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INTRODUCTION

B efore  we go into a detailed d iscu ssion  o f the potential scattering we 
would like to spend a few  w ords on the reason  potential scattering is 
in teresting . We think that one o f the main reasons o f su ccess  of the potential 
m odel is  that we can d iscu ss  it quite r ig orou s ly  and that at the same time 
it g ives  a fa ir ly  intuitive p icture o f the scattering p ro ce ss  and it provides 
in a way the language fo r  a fu lly re la tiv istic  theory. We do not think that 
the potential m odel has been particu larly  satisfactory  in explaining quanti­
tatively  the known experim ental data, fo r  instance the nucleon-nucleon sca t­
tering ; yet we have good reason s to believe  that at low  energy any field  theo­
ry  w ill u ltim ately y ield  som e sort o f spin-dependent potential, containing 
spin orb it coupling and exchange term s. How this can be done and how far 
one has gone in this d irection  has nothing to do with the subject of these 
le ctu res  which are m ere ly  con cern ed  with the d iscu ssion  of the solutions of 
the Schroedinger equation fo r  a given c la ss  of potentials. That is,w e assum e 
from  the v ery  beginning that a potential ex ists although we do not know it 
o r  we know only broad features like the range and its  analytic properties as 
function o f the d istance. F o r  sim p licity  we do not deal with spin o r  exchange 
term s although they can be taken ca re  o f with little  m odifications. We just 
want to find those features of potential scattering which are to a large extent 
independent o f the particu lar se lection  o f the potential.

In so doing we shall need a large  m athem atical apparatus in order to 
derive  those p rop erties  o f the scattering amplitude which have been suggested 
by the genera l fie ld  theory , like d isp ersion  re la tion s. Unfortunately although 
it  has not been p oss ib le  to elim inate en tirely  from  these lectures this appa­
ratus, we have tried  how ever to use as much as possib le  standard mathe­
m atica l tr ick s  and we have endeavoured to co v e r  them with the largest amount 
o f p roo fs . T here are d ifferent m athem atical approaches to the theory of 
potential scattering. H istorica lly  the firs t  approach was developed by 
H eisenberg  in his f ir s t  attem pts to crea te  a theory  o f the S -m atrix. But the 
m ost r ig orou s  and extensive resu lts  on this particu lar subject w ere actually 
found by JOST and BARGMANN [1 ] . The starting point o f their approach 
is  the partia l wave expansion o f the wave function and of the scattering am pli­
tude. A ctually they did not derive  any interesting feature-of the fu ll am pli­
tude, but rather o f  the partia l phase shifts only. The amount o f work a fter­
w ards done on the p rop erties  o f phase shifts as function o f the energy has 
been con siderable , and it has c la r ified  the ro le  of the potential in determ ining 
them .

This was not how ever the end o f the story . When the first dispersion  
rela tion s fo r  fixed  transm itted mom entum w ere d iscovered  in fie ld  theory,
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it was a natural question to ask whether these properties  had a counterpart 
in potential scattering. This was found to be true by KHURI [2 ]. The paper 
o f Khuri avoids en tirely  the use of partial waves and uses F redholm 's theory 
on the G reen in tegra l fo rm  o f the Schroedinger equation written in fu ll three- 
d im ensional fo rm a lism . A lternative and s im p ler proofs  then appeared in 
the literature [3 ,4 ,6 ] ,  The reason  the partial wave expansion is  totally 
unsuitable fo r  this purpose is  that it fa ils  to converge in the interesting region 
where we want to prove analyticity in the energy. The advent of the Mandelstam 
con jectu re  o f the double d ispersion  relation  ra ised  the question as to whether 
these rela tion s w ere true fo r  potential scattering. Mandelstam representation 
can be proved  today fo r  a sp ec ia l c la ss  o f potentials (super-position  of Yukawa 
potentials).

A p roo f o f  GOLDBERGER et a l . [3 ] u ses the pertubative expansion o f the 
scatterin g  amplitude as w ritten in mom entum  space (as derived from  the 
L ippm an -Schwinger equation). They prove  that each term  of the expansion 
sa tis fies  the M andelstam  representation , and they also succeeded in going 
around the question o f uniform  con vergence . Incidentally, an incom plete 
p roo f, without uniform  con vergence , was given firs t by B ow cock and Martin. 
A paper by KLEIN a lso deals w iththis su b je ct[4], The partial wave expansion 
how ever can be used su ccess fu lly  in providing analytic properties in the m o­
mentum tran sfer  fo r  fixed  energy. The usual fo rm  of it is  apparently un­
suitable fo r  the job , but fortunately about fifty years ago WATSON [5] found 
a m ethod o f transform ing it into an in tegra l which is  a highly flexib le tool 
in these kinds o f p rob lem . With som e ca re  the W atson in tegral can be used 
to prove a lm ost a ll o f  the analytic p rop erties  o f the scattering amplitude, 
including those o f Khuri’ s paper. It is  fo r  this reason  that we decided to 
re st the whole theory  on the partia l wave expansion in the Watson form  b e­
cause we fe e l that in this way the whole structure o f the lectures w ill be 
m ore  hom ogeneous.

1. THE FORMALISM OF POTENTIAL SCATTERING. ELEMENTARY
THEORY

The starting point o f the theory is  the Schroedinger equation:

i 4 , ( r ) + E ,i ( r )  = V i ( r ) .  (1.1)

In this equation r  is  the position  v ecto r  o f the scattered particle , r  its 
length, r  has com ponents x, y, z . We use natural units h = c = 1 and 2M = 1, 
w here M is  the m ass o f the scattered partic le . The scattering of two parti­
c le s  o f  d ifferent m ass m x, m 2 can be treated by the sam e equation where 
M is  now the reduced  m ass m 1m 2 /  (m i + m 2) o f  the system . In our units 
the energy has the d im ension o f an a r e a '1. The lo ca l potential V(r) depends 
on r  only.

V (r) is  supposed to be a short range potential; that is, we suppose it 
to  d ecrea se  exponentially. T ru ly  this is  a rather restricted  hypothesis; but 
i f  we have in mind a com parison  with the fie ld  th eoretica l resu lts ,a ll in ­
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terestin g  potentials satisfy  this cr ite r ion  apart from  the Coulomb potential. 
We shall not exam ine here C oulom b-like potentials because there is  no ex ­
tensive and deep w ork  done on this subject. Under these conditions [7] we 
may define the (tota l) scattering amplitude f(E ,0 ) once we know the solution 
o f eq. (1. 1) with the follow ing asym ptotic behaviour ( r — <»):

*  ~  e ik-r + f ( E , f l ) ^ - .  (1.2)

T his wave function rep resen ts  a th ree-d im en sion a l scattering process_of 
a plane wave against a fixed sca tterer . The plane wave is  given by e11* 
w here k  is  the ingoing m om entum . We have (F )2= E . The second con tr i­
bution com es  from  the scattered  waves and depends of cou rse  on the poten­
tia l. The angle 0 is  the angle between k and the d irection  in which we take 
the asym ptotic lim it r  — oo. In other words, we put 7  = r  n* into ( F )  and 
we let r  -*<» while i f  is  a fixed  unit v e cto r . Then It- n" = k cos  0. dQ |f(E,0)j2 
is  then the probability  o f finding the particle  scattered in the solid  angle 
d  with the outgoing mom entum  k = k n .

T here is  no potential of the c la ss  con sidered  by us fo r  which eq. (1.1) 
is  exp licitly  solvable . F or  any p ra ctica l purpose o f num erical evaluation one 
so lv es  instead (1.1) with the method of the separation of variables due to 
D ’ A lem bert. One tr ie s  to find the solution of (1.1) o f the form

* =  ^ r -  Q ( 0> $)■ ( 1 3 )

It is  w ell known then that Q has to be a sph erica l harm onic,

Q ( M )  = Y™ ( 0 ,4 ) ,  (1.4)

and that <j> sa tis fies  the ord inary  d ifferen tia l equation

VI + E<ftt 0 e ,  v<j>e = 0. (1 .5)
r

(1.5) depends on t only and not on m . 0£ must a lso  satisfy  the boundary con ­
dition o f vanishing at the orig in . M ore precise ly ,th e  analysis of (1.5) a c ­
cord in g  to the Fuchsian c la ss ifica tion  o f singu larities shows that any solution 
o f (1.5) behaves when r  is  sm all like

<£{ fa a r l +1 + ß r "1 (1 .6)

under som e re s tr ic t iv e  hypothesis on the potential to be examined c lose ly
la ter . If we want to avoid singu larities at r  = 0, we are fo rced  to choose ß = 0.
In th is ca se  the C-th partia l wave function vanishes rapidly fo r  sm all r. 
P hysica lly  we m ay in terpret this fact as due to the repu lsive centrifugal 
b a rr ie r  f(C + l ) / r 2 which b ecom es v ery  large when the orb ita l momentum 
£ is  a lso  la rge . This b a rr ie r  keeps the p article  from  approaching the origin.
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T his boundary condition  defines each partia l wave apart from  a m ultiplicative 
fa cto r . Take now r  la rge . We have good reason s now to suppose that both 
V (r) and ?(C + l ) / r 2 can be neglected in com parison  with E so that (1.5) be­
com es

+ E (j>e = 0. (1.7)

This equation is  tr iv ia lly  solved  by oscilla tin g  exponentials ( E > 0) and the 
correspon d in g  asym ptotic behaviour o f <j>i w ill-be o f the form

~  C j sin [k r  + 6 £ (k) ]. (1. 8)

We have introduced on purpose the term  ? 7r/2 in this asym ptotic behaviour. 
Indeed,when V = 0,eq. (1.5) can be solved  exactly  in term s o f B esse l func­
tions o f sem i-in teg er  ord er  and the asym ptotic behaviour at infinity ex ­
p lic itly  evaluated. This behaviour corresp on d s to having 6( (k) = 0. The 
phase shift 6 j(k) th ere fore  d e scr ib e s  a cum ulative effect of the potential
on the wave function in the whole in terval 0 ..............« .  A large part Of these
lectu res  w ill be devoted to the investigation of the properties of 6 j(k). The 
im portance o f is  evident from  the w ell-know n R ayle igh -Faxen form ula:

oo

f (E , 0) = ^  Y ,  ( e 2i5' (k!- 1)(2£ + 1) Pf (c o s  0). (1.9)
c=o

We shall r e fe r  to this fundamental form ula as the expansion of the scattering 
am plitude in partia l waves o r  m ore con cise ly  as the RF expansion. A full 
account o f (1.9) is  contained in any elem entary textbook on quantum m e­
chanics and we shall not go into this m atter further.

In (1.9) the functions P$ (co s  0) are Legendre polynom ials which form  
an orthogonal set n orm alized  as fo llow s:

l
J p c (x) Pm (x )  = 6mC.
-1

The total c r o s s -s e c t io n  is  given by

oo

a ( E )  = C dQ  |f (E, 0 ) ]2 = i ?  Y ,  (21 + 1> s i n \ -
^ 5 = 0

2. THE S WAVE

The S wave scattering is  the firs t  that has been extensively d iscussed, 
and this is  fo r  the sim ple reason  that the m athem atics o f it is  considerably 
s im p ler  than that o f the higher w aves. A num ber of potentials have been
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produced which are exp licitly  solvable fo r  the S wave and which give quite 
a num ber o f c lu es  concern ing the general dependence of <5 on the energy E. 
One such potential is  o f cou rse  the square w ell potential defined as

V (r) = A if  r  < R,

V (r) = 0 if  r  > R; we put k = VE - A.

It is  s im ple e x e rc ise  to find the corresponding  phase shift:

co s  k,R + (ik /k ,) sin k,R
2 i o ( k )  _  . .  = - 2 i k R  1 1 1 ( 2  in

co s  kxR - (ik /k j) sin kjR

Some features o f this form ula are the follow ing:
(1) the form ula is  a lso  valid  when E is  not positive. S(k) is  the ratio 

o f two holom orphic functions of k and is  th ere fore  m erom orph ic.
(2) S(-k) = S"1 (k); that i s , 5 is  an odd function of k. It is  m ore convenient 

to study S(k) instead o f <5 because 6 has logarithm ic singularities at every 
pole o r  zero  o f S(k).

(3) [ S(k*)]''' = S '1(k). This im p lies  that 6 is  rea l when k is  rea l. We 
re fe r  to this p roperty  as unitarity.

(4) lim  S(k) = 1  o r  lim  6 = 0  when k -»  oo . How do we understand this 
resu lt?  If k (or E) is  v e ry  large,the speed o f the incom ing particle , which 
in our units is  given by 2k, a lso  in cre a se s . The tim e of transit o f the parti­
c le  inside the potential w ell is  o f the ord er  o f R /k . Presum ably the in ter­
action  is  proportion a l to the transit tim e and the phase shift w ill be also o f 
the ord er  of magnitude o f R /k  o r  rather o f the d im ensionless param eter 
A R /k . Indeed,for large k we have from  (2.1)

AR = - • J  V(r) d r . (2.2)2k

This resu lt is  naturally fa lse  in the re la tiv istic  region,and it is  already d if­
ferent fo r  the D irac o r  K lein -G ordon  equation. The lim it is  much m ore com ­
plicated  i f  we m ove to infin ity along any d irection  o f the com plex k plane.
It m ust be pointfed out that although k j is  a two valued function of k it does 
not m atter which value we use in (2.1). If A > 0, the potential is  repulsive 
and pushes out the wave function. We expect 6 to be negative in agreement 
with the asym ptotic behaviour (2.2).

Take now eq. (1.5) when E is  negative (and 0 = 0):

- V <f> = 0. (2.3)

This equation does not d escr ib e  any scattering state and it will have solutions 
which are bounded at infinity and at the orig in  only fo r  specia l values of E. 
Putting E = - b 2 w here b is  rea l,w e have fo r  large r



2 8 0 T. REGGE

<j> ~  ju(b) e~br + v (b) e br.

