
Figure 6c. For these, the two-loop πN-scattering amplitude (which is of order five) would have
to be folded with the tree-level πN-amplitude. To our knowledge, the two-loop elastic πN-scattering
amplitude has never been evaluated in some decent analytical form. Note that the loops involved in
the class (c) contributions include only leading order chiral πN-vertices. According to our experience
such contributions are typically small. For these reasons, class (c) is neglected.

Besides the above, there are also some relativistic 1/M2
N-corrections. This group consists of the

1/M2
N-corrections to the chiral leading 2π-exchange diagrams. Since we count Q/MN ∼ (Q/Λχ)2,

these relativistic corrections are formally of sixth order (N5LO). The expressions for the corresponding
NN-amplitudes can be found in Ref. [44]:

4.6.2. Three-Pion Exchange Contributions at N5LO

The 3π-exchange contributions of order N5LO are shown in Figure 7. We can distinguish between
two classes.

Class (a) consists of the diagrams displayed in Figure 7a. They are characterized by the presence
of one subleading ππNN-vertex in each nucleon line. Using a notation introduced in Refs. [33,43],
we distinguish between the various sub-classes of diagrams by roman numerals.

Class (b) is shown in Figure 7b. Each 3π-exchange diagram of this class includes the one-loop
πN-amplitude (completed by the low-energy constants d̄j). Only those parts of the πN-scattering
amplitude, which are either independent of the pion CMS-energy or depend on it linearly could be
treated with the techniques available. The contributions are, in general, small. Results presented below
include only the larger portions within this class. The omitted pieces are about one order of magnitude
smaller. To facilitate a better understanding, we have subdivided this class into sub-classes labeled by
roman numerals, following Refs. [33,43].

The very involved analytic expressions for the spectral function can be found in Ref. [35].
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(a)

(b)

Class XIa Class XIIa

Class Xb Class XIb

Class XIIb Class XIIIb Class XIVb

3
3 3

3
3

3 3
3

3

Figure 7. N5LO three-pion exchange contributions. (a) Diagrams proportional to c2
i ; (b) Diagrams

involving the one-loop πN-amplitude. Notation as in Figures 1, 2, and 5.

4.6.3. Four-Pion Exchange at N5LO

The exchange of four pions between two nucleons occurs for the first time at N5LO. The pertinent
diagrams involve three loops and only leading order vertices, which explains the sixth power in
small momenta. Three-pion exchange with just leading order vertices turned out to be negligibly
small [30,31], and so we expect four-pion exchange with leading order vertices to be even smaller.
Therefore, we can safely neglect this contribution.

5. Perturbative NN Scattering in Peripheral Partial Waves

Nucleon-nucleon scattering in peripheral partial waves is of special interest—for several reasons.
First, these partial waves probe the long- and intermediate-range of the nuclear force. Due to the
centrifugal barrier, there is only small sensitivity to short-range contributions; e.g., the contact terms
at N4LO make no contributions for orbital angular momenta L ≥ 3. Thus, at N4LO, for F and
higher waves and energies below the pion-production threshold, we have a window in which the
NN interaction is governed by chiral symmetry alone (chiral one- and multi-pion exchanges), and
we can conduct a relatively clean test of how well the theory works. Using values for the LECs from
πN analysis, the NN predictions are even parameter free. Moreover, the smallness of the phase shifts
in peripheral partial waves suggests that the calculation can be done perturbatively. This avoids the
complications and possible model-dependence (e.g., cutoff dependence) that the non-perturbative
treatment of the Lippmann-Schwinger equation, necessary for low partial waves, is beset with.

The perturbative K-matrix for np scattering is calculated as follows:

K(~p ′,~p) = V(np)
1π (~p ′,~p ) + V(np)

2π,it (~p
′,~p ) + V(np)

3π,it (~p
′,~p ) + V(~p ′,~p ) (69)

with V(np)
1π (~p ′,~p) as in Equation (41), and V(np)

2π,it (~p
′,~p) representing the once iterated one-pion exchange

(1PE) given by

V(np)
2π,it (~p

′,~p ) = P
∫ d3 p′′

(2π)3
M2

N
Ep′′

V(np)
1π (~p ′,~p ′′)V(np)

1π (~p ′′,~p )

p2 − p′′2
(70)



Symmetry 2016, 8, 26 21 of 43

where P denotes the principal value integral and Ep′′ =
√

M2
N + p′′2. A calculation at LO includes

only the first term on the right hand side of Equation (69), V(np)
1π (~p ′,~p), while calculations at NLO or

higher order also include the second term on the right hand side, V(np)
2π,it (~p

′,~p). At NNLO, the twice
iterated 1PE should be included, too; and at higher orders further iterations should be accounted for.
However, we found that the difference between the once iterated 1PE and the infinitely iterated 1PE
is so small that it could not be identified on the scale of our phase shift figures. For that reason, we
omit iterations of 1PE beyond what is contained in V(np)

2π,it (~p
′,~p). Furthermore, V(np)

3π,it (~p
′,~p ) stands for

terms where irreducible 2PE is iterated with 1PE.
Finally, the fourth term on the r.h.s. of Equation (69), V(~p ′,~p), stands for the irreducible multi-pion

exchange contributions that occur at the order at which the calculation is conducted. In multi-pion
exchanges, we use the average pion mass mπ = 138.039 MeV and, thus, neglect the charge-dependence
due to pion-mass splitting in irreducible multi-pion diagrams.

Throughout this paper, we use

MN =
2Mp Mn

Mp + Mn
= 938.9182 MeV (71)

Based upon relativistic kinematics, the CMS on-shell momentum p is related to the kinetic energy
of the incident neutron in the laboratory system (“Lab. Energy”), Tlab, by

p2 =
M2

pTlab(Tlab + 2Mn)

(Mp + Mn)2 + 2TlabMp
(72)

with Mp = 938.2720 MeV and Mn = 939.5653 MeV the proton and neutron masses, respectively.
The K-matrix, Equation (69), is decomposed into partial waves following Ref. [45] and phase

shifts are then calculated via

tan δL(Tlab) = −
M2

N p
16π2Ep

p KL(p, p) (73)

For more details concerning the evaluation of phase shifts, including the case of coupled partial
waves, see Ref. [46] or the appendix of [9].

Chiral symmetry establishes a link between the dynamics in the πN-system and the NN-system
(through common low-energy constants). In order to check the consistency, we use the LECs for
subleading πN-couplings as determined in analyses of low-energy elastic πN-scattering. Appropriate
analyses for our purposes are contained in Refs. [26], where πN-scattering has been calculated at
fourth order using the same power-counting of relativistic 1/MN-corrections as in the present work.
Ref. [26] performed two fits, one to the GW [47] and one to the KH [48] partial wave analysis resulting
in the two sets of LECs listed in Table 1.

The contributions up to N3LO and their impact on peripheral NN scattering have been discussed
and demonstrated in detail in Ref. [15] and, therefore, we will not repeat it here. However, we will
present the recent progress that has been made in the calculation of orders beyond N3LO.

We first show how the individual N4LO (fifth-order) contributions impact NN phase shifts in
peripheral waves. For this purpose, we display in Figure 8 phase shifts for six important peripheral
partial waves, namely, 1F3, 3F2, 3F3, 3F4, 1G4, and 3G5. In each frame, the following curves are shown:

1. N3LO.
2. The previous curve plus the ci/MN corrections (denoted by “c/M”), Figure 4c.
3. The previous curve plus the N4LO 2π-exchange two-loop contributions of class (a), Figure 4a.
4. The previous curve plus the N4LO 2π two-loop contributions of class (b), Figure 4b.
5. The previous curve plus the N4LO 3π-exchange contributions, Figure 5.
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Table 1. Low-energy constants as determined in Ref. [26]. The sets “GW” and “KH” are based upon
the πN partial wave analyses of Refs. [47,48], respectively. The ci appear in Equation (18) and are in

units of GeV−1. The d̄i and ēi belong to L̂(3)πN and L̂(4)πN (cf. Equations (19) and (20)) and are in units of
GeV−2 and GeV−3, respectively.

LEC GW KH

c1 –1.13 –0.75
c2 3.69 3.49
c3 –5.51 –4.77
c4 3.71 3.34

d̄1 + d̄2 5.57 6.21
d̄3 –5.35 –6.83
d̄5 0.02 0.78

d̄14 − d̄15 –10.26 –12.02
ē14 1.75 1.52
ē15 –5.80 –10.41
ē16 1.76 6.08
ē17 –0.58 –0.37
ē18 0.96 3.26

In summary, the various curves add up successively the individual N4LO contributions in the
order indicated in the curve labels. The last curve in this series, curve (5), is the full N4LO result.
In these calculations, a SFR cutoff Λ̃ = 1.5 GeV is applied (cf. Equation (57)) and the KH LECs
(cf. Table 1) are used.

