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INTRODUCTION

Before we go into a detailed discussion of the potential scattering we

- would like to spend a few words on the reason potential scattering is
interesting. We think that one of the main reasons of success of the potential
model is that we can discuss it quite rigorously and that at the same time

it gives a fairly intuitive picture of the scattering process and it provides

in a way the language for a fully relativistic theory. We do not think that

the potential model has been particularly satisfactory in explaining quanti-
tatively the known experimental data, for instance the nucleon-nucleon scat-
tering; yet we have good reasons to believe that at low energy any field theo-
ry will ultimately yield some sort of spin-dependent potential, containing
spin orbit coupling and exchange terms. How this can be done and how far
one has gone in this direction has nothing to do with the subject of these
lectures which are merely concerned with the discussion of the solutions of
the Schroedinger equation for a given class of potentials. That is,we assume
from the very beginning that a potential exists although we do not know it
or we know only broad features like the range and its analytic properties as
function of the distance, For simplicity we do not deal with spin or exchange
terms although they can be taken care of with little modifications. We just
want to find those features of potential scattering which are to a large extent
independent of the particular selection of the potential.

In so doing we shall need a large mathematical apparatus in order to
derive those properties of the scattering amplitude which have been suggested
by the general field theory, like dispersion relations. Unfortunately although
it has not been possible to eliminate entirely from these lectures this appa-
ratus, we have tried however to use as much as possible standard mathe-
matical tricks and we have endeavoured to cover them with the largest amount
of proofs. There are different mathematical approaches to the theory of
potential scattering. Historically the first approach was developed by
Heisenberg in his first attempts to create a theory of the S-matrix. But the
most rigorous and extensive results on this particular subject were actually
found by JOST and BARGMANN [1]., The starting point of their approach
is the partial wave expansion of the wave function and of the scattering ampli-
tude, Actually they did not derive any interesting feature-of the full ampli-
tude, but rather of the partial phase shifts only. The amount of work after-
wards done on the properties of phase shifts as function of the energy has
been considerable, and it has clarified the role of the potential in determining
them,

This was not however the end of the story. When the first dispersion
relations for fixed transmitted momentum were discovered in field theory,
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it was a natural question to ask whether these properties had a counterpart

in potential scattering. This was found to be true by KHURI [2]. The paper

of Khuri avoids entirely the use of partial waves and uses Fredholm’s theory
on the Green integral form of the Schroedinger equation written in full three-
dimensional formalism, Alternative and simpler proofs then appeared in

the literature [3, 4, 6]. The reason the partial wave expansion is totally
unsuitable for this purpose is that it fails to converge in the interesting region
where we want to prove analyticity in the energy. The advent of the Mandelstam
" conjecture. of the double dispersion relation raised the question asto whether
these relations were true for potential scattering. Mandelstam representation
can be provedtoday for a special class of potentials (super-position of Yukawa
potentials).

A proof of GOLDBERGER et al.{3] uses the pertubative expansion of the
scattering amplitude as written in momentum space (as derived from the
Lippman-Schwinger equation), They prove that each term of the expansion
satisfies the Mandelstam representation, and they also succeeded in going
around the question of uniform convergence. Incidentally, an incomplete
proof, without uniform convergence, was given first by Bowcock and Martin.
A paper by KLEIN also deals withthis subject[4]. The partial wave expansion
however can be used successfully in providing analytic properties in the mo-
mentum transfer for fixed energy. The usual form of it is apparently un-
suitable for the job, but fortunately about fifty years ago WATSON [5] found
a method of transforming it into an integral which is a highly flexible tool
in these kinds of problem. With some care the Watson integral can be used
to prove almost all of the analytic properties of the scattering amplitude,
including those of Khuri’s paper. It is for this reason that we decided to
rest the whole theory on the partial wave expansion in the Watson form be-
cause we feel that in this way the whole structure of the lectures will be
more homogeneous.

1. THE FORMALISM OF POTENTIAL SCATTERING. ELEMENTARY
THEORY

The starting point of the theory is the Schroedinger equation:
AY(T)+EY(T)y=V¥(r). (1.1)

In this equation T is the position vector of the scattered particle, r its
length, T has components x,y, z. We use natural units h=c = 1 and 2M = 1,
where M is the mass of the scattered particle. The scattering of two parti-
cles of different mass m;, m, can be treated by the same equation where
M is now the reduced mass m;ms/ (m; + myg) of the system. In our units
the energy has the dimension of an areal, The local potential V(r) depends
on r only.

V(r) is supposed to be a short range potential; that is, we suppose it
to decrease exponentially, Truly this is a rather restricted hypothesis;but
if we have in mind a comparison with the field theoretical results,all in-
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teresting potentials satisfy this criterion apart from the Coulomb potential,
We shall not examine here Coulomb-like potentials because there is no ex-
tensive and deep work done on this subject. Under these conditions [7] we
may define the (total) scattering amplitude f(E,0) once we know the solution
of eq. (1.1) with the following asymptotic behaviour (r —w):

- ikr
elk T, f(

¥~ (1.2)
This wave function represents a three-dimensional scattering process of
a plane wave against a fixed scatterer. The pla.ne wave is given by ik - I,
where K is the ingoing momentum. We have (k) =E. The second contrl-
bution comes from the -scattered waves and depends of course on the poten-
tial. The angle 6 is the angle between k and the direction in which we take
the asymptotic limit r — ». In other words,we put T = rn into ¥ (T ) and
we let r — while T is a fixed unit vector. Then k-n = kcos 6. dQ ]f(E 0)]2
is then the probability of finding the part1c1e scattered in the solid angle
d with the outgoing momentum k = k 1.

There is no potential of the class considered by us for which eq. (1.1)
is explicitly solvable. For any practical purpose of numerical evaluation one
solves instead (1.1) with the method of the separation of variables due to
D*Alembert, One tries to find the solution of (1.1) of the form

w=90) oo gy (1.3)

r

It is well known then that Q has to be a spherical harmonic,
m
Q(6,6) =Y, (6,9), (1.4)
and that ¢ satisfies the ordinary differential equation

6 +E¢, -

“—(‘a:—l)“ﬁg-\w)g- . (1.5)

(1.5) depends on ¢ only and not on m, ¢, must also satisfy the boundary con--
dition of vanishing at the origin. More precisely,the analysis of (1.5) ac-
cording to the Fuchsian classification of singularities shows that any solution
of (1.5) behaves when r is small like

p=ar +ﬁr"2 (1.86)

under some restrictive hypothesis on the potential to be examined closely
later. If we want to avoid singularities at r = 0, we are forced to choose 8 = 0.
In this case the {-th partial wave function vanishes rapidly for small r. ‘
Physically we may interpret this fact as due to the repulsive centrifugal
barrier (¢ + 1)/r? which becomes very large when the orbital momentum
£1is also large. This barrier keeps the particle from approaching the origin.
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This boundary condition defines each partial wave apart from a multiplicative
factor. Take now r large. We have good reasons now to suppose that both
V(r) and £(2 + 1)/r? can be neglected in comparison with E so that {1.5) be-
comes

d)g” +E ¢g = 0, (1.7)

This equation is trivially solved by oscillating exponentials (E > 0) and the
corresponding asymptotic behaviour of ¢; will be of the form

¢Q~Cpsin[kr-QTﬂ + 6, (k)]. (1.8)
We have introduced on purpose the term ¢ 7/2 in this asymptotic behaviour,
Indeed,when V = 0,eq. (1.5) can be solved exactly in terms of Bessel func-
tions of semi-integer order and the asymptotic behaviour at infinity ex-
plicitly evaluated. This behaviour corresponds to having 6,(k) = 0. The
phase shift 6¢ (k) therefore describes a cumulative effect of the potential
on the wave function in the whole interval 0 ....... ©, A large part of these
lectures will be devoted to the investigation of the properties of 6;(k). The
importance of 6§, is evident from the well-known Rayleigh-Faxen formula:

[o2)

HE, 0) = 5 azo(em““’- 1)(20+1) B, (cos 6). (1.9)

We shall refer to this fundamental formula as the expansion of the scattering
amplitude in partial waves or more concisely as the RF expansion. A full
account of (1.9) is contained in any elementary textbook on quantum me-
chanics and we shall not go into this matter further.

In (1.9) the functions P, (cos 6) are Legendre polynomials which form
an orthogonal set normalized as follows:

1

SIP'Z (x) By (x) dx = ?0—247 g -
-1
The total cross-section is given by
0
o(E) = SdQlf(E,G)]Z =4TE7I Z (2£+1) sin’e, .
=0

2. THE S WAVE

The S wave scattering is the first that has been extensively discussed,
and this is for the simple reason that the mathematics of it is considerably
simpler than that of the higher waves. A number of potentials have been
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produced which are explicitly solvable for the S wave and which give quite

a number of clues concerning the general dependence of 6 on the energy E.
One such potential is of course the square well potential defined as

V{r)= A if r<R,
V(r)=0 if r>R; weputk, =vE- A,

It is simple exercise to find the corresponding phase shift:

cos kR + (ik/k,) sin kR
cos kR - (ik/k;) sin kR~

o 2100 _ S(k) = e kR (2. 1)

Some features of this formula are the following:

(1) the formula is also valid when E is not positive. S(k) is the ratio
of two holomorphic functions of k and is therefore meromorphic,

(2) S(-k) = S71 (k); that is,é is an odd function of k. It is more convenient
to study S(k) instead of 6 because 6 has logarithmic singularities at every
pole or zero of S(k).

(3) [S(k™]* = SI(k). This implies that & is real when k is real. We
refer to this property as unitarity.

(4) lim S(k) =:1 or lim 6 = 0 when k—~ o . How do we understand this
result? If k (or E) is very large,the speed of the incoming particle, which
in our units is given by 2k, also increases. The time of transit of the parti-
cle inside the potential well is of the order of R/k. Presumably the inter-
action is proportional to the transit time and the phase shift will be also of
the order of magnitude of R/k or rather of the dimensionless parameter
AR [k, Indeed,for large k we have from (2.1)

©

AR 1
5 S S‘V(r)dr. (2.2)
0

This result is naturally false in the relativistic region,and it is already dif-
ferent for the Dirac or Klein-Gordon equation. The limit is much more com-
plicated if we move to infinity along any direction of the complex k plane,
It must be pointed out that although k; is a two valued function of k it does
not matter which value we use in (2.1). If A > 0,the potential is repulsive
and pushes out the wave function. We expect 6 to be negative in agreement
with the asymptotic behaviour (2.2).

Take now eq. (1.5) when E is negative (and £ = 0):

"+E$-Ve=0, (2.3)

This equation does not describe any scattering state and it will have solutions
which are bounded at infinity and at the origin only for special values of E,
Putting E = -b2 where b is real,we have for large r
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¢ ~ u(b)e® + v (b)e,

If b is not restricted, we shall have an exploding exponential term at large
distances, If however for a particular value of b we have v(b) = 0,the solution
becomes square integrable and represents a bound state of the system. Great
progress in the theory of bound states was achieved when it became clear
that bound states correspond to poles of S(k); i.e. if a bound state of binding
energy - B2 occurs,there is a pole of S(k) in k = iB. Unfortunately it is not
in general true that all poles of S(k) correspond to bound states. This makes
it difficult to deduce the bound states from the analytic continuation of S(k),
or at least it made it difficult before the advent of the modern ideas of dis-
persion theory. Before going into a detailed discussion of this connection,we
point out that our statement can be verified directly on the explicit formula
which we have just given for the square well potential. We leave this as an
exercise for the reader, Other examples of soluble potential can be found

in [1]. Jost defines a particular solution of eq. (2.3) with the boundary con-
dition (the Jost solution)

"k, r) + Ef(k,r) - Vi(k,r) = 0,

flk,r) ~ ek p o (2.4)

This solution will not satisfy in general the boundary conditions in r = 0;
that is, f(k, 0) # 0. Let us define the Jost function as (k) = f(k, 0}, If f(k) = 0,
the Jost solution is regular in r = 0. Besides f(k, r),f(-k, r) also is a solution
of (2.4);and since the Wronskian of these two functions does not depend on r
and equals -2ik,they form a pair of independent solutions of (2.4). Take now
the "regular" solution ¢ {k, r) defined by the boundary condition in r = 0:

$(k,0 =0; ¢'(k0) =1 (2.5)

¢ is not linearly independent of f(k, r) and f(-k, r) so that we have with some
coefficients C, D

¢ (k,r) = Cf(k,r) + Di(-k, r).
Now W(¢,f) = ¢'f - £'¢ is independent of r and we calculate it for r = 0: .
W(4,f) = ¢'(k, 0) f(k, 0) - ¢ (k, 0) f'(k, 0) = f(k).
On the other hand.