If b is  not restricted , we shall have an exploding exponential term  at large 
d istances. If how ever fo r  a particu lar value of b we have y(b) = 0,the solution 
b ecom es square integrable and represen ts  a bound state of the system . Great 
p ro g re ss  in the theory  o f bound states was achieved when it becam e clear 
that bound states corresp on d  to poles o f S(k); i . e .  if a bound state of binding 
energy - B 2 o ccu rs ,th ere  is  a pole o f S(k) in k = iB . Unfortunately it is  not 
in genera l true that a ll poles  o f S(k) corresp on d  to bound states. This makes 
it d ifficu lt to deduce the bound states from  the analytic continuation of S(k),
o r  at least it made it d ifficu lt before  the advent of the m odern ideas of d is ­
p ers ion  theory . B efore going into a detailed d iscussion  of this connection,we 
point out that our statement can be verified  d irectly  on the explicit form ula 
which we have just given fo r  the square w ell potential. We leave this as an 
e x e rc is e  fo r  the rea d er. Other exam ples o f soluble potential can be found 
in [1 ] . Jost defines a particu lar solution o f eq. (2.3) with the boundary con ­
dition  (the Jost solution)

f"(k , r) + E f(k , r) - V f(k , r) = 0,

f  (k, r) ~  e '11<r, r  oo. (2.4)

This solution w ill not satisfy  in general the boundary conditions in r  = 0; 
that is ,f(k , 0) j  0. Let us define the Jost function as f(k) = f(k, 0). If f(k) = 0, 
the Jost solution is  regu lar in r  = 0. B esides f(k, r ) ,f ( -k , r) a lso is  a solution 
o f (2 .4 );and sin ce  the W ronskian o f these two functions does not depend on r 
and equals -2 ik ,they  fo rm  a pair o f independent solutions of (2.4). Take now 
the "re g u la r "  solution 0 (k, r) defined by the boundary condition in r  = 0:

<j> (k, 0) = 0; <j>' (k, 0) = 1. (2.5)

$ is  not lin early  independent o f f(k, r) and f(-k , r) so that we have with som e 
coe ffic ien ts  C, D

<j> (k, r) = C f(k , r) + D f ( -k , r).

Now W (<j>, f) = 0’ f  -  f<j> is  independent o f r  and we calcu late it fo r  r = 0;

W (*. f) = f  (k, 0) f(k, 0) - <j> (k, 0) f  (k, 0) = f(k).

On the other hand,

W (*, f) = C W [ f(k, r ), f(k, r) ] + D W [ f(-k , r ), f(k, r) ]

=  D W [ f( -k , r ), f (k ,r ) ]  = 2ikD = f(k),
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so that D = f(k )/2 ik . S im ilarly  C = - f ( -k ) /2 ik . It follow s that

* ( k ,r )  = [ f(k) f  ( -k ,r )  - f  (-k ) f  (k ,r ) ] /2 ik =  * ( - k , r ) .  (2.6)

The asym ptotic behaviour o f <t> is  then

<j>(k, r) ~  [ e ^  f(k) - e '* 1 f(-k ) ] /2 ik .

But from  the definition  o f phase shift we have

<j> ~  con st. sin(kr + 6) = const. (e lkr e l5 - e_il<r e"10).

By com parison  we get

e 2i6(k) = f (k ) /f ( -k ) .  (2.7)

If V = 0,then f(k, r) = e _ikl, <f> (k, r) = (1 /k) sin kr, f(k) = 1. If V is  the already 
defined square w ell potential, we have

f(k) = e ' lkR(c o s  kjR + i(k /k j) sin k jR ). (2.8)

In this ca se  f(k) turns out to be the entire function o f k. Bargmann has in ­
vestigated the gen era l behaviour o f f (k) as a function of the com plex variable 
k, paying sp ec ia l attention to the ro le  o f the range of the potential. His start­
ing point is  the in tegra l equation fo r  f(k, r ) :

oo

f(k, r) = e ' ikr + - i  J  V (x  sin k (x -r) f (k, x) dx.
r

We shall prove and d iscu ss  this equation in the next section.

3. THE ANALYTIC PROPERTIES OF JO ST’ S FUNCTION

In the last section  we exam ined the in tegra l equation fo r  f(k, r ):

oo

f(k, r) = e 'ikr + | J  V (x ) sin k (x -r ) f (k ,x )d x . (3. 1)

This equation can be proved as fo llow s : C learly  we have

f "  + k2f = Vf,
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dx2 sin k (x -r ) + k2 sin k (x -r) = 0. (3.2)

T h ere fo re ,

V f (k, x) sin k (x -r ) = f "  (k, r) sin k (x -r ) - f  (k, x ) -----  sin k (x-r)
dx2

= [ f' (k, x) sin k (x -r) - f  (k, x) sin k (x -r) ].

If we use the above fo rm  o f the integrand in (3 .1),the integration can be c a r ­
ried  out exp licitly  and the resu lt is

I V (x) sin k (x -r ) f  (k, x) dX

oo

■ I dx [ f  (k, x) sin k (x -r)

-f(k , x) —  sin k (x -r ) ] d x  = k [f(k , r ) - e _U(r

QED.

We regard  (3.1) as the proper definition o f the Jost solution because it im ­
p lies  both the d ifferen tia l equation and the appropriate boundary conditions. 
Putting f(k, r) eikr = g(k, r), we find

so

g(k, r) = 1 + ^  V (x)

(x-r)

2l g(k, r) dx . (3.3)

A form a l solution o f (3.3) is  given by the perturbative expansion:

g(k, r) = ^  r ) ; So(k' r ) = 1> (3 - 4)
n »

where

g n+1(k, r) = ^ J  -1" 6 2. f \ g n (k, x) V (x) dx. (3.5)
r

This expansion defines a solution o f (3.3) only when it converges. In order 
to decide whether it rea lly  does so we need som e prelim inary bound on the 
kernel o f (3.3). T here is  no rea l com plication  and much to be gained in sup­
posing k com plex . We put Im k = b. The p roo f and a lso  the result are quite 
d ifferent fo r  the ca se s  b > 0  and b < 0 . Let us firs t  suppose b < 0 , but k /O .W e  
have the bound (rem em ber that x > r):
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l _ e -2ik (x-r) e  2b (x-r) I 1
--------  <2ik I

(3.6)+
2 ik

CO

l g n+l ( k ' r ) l <  j T T j  I  I V ( X ) I | g n ( k ' X ) l d X ’

A second  iteration  y ie ld s :

CO «

|g2(k' l i p  I  | V ( x ) | dxM (x) = - jY|2- j*

co

This suggests that we have the follow ing inequality fo r  the general term :

We prove it with the induction m ethod; that is ,it  is  supposed to be true for 
gn(k, r) and we deduce the resu lt fo r  gn+1(k, r ). We have

What is  the outcom e o f  (3 .9 )?  We have proved at least the follow ing resu lts :
(1) A solution  ex ists  fo r  b <  0, k /  0 i f  f  | V(x)| dx < oo, because the per- 

turbative expansion con verges .
(2) Each term  o f the expansion is  analytic in k as long as the c o r r e ­

sponding in tegra l con v erg es ; this is  true by the above p roo f in b < 0, k f  0. 
The sum  is  th ere fore  a lso  analytic because we have uniform  convergence.

(3.7)

(3.8)
QED.

By sum m ing up a ll these inequalities we find

MIL)

g  -  l| <  e lk| - 1 . (3.9)
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(3) We have the lim it g(k, r) 1 when k —■ oo in any d irection  in the 
low er half plane o f k and along the rea l axis.

(4) Since c le a r ly  g(k, 0) = f(k), points (1), (2), (3) a lso  hold fo r  the Jost 
function i f  M(0) < °°.

A d ifferent condition  can be obtained i f  we rep lace  (3. 6) by

x-r
I l _ e -2 ik (x -r )  I ' I f* I

= \ e '21*"1 dr? < x - r < x. (3. 10)2ik

T here is  o f cou rse  no d ifficu lty  in repeating the proof with the new bound 
and we find in lieu  o f (3. 9)

GO

|g - l| < eN{r) - 1; N(r) = J  x| V(x)|dx. (3.11)
r

This last evaluation im p lies  a slightly m ore stringent condition on V(r) for  
large  r , but it includes k = 0 and it re laxes the condition on V(r) fo r  sm all
r .  To this purpose we notice that fo r  a ll short-ranged potentials both M(r)
and N(r) ex ist but M(0) d iverges fo r  the Yukawa potential.

We turn now to the case  b >0. Here we cannot use (3. 6) or (3. 10) but 
rather

| [ l - e " 2U<(x' r) ] /2 ik  | < e 2b<x' r) /|k| . (3.12)

We have correspon d in gly

oo

I S i(kJ r ) | < j j" e '2br p (r); P (r) = j  | V (x  ) | e 2bxdx.

By induction we can sim ilar ly  check that

S.<k-r>l < pM  r F T e’!b'- ,313)

This im p lies  again analyticity in k if  P (r) < » .  (M converges if  P con v erg es .) 
This is  by no m eans tr iv ia lly  satisfied ,as we had before fo r  M and N. If 
V (r) d e cre a se s  exponentially, we can always choose b large enough to have 
P diverging. If V (r) ~  e 'mr/r , we find b < m /2 . If V is  a Gaussian potential 
o r  a square w ell,then we have unrestricted  convergence. But the interesting 
potentials are  usually superposition  of Yukawa potentials,and therefore we 
expect f(k) to have singu larities in the upper half-plane. With a slight m odi­
fica tion  o f the p roo f the orig in  can be included in the analyticity domain.
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Concluding: f(k) is  analytic in k in the half-plane b < m /2 . T herefore  S(k) = 
f (k ) /f ( -k )  is  m erom orph ic in the strip  | b | < m /2 . This is  BARGMANTNf’ s 
resu lt [1 ] . In the above Bargm ann’ s strip  S(k) can have poles only when 
f( -k ) van ishes. We shall d iscu ss  the sign ificance of the poles o f S(k) in the 
next section . H ere we ju st wish to give som e kind o f p ictoria l view of the 
analyticity o f f(k ). A s we said ,f(k , r) is  that solution which behaves likee-ikr 
fo r  large  r . A s long as k is  rea l,th is  is  perfectly  sufficient to define f(k, r) 
from  a ph ysica l point o f v iew : if  k > 0 (< 0), f(k, r) represents a sink (source) 
in r  = 0 which absorbs (em its) a set o f stationary purely ingoing (outgoing) 
w aves. If b < 0  the waves are damped at infinity. f(-k , r) waves are exploding; 
there is  no way o f having f( -k , r) waves accidentally  m ixed with f(k, r ),b e - 
cause fo r  large r  they would violently  predom inate. A damped wave is  there­
fo re  quite uniquely determ ined. This in turn corresp on d s to the full solva­
b ility  o f the in tegra l equation. If instead we take b >  0,there is  apparently 
no safe way o f defining an exploding wave because we are entitled to add to it 
any damped wave without disturbing the behaviour at infinity. It is  possib le 
to get round part o f the d ifficu lty  by defining as a purely exploding wave f(k, r), 
b >  0 in such a way that f(k, r) - e _üu d ecrea ses  fa ster  than e 11“  . It is  quite 
poss ib le  to do so fo r  the potential w ell; in fact, there we have f(k, r) - e _ikr= 0 
iden tica lly  outside the potential. But in general this procedure w ill meet 
som e difficulty, because the potential ta il perturbs the exploding wave by 
roughly the amount e _mr e "ikr. If this part is  already la rg er  than the damped 
w ave,w e have little  chance o f going further. The condition |e"mr _Lkr | «  | e ikr| 
fo r  large  r  is  p re c is e ly  b < m /2 . This is  Bargm ann’ s condition. We went 
into som e detail o f this p ictor ia l view  o f the analyticity p roo f because with 
th is kind o f reason ing one often anticipates the final analyticity domain and 
paves the way to a r igorou s  p roo f.

4. POLOLOGY OF S(k)

We want now to d iscu ss  in detail the physical meaning of S(k). If V is  
a rea l function (we wish to point out that Bargm ann’ s p roof holds even if  
V is  not real), we have the follow ing h erm iticity  p roperties :

f(k, r )*  = f ( - k * ,r ) ,

f(k)* = f ( -k * ) ,  (4.1)

S (k*)* = S(k)"1.

These p rop erties  can be broadly  re fe rre d  to as unitarity. They follow  from  
the fact that f ( -k * ,  r )*  sa tis fies  exactly  the sam e in tegra l equation as f(k, r).

Suppose now f ( -k 0) = 0 within the Bargmann strip . F rom  (2. 6) we have
<j> (k0, r) = f (k 0) f ( -k 0, r ) /2 ik 0. f ( - k 0, r) is  th ere fore  regu lar in r  = 0. If k 0= ib,
b re a l > 0, f ( -k  , r) behaves like e br fo r  la rg er  r  and is  the wave function 
o f a bound state. T h ere fore  poles  o f S(k) occu rin g  on k = ib, b > 0 
corresp on d  to bound states.

The res tr ic tion  o f the Bargm ann strip  is  essen tia l; otherw ise a pole 
o f S(k) cou ld  a r ise  from  a singularity o f f(k) and not from  a zero o f f(-k ).
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T his was regarded  as a seriou s  objection  to the theory in the early  tim es,and 
there w ere quite a num ber o f attem pts toward the elim ination of these false 
p o le s . (Actually they d iscu ssed  the zeros  of S(k),but this is  just the same by 
S(k) S (-k) = 1.) What about the other poles not lying on ko = ib, b>  0? If there 
is  a pole in ko = h + ib , b >  0,we must have a pole in -ko = -h + ib  by unitarity. 
By the sam e d iscu ssion  used above both f(h - ib, r) and f( -h -ib , r) are square 
integrable solutions o f our d ifferentia l equation corresponding to different 
eigenvalues of the energy E = (h ± ib )2. They are orthogonal. This im plies

^ d r  f (h - ib, r) f (-h  -ib , r) = 0. (4. 2)
o

This is  c le a r ly  im p ossib le  because f ( -h -ib , r) is  the conjugate of f(h -ib , r) 
and the above in tegra l is  positive . T h e re fo re ,if b >  0,the only way out is  h = 0. 
This p roo f is  the usual quantum m echanical p roo f that a herm itian operator 
has rea l eigenvalues. The sam e p roo f breaks down if  b < 0 because then the 
wave function is  no lon ger square integrable. The b < 0  poles of S(k) occu r 
either on k = ib, b > 0 or in pa irs  of conjugate poles. There is no 
com m only  accepted  name fo r  the purely im aginary poles; either antibound 
states o r  v irtual states have been used, and we suggest the firs t one. Nu­
m e r ica l investigation on solvable exam ples [4] shows that they actually occu r 
fo r  reasonable ch o ice s  o f potentials. Experim entally they have no outstanding 
identity like the boynd states;bu t, as we shall see, they can be seen as rather 
in d irect e ffe cts  on the low -energy c r o s s -s e c t io n . Indeed, suppose that an anti­
bound state o ccu rs  with a sm all value of b. If k is  sm all,w e can expand f(-k ) 
in pow ers o f k -ib . We have

f(-k ) «  iC  (k -ib ).

