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1 Introduction

In the last few years, we learned a great deal about the class S theories, i.e. the compact-

ification of 6d N=(2, 0) theory on general Riemann surfaces with punctures. By starting

from the 6d N=(2, 0) theories, which have a simple ADE classification, this construction

gives a vast variety of 4d N=2 theories, that come from the choice of the Riemann surfaces

and punctures.

There is another way to construct 4d N=2 theories from 6d: namely, we can put 6d

N=(1, 0) theories on T 2. In this second method, there are no choice of the compactification

manifold, but there are a great number of N=(1, 0) theories in 6d as shown in a recent

series of works [1–3], thereby giving rise to a plethora 4d N=2 theories. A natural question,

therefore, is how much overlap there is between these two constructions.
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Main objective. As a first step in this direction, in this paper we show that a small but

natural subset of 6d N=(1, 0) theories on T 2 gives rise to a small but natural subset of

class S theories. Namely, we show that the 6d N=(1, 0) theory on a single M5-brane on the

ALE space of type G = An, Dn, En, when compactified on T 2, becomes the class S theory

of type G on a sphere with two full punctures and a simple puncture. The 6d theories

in question were called 6d (G,G) minimal conformal matters in [4], and the 4d class S

theories can be called the generalized bifundamental theories. Using these terminologies,

we can simply say that the T 2 compactification of the 6d minimal conformal matter gives

generalized bifundamental theory in 4d.

For G = SU(N) this relation is in a sense very trivial: a single M5-brane on the

C
2/ZN singularity is just a bifundamental hypermultiplet of SU(N)2, and the class S

theory of type SU(N) on a sphere with two full punctures and a single puncture is also a

bifundamental [5, 6]. For G = SO(8), a single M5-brane on the C2/ΓG singularity gives rise

to the rank-1 E-string theory, as pointed out in [1, 4]. The class S theory of type SO(8) on

a sphere with two full punctures and a single puncture was studied in [7], and it was found

that it gives the E8 theory of Minahan and Nemeschansky. Therefore our objective is to

show the relation in the other cases; but our analysis sheds new light even on the simplest

of cases when G = SU(N).

Pieces of evidence. In the rest of the paper, we will provide other pieces of evidences:

• In section 2, we follow the duality chain to show that the T 2 compactification of the

6d minimal conformal matter is a class S theory defined on a sphere with two full

punctures and another puncture that cannot be directly identified with the present

technology.

• In section 3, we compute and compare the dimension of the Coulomb branch both in

4d and in 6d.

• In section 4, we show that the Higgs branch of the 4d generalized fundamentals, when

the G2 flavor symmetry is weakly gauged, is given by the ALE space of type G. This

is as expected from the 6d point of view.

• In section 5, we compare the Seiberg-Witten curve of the 4d generalized bifundamen-

tal of type D and that of the 6d minimal conformal matter of type D in a certain

corner of the moduli space and show the agreement.

• In section 6, we develop a method to compute the 4d anomaly polynomial of the

compactification of a class of the 6d N=(1, 0) theories we call very Higgsable, apply

that to 6d minimal conformal matters and show that they agree with the known

central charges of 4d generalized bifundamentals.

We conclude with a short discussion in section 7. These sections are largely independent of

each other and can be read separately. In particular, the analysis given in section 6 is quite

general and applies to all 6d theories we call very Higgsable: these correspond, in the F-

theoretic language of [1, 2, 4], to theories whose configuration of curves C can be eliminated

– 2 –
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by a repeated blow-down of −1 curves. Equivalently, the endpoint Cend is empty, and a

further complex structure deformation makes the theory completely infared free without

turning on any tensor vevs. In other words, the theory has a completely Higgsed branch

where no tensor multiplet remains. This explains our terminology very Higgsable.1

2 Duality chain

Let us first try to follow the duality chain to show that the 6d minimal conformal matter

on T 2 is a class S theory on a sphere with two full punctures and a simple puncture. We

will see that there is one step we can not quite follow, due to our lack of knowledge of the

6d N=(2, 0) theory.

We start from a single M5-brane on the C
2/ΓG singularity. This gives a minimal

conformal matter of type G weakly coupled to G2 gauge fields in 7d. By putting it on a

torus, we should have a 4d theory with G2 flavor symmetry, which is weakly coupled to G2

gauge fields in 5d.

Let us say that the torus T 2 has complex structure τ . By compactifying on one side

of T 2 and taking the T-dual of the other, we have Type IIB string theory on R
1,3 × S1 ×

R × C
2/ΓG with axiodilaton given by τ , together with a single D3-brane filling R

1,3. We

now take the limit to isolate the low-energy degrees of freedom and ignore the center-of-

mass mode of the D3-brane. We have the 6d N=(2, 0) theory of type G on S1 × R, and

the tension of the D3-brane becomes effectively infinite. Therefore we should have a BPS

defect of codimension-2. With the class S technology currently available to us, we do not

see how to directly identify this defect; let us call it X.

We now take the limit where S1 is small. Then we have a localized degrees of freedom,

that is the class S theory of type G on a sphere with two full punctures and a puncture

X, coupled weakly to 5d G gauge fields coming from the 6d N=(2, 0) theory of type G on

S1× semi-infinite lines.

Therefore we conclude that the 6d minimal conformal matter of type G, when com-

pactified on T 2
τ , is a class S theory of type G on a sphere with two full punctures and a

puncture X. At present, the most we can say just using the duality chain is that we know

that the puncture X is the simple puncture when G is either SU(N) or SO(8), and that the

only statement that naturally generalizes this is that the puncture X is always the simple

puncture for arbitrary G.

3 Dimensions of the Coulomb branch

In this section, we compute the dimension of the Coulomb branch both in 4d and in 6d,

and show that the results indeed agree.

3.1 6d perspective

First, we take the 6d point of view. In section 2 we followed the duality chain to map the

6d minimal conformal matter on T 2 to the Type IIB string on R
1,3×S1×R×C

2/ΓG with

1The authors thank D.R. Morrison for the suggestion that led to this naming.
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axiodilaton given by τ , together with a single D3-brane filling R
1,3. Instead of directly

study the Coulomb branch in 4d, let us put the theory on another S1
R of radius R and

directly identify the hyperkähler structure of the 3d Coulomb branch. Take the T-dual

of this S1
R, and call it S̃1

1/R. Then lift the whole system back to M-theory. Here we are

following the analysis of appendix A.3 of [8].

We now have M-theory on R
1,2× S̃1

1/R×T 2
τ ×R×C

2/ΓG and a single M2-brane filling

R
1,2. The singularity has G gauge multiplet on its singular loci, and the M2-brane can be

absorbed into an instanton configuration. We conclude that the 3d Coulomb branch of the

6d minimal conformal matter on S1
R × T 2

τ is given by the one-instanton moduli space of

gauge group G on S̃1
1/R × T 2

τ × R.

This gives an interesting new perspective on the tensor branch of the 6d minimal

conformal matter. We consider an instanton configuration on T 3 × R. By restricting

the gauge field to T 3 at a constant “time” t ∈ R, we define the Chern-Simons invariant

CS(t). In our case, a single M5 gives a single M2 that becomes one instanton. Let us say

CS(−∞) = 0, then we have CS(+∞) = 1.

At t = ±∞, we need a zero-energy configuration, so the three holonomies g1,2,3 around

three edges of T 3 should commute. We take them to be in the Cartan of G. By following

the duality chain, we see that they can be identified with the original Wilson lines of G2

used in the compactification. It is known that the Chern-Simons invariant of this flat gauge

field on T 3 is 0 mod 1. For simplicity, let us set g1,2,3 = 1 at t = ±∞.

The quaternionic dimension of the moduli space including the center-of-mass motion

but with the holonomies at t = ±∞ fixed, is found by the Atiyah-Patodi-Singer index

theorem [9] to be

dT 3,G = h∨(G)− rank(G) (3.1)

where h∨(G) and rank(G) are the dual Coxeter number and the rank of G. The negative

term is from the boundary contribution.2 Therefore, this is the dimension (plus one, due to

the center-of-mass motion) of the Coulomb branch of the 4d theory we obtain by putting

the 6d minimal conformal matter on T 2:

dT 2,(G,G) min. conf. matter = h∨(G)− rank(G)− 1 . (3.2)

Let us see these degrees of freedom in more detail below. These details can be skipped

in a first reading.