W(¢: f) =C W [f(k: r): f(k: r)] +DW [f('k: r): f(k: r)]

=D W [{(-k, r), f(k, )]} = 2ikD = f(k),
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so that D = f(k)/2ik. Similarly C = -f(-k)/2ik. It follows that
¢ (k,r)=[f(k) f(-k,r)-f(-k)f(k r)]/2ik=¢(-k,r). (2.6)
The asymptotic behaviour of ¢ is then
¢ (k,r) ~ [eX f(k) - ™ f£(-k)]/2ik.
But from the definition of phase shift we have

¢ ~ const. sin(kr + 6) = const. (el el _ kr g%y

By comparison we get
09 = £(k) /1(-k). (2.7)

If V = 0,then f(k, r) = e"ikr, ¢ (k, r) = (1/k) sin kr, f(k) = 1. If V is the already
defined square well potential, we have .

f(k) = e”*R (cos kR +i(k/k;) sin kR). : (2.8)

In this case f(k) turns out to be the entire function of k. Bargmann has in-
vestigated the general behaviour of f(k) as a function of the complex variable
k, paying special attention to the role of the range of the potential. His start-
ing point is the integral equation for f(k, r):

flk,r) = e +é g V{x sin k(x-r) f (k, x) dx.
I
We shall prove and discuss this equation in the next section.

- 3. THE ANALYTIC PROPERTIES OF JOST’S FUNCTIONA

In the last section we examined the integral equation for f(k, r): .
. 5 V (x) sin k(x-r) f (k, %) dx. (3.1)

I

f(k,r) = e +

This equation can be proved as follows: Clearly we have

£'" + K%f = Vi,
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2
dd_x2 sin k(x-r) + k% sin k(x-r) = 0. (3.2)

Therefore,

2
Vf(k, X) sin k(x-r) = f'"(k, r) sin k(x-r) -f (k, x) 4 sin k(x-r)
dx?

= dix [£(k, x) sin k(x-r) - (k, X) dix sin k(x-1)].

If we use the above form of the integrand in (3.1),the integration can be car-
ried out explicitly and the result is

©

S‘ V (x) sin k(x-1) £ (k, %) dX = S& [£(k, %) sin k(x-T)

r

-f(k, x). % sin k(x-r) ] dx = k [ f(k, r)_e-ikr ;.

QED.
We regard (3.1) as the proper definition of the Jost solution because it im-

plies both the differential equation and the appropriate boundary conditions.
Putting f(k, r) eikr = g(k, r), we find

- 21k (x-1)
g, r) =1+ % SV(x)[leT—J glk, r) dX. (3.3)

A formal solution of (3.3) is given by the perturbative expansion:

gl ) = Z g, 1) gyl v) = 1, (3.4)
n:* :
where
1 A 1-e "2k (x-1)
galom) = (20T g x) Vi an, 3.5

r

This expansion defines a solution of (3.3) only when it converges. In order
to decide whether it really does so we need some preliminary bound on the
kernel of (3.3). There is no real complication and much to be gained in sup-
posing k complex. We put Im k = b, The proof and also the result are quite
different for the cases b>0 and b<0. Let us first suppose b<0, but k7 0. We
have the bound (remember that x > r):
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(3.6)

1-e ~2ik (x-1) 1 e 2b (x-n) 1
‘ 21k ‘ |.21_k‘+‘ 21k ‘<|k]'
Obviously
1
]gm(k, r)| < v § | v(x)| lgn(k, x| ax,
r
g _ M(r)
e, 1) < 5|v<x>1dx-l—k—,.
A second iteration yields:
i d M(x) _ M(r)
[g(kr Iklzg‘v (x)| dxM(x) =—W§ = ‘M(x)dX-ziklz.

I
This suggests that we have ‘the following inequality for the general term:

M°
lgn(k’ I‘)‘ < n |(1Z)ln : (37)

We prove it with the induction method; that is,it is supposed to be true for
gn(k, r) and we deduce the result for g, (k, r). We have

-1 F dM(x) Lo
| g, (k1)< TR T M"(x)dx
T
[M™ @] /] ki) (3.8)
QED.
By summing up all these inequalities we find
M)
|g-1|<elkl 1. (3.9)

‘What is the outcome of (3. 9)? We have proved at least the following results:
(1) A solution exists for b<0, k70 if f ]V( )l dx < ®, because the per-
turbative expansion converges.
(2) Each term of the expansion is analytic in k as long as the corre-
sponding integral converges; this is true by the above proof in b<0, k# 0.
The sum is therefore also analytic because we have uniform convergence.

/
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{3) We have the limit g(k, r) =~ 1 when k —~ » in any direction in the
lower half plane of k and along the real axis.

(4) Since clearly g(k, 0) = f(k), points (1), (2), (3) also hold for the Jost
function if M(0)< o,

A different condition can be obtained if we replace (3, 6) by

X-r
e ~2ik (x-1) ‘ )
leZik l = ‘S‘e'm”dnl<|x-rl<x. (3. 10)
0 .

There is of course no difficulty in repeating the proof with the new bound
and we find in lieu of (3.9)

©

- 1; N(r) = g x| v(x)| dx. (3.11)

r

lg - 1] <&®

This last evaluation implies a slightly more stringent condition on V(r) for
large r, but it includes k = 0 and it relaxes the condition on V(r) for small
r. To this purpose we notice that for all short-ranged potentials both M(r)
and N(r) exist but M(0) diverges for the Yukawa potential.

We turn now to the case b>0, Here we cannot use (3. 6) or (3. 10) but
rather

|[1-e 2D ] ok | < 0D /]| | (3.12)

We have correspondingly

©

|g,(k, v)|< l—i—‘e'm P(r); P(r) = S | V(x)|e®*dx,

r

By induction we can similarly check that

(3.13)

lg,(k, )| < P(r)

This implies again analyticity in k if P(r) <«, (M converges if P converges.)
This is by no means trivially satisfied,as we had before for M and N. If
V(r) decreases exponentially, we can always choose b large enough to have
P diverging. If V(r) ~ e-mr/r, we find b <m/2. If V is a Gaussian potential
or a square well,then we have unrestricted convergence. But the interesting
potentials are usually superposition of Yukawa potentials,and therefore we
expect f(k) to have singularities in the upper half-plane. With a slight modi-
fication of the proof the origin can be included in the analyticity domain.
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Concluding: f(k) is analytic in k in the half-plane b<m/2. Therefore S(k) =
(k) /£(-k) is meromorphic in the strip | b | < m/2. This is BARGMANN’s
result [1]. In the above Bargmann’s strip S(k) can have poles only when

f(-k) vanishes, We shall discuss the significance of the poles of S(k) in the
next section. Here we just wish to give some kind of pictorial view of the
analyticity of f(k). As we said,f(k, r) is that solution which behaves like e-ikr
for large r. As long as k is real,this is perfectly sufficient to define f(k, r)
from a physical point of view: if k> 0(<0), f(k, r) represents a sink (source)
in r = 0 which absorbs (emits) a set of stationary purely ingoing (outgoing)
waves, If b<0 the waves are damped at infinity. f(-k, r) waves are exploding;
there is no way of having f(-k, r) waves accidentally mixed with f(k, r),be-
cause for large r they would violently predominate. A damped wave is there-
fore quite uniquely determined. This in turn corresponds to the full solva-
bility of the integral equation. If instead we take b> 0,there is apparently

no safe way of defining an exploding wave because we are entitled to add to it
any damped wave without disturbing the behaviour at infinity. It is possible
to get round part of the difficulty by defining as a purely exploding wave f(k, r},
b> 0 in such a way that f(k, r) -e ik decreases faster than e*'. It is quite
possible to do so for the potential well; in fact, there we have f(k, r) -e-ikr= Q
identically outside the potential. But in general this procedure will meet
some difficulty, because the potential tail perturbs the exploding wave by
roughly the amount e-mr e -ikr, If this part is already larger than the damped
wave, we have little chance of going further. The condition e ™ "k | « | eik|
for large r is precisely b<m/2. This is Bargmann’s condition. We went
into some detail of this pictorial view of the analyticity proof because with
this kind of reasoning one often anticipates the final analyticity domain and
paves the way to a rigorous proof.

4. POLOLOGY OF S(k)

We want now to discuss in detail the physical meaning of S(k). If Vis
a real function (we wish to point out that Bargmann’s proof holds even if
V is not real), we have the following hermiticity properties:

e e
*

f(k: r) f('k‘p F) I‘), .
f(k)* f(-k*), (4.1)
S(k*)* = Sk

These properties can be broadly referred o as unitarity. They follow from
the fact that f(-k*, r)* satisfies exactly the same integral equation as f(k, r).
Suppose now f(-kg) = 0 within the Bargmann strip. From (2. 6) we have
¢ (ko, v} = £(kg) £f(-kq, r)/2iky. £(-ky, r) is therefore regular in r = 0. If ko= ib,
b real >0, f(-k ,r) behaves like eP for larger r and is the wave function
of a bound state. Therefore poles of S(k) occuring on k =ib, b > 0
correspond to bound states, .
The restriction of the Bargmann strip is essential; otherwise a pole
of S(k) could arise from a singularity of f(k) and not from a zero of f(-k).
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This was regarded as a serious objection to the theory in the early times,and
there were quite a number of attempts toward the elimination of these false
poles. (Actually they discussed the zeros of S(k),but this is just the same by
S(k) S(-k) = 1.} What about the other poles not lying on k¢=ib, b> 0? If there
is a pole in kg =h+ib, b> 0,we must have a pole in -Kj = -h+ib by unitarity.
By the same discussion used above both f(h - ib, r) and f(-h-ib, r) are square
integrable solutions of our differential equation corresponding to different
eigenvalues of the energy E = (h 1 ib)2, They are orthogonal. This implies

©

S\dr f (h-ib, ) f (-h-ib, 1) = 0. (4.2)
0

This is clearly impossible because f(-h-ib, r) is the conjugate of f(h-ib, r)
and the above integral is positive, Therefore if b> 0,the only way out is h = 0.
This proof is the usual quantum mechanical proof that a hermitian operator
has real eigenvalues. The same proof breaks down if b < 0 because then the
wave function is no longer square integrable. The b<0 poles of S(k} occur
either on k = ib, b > 0 or in pairs of conjugate poles. There is no
commonly accepted name for the purely imaginary poles; either antibound
states or virtual states have been used, and we suggest the first one. Nu-
merical investigation on solvable examples (4] shows that they actually occur
for reasonable choices of potentials. Experimentally they have no outstanding
identity like the bound states;but, as we shall see, they can be seen as rather
indirect effects on the low-energy cross-seéction. Indeed, suppose that an anti-
bound state occurs with a small value of b. If k is small we can expand f(-k)
in powers of k-ib, We have

f(-k) ~ iC (k-ib).

C here is real because of unitarity. It follows
S(k) = e2® = £(k) /f(-k) = - (k + ib}/(k-ib). (4.3)
At low energies the cross-section is almost entirely due to S-waves:
o (E) = 47 sin? 6 /E,
In our approximation we have

G (B) = 47/(E + b?). (4.4)

If b is small,the cross-section should be abnormally large at E = 0, This



MATHEMATICAL THEORY OF POTENTIAL SCATTERING 287

is what we see in the singlet state of the proton~neutron system where we
know that there is no bound state, Of course, since b is squared in (4.4), there
is no way of telling from the cross~section whether we have a bound or anti=
bound state, The pairs of conjugate poles are named (in [9] there is some
disagreement with our convention) resonances, The reason is that they are
quite visible in the cross~section if their b is small. Incidentally, we cannot
have b = 0,because then also f(k,) would vanish and therefore also ¢(kg, r)
and ¢'(kq, 0) = 1,and this is contradictory, In order to see how the cross-
section behaves near a resonance we calculate the phase shift for an energy
which is very close to the location of the poles, Iff(-k)hasazeroink=h+ib,
b<0,f(k) will have a zero in k = h -ib, Taking into account unitarity, we see
that 6 can be represented, when k is close to h, by the formula (E;=h2,

T" = -4bh):

/2
Ey-E

5=n+ arc tg (4.5)

Suppose for simplicity n = 0. The cross-section will be given by

41 o _4r r/a
O'(E)zi 51n26-E—(E_E0)2+F2/4. (4.6)

If we plot the phase shift as function of E in the neighbourhood of E;, we find
that it starts from the value n if Eq - E »I'/2 and it rapidly jumps up ton+7/2
when E passes through the value Ey. If n = 0, 6 takes the value 7/2 when
E = E;; this corresponds to a maximum of the cross-section, because sin?é
takes then the maximum value 1, The same behaviour is evident from (4, 6)
and shows up as a sharp peak in the plot of the cross-section, If of course
b is not so small,the peak broadens and loses its identity by mixing up with

. nearby peaks, Eq. (4.6) is a simplified version of the Breit- Wigner one level
formula, Correspondingly,the wave function for an energy close to Ej is
very small outside the range of the potential, This we see from (2. 6), Indeed,
if k = h,we know that both f(k) and f(-k) are nearly vanishing. As ¢(k, r)inside
the region of interaction is reasonably large, i,e. ¢{(k,r) = r, if we normal-
ize the solution from the asymptotic behaviour for large r by choosing a
unit flux of ingoing and outgoing particles, the amplitude inside the potential
will in turn become abnormally large, (Incidentally, we notice that ¢{k, r) is
normalized in the origin.) We may picture the process as follows: the in-
coming particles spend a long time inside the potential well before coming
out, Their interaction is therefore quite strong, and this explains the oc-
currence of large cross-sections. Resonances are often called metastable
states and in several ways they can be approximately considered as states
in the usual quantum mechanical sense, like bound states.