C h ere  is  rea l because o f unitarity. It follow s

S(k) = e 2*6 = f (k ) /f ( -k )  *  - (k + ib ) /(k - ib ) . (4.3)

At low  en erg ies  the c r o s s -s e c t io n  is  alm ost entirely  due to S-w aves:

a (E) = 47t sin 2 6 /E .

In our approxim ation we have

<r(E) = 4?r/(E  + b2). (4 .4)

If b is  sm all,the c r o s s -s e c t io n  should be abnorm ally large at E = 0. This
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is  what we see in the singlet state o f the proton-neutron  system  where we 
know that there is  no bound state. Of cou rse , since b is  squared in (4.4), there 
is  no way o f te llin g  from  the c r o s s -s e c t io n  whether we have a bound o r  anti­
bound state. The pa irs  of conjugate poles are named (in [9] there is  som e 
d isagreem ent with our convention) resonances. The reason is  that they are 
quite v is ib le  in the c r o s s -s e c t io n  if their b is  s m a ll Incidentally, we cannot 
have b = 0, because then a lso  f(k 0) would vanish and th erefore  also 0 (ko, r) 
and <£'{k0,0 )  = 1,and this is  contradictory. In ord er  to see how the c r o s s -  
section  behaves near a resonance we calcu late the phase shift fo r  an energy 
which is  v ery  c lo s e  to the location  o f the poles. If f(-k ) has a zero  ink=  h + ib , 
b< 0 , f(k) w ill have a ze ro  in k = h -ib . Taking into account unitarity, we see 
that 6 can be represented , when k is  c lo se  to h, by the form ula (E 0 =h2,
T = -4bh):

If we plot the phase shift as function o f E in the neighbourhood of E 0,w e find 
that it starts from  the value rj if  E q - E » T / 2  and it rapidly jum ps up to rj+ tt/2  
when E passes through the value E 0 . If rj = 0, 6 takes the value it/2  when 
E = E 0 ; this corresp on d s to a m axim um  o f the cross -se ction ,b eca u se  s in 2 6 
takes then the m axim um  value 1. The sam e behaviour is  evident from  (4. 6) 
and shows up as a sharp peak in the plot o f the c r o s s -s e c t io n . If o f cou rse  
b is  not so sm all,the peak broadens and lo se s  its  identity by mixing up with 
nearby peaks. Eq. (4 .6 ) is  a s im plified  version  o f the B re it -W igner one level 
form ula . C orrespondingly, the wave function fo r  an energy c lo se  to E 0 is  
v e ry  sm all outside the range o f the potential. This we see from  (2 .6 ). Indeed, 
i f  k * h,we know that both f(k) and f(-k ) are nearly  vanishing. As 0(k, r) inside 
the reg ion  o f in teraction  is  reasonably  la rge , i . e. <£(k, r) *  r, i f  we norm al­
iz e  the solution from  the asym ptotic behaviour fo r  large r  by choosing a 
unit flux o f ingoing and outgoing particles, the amplitude inside the potential 
w ill in  turn becom e abnorm ally  la rge . (Incidentally we notice that <j>(k, r) is  
norm alized  in the o r ig in .) We may p icture the p ro ce ss  as fo llow s: the in ­
com ing p a rtic les  spend a long tim e inside the potential w ell before com ing 
out. T heir in teraction  is  th ere fore  quite stron g  and this explains the o c ­
cu rren ce  o f la rge  c r o s s -s e c t io n s . R esonances are often called  metastable 
states, and in sev era l ways they can be approxim ately considered  as states 
in the usual quantum m echan ica l sense, like bound states.

5, YUKAWIAN POTEN TIALS. THE RESTRICTED CASE OP S WAVES 

A potential w ill be named Yukawian if  it can be written in the form :

6 T) + arc tg — -g.
r /2

(4.5)

Suppose fo r  s im p licity  r) = 0. The c r o s s -s e c t io n  w ill be given by

(4 .6)

(5. 1)
m
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w here a (p) is  a suitable weight distribution . Yukawian potentials can be 
continued fo r  com plex  values o f r in the half-plane R e(r) > 0. This follow s 
from  the p rop erties  of L aplace tran sform s which are analytic in the half­
plane o f con vergen ce . If a potential is  Yukawian,then the Jost function has 
rem arkable analyticity p rop erties . The standard theory o f d ifferential equa­
tions te lls  us that,if the potential is  analytic in som e domain,then the wave 
function is  a lso  analytic in the same dom ain. The Jost solution can be con ­
tinued then in the com plex  r  domain R e(r) > 0. Take now p as a new variable 
in eq. (1. 5) where r  = p e io and a is  a fixed angle, |cr|<7r /2 . We have (£ = 0)

2
dip 2io T-, , 2io io , , ,r^  + e Ei// = e V (p e  )4>. (5.2)

This equation looks form ally  the sam e as (1 .5) with a new distance p, a new 
wave function i//, a new energy E j = E e 2i0, anew (com plex) potential V j(p )
= V (p e l0) e 2i0. We are still able to define a new Jost solution fi(ki, p) such 
that f j  sa tis fies  (5. 2) and f-j ~  e'&iP fo r  large p. But f(k, p e 10) a lso satisfies 
(5. 2) with the sam e boundary conditions* so that

f 1 (k j, p) = f  (k, p e ‘°), kj = k e ‘° .

N ow ,fi is  analytic in k : in the Bargmann domain Im k 1 < m 1/2  where mi is  
related  to the range o f Vi ( p) ju st as m is  related to the range of V (r). If V is  
given by (5. l),th e  low er lim it in this in tegra l has already been chosen to 
y ield  m as the c o r r e c t  value fo r  the Bargmann proof; that is ,P (r ) o f eq. (3.13) 
con verges  i f  b < m /2 .  N ow ,if r  is  large,the main contribution to V(r) from  
(5. 1) is  o f the kind

V (r )~  ct(m) e mr/ r 2.

It fo llow s that

\y1 (p) | ~  cr (m) e - ^ e / p 2

C learly  the c o r r e c t  value fo r  m j is  m cos  a . f lf and th erefore  f is  analytic in 
Im k i < (m co s  cr)/2. This dom ain is  different from  the original Bargmann 
dom ain o f f(k, r ) . The union o f a ll these dom ains fo r  a ll | crj < 7r/2  is  the k 
plane with the cut k = ib , where m /2  < b < °o.

S(k) is  th ere fore  analytic in the k plane with two cuts k = ib, with M /2
< |b ! < oo. T here are o f cou rse  different and m ore interesting ways of de-

'r This result implies that the analytic continuation o f the asymptotic behaviour o f f coincides with the 
asymptotic behaviour o f  the analytic continuation o f f. This seems to be evident but it is not,and it has to be 
justified It can best be proved using the Phragmen+Lindeloef lemma See CARTWRIGHT [8].
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riv ing  the sam e resu lt. We did it here just because the result was very  cheap­
ly  obtained. T here is  one ca se  o f Yukawian potential which can be solved 
exactly  [9 ] : the Bethe potential V (r) = -Vo e '1™

ip" + Eip + V0 e"mr ip = 0. (5 .3 )

This equation can be reduced to the standard B esse l equation by going to 
the variab le  | = 2(V01//2 /m )e ' mr/2 . We obtain fo r  the Jost function

f(k) = e‘ (il</m)ln(vo/m2) r ( l  + 2ik/rn)J2ii</m (2V()1/ 2 /m ). (5. 4)

This exam ple was con sidered  by Jost in his d iscu ssion  o f the fa lse  poles.
Our Jost function has nam ely an infinite set o f fa lse  poles in the points 
k = in m /2 , n in teger > 1 , these poles being what rem ains o f the cut along 
the im aginary  axis o f k. F o r  the pure Yukawa potential how ever there is  a 
logarithm ic singularity in k = im /2  and m ore  com plicated  ones farther on.
It is , how ever, m uch sim p ler  to study these singu larities with M artin ’ s method, 
which shows the v e ry  in teresting  fact that higher perturbation term s produce 
s in gu larities m oving farther and farther away with increasing  ord er  of the 
term .

M artin ’ s method w orks as fo llow s: he defines

g(k, r) = e * 1 f(k, r) 

and starts from  the follow ing Ansatz:
oo

g(k, r) = 1 + y  p(k • a) e ' a! da . (5.5)
m

Inserting g(k, r) into the Schroedinger equation,one finds fo r  it the differential 
equation,

g " (k • r) - 2 ikg '(k  . r) - V (r) g (k. r) = 0.

In this equation we rep lace  g(k, r) by its  in tegral representation  (5. 5), and 
we use fo r  V (r) an expansion o f the kind

V (r) = JC & i) e '^ d n . 
m

Of cou rse  this representation  fo r  V (r) is  just equivalent to (5. 1) provided
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H 7TC (m) = '  0(m )-

We get then the in tegra l equation,

ß (ß +2ik) p ( k -ß) -  C(ß)  + \ C(ß  - a) p (k • a) da. (5 .6)
m

The m ain point about eq. (5.6) is  that the value o f p(k,ß) in a given interval 
n m s/us(n+  l)m  can be calcu lated  from  the knowledge o f the values o f p(k-ß) 
when (i< n m . This p rov ides an in teresting method o f construction  of p(k- ß) 
sin ce  we know already that p(k- ß) = 0, ß ^ m  and p(k ß )  = C (ß )/ß (ß  +2ik) fo r  
m ^/n^2m . One can see the above situation a lso  by saying that fo r  values 
of ß ly ing in the in terval n m . . . (n + l)n  the (n + 1 ) m perturbation term  and 
the follow ing one vanish identically  so that the perturbation expansion always 
term inates. It is  c le a r  then that this a lso  m eans that the support of the n-th 
term s m oves away with in creasing  n. Martin has carefu lly  examined this 
expansion,and a detailed account can be found in the H ercegnovi lectures.

6 . THE HIGHER WAVES

A ll the resu lts  that we have so far derived fo r  S waves can be extended to 
higher w aves [9 ] . T here is  no sim ple method fo r  doing this like the one we 
have fo r  S w aves. The reason  is  that the Green in tegral functions, which 
are used in ord er  to define particu lar solutions o f the wave equation, contain 
B esse l functions in their kernels and these are clum sy to handle.

We intend to quote here the corresponding results, and we also give a 
list o f the m ost im portant functions used in the form alism  o f higher waves. 
The p roo f o f these resu lts  actually does not teach anything newer than what we 
already know fo r  S w aves. A fa ir ly  com plete review  o f this subject is  in 
[9 ] ,  The reason  we skip these lengthy m athem atical p roofs is  that for 
Yukawian potentials Martin has much s im p ler m ethods.

H ere fo llow s a list o f  the m ost im portant functions o f the theory:
(1) The Jost solution. It can be defined with an integral equation sim ilar 

to (3.1) (see App. I ) :

J  sin k (x  - r) [ V (x )  + ^  ] f { (k, x ) d x .  (6 . 1)

r

If we put V = 0, we have •

(6.2)



We have a lso  the equation (see App. I) 
t

co

f , (k, r) = fc° (k , r) - i |  J  s /T [H (tV1/2 (k ?) Hf(2)1/2 (kr)
r

- H t% 2 (k ?) h / ^ 2  (kr) ] V (5 ) f { (k, ?) d f . (6.3)

(2) The Jost fim ction is  defined as

f { (k) = lin j r ' f { (k, r ). (6.4)

If V = Q we have the fre e  Jost function,

f°(k) = 7r'1 / 2 e ' iC,r/2 T ( f + 1/2) (2 /k )C. (6.5)

The regu lar solution is  defined as

f  (k) f  (-k , r) - ( f  )(-k) f . (k, r)
j. n \ 1 * { *
$ 1  (k, r) =-
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n  v“ * 2 ik

<ße (k, r) = (-k , r ) ;  0 { (k, r) *>rJ+1 , r — 0. (6.6)

C om paring the asym ptotic behaviour o f this solution with the definition o f 
phase shift, we find the fo rm u la ,

f { (k)

fTTk)
S{ (k) = e2i6t = ei,rt m  ■ (6 . 7)

We quote here som e resu lts  concern ing the analyticity domain o f  these func­
tions. A ll these analyticity p roo fs  run exactly  in the sam e way as fo r  S waves 
(see App. I I ) ; that is, we place upper bounds on the perturbative expansion 
o f f e (k, r), and we show that it con verges uniform ly in the Bargmann domain 
and that each  term  has the p rescr ib ed  analytic p rop erties :

(1) kc f{ (k, r) is  analytic in b < m /2 .  If the potential is  Yukawian the 
p oss ib le  singu larities lie  on the cut m /2  < b <  ° ° , with k = ib .

(2) The sam e resu lt holds fo r  k cf{ (k). F or  large k in the low er half­
plane we have l im f t (k )/fjj(k ) = 1 .

(3) S { (k) is  analytic in the cut k plane: k = ib, m /2  < |b | <  °o. The d is ­
cu ssion  o f the po les  o f S(k) is  exactly  the sam e as the one we gave fo r  P = 0.
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(4) The only strik ing d ifferen ce  between higher waves and the S wave 
rega rd s  the behaviour o f the phase shift at low  en erg ies . This property is 
linked with the so -ca lle d  scattering length approxim ation. It a sserts  the 
valid ity  o f the expansion,

This expansion w ill be a byproduct o f the com plete theory o f the properties 
o f S { (k) as a function o f both k and o f (com plex) f which w ill be worked out 
in the next section s . P hysica lly  (6. 8) has its orig in  in the existence o f a 
repu lsive  cen trifugal b a rr ie r  which pushes the wave function out of the region 
o f in teraction . A param eter which decides the ord er  o f magnitude of the 
phase shift is  the im pact param eter (distance o f c loses t c la ss ica l approach)
T = C/k. If k d e cre a se s  while ( is  kept constant,the wave function w ill scan 
the potential at in creasin g  d istances and the interaction  w ill becom e n eg li­
g ib le  when t /k  »  1 /m .