G = SU(N). When G = SU(N), h∨(G) = N and rank(G) = N−1, and then dT 3,G = 1.

This corresponds to the fact that a single M5 on C
2/Γ singularity only has the center-of-

mass motion as the tensor branch degree of freedom.

2The theorem of [9] is valid if the gauge field approaches to the value at t = ±∞ exponentially rapidly.

That condition is satisfied by instanton configurations when the holonomies g1,2,3 are generic so that the

gauge group is broken to its Cartan. Then the equation (3.1) follows from the fact that the 3d Dirac

operator at t = ±∞ for the adjoint representation has 2 rank(G) zero modes and the η-invariant (excluding

the zero modes) of flat connections is zero. By continuity, (3.1) should be valid even if we take g1,2,3 → 1,

although a direct analysis of this case is complicated.
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G = SO(2N). Next, consider G = DN . Recall [4] that a single M5-brane on C
2/ΓDN

singularity can split into two fractional M5-branes, and the emerging gauge group between

the fractionated branes is USp(2N − 8). We should be able to identify this process in the

3d compactification. We have dT 3,G = N − 2, since h∨(DN ) = 2N − 2 and rank(DN ) = N .

So we want to identify these degrees of freedom in the instanton moduli space.

First, recall that for DN = Spin(2N) gauge group, there is a unique commuting triple

(g∗1, g
∗
2, g

∗
3) that cannot be simultaneously conjugated into the Cartan; they can be chosen

to be in a common Spin(7) subgroup, see appendix I of [10]. The Chern-Simons invariant is

1/2 mod 1 [11], and the unbroken subgroup is so(2N −7). Using this we have the following

one-instanton configuration on T 3 × R:

• For −∞ < t < t0, the configuration on T 3 is basically flat and given by (g1, g2, g3) =

(1, 1, 1). CS(t) stays almost constant close to 0.

• At around t = t0, the gauge configuration suddenly changes to (g1, g2, g3)=(g∗1, g
∗
2, g

∗
3)

dressed with holonomies in the Cartan of the commutant, so(2N − 7). CS(t) jumps

to 1/2.

• Again, for t0 < t < t1, the configuration remains almost constant.

• And then at around t = t1, it suddenly changes back to (g1, g2, g3) = (1, 1, 1), making

CS(t) to jump to 1.

In these configurations, we see two parameters t0,1 in addition to the N − 4 holonomies

from the Cartan so(2N − 7). In total, we have N − 2.

We can now identify the parameters t0 and t1 as the positions of the two fractional

M5-branes, and the USp(2N − 8) gauge group between the two fractionated M5-branes as

the S-dual of so(2N − 7) we find here. The reason is that, after T 3 compactification, we

have a 3d theory coupled to 4d N=4 super Yang-Mills on the segment. We know that the

S1
R and S̃1

1/R are T-dual to each other, and therefore the coupling constants of the N=4

super Yang-Mills in these two descriptions are inversely proportional to each other, and

therefore the groups we see are related by S-duality.

G = En. The analysis is completely similar to the cases above, using the data in [11].

For G = E6, we have the following commuting triples:

value v of CS 0 1
3

1
2

2
3

commutant Gv e6 ∅ su(3) ∅
. (3.3)

Then the one-instanton configuration can go through these commuting triples. The degrees

of freedom in the instanton moduli space are now the “time” of the jump from one commut-

ing triple characterized by CS = vi to the next CS = vi+1, together with the holonomies

in the Cartan of Gv. In total, the equality (3.1) is reproduced if

h∨(G) =
∑

possible value v of CS

(1 + rankGv) (3.4)

– 5 –
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and indeed this is satisfied. We also see that this is the sequence of gauge groups when the

M5-brane gets fractionated on the E6 singularity found in [4].

For G = E7, the list of the commuting triples are

value v of CS 0 1
4

1
3

1
2

2
3

3
4

commutant Gv e7 ∅ su(2) usp(6) su(2) ∅
(3.5)

and for G = E8, these are

value v of CS 0 1
6

1
5

1
4

1
3

2
5

1
2

3
5

2
3

3
4

4
5

5
6

commutant Gv e8 ∅ ∅ su(2) g2 ∅ f4 ∅ g2 su(2) ∅ ∅
. (3.6)

In both cases, we can check that indeed the crucial equality (3.4) is satisfied, and the

sequence of the groups are the S-dual of the ones that appear in the fractionation of the

minimal conformal matter, see [4].

Actually, we can do a refined check of the above picture. Consider instanton config-

urations in which the gauge field at t = −∞ (t = +∞) is given by a commuting triple

with the commutant Gi (Gi+1) and Chern-Simons number vi (vi+1). The dimension of the

moduli space of these configurations is given by the Atiyah-Patodi-Singer theorem as

di,i+1 = h∨(G)(vi+1 − vi)−
1

2

(
rank(Gi) + rank(Gi+1)

)
, (3.7)

where h∨(G)(vi+1 − vi) should properly be defined by the integration of the second Chern

class in the adjoint representation. Using the above tables for the values of vi and the

groups Gi, one can check (and it was indeed proved in [11]) that we always have di,i+1 = 1

for adjacent commuting triples in the tables. This is interpreted as the fact that a fractional

M5-brane has only the center-of-mass degrees of freedom.

Here, it is interesting to note that the equality (3.4) is exactly the one that guarantees

the equality of the Witten index of pure N=1 super Yang-Mills of gauge group G computed

both in the infrared using the gaugino condensation and in the ultraviolet using the semi-

classical quantization. For more, see e.g. [12].

3.2 Class S perspective

Before moving to the class S theory side, let us recall the necessary notions of the nilpotent

orbits. A nilpotent orbit for an nilpotent element e in g is the set of elements in g that

are GC-conjugate to e. We denote the nilpotent orbit containing the nilpotent element e

by Oe.

There is a one-to-one correspondence between homomorphisms ρ : su(2) → g, up to

conjugacy, and nilpotent orbits Oe. The precise map is given by e = ρ(σ+). For simplicity,

we denote the nilpotent orbit containing ρ(σ+) as Oρ. In the case of g = su(N), these

homomorphisms are classified by Young diagrams as is well-known in the class S theory of

type AN−1. In general, regular (and untwisted) punctures Xi of the class S theory of type

G are classified by these homomorphisms ρi.

– 6 –
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One of the important ingredients in the relationship between the theory of nilpotent

orbits and the class S theory is the Spaltenstein map d, defined for any simple Lie algebra

g. This is a map

d : {nilpotent orbits of g} → {nilpotent orbits of g∨} , (3.8)

where g∨ is the Langlands dual of g. For example, when g = su(N), this map is to send

a Young diagram to its dual diagram. In this paper we only encounter the g = g∨ cases,

so in the following we will assume this. Note that the Spaltenstein map is order-reversing,

d(O) ≥ d(O′) if O ≤ O′ where the standard partial ordering for nilpotent orbits is defined

so that Oe′ ≥ Oe if Ōe′ ⊃ Oe.

The maximal orbit under this partial ordering is called the principal orbit Oprin and is

equal to d(O0), the Spaltenstein dual to the zero orbit O0. The dimension of the principal

orbit is

dimCOprin = dim(G)− rank(G) . (3.9)

The next-to-maximal orbit is called the subregular orbit Osubreg and is equal to d(Omin),

where Omin is the minimal nilpotent orbit.3 The dimension of the minimal orbit is

dimCOmin = 2
(
h∨(G)− 1

)
. (3.10)

With these notions at hand, we put the N = (2, 0) theory of type G on a Riemann

surface of genus g with regular and untwisted punctures Xi which correspond to homo-

morphisms ρi : su(2) → g. The complex dimension of the Coulomb branch of the resulting

4d N=2 theory is [13]

dclass S =
∑

i

d(ρi) + (g − 1) dim(G) , (3.11)

where d(ρ) is contribution from the punctures and is given by

d(ρ) =
1

2
dimC d(Oρ) . (3.12)

Let us apply this formula to the class S theory we are considering, namely, (2,0) theory

of type G on a sphere with two full punctures and a simple puncture. The full puncture

and the simple puncture are defined so that the corresponding nilpotent orbits are O0 and

Osubreg, respectively. Then, the Coulomb branch dimension is

dclass S = dimC d(O0) +
1

2
dimC d(Osubreg)− dim(G)

= dimCOprin +
1

2
dimCOmin − dim(G)

= h∨(G)− rank(G)− 1 , (3.13)

where in the last line we used (3.9) and (3.10). This result agrees with (3.2).