5, YUKAWIAN POTENTIALS, THE RESTRICTED CASE OF S WAVES

A potential will be named Yukawian if it can be written in the form:

e
r

V(r) = Sc(u) du, (5.1)
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where o (u) is a suitable weight distribution. Yukawian potentials can be
continued for complex values of r in the half-plane Re(r) > 0. This follows
from the properties of Laplace transforms which are analytic in the half-
plane of convergence. If a potential is Yukawian then the Jost function has
remarkable analyticity properties. The standard theory of differential equa-
tions tells us that,if the potential is analytic in some domain then the wave
function is also analytic in the same domain. The Jost solution can be con-
tinued then in the complex r domain Re(r) > 0. Take now p as a new variable
in eq. (1.5) where r = pel®and o is a fixed angle, |a <m/2. We have (£ =0)

2

dy 2io _ 2o io
W+e El[/-e V(pe )d/ (5.2)

This equation looks formally the same as (1.5) with a new distance p, a new
wave function ¢, a new energy E; = E €29, anew (complex) potential V;(p)

= V(peio) e2ic, We are still able to define a new Jost solution fi(kj, p) such
that f; satisfies (5.2) and f; ~ e-ik1? for large p. But f(k, p el also satisfies
(5. 2) with the same boundary conditions™ so that

ic

io
(k. p)=f(kpe’), k; =ke

Now,f; is analytic in k; in the Bargmann domain Im k,<m; /2 where m; is
related to the range of V, (p) just'as m is related to the range of V(r). If V is
given by (5. 1),the lower limit in this integral has already been chosen to
yield m as the correct value for the Bargmann proof; that is, P(r) of eq. (3.13)
converges if b<m/2. Now,if r is large,the main contribution to V(r) from

(5. 1) is of the kind

V(r)~ o(m) e ™ /1%
It follows that
[V, (0| ~ o (m) e mPeex6/ o2

Clearly the correct value for m, is m cosg. f;, and therefore f is analytic in
Im k1 < (m coso)/2. This domain is different from the original Bargmann
domain of f(k, r). The union of all these domains for all cﬁ1< 7/2 is the k
plane with the cut k = ib, where m/2 < b < =,

S(k) is therefore analytic in the k plane with two cuts k = ib, with M/2

< |b } < w, There are of course different and more interesting ways of de-

* This result implies that the analytic continuation of the asymptotic behaviour of f coincides with the
asymptotic behaviour of the analytic continuation of f. This seems to be evident but it is not,and it has to be
justified It can best be proved using the Phragmen+Lindeloef lemma See CARTWRIGHT [8].
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riving the same result. We did it here just because the result was verycheap-
ly obtained. There is one case of Yukawian potential which can be solved
exactly [9]: the Bethe potential V(r) = -Vy e™,

Y'+EY+V, ey =0, (5.3)

This equation can be reduced to the standard Bessel equation by going to
the variable & = 2(Vy1/2 /m)e™/2 | We obtain for the Jost function

~(ik/m)ln(V o/m? . 1/2
f(k) = o (ik/m)la(vo/m®) {1+ 21.k/m)J2u(/m 2V, " /m). (5. 4)

This example was considered by Jost in his discussion of the false poles.
Our Jost function has namely an infinite set of false poles in the points
k = inm/2, n integer > 1, these poles being what remains of the cut along
the imaginary axis of k. For the pure Yukawa potential however there is a
logarithmic singularity in k = im/2 and more complicated ones farther on,
Itis, however, much simpler to study these singularities with Martin’s method,
which shows the very interesting fact that higher perturbation terms produce
singularities moving farther and farther away with increasing order of the
term,

Martin’s method works as follows: he defines

glk, 1) = e f(k, 1)

and starts from the following Ansatz:

©

glk,r)=1+ S‘ ok .a) e""da. v (5.5)

m

Inserting g(k, r) into the Schroedinger equation,one finds for it the differential
equation,

g"(k.r) - 2ikg'(k.T) - V(r) g (k.T) = 0,

In this equation we replace g(k, r) by its integral representation (5. 5), and
we use for V(r) an expansion of the kind

vir) = { cw) e ap.
)

Of course this representation for V(r) is just equivalent to (5. 1) provided
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an C(u) = - olu)
We get then the integral equation,
p=m
bl #2080 p (k) = C) +  Clu-a) p k-0 da (5.6)
. m

The main point about eq. (5.6) is that the value of p(k,u) in a given interval
nm=y=(n+1)m can be calculated from the knowledge of the values of p(k.u)
when y<nm. This provides an interesting method of construction of p(k. u)
since we know already that p(k- u) = 0, usm and p(k-u) = C(u)/u(u +2ik) for
m=y=2m. One can see the above situation also by saying that for values

of u lying in the interval nm...(n+1)n the (n+1)m perturbation term and
the following one vanish identically so that the perturbation expansion always
terminates. It is clear then that this also means that the support of the n-th
terms moves away with increasing n. Martin has carefully examined this
expansion,and a detailed account can be found in the Hercegnovi lectures.

6. THE HIGHER WAVES

All the results that we have so far derived for S waves can be extended to
higher waves [9]. There is no simple method for doing this like the one we
have for S waves, The reason is that the Green integral functions, which
are used in order to define particular solutions of the wave equation, contain
Bessel functions in their kernels and these are clumsy to handle,

We intend to quote here the corresponding results,and we also give a
list of the most important functions used in the formalism of higher waves.
The proof of these results actually does not teach anything newer than what we
already know for S waves. A fairly complete review of this subject is in
[9]. The reason we skip these lengthy mathematical proofs is that for
Yukawian potentials Martin has much simpler methods.

Here follows a list of the most important functions of the theory:

(1) The Jost solution. It can be defined with an integral equation similar
to (3.1) (see App. I):

o(0+1)

e v fom ko nven + 850 4 o xax 6.0

+

Ll

fl(k, r) =

If we put V = (, we have,

D2 e 12)P O (er). (6.2)

0
f,(k,r)=e 041/
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We have also the equation (see App. I)

+

f,(k,r) = f (k, 1) - 1—\/_5\\]__ H(ai)l/z (k £) HM/Q (kr)

SHE ke BE er)] Vi) £, 0 8) dE. (6.3)

(2) The Jost function is defined as

£, (9 = lim r'f, (k, 7). (6. 4)

If V = 0, we have the free Jost function,

111!/2

£(k) = 7 M(e+1/2) (2/K)" (6.5)

The regular solution is defined as

fﬂ(k) fc(-k, r) —(fe)(-k) f,(k, r)
9, (k, 1) = 21k ’

9, (k,1) = ¢, (-k,r); ¢,(k, r)~r' ", r—0. (6.6)

Comparing the asymptotic behaviour of this solution with the definition of
phase shift, we find the formula,

£,()

S,(k) = ¥ = " NEE . (6.7)

We quote here some results concerning the analyticity domain of these func-
tions. All these analyticity proofs run exactly in the same way as for S waves
(see App. II); that is, we place upper bounds on the perturbative expansion
of f,(k, r), and we show that it converges uniformly in the Bargmann domain
and that each term has the prescribed analytic properties:

(1} k'fy(k, r) is analytic in b<m/2. If the potential is Yukawian the
possible singularities lie on the cut m/2 <b< ®, with k = ib,

(2) The same result holds for k&f, (k). For large k in the lower half-
plane we have 11m £y (k) /£9(k) = 1,

(3) S,(k) 1s analytlc in the cut k plane: k = ib, m/2 < ]b l < w. The dis-
cussion of the poles of S(k) is exactly the same as the one we gave for ¢ = (.
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(4) The only striking difference between higher waves and the S wave
regards the behaviour of the phase shift at low energies. This property is
linked with the so-called scattering length approximation, It asserts the
validity of the expansion,

K etg s, (k) =ag vak’ 4. ... : (6.8)

This expansion will be a byproduct of the complete theory of the properties
of S,(k)as afunction of both k and of (complex) ¢ which will be worked out

in the next sections. Physically (6. 8) has its origin in the existence of a
repulsive centrifugal barrier which pushes the wave function out of the region
of interaction. A parameter which decides the order of magnitude of the
phase shift is the impact parameter (distance of closest classical approach)
T = ¢ /k. If k decreases while ¢ is kept constant,the wave function will scan
the potential at increasing distances and the interaction will becoime negli-
gible when 0 /k » 1/m.

(5) If we let £ increase while we keep k constant, we provide another
mechanism which increases T and decreases the phase shift. The phase
shift can be estimated for large ¢ with the following argument: We know
that if T » 1/m the bulk of the wave function lies almost totally outside the
potential, and it is a good guess that the wave function is only slightly
perturbed by the potential. We take now the exact formula,

_ J 9, (k1) 4lk 1)
T Bg‘ VO TRwT THET O

and we replace ¢y (k, r)/ l £, (k) | by ¢J(k, r)/[ £9 (k) | . This yields the so-
called Born approximation, The general reliability of the Born approximation
has been repeatedly questioned,and now it is agreed that it gives at most

only the order of magnitude of the scattering amplitude if blindly applied

to low waves and it increases in accuracy at high energies. Anyway if
T» 1/m and k is large,we can confidently use it. To us it is interesting

just because it gives a reliable estimate of the phase shift for large f,and

we need it in order to discuss the convergence of the Rayleigh-Faxen ex-
pansion outside the physical range of cos 6. This argument can be made
somehow more rigorous, but it then becomes so dull that we prefer not to
interrupt our main flow of ideas with insipid mathematics. Anyway the general
theory which we shall work out in the next lectures will bring new argu-
ments to support our conclusions. We would just like to mention that Carter
in an unfortunately unpublished thesis has proved rigorous equivalent results.
(See [9], p.333 or [3].) He states that for { — «© the bound holds:

le, | <cls,] s, (6.9)

where C > 1 is some constant, This is enough for our purposes.
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7. LEVISON'S THEOREMS

There is a class of very elegant theorems which relate the number of
bound states for a given partial wave to the total variation of the phase shift
in the interval 0 <k < =,

We know that for all reasonable potentlals hm Sy (k) = 1 (k real). At
infinity we can always choose

5,()

Even within the Bargmann strip &, (k) is not analytic, because in general it
has logarithmic branch points wherever S,(k) has poles or zeros. We define
6 4(0) as the value we get by continuing 6§, (k) analytically along the real k axis
from k = + ©, We know that, unless there is a bound state at k = 0, which we
exclude for simplicity, sin §, (0) = O sothat §,(0) is a multiple of 7. Levinson’s
theorem then states that

6Q(0)' 6!(m)=nﬂ‘”: ' (71)

when n, is the number of bound states of angular momentum ¢ . The proof
we prefer here has been somewhat shortened (for a full discussion see [9],
p.332). Take the function

g, (k) = 1, (k) /£{ (k). (7.2)

(Incidentally g, (k) is named Jost function in {9] and written f,(k).) We know
that in the lower half-plane of k we have hm go(k) =-1. By umtarlty it is
obvious that for real k

6, (k) = arg g, (k).

Moreover &, (k) is an odd function of k. This semicirclein b< 0 (b = Im k) is
indented on the real axis of k. This semicircle encloses all zeros of g!(k)
which correspond to bound states. We define arg g,(0 + ¢€) = §,(0) = n7, where
n is an integer which we do not identify yet with the number of bound states.
We now move along the real axis of k until we meet the semicircle, here by
definition arg g, (k) = 0. On the whole semicircle we also have arg g, (k) = 0.
We move along the semicircle until we arrive on the real negative axis. If
we move now toward k = 0 = € we have the relation 6,(-k) = -6,(k). When we
arrive at k = 0,we have 6,(0 - €) = -n7 and §, (k) is clearly discontinuous in
k = 0. The discontinuity arises from the fact that we have enclosed the bound
states in the semicircle and we have gone clockwise around the zeros of g, (k).
During the trip arg g, (k) decreases by the amount 27 n,,where ny is the
number of zeros of g,(k) inside the contour. But §,(k) has just decreased by
54(0 +€)-6,(0-€)=nr - (-n7) = 2n7. Thereforen = n,. QED.



294 T. REGGE
8. THE TECHNIQUES OF COMPLEX ANGULAR MOMENTA

In the other lectures we have discussed the scattering amplitude for
integer values of . This is easily understood because we cannot associate
any direct physical meaning to unrestricted values of ¢; ¢ came from the
expansion in partial waves, and integer values of ! are a natural consequence
of the quantization of angular momentum. Moreover, we apparently need to
consider 6, (k) when ¢ is integer only in order to know the scattering amplitude.

We want to oppose this general attitude andthe reasons are the following:

{a) £ is quantized because spherical harmonics are considered on the
sphere, that is for I cos Gl < 1, where 6 is the scattering angle. Truly one
can make experiments only when l cos GI < 1, however, the crossing proper-
ties implied by the relativistic Mandelstam representation also mean that,
for instance, the pion-nucleon scattering is directly related to the nucleon-
antinucleon annihilation into two pions. In a way, therefore, the process,
N +N — 7 + 7 is simply the process 7 + N—7 + N viewed in a region con-
sidered unphysical before. In other words,if we measure the first process
we actually measure the second for I cos 6 , > 1. Now the natural way of
expanding a function of a hyperbolic angle is to use the set Pj,.1/2 (cos 6)
which is the corresponding harmonics for a Lorentz invariant hyperboloid
in an indefinite metric. Therefore,Mandelstam's representation is naturally
associated with non-integer angular momenta. The potential scattering re-
tains part of the full information of the original relativistic scattering,and
there should be no surprise if unphysical angular momenta turn up.