From Figure 8, we make the following observations. In triplet F-waves, the ci/MN corrections
as well as the 2PE two-loops, class (a) and (b), are all repulsive and of about the same strength. As a
consequence, the problem of the excessive attraction, that N3LO is beset with, is overcome. A similar
trend is seen in 1G4. An exception is 1F3, where the class (b) contribution is attractive leading to phase
shifts above the data for energies higher than 150 MeV.

Now turning to the N4LO 3PE contributions (curve (5) in Figure 8): they are substantially smaller
than the 2PE two-loop ones, in all peripheral partial waves. This can be interpreted as an indication of
convergence with regard to the number of pions being exchanged between two nucleons—a trend that
is very welcome. Further, note that the total 3PE contribution is a very comprehensive one, cf. Figure 5.
It is the sum of ten terms which, individually, can be fairly large. However, destructive interference
between them leads to the small net result.

For all F- and G-waves (except 1F3), the final N4LO result is close to the empirical phase shifts.
Notice that this includes also 3G5, which posed persistent problems at N3LO [49].

It is also of interest to know how predictions change with variations of Λ̃ within a reasonable
range. We have, therefore, varied Λ̃ between 0.7 and 1.5 GeV and show the predictions for all F and
G-waves in Figures 9 and 10, respectively, in terms of colored bands. It is seen that, at N3LO, the
variations of the predictions are very large and always too attractive while, at N4LO, the variations are
small and the predictions are close to the data or right on the data. Figures 9 and 10 also include the
lower orders (LO, NLO, and NNLO) such that a comparison of the relative size of the order-by-order
contributions is possible. We observe that there is not much of a convergence, since obviously the
magnitudes of the NNLO, N3LO, and N4LO contributions are about the same.

Therefore, next, we turn to the N5LO contributon. As shown in Figures 6 and 7, the sixth-order
corrections consist of several contributions. As in the case of N4LO, we will first show how the
individual N5LO contributions impact NN-phase-shifts in peripheral waves. In Figure 11, we display
phase-shifts for two peripheral partial waves, namely, 1G4, and 3G5. The following curves are shown:

1. N4LO.
2. The previous curve plus the N5LO 2π-exchange contributions of class (a), Figure 6a.
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3. The previous curve plus the N5LO 2π-exchange contributions of class (b), Figure 6b.
4. The previous curve plus the N5LO 3π-exchange contributions of class (a), Figure 7a.
5. The previous curve plus the N5LO 3π-exchange contributions of class (b), Figure 7b.
6. The previous curve plus the 1/M2

N-corrections (denoted by “1/M2”) [44].
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Figure 8. Effect of individual N4LO (fifth-order) contributions on the neutron-proton phase shifts of
some selected peripheral partial waves. The individual contributions are added up successively in
the order given in parenthesis next to each curve. Curve (1) is N3LO and curve (5) is the complete
N4LO. The KH low-energy constants (LECs) are used and Λ̃ = 1.5 GeV. The filled and open circles
represent the results from the Nijmegan multi-energy np phase-shift analysis [50] and the VPI/GWU
single-energy np analysis SM99 [51], respectively.
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Figure 9. Phase-shifts of neutron-proton scattering at various orders up to N4LO. The colored bands
show the variation of the predictions when the spectral-function renormalization (SFR) cutoff Λ̃ is
changed over the range 0.7 to 1.5 GeV. The KH LECs are applied. Empirical phase shifts as in Figure 8.
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Figure 10. Same as Figure 9, but for G-waves.

The last curve in this series, curve (6), includes all N5LO contributions calculated in Ref. [35].
For all curves of this figure, a SFR cutoff Λ̃ = 800 MeV (cf. Equation (57)) is employed and the GW
(cf. Table 1) LECs are used.
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Figure 11. Effect of individual N5LO (sixth-order) contributions on the neutron-proton phase shifts of
two G-waves. The individual contributions are added up successively in the order given in parentheses
next to each curve. Curve (1) is N4LO and curve (6) contains all N5LO contributions calculated in
Ref. [35]. A SFR cutoff Λ̃ = 800 MeV is applied and the GW LECs are used. The filled and open
circles represent the results from the Nijmegen multi-energy np phase-shift analysis [50] and the GWU
np-analysis SP07 [52], respectively.

From Figure 11, we see that the two-loop 2π-exchange class (a), Figure 6a, generates a strong
repulsive central force, while the spin-spin and tensor forces provided by this class are negligible.
The fact that this class produces a relatively large contribution is not unexpected, since it is proportional
to c2

i . The 2π-exchange contribution class (b), Figure 6b, creates a moderately repulsive central
force as seen by its effect on 1G4 and a noticeable tensor force as the impact on 3G5 demonstrates.
The 3π-exchange class (a), Figure 7a, is negligible in 1G4, but noticeable in 3G5 and, therefore, it should
not be neglected. This contribution is proportional to c2

i , which suggests a non-negligible size but it is
typically smaller than the corresponding 2π-exchange contribution class (a). The 3π-exchange class
(b) contribution, Figure 7b, turns out to be negligible (see the difference between curve (4) and (5) in
Figure 11). This may not be unexpected since it is a three-loop contribution with only leading-order
vertices. Finally the relativistic 1/M2

N-corrections to the leading 2π-exchange [44] have a small but
non-negligible impact, particularly in 3G5.

The N5LO predictions for all G and H-waves, are displayed in Figure 12 in terms of colored bands
that are generated by varying the SFR cutoff Λ̃ (cf. Equation (57)) between 700 and 900 MeV. The figure
clearly reveals again that, at N3LO, the predictions are, in general, too attractive. As discussed, the
N4LO contribution, essentially, compensates this attractive surplus. N5LO then adds additional
repulsion bringing the final prediction right onto the data (i.e., empirical phase-shifts). Moreover, the
N5LO contribution is, in general, substantially smaller than the one at N4LO, thus, showing a signature
of convergence of the chiral expansion.
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Figure 12. Phase-shifts of neutron-proton scattering in G and H-waves at N3LO, N4LO, and N5LO.
The colored bands show the variations of the predictions when the SFR cutoff Λ̃ is changed over the
range 700 to 900 MeV. The GW LECs are applied. Empirical phase shifts are as in Figure 11.

To summarize, we present in Figure 13 a comparison between all orders from LO to N5LO. Note
that the difference between the LO prediction (one-pion-exchange, dotted line) and the data (filled
and open circles) is to be provided by two- and three-pion exchanges, i.e., the intermediate-range
part of the nuclear force. How well that is accomplished is a crucial test for any theory of nuclear
forces. NLO produces only a small contribution, but N2LO creates substantial intermediate-range
attraction (most clearly seen in 1G4, 3G5, and 3H6). In fact, N2LO is the largest contribution among all
orders. This is due to the one-loop 2π-exchange triangle diagram which involves one ππNN-contact
vertex proportional to ci. This vertex represents correlated 2PE as well as intermediate ∆(1232)-isobar
excitation. It is well-known from the traditional meson theory of nuclear forces [10,11,53] that these two
features are crucial for a realistic and quantitative 2PE model. Consequently, the one-loop 2π-exchange
at N2LO is attractive and assumes a realistic size describing the intermediate-range attraction of the
nuclear force about right. At N3LO, more one-loop 2PE is added by the bubble diagram with two
ci-vertices, a contribution that seemingly is overestimating the attraction. This attractive surplus is
then compensated by the prevailingly repulsive two-loop 2π- and 3π-exchanges that occur at N4LO
and N5LO.

In this context, it is worth to note that also in conventional meson theory [11] the one-loop models
for the 2PE contribution always show some excess of attraction (cf. Figures 7–9 of Ref. [49]). The same
is true for the dispersion theoretic approach pursued by the Paris group [10,53]. In conventional
meson theory, the surplus attraction is reduced by heavy-meson exchange (ρ- and ω-exchange) which,
however, has no place in chiral effective field theory (as a finite-range contribution). Instead, in the
latter approach, two-loop 2π- and 3π-exchanges provide the corrective action.
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Figure 13. Phase-shifts of neutron-proton scattering in G- and H-waves at all orders from LO to N5LO.
A SFR cutoff Λ̃ = 800 MeV is used and the GW LECs are applied. Empirical phase shifts are as in
Figure 11.