3This Omin is defined by the homomorphism ρ : su(2) → g which is used to embed the SU(2) one-

instanton minimally into the group G. The dimension (3.10) is the same as the dimension of the one-

instanton moduli space of G minus the dimension of the center-of-mass of the instanton.
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4 Structure of the Higgs branch

As the Higgs branch should remain identical under the T 2 compactification, the 6d theory

and the 4d theory should have the same Higgs branch. We will check this below, at the

level of complex manifolds. It would be interesting to extend the analysis to the level of

holomorphic symplectic varieties or hyperkähler manifolds.

Type SU(N). When the type G of the theory we consider is SU(N), both the 6d

minimal conformal matter and the 4d generalized bifundamental of type SU(N) are just a

bifundamental hypermultiplet of SU(N)2. It naively seems there is not much to see here.

However, we can still have some fun in this case, as we will see momentarily.

Consider a single M5 brane on the C
2/ZN singularity. The 6d theory consists of the

bifundamental of SU(N)2, weakly coupled to the 7d vector multiplet on the singular loci

on the left and on the right of the M5 brane. The Higgs branch of the system should

describe the motion of the M5-brane on the C
2/ZN singularity. Therefore, we should be

able to obtain C
2/ZN as the Higgs branch of the weakly-gauged bifundamental. Let us

check this statement. In the 4d N=1 notation, the bifundamental consists of Qa
i and Q̃i

a,

where a, i = 1, . . . , N . The invariant combinations under the SU(N)2 acting on the indices

a and i are

B = detQ , B̃ = det Q̃ , M = Qa
i Q̃

i
a/N . (4.1)

Note also that the bifundamental couples to the 7d gauge field via the moment maps

µj
i = Qa

i Q̃
j
a −Mδji , µ̃a

b = Qa
i Q̃

i
b −Mδab . (4.2)

They satisfy an important relation trµk = tr µ̃k for any k.

The C
2/ZN singularity has 3(N − 1) smoothing parameters, that can be naturally

thought of as (µR, µC) ∈ su(N)R × su(N)C, restricted to be in the Cartan; µR are the

Kähler parameters for the resolution and µC the complex deformation. Therefore we can

naturally identify this complex deformation parameter µC with µ ∼ µ̃ above.

Let us first consider the singular case µC = µ = µ̃ = 0. Using the standard relation

detQa
i Q̃

a
j = detQ det Q̃ = BB̃ and 0 = µj

i = Qa
i Q̃

j
a −Mδji , we find

BB̃ = MN . (4.3)

This is indeed the equation of the C
2/ZN singularity. More generally, when

µC = µ = µ̃ = diag(m1, . . . ,mN ) , (4.4)

we have Qa
i Q̃

j
a ∼ diag(m1 +M, . . . ,mN +M). Therefore, we have

BB̃ =
N∏

i=1

(M +mi) , (4.5)

which is again the equation of the deformed C
2/ZN singularity.

– 8 –
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General type. Let us proceed to the general case. The 6d minimal conformal matter

of type G, with the G2 flavor symmetry weakly gauged, should have the Higgs branch of

the form C
2/ΓG, where ΓG is the finite subgroup of SU(2) of type G. Since the Higgs

branch should be independent under the T 2 compactification, we should be able to check

this using the class S description of the 4d generalized bifundamental.

The Higgs branch of the class S theory in general was studied e.g. in [14]. As discussed

there, the Higgs branch of the class S theory of type G on a sphere with two full punctures

and a single regular puncture of arbitrary type is described as follows. We start from the

Higgs branch XG of the TG theory, i.e. the class S theory of type G on a sphere with three

full punctures. The hyperkähler space XG has actions of G3, and correspondingly has three

holomorphic moment maps µ1, µ2, µ3 taking values in gC. The hyperkähler dimension of

XG is [13]

dimHXG = rankG+
3

2
(dimG− rankG) . (4.6)

A puncture is specified by a homomorphism

ρ : su(2) → g . (4.7)

Such homomorphisms up to conjugation is known to be classified by the nilpotent element

e = ρ(σ+) up to conjugation. Let f = ρ(σ−). We now define the Slodowy slice Se at e by

Se := {x+ e | [x, f ] = 0} ⊂ gC . (4.8)

Then the class S theory of type G, on a sphere with two full punctures and a puncture

specified by e, has the Higgs branch of the form

Ye = µ−1
1 Se (4.9)

where we regarded µ1 as a map XG → gC.

In our case we take e to be the subregular element, since we want to have a simple

puncture. The dimension is then

dimH Ye = dimHXG − dimHOsubreg = dimG+ 1 (4.10)

where we used (4.6) and

dimCOsubreg = dimG− rankG− 2 . (4.11)

We would like to study the Higgs branch where the G2 flavor symmetry is coupled to

the GL×GR gauge multiplets in one higher dimension, associated to the C2/ΓG locus from

the left (GL) and the right (GR). Therefore the Higgs branch of the combined system is

Ze = Ye///(GL ×GR) , (4.12)

where /// denotes the hyperkähler quotient. On a generic point of Ze, GL ×GR is broken

to its diagonal subgroup Gdiag, since the C
2/ΓG locus is now connected and not separated

by the M5 brane. The breaking from GL ×GR to Gdiag should eat dimG hypermultiplets.

– 9 –
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Subtracting this from (4.10), we find that dimH Ze = 1: this agrees with our expectation

that this Higgs branch describes the motion of an M5-brane along C
2/ΓG orbifold. The

question now is to see that Ze = C
2/ΓG.

To see this, we use the following fact: let us say the TG theory has G1×GL×GR flavor

symmetry, and let us call the respective moment map operators as µ1, µL and µR. Then

the Higgs branch operators of the TG theory, invariant under GL×GR are just polynomials

of µ [15]. We also know that µ, µL and µR satisfy the crucial relation

trµk
1 = trµk

R = trµk
L (4.13)

for any k.

Now consider the M5-brane on a singular C
2/ΓG. This corresponds to the situation

where the G symmetry on the singular locus is unbroken. This means that µL = µR = 0,

which forces µ to be nilpotent via (4.13). Therefore the image of µ1 in gC is the variety N

of nilpotent elements, and the final Higgs branch is therefore

Ze = Se ∩ N . (4.14)

The simple puncture corresponds to e being the subregular element, and it is a classic

mathematical fact by Brieskorn and Slodowy [16, 17] that this space is the singularity

C
2/ΓG.

4

More generally, let us consider the case when the C
2/ΓG is deformed to a smooth

manifold. Such a smooth deformation can be parameterized by a generic element h in the

Cartan of gC. The Higgs branch describing the motion of the M5-brane is then

(Oh,L × Ye ×Oh,R)///(GL ×GR) (4.15)

where Oh,L and Oh,R are two copies of the orbit Oh of elements of gC conjugate to h, and

parameterize the vevs of the adjoint scalars in the 7d vector multiplets on the left and the

right.5 Since GL × GR is now broken to U(1)rankG, the dimension of the resulting Higgs

branch is

2 dimHOh + dimH Ye − (2 dimG− rankG) = 1 , (4.16)

again the expected answer.

Obtaining the Higgs branch itself is equally straightforward: we now have µ1 ∈ Oh,

and the Higgs branch is now

Se ∩ Oh . (4.17)

Again, it is a classic result of Brieskorn and Slodowy [16, 17] that this space precisely gives

the deformation of the C
2/ΓG singularity by the parameter h.