(b) Even without the previous argument the technique has been used
for years in the discussion of diffraction phenomena; a typical problem in
this field was the theory of the rainbow or the theory of propagation of waves
_around the earth [5]. It is therefore a highly succesful tool in a wide range
of problems.

The basic idea of the technique arises from a transformation, due to
Watson, of the Rayleigh-Faxen formula:

£(E, 6) = Lk Z (20 + D[S, (k) - 1] P, (cos ). (8.1)

This transformation is successful only if one succeeds in proving the ex-
istence of an analytic function S, k) of the complex variable X which takes
the values Sy (k) of (8.1) when A = ¢ + 1/2. We use the variable X because

in the following it will have a more symmetrical role than ¢ and corresponds
more closely to the classical angular momentum than ¢. In this hypothesis
(8.1) can be transformed into

H(E, 0) = - 5 f%a% P,/ (-cos [ S(A, K)-1]. (8.2)
C
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The path C of integration encloses all the positive zeros of cosra but avoids
the singularities of S(, k). (See Fig. (1).) If we calculate the integral (8.2)

with the contour method, we find the expansion (8.1).

A-PLANE

fa
I
1

4

Fig. 1

The path of integration for the Watson integral

Eq. (8.2) contains all the information of eq. (8. 1) and it has additional
features of its own. Indeed,in consiructing it we use properties of S(i, k)
which depend rather critically on the potential. The path C of integration
can be deformed in accordance with the analytic properties of S(a, k). The
ensuing convergence domain of (8.2) depends on P,.),5,and this allows us to
extend the analytic properties beyond the Lehmann ellipse.

The necessary steps which we have to carry out in order to establish
the validity of Watson’s transformation are the following:

(1) Definition of S(A, k) for general values of X and k. Analytic proper-
ties and asymptotic behaviour of S(A, k) for A large. All these properties
will be derived for the restricted case of Yukawian potentials.

(2) The convergence of (8.2) is investigated for the specific case of
Yukawian potentials. The Mandelstam representation then follows for the
total amplitude.

In order to achieve our goal we shall enlarge the definitions which we
have used so far for S waves and higher waves. We think that those defini-
tions are self-evident if one keeps an eye on the previous section.

The starting point of our theory is the partial wave Schroedinger equa-
tion:

) K () - (- P2t V@Y @ =0 (8.3)

We shall use the attribute ''physical" for the variables X = ¢ +1/2 and k when
is integer and k is real.
Moreover we assume the following conditions for the potential:
(a) V(z) has the representation

with a suitable weight distribution o(u).
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{b) V{(z) can therefore be continued into the half-plane Re z > 0.
(¢) On any ray arg z = o, ' cl< 7/2, we have

0

S|V(z)z|ds< M< o, ds = |dzl.

We exclude the value o= r/2 because the last condition would rule out
the interesting case of the Yukawa potential. More refined assumptions will
be made in order to derive special results if needed.

We intend to study eq. (8.3) and the associated quantities when A and
k are both complex., This programme has been partly carried out in previous
papers [3,4,10,11], and we may group previous results into two classes:

(a) Analyticity in k when A is physical;

(b) Analyticity in X when k is physical.

We repeat here some of the already known definitions and formulas
which will be used extensively in the lectures. Most of these definitions are
purely formal since there areinvolved,for instanc'e, variables defined through
solutions of an integral equation, whose existence has only been proved in
the cases (a) and (b). The proofs will be given in the next sections, and the
formulas listed should be regarded rather as a framework for the parts to
come. There are two ways of defining particular solutions of eq. (8.3).

» (i) We define 9(A, k, z) as that solution which behaves like z **1/2 when
z is small, More rigorously, we define ¢ through the integral equation,

X+1/2 A+1/2
a1z 1 S‘ 2
- 2 -k by de.
o0k =8 g ) o T e (V@K IS0 ke ds
0
(8. 4)
If ¢, is the solution of eq. (8.3} when V = 0 (free solution), we have
2 A*1/2
(1, kz) = T(a+1) @/ 220, ka) ~ 272 2 ~0. (8.9)

Similarly,
b0k 2) = 2V mgf (8T, (z) -3, () T, (k)]

XV(E)¢ (A, kE) dE. (8.6)
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The derivation of these equations is quite simple (see App.I). Clearly
o\, Kk, z)= ¢(Xr, -k, z). However, ¢(-1, k, z} is a new solution. If Re x> 0,
#(+ A, k, z) will be regular at the origin, and any other independent solution
will be irregular. On the line Re X = 0, (A, k, z) and ¢(-2, k, z) exchange
their regularity roles and both have an oscillatory character. It is evident
from this and other features of (8.3) that A dominates the behaviour in the
origin ‘while k determines the behaviour at infinity. So far we have not com-
mitted ourselves to any theorem of existence of these solutions. In fact,
unless one makes a special hypothesis on the potential, the region where both
® (X, k, z) and é(-x, k, z) exist and are analytic is in general very limited.
The line Re A = 0 will be seen to belong to this region. Of some use is the
Wronskian:

W[¢(k: k: Z)) ¢(_ X-: k) Z)]
=30,k 2) $1-2, Kk, 2) - (-2, k, 2) (A, Kk, 2) = - 2 0. 8.7

(ii) The second class of solutions is defined through the boundary con-
ditions at infinity. Such a class of solutions was first introduced by Jost for
S waves., We define f(A, k, z) as that solution which behaves like e-ikz for
large z. More rigorously,

©

2
B,k 2) = e 4 2 gsin k(£-2) [V(s) +"—21-&} £(X, kE)dE.  (8.8)
: £

If f4( A, k, z) is the free solution,we have
fo (A, k, z) = VB2 (1105 12) @) (k) ~ e, (8.9)

Similarly.,

0Lk ) = Tk 2) - 55 (T (VE(ED (e8) B (ko)

1Y ) 5D (k2)1V(E) £ 00, k.8 At (8. 10)

We can also define f( 1, ke™ | z). However,in general f( X, k, z) has a
sranch point in k = 0 and f(A, ke"i7, z) will be different from f(X, k, z). This
already happens for free solutions. For instance,
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fo (A, ke -in’ z) = eiT(A1/2)/2 (7rkz/2)1/2 H>\(1) (kz) ~ eikz (8.11)

The Wronskian is uniquely defined:
WIE (X, k 2), £(A, ke ™™™, 2)] = 2ik. 8. 12)

From the general theory of differential equations we know that the ana-
lyticity domains in z of ¢{x,k, z), f(x, k, z) and V(z) are the same. If we take
the conjugate of each of the previously written equations,we find (if V(z) is
real on the real positive axis of z):

(1. k z) = (0, K5, 2), t(, k, z) = £ ¥OF, -k*,z). (8.13)

The hermiticity requirement on the Hamiltonian needed for the above results
will not be used in the proofs on the convergence of the perturbation ex-
pansions which we shall derive in the next section. This we do, not in view
of possible application to absorbing potentials, but just as a mathematical
artifice in order to extend the analytic properties. This will be apparent

in the following,

9. THE JOST FUNCTIONS AND ANALYTIC PROPERTIES OF THE PAR-
TIAL WAVE FUNCTIONS

Once we have defined the functions ¢(+x, k, z) and f(\,*k, z), we possess
four solutions of the same differential equation. The Wronskian of any two
solutions is of course a constant, We have already given such a Wronskian
between two ¢’s and two f's in (8.7), (8.12); these two Wronskians do not carry
any information about the potential,and they are therefore useful but trivial.
A more useful quantity (the so-called Jost function) is

WIlE(r, k, z), 62, k, 2)] = £(2, k). (9.1)

Besides (A, k), we consider f(-2, k), f(x, -k) and f(-2, -k) too. The Jost func-
tion is interesting because, as we shall see, it is directly related to the
scattering matrix, In order to show this let us first notice that, according

to general principles, there is always a linear relation between any three
solutions of (8.3). In particular, we must have

¢(l: k: Z) = Af(>‘-: k: Z) + Bf(x-: 'k: Z):
(9.2)
¢(-1, k, z) = Ci(x, k, z) + DE(a, -k, z).

Here A, B, C, D are independent of z,but they are expected to be functions
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of A and k. In order to evaluate them we introduce the formula (9. 2) for
&(X, k, z) into (9.1),thus finding:

2ikA-= - f(x, -k). 9.3)
Similarly,
2ikB = f(x, k), 2ikC = - f(-1, -k), 2ikD = (-2, k).
These valuebs can be reintroduced into (9.2),and we find
o, k, z) = [f(0, k) £(x, -k, 2) - £(x, -K) f(A, k, 2)] /2ik. (9.4)

Finally we calculate the Wronskian W[ ¢(x, k, z), &(-2, k, z}using eq. (9. 4),
and we compare it with the known value,

f(x, -K)£(-1, k) -f(x, k) (-, -k) = 4ixk, (9. 5)

This is an important identity *. From (9.5) and (9.4) we can find easily

f(x; k, Z) = [f(‘>‘~: k)(}s(}\, k: Z) "f(>\: k)é('A: k: ‘Z)] /2 A:

(9.6)
f()\: ‘k: Z) = [f('A: ‘k)¢(>t; k) Z)'f(k: 'k)d)('h.v k: Z)] /2 A--
The free Jost functions are given by the formula,
A X -in(A- ‘
£, (2, k) = (2/m22  pa+ VYR MOV, (9.7)

They are multivalued in k,

We now proceed to find the connection between the Jost functions and
the scattering phase shifts. It is almost unnecessary to point out that what
we shall define is actually a function which interpolates for unphysical values
of X (and k) the known and measurable phase shifts. It is also clear that there
could be no other interpolations. The one we select is convenient merely
because it retains part of the properties of the physical phases. Our defi-
nition starts from the known behaviour of the ''regular'' free solution ¢ (X, k, z)
at infinity:

Bo (0K, 2) ~ OV St (3, k) sinfkz-7(2-1/2) 2], (9. 8)

* This is identity (1.8) of [10] . The functions C(A)and S(\) are linear combinations of Jost functions.
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This theory follows immediately from the theory of Bessel functions. We
compare it with the behaviour of the perturbed regular solution (9.4):

$(0, Kk, z) ~[f(1, ke -f(A-k)e™ ]/2ik

= oITVV/2) gidh k) —li—f(x,k) sin[kz-7(A-1/2)/2+ &7, )], (9.9)

where we have defined

S(x, k) = e®8B = 10, k) /(x, -K) ] "NV (9. 10)

This formula we retain even when the comparison is no longer valid,in parti-
cular when one deals with exploding expotentials (k not real). So far this
definition is purely formal, since we know very little about the existence
and the analyticity of the Jost function when both k and A are not physical,
This will be discussed in the next sections.

We give here, for completeness, a relation that will be used later,

5(>\ k) ~ ¢0 ( A') k: Z) ¢(A’ k: Z)
P Y eins(, k) = -k \V dz,
e sin . k) 5 @ FTmm o ¢

(9.11)

and that has been deduced from
T im(A- -i 1 o
(6o - $39) l - MR W g (3, WE(, 1) sin 6 (1, K)

= S‘V(z)cﬁo (X, k,z)d(x, k, z)dz,
0

The existence theorems and the analytic properties of the partial wave
functions are usually derived by the following method;

(a) We iterate the defining integral equation,and we define a formal
perturbation expansion.

(b) The analytic properties of each term of the expansion must then
be examined in order to find the analyticity domain of the solution.

(¢) Bounds are placed on the solution in such a way that the series are
seen to converge uniformly inside the analyticity domain. We give the prac-
tical calculations in Appendix II, and we merely state here the most im-
portant results:
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(i) #(x,k, z) and ¢’(X, k, z) are integral functions of k (i.e., regular for
all k with the exception of an essential singularity at k = ©) and are analytic
in X for Re x> 0; the expansion also converges for Re A = 0 (in fact, we think
it is possible to show that the analyticity region can be pushed inside the
region Re A< 0 under very special assumptions on the potential). ¢(A, k, z)
is analytic in both variables in the topological product of the k plane (k = ®
excluded) with the half-plane Re X > 0 (and continuous for Re X = 0).

(ii) f(x,k, z) isanalyticinthe pair of variables A, k in the topological
product of the whole X plane (X = © excluded) with the half-plane Im k<o
(and continuous for Im k= 0). This allows one to define f(x,-k,z) asf(A ,ke-"I z)
unambiguously when k is real; in order to avoid confusion we shall retain
the clearer notation f(X, ke, z). Correspondingly in (8.13) we have
f(h, k, z) = £*(A%, k* e | z). It follows that f(, k) is analytic in A, k in the
product on the half-planes Re A > 0, Im k < 0 and is continuous on the bounda-
ries Re A = 0,Im k = 0. The branch point at k = 0 will be discussed later,

Under the stated assumptions on the potential it is possible to enlarge
the analyticity domain of f(A, k, z) and consequently that of f(x, k). for
this purpose let us consider eq. (8.3) along a prescribed direction in the com-
plex z = x + iy plane, Let therefore z = p el®, where o is a constant angle
|o| < 7/2. Eq.(8.3) can be written in the variable p:

2 2 . . .
d ﬁ - K—';Ew + k%M - V(pe ) = 0. (9.12)
dp P

This equation is still of the same kind as eq.(8.3), with a new wave number
ky = kel and a new(complex) potential V; = V(pei®)e?i9, The previous analysis
can be carried out on the new equation,and we shall arrive at a new set of
wave functions ¢,(A, kq, p), {14, k;, p) and at a new Jost function f;(A, k;).