6. Constructing Chiral NN Potentials

In previous sections, we discussed the pion-exchange contributions to the NN interaction. They
describe the long- and intermediate-range parts of the nuclear force, which are governed by chiral
symmetry and rule the peripheral partial waves. However, for a “complete” nuclear force, we have to
describe correctly all partial waves, including the lower ones. In fact, in calculations of NN observables
at low energies (cross sections, analyzing powers, etc.), the partial waves with L ≤ 2 are the most
important ones, generating the largest contributions. The same is true for microscopic nuclear structure
calculations. The lower partial waves are dominated by the dynamics at short distances. Therefore, we
need to look now into the short-range part of the NN potential.

6.1. NN Contact Terms

In conventional meson theory, the short-range nuclear force is described by the exchange of heavy
mesons, notably the ω(782). Qualitatively, the short-distance behavior of the NN potential is obtained
by Fourier transform of the propagator of a heavy meson,

∫
d3q

ei~q·~r

m2
ω +~q2 ∼

e−mωr

r
(74)

ChPT is an expansion in small momenta Q, too small to resolve structures like a ρ(770) or ω(782)
meson, because Q� Λχ ≈ mρ,ω . But the latter relation allows us to expand the propagator of a heavy
meson into a power series,

1
m2

ω + Q2 ≈
1

m2
ω

(
1− Q2

m2
ω
+

Q4

m4
ω
−+ . . .

)
(75)

where the ω is representative for any heavy meson of interest. The above expansion suggests that it
should be possible to describe the short distance part of the nuclear force simply in terms of powers of
Q/mω, which fits in well with our over-all power expansion since Q/mω ≈ Q/Λχ. Since such terms
act directly between nucleons, they are dubbed contact terms.
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Contact terms play an important role in renormalization. Regularization of the loop integrals that
occur in multi-pion exchange diagrams typically generates polynomial terms with coefficients that are,
in part, infinite or scale dependent (cf. Appendix B of Ref. [15]). Contact terms absorb infinities and
remove scale dependences, which is why they are also known as counter terms.

The partial-wave decomposition of a power Qν has an interesting property. First note that Q
can only be either the momentum transfer between the two interacting nucleons, q, or the average
momentum k (see below Equation (39) for their definitions). In any case, for even ν,

Qν = f ν
2
(cos θ) (76)

where fm stands for a polynomial of degree m and θ is the CMS scattering angle. The partial-wave
decomposition of Qν for a state of orbital-angular momentum L involves the integral

I(ν)L =
∫ +1

−1
QνPL(cos θ)d cos θ =

∫ +1

−1
f ν

2
(cos θ)PL(cos θ)d cos θ (77)

where PL is a Legendre polynomial. Due to the orthogonality of the PL,

I(ν)L = 0 for L >
ν

2
(78)

Consequently, contact terms of order zero contribute only in S-waves, while order-two terms
contribute up to P-waves, order-four terms up to D-waves, etc.

Due to parity, only even powers of Q are allowed. Thus, the expansion of the contact potential is
formally given by

Vct = V(0)
ct + V(2)

ct + V(4)
ct + V(6)

ct + . . . (79)

where the supersript denotes the power or order.
We will now present, one by one, the various orders of NN contact terms which result from the

contact Lagrangians shown at the end of Section 2.2.

6.1.1. Zeroth Order (LO)

The contact Lagrangian L̂(0)NN , Equation (23), which is part of L̂∆=0, Equation (17), leads to the
following NN contact potential,

V(0)
ct (~p′,~p) = CS + CT~σ1 ·~σ2 (80)

and, in terms of partial waves, we have

V(0)
ct (1S0) = C̃1S0

= 4π (CS − 3 CT)

V(0)
ct (3S1) = C̃3S1

= 4π (CS + CT) (81)
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6.1.2. Second Order (NLO)

The contact Lagrangian L̂(2)NN , Equation (24), which is part of L̂∆=2, Equation (19), generates the
following NN contact potential

V(2)
ct (~p′,~p) = C1 q2 + C2 k2

+
(

C3 q2 + C4 k2
)
~σ1 ·~σ2

+ C5

(
−i~S · (~q×~k)

)
+ C6 (~σ1 ·~q) (~σ2 ·~q)
+ C7 (~σ1 ·~k) (~σ2 ·~k) (82)

The coefficients Ci used here in the contact potential are, of course, related to the coefficients C′i
that occur in the Lagrangian L̂(2)NN , Equation (24). The relation, which is unimportant for our purposes,
can be found in Refs. [27,54].

There are many ways to perform the partial-wave decomposition of the above potential.
We perceive the method presented by Erkelenz, Alzetta, and Holinde [45] as the most elegant one.
Thus, one obtains

V(2)
ct (1S0) = C1S0

(p2 + p′2)

V(2)
ct (3P0) = C3P0

pp′

V(2)
ct (1P1) = C1P1

pp′

V(2)
ct (3P1) = C3P1

pp′

V(2)
ct (3S1) = C3S1

(p2 + p′2)

V(2)
ct (3S1 −3 D1) = C3S1−3D1

p2

V(2)
ct (3D1 −3 S1) = C3S1−3D1

p′2

V(2)
ct (3P2) = C3P2

pp′ (83)

with

C1S0
= 4π

(
C1 +

1
4

C2 − 3C3 −
3
4

C4 − C6 −
1
4

C7

)
C3P0

= 4π

(
−2

3
C1 +

1
6

C2 −
2
3

C3 +
1
6

C4 −
2
3

C5 + 2C6 −
1
2

C7

)
C1P1

= 4π

(
−2

3
C1 +

1
6

C2 + 2C3 −
1
2

C4 +
2
3

C6 −
1
6

C7

)
C3P1

= 4π

(
−2

3
C1 +

1
6

C2 −
2
3

C3 +
1
6

C4 −
1
3

C5 −
4
3

C6 +
1
3

C7

)
C3S1

= 4π

(
C1 +

1
4

C2 + C3 +
1
4

C4 +
1
3

C6 +
1
12

C7

)
C3S1−3D1

= 4π

(
−2
√

2
3

C6 −
√

2
6

C7

)

C3P2
= 4π

(
−2

3
C1 +

1
6

C2 −
2
3

C3 +
1
6

C4 +
1
3

C5

)
(84)
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6.1.3. Fourth Order (N3LO)

The contact potential of order four reads

V(4)
ct (~p′,~p) = D1 q4 + D2 k4 + D3 q2k2 + D4 (~q×~k)2

+
(

D5 q4 + D6 k4 + D7 q2k2 + D8 (~q×~k)2
)
~σ1 ·~σ2

+
(

D9 q2 + D10 k2
) (
−i~S · (~q×~k)

)
+

(
D11 q2 + D12 k2

)
(~σ1 ·~q) (~σ2 ·~q)

+
(

D13 q2 + D14 k2
)
(~σ1 ·~k) (~σ2 ·~k)

+ D15

(
~σ1 · (~q×~k) ~σ2 · (~q×~k)

)
(85)

The rather lengthy partial-wave expressions of this order are given in Appendix E of Ref. [15].

6.1.4. Sixth Order (N5LO)

At sixth order, 26 new contact terms appear, bringing the total number to 50. These terms as well
as their partial-wave decomposition have been worked out in Ref. [36]. So far, these terms have not
been used in the construction of NN potentials.

6.2. Definition of NN Potential

We have now rounded up everything needed for a realistic nuclear force—long, intermediate, and
short ranged components—and so we can finally proceed to the lower partial waves. However, here
we encounter another problem. The two-nucleon system at low angular momentum, particularly in
S-waves, is characterized by the presence of a shallow bound state (the deuteron) and large scattering
lengths. Thus, perturbation theory does not apply. In contrast to π-π and π-N, the interaction
between nucleons is not suppressed in the chiral limit (Q→ 0). Weinberg [13] showed that the strong
enhancement of the scattering amplitude arises from purely nucleonic intermediate states (“infrared
enhancement”). He therefore suggested to use perturbation theory to calculate the NN potential (i.e.,
the irreducible graphs) and to apply this potential in a scattering equation to obtain the NN amplitude.
We will follow this prescription and discuss the problems with this approach in the next subsection.

The pion-exchange parts of the NN potential were spelled out in Equations (33)–(38). To obtain
the complete potential, one just has to add to this the contact terms listed in Equation (79). Thus, one
has to do the following extensions to some of the Equations (33)–(38):

VLO 7−→ VLO + V(0)
ct (86)

VNLO 7−→ VNLO + V(2)
ct (87)

VN3LO 7−→ VN3LO + V(4)
ct (88)

VN5LO 7−→ VN5LO + V(6)
ct (89)

and no changes to VNNLO and VN4LO.
The potential V as derived in previous sections is, in principal, an invariant amplitude and,

thus, satisfies a relativistic scattering equation, for which we choose the BbS equation [15], which
reads explicitly,

T(~p ′,~p) = V(~p ′,~p) +
∫ d3 p′′

(2π)3 V(~p ′,~p ′′)
M2

N
Ep′′

1
p2 − p′′2 + iε

T(~p ′′,~p) (90)
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with Ep′′ ≡
√

M2
N + p′′2. The advantage of using a relativistic scattering equation is that it

automatically includes relativistic corrections to all orders. Thus, in the scattering equation, no
propagator modifications are necessary when raising the order to which the calculation is conducted.