4There are many mathematical ways to connect the simply-laced groups G = An, Dn, En, the finite

subgroup ΓG of SU(2), and the singularity C
2/ΓG. Probably the hyperkähler quotient construction of

Kronheimer [18] is more familiar to string theorists. But this result of Brieskorn and Slodowy was found

much earlier in the mathematics literature.
5More precisely, they arise as follows. To obtain supersymmetric configurations of the 7d gauge field, we

have to solve Nahm’s equations on the half space x7 > 0 (x7 < 0) for GL (GR) as in [19], where x7 is the

direction perpendicular to the M5-brane. The solution (at the complex structure level) is that a complex

scalar Φ at x7 = +0 (x7 = −0) is in the orbit of Φ at x7 = +∞ (x7 = −∞). These Φ(x7 = ±∞) are just

the vev of the field given by 〈Φ〉 = h. So the degrees of freedom from the 7d gauge field are given by Φ(+0)

and Φ(−0) which are in Oh.
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5 Seiberg-Witten curve

In this section, we compare the Seiberg-Witten curve of the 4d generalized bifundamental

and that of the 6d minimal conformal matter on T 2 when the type is Dn. In principle

we should be able to analyze the curves of arbitrary type G in a uniform fashion, but the

authors have not been able to do that.

The 6d conformal theory of type DN , on the tensor branch, becomes USp(2N − 8)

theory with 2N flavors. Therefore, we should be able to reproduce the 4d curve of this

theory by giving a suitable Coulomb branch vev to the 4d generalized bifundamental of

type DN .

There is also another limit in which we can check the curve. Instead of going to the 6d

tensor branch, we can first reduce the 6d minimal conformal matter to 5d and add B-fields

to the ALE space. This makes the system one D4 brane on the DN orbifold, which is given

by the quiver of the form

1

1
2 2 2

1

1

(5.1)

where a circle enclosing i stands for an SU(i) gauge symmetry, and the edge between two

gauge groups stands for the bifundamental. In the figure we used the case N = 6 for

explicitness. Adding B-fields corresponds to giving mass terms to the DN × DN flavor

symmetries. Thus the 4d generalized theory should also realize this quiver by the mass

deformation.

The relation of these two theories considered in 5d, namely the USp(2N − 8) theory

with 2N flavors and this D-type quiver theory, was called “a novel 5d duality” in [4], and

is the type D version of the “base-fiber duality” of [20]. What we find here is that the

corresponding 4d theories are both a deformation of a single class S theory, providing a 4d

realization of these dualities.

The curve of the generalized bifundamental. The generalized bifundamental of type

DN is a class S theory of type DN on a sphere with two full punctures and a single simple

puncture. Therefore, it has the following Seiberg-Witten curve

0 = λ2N + φ2(z)λ
2N−2 + · · ·+ φ2N−2(z)λ

2 + φ2N (z) (5.2)

where λ = xdz/z is the Seiberg-Witten differential, and φk(z) is a k-differential. We also

need the single-valued-ness of φ̃N (z) defined by φ2N (z) = φ̃N (z)2.

Let us put the full punctures at z = 0,∞ and the simple puncture at z = 1. Writing

t = z − 1, the condition at the simple puncture is, according to [7, 21]6

φ2 ∼
2v2
t
dt , φ4 ∼

(v2)
2

t2
dt , φ2k>4 ∼

v2k
t2

dt , φ̃N ∼
ṽN
t
dt . (5.3)

6In terms of the Hitchin system, these rules are simply understood. The Seiberg-Witten curve is det(λ−

Φ) = 0, where Φ is the adjoint field of the Hitchin system on the Riemann surface. The condition φ2N (z) =

φ̃N (z)2 comes from det(−Φ) = (Pfaff(−Φ))2 for so(2N). The poles (5.3) come from Φ ∼ e/t, where e is in

the nilpotent orbit corresponding to the minimal embedding of su(2) into so(2N) as su(2) ⊂ su(2)⊕su(2) =

so(4) ⊂ so(2N). In particular, one can check the relation of the coefficients of φ2 and φ4 in (5.3).
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From this we find that the curve is given by

1

z

N∏

i=1

(x2 −mi
2) + 2c+ z

N∏

i=1

(x2 − m̃i
2) =

2x2N +M2x
2N−2 +M4x

2N−4 + U6x
2N−6 + U8x

2n−2 + · · ·+ U2N−2x
2 (5.4)

where mi and m̃i are mass parameters, c =
∏

i(−mim̃i) so that φ2N (z) = φ̃N (z)2 is

satisfied, M2 and M4 are quadratic and quartic polynomials of mi and m̃i such that (5.3)

are satisfied for φ2 and φ4. The Coulomb branch parameters are from U6 to U2N−2.

The USp theory. Let us next recall the curve of USp(2n) with Nf +N ′

f flavors:

Λ2n+2−2Nf

z

Nf∏

i=1

(x2 −mi
2) + 2c+ Λ2n+2−2N ′

f z

N ′

f∏

i=1

(x2 − m̃i
2) =

x2(x2n + u2x
2n−2 + u4x

2n−4 + · · ·+ u2n) (5.5)

where c2 = Λ4n+4−2(Nf+N ′

f
)∏Nf

i=1(−m2
i )
∏N ′

f

i=1(−m̃2
i ). The differential is λ = xdz/z. This

curve in a hyperelliptic form was first found in [22]. The form given above follows easily

from the brane construction, see e.g. [23].

Setting 2n = 2N − 8, Nf = N ′

f = N , the curve becomes

1

z

N∏

i=1

(x2−mi
2) + 2c+ z

N∏

i=1

(x2−m̃i
2) = Λ6x2(x2N−8 + u2x

2N−10 + · · ·+ u2N−8) (5.6)

where c = Λ6c.

Coming back to the curve of the class S theory (5.4), we consider the regime mi, m̃i ∼

O(ǫ), Λ6 := U6 ∼ O(1) and Uk := U6uk−6 ∼ O(ǫk−6). Then the first three terms of the

right-hand-side of (5.4) can be neglected,7 and becomes (5.6). The identification of U6

with some power of Λ is natural since the vev of the tensor multiplet in 6d is proportional

to the gauge coupling of the USp(2N − 8) gauge group.

This is consistent with the guess that this class S theory is the T 2 compactification of

the minimal conformal matter of type DN . Also, we learn that the tensor branch scalar

becomes U6, of scaling dimension 6, independent of N , and is the coupling constant of the

USp theory.

The D-type quiver. This is a completely different limit than the above USp limit. Note

first that the D-type quiver (5.1) is in fact just the standard linear quiver with SU(2)N−3

gauge group, whose curve is well known.

We start from the curve (5.4) of the class S theory, and focus on the neighborhood of

the simple puncture at z = 1, by setting z = (1 + t)/(1 − t), where t is very small. The

7This scaling limit is a little subtle due to the fact that our USp theory is not asymptotically free. For

example, we throw away the term x2N but retain both zx2N and z−1x2N .
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curve is given, up to terms of O(t3), by

0 = t2(x2N + c2x
2N−2 + c4x

2N−4 + c6x
2N−6 + · · ·+ c2N−2x

2 + c2N )

+ 2t(µ2x
2N−2 + µ4x

2N−4 + µ6x
2N−6 + · · ·+ µ2N−2x

2 + µ2N )

+ (µ2)
2x2N−4 + U ′

6x
2N−6 + · · ·+ U ′

2N−2x
2 + b2N

(5.7)

where we have defined

x2N + c2x
2N−2 + · · ·+ c2N =

1

2

( N∏

i=1

(x2 −mi
2) +

N∏

i=1

(x2 − m̃i
2)

)

,

µ2x
2N−2 + · · ·+ µ2N = −

1

4

( N∏

i=1

(x2 −mi
2)−

N∏

i=1

(x2 − m̃i
2)

)

,

U ′

k = −
1

4
Uk + ck , b2N = (−1)N

1

4

(
∏

i

mi −
∏

i

m̃i

)2

.

