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Abstract. We explore a differential calculus on the algebra of C 00-functions orr a mani­
fold. The former is 'noncommutative' in the sense that functions and differentials do not 
commute, in general. Relation~ with bicovariant differential calculus on certain quantum 
groups and stochastic calculus' are discussed. A similar differential calculus on a superspace 
is shown to be related to the Batalin-Vilkovisky antifield formalism. 
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1. Introduction 

Since Connes' work on noncommutative geometry, the notion of differen­
tial calculus on algebras has entered the realm of physics through numer­
ous publications. As the commutative algebra of (C-valued) functions on 
a topological space carries all the information about the space in its al­
gebr-aic structure, certain noncommutative algebras may be regarded as a 
generalization of the notion of a 'space'. If the algebra A is associative, one 
can enlarge it to a differential algebra, a kind of analogue of the algebra of 
differential forms on a differentiable manifold. 

More precisely, this is a ~-graded associative algebra /\{A) = EBr>O N(A) 
where /\.0 =A. The spaces N(A) of r-forms are generated as A-bi~odules 
via the action of an exterior derivative d : /{(A) --> N+I(A) which is a 
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linear operator acting in such a way that d2 = 0 and d( ww') = ( dw) w' + 
(-l)'w dw' (where wand w' are r- and r'-forms, respectively). Without fur­
ther restrictions, /\(A) is the so-called universal differential envelope of A. 
It associates, for example, independent differentials with f E A and / 2 • 

What we would rather like to have is a closer analogue of the algebra 
of differential forms on a manifold. In particular, if A is generated by a set 
of n elements (e.g., coordinate functions xi on a manifold), we might want 
the space of 1-forms to be generated as a left- (or right-) A-module by the 
differentials dxi. In order to achieve this, one has to add commutation rules 
for functions and differentials to the differential algebra structure defined 
above. In case of the commutative algebra of C00-functions on a manifold, 
the ordinary calculus of differential forms simply assumes that 1-forms and 
functions commute. If, however, .A is the algebra of functions on a discrete 
set, this assumption cannot be kept. The algebra of functions on a two­
point set, for example, is generated by a function y such that y2 = 1. Acting 
with d on this relation yields y dy = -dy y and thus anti-commutativity. 
In this example the commutation relation is not an additional assumption, 
but follows from the general rules of differential calculus. This is a special 
feature of. the two-point space. This example plays a crucial role in models 
of elementary particle physics [1]. Here we just take it to illustrate what we 
mean by 'noncommutative differential calculus', namely noncommutativity 
between functions and differentials. 

Let A be the set of functions on lR generated by a coordinate function 
x (and a unit element which we identify with 1 E <C). The simplest consis­
tent deformation of the ordinary differential calculus is then determined by 
[x,dx] = adx where a is a positive real constant. Ifwe define partial deriva-

tives by df =Bf dx = dx DJ, they turn out to be (left- and right-) discrete 
derivatives. An integral is naturally associated with d and (for the higher­
dimensional generalization of the calculus) it turns out that the deformation 
from a= 0 to a> 0 transforms continuum theorie" (like a gauge theory) to 
the corresponding lattice theory (where a plays the role of the lattice spac­
ing) [2]. A simple coordinate transformation brings the above commutation 
relation into the form y dy = q dy y with q E <C, the differential calculus 
underlying q-calculus [3]. This noncommutative differential calculus is the 
best understood and most complete example so far. We can also introduce 
it on the space of functions on a lattice with spacings a instead of A. More 
generally, differential calculus on discrete sets is supposed to be of relevance 
for approaches towards discrete field theory and geometry (see [4] and the 
references given there). 

Another interesting example of a noncommutative differential calculus on 
a commutative algebra is the following [5, 6]. Let A be the algebra of C 00

-

functions on a manifold M and let us assume the following commutation 
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relations expressed in terms of local coordinates xi: 

[xi, dxi] = / gii dt 

115 

(1.1) 

where/ is a constant, g a real symmetric tensor (e.g., a metric) on M, and t 
an 'external' (time) parameter. The above commutation relation is actually 
coordinate independent. The differential calculus based on it is related to 
quantum mechanics [5] and stochastics [6] (depending on whether I is imag­
inary or real), and to 'proper time' (quantum) theories [5]. A generalization 
of (1.1) is obtained by replacing 1dt by a 1-form T, i.e. 