(5) If we let £ in crea se  while we keep k constant, we provide another 
m echanism  which in crea ses  T and d ecrea ses  the phase shift. The phase 
shift can be estim ated fo r  large  5 with the follow ing argument: We know 
that i f  T  »  1 /m  the bulk o f the wave function lie s  alm ost totally outside the 
potential, and it is  a good guess that the wave function is  only slightly 
perturbed by the potential. We take now the exact form ula,

and we rep la ce  <j>i (k, r ) /  | f c (k) | by (k, r) /  | f° (k) | . This y ields the so - 
ca lled  Born approxim ation. The general re liab ility  o f the Born approximation 
has been repeatedly  questioned,and now it is  agreed that it g ives at most 
only the o rd er  o f magnitude o f the scattering  amplitude i f  blindly applied 
to low  w aves and it in crea ses  in a ccu ra cy  at high en erg ies. Anyway if 
T »  1/m  and k is  la rge ,w e  can confidently use it. To us it is  interesting 
ju st because it g ives  a re lia b le  estim ate o f the phase shift fo r  large 5,and 
we need it  in o rd e r  to d iscu ss  the con vergence  o f the R ayleigh-Faxen ex ­
pansion outside the ph ysica l range o f c o s  6. This argument can be made 
som ehow  m ore  rigorou s,but it then becom es so dull that we p re fer not to 
interrupt our main flow  o f ideas with insipid m athem atics. Anyway the general 
theory  which we shall w ork  out in the next lectu res w ill bring new argu­
m ents to support our con clu sion s. We would just like to mention that Carter 
in an unfortunately unpublished thesis has proved rigorou s equivalent results. 
(See [9], p. 333 o r  [3 ] . )  He states that fo r  i  — ■ <x> the bound holds:

k2J+1ctg 6 f (k) = a 0 + a ak2 + (6 . 8)

o

«I I < C| 6,| (6.9)

where C > 1 is  som e constant. This is  enough fo r  our purposes.
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7. LEVI SON’S THEOREMS

T here is  a c la s s  o f v e ry  elegant th eorem s which relate the number of 
bound states fo r  a given partia l wave to the total variation o f the phase shift 
in the in terval 0 < k < °° .

We know that fo r  a ll reasonable  potentials lim  S» (k) = 1 (k rea l). Atk-+ oo *
infinity we can alw ays ch oose

S{ ( 00 ) = 0.

Even within the Bargm ann str ip  6f (k) is  not analytic, because in general it 
has logarithm ic branch points w h erever S { (k) has poles o r  zeros . We define 
6 „(0) as the value we get by continuing (k) analytically along the rea l k axis 
fro m  k = + w. We know that, unless there is  a bound state at k = 0, which we 
exclude fo r  s im p lic ity  sin 6e (0) = 0 so that Sc (0) is  a m ultiple of jr. Levinson ’ s 
th eorem  then states that

6f (0) - 6 ,(00) = n f w, (7.1)

when n t is  the num ber o f bound states o f angular momentum t . The proof 
we p re fe r  here has been somewhat shortened (for a fu ll d iscussion  see [9], 
p. 332). Take the function

g « (k) = f a(k ) /f j(k ) . (7 .2)

(Incidentally g x (k) is  named Jost function in [9] and written f { (k ).) We know 
that in the low er half-p lane o f k we have lim  g { (k) = 1 .  By unitarity it is  
obvious that fo r  rea l k k_>"’

6t (k) = arg g t (k).

M oreover 6t (k) is  an odd function o f k. This se m ic ir c le  in b < 0 (b  = Im k) is
indented on the re a l axis o f k. This s e m ic ir c le  en closes  a ll zeros  o f g t (k)
which corresp on d  to bound states. We define arg g £(0 + e) = 6£(0) = nff, where 
n is  an in teger which we do not identify yet with the num ber o f bound states. 
We now m ove along the rea l axis o f k until we m eet the sem ic irc le , here by 
definition  arg  g t (k) = 0. On the whole se m ic ir c le  we a lso  have arg  g f (k) = 0. 
We m ove along the se m ic ir c le  until we a rr iv e  on the rea l negative axis. If 
we m ove now tow ard k = 0 - e, we have the relation  6f (-k) = -6 e (k). When we 
a rr iv e  at k = 0, we have Sj (0 - e) = -n r  and 6t (k) is  c lea r ly  discontinuous in 
k = 0. The discontinuity a r ise s  from  the fact that we have enclosed  the bound 
states in the se m ic ir c le  and we have gone c lock w ise  around the zeros  o f g j(k ). 
During the tr ip  arg  g ^ k ) d ecrea ses  by the amount 2 tt n t ,where n 8 is  the 
num ber o f ze ros  o f g f(k ) inside the contour. But 6 c (k) has just decreased  by 
6 j (0 + e) - 6t (0 - e) = njr - (-n7r) = 2mr. T h ere fore  n = n f. QED.
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In the other le ctu res  we have d iscu ssed  the scattering amplitude for  
in teger values o f 5. This is  easily  understood because we cannot associate 
any d irect ph ysica l meaning to unrestricted  values of 0; 5 cam e from  the 
expansion in  partia l waves, and in teger values o f f are  a natural consequence 
o f  the quantization o f angular momentum. M oreover, we apparently need to 
con sid er  6{ (k) when C is  in teger only in ord er  to know the scattering amplitude.

We want to oppose this general attitude and the reasons are the following:
(a) i  is  quantized because sph erica l harm onics are considered  on the 

sphere, that is  fo r  | c o s  6 1 < 1, where 0 is  the scattering angle. Truly one 
can make experim ents only when | co s  ö| < 1, however, the cross in g  p rop er­
t ie s  im plied  by the re la tiv istic  M andelstam  representation  also mean that, 
fo r  instance, the p ion -nucleon  scattering is  d irectly  related to the nucleon- 
antinucleon annihilation into two p ions. In a way, therefore, the process, 
N + W - ’- f f + f f i s  sim ply the p ro ce ss  n + N — v + N view ed in a region  con ­
sidered  unphysical b e fore . In other w ord s ,if we m easure the first p rocess  
we actually m easure the second fo r  | c o s  0 | > 1. Now the natural way of 
expanding a function o f a hyperbolic angle is  to use the set Pi(1-i/2 (cos 0) 
which is  the correspon d in g  harm onics fo r  a Lorentz invariant hyperboloid 
in an indefinite m etr ic . T herefore ,M an delstam ’s representation is  naturally 
a ssocia ted  with n on -in teger angular mom enta. The potential scattering r e ­
tains part o f the fu ll in form ation  of the orig inal re la tiv istic  scattering,and 
there should be no su rp rise  if  unphysical angular mom enta turn up.

(b) Even without the previous argument the technique has been used 
fo r  y ea rs  in the d iscu ssion  o f d iffraction  phenomena; a typ ica l problem  in 
th is fie ld  was the theory  o f the rainbow o r  the theory o f propagation o f waves 
around the earth  [5 ] . It is  th ere fore  a highly su ccesfu l too l in a wide range 
o f p rob lem s.

The basic  idea  o f the technique a r ise s  from  a transform ation, due to 
Watson, o f the R a y le igh -Faxen form ula :

8. THE TECHNIQUES OF COMPLEX ANGULAR MOMENTA

f (E , 0) = 2lk  ^  (2C + l ) [ S f (k) - 1] P (c o s e ) . (8.1)
t=o

This transform ation  is  su ccess fu l only if  one su cceeds in proving the ex ­
isten ce  o f an analytic function S(X, k) o f the com plex  variable X which takes 
the values S j(k ) o f (8.1) when X = C + 1 /2 . We use the variable X because 
in the follow ing it w ill have a m ore sym m etrica l ro le  than f and corresponds 
m ore  c lo s e ly  to the c la s s ica l angular momentum than f . In this hypothesis
(8.1) can be tran sform ed  into

( 8 . 2 )



MATHEMATICAL THEORY OF POTENTIAL SCATTERING 295

The path C o f integration en closes  a ll the positive zeros  o f cos^ X  but avoids 
the s in gu larities o f S(X, k). (See F ig. (1).) If we calcu late the integral (8.2) 
with the contour m ethod,w e find the expansion (8.1).

A x - p l a n e

Fig. 1
The path o f  integration for the Watson integral

Eq. (8.2) contains a ll the in form ation  o f eq. (8. 1) and it has additional 
features o f its  own. Indeed,in constructing it we use properties o f S(X, k) 
which depend rather c r it ica lly  on the potential. The path C o f integration 
can be deform ed  in accordan ce  with the analytic properties  o f S(X, k). The 
ensuing con vergence  domain o f (8.2) depends on P ^ -j^ a n d  this allow s us to 
extend the analytic p rop erties  beyond the Lehmann e llip se .

The n e ce ssa ry  steps which we have to ca rry  out in ord er to establish 
the valid ity  o f W atson ’ s transform ation  are the follow ing:

(1) Definition o f S(X, k) fo r  general values o f X and k. Analytic proper­
tie s  and asym ptotic behaviour o f S(X, k) fo r  X large . A ll these properties 
w ill be derived  fo r  the res tr ic ted  case  o f Yukawian potentials.

(2) The convergence o f (8.2) is  investigated fo r  the sp ecific  case  of 
Yukawian potentials. The M andelstam  representation  then follow s fo r  the 
total amplitude.

In ord er  to ach ieve our goa l we shall en large the definitions which we 
have used so  fa r  fo r  S waves and higher waves. We think that those defini­
tions are se lf-ev id en t i f  one keeps an eye on the previous section.

The starting point o f our theory  is  the partia l wave Schroedinger equa­
tion:

<//" (z) + k 2<Mz) - (X2 - ^ z - ^ z )  - V (z) (z) = 0. (8.3)

We shall use the attribute "p h ysica l" fo r  the variab les  X = C + 1 /2  and k when 
is  in teger and k is  rea l.

M oreover we assum e the fo llow ing conditions fo r  the potential:
(a) V (z) has the representation

f  e 'MZ
V (z) = j  dp ,

m>0

with a suitable weight d istribution
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(b) V (z) can th ere fore  be continued into the half-plane Re z > 0.
(c) On any ray  arg z = a, | a | < n j2, we have

We exclude the value cr= ir/2 because the last condition would rule out 
the in teresting  ca se  o f the Yukawa potential. M ore refined assumptions w ill 
be made in ord er  to derive  specia l resu lts if  needed.

We intend to study eq. (8.3) and the associated  quantities when X and 
k are both com plex . This program m e has been partly ca rried  out in previous 
papers [3 ,4 ,10 ,11], and we m ay group previous resu lts into two c la sses :

(a) Analyticity in k when X is  physica l;
(b) A nalyticity  in X when k is  physical.
We repeat here som e o f the already known definitions and form ulas 

which w ill be used extensively  in the lectu res. Most o f these definitions are 
purely  fo rm a l since there are in volved ,for instance, variables defined through 
solutions o f an in tegra l equation, whose existence has only been proved in 
the ca se s  (a) and (b). The p roo fs  w ill be given in the next sections* and the 
form ulas listed  should be regarded rather as a fram ew ork  fo r  the parts to 
com e. T here are two ways o f defining particu lar solutions of eq. (8.3).

(i) We define X, k, z) as that solution which behaves like z ^ 1/2 when 
z is  sm all. M ore rigorously , we define <£ through the integral equation,

1+1/9 1 C ?Xn/2 z M 1/2  20 (X ,k , z) =z 1/2- w  ----------- — - [ v ( 5 ) - k  ] 0 ( x , k , f ) d ? .
2 X J  x-1/2 .1 -1 /2

0 z ? .
(8.4)

If is  the solution of eq. (8.3) when V = 0 (free  solution), we have

<h0(X ,  k, z) = T (X  + 1) ( 2 / k ) V /2 Jx (kz) »  z X+1/2, z — 0. (8 .5)

Sim ilarly,

p -  z

* (X ,k ,z )  = Z x + 1 / 2 -  j V ? [ J x (k 5 )J _x (kz) - J x (kf) J x(kz)J
0

X V ( 5 ) * ( X , M )  d f . ( 8 - 6 )
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The derivation  o f these equations is  quite sim ple (s e e A p p .I ) . C learly 
<t> (X, k, z) = <£( X, -k, z). However, 0 (-X , k, z) is  a new solution. I f R e X > 0 ,  
<M+X, k, z) w ill be regu lar at the origin , and-any other independent solution 
w ill be irreg u la r . On the line Re X = 0, <j>( X, k, z) and <̂ >(-X, k, z) exchange 
their regu larity  ro le s  and both have an o sc illa to ry  ch aracter. It is  evident 
from  this and other features o f (8.3) that X dom inates the behaviour in the 
orig in  while k determ ines the behaviour at infinity. So far we have not co m ­
m itted ou rse lves  to any theorem  o f existence o f these solutions. In fact, 
unless one m akes a sp ecia l hypothesis on the potential, the region where both 
<t> (X, k, z) and k, z) exist and are analytic is  in general very  lim ited.
The line Re X = 0 w ill be seen to belong to this region. Of som e use is  the 
W ronskian:

k, z), k, z ) ]

= <ftX, k, z) k, z) - <t>(-X, k, z) 0'(X, k, z) = - 2 X. (8 - 7)

(ii) The second  c la s s  o f solutions is  defined through the boundary con ­
ditions at infin ity. Such a c la ss  o f solutions was firs t  introduced by Jost fo r
S w aves. We define f(X , k, z) as that solution which behaves like e _ikz for 
la rge  z . M ore r ig o ro u s ly ,

f(X , k, z) e-ikz +

OO

iS sin k (? -z ) V (? ) +
X2- l /4 f (X ,k ,? )d | . (8 .8)

If fo (X , k, z) is  the fre e  solution,w e have

f0 (X, k, z) = e ilr(X+1/2)/2 (7 rk z /2 )1/2H(2) (kz) ~  e_ikz. (8. 9)

S im ilarly ,

f(X , k, z) = f fl(X, k, z) - i j  J 5  fk f)  (kz)
Z

*H\ (k f) H x (kz)] V ( f )  f  (X, k ,f) d ? . (8.10)

We can a lso  define f (X , ke"m , z). H ow ever,in  general f(X , k, z) has a 
oranch point in k = 0 and f(X , ke"ilr, z) w ill be different from  f(X , k, z). This 
a lready happens fo r  free  solutions. F o r  instance,



298 T. REGGE

f0 (X, ke "i,r, z) = e i,r(x+1/ 2)/2 (7rk z /2 )1/2 Hx«  (kz) ~  e*2 . (8.11)

The W ronskian is  uniquely defined:

W [f (X , k, z), f  ( X ,k e ' ilr, z )] = 2ik. (8 . 12)

F rom  the gen era l theory  o f d ifferentia l equations we know that the ana­
ly ticity  dom ains in z o f tf(X, k, z), f(X , k, z) and V(z) are  the sam e. If we take 
the conjugate o f each o f the prev iou sly  written equations,we find (if V(z) is  
re a l on the rea l positive  axis o f z):

The h erm iticity  requ irem ent on the Hamiltonian needed fo r  the above results 
w ill not be used in the p roo fs  on the convergence of the perturbation ex ­
pansions which we shall derive  in the next section . This we do, not in view 
o f  p oss ib le  application  to absorbing potentials, but just as a m athem atical 
a rtifice  in o rd e r  to extend the analytic p rop erties . This w ill be apparent 
in the fo llow ing.