The differential is λ = xdz/z ∼ xdt ∼ tdx. One can check that the above curve is achieved

in the scaling limit t ∼ O(ǫ), x ∼ O(ǫ−1), ,mi + m̃i ∼ O(ǫ−1),mi − m̃i = O(1), U ′

k ∼

O(ǫ−k+2) and ǫ → 0. A similar limit was also considered in class S theories of type

AN−1 [24], and as in there, the parameters mi − m̃i may correspond to the masses of

hypermultiplets in the quiver and mi + m̃i may correspond to gauge couplings in 5d.

The coefficients of the terms tx2N−2 and x2N−4 are constrainted by the nonlinear

relation of the pole coefficients at the simple puncture (5.3). This nonlinear relation is

called a c-constraint in [7].

Now, rewrite the curve as

(ξN + c2ξ
N−1 + · · ·+ c2N )

︸ ︷︷ ︸

=p(ξ)

λ2 + 2 (µ2ξ
N−1 + · · ·+ µ2N )

︸ ︷︷ ︸

=q(ξ)

(dx)λ

+
(
(µ2)

2ξN−2 + U ′
6ξ

N−3 + · · ·+ U ′
2N−2x

2 + b2N
)

︸ ︷︷ ︸

=r(ξ)

(dx)2 = 0 (5.8)

where we introduced ξ = x2. In the Seiberg-Witten curve of type D, ±x needs to be

identified, and therefore this is a natural choice.

Let us put it in the Gaiotto form by defining λ̃ = λ+ q(ξ)dx/p(ξ), for which we have

λ̃2 + ϕ2(ξ) = 0 . (5.9)

We can check that ϕ2(ξ) = (dξ)2
(
p(ξ)r(ξ) − q(ξ)2

)
/4ξp(ξ)2 has second-order poles at N

zeros of p(ξ). Thanks to the special forms of the coefficients of tx2N−2 and x2N−4 in (5.7),

ϕ2(ξ) is finite at ξ = ∞. To study the behavior at ξ = 0, recall the scaling limit described

above. In that limit, we get [c2Nb2N−(µ2N )2]/(µ2N )2 → 0 and hence the pole of ϕ2 at ξ = 0

disappears in the scaling limit. This is a consequence of the condition φ2N (z) = φ̃N (z)2.

Therefore, we see that the curve is indeed that of the SU(2)N−3 quiver drawn above. With

a little further effort, it can be checked that the residues of the double poles of ϕ2 are

proportional to (mi − m̃i)
2, so mi − m̃i are indeed proportional to the hypermultiplet

masses of the quiver.
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6 Very Higgsable theories and the central charges

In this section, we study the T 2 compactification of the class of 6d SCFTs that we call very

Higgsable. We will determine the structure of the part of the Coulomb branch of the T 2

compactification that comes from the 6d tensor branch, and show in particular that there

is a point where one has a 4d SCFT. We will also show that the central charges a, c and k

of the 4d SCFT can be written as a linear combination of the coefficients of the anomaly

polynomial of the 6d SCFT. Since the 6d minimal conformal matters are very Higgsable,

we can apply the methods developed here to provide another check of our identification.

Let us summarize the contents of this section. In section 6.1, we introduce the class

of the 6d SCFTs of our interest, namely the very Higgsable theories. In section 6.2, we

recursively prove that

• the T 2 compactification of a very Higgsable theory gives a 4d SCFT, and

• the central charges of the resulting 4d SCFT can be written as a linear combination

of coefficients of the anomaly polynomial of the 6d theory.

In 6.3, we compute the central charges of the minimal conformal matter on T 2 by using

the relationship with the anomaly polynomial of the minimal conformal matter. We will

see that the resulting central charges indeed agree with the known central charges of the

class S theory involved.

6.1 Very Higgsable theories

Let us first define the class of 6d very Higgsable theories. In terms of the F-theoretic

language of [1, 2, 4], a 6d SCFT can be characterized by the configuration C of curves on

the complex two-dimensional base. We define a 6d SCFT to be very Higgsable if successive,

repeated blow-downs of−1 curves make C empty, or equivalently the endpoint Cend is empty.

Then a further complex structure deformation removes the singularity completely. In other

words, there is a Higgs branch where the tensor multiplet degrees of freedom are completely

eliminated, thus the word very Higgsable. As examples, the 6d (G,G) minimal conformal

matters and the general rank E-string theories are very Higgsable, whereas the N=(2, 0)

theory and the worldvolume theory of Q > 1 M5 branes probing an ALE singularity are

not very Higgsable.

We can also re-phrase the very Higgsable condition without referring to the F-theory

construction, in the following recursive fashion:

• Free hypermultiplets are very Higgsable.

• An SCFT is very Higgsable if

– it has a one-dimensional subspace of the tensor branch on which the low-energy

degrees of freedom consist of a single tensor multiplet, one or more very Hig-

gsable theories, possibly with a gauge multiplet G,
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– such that the Chern-Simons coupling SCS of the self-dual two-form field of the

tensor multiplet B, and its associated Green-Schwarz term IGS in the anomaly

polynomial is8

SCS = 2π

∫

B ∧ I4 , IGS
8 =

1

2
I24 , I4 ⊃

1

4
p1(T ) +

1

4
TrF 2

F −
1

4
TrF 2

G , (6.1)

where the term TrF 2
F /4 is for the flavor symmetry, and the term TrF 2

G/4 is

absent if there is no gauge multiplet.

The condition (6.1) is a consequence of the fact that the tensor multiplet comes from a

−1 curve, in the case of F-theoretic 6d SCFTs [25, 26]. Note that in our convention TrF 2
G/4

is the integrally normalized instanton density, and in particular the usual factor (2π)−1 is

absorbed into FG. Therefore, this means that the instanton-string has charge 1 under

the tensor multiplet, which is the minimal consistent value under the Dirac quantization

condition. The p1(T ) etc. are the usual Pontryagin densities of the background metric.

We would like to study the T 2 compactification of a very Higgsable theory. Consider

a tensor multiplet scalar φ associated to a −1 curve. Classically, one of the 4d Coulomb

moduli u comes from the scalar φ, combined with the zero mode of the self-dual 2-form on

the torus b =
∫

T 2 B:

u ∼ exp(φ+ 2πib) , (6.2)

where b ≃ b+ 1 due to the invariance under the large gauge transformation. The classical

description in (6.2) is valid in the region where φ is large compared to the size of T 2; the

moduli space can be significantly modified near φ ∼ 0.

In general, the quantum corrections mix this variable u with all the other Coulomb

branch variables. However, in the case of the scalar u for a −1 curve, we can isolate a

dimension-1 subspace H of the Coulomb branch parametrized by it. This is because if a

gauge multiplet is present on the minimally-charged tensor branch, the 4d gauge coupling

of the gauge field is infrared free, as we will prove below.

Before proceeding, let us see two examples of this infrared freedom:

• First, the one-dimensional tensor branch of the (Dk, Dk) minimal conformal matter

for k ≥ 5 supports the gauge group USp(2k − 8). The number of flavors is 2k, and

therefore the system is infrared free as a 4d gauge theory.

• Second, the F-theory realization of the (E6, E6) minimal conformal matter has three

curves with self-intersection −1, −3 and −1. The middle −3 curve supports the gauge

group SU(3). After the blowing down of the left and right −1 curves, the middle

−3 curve becomes a −1 curve, and it gives a minimally-charged tensor multiplet.

This still supports the SU(3) gauge group. This gauge group is now coupled to two

copies of the 4d version of rank-1 E-string theory, i.e. the E8 theory of Minahan

and Nemeschansky. One copy has the flavor current central charge kE8
/2 = 6, and

8It may not be completely rigorous to write a Lagrangian like (6.1) for the self-dual 2-form B. But we

will only need dimensional reduction of that Chern-Simons term under the compactification on T 2 given

by 2π
∫
bI4 where b =

∫
T2 B.
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therefore two copies are worth 12 flavors of SU(3) fundamentals. Therefore the SU(3)

gauge coupling is infrared free.

Thanks to the infrared freedom of G, it is meaningful to talk about the origin of the

Coulomb branch of G even quantum mechanically. This determines the subspace H.