Defining

V̂(~p ′,~p) ≡ 1
(2π)3

√
MN
Ep′

V(~p ′,~p)

√
MN
Ep

(91)

and

T̂(~p ′,~p) ≡ 1
(2π)3

√
MN
Ep′

T(~p ′,~p)

√
MN
Ep

(92)

where the factor 1/(2π)3 is added for convenience, the BbS equation collapses into the usual,
nonrelativistic Lippmann-Schwinger (LS) equation,

T̂(~p ′,~p) = V̂(~p ′,~p) +
∫

d3 p′′ V̂(~p ′,~p ′′)
MN

p2 − p′′2 + iε
T̂(~p ′′,~p) (93)

Since V̂ satisfies Equation (93), it can be used like a nonrelativistic potential, and T̂ may be
perceived as the conventional nonrelativistic T-matrix. In applications, it is more convenient to use
the K-matrix instead of the T-matrix and to have the LS equation decomposed into partial waves: all
these technical issues are explained in detail in Appendix A of Ref. [9] where also the formulas for
the calculation of np and pp (the latter with Coulomb) phase shifts are provided. The partial wave
decomposition of the operators by which the potential is represented can be found in Section 4 of
Ref. [45], and numerical methods for solving the LS equation are explained in Ref. [46].

6.3. Regularization and Non-Perturbative Renormalization

Iteration of V̂ in the LS equation, Equation (93), requires cutting V̂ off for high momenta to avoid
infinities. This is consistent with the fact that ChPT is a low-momentum expansion which is valid
only for momenta Q � Λχ ≈ 1 GeV. Therefore, the potential V̂ is multiplied with the regulator
function f (p′, p),

V̂(~p ′,~p) 7−→ V̂(~p ′,~p) f (p′, p) (94)

with
f (p′, p) = exp[−(p′/Λ)2n − (p/Λ)2n] (95)

such that

V̂(~p ′,~p) f (p′, p) ≈ V̂(~p ′,~p)

{
1−

[(
p′

Λ

)2n

+
( p

Λ

)2n
]
+ . . .

}
(96)

Typical choices for the cutoff parameter Λ that appears in the regulator are Λ ≈ 0.5 GeV < Λχ ≈
1 GeV. At N3LO and N4LO, an appropriate choice for n is three.

Equation (96) provides an indication of the fact that the exponential cutoff does not necessarily
affect the given order at which the calculation is conducted. For sufficiently large n, the regulator
introduces contributions that are beyond the given order. Assuming a good rate of convergence of the
chiral expansion, such orders are small as compared to the given order and, thus, do not affect the
accuracy at the given order. In calculations, one uses, of course, the exponential form, Equation (95),
and not the expansion Equation (96). On a similar note, we also do not expand the square-root factors
in Equations (91)–(92) because they are kinematical factors which guarantee relativistic elastic unitarity.

It is pretty obvious that results for the T-matrix may depend sensitively on the regulator and its
cutoff parameter. This is acceptable if one wishes to build models. For example, the meson models
of the past [8,11] always depended sensitively on the choices for the cutoff parameters which, in fact,
were important for the fit of the NN data. However, the EFT approach wishes to be fundamental in
nature and not just another model.
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In field theories, divergent integrals are not uncommon and methods have been developed
for how to deal with them. One regulates the integrals and then removes the dependence on the
regularization parameters (scales, cutoffs) by renormalization. In the end, the theory and its predictions
do not depend on cutoffs or renormalization scales.

So-called renormalizable quantum field theories, like QED, have essentially one set of
prescriptions that takes care of renormalization through all orders. In contrast, EFTs are renormalized
order by order.

The renormalization of perturbative EFT calculations is not a problem. The problem is nonperturbative
renormalization. This problem typically occurs in nuclear EFT because nuclear physics is characterized
by bound states which are nonperturbative in nature. EFT power counting may be different for
nonperturbative processes as compared to perturbative ones. Such difference may be caused by the
infrared enhancement of the reducible diagrams generated in the LS equation.

Weinberg’s implicit assumption [13] was that the counterterms introduced to renormalize the
perturbatively calculated potential, based upon naive dimensional analysis (“Weinberg counting”), are
also sufficient to renormalize the nonperturbative resummation of the potential in the LS equation.
In 1996, Kaplan, Savage, and Wise (KSW) [55–57] pointed out that there are problems with the Weinberg
scheme if the LS equation is renormalized by minimally-subtracted dimensional regularization. This
criticism resulted in a flurry of publications on the renormalization of the nonperturbative NN
problem [58–72]. The literature is too comprehensive to discuss all contributions. Let us just mention
some of the work that has particular relevance for our present discussion.

If the potential V consists of contact terms only (also known as pion-less theory), then the
nonperturbative summation Equation (93) can be performed analytically and the power counting is
explicit. However, when pion exchange is included, then Equation (93) can be solved only numerically
and the power counting is less transparent. Perturbative ladder diagrams of arbitrarily high order,
where the rungs of the ladder represent a potential made up from irreducible pion exchange, suggest
that an infinite number of counterterms is needed to achieve cutoff independence for all the terms
of increasing order generated by the iterations. For that reason, KSW [55–57] proposed to sum the
leading-order contact interaction to all orders (analytically) and to add higher-order contacts and
pion exchange perturbatively up to the given order. Unfortunately, it turned out that the order by
order convergence of 1PE is poor in the 3S1-3D1 state [58,59]. The failure was triggered by the 1/r3

singularity of the 1PE tensor force when iterated to second order. Therefore, KSW counting is no longer
taken into consideration (see, however, [60]). A balanced discussion of possible solutions is provided
in [61].

Some researchers decided to take a second look at Weinberg’s original proposal. A systematic
investigation of Weinberg counting in leading order has been conducted by Nogga, Timmermans,
and van Kolck [62] in momentum space, and by Valderrama and Arriola at LO and higher orders in
configuration space [63]. A comprehensive discussion of both approaches and their equivalence can
be found in Ref. [64].

The LO NN potential is given in Equation (86) and consists of 1PE plus two nonderivative contact
terms that contribute only in S-waves. Nogga et al. [62] find that the given counterterms renormalize
the S-waves (i.e., stable results are obtained for Λ→ ∞) and the naively expected infinite number of
counterterms is not needed. This means that Weinberg power counting does actually work in S-waves
at LO (ignoring the mπ dependence of the contact interaction discussed in Refs. [55,61]). However,
there are problems with a particular class of higher partial waves, namely those in which the tensor
force from 1PE is attractive. The first few cases of this kind of low angular momentum are 3P0, 3P2, and
3D2, which need a counterterm for cutoff independence. The leading (nonderivative) counterterms
do not contribute in P and higher waves, which is why Weinberg counting fails in these cases. But
the second order contact potential provides counterterms for P-waves. Therefore, the promotion of,
particularly, the 3P0 and 3P2 contacts from NLO to LO would fix the problem in P-waves. To take
care of the 3D2 problem, a N3LO contact, i.e., a term from V(4)

ct , needs to be promoted to LO. Partial
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waves with orbital angular momentum L ≥ 3 may be calculated in Born approximation with sufficient
accuracy and, therefore, do not pose renormalization problems. In this way, one arrives at a scheme of
“modified Weinberg counting” [62] for the leading order two-nucleon interaction.

6.3.1. Renormalization Beyond Leading Order

As shown below, for a quantitative chiral NN potential one needs to advance all the way to
N3LO. Thus, the renormalization issue needs to be discussed beyond LO. Naively, the most perfect
renormalization procedure is the one where the cutoff parameter Λ is carried to infinity while stable
results are maintained. This was done successfully at LO in the work by Nogga et al. [62] described
above. At NNLO, the infinite-cutoff renormalization procedure has been examined in [68–70] for
partial waves with total angular momentum J ≤ 1 and in [63] for all partial waves with J ≤ 5. At
N3LO, an investigation of all partial waves up to J = 6 has been conducted in Ref. [73]. From all of
these works, it is evident that no counter term is effective in partial-waves with short-range repulsion
and only a single counter term can effectively be used in partial-waves with short-range attraction.
Thus, for the Λ→ ∞ renormalization prescription, even at N3LO, we have either one or no counter
term per partial-wave state. This is inconsistent with any reasonable power-counting scheme and,
therefore, defies the principals of an EFT.