[xi, dxj] = T gij (1.2) 

where' T should have the following properties, 

[xi, T] = 0 TT= 0 , dT = 0. (1.3) 

This structure in fact shows up in the classical limit ( q --> 1) of (bi covariant 
[7]) differential calculus on certain quantum groups [8]. For functions f, h E 
A, we have 

[f,dh] = T(j,h)9 (1.4) 

where &; := & /&xi. In sections 2-5, a brief introduction to various aspects 
of this differential calculus is given. Some of the results, in particular in 
sections 3 and 5, have not been published before. 

Sections 6 and 7 present basically new results. We introduce a differential 
calculus on a superspace and show that the antibracket and the ~-operator 
of the Batalin-Vilkovisky formalism [9] (developed for quantization of gauge 
theories) appear naturally in this framework. A corresponding generaliza­
tion of gauge theory is also formulated. The differential calculus is a kind 
of superspace counterpart of the abovementioned differential calculus on 
manifolds. 

Our work establishes relations between noncommutative differential cal­
culus and various mathematical structures which play a role in physics. The 
latter are thus put into a new perspective which will hopefully contribute to 
an improved understanding and handling of these structures. 

2. The classical limit of bicovariant differential calculi on the quan­
tum groups GLq(2) and SLq(2) 

Let us denote the entries of a G L(2)-matrix as follows, 

M = ( ~~ ~~) . (2.1) 

Let A be the algebra of polynomials in xi. The quantum group G Lq(2) is 
a noncommutative deformation of A as a Hopf algebra. The structure of a 
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quantum group allows to narrow down the many possible differential calculi 
on it. This results in the notion of bicovariant differential calculus [7]. For 
GL9(2) there is a. 1-parameter set of bicovariant differential calculi. In the 
classical limit q -+ 1 they lead [8, 6] to the commutation relations (1.2) with 

gii = (detM)-1 xixi+4(o~io~>-o~io~>) (2.2) 

T = s (dx 1 x4 
- dx2 x3 

- dx3 x2 + dx4 x1
) (2.3) 

where s is a free parameter. The ordinary differential calculus on GL(2) is 
only obtained when s = O. 

The condition for the matrix M to be in 5L(2) is the quadratic equation 

det M = x1 x4 
- x 2 x3 = 1 . (2.4) 

Compatibility of the analogous condition for the quantum group SL9(2) 
with bicovariant differential calculus restricts the parameter s to only two 
values (both different from zero) [8]. There are thus only two bicovariant 
differential calculi on SLq(2) and for both the classical limit is not the or­
dinary differP,ntial calculus. We will only consider one of them here. In a 
cordinate patch where x 1 f: 0 we can use xa, a = 1, 2, 3, as coordinates. The 
differential calculus is then determined by (1.2) with 

(2.5) 

(2.6) 

where x4 = (1 + x2x3 )/x1• Although we only have three independent co­
ordinates in this case, the space of 1-forms (as a left or right A-module) 
is four-dimensional since T cannot be expressed as T = L:~=l dxa fa with 
fa E A. What's going on here is explained in more detail in the following 
section, using a simple example. 

3. Differential calculi on quadratic varieties 

Let xi, i = 1, ... , n, be real variables, <Xij a nondegenerate symmetric con­
stant form with inverse aii. We want to construct a noncommutative differ­
ential calculus with (1.2) and (1.3), compatible with the quadratic relation 

(3.1) 

The SL(2)-condition (2.4) provides us with a particular example. Acting 
with don (3.1) and using (1.2), we obtain 

(3.2) 

where we have assumed that a .- <Xij gii f: 0. The condition [xi, r] = 0 
implies 

gij Tj = 0 . (3.3) 
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It is natural to look for an expression for gii in terms of oh and the coordi­
nates xi. We are then led to the following solution of the last equation: 

(3.4) 

From this we find a = 1 - n. In the SL(2) case, we recover (2.2) and (2.3) 
with the correct restriction on the parameter, i.e. s = 1/3. 