6.2 Structure of H and the central charges

6.2.1 Properties to be recursively proved

Now, we use the mathematical induction to prove the following properties of very Higgsable

theories:

• The topology of H is always the same as that of the rank-1 E-string theory, namely,

there are three singularities. Here,

– two of them are the points where a single hypermultiplet becomes massless, and

– the third of them is a point at which the non-trivial SCFT appears, with the

R-charge of the Coulomb branch operator u being 12. We call the resulting 4d

SCFT as T4d.

• Writing the anomaly polynomial I8 of the 6d theory T6d as9

I8 ⊃ αp1(T )
2 + βp1(T )c2(R) + γp2(T ) +

∑

i

κi p1(T ) TrF
2
i , (6.3)

the central charges a, c and flavor central charges ki of i-th flavor symmetry of the

4d theory T4d are

a = 24α− 12β − 18γ ,

c = 64α− 12β − 8γ ,

ki = 192κi . (6.4)

6.2.2 Rough structure of the proof

As the discussions will be rather intricate, here we provide the schematic structure of the

inductive proof. The first step is to check the relations (6.4) for the free hypermultiplets.

In addition, we can check that free vector multiplets and free tensor multiplets both satisfy

the relations (6.4).

The inductive step is to study the system of a minimally-charged tensor multiplet, with

a very Higgsable theory. There are two subcases: i) when there is no gauge multiplet, and

ii) when there is a single gauge multipletG. The subcase i) corresponds to the appearance of

an E-string, for which the structure of H was studied long time ago [27]. In the subcase ii),

the vev u ∈ H controls the dynamical scale Λ(u) of the gauge group G. Since the coupling

of G is infrared free, Λ(u) is the scale of the would-be Landau pole. From holomorphy,

we expect at least one point on u ∈ H where Λ(u) is zero. This is where we should have

9Our normalizations and notations of 6d anomaly polynomials follows those in [26].
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a nontrivial 4d SCFT T4d. From this, we will show that there will be two and only two

additional singularities on H, and that these are points where one massless hypermultiplet

appears.

In both subcases, we see that the structure of H is the same. Once this is known, we

can employ the method of [28] to determine the central charges a, c and k of T4d in terms

of the 6d anomaly polynomial. This then confirms the general relation (6.4), completing

the inductive process.

6.2.3 Structure of H

Now let us start the full discussion of the inductive step. We first would like to establish

the singularity structure of H. When there is no gauge multiplet on the tensor branch,

we have the E-string theory, for which the structure of H is known [27]. There is a point

where we have a 4d E8 theory of Minahan and Nemeschansky, where the R-charge of the

Coulomb branch operator u is 12 and therefore the scaling dimension is 6. This is true for

higher-rank E-string theory too.

Let us next consider the case with a gauge multiplet with gauge group G. Denote

the very Higgsable theory on this tensor branch by S. The low energy theory on this

branch consists of S, the non-abelian gauge multiplet G, and a U(1) (or tensor) multiplet

containing u, and we want to show that there is a point at which they are combined into

a single strongly interacting superconformal theory T .

The theory S has flavor symmetry H (not necessarily simple), and its subgroup G ⊂ H

is gauged by the non-abelian gauge group. The commutant F of G in H is the flavor

symmetry of the total system. The term proportional to TrF 2
Gp1(T ) in the total 6d anomaly

polynomial is given by

IS + Itensor + Igaugino + IGS ⊃

(

κS6d

G −
h∨G
48

−
1

16

)

TrF 2
Gp1(T ) . (6.5)

The gauge group G is anomaly free in 6d, therefore

48κS6d

G − h∨G = 3 . (6.6)

Using the inductive assumption (6.4), we see that

kS4d

G − 4h∨G = 12 > 0 (6.7)

which means that the one-loop beta function is positive and the G gauge coupling in the 4d

theory is infrared free. This guarantees that we can isolate the subspace H as we repeatedly

emphasized above.

In addition, away from the singularities on H, we can safely introduce the exponenti-

ated complexified coupling

η(u) := Λ−6
0 e2πiτG(u) (6.8)

of the 4d G gauge field, defined at an arbitrary (but sufficiently small) renormalization

group scale Λ0, where −6 = 2h∨ − kS4d

G /2 is the coefficient of the one-loop beta function.

The Green-Schwarz coupling (6.1) in 6d gives the 4d coupling

− 2πb ·
1

4
TrF 2

G (6.9)
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after the compactification, at least for large values of φ. Then −2πb can be identified as

the theta angle of the gauge group in 4d, Re(τG) = −b. Together with the definition (6.2)

of u and holomorphy of τG(u), we can see that in the region |u| → ∞, the G coupling

behaves as η(u) ∼ u−1. We expect η(u) to be a single-valued meromorphic function on

H.10 We do not expect any zeroes of η(u): if there is a zero, the gauge coupling of G

becomes extremely weakly coupled there, but we do not know of any physics to explain it.

A single valued meromorphic function with the asymptotic behavior η(u) ∼ u−1 must have

just a single simple pole. We define the coordinate origin of H so that the pole of η(u) is

at u = 0. This is the strongly interacting point where T4d appears. The 4d theta angle of

the G gauge multiplet at u 6= 0 is just given by the phase of u, globally on H.

Slightly away from this point u = 0, the infrared physics is the theory S4d coupled to

the G gauge multiplet. The U(1)RG
2 is anomalous by the amount (6.7). At the SCFT point

this U(1)R symmetry should be restored and it must be anomaly free. By the anomaly

matching, the Nambu-Goldstone boson of the spontaneously broken U(1)R at u 6= 0 must

contribute −12 to the anomaly U(1)RG
2 via the coupling (6.9), where 2πb should be

interpreted as the phase of u in the small u region. This can be done by assigning the

U(1)R charge

R[u] = 12 (6.10)

to the u near u = 0. Then the total U(1)RG
2 anomaly is cancelled.

We now show that there are two more singularities on H and that these two points are

associated with an additional massless hypermultiplet. The proof goes as follows: consider

the Seiberg-Witten curve on H given by

y2 = x3 + f(u)x+ g(u) . (6.11)

This curve is for describing the effective action of the U(1) gauge field coming from the

6d tensor multiplet, and it should not be confused with τG which is the coupling of the

non-abelian gauge group G.

Using the special coordinate on H related to the curve (6.11) via

da

du
=

∫

A

dx

y
,

daD
du

=

∫

B

dx

y
, (6.12)

where A and B are the two independent cycles of the torus, the metric on H is

ds2 = Im(da∗daD) = Im

(
da

du

∗daD
du

)

|du|2. (6.13)

10In the case in which η(u) can have multivalued behavior, there must be a duality transformation relating

those multi-values of the coupling constant. For example, in Seiberg-Witten theory of a massless U(1) field,

a free U(1) has an electric-magnetic dual description which changes the coupling as τ → −1/τ , and this

was crucial for the multivalued behavior of τ [29]. However, in our case, η(u) is properly understood as the

position of the Landau pole of the infrared free gauge field, and in particular it is a dimensionful parameter.

There seems to be no duality transformation which sends one value of the Landau pole to another, and

hence η(u) is single-valued. However, if the gauge group were conformal rather than infrared free, we could

have multivalued coupling constant on the moduli space due to S-duality of the conformal gauge group.

Such a situation indeed appears in other theories and will be discussed elsewhere.
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The complex structure τ = daD/da is constant at |u| → ∞ since it is given by the complex

structure of the T 2 used in the compactification from 6d to 4d. Then f and g should

behave as f ∼ u4n and g ∼ u6n for some n for large u. Furthermore, the metric on H at

|u| → ∞ is the cylindrical one ds2 ∼ dφ2 + (2πdb)2 ∼ |d log(u)|2 since it just comes from

the compactification of a free tensor multiplet. Substituting the asymptotic behavior of f

and g to (6.11), (6.12) and (6.13), we obtain n = 1.