The Jost solution f; (A, kq,p) is defined as the solution with the following
behaviour: .

O e

1 l;p)"e

* for any value of 0. On the other hand,the Jost solution {(A, k, z), already
defined for z real, may be continued analytically in the half-plane Re z > 0
with the same boundary condition because of the conditions on the potential
V(z). So the analytic continuation of f(A, k, z) coincides with f;(A, k;,p), and
we have

-io(A+1/2)

£,0,k.0) = T, Kk, 2), 00, k,0) = e o0, k, 2),

~io(Xt1/2) £

f0,k)=e A, k).
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But the same general analysis used before for the variable z (forrealvalues),
if used for the variable p, implies that the new Jost function is analytic in
Im k< 0 and Re 2 > 0 and that the old Jost function is also analytic in this
domain, in view of the above relation. This domain depends on o, where
1c| < 7/2, The Jost function is therefore analytic in the union of all domains
of the kind Im (kei®) < 0; this union is simply the k plane cut along the upper
imaginary axis k = in (n > 0). Previous results (see Appendix II) actually
_state that, when X is physical, the cut starts at n = m/2, m being the lower
limit of integration in the integral defining V(z).

Similarly, f(A, ke-i7} is holomorphic in the topological product of the whole
k plane, cut along the lower imaginary axis (when ( is integer, the cut starts
at n = - m/2), with the half-plane Re X > 0.

Finally we discuss the branch point of the Jost functions at k = 0. From
(8.9) it follows that

fo0, ke ™, 2) = £ 0, Kk, 2) +a() 1,0, ke ™, 2),

~3im

£, ke 2) = (14 M)]E, 0L ke T, z) +al) 1,0, K, 2),
a(X) = -2i cos (mA).

Introducing this relation now in definition (9.1), we have that the result of a
circuit around the origin can be written as follows:

(0, ke ™) = £ (k) +a) £ 0, ke ™),

0
(9.13)

£, ke ™) = [1+2")] £,00, ke ) + a@) £, k).

0

If we think of eq. (8.10) written for f(A, ke"i", z) and make the linear com-
bination f(\, k, z) + a(\) £f(A, ke"i*, z), we find that, if one follows a path which,
without crossing the m/2 < n <ocut, encircles the origin, then, when A is
real, f(A, k) has exactly the same law of transformation as f; (2, k).

‘ Later on it proves convenient to use the function F(, k) = f(A, k) /f; (A, k).
In terms of F(A, k) one writes

-2ix I -iz -2i5\
F{x, ke 217r) =2cos e FQ, ke ) -e TUROL K

or

F(, ke ™7 - F(\, ke ™) = e‘z”*[m, ke™) - F(A, k) .
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One could argue that it would be easier to represent everything with a
single cut starting from the origin. This is not true since we would lose the
information that the branching properties at the origin do not depend on the
potential and are purely kinematical. On the contrary, the other cut depends
critically on the potential,and it is useful to separate the contributions.

For the S matrix (9.13) gives

S(, k) - 2cos (7x)e™

S\, ke 27y = - — (9.14)
[1-4cos (mA)] + 2 cos(7x)e  S(QAk)
or
. 2 7(\-1/2)
S, k™) = = Ty, (9.15)
S(, k) - 21 cos (m) e VY2
It is useful to introduce a new function,
L 2h 2iTA
ZMAL k) =ik [S(L,k) - e }/[SM k) -1]. (9.16)

The function Z can be linked to the so-called scattering length expansion.
This expansion represents k2f*1ctg 6(¢, k) at low energies as a power series,
From this expansion it is evident that 6(¢, k) tends to vanish,like ~ k2{*1, when
k - 0 in the ¢™h wave. Now, if A is physical (X = 0 +1/2), we have Z(\, k)
= k20*lctg 5(0, k). This shows that Z(X, k) is the natural generalization of
kZf*lctg 6(¢, k) because it retains the property of admitting a power series
expansion in a neighbourhood of the origin. It must be noticed that Z(A, k) is
not only regular in k = 0 but also an even function of k; its meromorphy
domain is the same as that of S, k).

The following formula is also useful:

2>\ 21T>\

S, k) =[Z(A, k) - 1/1Z(, k) - ik” ] (9.17)

Finally, we wish to point out that eq. {(9.5) implies
e TS, k) €™ S(-, k) = -4kA /[ T(A, ke ) (A, ke )], (9.18)

This equation only holdé.when A is imaginary; otherwise one of the two func-
tions f(A, ke™™), f(-A, ke™'™) is not defined. We also have from egs. (3.13)

* In the following when we write f(X, k) we fnean the Jost function on the sheet: -3%/2 < arg k < 7/2,
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%

Lk =7 ke, stk = s ke ™. (9.19)

If we define Z(A, k), when A is not real, by eq. (9. 16), we find that it is mero-
morphic in half-planes Re k> 0 and Re k < 0. There is at the moment no way
of joining the left and right domains of Z(A, k), because there is no gap through
the cut of either f(A, k) or (A, ke"i7) unless A is real. From Appendix IT we
can prove that actually the result holds for any real positive X. Indeed, if

A is real positive,

1€imOZ(k, i€ - €) - Z(\, i +¢€) = D) = 0,|g| <m/2.

But we know that in general D{A) is analytic in X for Re A > 0. It follows that
D(A) = 0 for Re X > 0 and |&| < m/2. This result enables us to join the right
and left domains of meromorphy of Z(\, k) (and of course of SQ, k) and of
related functions) through the gap [§| <m/2. This shows that actually the
branch point of Sin k = 0 is a purely kinematical one: that is, it does not
depend on the potential.

10. THE ASYMPTOTIC BEHAVIOUR OF THE PHASE SHIFT

The behaviour for large values of A and k of the phase shift can best be
investigated with the help of the WKB method. In the current practice the
use of this method has been limited for obvious reasons to the physical values
of k and A. We wish to point out, however, that the extension to the unphysical
range of these variables does not add anything essentially new to the method
and that the only difficulty is an increased complexity and variety in the
classification and behaviour of the turning points. The most rigorous paper
on this subject is certainly KEMBLE’s paper[12],and we could almost quote
his results with obvious changes. As Kemble’s analysis is in some cases
incomplete for our purposes or it becomes too complicated,it will not be
reported here, A more realistic view of the situation has suggested that
these details should be published elsewhere [16] and that we should discuss
here the final results only,

The general idea of the WKB method is that of constructing a differential
equation, which is very close to the Schroedinger equation, and whose solu-
tions are well known. Such an equation is satisfied by the functions:

X

J'p_l()T) exp (ii S\p(z)dz>,

(10.1)

p(z) = k% - )\2/22 - V(z), pz(z) = k. )\2/22.
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The approximation is generally good on the whole complex z plane except

in the neighbourhood of the points where p(z) vanishes. These points are
usually named turning points T. If k 'and A are very large,there is only one
turning point in the domain Re z > 0 and this occurs very close to T, or

-Ty, Ty = A/k, which are exactly the two turning points when V = 0. The
choice between Ty and -Ty is dictated by the fact that only one of these points
is on the good side Re z > 0 where V(z) is analytic. The turning points are
branch points of p(z).

The main problem of the WKB is to connect the solution (10.1), which
is good approximation at large distances. These solutions cannot in general
be represented by the same formula because the approximation scheme fails
near the turning point. An appropriate connection formula can be found in
the literature [7].

The result of the above analysis is that when k and A are large we have
the following asymptotic formulas:

fA, k)~f0 (A, k) exp <—1Sv [po (z) - p(z)]clz),
o, (10.2)

f(r, ke ™) ~ £,0 ke'") exp <i S[po(z) - p(:z)]dz>.
0T,

The integration paths I, and I}, connect the origin with the infinity in the
half-plane Re z > 0. I, passes below and I}, above T(see Figs. 2 and 3). The

/
/
/"
To /
/
71 I\ T
/
/
Z—-PLANE
_TO
Fig. 2 Fig. 3
Diagram for the asymptotic formulas Diagram for the asymptotic formulas

proposed formulas are valid under the restrictions that paths satisfying
these criteria actually exist. If Re Ty > 0,then we can obvioysly trace both
paths. Suppose now that we let arg T¢ gradually increase toward 7/2. When
arg Tq = 7/2,the high path gets pinched between the turning point and the
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imaginary axis. For arg Ty > 7/2 the corresponding second formula is no
longer valid. Only one formula therefore remains because it is still possible
to define the low paths (see Fig, 3), Clearly, however, these low paths run
high with respect to -T,, which is now in the Re z > 0 plane. If in the formula
we now replace k by kein, we see that the second formula has been replaced
by the first. Conversely,if we let arg Ty decrease toward -7/2,we f{ind that
the first formula is now meaningless and that the second one takes its place.
An important complement to these formulas is that p(z) is made single-valued
in Re z > 0 by cutting the z plane with a cut which joins T to the origin. On
the opposite sides of this cut p(z) takes opposite values.

Let us now evaluate the asymptotic formula for the S function. Weinsert
the expressions (10.2) into (9.10) and use (9.7). Thus we obtain

©

S(A, k)~ exp <-i (S. +
0,

4

Jip - plaldn) ) (0.3

8

0

It is obvious that the sum of a high and a low integral can be reduced to a
single complex integral which comes from infinity, passes across the
cut of p(z) and goes back to infinity on the other sheet of the function p(z)
after having encircled the point T. After this has been understood,it is clear
that the WKB formula for the phase shift is just the one we already know
from more elementary treatments:

50,1~ { e, (2) - b)) (10.4

The domain of validity of this formula is the intersection of the validity do-
main of the formulas (10. 2); that is,Re Ty > 0 (see Fig.4). There is no

A
arg A

Ni

arg k

~—
\

T
oL

Fig. 4
The regions of validity of the WKB method (shaded) and of the bounds (10.5) (unshaded)
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point anyway in trying to use (10.4) when Re T, < 0, because the corresponding
" integral is in general meaningless (it implies the knowledge of V(z) when z is
equal or at least very close to T, but V(z) is defined only when Re z > 0).
From this formula it is apparent that lim S, k) = 1 when|X |, | k|- «, under
the quoted restrictions. If Re T <0, we have no proof of the validity of the
above limit and we actually consider it not to be true. For our discussion

it is necessary to know some upper bound on S, k}. These bounds are de-
rived in a paper by BOTTINO, LONGONI and REGGE [16], They refer to the
behaviour when A is large and k is constant. (If A is kept constant and k is
large,lim S, k) = 1.) The desired bounds are

2(arg Ty*+n/2)Im A

|S(7\,k)|<u(7t,k)e argT <-72, ImX <0

(10.5)

2(arg Ty -7/2)Im A,

[s@, k)7 < u@x, ke ,ImX >0, arg T > 7/2.

The indicated domains of validity of these two bounds are the two unshaded
regions in Fig, 4. u(A, k) is here a function which is bounded above by a con-
stant independent of k and A. Both bounds are equivalent to each other through
the use of unitarity.
In using (10.4), one must always be aware that there is an error associ-
ated with it. If 6 vanishes very rapidly with A, the above formula becomes
' meaningless, because it can easily happen that the error, although small, is
still larger than 6. The usefulness of the WKB method here is that it yields
a proof that é vanishes for large A whenever Re T, > 0. This is already
enough to obtain results concerning the analyticity in the variables s = k? and
t (momentum transfer), Besides these asymptotic evaluations, we want to
quote a more precise result which states that for large angular momenta
the Born approximation (see (9. 11)),

)xkz)

~§ = ol iT(A1/2) 10.6
6 ~6, = ~ke f(ka)dz (10.86)

is a very reliable one. The reason for thls is that the wave function for large
X lies totally outside the potential and is practically unaffected by it. There-
fore,¢ ~ ¢, for large A, This can be shown more exactly from the WKB analy-
sis. For z fixed we find lim(¢/¢,) = 1. We would have to prove uniform con-
vergence in order to derive lim(é/6;) = 1.

We do not want to cram the paper with an uninteresting proof *,

It is well known that the Born formula can be integrated for the class
of Yukawa potentials and yields

©

by =~ oe § @, (1+u%/2K) oudn

m

* In[3] itisstated that an equivalent rigorous proof has been obtained by D.S. Carter (Princeton thesis),
- but unfortunately this proof has not been published. Of course,a proof follows from the three -dimensional
formalism and from the existence of the small Lehmann ellipse.
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If A is large,the asymptotic behaviour of 6 is

-al
1/2 e

1/2
6~-(m/2) / —(;(l)k(sinha) ~——;cosha=1 +m2/2k2. :
m 232
(10.7)
The standard WKB method yields instead
-m\,
5=0( /k).