Example: Consider two variables x, y subject to the quadratic relation 

xy = 1. (3.5) 

We thus haven= 2, O:ij = (1/2)(8ili5j2 + '5;2'5j1) and 

.. (x2 -1) 
(g'J) = -1 y2 . (3.6) 

Furthermore, r = dxy + dyx. In the case under consideration, (1.2) is a 
system of four equations. Three of them are redundant, however, since they 
are consequences of 

[x,dx] = r x2 
• (3.7) 

Although we have only one free coordinate (x), the 1-forms dx and rare 
independent in the sense that r = dx ( 1 / x) - ( 1 / x) dx cannot be e,xi>ressed 
as f(x) dx or dx f(x ). The space of 1-forms is therefore two-dimensional (as 
a left or right A-module, where A is now the algebra of functions of x ). We 
can use the expression for r to eliminate r from (3.7). This results in the 
equation xdx - 2dxx + (1/x)dxx 2 = 0 which is insufficient to transform 
the A-bimodule of 1-forms into a left (or right) A-module. 

4. A generalized gauge theory and 'second order differential ge-
ometry' 

It is rather straightforward to formulate a generalization of gauge theory 
and differential geometry using the 'deformed' differential calculus on A = 
C00(M) with (1.2) and (1.3) (see also (5]). It should be noticed, however, 
that - as a consequence of the deformation - the differential of a function f 
is now given by 

1 . . . 
df = r - g'3 OiOjf + dx' 8if 

2 
( 4.1) 

andlnvolves a second order differential operator. If a (space-time) metric is 
given, it is natural to identify it with gii. 

Let 'l/J be an element of An which transforms as 'l/J 1-+ 'l/J' = U 'l/J under a 
representation of a Lie group G. For local transformations we can construct 
a covariant derivative in the usual way, 

D'l/l = d'l/J+ A¢. (4.2) 
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This is indeed covariant if the 1-form A transforms according to the familiar 
rule 

A' = u A u- 1 - dU u-1 . (4.3) 

In the following we will only consiqer the case where the coordinate differ­
entials dxi and the 1-form T are li'nearly independent and form a basis of 
the space of 1-forms (as a left or right A-module). A can then be written in 
a unique way as 

1 . 
A = T 2' A 7 + dx' A; . (4.4) 

Inserting this expression in ( 4.3), we find that A; behaves as an ordinary 
gauge potential and 

(4.5) 

where Mis an arbitrary tensorial part (M' = U Mu- 1 ). Since U depends on 
xi, in general, it does not commute with dxi. It is convenient to introduce 
the gauge-covariant differential Dxi := dxi - T Ai. The covariant derivative 
of 'I/; can now be written as 

1 .. . 
D'l/; = r - (g'1 D;Dj + M) 'I/;+ Dx' D;'l/; 

2 
( 4.6) 

where D; denotes the ordinary covariant derivative (with A;). The field 
strength of A is 

1 1 . . 
F = dA + A2 = r 2' (D* F - DM) + 2 Dx' DxJ F;j (4.7) 

where D* F = dxi DiFji involves the Yang-Mills operator (when gij is iden­
tified with the space-time metric). F;j is the (ordinary) field strength of 
A;. 

If T behaves as a scalar and gij as a contravo."iant tensor under coor­
dinate transformations, the defining relations of our differential calculus -
and in particular (1.2) - are coordinate independent [5, 6). The coordinate 
differentials dxi do not transform covariantly, however, since 

,k 1 · · ,k e 1k 
dx = T - g'J [}i[}jX + dq; [}ex ( 4.8) 

2 

as a consequence of ( 4.1 ). For a vector field yi we introduce a (right-) 
covariant derivative 

(4.9) 

This is indeed right-covariant iff the generalized connection jfi is given by 

r ; 1 [ ke(8 ri + ri rm ) + M; l + d k r; j = T 2 g k jf mk jf j X jk (4.10) 
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where fi jk are the components of an ordinary linear connection on M and 
Mij is a tensor. Let us introduce the right-covariant 1-forms 

Dxk := dxk + T ! rk ij9ij . 
2 

(4.1) can now be rewritten as 

1 .. . 
df = T - g'1 'V;'Vjf + Dx' a;f 

2 

(4.11) 

( 4.12) 

where 'Vi denotes the ordinary covariant derivative. Also the covariant ex­
terior derivative of yi can now be written in an explicitly right-covariant 
form, 

(4.13) 

It is interesting that the (covariant) exterior derivative of a field contains in 
its ;-part the corresponding part of the field equation to which it is usually 
subjected in physical models. We refer to [5] for further results. 