9. THE JOST FUNCTIONS AND ANALYTIC PROPERTIES OF THE PAR ­
TIAL WAVE FUNCTIONS

Once we have defined the functions $(±X, k, z) and f(X ,±k , z), we p ossess  
four solutions o f the sam e d ifferentia l equation. The W ronskian o f any two 
solutions is  o f co u rse  a constant. We have already given such a W ronskian 
between two $ ’ s and two f ’ s in (8.7), (8.12); these two W ronskians do not carry  
any in form ation  about the potential, and they are th erefore  useful but trivia l.
A m ore  usefu l quantity (the so -ca lle d  Jost function) is

B esides f(X , k), we con sid er  f ( -X , k), f(X , -k) and f( -X , -k) too. The Jost func­
tion is  in teresting  because, as we shaH see, it is  d irectly  related to the 
scattering m atrix . In o rd e r  to show this let us firs t  notice that, according 
to genera l p rin cip les , there is  always a linear relation  between any three 
solutions o f  (8 .3). In particular, we must have

4 (X, k, z) = ( f (X " , k", z), f(A .k jZ ) = f*(X*, - k * ,z ) .  (8.13)

W [f(X ,k , z), <MX,k, z)] = f(X , k). (9. 1)

k, z) = A f(X , k, z) + B f(X , -k , z),
(9.2)

k, z) = C f(X , k, z) + D f(X , -k , z).

H ere A, B, C, D are  independent of z, but they are expected to be functions
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o f  X and k. In o rd e r  to evaluate them  we introduce the form ula (9. 2) fo r  
$(X, k, z) into (9 .1 ),thus finding:

2ikA-= - f(X , -k ). (9.3)

Sim ilarly,

2ikB = f(X , k), 2ikC = - f ( -X , -k ), 2ikD = f( -X , k).

T hese values can be reintroduced  into (9.2), and we find

k, z) = [ f(X , k) f(X , -k , z) - f(X , -k) f(X , k, z)] /2 ik . (9. 4)

F inally  we ca lcu late  the W ronskian W[ i^(X, k, z), (M-X, k, z) fu s in g  eq. (9. 4),
and we com p are  it with the known v a lu e ,

f(  X, -k ) f (-X , k )-f(X , k) f (-X , -k) = 4iXk. (9.5)

T his is  an im portant iden tity* . F rom  (9. 5) and (9. 4) we can find easily

f(X , k, z) = [ f ( -X ,  k)<MX, k, z) -f(X , k )0 (-X , k, z)]/2  X,
(9.6)

f(X , -k , z) = [ f ( -X , -k )$ (X , k, z )- f(X , - k ) ( - X, k, z)] /2  X.

The fre e  Jost functions are  given by the form ula ,

f „ U , k )  ■ (2 /» )1/22 Xr ( X - H ) k '" ' / 2 e " <M /W ^  (9.7)

They are m ultivalued in k.
We now proceed  to find the connection  between the Jost functions and 

the scattering phase sh ifts. It is  a lm ost unnecessary  to point out that what
we shall define is  actually a function which in terpolates fo r  unphysical values
o f  X (and k) the known and m easurable phase shifts. It is  a lso c lea r  that there 
cou ld  be no other in terpolations. The one we se lect is  convenient m erely  
because it retains part o f the prop erties  of the physical phases. Our d e fi­
nition starts from  the known behaviour o f the "reg u la r" free  solution $ 0(X, k, z) 
at infin ity:

$o(X , k, z) ~ e 1,r(X"1/2)/2 ^ f Q(X ,k ) s in [k z - jr (X -l /2 ) /2 ] . (9.8)

jj-
This is identity (1.8) of [10] . The functions C(X)and S(\) are linear combinations of Jost functions.
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This theory  fo llow s im m ediately  from  the theory  o f B esse l functions. We 
com pare it with the behaviour o f the perturbed regu lar solution (9.4):

<MX,k, z) ~ [ f (X ,k )e ikz-f(A -k )e 'ikz ]/2 ik  

_ e «r(X i /2 ) e i6(X,k) I f  (x , k) s in [k z -7 r (X -l/2 )/2  + 6(X, k )], (9.9)

w here we have defined

S (X , k) = e2t5(X’ k) = [ f ( X ,k ) / f ( X , - k ) ] e ilT(M/2). (9. 10)

This form ula  we retain  even when the com parison  is  no longer valid ,in  parti­
cu la r  when one deals with exploding expotentials (k not r e a l) . So far this 
definition  is  purely  form al, since we know very  little about the existence 
and the analyticity o f the Jost function when both k and X are not physical. 
T his w ill be d iscu ssed  in the next section s .

We give here, fo r  com pleteness, a relation  that w ill be used later.

P z) z)
e 1 ( ’ } sin 6(X, k) = - k j  V(z) f ^ k) dz, (9.11)

and that has been deduced from

( W 0 - # £ * )]=  - e i,r(M/2) e ' i5(X,1<) ^ f Q( x, k)f(X, k) sin 6(X, k)

= Jv(z)<£0 (X, k, z)0(X, k, z) dz.
o

The existence  th eorem s and the analytic p rop erties  o f the partial wave 
functions are usually derived  by the follow ing m ethod:

(a) We iterate  the defining in tegra l equation, and we define a form al 
perturbation expansion.

(b) The analytic p rop erties  o f each term  o f the expansion must then 
be exam ined in o rd er  to find the analyticity domain o f the solution.

(c) Bounds are  p laced on the solution in such a way that the se r ie s  are 
seen to con verge  uniform ly  inside the analyticity dom ain. We give the p ra c­
tica l ca lcu lations in Appendix II, and we m ere ly  state here the m ost im ­
portant resu lts :
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(i) ij>(\, k, z) and $ '(A , k, z) are in tegra l functions of k (i. e., regular for 
a ll k with the exception  o f an essen tia l singularity at k = °o) and are analytic 
in  A fo r  Re A > 0; the expansion a lso  con verges fo r  Re A = 0 (in fact, we think 
it is  p oss ib le  to show that the analyticity region  can be pushed inside the 
reg ion  Re A< 0 under v ery  sp ecia l assum ptions on the potential). <MA, k, z) 
is  analytic in both variab les  in the topo log ica l product o f the k plane (k = °o 
excluded) with the half-plane Re A > 0 (and continuous fo r  Re A = 0).

(ii) f(A , k, z) is  analytic in the pair o f variab les A, k in the topologica l 
product o f the whole A plane (A = 00 excluded) with the half-plane Im k < 0 
(and continuous fo r  Im k= 0). This allow s one to define f  (A,-k ,z )  a s f(A ,k e -_ijr, z) 
unam biguously when k is  re a l; in o rd er  to avoid confusion we shall retain 
the c le a r e r  notation f(A_, k e ‘ ilr, z). C orrespondingly in (8.13) we have 
f(A, k, z) = f*(A*J k ^ e '1” , z). It fo llow s that f(A, k) is  analytic in A, k in the 
product on the half-planes Re A > 0, Im k < 0 and is  continuous on the bounda­
r ie s  Re A = 0,1m k = 0. The branch point at k = 0 w ill be d iscussed  later.

Under the stated assum ptions on the potential it is  possib le  to enlarge 
the analyticity dom ain o f f(A, k, z) and consequently that of f(A , k). fo r  
this purpose let us con sid er  eq. (8.3) along a p rescrib ed  d irection  in the com ­
plex z = x + iy  plane. Let th ere fore  z = p e10, where a is  a constant angle 
| a | < 7r/2. Eq. (8.3) can be written in the variab le  p:

This equation is  still o f the sam e kind as eq .(8 .3), with a new wave number 
k j = ke»11 and a new (com plex) potential Vi = V (p e io)e 2ia. The previous analysis 
can be ca rr ie d  out on the new equation,and we shall a rrive  at a new set of 
wave functions ^(A , kj, p), f 1(A) k1( p) and at a new Jost function f 1(A) k j ) .

The Jost solution fj(A, k1; p ) is  defined as the solution with the following 
behaviour:

fo r  any value o f a. On the other hand,the Jost solution f(A, k, z), already 
defined fo r  z rea l, may be continued analytically in the half-plane Re z > 0 
with the sam e boundary condition  because o f the conditions on the potential 
V (z). So the analytic continuation o f f(A, k, z) co in cides  with f: (A, k^pj.and 
we have

(9. 12)

fj(A, kr p) ~ e  lklP

fjfA, kr p ) = f(A, k, z), 0 (A, kj, p ) = e

fj(A, k^ = e -io(X + l/2 )
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But the sam e genera l analysis used before  fo r  the variable z (for rea l values), 
i f  used fo r  the variab le  p, im plies that the new Jost function is  analytic in 
Im  k : < 0 and Re X > 0 and that the old Jost function is  also analytic in this 
domain, in view  o f the above relation. This domain depends on a, where 
| cr | < tt/ 2. The Jost function is  th erefore  analytic in the union of a ll domains 
o f the kind Im (kei0) < 0 ;  this union is  sim ply the k plane cut along the upper 
im aginary  axis k = irj { rj > 0). Previous resu lts (see Appendix II) actually 
state that, when A is  physical, the cut starts at rj = m /2 , m being the low er 
lim it o’f  integration in the integral defining V (z).

Sim ilarly, f(X, ke^ta) is  holom orphic in the topo log ica l product of the whole 
k plane, cut along the low er im aginary axis (when I  is  integer, the cut starts 
at rj = - m /2 ), with the half-plane Re X > 0.

F inally  we d iscu ss  the branch point o f the Jost functions at k = 0. From  
(8.9) it fo llow s that

f 0(X, ke"2lr , z) = f Q(X, k, z) + a(X) f Q(X, ke‘ u , z), 

f 0(X, ke 3liI, z) = [1 + a2(X)]f0 (X, ke 1B , z) + a(A) f Q(X, k, z), 

a(X) = - 2i co s  (<rX).

Introducing this relation  now in definition (9.1), we have that the result o f a 
c ircu it around the orig in  can be written as fo llow s:

f 0 (X, k e '21" )  = f Q(X, k) + a(X) f fl(X, k e '1"),

(9. 13)

f 0(X /k e '31" ) = [1 + a2(X)] f fl(X, ke ) + a(X) f Q(X, k).

If we think o f eq. (8.10) written fo r  f(X, ke"u , z) and make the linear com ­
bination f(X, k, z) + a(X) f(X, k e nlt, z), we find that, if one fo llow s a path which, 
without c ro ss in g  the m /2  < rj < x c u t , e n c irc le s  the origin , then, when X is 
rea l, f(X, k) has exactly  the sam e law of transform ation  as f 0(X, k).

L ater on it p roves convenient to use the function F(X, k) = f(X, k ) / f0(X, k). 
In term s o f F(X, k) one w rites

F(X, k e  2l1) = 2 c o s  ~X e ^ F fX ,  k e  L") -e  2l” F(X, k)

o r

F(X, ke 2‘ IT) - F(X, ke"171) F(X, ke"1" )  - F(X, k)
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One could  argue that it would be ea s ie r  to represent everything with a 
single cut starting from  the orig in . This is  not true since we would lose the 
in form ation  that the branching properties  at the origin  do not depend on the 
potential and are  purely kinem atical. On the contrary, the other cut depends 
c r it ica lly  on the potential,and it is  useful to separate the contributions.

F o r  the S m atrix (9.13) g iv e s*

S(X, ke -2lff) = ----------S(X,k) - 2 c o S ( , X ) e - V --------  ̂ (g 14)
[ 1 - 4  c o s 2 ( t t A ) ]  +  2 cos  (~X)e ^S(Xk)

or

S(X, k '1')  =
e 2 i - ( \ - l / 2 )

S(X, k) - 2i co s  (ttX) e irr(.V-l/2 )
(9.15)

It is  usefu l to introduce a new function,

Z(X, k) = ik2^[S(X, k) - e2l7TXJ / [  S(A, k) -1 ] ,  (9.16)

The function Z  can be linked to the so -ca lle d  scattering length expansion.
This expansion represen ts k 2c+1ctg 6(0, k) at low energies as a power series . 
F rom  this expansion it is  evident that 6(P, k) tends to vanish,like ~ k 2c+1, when 
k -* 0 in the 0th wave. Now, i f  X is  physica l (X = fl + 1/2), we have Z(X, k)
= k2f+1ctg  6(0, k). This shows that Z(X, k) is  the natural generalization of 
k2c+1ctg6 (p , k) because it retains the property  o f admitting a power series  
expansion in a neighbourhood o f the orig in . It must be noticed that Z(X, k) is  
not only regu lar in k = 0 but a lso  an even function of k; its m erom orphy 
dom ain is  the sam e as that o f S(X, k).