The last evaluation is for our purposes too optimistic at low energies but
becomes reliable at large energies,

11,. THE POLES OF S(A, k)

Earlier analysis of the poles of S(A, k) have been carried out in the fol-
lowing cases:

(1) A physical, k complex. The current names given to these poles are

(a) bound states if k =in (n real > 0),

(b) anti-bound states or virtual states if k = -ip,

(c). resonances if Im k < 0.
The resonances occur in pairs of conjugate poles. Except for bound states,
the region Im k > 0 is forbidden to poles. It is evident from the existing
literature that the anti-bound states and metastable states (resonances) are
not states in the accepted frame of definition of quantum mechanics because
their wave functions are not square integrable. However, they share many
of the properties of ordinary states.

{2) k physical, A complex. The poles occur only when X > 0. They have
been named shadow states in [11] *. In the full complex domain of k and X
shadow states and resonances are particular intersections of the same singu-
lar surface of S(\, k}. For we remember that analytic functions of two vari-
ables are never singular on isolated points but always on analytic surfaces
(of dimension 2), In [11] a number of inequalities was derived concerning
the distribution of the shadow states.

The discussion will now be extended to complex A and k. Roughly speaking,
therearetwo kinds of limitations on the position of the poles: the first follows
from the equation of continuity and applies equally well, under very weak
conditions, to any kind of potential; the second uses special properties of
V(x) Like limitations on the depth and width of V(x) and analyticity.

The continuity -equation can be used as follows: We suppose that, for a
particular set of values of X and k, X=X, k = kg, inside its meromorphy
domain, S(@, k) has a simple pole. Then clearly f(Ag, kge-i7) = 0. Under this
hypothesis,

* Recently we have found a paper [13] where the name "spiralling states” has been adopted.
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10, k) B
PO ko 2) = o f(xo,koe‘“,z). (11. 1)

0

If Re Xy > 0 and Im k, > 0, the above function vanishes as a function of real
z at zero and at infinity. Its complex conjugate ¢* will also vanish in the
same points; ¢* satisfies the conjugate equation (z real):

X2 1/4
$"!" + ki gF - — $* - V(z)¢* = 0. (11.2)
Z

It follows that:

2 .
(¢'¢% - $7'9)" = (K¥2 - iZ)[¢ |* - AF2-2%) J%L (11.3)

Z

This identity can be integrated from zero to infinity. The contribution of
the first term vanishes with ¢ and ¢* at both ends. What is left yields the
equation,

o 2 5 2
Im k Rek§|¢]dz-1m7\ Rex5MLdz=0. (11, 4)
0 0 0 0 2

From (11, 4) it is clear that, where Re ko and Im Ay have opposite signs,
poles do not occur, Therefore we obtain two domains of holomorphy of

Rek, > 0 Re k, < 0 _
| (11.5)
Im/\0<0 ImX, >0 :

having a common boundary whereRe k; = 0, Im A, = 0.

A complete discussion of domain of analyticity beyond what is stated in
(11.5) is contained in a paper by BOTTINO and LONGONI [17]. A preliminary
discussion can be found in [11]. We just notice that, while (11.5) holds for
any of the potentials considered by us, any other inequalities will contain
some more detailed information on V(r). Particularly interesting are the
upper bounds on ReX, when k is real, because they insure a finite number
of subtractions in the scattering amplitude. If for instance,

[V(i‘y)l < ]%, then Re A < %
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12, THE TOTAL AMPLITUDE AND THE LEHMANN ELLIPSE

We have recalled so far a number of properties of the partial wave am-
plitudes. The next task is to relate them to the properties of the total scatter-
ing amplitude. After Mandelstam’s work it has become fashionable o use
the notations s = E and t = -A%= -2E ( - cos6). We define f(s, t) through (1.9)
or the equivalent transforms.

The property of the total amplitude which we shall discuss is the ex-
istence of the so-called small Lehmann ellipse.

The mathematical theory of Legendre polynomials teaches us that any
expansion in these polynomials;

F(cos 0) = Z a, P! (cos Q), (12.1)

(=0

converges in the cos ¢ plane within an ellipse of foci +1. It may happen that
the ellipse of convergence reduces to the segment joining -1 to 1. It always
happens that the function represented by (12. 1) is analytic within the con-
vergence region. This is quite analogous to the corresponding theorem for
power series where we have circles instead of ellipses. The magnitude of
the ellipse of convergence must be such that the sum of the expansion does
not have singularities inside the ellipse. Therefore the singularities which
are nearest to the foci are those which dominate the convergence. Without an
attemnpt to make our arguments rigorous but only the suggestion that they
are reasonable, all the above results can be understood from the asymptotic
behaviour of P, (cos 8) when ¢ is large and fixed. This behaviour is of the
kind

2 1/2
Pp (cos 0) ~<m> cos[(? + 1/2)9 - 77/4] (12.2)

If cos 0 is complex and ¢ is large and real, P, (cos 8) will be dominated by
Im 6, P, (cos 0) is therefore always exploding for high real?, unless 6 is
real, in which case it is oscillating.

If we consider the expansion (12. 1) and we suppose it to be convergent
for a given value of 6,it follows that the general term of it must vanish for
large ¢ : ‘

¢/ Im 6| _ -t/ Im o]

lim a,e (12.3)

0, or a, < Ce
[

The general term is therefore dominated by a decreasing geometric pro-

gression. Clearly the expansion also converges for smaller values of Im 6,

and it represents there an analytic function because it is a uniform con-

vergent series of analytic functions.
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In the cos 6 plane the curve Im 6 = const. is an ellipse. Suppose namely
that z = cos 6 = x +iy and 6 = ¢ + {u. We have

X = cos o coshu,

.4
y = -sin ¢ sinh u, (12.4)
From these equations we deduce easily
(x%/cosh?u) + (y¥/sinh®w) = 1; (x%/cos® o) - (y°/sin’ ) = 1.
(12.5)

The first of these equations does not depend on ¢ and represents the locus
of all points in the z plane which have the same Im 6 = u. This locus is evi-
dently an ellipse. The other equation is the locus of the points where
Re 6 = 0 = const.

This locus is obviously a hyperbola with foci + 1. The sets of ellipses
and hyperbolas are mutually orthogonal. The hyperbola which corresponds
to o = 0 degenerates into the upper and lower limit of the cos ¢ > 1, the one
with o = 7 into the line cos 6 < -1. Any value of o between these extremes
corresponds to half a hyperbola; the‘other half obviously comes from 7- o.
The whole z plane can be mapped into the strip 0 < o < 7 of the 6 plane. How-
ever, it is better to map it into -7 < g < 7 and 4 > 0. A given value of o is
then associated with a quarter of a hyperbola. By taking all the combinations
40 and 7 +¢ within the interval (-7, 7), we get all quarters of the hyperbola.
The line u = const.is then a full ellipse. This kind of mapping is very similar
to the usual polar co-ordinates where u plays the role of a radius and o the
role of the polar angle. We prefer this mapping also because it is the natural
one when we want the asymptotic behaviour of the Legendre functions when
the index £ is large. As long as £ remains an integer, there is no doubt about
the meaning of (12. 2) because it is unessential which determination we take
of Re 6 = 0 + n7 when cos 6 = z is given, But if £ is no longer an integer, we
are forced to specify the value of n. This turns out to be the one of our map-
ping. This fact is very important when used with Watson’s integral.

The size of the ellipse can now be estimated for large ¢ with the help
of (10.7) and (12.3), The partial wave expansion clearly convergesif Im8=pu<a,
wherecosh a = 1 + m?/2k2 We refer to the ellipse ¢ = a as to the small
Lehmann ellipse.

The term large Lehmann ellipse is commonly used instead for the ana-
Iytic continuation of the imaginary part of f(s,t). We define it in the physical
region as

F(s, t) = Im (s, t). (12.6)

We take s real and 0 < -t < 4s. We consider then the analytic continuation

of F(s,t) when s is kept fixed and t is complex. People refer to F(s, t) some-
what improperly as the imaginary part of {(s, t), but this is true only under the
stated conditions. The partial wave expansion of F(s, t) is then



312 T. REGGE

20+ 1) sm%c (k) P, (cos 6). (12.7)

Fis, 1) = %

s

0

<
il

This expansion convergesinan ellipse whichis larger than the small Lehmann
ellipse, because the general term contains sin? § and vanishes more rapidly.
This new ellipse is given by 4 = 2 a. This fact could have been deduced from
unitarity directly if the corresponding result for f(s, t) were known, without
passing through the partial wave expansion for F(s, t).

13, ANALYTICITY IN t FOR FIXED s

In this section we want to explore with new techniques the full domain
of analyticity of f(s, t) in the t plane. We already know of the existence of
Lehmann s ellipse, but we must go much further in order to prove the analogue
of the Mandelstam representation for potential scattering. For the sake of
simplicity we work on the assumption that for real positive k

lim [SQ, k) - 1] = 0 (13. 1)

in every direction of the Re A > 0 half plane, including (and this is really an
additional hypothesis) the imaginary axis of A, We know that for Yukawian
potentials the result holds in any direction within the above region; we know
also that little can be said when X = ia. The proof which follows could be
carried out without this additional hypothesis, but there is nothing interesting
to be gained and the formal machinery would be much more complicated.
Under this simplification we apply Watson’s transform and we obtain the
formula:

I = Q28K g
2k cOoS T PX -1/2

~jeo

f(s,t) = - (-cos 6)Adr

+iZ S,B,_(-cos 0)
n

. (13.2)

The path C has now been deformed into the line A = ia, The exira terms
arise from the poles of S(A, k) which we know to exist in the upper half-plane
of A only., We examine, separately, the contributions of the integral and of
the poles. S, is the residue of SQ, k) at the pole A = £ ; + 1/2, The conver-
gence of the integral is now determined uniquely by cos §. If A = ia is large
we have '
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e all; P (cos 6) ~0(elaH"'d), (13.3)

x|~
cosTA x-1/2
The integral therefore converges if |7r - cl <7. The asymptotic behaviour of
P-1/9(-cos 8) = Pxa-1/2[ cos(m - 8)] for large A has been evaluated by keeping
the condition |7 - Ur < 7 in accordance with the discussion of section 12, so
that 0 < ¢ < 27 is the range of ¢. This includes the whole z plane with the
cut z real > 1. The terms B (-cos 6) have the same cut. The cut in the

z plane actually starts outside the small Lehmann ellipse at the point

z = 1 + m?/2k?% (This concerns the cut of f(s, t) which also includes the con- -
tribution of the poles.) In the t plane this cut is mapped into the cut:

m?< t < oo, (13.4)°

This is actually the full result to be expected from the Mandelstam repre-
sentation. Our discussion obviously holds also when [ s(A, k)- 1] does not
vanish along A = ia but grows at most like a power of a,

What about the behaviour when t or z is large? The usual partial wave
expansion is really unsuitable, because it breaks down long before we need
to use it and anyway its accuracy decreases withu. Eq. (13.2) can still be
used and yields the interesting result that this behaviour is actually con-
trolled by the poles of s(A, k). Indeed if we now consider Py.;/(-cos ) when A
is fixed and cos 8 is now variable and large, we find

x-1/
P, f-cos O)~0(z"""%. (13.5)

This term is growing provided Re X > 1/2 and is at the same time oscillating
if X is complex,as expected. If z is very large, then what counts is the pole
with the larger Re A, What about the integral? This is easily disposed of
because it is the superposition of decreasing terms with strongly oscillating
factors when |a l = [A] is large. We expect it to vanish for large z. Con-
cluding,we are led to the behaviour:

£(s, ) ~ 0t *?), (13.6)

where a(s) = { (s}, ¢,(s) being the ¢ with the largest real part. This be-
haviour is energy-dependent.

What is the physical interpretation of these poles? We expect a(s) to be
an analytic function of s in some region which we do not need to specify now
in detail. We suppose such a pole to exist for s = sy with a small Im X and
Re A almost half-integral (physical). This means that for some value s,of s

a(sy) = 0 + e(s)) +in(se); e <, n«d. (13.7)
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If we now exploit the fact that a(s) is analytic in s in a sufficiently large
region around s,, we can expand a(s) in a power series in s - s;:

. da
a(s) =0 +e(sy) +inlsg) + (s - 8) 1 ses, o . (13.8)
We can choose however s equal to
: -1
- : ds
S = So- <€(SO) + ln(so)> (E S = SO> (139)

in order to make a(s) = 1. It ig clear now that,if there is a shadow pole,we
expect a pole to appear when / is integer and s is almost real, this pole
being the same complex singularity in the variables A and k (or s) intersecting
the many-fold A-1/2 = integer. This pole can only be interpreted as a reso-
nance according to the discussion of section 4 or section 12. Resonances are
therefore responsible for the high t behaviour of f(s, t).

In [11] quite a number of inequalities has been derived for a(s) for
a large class of potentials, including the pure Yukawa potential. We wish
to point out that it is not at all impossible to choose potentials such that
there is an infinite set of shadow poles and,even worse, such that there is
no upper bound on Re . f(s,t) in this case shows an extremely complex
behaviour for large t,and one needs an infinite number of subtractions in
order to write the Mandelstam representation. It is a good feature that we
can rule out this trouble for the most interesting potentials, i.e. those we
can form by choosing for o(u) in (5. 1) a distribution with no higher singu-
larities than Dirac’s functions (positively no derivatives of it).