5. Stochastic differential calculus 

When r = 7dt as in (1.1), we may consider (smooth) functions f(xi,t) 
depending also on the parameter t. (4.1) then has to be replaced by 

(5.1) 

Such a formula is wellknown in the theory of stochastic processes (Ito cal­
culus) [10] and suggests that our noncommutative differential calculus pro­
vides us with a convenient framework to deal with stochastic processes on 
manifolds. There is indeed a kind of translation [6) to the (Ito) calculus of 
stochastic differentials. This can be used to carry the expectation map from 
the latter over to our calculus. In this section, we introduce an expectation 
Eon the (first order) differential calculus in a more formal way. It is then 
shown for a specific example, that our rules reproduce familiar results. 

Let us consider the equation (1.1) in one dimension (for simplicity). We 
write it in the form 

(5.2) 

viewing X 1 as a process on JR, a map JR x [O, oo) -+ JR. A denotes the algebra 
of smooth functions of X 1 and t, and :F the subalgebra of functions oft only. 
Let Ebe an :F-linear map A -+ :F which is the identity on :F. We extend it 
to 1-forms as an :F-linear map via 
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Edft = -d(Eft) , E(dXtft) = 0 (\f ft EA). (5.3) 

On the rhs of the first equation in (5.3), dis the ordinary exterior derivative. 
The second equation can be interpreted by saying that, given ft, a further in­
crement dXt is statistically independent (i.e., ft is 'nonanticipating'). Then, 
as a consequence of (5.2), E(fi dXt)·does not vanish, in general. Here we 
should view ft as evaluated after a time step dt with increment dXt 'in Xt. 

Example: (Ornstein-Uhl en beck process) 
Let us consider the differential equation 

dyt = -kdtyt + CTdXt 

with constants k, a. For Eyt we obtain from (5.4) the ordinary differential 
equation 

dEyt = -k Eyt dt (5.5) 

with the solution Eyt = EY0 e-kt. Let us now show how to calculate higher 
moments. With 

[Yi, dyt] = CT [Yi, dXt] = a [Xt, dyt] = CT 2 dt . 

we find 

d(Y?) = dyt Yi + Yi dyt = 2 dyt Yi + a 2 dt 
= 2 a dXt Yi + dt ( a2 

- 2k Y?) 

and, using E( dXtYt) = 0, the ordinary differential equation 

d(EY?) = dt ( CT2 
- 2 k EY?) 

for the second moment. The solution is 
2 

EY/ = e-2kt EY02 + ~ (1 - e-2kt) . 
2k 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

If the moments EY0n are given, we obtain in this way the moments EYt, t > 
0. The results are the same as if we treat (5.4) as an (Ito) stochastic dif­
ferential equation, which is the Ornstein-Uhlenbeck equation (see [10], for 
example). We have used rather unusual techniques, however, namely a non­
commutative differential calculus. 
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6. A differential calculus on superspace 

So far we dealt with a commutative algebra generated by coordinate func­
tions xi, i = 1, ... , n. In this section we enlarge it to an algebra A of func­
tions on a superspace by adding odd variables e; and T/· Again, we associate 
with A a 'differential algebra /\(A) via the action of an exterior derivative d. 
In the case of superalgebras a different version of the Leibniz rule is usually 
adopted [11), 

d(ww') = dww1 + wdw' (6.1) 

where the hat denotes the grading involution. This is defined on /\(.A) by 
xi = xi,{; = -e;, if = -TJ, ;;;;; = -dW, :;;:;, = ww' and linearity. In par­
ticular, the dxi are odd and dTJ, de; are even. In the even sector of A, 
(6.1) coincides with our previous rule, however. We write [,)for the graded 
commutator (i.e., [w, w') = ww' -w'w for w even and (w,w') = ww' -w'w for 
w odd). The universal differential calculus is now restricted by the following 
relations, 