The follow ing form ula is  a lso  useful:

S(X,k) = [Z (X , k) - ik2^e2i,rV] / [ z (x . k) - ik2Y  (9-17)

Finally, we wish to point out that eq. (9.5) im p lies

e "ilrAS(X, k) -e ^ S f -X , k) = -4kX /[ f(X, k e 'iIr) f(-X , ke_i" ) ]. (9.18)

This equation only holds when X is  im aginary; otherw ise one of the two func­
tions f(X, ke"llr), f(-X , ke‘ llr) is  not defined. We also have from  eqs. (3.13)

*  In the following when we write f(X, k) we mean the Jost function on the sheet: -3V2 < arg k < i/2.
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f(X, k) = f*(X*, k V i,r), S*(X, k) = S ' V \ k V i71). (9.19)

If we define Z(X, k), when X is  not rea l, by eq. (9. 16), we find that it is  m ero - 
m orphic in half-planes Re k > 0 and Re k < 0. There is  at the moment no way 
o f jo in ing  the left and right dom ains of Z(X, k), because there is  no gap through 
the cut o f e ither f(X, k) o r  f(X, k e 'i,r) unless X is  rea l. F rom  Appendix II we 
can prove  that actually the resu lt holds fo r  any rea l positive X. Indeed, if  
X is  rea l positive,

But we know that in general D(X) is  analytic in X fo r  Re X > 0. It follow s that 
D(X) = 0 fo r  Re X > 0 and | § | < m /2 . This resu lt enables us to jo in  the right 
and left dom ains o f m erom orphy o f Z(X, k) (and of cou rse  o f S(X, k) and of 
related  functions) through the gap | ?| < m /2 . This shows that actually the 
branch point o f S in k = 0 is  a purely kinem atical one: that is , it does not 
depend on the potential.

10. THE ASYM PTOTIC BEHAVIOUR OF THE PHASE SHIFT

The behaviour fo r  large  values o f X and k o f the phase shift can best be 
investigated with the help o f the WKB m ethod. In the current practice  the 
use o f this method has been lim ited fo r  obvious reasons to the physical values 
o f k and X. We w ish to point out, how ever, that the extension to the unphysical 
range o f these variab les  does not add anything essentia lly  new to the method 
and that the only d ifficu lty  is  an in creased  com plexity  and variety in the 
c la ss ifica tion  and behaviour o f the turning points. The m ost rigorou s paper 
on this subject is  certa in ly  K EM BLE’ s paper [12],and we could alm ost quote 
his resu lts  with obvious changes. A s K em ble ’ s analysis is  in som e cases 
in com plete  fo r  our purposes o r  it becom es too com plicated ,it w ill not be 
reported  h ere . A m ore  rea lis tic  view  o f the situation has suggested that 
these details should be published elsew here [16] and that we should d iscuss 
here the final resu lts  only.

The gen era l idea o f the WKB method is  that of constructing a differential 
equation, which is  very  c lo se  to the Schroedinger equation, and whose solu ­
tions are w ell known. Such an equation is  satisfied  by the functions:

ü m Z (^ , i ?  - e) - Z (X ,if  + e) = D(X) = 0, | £ | < m /2 .

X

( 1 0 . 1 )

p2(z) = k2 - X2/ z 2 - V (z), p 2(z) = k2 - X2/ z 2.



MATHEMATICAL THEORY OF POTENTIAL SCATTERING 305

The approxim ation is  gen era lly  good on the whole com plex  z plane except 
in the neighbourhood o f the points where p(z) vanishes. These points are 
usually nam ed turning points T . If k and X are very  large,there is  only one 
turning point in the dom ain Re z > 0 and this o ccu rs  very  c lo se  to T0 o r  
-T 0, T0 = A /k , which are exactly  the two turning points when V = 0. The 
ch o ice  between To and -To is  dictated by the fact that only one o f these points 
is  on the good side Re z > 0 where V (z) is  analytic. The turning points are 
branch points o f p(z).

The m ain prob lem  o f the WKB is  to connect the solution (10.1), which 
is  good approxim ation at large  d istances. These solutions cannot in general 
be represented  by the sam e form ula because the approxim ation schem e fa ils 
near the turning point. An appropriate connection form ula can be found in 
the literatu re [7 ] .

The resu lt o f the above analysis is  that when k and A are large we have 
the follow ing asym ptotic form ulas:

eo

[ PQ (z) - p (z)]dz^ ,

(10.2)
eo

f(A , ke"1,r) ~  f Q(A, ke’ 1*) exp f i  ^  [ p Q (z) - p (:z)]dz\

° ’ rh

f(A, k ) ~ f  (A ,k )e x p ( - i‘ i
o.r.

The integration paths r f and Ti, connect the orig in  with the infinity in the 
half-plane Re z > 0. r 5 passes below  and r h above T (see F ig s . 2 and 3). The

rh /

Fig. 2 Fig. 3

Diagram for the asymptotic formulas Diagram for the asymptotic formulas

proposed  form ulas are valid  under the restr iction s  that paths satisfying 
these cr ite r ia  actually ex ist. If Re T0 > 0/then we can. obviously trace  both 
paths. Suppose now that we let arg  To gradually in crea se  toward it/2 . When 
arg  Tq = tt j 2, the high path gets pinched between the turning point and the
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im aginary ax is. F o r  arg T 0 > 7r/2 the correspon din g  second form ula is  no 
longer valid . Only one form ula th erefore  rem ains because it is  still possib le 
to define the low paths (see F ig. 3). C learly , how ever, these low paths run 
high with resp ect to - T 0, which is  now in the Re z > 0 plane. If in the form ula 
we now rep lace  k by ke"ilr, we see that the second form ula has been replaced 
by the firs t . C onversely, i f  we let arg To d ecrease  toward -7r/2,we find that 
the firs t  form ula is  now m eaningless and that the second one takes its place. 
An im portant com plem ent to these form ulas is  that p(z) is  made single-valued 
in Re z > 0 by cutting the z plane with a cut which jo ins T to the origin . On 
the opposite sides o f this cut p(z) takes opposite values.

Let us now evaluate the asym ptotic form ula fo r  the S function. We insert 
the exp ression s (10.2) into (9.10) and use (9.7). Thus we obtain

S (X ,k )~  exp ^-i J  J[P0(z) - P(z)Jdz) \  (10.3)

° 'rf «■rh'

It is  obvious that the sum o f a high and a low in tegral can be reduced to a 
single com plex  in tegra l which com es from  infinity, passes a cross  the 
cut o f p(z) and goes back to infinity on the other sheet of the function p(z) 
a fter having en circ led  the point T. A fter this has been understood,it is  c lear  
that the WKB form ula fo r  the phase shift is  just the one we already know 
from  m ore  elem entary treatm ents:

oo

6(X, k ) ~ - J [ p o (z) - p (z )]d z . (10.4)
T*Tn

The domain o f valid ity  of this form ula is  the in tersection  o f the validity do­
main o f the form ulas (10. 2); that is ,R e  T 0 > 0 (see F ig. 4 ). There is  no

arg A

n
7

arg k

Fig. 4

The regions of validity of the WKB method (shaded) and of the bounds (10.5) (unshaded)
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point anyway in trying to use (10.4) when Re T 0 < 0,because the corresponding 
in tegra l is  in gen era l m eaningless (it im p lies  the knowledge o f V(z) when z is  
equal o r  at least v e ry  c lo se  to T, but V(z) is  defined only when Re z > 0). 
F rom  this form ula  it is  apparent that lim  S(X, k) = 1 when | X |, | k |-* oo, under
the quoted re s tr ic tio n s . If Re T <0, we have no p roo f o f the validity o f the
above lim it and we actually con sid er  it not to be true. F or our d iscussion  
it is  n ecessa ry  to know som e upper bound on S(X, k). These bounds are d e ­
rived  in a paper by BOTTINO, LONGONI and REGGE [16 ]. They re fe r  to the 
behaviour when X is  la rge  and k is  constant. (If A is  kept constant and k is  
la rg e ,lim  S(X, k) = 1.) The d esired  bounds are

| S(A, k)| < /u(A, k) e 2(arg To + ,;/2>IrnX; arg T q < _ T/ 2, Im X < 0

(10.5)

|S(X, k)_1| <p(X ,  k )e2(argTo' ;l/2)Im\ Im A > 0, arg  TQ > tt/2.

The indicated dom ains o f validity o f these two bounds are the two unshaded 
reg ion s in F ig . 4. |u(X, k) is  here a function which is  bounded above by a con ­
stant independent o f k and X. Both bounds are equivalent to each other through 
the use o f unitarity.

In using (10.4), one must always be aware that there is  an e r r o r  a s s o c i­
ated with it. If 6 vanishes very  rapidly with X, the above form ula becom es 

’ m eaningless, because it can easily  happen that the e rro r , although sm all, is  
s t ill la rg e r  than 6. The usefu lness of the WKB method here is  that it yields 
a p roo f that 6 vanishes fo r  la rge  X whenever Re T0 > 0. This is  already 
enough to obtain resu lts  concern ing the analyticity in the variab les s = k2 and 
t (momentum tra n sfer). B esides these asym ptotic evaluations,we want to 
quote a m ore  p re c ise  resu lt which states that fo r  large angular momenta 
the Born approxim ation (see (9. 11)),

n (X, k, z)
6 ~ 6 b = - k e - ‘ ^ - 1/2) J V (2 )p - -k) )  dz, (10.6)

o 7
is  a very  re liab le  one. The reason  fo r  this is  that the wave function fo r  large 
X lie s  totally  outside the potential and is  p ractica lly  unaffected by it. T h ere ­
fore,qi ~  0o fo r  la rge  X. This can be shown m ore  exactly  from  the WKB analy­
s is . F or  z fixed  we find lim(0/<j>o) = 1. We would have to prove uniform  con ­
vergen ce  in o rd e r  to derive  lim (6 /6 B) = 1.

We do not want to cram  the paper with an uninteresting p roo f* .
It is  w ell known that the Born form ula can be integrated for the c lass  

o f Yukawa potentials and y ields

6b "  2k

oo

i  I QM (1+M2/2k2) a iß )d ß -

* In [3] it is stated that an equivalent rigorous proof has been obtained by D.S. Carter (Princeton thesis), 
but unfortunately this proof has not been published. Of course,a proof follows from the three-dimensional 
formalism and from the existence of the small Lehmann ellipse.
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If X is  large, the asym ptotic behaviour o f 6 is

, /„ I 1/ 2 cr(m) , , . , . 1/2 e( tt/2) iL .  k(sin h a '
-a k

2m 3/2
; c o s  h a = 1 + m 2/2k 2.

( 1 0 . 7 )

The standard WKB method y ie ld s  infetead

s r\ { _mVk6 = 0(e ).

The last evaluation is  fo r  our purposes too optim istic at low  energies but 
b ecom es re lia b le  at large  en erg ies .

11.. THE POLES OF S(X, k)

E a r lie r  analysis o f the poles o f S(X, k) have been ca rried  out in the fo l­
low ing ca se s :

(1) X physical, k com plex . The current nam es given to these poles are
(a) bound states i f  k = i rj (r) rea l > 0),
(b) anti-bound states o r  virtual states i f  k = -ir),
(c) reson an ces i f  Im k < 0.

The reson an ces o ccu r  in pa irs  o f conjugate po les . Except for  bound states, 
the reg ion  Im  k > 0 is  forbidden to p o les . It is  evident from  the existing 
literatu re that the anti-bound states and m etastable states (resonances) are 
not states in the accepted  fram e o f definition o f quantum m echanics because 
th eir  wave functions a re  not square integrable. However, they share many 
o f the p rop erties  o f ord inary  states.

(2) k physical, X com plex. The poles  occu r  only when X > 0. They have
been named shadow states in [11] *. In the fu ll com plex domain of k and X 
shadow states and reson an ces are particu lar in tersections o f the same singu­
la r  su rface  o f S(X, k). F o r  we rem em ber that analytic functions o f two v a r i­
ab les are n ever singular on isolated  points but always on analytic surfaces 
(of d im ension  2). In [11] a num ber o f inequalities was derived concerning 
the distribution  o f the shadow states.

The d iscu ssion  w ill now be extended to com plex X and k. Roughly speaking, 
there are two kinds o f lim itations on the position  o f the poles: the first follow s 
from  the equation o f continuity and applies equally well, under very  weak 
conditions, to any kind of potential; the second uses specia l properties of 
V(x) like lim itations on the depth and width of V(x) and analyticity.

The continuity equation can be used as fo llow s: We suppose that, for  a 
particu lar set of values o f X and k, X = X0 , k = ko, inside its m erom orphy 
domain, S(X, k) has a sim ple pole. Then c lea r ly  f(X0, k0e-ilT) = 0. Under this 
hypothesis,

*  Recently we have found a paper [13] where the name "spiralling states" has been adopted.
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f(X k )

ko> z) = “2l k ^  f(V  V ' " '  z)- ( U - 1]

If Re X0 > 0 and Im k0 > 0, the above function vanishes as a function of rea l 
z at zero  and at infinity. Its com plex  conjugate <j>* w ill a lso  vanish in the 
sam e points; </>* sa tis fies  the conjugate equation (z rea l):

- 1/4
0*" + k*2 <f - ----- - V(z)4>* = 0. (11.2)

z 2

It fo llow s that:

( f  ** - * * '* ) ' = (k*2 - k2)]0  I2 - (X*2 - X2) l i l 2 . ( l l !  3)
z

This identity can be integrated from  zero  to infinity. The contribution of 
the fir s t  term  vanishes with <f> and at both ends. What is  left yields the 
equation,

Im k Re k \o o J 
0

F rom  (11.4) it is  c le a r  that, where Re ko and Im X0 have opposite signs, 
po les  do not o ccu r . T h ere fore  we obtain two dom ains of holom orphy of

Re k0 > 0 

Im X0 < 0

having a com m on  boundary where Re k 0 = 0, Im X0 = 0.
A com plete  d iscu ssion  o f dom ain o f analyticity beyond what is  stated in

(11 .5 ) is  contained in a paper by BOTTINO and LONGONI [17]. A prelim inary 
d iscu ssion  can be found in [11 ]. We just notice that, while (11. 5) holds for  
any o f the potentials con sidered  by us, any other inequalities w ill contain 
som e m ore  detailed in form ation  on V (r). P articu larly  interesting are the 
upper bounds on R eX 0 when k is  rea l, because they insure a finite number 
o f subtractions in the scattering am plitude. I f,fo r  instance.