A possible way out of this dilemma was proposed already in [62] and reiterated in a paper
by Long and van Kolck [71]. In the latter reference, the authors examine the renormalization of an
attractive 1/r2 potential perturbed by a 1/r4 correction. Generalizing their findings, they come to
the conclusion that, for any attractive 1/rn potential (with n ≥ 2), partial waves with low angular
momentum L must be summed to all orders and one contact term is needed for each L to renormalize
the LO contribution. However, there exists an angular momentum Lp (Lp ≈ 3 for the nuclear case, cf.
Ref. [62]), above which the leading order can be calculated perturbatively. In short, naive dimensional
analysis (NDA) does not apply at LO below Lp. However, once this failure of NDA is corrected at LO,
higher order corrections can be added in perturbation theory using counterterm that follow NDA [71].

Reference [71] used just a toy model. A full investigation using the chiral expansion has been
performed by Valderrama [74,75]. The author renormalizes the LO interaction nonperturbatively and
then uses the LO distorted wave to calculate the 2PE contributions at NLO and NNLO perturbatively.
It turns out that perturbative renormalizability requires the introduction of 21 counterterms up to
D-waves as compared to 9 counterterms in the Weinberg scheme, which reduces the predictive power.
The distribution of the contact operators in Ref. [75] largely agrees with the related renormalization
group analysis by Birse [65]. The perturbative treatment of the subleading pieces of the interaction
requires rather soft cutoffs, which is worrysome.

However, even if one consideres the Valderrama project [74,75] as successful for NN scattering,
there is doubt if the interaction generated in this approach is of any use for applications in nuclear
few- and many-body problems. In applications, one would first have to solve the many-body problem
with the renormalized LO interaction, and then add higher order corrections in perturbation theory.
However, it was shown in Ref. [76] that the renormalized LO interaction is characterized by a very
large tensor force from 1PE. This is no surprise since LO is renormalized with Λ→ ∞ implying that
the 1PE, particulary its tensor force, is totally uncut. As a consequence of this, the wound integral
in nuclear matter, κ, comes out to be about 40%. The hole-line and coupled cluster expansions are
know to converge ∝ κn−1 with n the number of hole-lines or particles per cluster [77]. For conventional
nuclear forces, the wound integral is typically between 5% and 10% and the inclusion of three-body
clusters (or three hole-lines) are needed to obtain converged results in the many-body system [78].
Thus, if the wound integral is 40%, probably, up to six hole-lines need to be included for approximate
convergence. Such calculations are not feasible even with the most powerful computers of today and
will not be feasible any time soon. Therefore, even though the renormalization procedure pursued
in [74,75] seems to work for NN scattering, the interaction produced will be highly impractical (to say
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the least) in applications in few- and many-body problems because of convergence problems with the
many-body energy and wave functions.

6.3.2. Back to the Beginnings

The various problems with the renormalization procedures discussed above may have a simple
common reason: An EFT that has validity only for momenta Q < Λχ is applied such that momenta
Q � Λχ are heavily involved (because the regulator cutoff Λ → ∞). A paper by Epelbaum and
Gegelia [79] illustrates the point: The authors construct an exactly solvable toy-model that simulates
a pionful EFT and yields finite results for Λ → ∞. However, as it turns out, these finite results are
incompatible with the underlying EFT, while for cutoffs in the order of the hard scale consistency is
maintained. In simple terms, the point to realize is this: If an EFT calculation produces (accidentally) a
finite result for Λ→ ∞, then that does not automatically imply that this result is also meaningful.

This matter is further elucidated in the lectures by Lepage of 1997 [80]. Lepage points out that it
makes little sense to take the momentum cutoff beyond the range of validity of the effective theory.
By assumption, our data involves energies that are too low—wave lengths that are too long—to probe
the true structure of the theory at very short distances. When one goes beyond the hard-scale of the
theory, structures are seen that are almost certainly wrong. Thus, results cannot improve and, in fact,
they may degrade or, in more extreme cases, the theory may become unstable or untunable. In fact, in
the NN case, this is what is happening in several partial waves (as reported above). Therefore, Lepage
suggests to take the following three steps when building an effective theory:

1. Incorporate the correct long-range behavior: The long-range behavior of the underlying theory
must be known, and it must be built into the effective theory. In the case of nuclear forces, the
long-range theory is, of course, well known and given by one- and multi-pion exchanges.

2. Introduce an ultraviolet cutoff to exclude high-momentum states, or, equivalent, to soften the
short-distance behavior: The cutoff has two effects: First it excludes high-momentum states,
which are sensitive to the unknown short-distance dynamics; only states that we understand are
retained. Second it makes all interactions regular at r = 0, thereby avoiding the infinities that
beset the naive approach.

3. Add local correction terms (also known as contact or counter terms) to the effective Hamiltonian.
These mimic the effects of the high-momentum states excluded by the cutoff introduced in the
previous step. In the meson-exchange picture, the short-range nuclear force is described by heavy
meson exchange, like the ρ(770) and ω(782). However, at low energy, such structures are not
resolved. Since we must include contact terms anyhow, it is most efficient to use them to account
for any heavy-meson exchange as well. The correction terms systematically remove dependence
on the cutoff.

A systematic investigation of this kind has been conducted in Ref. [81]. In that work, the error of
the predictions was quantified by calculating the χ2/datum for the reproduction of the neutron-proton
(np) elastic scattering data as a function of the cutoff parameter Λ of the regulator function Equation (95).
Predictions by chiral np potentials at order NLO and NNLO were investigated applying Weinberg
counting for the counter terms (NN contact terms). The results from this study for the energy
range 35–125 MeV are shown in the upper frame of Figure 14 and for 125–183 MeV in the lower
frame. It is seen that the reproduction of the np data at these energies is generally poor at NLO,
while at NNLO the χ2/datum assumes acceptable values (a clear demonstration of order-by-order
improvement). Moreover, at NNLO one observes “plateaus” of constant low χ2 for cutoff parameters
ranging from about 450 to 850 MeV. This may be perceived as cutoff independence (and, thus, successful
renormalization) for the relevant range of cutoff parameters.
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Figure 14. χ2/datum for the reproduction of the np data in the energy range 35–125 MeV (upper
frame) and 125–183 MeV (lower frame) as a function of the cutoff parameter Λ of the regulator function
Equation (95). The (black) dashed curves show the χ2/datum achieved with np potentials constructed
at order NLO and the (red) solid curves are for NNLO.

6.4. NN Potentials Order by Order

As discussed, NN potentials can be calculated at various orders, cf. Equations (33)–(38) and
Equations (86)–(89), and the accuracy improves as the order increases. How well the chiral expansion
converges in the important lower partial waves is demonstrated in Figure 15, where we show the J ≤ 2
phase parameters for potentials constructed through all orders from LO to N3LO. These figures clearly
reveal substantial improvements in the reproduction of the empirical phase shifts with increasing order.

There is an even better way to confront theory with experiment. One calculates observables of
NN scattering and compares this directly to the experimental data. It is customary to state the result of
such a comparison in terms of the χ2/datum where a value around unity would signify a perfect fit.

Let’s start with potentials developed to NLO and NNLO. In Table 2, we show the χ2/datum for
the fit of the world np data below 290 MeV for families of np potentials at NLO and NNLO constructed
by the Bochum group [41]. The NLO potentials produce the very large χ2/datum between 67 and 105,
and the NNLO are between 12 and 27, consistent with the findings of Ref. [81] shown in Figure 14.

Table 2. Columns three and four show the χ2/datum for the reproduction of the 1999 np database
(defined in Ref. [9]) by families of np potentials at NLO and NNLO constructed by the Bochum
group [41]. The χ2/datum is stated in terms of ranges which result from a variation of the cutoff
parameters used in the regulator functions. The values of these cutoff parameters in units of MeV are
given in parentheses. Tlab denotes the kinetic energy of the incident neutron in the laboratory system.

Tlab (MeV Energy Bin) # of np Data Bochum np Potentials

NLO (550/700–400/500) NNLO (600/700–450/500)

0–100 1058 4–5 1.4–1.9
100–190 501 77–121 12–32
190–290 843 140–220 25–69

0–290 2402 67–105 12–27
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Figure 15. Phase shifts of np scattering as calculated from NN potentials at different orders of
ChPT. The black dotted line is LO(500), the blue dashed is NLO(550/700) [41], the green dash-dotted
NNLO(600/700) [41], and the red solid N3LO(500) [32], where the numbers in parentheses denote the
cutoffs in MeV. Phase parameters with total angular momentum J ≤ 2 are displayed. Empirical phase
shifts (solid dots and open circles) as in Figure 8.