(6.2) 

The remaining graded commutators between superspace coordinates and 
their differentials are taken to be zero (so that we have the standard rnles in 
the pure even and odd sectors). This defines a consistent differential calculus 
where the space of 1-forms is generated as a right (or left) A-module by 
dxi, dej, dTJ. The differential of a function f on the superspace can then be 
expressed as 

df_ = ~TJ~T/.f + dx; B;f +de; (,if (6.3)( 

where 8T/, 8;, (' are operators on A. Using (6.1) and the basic commutation' 
relations, we find 

(6.4) 

With the help of these relations, the Leibniz rule (6.1) ford now implies 

B;(!h) = (Bif) h + J (B;h) , (,i(Jh) = ((' !) h + J(('h) (6.5) 

BT/(!h) = (BT/!) h + j (BT/h) +((if) B;h + (fi]) (;h. (6.6) 

Together with B;xi = b{ = (,ie;, BT/TJ = 1 (a consequence of (6.3)), this leads 
to .._ 

{)-. - {)· •- ~ (-j - (j •-~ {)- - {) + A •-~ + (i{). (6.7) ' - • ·- 8xi , - .- 8e; , T/ - T/ u .- 8TJ • 

(where a subscript (£)indicates that the derivative is taken from the left). 
Hence 

(6.8) 
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Using (6.4), we obtain 

[f,dh] = dT] (f,h) (6.9) 

where on the rhs appears the antibmcket (9] 

(6.10) 

The operator ~ satisfies ~ 2 = 0. 
The relation (6.9) is very much analogous with the relation (1.4). Of 

course, we may consider both deformations of the ordinary differential cal­
culus on the superspace simultaneously. In a sense, 1J is the odd counterpart 
of t in ( 1.1). 

7. Generalized gauge theory on superspace 

We consider again the superspace differential calculus introduced in the 
preceeding section. Let 'I/; transform under the action of a (super) group G 
according to 'I/; 1-> 'I/;' = U 'l/J. With respect to local transformations on the 
superspace, an exterior covariant derivative can be defined in the usual way 
as 

D'l/; := d'l/J+ A'l/; (7.1) 

with a connection 1-form A. It is indeed covariant, i.e. D''l/!' = fJ D'l/;, if 

A' = (J A u-1 - dU u-1 . 

Inserting the decomposition 

A= d17a + dxi A;+ d~; Ai 

we find 

Ai= u Ai u-1 
- (a;U) u-1 

and 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

In order to read off gauge covariant components from covariant (generalized) 
differential forms, we need the following covariantized differentials (cf also 
section 4), 

D~i := d~; - dT] Ai . (7.6) 

Their transformation rule is 
A A 1 

D' ~i = U D~; u- . (7.7) 



NONCOMMUTATIVE DIFFERENTIAL CALCULUS 123 

Now we find 

D'lj; = dry(D 11 '1f; + riDi'1/J) + Dxi Di'1/J + D~i Ji'lj; (7.8) 

where 

D,, := 811 + µ (7.9) 

The operator ri Di (the covariantized ~) which appears in (7 .8) is a gener­
alization of the Dirac operator. If a metric tensor gii is given and (i U = 0, 
we can choose A; = gii ~i = ~; so that fi = (i + ~; and 

(7.10) 

which is the Clifford algebra relation. In this case, r; Di is indeed the Dirac 
operator. 

More generally, we have the following relations between transformation 
properties and exterior covariant derivatives, 

'1jJ .....,. U'lj; => D'lj; = d'lj; + A '1jJ .....,. (; D'lj; 
'1jJ .....,. (; '1jJ => D'lj; = d'lj; - A '1jJ .....,. UD'lj; 
'1/J.....,. '1f;u-1 => D'lj; = d'lj; - 7/; A .....,. D'lj;U-1 (7.11) 

'1jJ .....,. 'lj;{J-1 => D'lj; = d'lj; + '¢A .....,. D'lj; (J-1 . 

The curvature 2-form of the connection A is given by 

F := dA-AA. (7.12) 

We will leave the further investigation of this calculus to a separate work. 
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