Re kß < 0

Im XQ > 0
(H .5 )

dz - Im X Re Xo o dz = 0. (H .4 )

| V(i-y) | < y y - j , then R e X < | - .
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12. THE TO TA L AM PLITUDE AND THE LEHMANN ELLIPSE

We have re ca lled  so far a num ber of p rop erties  of the partial wave am ­
plitudes. The next task is  to relate them to the properties  of the total sca tter­
ing am plitude. A fter M andelstam ’s w ork it has becom e fashionable to use 
the notations s = E and t = -A 2= -2E  ( - co s  6). We define f (s ,t )  through (1 .9) 
o r  the equivalent tran sform s.

The property  o f the total amplitude which we shall d iscu ss is  the ex ­
istence  o f the so -ca lle d  sm all Lehmann e llip se .

The m athem atical theory  o f  Legendre polynom ials teaches us that any 
expansion in these polynom ials;

F (co s  6) = af Pf (co s  6), (12. 1)
«= o

con verges in the co s  0 plane within an e llip se  o f fo c i ± 1. It may happen that 
the e llip se  o f con vergence  redu ces to the segm ent joining -1 to 1. It always 
happens that the function represented  by (12. 1) is  analytic within the con ­
vergen ce  region . This is  quite analogous to the corresponding theorem  fo r  
pow er se r ie s  where we have c ir c le s  instead o f e llip ses . The magnitude o f 
the e llip se  o f con vergence  must be such that the sum o f the expansion does 
not have singu larities inside the e llip se . T herefore  the singularities which 
are nearest to the fo c i are those which dominate the convergence. Without an 
attempt to m ake our argum ents rigorou s  but only the suggestion that they 
are reasonable, a ll the above resu lts can be understood from  the asym ptotic 
behaviour o f Pf (cos  0) when f is  large and fixed. This behaviour is  of the 
kind

,1/2
( 12 . 2)

f  2 V /2(cos  0) ~  l  sin Q j  co s  [((  + 1/2)0 - tt/4 ].

If c o s  0 is  com plex  and C is  large and rea l, P0 (cos 0) w ill be dominated by 
Im 0. P t (cos  0) is  th ere fore  always exploding fo r  high rea l C, unless 0 is  
rea l, in which ca se  it is  oscilla ting .

If we con s id er  the expansion (12. 1) and we suppose it to be convergent 
fo r  a given value o f 6, it fo llow s that the general term  of it must vanish for  
la rge  t :

lim  a{ e c Îm = 0 , o r  a( < Ce ^ Irn 6 .̂ (12. 3)
Q -*oo

The general te rm  is  th ere fore  dom inated by a decreasing geom etric p ro ­
g ress ion . C learly  the expansion a lso  con verges fo r  sm a ller  values o f Im 0, 
and it rep resen ts  there an analytic function because it is  a uniform  con ­
vergent se r ie s  o f analytic functions.
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In the c o s  0 plane the curve Im 0 = const, is  an e llip se . Suppose namely 
that z = c o s  0 = x + iy  and 0 = a + i ß . We have

x =  c o s  a cosh  ß,  , „  ..
y = - sin a sinh ß .

F rom  these equations we deduce easily

(x2/co s h 2M) + (y2/s in h 2p) = 1; (x2/ c o s 2 a) - (y2/s in 2 o) = 1.
(12.5)

The firs t  o f these equations does not depend on cr and represents the locus 
o f  a ll points in the z plane which have the sam e Im 0 = ß . This locus is  e v i­
dently an e llip se . The other equation is  the locu s of the points where 
Re 0 = a = const.

This locu s is  obviously  a hyperbola with foci ± 1 . The sets of e llipses 
and hyperbolas are mutually orthogonal. The hyperbola which corresponds 
to a = 0 degenerates into the upper and low er lim it o f the cos  6 > 1, the one 
with <j = ir into the line c o s  0 < -1 . Any value o f o between these extrem es 
corresp on d s to  half a hyperbola; th e 'other half obviously com es from  ir- <r. 
The whole z plane can be mapped into the strip  0 < a < n o f the 6 plane. How­
ever, it is  better to map it into - x  < a < it and ß > 0. A given value o f a is 
then associa ted  with a quarter of a hyperbola. By taking all the com binations 
±cr and ±ir ±cr within the in terval (-it, ir)twe  get a ll quarters of the hyperbola. 
The line ß = con st.is  then a fu ll e llip se . This kind o f mapping is  very  sim ilar 
to the usual polar co -o rd in a tes  w here ß plays the ro le  o f a radius and a the 
ro le  o f the polar angle. We p re fer  this mapping a lso  because it is  the natural 
one when we want the asym ptotic behaviour o f the Legendre functions when 
the index £ is  la rge . As long as £ rem ains an integer, there is  no doubt about 
the meaning o f (12. 2) because it is  unessential which determ ination we take 
o f Re 0 = a + n ir when co s  6 = z is  given. But i f  £ is  no longer an integer, we 
are fo rced  to sp ecify  the value o f n. This turns out to be the one o f our m ap­
ping. This fact is  very  im portant when used with W atson’ s integral.

The size  o f the ellip se  can now be estim ated fo r  large C with the help 
o f (10.7) and (12.3), The partial wave expansion clea r ly  con verges if  Im0= ß <a, 
where cosh  a = 1 + m 2/2 k 2. We re fe r  to the e llip se  ß = a as to the sm all 
Lehmann e llip se .

The term  large  Lehmann e llip se  is  com m only used instead for  the ana­
lytic continuation o f the im aginary part o f f(s , t). We define it in the physical 
reg ion  as

F (s, t) = Im f(s , t). (12 . 6)

We take s rea l and 0 < -t  < 4s. We con sid er then the analytic continuation 
o f F (s , t) when s is  kept fixed and t is  com plex. People re fe r  to F (s, t) som e­
what im p rop erly  as the im aginary  part o f f(s , t), but this is  true only under the 
stated conditions. The partia l wave expansion o f F (s, t) is  then
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F (s, t) = |  y  (2 P + 1) sin 6{ (k) Pf (cos 6) (12.7)

This expansion con verges in an e llip se  which is  la rg er  than the sm all Lehmann 
e llip se , because the gen era l term  contains sin 2 6 and vanishes m ore rapidly. 
This new e llip se  is  given by ß = 2 a. This fact cou ld  have been deduced from  
unitarity d ire ct ly  i f  the correspon d in g  resu lt fo r  f(s , t) were known, without 
passing through the partia l wave expansion fo r  F (s, t).

13. ANALYTICITY IN t FOR FIXED s

In this section  we want to exp lore with new techniques the fu ll domain 
o f analyticity o f f(s , t) in the t plane. We already know of the existence of 
Lehmann s ellipse, but we must go much further in order to prove the analogue 
o f the M andelstam  representation  fo r  potential scattering. F or  the sake of 
s im p licity  we w ork  on the assum ption that fo r  rea l positive k

in every  d irection  o f the Re X > 0 half plane, including (and this is  really  an 
additional hypothesis) the im aginary axis o f X. We know that fo r  Yukawian 
potentials the resu lt holds in any d irection  within the above region ; we know 
a lso  that little can be said when X = ia. The p roo f which follow s could be 
ca rr ie d  out without this additional hypothesis, but there is  nothing interesting 
to be gained and the form a l m achinery would be much m ore com plicated. 
Under this sim plification  we apply W atson’ s transform  and we obtain the 
form ula :

The path C has now been deform ed into the line X = ia. The extra term s 
a r ise  from  the poles  o f S(X, k) which we know to exist in the upper half-plane 
o f X only. We exam ine, separately, the contributions o f the integral and of 
the p o les . Sn is  the residue o f S(X, k) at the pole X = C n + 1 /2 . The con ver­
gence o f the in tegra l is  now determ ined uniquely by cos  9. If X = ia is  large, 
we have

lim  [S(X, k) - 1] = 0
\ -* 00 (13.1)

2' + 1
(13.2)

n
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I----- ^ j - l  ~  2 e ' " 1 a|; P , (cos  6) ~ 0 ( e la||,' d). (13.3)
I cos  A I X-l/2 '

The in tegra l th ere fore  con verges i f  17r - ex | < tt . The asym ptotic behaviour of 
P \ -i/2(- c o s  0) = P\-i/2 [ co s  (ff - 0)] fo r  large X has been evaluated by keeping 
the condition Iff - ct| < ff in accordan ce  with the d iscussion  of section 12, so 
that 0 < ct < 2 ff is  the range o f a. This includes the whole z plane with the 
cut z rea l > 1. The term s FJn(- c o s  0) have the sam e cut. The cut in the 
z plane actually starts outside the sm all Lehmann ellip se  at the point 
% = 1 + m 2/2 k 2. (This con cern s the cut o f f(s , t) which also includes the con ­
tribution o f the poles  .) In the t plane this cut is  mapped into the cut:

m 2 < t < oo. (13. 4)

This is  actually the fu ll resu lt to be expected  from  the Mandelstam re p re ­
sentation. Our d iscu ssion  obviously  holds a lso  when [ s(X, k ) - 1] does not 
vanish along X = ia  but grow s at m ost like a pow er o f a.

What about the behaviour when t o r  z is  large? The usual partial wave 
expansion is  rea lly  unsuitable, because it breaks down long before we need 
to use it and anyway its a ccu ra cy  d ecrea ses  with ß . Eq. (13.2) can still be 
used and y ie lds the interesting resu lt that this behaviour is  actually con ­
tro lled  by the poles of s(X, k). Indeed if  we now con sider P x -i/2( -c o s  0) when X 
is  fixed  and co s  0 is  now variable and large, we find

p x - i / 2( - c ° s 0 ) ~ ° ( z X 1/2). (13.5)

This term  is  grow ing provided Re X > 1/2 and is  at the sam e tim e oscillating 
i f  X is  com plex, as expected . If z is  very  large, then what counts is  the pole 
with the la rg er  Re X. What about the in tegral? This is  easily  disposed of 
because it is  the superposition  o f decreasin g  term s with strongly oscillating 
fa ctors  when |a | = |X| is  la rge . We expect it to vanish fo r  large z . Con­
cluding, we are led to the behaviour:

f ( s , t ) ~ 0 ( t a(s)), (13.6)

w here a(s) = f >(s), P >(s) being the 0n with the largest rea l part. This be ­
haviour is  energy-dependent.

What is  the physica l interpretation  o f these poles? We expect a(s) to be 
an analytic function of s in som e reg ion  which we do not need to specify  now 
in detail. We suppose such a pole to  exist fo r  s = So with a sm all Im X and 
Re X alm ost h a lf-in tegra l (physical). This m eans that fo r  som e value s 0 o f s

a(sQ) = 5 + e ( s 0) + ir j(s 0); e «  f , r\« H (13.7)
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If we now exploit the fact that a(s) is  analytic in s in a sufficiently large 
reg ion  around s 0, we can expand a(s) in a pow er se r ie s  in s - sQ:

H Q
a(s) = C + e (s0) + i rj(s0) + (s - sQ) — s = s . (13.8)

We can ch oose  how ever s equal to

s = s o- ( £ ( so) + ir,(so ) ) ( s = sr

- l .

(13.9)

in  o rd er  to make a(s) = 1. It is  c lea r  now that,if there is  a shadow pole, we 
expect a pole to appear when t is  in teger and s is  alm ost rea l, this pole 
being the sam e com plex  singularity in the variab les  X and k (or s) intersecting 
the m any-fold  X - l / 2  = integer. This pole can only be interpreted as a r e s o ­
nance a ccord in g  to the d iscu ssion  of section  4 or section  12. Resonances are 
th ere fore  respon sib le  fo r  the high t behaviour o f f(s , t).

In [11] quite a num ber o f inequalities has been derived fo r  a(s) fo r  
a large  c la ss  o f potentials, including the pure Yukawa potential. We wish 
to point out that it is  not at a ll im possib le  to ch oose  potentials such that 
there is  an infinite set o f shadow poles and,even w orse, such that there is  
no upper bound on Re C n. f(s , t) in this ca se  shows an extrem ely com plex 
behaviour fo r  large  t, and one needs an infinite num ber of subtractions in 
o rd er  to w rite the M andelstam representation. It is  a good feature that we 
can ru le out this trouble fo r  the m ost interesting potentials, i . e .  those we 
can fo rm  by choosing fo r  o(n) in (5. 1) a distribution with no higher singu­
la r itie s  than D irac’ s functions (positively  no derivatives of i t ) .

14. THE RESULTS OF KHURI

In the previous section  we have investigated the analytic properties of 
f(s , t) when s was held fixed and t was varying. A m ore  difficult task in our 
fo rm a lism  is  to prove analytic properties  in s when t is  fixed. We now keep 
t fixed and rea l negative. None o f the previously  proposed  representations 
fo r  f(s , t) seem s to be working now because they a ll d iverge. We now use 
instead

C - LTT( A+ 1/2)
f ( M ) = 2 k J  " c o s  A  1S(X’ k) - l ] P . - 1/2(cose)XdX . (14.1)

c

The integration  path C is  the sam e as in F ig. 1. The validity of (14. 1) can
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be firs t  o f a ll proved when z < 1 o r  inside the sm all Lehmann ellip se . In 
particular, i f  - 1 < z < l,then t is  negative: 0 < -t < 4s.

H ere the WKB method holds: we have S(X, k) -1 0 when X -* oo. Secondly,
Px-i/2 (cos  0) ~  0(e±lXe),w hichever ch o ice  is  la rger . If

e "iir( x+1 / 2)
Im  X -► + oo. —----- —-r------- ► -2 i and if  Im X -»• -co,cos  ttX

e -ir(X+ 1/2) 
co s  ;rX

a-2|lm\|n

In this last case  the above fa ctor  provides a strong cu t-o ff which 
m akes the in tegra l easily  converging fo r  Im X.» - oo. If Im X< 0,we can m ove 
the path C along the low er im aginary axis o f X. In so doing, even if  Px-: / 2(cos 0) 
now d iverges like el1™^!0 !, we still have convergence since | ct| < n.