14, THE RESULTS OF KHURI

In the previous section we have investigated the analytic properties of

" f(s, t) when s was held fixed and t was varying. A more difficult task in our
formalism is to prove analytic properties in s when t is fixed, We now keep
t fixed and real negative. None of the previously proposed representations
for (s, t) seems to be working now because they all diverge. We now use
instead

_ 1 e-in(A+ 1/2)
f(S, t) = ES\ —m—r[ S(X, k) - I]PA_1/2(COS O)Ad)t (14 1)

C

The integration path C is the same as in Fig. 1. The validity of (14. 1) can
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be first of all proved when z < 1 or inside the small Lehmann ellipse. In
particular, if - 1 < z < 1,then t is negative: 0 < -t < 4s,

Here the WKB method holds: we have S(X, k) -1~ 0 when X ~ . Secondly,
P)-1/2(cos 8) ~0(e** 9 whichever choice is larger. If

o iM(A+1/2) e T 1/2)

e 7 o o-2lmNs
cos TA ’

ImX 4+ + w0, - -2i and if Im A » -,

cos A

In this last case the above factor provides a strong cut-off which
makes the integral easily converging for ImA - - ©. If Im A < 0,we can move
the path C along the lower imaginary axis of . In so doing, even if Py.;/s(cos 6)
now diverges like elmAlco], we still have convergence since |o| < 7.

We now move k into the domain R k> 0, Im k> 0. Now the WKB for-
mula breaks down for x = ia, a -» - «o,but there we have no trouble since
by the formula (10.5) S(A, k) - 1 is bounded in this domain by elmX7  When
A -+ o, we have to be careful. The factors here which decide the con-
vergence are Pj., sfcos 8) ~0(eti*6) and s - 1 » 0, Recalling now that6=1+t/2s
and that t is real and < 0, we see that,if s is complex,then cos 6 and 6 are
also complex. We expect e*i*6 to diverge in any direction of the A plane with
the sole exception of arg XA = n7 - arg 6 where n is integer. Is it possible to
choose arg X in 0 < arg X < 7/2 such that this happens? The answer is yes
because, when k is moved fromthe real axisto the imaginary axis, c and u vary
in the range 7 <0 <0, 4 > 0. Arg 6 is therefore always in the range
T/2 <arg 6< 7. We get the desired result by taking arg X = 7 - arg 6. Our
integral representation is convergent in the upper quadrant Re k > 0. If
Re k < 0,we simply use the fact that,if k is real and t real negative,then
f*(s +i¢, t) = f(s - i¢, t) so that by analytic continuation we have in the whole
cut s plane f*(s, t)=f(s*,t). This cut plane maps into the upper half plane
of k. This equality is quite adequate for definition of an analytic continuation of
(s, t) in the quadrant Re k< 0, Im k > 0.

We are left with the points of the imaginary k axis (negative s axis),
Here apparently a new singularity appears, which is not caused by anyfailure
of (14.1) to converge but rather by the fact that S(A, k) has singularities along
the imaginary axis of k. However, when we are close to the imaginary axis
of k,the WKB formula holds along A = ia, a > 0. We can deform C into the
imaginary axis of the A plane, because A and k are imaginary and the integral
converges. Now,

A
o5 TN P)‘_l/Z(cos 6) ’
is an odd function of A,and therefore what counts in the integral is only the
odd part of e ™M /2)[sM, k) -1]. But if we use identity (9.18),this odd part
can be written as

_ £ 0 -K) £ (A, k)
Sm”é TN K (A, R ) (14.2)
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Upon substitution into (14. 1) we find

1 f()» -k) f (-X, -k)
f(s, t) =Tk§<l - —mj—_y tg 7r>\P 2(cos G)Adr  (14.3)

-im

+ the contribution of poles. But now the function (14.2) is analytic in the
whole upper half k-plane,and there is no discontinuity associated with S(A, k)
on the dynamical cut k = ib, m/2 < b < @, This happens because el™ S(A, k)
and ei"* §(-2, k) have the same discontinuity and when the odd partis taken, it -
disappears. (14.3) can therefore be used in defining f(s, t) in a region con-
taining the imaginary axis of k. We have now joined the right and left part
of Im k> 0, because the f(s, t) definedin (14.3) clearly satisfies f*(s, t) = f(s*, t},
Indeed,

. 1 f (A, -K)f (-2, -k)
f (S,t) =2—k§‘8‘<1 - {0 X, R > tgﬂ)\ N 1/2(1 +_J)). *qr#

+ (the contribution of poles)* . But A* = -, P.x-y/2{cos 6) = Py_yjp(cos 6) and
£\, -k)* = £(-X, k*) so that £¥(S(k), t) = £(S(-k*),t) = f(s*,t). Clearly k and -k*
are both in the upper half-plane. Formula (14.3) therefore defines an ana-
lytic function of s in the neighbourhood of the real negative axis of s {apart
from the contribution of the poles, which we shall discuss later), For we
notice that according to the WKB formula ’

1 £,00, -K) £, (-2, -K)

f@': 'k) f('A': 'k)

decreases exponentially for large A. This is necessary in order to have
analyticity in a neighbourbood of the imaginary axis of the k plane rather than
convergence on a line only. The actual size and form of this domain is un-
important once we have the full analyticity domain.

We now give some approximate argument about the behaviour of f(s, t)
when t is held fixed and negative and l S l—. o in the cut s plane which maps
into the upper half k-plane. We use the WKB formula for f(A, k) and eq.(14.3).
We put

cos 0=1-AY2k% k=ig X =int=-4 (14. 4)

and we obtain
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L £, 0, -18) f(-in, -if) Z( A2
6,9 = ¢ § |1 g ey s ey AR B
0

Using the formula P, (cos 6) = Jy[ (£ +1/2)6] = J, (X 6),which is valid for large
£, 6 « 1,and taking into account that cos 6 ~ 1-62/2,we have

P, 1 + A28y ~ 3 (T, A) T, = A /k.

The WKB formulas (10, 2) give us

f @, -k f (-2, -k) ~21f(py-p)dz
0 0 ~ e 10
X, -K) £(-X, -K) '

If A, k are large, we deduce approximately

2/ (p-p,) dz o
T, 1 § V(z)dz
T

1-e [

0

It follows that

V(z)dz TJo (TA)dT

f(s, t) ~ aSITdTJO (TA)S‘< ?1/2 S dz V(Z)S 1 T/ NT

Putting T = z sin ¢, dT = cos ¢d¢, we obtain[14]

w/2
S‘ TJ"(TA) -7 dT = 25‘ J,(zA sin ¢) sin ¢d¢ = sin (zA).
( T / > 0

Finally we get the Born approximation:

f(s, t)~

% S‘ z sin(zA) V(z)dz
0
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This result is independent of s and can be obtained directly from KHURI’s
approach [2]. We- frankly admit that the above argument is not rigorous.
However, there is no point in being choosy about it, because rigorous proofs
exist abundantly and whoever wants them has only to look for them in the
quoted literature. Here we show it just for completeness.

What about the contribution of the poles of S(A, k) in the formula (14.3)?
They give extra contributions to f(s, t) of the sort;

z Cn(s)(s) §_(cos 0) oM

sin7{
T n

where C,(s) are some s-dependent constants. This contribution has a singu-
larity when some of f5(s) become integral. This happens on the upper imagi-
nary k axis when Im k > 0,according to our general discussion in sections 4
and 6, and these poles represent bound states. f(s,t) is therefore analytic
in Im k > 0 with the exception of a finite number of bound state poles. All
these properties can be condensed into the single formula:

ﬂ&ﬂ=fM+-%glﬁgiﬂldg+}jcﬂﬂ‘

S-S S-8,

where - s, > 0 are the binding energies of the bound states, f(t) is the Born
approximation. Cj(t) are polynomials in t. This result is due to KHURI [2].

15, EXTENSIONS AND GENERALIZATION OF THE THEORY OF COMPLEX
ANGULAR MOMENTA

A number of papers dealing with an interesting generalization and appli-
cation of the idea of complex angular moments has appeared since the first
draft of these notes was first published., Remaining in the frame of potential
scattering, one has tried to do away with potentials bounded by a power
A/rz'e, € > 0 in the neighbourhood of the origin. In particular, one has al-
lowed V(r) to have a strong repulsive core at small r. As is well known,
attractive cores require very disturbing boundary cenditions, and it isgener-
ally agreed that, if anything can be called physics in the frame of potential
scattering, this has nothing to do with attractive cores, which produce sys-
tems where there are for instance no ground states but there are states of
arbitrarily low energies.

With repulsive cores, however, FIVEL and others [18, 19, 20, 21] have
shown that a peculiar fact occurs in the angular momentum plane, that is,
that the scattering amplitude can be continued in the Re A < 0 plane by virtue
of a simple reflection property:

e s, k) = ™ S(-x, K.
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This property formally follows from (9. 18) when the Jost function is allowed
to be infinite. As a matter of fact, this is in a way to be expected; because,
if we try to calculate f( A, k) with the usual perturbation expansion, we find
diverging integrals. The analyticity of (15.1) makes it natural to ask whether
we can postulate it in field theory. So far we have no evidence either in
favour of or against it apart from its logical simplicity.

Other work has been carried out on the many channel problems, mainly
by CHARAP and SQUIRES (21, 22]. They show that, as far as we are con-
cerned with angular momentum properties, all previous results extend in
a straightforward manner. Particularly interesting, however, is the exten-
sion of Clebsch-Gordan coefficients for the composition of angular momenta
to complex values of the indices, I feel that we shall hear more of these
properties in the future as soon as the necessity of studying more com-
plicated systems urges us. In fact, just the interaction of a resonance with
an elementary particle (if there are any) or with another resonance is already
confronting us with such a problem. They also produce some results on
the wave functions of the symmetrical top, and this is natural because they
adopt in their second paper the helicity formalism of Jacob and Wick. Inci-
dentally, properties of the many channel amplitudes as functions of the
energy and transmitted momentum were discussed in [23].

Particularly interesting in regard to its immediate application to field
theory is the so-called factorization theorem for the many channel problem.
This theorem was first suggested by Gell-Mann and proved by Charap-
Squires.

It states,that barring accidental degeneracy, the residuum of the scattering
amplitude matrix at a pole in the angular momentum is a matrix Q4 of
characteristics zero; that is,all minors of the determinant of the matrix
vanish. This implies that Q2,3 factorizes as

where q, B label the channels. This of course happens for resonances in the
energy variable,

Another type of problem which has excited the phantasy of many, me
included, is how to continue the amplitude for Re A < 0. My personal phi-
losophy is in favour of course of the symmetry (15.1), but there are some
who would like to see what happens for ordinary potentials. Well, this prob-
lem has been completely solved by two papers by Froissart and Mandelstam.
Froissart solves it for all potentials,and he finds indeed a lot of singularities;
- in particular, there are singularities about any time the analytic continuation
of the Mellin transform of V;

M(\) = g r?* V(r)dr, (15.2)

0

is singular in A. There are other sources of singularities, but we stick to
(15. 2) just to exemplify. Clearly we can produce almost anything by a ju-
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dicious choice of V(r), including a natural boundary of Re A = 0. Moreover,
small variations in V do not correspond to small variations in M(}), and in
fact M(}A) is completely unstable in Re A < 0. So no definite V-independent
conclusion can be deduced from this analysis. Mandelstam solves the Yukawa
potentials in a very elegant way, which is used later by Lovelace in order to
carry out numerical calculations on the trajectories, that is, on the function
A, (s). The Mandelstam method reduces to the time-honoured Schroedinger
method of solving the hydrogen atom where the Yukawa potential reduces to
a Coulomb potential,

Numerical calculations have been performed in large amounts, but un-
fortunately much effort has been wasted in calculating trajectories fornega-
tive Re A,where, as stated, their physical interpretation is doubtful and
where in fact they do crazy things. These calculations show a definite patiern
in Re A > 0 which can be sketched as follows: We know that for negative real
energies the trajectories lie onthe real axis and move forward with increasing
energies., Where E = (,the pole leaves the real axis forward if in that point
A> 4, at Tangle if x = { (s waves) and backwards if A < }. The pole then
eventually swings backwards into the Re X < 0 region.

If we let the range m "1 of the Yukawa potential grow to infinity, that is,
we carry out the transition to Coulomb potential, the pole leaves the real
axis at very large angular momenta. Therefore, it crosses the integer
values several times, and many bound states arise. The swing-back loop
is then very large, and in the limit m= 0 it plunges into infinity. We have
then an infinite number of bound states.

) m— 0 » —PLANE

Fig.5

Swing back loop

APPENDIX I

In this appendix we deduce all the integral equations appearing in these
lecture notes. The scheme by which they can be derived is summarized in
Table I,
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TABLE I
2 2 2 9 2 5 -
D a” A-1/ayd  X-rje o dP e |d® 2174 e
d22 22 d22 22 dz2 dz2 22
2
-1
h V(z)-k V(z) " 7\22 [4 V(2)
Behaviour
of ¥ at A+1/2 A 1/2
A —»Zl =Q
Behaviour N .
of ¢ at o 2 e-lkz
Z-->Z1 =0
)\ .
P (2/k) T(x+1) , SiTO1/2)/2
v z 1/2 /2 elkz . 2
1 X 22T (kz) A x(ZE2 R (ka)
"1/ 2/ T(-x+1) . e im(+1/2)/2
- 3 1/2_ (2
w2 Z XZ]_/ZJ (kz) e <7Tkz> ( )
Wiy, -22 o ok T

Let us consider a differential equation of this kind:

DAk, z} (A Kk, 2z) = [g-zvg +g@, k, z)]ll/(k, k,z) =

2

h(, k, z) (A, k, z).