Next, let us consider the singularity at u = 0. We set the asymptotic behavior of f

and g at u = 0 as f ∼ u4p and g ∼ u6q. Then, the R-charge of x and y in (6.11) is

R[x] = 2rR[u] , R[y] = 3rR[u] , (6.14)

where r = min(p, q). The R-charge of the Seiberg-Witten differential λ, which is the

same as the R-charge of u(∂λ/∂u) = udx/y, is fixed to 2 since its scaling dimension is 1.

Using (6.14), the relation

(1− r)R[u] = 2 (6.15)

holds. The fact R[u] = 12 at u = 0 leads to r = q = 5/6 and then p(> r) is 1. Thus we

obtain f ∼ u4 and g ∼ u5 near u ∼ 0. Therefore the behavior of f and g on H is

f ∼ u4, g ∼ u5 + u6. (6.16)

In particular, examining the discriminant ∆ = 27f3+4g2, there are two more singularities

other than u = 0 and that they are massless hypermultiplet points.

6.2.4 Central charges from measure factors

Before proceeding, let us very briefly recall the method of [28] to compute the central

charges a, c and k of 4d N=2 SCFTs from their topologically twisted cousins; we almost

follow the conventions used in that paper. We put an N=2 supersymmetric field theory

in 4d on a curved manifold with a non-trivial metric and a background gauge field for the

flavor symmetry F via the twisting of the SU(2)R R-symmetry with one of the SU(2)’s

of SU(2) × SU(2) ≃ SO(4) of the tangent bundle. In the following we assume that F is

nonabelian. We denote the Euler characteristic of the 4-manifold by χ, the signature by

σ and the anti-instanton number for F by n. We also denote by u a set of gauge and

monodromy invariant coordinates on the Coumlomb branch.

The path integral of the twisted theory is given as follows

Z =

∫

[du][dq]Aχ(u)Bσ(u)Cn(u) exp(−Slow energy) . (6.17)

Here [du] and [dq] are the path integral measures for the massless vector multiplets and

other massless multiplets on the generic point of the Coulomb branch. The A(u), B(u)

and C(u) are factors induced by the non-minimal coupling of u to the non-trivial back-

ground which are given, up to coefficients, as
∫
logA(u) trR ∧ R̃,

∫
logB(u) trR ∧ R and

∫
logC(u) trFF ∧ FF in the effective action on the Coulomb branch. Supersymmetry re-

quires that they are holomorphic. See [30] for details.
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On a singular point on the Coulomb branch, we can have nontrivial superconformal

field theory. Then there must be an enhanced U(1)R symmetry at each of these points,

although U(1)R need not be defined globally on the Coulomb moduli space. The coefficients

of the anomaly of U(1)R under background fields are related to the central charges a, c, k

by supersymmetry as

∫

d4x∂µj
µ
U(1)R

= (4a− 2c)χ+ 3cσ + kn , (6.18)

where the term χ is due to twisting SU(2)R. By using the same anomaly matching which

was used to derive (6.10), the central charges a, c and k are obtained as [28]

a =
1

4
R[A] +

1

6
R[B] + ageneric , (6.19)

c =
1

3
R[B] + cgeneric , (6.20)

k = R[C] + kgeneric (6.21)

where R[A,B,C] are the U(1)R-charges of the measure factors A(u), B(u), C(u), and

(a, c, k)generic are the central charges at a generic point on the Coulomb branch. The

terms proportional to R[A,B,C] are the contributions from U(1)R Nambu-Goldstone

bosons near each superconformal point. For the gauge group G, what we have found

in the previous subsection may be rephrased as k|G = 0, kgeneric|G = kS4d

G − 4h∨G = 12,

C|G ∼ exp(2πiτG(u)) ∼ u−1 and R[C|G] = −R[u] = −12.

6.2.5 Central charges

6d anomalies. Suppose that the 4-form appearing in (6.1), now including the second

Chern class c2(R) of the SU(2)R background field, is given by

I4 = dc2(R) +
1

4
p1(T ) +

1

4
TrF 2

F −
1

4
TrF 2

G . (6.22)

The explicit value of d can be determined by the method explained in [26] but it is not

important here. The contribution to the 6d anomaly polynomial from (6.22) is

1

2
I24 ⊃

1

4
dc2(R)p1(T ) +

1

32
p1(T )

2 +
1

16
p1(T ) trF

2
F . (6.23)

Therefore, the changes in the coefficients α, β, γ, κ of (6.3) are

δα =
1

32
, δβ =

1

4
d , δγ = 0 , δκ =

1

16
. (6.24)

4d central charges. We now would like to determine the changes in a, c, k in 4d. To

do this, we use the method of [28] recalled above. Putting the theory on a curved manifold

via twisting leads to the path-integral (6.17).

As before, we denote by u the coordinate of H. We have one singularity at u = 0 giving

the 4d SCFT of our interest, and there are two additional hypermultiplet points at u = 1, λ

where λ is the function of the complex moduli τ of the torus on which we compactify the

– 20 –



J
H
E
P
0
7
(
2
0
1
5
)
0
1
4

6d theory. We denote by R0,1,λ, the R-charge of u near u = 0, 1, λ. Then, the measure

factors A, B and C transform under (u− p) → exp(iRpα)(u− p) (where p = 0, 1, λ) as

AχBσCn → exp
[
i{(4δap − 2δcp)χ+ 3δcpσ + δkpn}α

]
AχBσCn (6.25)

where δap, δbp and δkp are differences of a, b and k between the theory on u = p and

the theory on a generic point of H. This is just the anomaly matching of the U(1)R
anomaly (6.18) discussed above.

Next consider very large |u| region. In this region, H looks like a cylinder log u ∼

φ + 2πib. By the dimensional reduction of (6.1), the b has a coupling 2πbI4. In the

topologically twisted theory, the I4 of (6.22) becomes

I4 = −
d

2
χ+

3

4
(1− d)σ + nF − nG (6.26)

where we used the fact that c2(R) = −1
2χ − 1

4p1(T ) due to the topological twist, and

σ = p1(T )/3. We abuse the notation for χ, σ and n to mean the densities of the Euler

number, signature and anti-instanton number as well as their integrals, e.g., n = 1
4 TrF

2.

Using (6.26) and noting that 2πibI4 should be completed as log(u)I4 due to holomorphy,

we can determine the factor AχBσCn as

AχBσCn ∼ exp

[ ∫

log(u)I4

]

= (u−
d
2 )χ

(
u

3

4
(1−d)

)σ
unF (6.27)

and in particular, the phase shift under u → eiαu is given as

AχBσCn → exp

[

iα

(

−
d

2
χ+

3

4
(1− d)σ + nF

)]

AχBσCn. (6.28)

Now consider a circle S1 going once at a large value of |u|. The phase shift is given

by (6.28) with α = 2π. Then we shrink this circle so that it becomes small circles around

each of the singular points u = 0, 1, λ. The phase shift around each circle is given by (6.25)

with α = 2π/Rp.

It is known that B and C are single valued functions of u [30]. Then the phase shift

around the large circle should be the same as the sum of the phase shifts around the singular

points. First, for C we get

1 =
∑

u=0,1,λ

δku
Ru

=
δk0
R0

(6.29)

where we used the fact that δk1,λ = 0 because at u = 1, λ only an additional hypermultiplet

appears which is not charged under the non-abelian flavor group F . Therefore we can

determine the change in the flavor central charges:

δk = R0 = 12 = 192δκ , (6.30)

where δκ is given in (6.24).

Next, for B we get
3

4
(1− d) =

∑

u=0,1,λ

3δcu
Ru

. (6.31)
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The δc at u = 1, λ comes from a free hypermultiplet and it is given as δc = chyper = 1/12.

The U(1) multiplet containing u is IR-free at u = 1, λ and hence the R-charge is that of

the free vector multiplet, R1,λ = 2. Therefore we get

δc0 = 2− 3d = 64δα− 12δβ − 8δγ , (6.32)

where δα, δβ and δγ are given in (6.24).

Finally, we consider A. In this case, A is not a single valued function [30]. However,

the nontrivial monodromy of A is fixed by the Seiberg-Witten curve of the U(1) multiplet

of u. The equation (6.16) implies that the Seiberg-Witten curve is completely the same

as that of rank-1 E-string theory on T 2. Therefore, the ratio A(u)/AE(u) is single-valued,

where AE(u) is the A-factor of the rank-1 E-string theory on T 2.