The rate of improvement from one order to the other is very encouraging, but the quality of
the reproduction of the np data at NLO and NNLO is obviously insufficient for reliable predictions.
Based upon these facts, it has been pointed out in 2002 by Entem and Machleidt [49,82] that one has to
proceed to N3LO. Consequently, the first N3LO potential was published in 2003 [32].

At N3LO (Q4), there are a total of 24 contact terms (24 parameters) which contribute to the partial
waves with L ≤ 2, while at NLO and NNLO there are only 9 contacts with L ≤ 1 (cf. Section 6.1
and Table 3). These LECs are essentially free constants which parametrize the short-ranged
phenomenological part of the interaction. Table 3 shows how these terms are distributed over partial
waves. One reason for the improved reproduction of the NN phase shifts (and NN observables) at
N3LO is the fact that, at that order, contacts appear for the first time in D-waves. D-waves are not
truely peripheral and, therefore, 1PE plus 2PE alone do not describe them well. The D-wave contacts
provide the necessary short-range corrections to predict the D-phases right. Furthermore, at N3LO,
another contact is added to each P-wave, which leads to substantial improvements, particularly, in 3P0

and 3P1 above 100 MeV (cf. Figure 15).
In Table 3, we also show the number of parameters used in the Nijmegen partial wave analysis

(PWA93) [50] and in the high-precision CD-Bonn potential [9]. The table reveals that, for S and P-waves,
the number of parameters used in high-precision phenomenology and in EFT at N3LO (Q4) are about
the same. Thus, the EFT approach provides retroactively a justification for the phenomenology used in
the 1990s to obtain high-precision fits.

The 24 parameters of N3LO are close to the 30+ used in PWA93 and high precision potentials.
Consequently, at N3LO, potentials can be constructed which are of about the same quality as the
high-precision NN potentials of the 1990s [9,83,84]. This fact is clearly revealed in the χ2/datum
for the fit of the np and pp data below 290 MeV shown in Tables 4 and 5, respectively. The Idaho
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N3LO potential [32] with Λ = 500 MeV produces a χ2/datum = 1.1 for the world np data below
290 MeV which compares well with the χ2/datum = 1.04 by the Argonne potential. In 2005, also the
Bochum group produced several N3LO NN potentials [85], the best of which fits the np data with a
χ2/datum = 1.7 and the worse with 7.9 (Table 4).

Table 3. Number of parameters needed for fitting the np data in the Nijmegen phase-shift analysis and
by the high-precision CD-Bonn potential versus the total number of NN contact terms of EFT based
potentials to different orders.

State Nijmegen PWA93 CD-Bonn Pot. EFT Contact Potentials [36]

Ref. [50] Ref. [9] Q0 Q2 Q4 Q6

1S0 3 4 1 2 4 6
3S1 3 4 1 2 4 6

3S1-3D1 2 2 0 1 3 6
1P1 3 3 0 1 2 4
3P0 3 2 0 1 2 4
3P1 2 2 0 1 2 4
3P2 3 3 0 1 2 4

3P2-3F2 2 1 0 0 1 3
1D2 2 3 0 0 1 2
3D1 2 1 0 0 1 2
3D2 2 2 0 0 1 2
3D3 1 2 0 0 1 2

3D3-3G3 1 0 0 0 0 1
1F3 1 1 0 0 0 1
3F2 1 2 0 0 0 1
3F3 1 2 0 0 0 1
3F4 2 1 0 0 0 1

3F4-3H4 0 0 0 0 0 0
1G4 1 0 0 0 0 0
3G3 0 1 0 0 0 0
3G4 0 1 0 0 0 0
3G5 0 1 0 0 0 0

Total 35 38 2 9 24 50

Table 4. Columns three to five display the χ2/datum for the reproduction of the 1999 np database
(defined in Ref. [9]) by various np potentials. For the chiral potentials, the χ2/datum is stated in
terms of ranges which result from a variation of the cutoff parameters used in the regulator functions.
The values of these cutoff parameters in units of MeV are given in parentheses. Tlab denotes the kinetic
energy of the incident nucleon in the laboratory system.

Tlab (MeV) # of np Data Idaho N3LO Bochum N3LO Argonne V18
Energy Bin (500–600) [32] (600/700–450/500) [85] Ref. [84]

0–100 1058 1.0–1.1 1.0–1.1 0.95
100–190 501 1.1–1.2 1.3–1.8 1.10
190–290 843 1.2–1.4 2.8–20.0 1.11

0–290 2402 1.1–1.3 1.7–7.9 1.04
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Table 5. Same as Table 4 but for pp.

Tlab (MeV) # of pp Data Idaho N3LO Bochum N3LO Argonne V18
Energy Bin (500–600) [32] (600/700–450/500) [85] Ref. [84]

0–100 795 1.0–1.7 1.0–3.8 1.0
100–190 411 1.5–1.9 3.5–11.6 1.3
190–290 851 1.9–2.7 4.3–44.4 1.8

0–290 2057 1.5–2.1 2.9–22.3 1.4

As we turn now to pp, note first that the χ2 for pp data are typically larger than for np because
of the higher precision of pp data (Table 5). Thus, the Argonne V18 produces a χ2/datum = 1.4 for
the world pp data below 290 MeV and the best Idaho N3LO pp potential obtains 1.5. The fit by the
best Bochum N3LO pp potential results in a χ2/datum = 2.9 and the worst produces 22.3. In view of
these poor χ2, the Bochum group has recently launched an attempt towards improving their chiral
potentials [86,87]. However, as in their previous work [85], they have fitted their new potentials only to
NN phase shifts and not the NN data. The χ2 for the reproduction of the NN data by the new Bochum
potentials are not available and, thus, no reliable statement about the quality of the new potentials can
be made. In the 1990s, the Nijmegen group has pointed out repeatedly that for high quality potentials
it is insufficient to fit phase shifts only. A seemingly “good” fit of phase shifts can be misleading and
can result in a poor χ2 for the reproduction of the data.

Turning now to N4LO: Based upon the derivation of the 2PE and 3PE contributions to the NN
interaction at N4LO by Entem et al. [33] presented in Section 4.5 and applied in peripheral scattering in
Section 5, NN potential at N4LO have recently been developed [33,87]. Note that the lower partial
waves, which are crucial for a quantitative reproduction of the NN data, are ruled by the contact
terms. The number of contacts at N4LO (Q5) is the same as at N3LO (Q4). Thus, the N4LO potentials
are not very different from the N3LO ones. Note also that the high quality of some of the N3LO
potentials [15,32] leaves little room for improvements.

A further increase in accuracy (if needed) could be achieved at N5LO (Q6), where the number of
contact terms advances to 50 (Table 3) [36]. As discussed in Section 4.6, the dominant 2PE and 3PE
contributions at N5LO have been derived [35]. Thus, all the mathematical material for the construction
of N5LO potentials is available. However, it is debatable if there is a need for them.

7. Conclusions

The past 15 years have seen great progress in our understanding of nuclear forces in terms of
low-energy QCD. Key to this development was the realization that low-energy QCD is equivalent
to an effective field theory (EFT) which allows for a perturbative expansion that has become known
as chiral perturbation theory (ChPT). In this framework, two- and many-body forces emerge on an
equal footing and the empirical fact that nuclear many-body forces are substantially weaker than the
two-nucleon force is explained naturally.

In this review, we have focused on the two-nucleon force. We have presented the order-by-order
contributions from LO (∼ Q0) to N5LO (∼ Q6). Using low-energy constants (LECs) determined
from πN scattering, our predictions are parameter-free, except for the spectral function cutoff that
regularizes the dispersion integrals which determine the NN amplitudes. This spectral-function
regularization ensures that the calculated contributions are restricted to the long- and intermediate
range, where chiral effective field theory is applicable. Specifically, we have calculated NN scattering
in peripheral partial-waves, which is dominated by one-, two-, and three-pion exchanges ruled by
chiral symmetry. The order-by-order covergence is slow, but is ultimately achieved at N5LO, where
predictions are in perfect agreement with empirical phase shifts.
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This review has summarized the most comprehensive investigation of the implications of chiral
symmtry for the NN system. The results provide the ultimate confirmation that chiral EFT is an
adequate theory for the nucleon-nucleon interaction.

Acknowledgments: The reseach by the author is supported in part by the US Department of Energy under Grant
No. DE-FG02-03ER41270.

Conflicts of Interest: The author declares no conflict of interest.