(A1.1)

As is well known, ‘the integral equation equivalent to (Al.1) is

YA, k,2z)=limy (A, k,z) +

Z-7Z
1

%@5W

v, (2) - W( W (2)Jh K, 20k, 2)dz

where ¥; and ¥, are two independent solutions of the ''free' equation

and

Wiy, v, 1= ¥

DR, k, z¢ (A, k, 2) =

v v/

0,

Y,
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APPENDIX I

Here we want to give the majorizations of theintegral equations deduced
in App. I in order to deduce analytic properties of the functions ¢(}, k, z)
and f(A, k, z). The integral equations we are dealing with can be written in
this general form:

r4
gk z) = g (A Kk z) + SL(-\, k,z’) g\, k, z')dz’. (A2.1)
2z
1

Then

lg0h, &, 2)| =lg,(0, k, 2)] + SIL(K, k, 2)g(\, k, z')dz| .
31

It is useful to introduce the notations

), k,
ley 0k )| = MO,k 2), GOk, o) = B EL
in order to get
Z
G, &, 2)| = 1 +SIK(A, k,z') GO\, k, 2)dz’,
21
where
N MRk 2) .
K(A: k) Z ) - M(x, k, Z) L()\: k: Z )'

By using TITCHMARSCH's lemma [15], we obtain

).

Z
lg®, k, 2)| = M(:, k, z) exp <§ |K(, k, 2)dz’
z]1

Let us write the solution of (A 2.1) in the following way:

g0k 2) = ) g0k ).

n=0

Then Titchmarsch’s lemma assures the convergence of this series if we
put an upper bound to the integral:
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SIKO\, k, z)dz’|. (A2.2)

The common region of analyticity of all terms g, represents the analyticity
domain of g(A, k, z). We give in the following the majorizations of the integral

(A 2.2) for the integral equations previously written:

')\+1/2 At 1/2

x+1/2 z 2 ’
= i v - X / ’
S0 k, 2) 51 S( R o 1/2>[v<z) KoM, k, z')dz’,

g, (A k, z)| = |2V =M &, 2),
0

z' M 1/2 2/ 1
—z’| =2z, ReX =0,

=

( _e 1/2 g 1/2

Z)\- 1/2 Z 1/2 22)\

Z)\+ 1/2

€ 2

lV(z’) - kQI = Hz'e +N =Rz |

where k is from any finite domain of the k-plane, where the upper limit of

k2 is N, H and R are constants,

A+ 1/2 A+ 1/2
z -z IV(z')-k2| dz’
ZM1/2 zh= 172

Z At 1/2

zZ , . 1 2z
§|K(7\,k,z)dzl— v é

z A+ 1/2

YA
s—R—-S‘ 7€ L ades R
! ’\lo €jr]’

It is now apparent that ¢(A, k, z) is an integral function of k, holomorphic
in the half-plane Re A > 0 (continuous for Re A = 0).

1 ¢ -2) _-ik(z’- X
i § oo fven  E

fA, k, 2) =
Z

lg, 0k 2)] = [e™7] = MO, Kk, 2),

P4 P9 2
S‘K(Z,)dz,l 1k| gle-ik(z'-z) ||eiz-D _grikz"-2) |.V(z’) . K_—;ﬁ)dz,,
z Z z’

|1 - e dKz"2) | =N = const., Im k= 0.



324 T. REGGE

Then

2
H_ o a-1/2 dz’ = Const.
212'5 2

naol - N
S‘IK(z)dzl_zlle :
z z Z
Therefore, f(A, k, 2) is an integral function of A, holomorphic in the half-plane
Im k<m/2 (continuous for Im k=0).

For real X and Yukawian potentials this analyticity domain of f(}X, k, z)
can be extended to Im k<m/2, and it is continuous for Im k=m/2. This
can be shown by treating the integral equation

f0, K, 2) = 1,00, K, 2)
- 14—" 21/25\ 212 <H;2’ (ke")H? (kz) - H;Q)(kz’)H(f)(kz)>V(z’)f()\, k, z)dz’,
z

in a way similar to that used before.
This method could have been used to derive the same analytic properties
for the prime derivatives of the solutions considered.

APPENDIX III

We know from standard textbooks the most important properties of
Legendre functions. It is well known that Legendre functions are particular
cases of hypergeomertric functions with singularities located at +1and »,
Therefore, the only singularities of P,({x) and Q(x) lie on #1 or =,

From the general theory of Legendre equations one finds out at once '
that in + 1 the solutions either are regular or have a logarithmic singu-
larity.It is always possible, however, to choose the parameters in the general
integral of the equations in such a way as to make the solution regular in
a given point. In particular, Py (x) is regular in x = 1 and P,(1) = 1 and Q,(x)
is regular at x = « provided Re (¢) + 1/2 =0, Since ( enters in the differ-
ential equation under the form ¢ (¢+1) and since the boundary conditions
for P,4(x) are ¢-independent, it follows from a general theorem of Poincaré
that P, (x) is an entire function of ¢ for x fixed and that By.; (x} = P, (x) be-
cause 0({+1) is invariant under the substitution ¢—- ¢-1. Also,if X = ¢ + 1/2,

Py Li/dx) = Py dx), (A3.1)

P, (z) has a cut between -1 and - ©, It is otherwise regular in z, Its asymp-
totic behaviour for large A is given by

~ 1 1 aX, . L -OX l
P}\_l/g(cosh a)—m m(B +1e >l:1 + 0<K } . (A3.2)
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For large z Py (z) = 0 (z%). Q4(z) is instead defined through its behaviour
for large z; that is,

Q, 42 = oz, (A3.3)

"If Re  +1/2> 0,this is the only solution which does so apart from a multi-
plicative factor, We have also for large A

le/Q(cosha) = /ﬂsTir;hi—e'M [1 +O()%>]. (A3.4)

Q,(z) has singularities in both 1 and -1. Moreover,

Q-)\-l/Q(Z).z Q) ippfe) * g M P, (2). (A3.5)

This relation says that Qy1/2(z) has poles in Re ¢ < 0 at the negative half-
integer points, In these points the residuum of Q-1/zis given by the corre-
sponding Py.j/9, which turn out to be polynomials. From the pre-existing
literature one knows already that Q).1/2 is regular in Re ¢ >-0.

We have already listed the symmetries arising from the reflection
A= -X or ?—-1£-1, Butthe Legendre equationturnsoutalsotobe symmetric
under the exchange z —» = z. The consequences of this fact are

+iTA

(ze My = +iet™Q (z). (AS.G)

Qx-l/z -1/2

There is ambiguity in taking eti7 because Qy1/2(z) hasa cut -1z z = - .

It has to be remarked that,in encircling anticlockwise both points * 1, Q,.;/4z)

is multiplied by the factor e 2im& 1/2) 5o that Q,.,/{z) z* /2is left unaffected.
We also have:

+11r = FigA _2_ .
1/2( z)=tie Px1/2( )+7rcos TA Q)\-1/-2(Z)’ (A3.7)
if A is half integer, it reduces simply to
[}
P, (-x) = (-) P, (x). (A3.8)

Mehler has found the following interesting inversion formula when XA is im-
aginary (conical functions); If

FA) =tgma S‘P)\_I/Q (w) G(w) dw, (A3.9)
1

then

ieo

i gm P, W) FO),
0
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valid under conditions similar to those of the Fourier transform, They can
‘be written as

’

joo

Skdk tg ™ P, \-1/2 (S)P)\_l/_2 (n) = -21 6(€ - n). (A3.10)

~joo
This is the prototype of many integrals to be derived. From (A3.5) we have

jeo

Sﬁkdk Boae 8 QM0 = +i75(€ - n). (A3.11)
-io
We notice that easily
oo
gxdx Q,y1/0(7) Q, iy ft) o oee Qﬂ_]/z(zn) = 0, (A3.12)

~jeo

where all + are correlated,

(A 3.11) follows from the fact that the integrand is analytic in the right
(left) hand plane and it vanishes there at large distances.

Take now Heine’s formula:

> (20+1) Q (&) P (n) = 1/(€ - n), (A3.13)

(

¢
which holds for Ima > Im 3 where cos @ = £, cospg =1n. Take §,nreal> 1
and apply to it the Watson-Sommerfeld transform. We get

fxdm\m(s 21 (1) tgix = 1/(E - n); (A3.14)
and using (A 3.5),

[rana (&)rQ,,,m=w/E- . (A3.15)

“joo

We can have more complicated identities as follows: Take the addition theo-
rem for Legendre functions ( {integer):

Pﬂ(x) Pe(y) = P[ (xy +VI- x2\1 -y2cos ¢)

+2 Z‘ (-)m%:;mL:R P, (x) P,(y) cos m ¢; (A3.16)
m=

Rex> 0; Rey> 0; ]arg (x-1) ] <7 [arg(y-l) [<n‘
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Let us integrate this on ¢ between 0 and 7. All terms containing cos m ¥
vanish,and we have

P, (x) P, (y) = %IPB (xy + \/1 - x2\/1 - y2 cos ¢)d ¢. (A3.17)

0

Let
z = Xy + \/1—x2\/1-y2cosw

be a new variable instead of ¢.

We have
dy 1 dz
dy = = dz =dz = !
dz dz/dy \/1_x2\/1-y2 sin ¢
but
sin ¢ = \/li-cos% = \/l - (z-xy) %/ -xH)(1-yY)
= \/1_ 22-x2_y2+ 2xyz/\/(T- x2)(1_y2)
so that

=-dz/'\/l-z -x - y2+ 2xyz.

It is easily seen that the limits of integration in z are the points where
1-22-x2.y2+2xyz vanishes. It follows that.

1
1 c N ;
F,(x)E ()=~ dzz(1-2% - x? -y +2xy2) B (z). (A3.18)
5 \/l-z-x-y +2xyz

From this it is evident that (x,y, z < 1 and real)

>~1s

(20+1) B, () P, (5) P, (2)

~
1]
(=]

= (2/m)e(l- 2% - x? -y2+2xy2)/\/l- zz-xz-y2+2xyz

=(2/7) K (x5, 2) (A3.19)
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TABLE I
(), e FF(x)xdx

o1 () Qﬂ_m(B) 0 (B2.30)
Quy/p@ Qyy,® im(a-p)" (B2.31)
Q@ P, ® +i76(a-B) (B2.32)
Q1 1/0@) Py, (B) tamr i(e-p)" (B2.33)
P, 175 @) Py (B) tgmd - 216 (a-p) (B2.34)
Qyn12@ Quy® Q™) 0 (B2.35)
Q@ Quuy B QM) iinfdw KW, B) (w-1)"  (B2.36)

1
Qﬂ_l}z(a) Qupy)® Pryp (M | 2i7K(v;0, ) (B2.37)
Q2@ QpypB) P ) iﬂ{K(a;B,v) . K(B;m)} (B2.38)
Qn12@ Qo B) Py o (Mitgmh ifdw K(wsa, B) (-9 (B2.39)
;

Qpajp@ Qurg/pB) Py p(Mignt | -i §<K&)"j§’”-K(“’(ji Naw (B2.40)
Qur1/@) Poyfy® P () 1K (a, B, 7) (B2.41)
Qin1/2(@) PoyygB) Poyyp (Mtgmn |iH(a;B8,7) . (B2.42)
P y@ P, (B) P (Mtgmh | (2/m) K, (e, B,7) (B2.43)
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by definition. This remarkable formula came to our knowledge through
Prof. Goldberger and does not seem to appear anywhere in the literature.
It generalizes the usual .

0

-Z(zou) P, (x) P, (y) = 26 (x-y) (A3.20)
0
We could try the Watson transform directly on (A 3.18), but it would he of

no use because it does not converge. A better way is to multiply (A 3.18)
by 1/(€ - x) and integrate on x between £ 1. The result is

Z(zul) Q,® P,(y) P (2) = 1/\/52+y2+22-2yz§ -1, (A3.21)
[

(A 3.21) is valid also when &, y, z are complex, while in (A 3.19) they had
to be real. The only condition is that,if cos B =y, cos ¥ = z,cosa = & then
Im&>ImpB + Imvy. Applying to (A3.21) the Watson transform,we get

jeo
‘g‘)\d)\ tg Qx-1/2(§) Px-1/2(”) PX-1/2(§)

“leo

= i/\/§’2+r72 + §2 - 2¢ng + 1.

Using identity (A3.11), (A3.5) repeatedly, one arrives at a large number of
integrals. We skip here a detailed proof and limit ourselvesto giving a table
of them (Table II). Here K, is defined by (A3:19) and

K(E; n, ¢) = 0 - s>>/v§2 v +nooneE o 1,
where £, is the largest root of the denominator;
H(E:n, §) = K{E;n, %) - Kn: 8, ) - K(E: 8, ).

Many other identities can be written, but they would take much more space
and we refer the reader to a coming paper by V. de Alfaro, T. Regge and
G. Rossetti to be published in Nuovo Cimento.
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