This AE(u) is known to behave as u1/2 around u ∼ ∞ as can be seen from the analysis

of the E8 Minahan-Nemeschansky theory [28] or from the fact that the study of the 6d

anomaly polynomial gives d = −1 [26]. Therefore,

A(u)/AE(u) ∼ u−(d+1)/2. (6.33)

Furthermore, the hypermultiplet contributions cancel out in the ratio A(u)/AE(u) at u =

1, λ. Therefore (6.33) is actually valid over the whole H. We get

−
d+ 1

2
=

δ(4a− 2c)0 −R[AE ]0
R0

(6.34)

where R[AE ]0 is the R-charge of AE at u = 0. It is given as AE(u) = (∂uE/∂aE)
1/2 [28]

and hence [AE(u)] = 5. Thus

δ(2a− c)0 = −3d−
1

2
= −16δα− 12δβ − 28δγ . (6.35)

Combining (6.30), (6.32) and (6.35) with the assumption of the induction, the proof of (6.4)

is completed.

6.3 Examples

6.3.1 General-rank E8 theories

As first examples of our general analysis, let us first consider the E-string theory of general

rank. When put on T 2, this is known to reduce to the general-rank version of the E8 theory

of Minahan and Nemeschansky. The central charges a, c and k of these theories were found

in [31]:

a =
3

2
Q2 +

5

2
Q−

1

24
, (6.36)

c =
3

2
Q2 +

15

4
Q−

1

12
, (6.37)

kE8
= 12Q , (6.38)

kSU(2)L = 6Q2 − 5Q− 1 , (6.39)

where Q is the rank.
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The anomaly polynomial of 6d higher-rank E-string theories was obtained in [32]. The

relevant coefficients in the anomaly polynomial are

α =
7(30Q− 1)

5760
, β =

−Q(6Q+ 5)

48
, γ =

1− 30Q

1440
, (6.40)

and

κE8
=

Q

16
, κSU(2) =

1

32
Q2 −

5

192
Q−

1

192
. (6.41)

We can check that the formulas (6.4) are indeed satisfied.

6.3.2 Central charges of minimal conformal matter on T 2

As second examples, let us consider the central charge of the 6d (G,G) minimal conformal

matter on T 2. The anomaly polynomial of that theory was obtained in [26]. The relevant

coefficients in the anomaly polynomial are

α =
7

5760

(
1 + dim(G)

)
, β =

1

48

(
dim(G)− χΓ|Γ|

)
,

γ =
−1

1440

(
1 + dim(G)

)
, κG =

h∨G
96

, (6.42)

where |Γ| is the number of elements of the discrete group Γ used in the orbifold C
2/Γ, and

χΓ := 1 + rank(G)− 1/|Γ|. From (6.4), we obtain the central charges as

a =
1

24

(
1+6χΓ|Γ|−5 dim(G)

)
, c =

1

12

(
1+3χΓ|Γ|−2 dim(G)

)
, kG = 2h∨G . (6.43)

Then, we compute the central charges of the class S theory of type G on a sphere with

two full punctures and a simple puncture. The relevant formula [13] is

a = asimple + 2afull −
1

3
h∨G dim(G)−

5

24
rank(G) , (6.44)

c = csimple + 2cfull −
1

3
h∨G dim(G)−

1

6
rank(G) , (6.45)

kG = kfull , (6.46)

where asimple and afull are the contribution from the simple and full puncture, respectively.

The contributions from the punctures are given by [13]

asimple =
1

24

(
6|Γ|χΓ + 1

)
, afull =

1

24

(

4h∨G dim(G)−
5

2
dim(G) +

5

2
rank(G)

)

,

csimple =
1

12

(
3|Γ|χΓ + 1

)
, cfull =

1

12

(
2h∨G dim(G)− dim(G) + rank(G)

)
,

kfull = 2h∨G .

Substituting these equations into (6.44), (6.45) and (6.46), we obtain the same central

charges as (6.43). This provides a non-trivial check both for the central charge formula

in (6.4) and the duality between the minimal conformal matter on T 2 and the class S

theory.
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7 Conclusions and discussions

In this paper we found that the world volume theory of a single M5-brane on the tip of an

ALE space of type G = A,D,E, namely the 6d (G,G) minimal conformal matter, gives

a type G class S theory with a sphere accompanied by two full-punctures and a simple

puncture, namely 4d generalized bifundamental, by means of T 2 compactification.

We have given several evidences on this statement. We provided the matching of

coulomb branch dimensions and the Higgs branch geometry, and we checked the agreement

of the Seiberg-Witten curve in the case of type D in a certain corner of the moduli space, by

exhibiting the “base-fiber duality” indicated by the 6d brane construction at the level of the

4d Seiberg-Witten curves. We also developed a new method to study the central charges

of the T 2 compactification of a class of the 6d SCFTs that we call very Higgsable, and

applied this technique to the minimal conformal matters. We again found agreement with

the central charges of the class S theories. With these checks, we find that our proposed

identification is well established.

Let us discuss some of the future directions.

Other very Higgsable theories. There are many very Higgsable theories which are

neither (G,G) minimal conformal matters nor higher-rank E-string theories. For T 2 com-

pactifications of all of those, we showed that the formula (6.4) holds.

Some of these theories can be obtained by considering “fractional M5-branes” on ALE

singularities:

• The (E7, SO(7)) minimal conformal matter, namely a “half M5-brane” on top of E7

singularity,

• the (E8, G2) minimal conformal matter which is a “third M5-brane” on E8 singularity,

• and the (E8, F4) minimal conformal matter which is a “half M5-brane” on E8 singu-

larity.

For the (E7, SO(7)) minimal conformal matter, we can find a candidate of the corre-

sponding 4d theory in the list of E6 tinkertoys [33]. Conbining the method of [26] and the

formula (6.4), we find the central charges of T 2 compactified (E7, SO(7)) minimal conformal

matters are

a =
119

8
, c =

35

2
, kE7

= 24 , kSO(7) = 16 . (7.1)

Those numbers are exactly the same as the conformal central charges of E6 fixture with

punctures E6(a1), 2A1 and the full puncture, where the notation of the punctures are

of [33].

Similarly, the candidates for the (E8, G2) and (E8, F4) minimal conformal matter might

be found in E7 or E8 fixtures. But the list of E7 and E8 fixtures are not yet available.

Another natural series of very Higgsable theories can be found by considering theories

on M5-branes on the intersection of an end-of-the-world brane and an ALE singularity

locus. In contrast to the minimal conformal matters, the theories are endpoint-trivial for

all integer numbers of M5-branes, and therefore there are infinitely many of them. It would

be interesting to search 4d corresponding theories in known 4d SCFTs.
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Non very Higgsable theories. The worldvolume theories on multiple coincident M5-

branes on an ALE singularity locus, are not very Higgsable. Thus the approach of this

paper cannot be directly applied and new methods need be introduced to investigate such

theories.

The N=(1, 0) SCFTs which are defined by the F-theory with Hirzebruch’s surface Fn

as its base are other cases recently studied in [34]. Although the structure of the base Fn is

very straightforward, in that it contains just one −n curve, our method cannot be applied

to these when n ≥ 3. It would be interesting to devise a method that can be applied to

the T 2 compactification of any 6d SCFT.

Compactification with general Riemann surfaces and punctures. Our ultimate

goal would be to study compactifications of 6d N=(1, 0) theories with general Riemann

surfaces with punctures giving 4d N=1 theories rather than 4d N=2. Although there

clealy is a N=1 theory defined by compactification of a N=(1, 0) theory with a genus

g ≥ 2 Riemann surface, we do not have any tools to identify or investigate such theory. In

contrast to the N=(2, 0) case, the theory on the tube is already non-trivial, preventing us

from studying on S-dualities between compactified theories. The T 2 compactified theories

studied in this paper might be a clue to find out the tube theories if one can find an

appropriate boundary conditions at the ends of the tube.

The authors hope to come back to these questions in the future.
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