References and Notes

1. Chadwick, J. The existence of a neutron. Proc. Roy. Soc. 1932, A136, 692–708.
2. Yukawa, H. On the interaction of elementary particles. I. Proc. Phys. Math. Soc. Jpn. 1935, 17, 48–57.
3. Bryan, R.A.; Scott, B.L. Nucleon-nucleon scattering from one-boson-exchange potentials. Phys. Rev. 1964,

135, B434–B450.
4. Bryan, R.A.; Scott, B.L. Nucleon-nucleon scattering from one-boson-exchange potentials. III. S waves

included. Phys. Rev. 1969, 177, 1435–1442.
5. Erkelenz, K. Current status of the relativistic two-nucleon one boson exchange potential. Phys. Rep. 1974, 13,

191–258.
6. Holinde, K.; Machleidt, R. Momentum-space OBEP, two-nucleon and nuclear matter data. Nucl. Phys. 1975,

A247, 495–520.
7. Holinde, K.; Machleidt, R. OBEP and eikonal form factor: (I). Results for two-nucleon data. Nucl. Phys. 1976,

A256, 479–496.
8. Machleidt, R. The meson theory of nuclear forces and nuclear structure. Adv. Nucl. Phys. 1989, 19, 189–376.
9. Machleidt, R. High-precision, charge-dependent Bonn nucleon-nucleon potential. Phys. Rev. C 2001,

63, 024001.
10. Lacombe, M.; Loiseau, B.; Richard, J.M.; Vinh Mau, R.; Côté, J.; Pires, P.; de Tourreil, R. Parametrization of

the Paris N-N potential. Phys. Rev. C 1980, 21, 861–873.
11. Machleidt, R.; Holinde, K.; Elster, C. The Bonn meson-exchange model for the nucleon-nucleon interaction.

Phys. Rep. 1987, 149, 1–89.
12. Weinberg, S. Phenomenological Lagrangians. Physica 1979, 96A, 327–340.
13. Weinberg, S. Effective chiral Lagrangians for nucleon-pion interactions and nuclear forces. Nucl. Phys. 1991,

B363, 3–18.
14. Weinberg, S. Three-body interactions among nucleons and pions. Phys. Lett. B 1992, 295, 114–121.
15. Machleidt, R.; Entem, D.R. Chiral effective field theory and nuclear forces. Phys. Rep. 2011, 503, 1–75.
16. Epelbaum, E.; Hammer, H.-W.; Meißner, U.-G. Modern theory of nuclear forces. Rev. Mod. Phys. 2009,

81, 1773.
17. Beane, S.R.; Bedaque, P.F.; Orginos, K.; Savage, M.J. Nucleon-nucleon scattering from fully dynamical lattice

QCD. Phys. Rev. Lett. 2006, 97, 012001.
18. Ishii, N.; Aoki, S.; Hatsuda, T. Nuclear forces from lattice QCD. Phys. Rev. Lett. 2007, 99, 022001.
19. Gasser, G.; Leutwyler, H. Chiral perturbation theory to one loop. Ann. Phys. 1984, 158, 142–210.
20. Gasser, J.; Sanio, M.E.; Švarc, A. Nucleons with chiral loops. Nucl. Phys. 1988, B307, 779–853.
21. Scherer, S. Introduction to chiral perturbation theory. Adv. Nucl. Phys. 2003, 27, 277–538.
22. Olive, K.A.; Particle Data Group. Review of Particle Physics. Chin. Phys. C 2014, 38, 090001.
23. Coleman, S.; Wess, J.; Zumino, B. Structure of phenomenological Lagrangians. I. Phys. Rev. 1969, 177, 2239.
24. Callan, C.G.; Coleman, S.; Wess, J.; Zumino, B. Structure of phenomenological Lagrangians. II. Phys. Rev.

1969, 177, 2247.
25. Fettes, N.; Meißner, U.-G.; Mojžiš, M.; Steininger, S. The chiral effective pion-nucleon Lagrangian of order p4.

Ann. Phys. 2000, 283, 273–307.
26. Krebs, H.; Gasparyan, A.; Epelbaum, E. Chiral three-nucleon force at N4LO: Longest-range contribution.

Phys. Rev. C 2012, 85, 054006.
27. Ordóñez, C.; Ray, L.; van Kolck, U. Two-nucleon potential from chiral Lagrangians. Phys. Rev. C 1996, 53,

2086–2105.



Symmetry 2016, 8, 26 41 of 43

28. Van Kolck, U. Few-nucleon forces from chiral Lagrangians. Phys. Rev. C 1994, 49, 2932–2941.
29. Epelbaum, E.; Nogga, A.; Glöckle, W.; Kamada, H.; Meißner, U.-G.; Witala, H. Three-nucleon forces from

chiral effective field theory. Phys. Rev. C 2002, 66, 064001.
30. Kaiser, N. Chiral 3π-exchange NN potentials: Results for representation-invariant classes of diagrams.

Phys. Rev. C 2000, 61, 014003.
31. Kaiser, N. Chiral 3π-exchange NN potentials: Results for diagrams proportional to g4

A and g6
A. Phys. Rev. C

2000, 62, 024001.
32. Entem, D.R.; Machleidt, R. Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral

perturbation theory. Phys. Rev. C 2003, 68, 041001.
33. Entem, D.R.; Kaiser, N.; Machleidt, R.; Nosyk, Y. Peripheral nucleon-nucleon scattering at fifth order of chiral

perturbation theory. Phys. Rev. C 2015, 91, 014002.
34. Girlanda, L.; Kievsky, A.; Viviani, M. Subleading contributions to the three-nucleon contact interaction.

Phys. Rev. C 2011, 84, 014001.
35. Entem, D.R.; Kaiser, N.; Machleidt, R.; Nosyk, Y. Dominant contributions to the nucleon-nucleon interaction

at sixth order of chiral perturbation theory. Phys. Rev. C 2015, 92, 064001.
36. Entem, D.R.; Machleidt, R. Contact terms of EFT based NN potentials. Unpublished.
37. Liu J.; Mendenhall, M.P.; Holley, A.T.; Back, H.O.; Bowles, T.J.; Broussard, L.J.; Carr, R.; Clayton, S.; Currie, S.;

Filippone, B.W.; et al. Determinaton of the axial-vector weak coupling constant with ultracold neutrons.
Phys. Rev. Lett. 2010, 105, 181803.

38. Pavan, M.M.; Arndt, R.A.; Strakovsky, I.I.; Workman, R.L. Determination of the πNN coupling constant in
the VPI/GWU πN → πN partial wave and dispersion relation analysis. Phys. Scr. 2000, T87, 65–70.

39. Arndt, R.A.; Strakovsky, I.I.; Workman, R.L.; Pavan, M.M. Sensitivity to the pion-nucleon coupling constant
in partial wave analyses of πN → πN, NN → NN, γN → πN. Phys. Scr. 2000, T87, 62–64.

40. Kaiser, N.; Brockmann, R.; Weise, W. Peripheral nucleon-nucleon phase shifts and chiral symmetry.
Nucl. Phys. 1997, A625, 758–788.

41. Epelbaum, E.; Glöckle, W.; Meißner, U.-G. Improving the convergence of the chiral expansion for nuclear
forces - II: Low phases and the deuteron. Eur. Phys. J. 2004, A19, 401–412.

42. Kaiser, N. Chiral 2π-exchange NN potentials: Two-loop contributions. Phys. Rev. C 2001, 64, 057001.
43. Kaiser, N. Chiral 3π-exchange NN potentials: Results for dominat next-to-leading-order contributions.

Phys. Rev. C 2001, 63, 044010.
44. Kaiser, N. Chiral 2π-exchange NN potentials: Relativistic 1/M2-corrections. Phys. Rev. C 2002, 65, 017001.
45. Erkelenz, K.; Alzetta, R.; Holinde, K. Momentum space calculations and helicity formalism in nuclear

physics. Nucl. Phys. 1971, A176, 413–432.
46. Machleidt, R. One-boson-exchange potentials and nucleon-nucleon scattering. In Computational Nuclear

Physics 2 – Nuclear Reactions; Langanke, K., Maruhn, J.A., Koonin, S.E., Eds.; Springer: New York, NY, USA,
1993; pp. 1–29.

47. Arndt R.A.; Briscoe, W.J.; Strakovsky, I.I.; Workman, R.L. Extended partial-wave analysis of πN scattering
data. Phys. Rev. C 2006, 74, 045205.

48. Koch, R. A calculation of low-energy πN partial waves based on fixed-t analyticity. Nucl. Phys. 1986, A448,
707–731.

49. Entem, D.R.; Machleidt, R. Chiral 2π exchange at fourth order and peripheral NN scattering. Phys. Rev. C
2002, 66, 014002.

50. Stoks, V.G.J.; Klomp, R.A.M.; Rentmeester, M.C.M.; de Swart, J.J. Partial-wave analysis of all nucleon-nucleon
scattering data below 350 MeV. Phys. Rev. C 1993, 48, 792–815.

51. Arndt, R.A.; Strakovsky, I.I.; Workman, R.L. SAID, Scattering Analysis Interactive Dial-in Computer Facility;
The George Washington University: Washington, DC, USA, 1999.

52. Briscoe, W.J.; Strakovsky, I.I.; Workman, R.L. SAID Partial-Wave Analysis Facility, Data Analysis Center;
The George Washington University: Washington, DC, USA, 2007.

53. Mau, R.V. The Paris nucleon-nucleon potential. Mesons Nucl. 1979, 1, 151.
54. Epelbaum, E.; Glöckle, W.; Meißner, U.-G. Nuclear forces from chiral Lagrangians using the method of

unitary transformation (I): Formalism. Nucl. Phys. 1998, A637, 107–134.
55. Kaplan, D.B.; Savage, M.J.; Wise, M.B. Nucleon-nucleon scattering from effective field theory. Nucl. Phys.

1996, B478, 629–659.



Symmetry 2016, 8, 26 42 of 43

56. Kaplan, D.B.; Savage, M.J.; Wise, M.B. A new expansion for nucleon-nucleon interactions. Phys. Lett. 1998,
B424, 390–396.

57. Kaplan, D.B.; Savage, M.J.; Wise, M.B. Two-nucleon systems from effective field theory. Nucl. Phys. 1998,
B534, 329–355.

58. Fleming, S.; Mehen, T.; Stewart, I.W. NNLO corrections to nucleon-nucleon scattering and perturbative
pions. Nucl. Phys. 2000, A677, 313–366.

59. Fleming, S.; Mehen, T.; Stewart, I.W. NN scattering 3S1–3D1 mixing angle at next-to-next-to-leading order.
Phys. Rev. C 2000, 61, 044005.

60. Beane, S.R.; Kaplan, D.B.; Vuorinen, A. Perturbative nuclear physics. Phys. Rev. C 2009, 80, 011001.
61. Beane, S.R.; Bedaque, P.F.; Savage, M.J.; van Kolck, U. Towards a perturbative theory of nuclear forces.

Nucl. Phys. 2002, A700, 377–402.
62. Nogga, A.; Timmermans, R.G.E.; van Kolck, U. Renormalization of one-pion exchange and power counting.

Phys. Rev. C 2005, 72, 054006.
63. Pavon Valderrama, M.; Ruiz Arriola, E. Renormalization of the NN interaction with a chiral two-pion

exchange potential. II. Noncentral phases. Phys. Rev. C 2006, 74, 064004.
64. Entem, D.R.; Ruiz Arriola, E.; Pavón Valderrama, M.; Machleidt, R. Renormalization of chiral two-pion

exchange NN interactions: Momentum space versus coordinate space. Phys. Rev. C 2008, 77, 044006.
65. Birse, M.C. Power counting with one-pion exchange. Phys. Rev. C 2006, 74, 014003.
66. Birse, M.C. Deconstructing triplet nucleon-nucleon scattering. Phys. Rev. C 2007, 76, 034002.
67. Birse, M.C. Functional renormalization group for two-body scattering. Phys. Rev. C 2008, 77, 047001.
68. Yang, C.-J.; Elster, C.; Phillips, D.R. Subtractive renormalization of the NN scattering amplitude at leading

order in chiral effective theory. Phys. Rev. C 2008, 77, 014002.
69. Yang, C.-J.; Elster, C.; Phillips, D.R. Subtractive renormalization of the chiral potentials up to

next-to-next-to-leading order in higher NN partial waves. Phys. Rev. C 2009, 80, 034002.
70. Yang, C.-J.; Elster, C.; Phillips, D.R. Subtractive renormalization of the NN interaction in chiral effective

theory up to next-to-next-to-leading order: S waves. Phys. Rev. C 2009, 80, 044002.
71. Long, B.; van Kolck, U. Renormalization of singular potentials and power counting. Ann. Phys. 2008, 323,

1304–1323.
72. Machleidt, R.; Entem, D.R. Nuclear forces from chiral EFT: The unfinished business. J. Phys. G Nucl. Phys.

2010, 37, 064041.
73. Zeoli, C.; Machleidt, R.; Entem, D.R. Infinite-cutoff renormalization of the chiral nucleon-nucleon interaction

up to N3LO. Few-Body Syst. 2013, 54, 2191–2205.
74. Valderrama, M.P. Perturbative Renormalizability of Chiral Two Pion Exchange in Nucleon-Nucleon

Scattering. Phys. Rev. C 2011, 83, 024003.
75. Valderrama, M.P. Perturbative Renormalizability of Chiral Two Pion Exchange in Nucleon-Nucleon

Scattering: P- and D-waves. Phys. Rev. C 2011, 84, 064002.
76. Machleidt, R.; Liu, P.; Entem, D.R.; Ruiz Arriola, E. Renormalization of the leading-order chiral

nucleon-nucleon interaction and bulk properties of nuclear matter. Phys. Rev. C 2010, 81, 024001.
77. Bethe, H.A. Theory of nuclear matter. Ann. Rev. Nucl. Sci. 1971, 21, 93–244.
78. Day, B.D.; Wiringa, R.B. Brueckner-Bethe and variational calculations of nuclear matter. Phys. Rev. C 1985,

32, 1057–1062 .
79. Epelbaum, E.; Gegelia, J. Regularization, renormalization and “peratization” in effective field theory for two

nucleons. Eur. Phys. J. 2009, A41, 341–354.
80. Lepage, G.P. How to Renormalize the Schrödinger Equation. 1997, arXiv:nucl-th/9706029.
81. Marji, E.; Canul, A.; MacPherson, Q.; Winzer, R.; Zeoli, C.; Entem, D.R.; Machleidt, R. Nonperturbative

renormalization of the chiral nucleon-nucleon interaction up to next-to-next-to-leading order. Phys. Rev. C
2013, 88, 054002.

82. Entem, D.R.; Machleidt, R. Accurate Nucleon-Nucleon Potential Based upon Chiral Perturbation Theory.
Phys. Lett. 2002, 524, 93–98.

83. Stoks, V.G.J.; Klomp, R.A.M.; Terheggen, C.P.F.; de Swart, J.J. Construction of high-quality NN potential
models. Phys. Rev. C 1994, 49, 2950–2962.

84. Wiringa, R.B.; Stoks, V.G.J.; Schiavilla, R. Accurate nucleon-nucleon potential with charge-independence
breaking. Phys. Rev. C 1995, 51, 38–51.



Symmetry 2016, 8, 26 43 of 43

85. Epelbaum, E.; Glöckle, W.; Meißner, U.-G. The two-nucleon system at next-to-next-to-next-to-leading order.
Nucl. Phys. 2005, 747, 362–424.

86. Epelbaum, E.; Krebs, H.; Meißner, U.-G. Improved chiral nucleon-nucleon potential up to
next-to-next-to-next-to-leading order. Eur. Phys. J. 2015, 51, 1–29.

87. Epelbaum, E.; Krebs, H.; Meißner, U.-G. Precision nucleon-nucleon potential at fifth order in the chiral
expansion. Phys. Rev. Lett. 2015, 115, 122301.

c© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Historical Perspective
	Effective Field Theory for Low-Energy QCD 
	Symmetries of Low-Energy QCD
	Chiral Symmetry
	Explicit Symmetry Breaking
	Spontaneous Symmetry Breaking

	Chiral Effective Lagrangians  

	Nuclear Forces from EFT: Overview 
	Chiral Perturbation Theory and Power Counting 
	The Hierarchy of Nuclear Forces

	Pion-Exchange Contributions to the NN Interaction
	Leading Order (LO)
	Next-to-Leading Order (NLO)
	Next-to-Next-to-Leading Order (NNLO)
	Next-to-Next-to-Next-to-Leading Order (N3LO)
	Football diagram at N3LO
	Leading Two-Loop Contributions
	Leading Relativistic Corrections
	Leading Three-Pion Exchange Contributions

	Next-to-Next-to-Next-to-Next-to-Leading Order (N4LO)
	Two-Pion Exchange Contributions at N4LO
	Three-Pion Exchange Contributions at N4LO

	Next-to-Next-to-Next-to-Next-to-Next-to-Leading Order (N5LO)
	Two-Pion Exchange Contributions at N5LO
	Three-Pion Exchange Contributions at N5LO
	Four-Pion Exchange at N5LO


	Perturbative NN Scattering in Peripheral Partial Waves
	Constructing Chiral NN Potentials 
	NN Contact Terms 
	Zeroth Order (LO)
	Second Order (NLO)
	Fourth Order (N3LO)
	Sixth Order (N5LO)

	Definition of NN Potential 
	Regularization and Non-Perturbative Renormalization
	Renormalization Beyond Leading Order
	Back to the Beginnings

	NN Potentials Order by Order

	Conclusions 