We now m ove k into the dom ain R e k > 0, Im k > 0. Now the WKB fo r ­
mula breaks down fo r  x = ia, a - oo,but there we have no trouble since 
by the form ula (10. 5) S(X, k) - 1 is  bounded in this domain by el1™^1 . When 
X -*+oo,we have to be carefu l. The fa ctors  here which decide the con ­
vergen ce  are P x - 1 / 2(cos  6) ~  0(e±iXe) and s - 1 -* 0. R ecalling  now that 0 = l + t /2 s  
and that t is  re a l and < 0,we see that,if s is  com plex,then cos  0 and 8 are 
a lso  com plex . We expect eiiXS to d iverge in any d irection  o f the X plane with 
the so le  exception  o f arg X = nir - arg 0 where n is  in teger. Is it possib le to 
ch oose  arg  X in 0 < arg  X < 7r/2 such that this happens? The answer is  yes 
because, when k is  m oved from  the rea l axis to the im aginary axis, a and n vary 
in the range n < a < 0, n > 0. A rg 6 is  th erefore  always in the range 
Tt/2 <  a rg  0< ir. We get the desired  resu lt by taking arg  X = n - arg 0. Our 
in tegra l representation  is  convergent in the upper quadrant Re k > 0. If 
Re k < 0,we sim ply use the fact that, i f  k is  rea l and t rea l negative,then 
f *(s + ie , t) = f(s  - ie , t) so that by analytic continuation we have in the whole 
cut s plane f* (s , t) = f(s* , t). This cut plane maps into the upper half plane 
o f k. This equality is  quite adequate fo r  definition of an analytic continuation of 
f(s , t) in the quadrant Re k < 0, Im k > 0.

We are left with the points o f the im aginary k axis (negative s axis).
H ere apparently a new singularity appears, which is  not caused by any failure 
o f (14. 1) to con verge  but rather by the fact that S(X, k) has singularities along 
the im aginary  axis o f k. However, when we are c lo se  to the im aginary axis 
o f k.the WKB form ula  holds along X = ia, a > 0. We can deform  C into the 
im aginary axis o f the X plane, because X and k are im aginary and the integral 
con verges . Now,

----- ^-^r-P. .( c o s  0)COS 7T X x- 1/2

is  an odd function o f  X.and th ere fore  what counts in the integral is  only the 
odd part o f e ' i,r( A'+1/,2)[ S(X, k) - 1 ] ,  But i f  we use identity (9.18),this odd part 
can be written as
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Upon substitution into (14. 1) we find

, i v  f  (X ,-k ) f  ( -A ,-k K

- t F - k R !-XT .k)'J  *8 8>>dX I14- 3»
■i°o

+ the contribution o f po les . But now the function (14. 2) is  analytic in the 
whole upper half k-plane, and there is  no discontinuity associated  with S(X, k) 
on the dynam ical cut k = ib, m /2  < b < « .  This happens because ei,lA-S(X, k) 
and e'i,tX S(-X, k) have the sam e discontinuity an d w h en th eodd p artistak en .it 
d isappears. (14. 3) can th ere fore  be used in defining f(s , t) in a region  con ­
taining the im aginary  axis o f k. We have now joined  the right and left part 
o f  Im k >  0, because the f(s , t) defined in  (14.3) c lea r ly  sa tisfies  f* (s , t) = f(s* , t) 
Indeed,

f  (X, -k ) f  (-X, -k)

"ioo

+ (the contribution o f p o le s )*  . But X* = -X, P .x -^ f c o s  0) = P x -j/2(cos 6) and 
f(X, -k )*  = f(-A , k*) so that f*(S(k), t) = f(S (-k * ),t ) = f ( s * ,t ) .  C learly  k and -k *  
a re  both in the upper half-p lane. F orm ula (14.3) th erefore  defines an ana­
lytic function o f s in the neighbourhood o f the rea l negative axis of s (apart 
from  the contribution  o f the poles,w hich  we shall d iscu ss later). F or we 
n otice  that accord in g  to the WKB form ula

f  (X ,-k ) f  (-X, -k)
1 ---------------------------------

f(X, -k) f ( -x , _k)

d e cre a se s  exponentially fo r  large X. This is  n ecessa ry  in order to have 
analyticity in a neighbourhood o f the im aginary axis of the k plane rather than 
con vergence  on a line only. The actual s ize  and form  o f this domain is  un­
im portant once we have the fu ll analyticity domain.

We now give som e approxim ate argument about the behaviour of f(s , t) 
when t is  held fixed and negative and [ s |-* ooin the cut s plane which maps 
into the upper half k-plane. We use the WKB form ula fo r  f(X, k) and eq .(l4 .3 ). 
We put

co s  0 = 1 -  A2/2 k 2, k = i f ,  X = irj, t = -A 2 (14.4)

! jrX* Px*-i/a<1 + 2? )X*dX*

and we obtain
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1 C fJ V  V ' irl* /  a 2^
f ( M )  -  f  J  1 ~ f(in, -ig ) f(-ir), -ig ) t 8 h ( ">l)Pi , - l / j 1 + I f 2 ^

Using the form ula P£ (cos  0) M J 0 [ (i + 1 /2)6] = J0 (X 6), wMch is  valid for large 
L, 0 «  1, and taking into account that c o s  0 »  l -0 2/2 ,w e  have

P i , - i / 2 ( 1 + A 2 / 2 ? 2 ) a J o ( T o A ) > T o = X / k .

The WKB form ulas (10 .2) give us

f - P 1. - k )  f  ( - X ,  - k )  -2i /(p0-p)dz
o 0 - To u

f(X ,-k ) f ( -X ,-k )

If X, k are large, we deduce approxim ately

00
2 i / ( p - f y ) dz

e

1 - e
( l - T 2/ z 2) l /2 

T 0

It fo llow s that

Putting T = z sin  <j>, dT = co s  <j>d<t>, we obtain [14]

T T J p (T A )  

i l  h  -  t 2/ / ) 1'2
dT

ir/2

' I
J q(zA sin  <j>) sin 0d<£ = sin (zA).

F inally we get the Born approxim ation:
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This resu lt is  independent o f s and can be obtained d irectly  from  KHURI’ s 
approach [2 ], We frankly admit that the above argument is  not rigorous. 
However, there is  no point in being ch oosy  about it, because rigorou s proofs 
exist abundantly and w hoever wants them has only to look  fo r  them in the 
quoted literatu re . H ere we show it just fo r  com pleteness.

What about the contribution o f the poles o f S(A, k) in the form ula (14.3)? 
They give extra contributions to f(s , t) o f the sort;

w here C n(s) are som e s-dependent constants. This contribution has a singu­
la rity  when som e o f in(s) becom e in tegral. This happens on the upper im agi­
nary k axis when Im  k > 0, accord in g  to our general d iscussion  in sections 4 
and 6, and these poles  represent bound states. f(s, t) is  th erefore  analytic 
in Im k > 0 with the exception  o f a finite num ber o f bound state poles. A ll 
these p rop erties  can be condensed into the single form ula:

where - s n > 0 a re  the binding en erg ies  o f the bound states, f(t) is  the Born 
approxim ation. Cn(t) are polynom ials in t. This result is  due to KHURI [2 ],

15. EXTENSIONS AND GENERALIZATION OF THE THEORY OF COMPLEX
ANGULAR MOMENTA

A num ber o f papers dealing with an interesting generalization and appli­
cation o f the idea o f com plex  angular m om ents has appeared since the first 
draft o f these notes was firs t  published. Remaining in the fram e of potential 
scattering, one has tried  to do away with potentials bounded by a power 
A /r 2 ‘ £, e > 0 in the neighbourhood of the orig in . In particular, one has a l­
low ed V(r) to have a strong repu lsive c o re  at sm all r . As is  w ell known, 
attractive c o r e s  requ ire  very  disturbing boundary conditions, and it is  gener­
ally  agreed  that, i f  anything can be ca lled  physics in the fram e o f potential 
scattering, this has nothing to do with attractive co re s , which produce sy s ­
tem s where there are fo r  instance no ground states but there are states of 
a rb itra r ily  low en erg ies .

With repu lsive  c o re s , how ever, FIVE L and others [18, 19, 20, 21] have 
shown that a pecu liar fact o ccu rs  in the angular momentum plane, that is, 
that the scattering amplitude can be continued in the Re X < 0 plane by virtue 
of a sim ple re fle ction  property :

n

e '^ S fX , k) = e iITXS(-A, k).
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This property  form ally  fo llow s from  (9. 18) when the Jost function is  allowed 
to be infinite. A s a m atter of fact, this is  in a way to be expected; because, 
i f  we try  to calcu late  f( X, k) with the usual perturbation expansion, we find 
diverging in tegra ls . The analyticity of (15. 1) m akes it natural to ask whether 
we can postulate it in field  theory. So far we have no evidence either in 
favour o f o r  against it apart from  its  log ica l sim plicity .

Other w ork has been ca rr ied  out on the many channel problem s, mainly 
by CHARAP and SQUIRES [21, 22 ]. They show that, as far as we are con ­
cerned  with angular mom entum p rop erties , all previous resu lts extend in 
a straightforw ard m anner. P articu larly  interesting, however, is  the exten­
sion o f C lebsch -G ordan  coe ffic ien ts  fo r  the com position  of angular momenta 
to com plex  values of the in d ices . I fe e l that we shall hear m ore o f these 
p rop erties  in the future as soon as the n ecess ity  o f studying m ore co m ­
plicated  system s u rges us. In fact, just the interaction  o f a resonance with 
an elem entary p article  (if there are any) o r  with another resonance is  already 
confronting us with such a prob lem . They a lso  produce som e resu lts on 
the wave functions o f the sym m etrica l top, and this is  natural because they 
adopt in their second paper the helicity  form alism  of Jacob and W ick. In ci­
dentally, p rop erties  of the many channel amplitudes as functions o f the 
energy and transm itted mom entum  w ere d iscu ssed  in [23].

P a rticu larly  in teresting in regard  to its im m ediate application to field 
theory  is  the s o -ca lle d  factorization  theorem  fo r  the many channel problem . 
This theorem  was firs t suggested by Gell-M ann and proved by Charap- 
Squires.
It states,that barring  accidenta l degeneracy, the residuum  o f the scattering 
amplitude m atrix at a pole in the angular mom entum is  a m atrix Qag of 
ch a ra cte r is t ics  zero ; that is ,a ll  m inors of the determinant o f the m atrix 
vanish. This im p lies  that ST2aß fa cto r izes  as

w here a ,ß  label the channels. This o f cou rse  happens fo r  resonances in the 
energy variab le .

Another type o f prob lem  which has excited  the phantasy o f many, me 
included, is  how to continue the amplitude fo r  Re X < 0. My personal phi­
losophy is  in favour o f cou rse  o f the sym m etry (15.1), but there are som e 
who would like to see what happens fo r  ord inary  potentials. W ell, this p rob­
lem  has been com plete ly  solved  by two papers by F ro issa rt and Mandelstam. 
F ro issa rt so lves  it fo r  a ll potentials, and he finds indeed a lot of singularities; 
in particular, there are singu larities about any tim e the analytic continuation 
o f the M ellin  tran sform  o f V;

(15.2)
o

is  singular in X. T here are other sou rces  o f singularities, but we stick  to 
(15. 2) just to exem plify . C learly  we can produce alm ost anything by a ju ­
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d icious ch o ice  o f V(r), including a natural boundary of Re X = 0. M oreover, 
sm all variations in V do not correspon d  to sm all variations in M(X), and in 
fact M(X) is  com plete ly  unstable in Re X < 0. So no definite V-independent 
con clu sion  can be deduced from  this analysis. Mandelstam solves the Yukawa 
potentials in a very  elegant way, which is  used later by L ovelace in order to 
ca r ry  out n um erica l ca lcu lations on the tra je cto r ie s , that is , on the function 
X0 (s). The M andelstam  method reduces to the tim e-honoured Schroedinger 
method o f solv ing the hydrogen atom where the Yukawa potential reduces to 
a Coulom b potential.

N um erica l ca lcu lations have been perform ed  in large amounts, but un­
fortunately much effort has been wasted in calculating tra jector ies  fo r  nega­
tive Re X,where, as stated, their physical interpretation is  doubtful and 
where in fact they do cra zy  things. These calcu lations show a definite pattern 
in Re X > 0 which can be sketched as fo llow s: We know that fo r  negative rea l 
en erg ies  the tra je c to r ie s  lie  on the rea l axis and m ove forw ard with increasing 
en erg ies . W here E = 0,the pole leaves the rea l axis forw ard i f  in that point 
X > i , at I. angle i f  X = i (s waves) and backwards i f  X < £. The pole then 
eventually swings backw ards into the Re X < 0 region.

If we let the range m ' i o f  the Yukawa potential grow  to infinity, that is , 
we ca rry  out the transition  to Coulom b potential, the pole leaves the rea l 
axis at very  large  angular mom enta. T h erefore , it c r o s s e s  the integer 
values sev era l tim es, and many bound states a rise . The sw ing-back loop 
is  then v ery  large , and in the lim it m = 0 it plunges into infinity. We have 
then an infinite num ber o f bound states.

Fig. 5 

Swing back loop

APPENDIX I

In this appendix we deduce a ll the in tegra l equations appearing in these 
lectu re  notes. The schem e by which they can be derived  is  sum m arized in 
Table I.
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D d2 X2- 1/4 

dz2 z 2
d 2 . ^ I / ±  + k2
dz2 z2 d z 2

d2 _ A ! l i ^  + k2
dz2 z2

h V (z )-k 2 V(z) V ( z ) + ^ i V(z)

Behaviour 
o f tp at 
z ->z1 = 0

z X+l/2 z Xn/2

Behaviour 
o f ip at
Z -* Zj = °o

-ikze -ikze

\
z X+!/2 (2 /k jr (x + i)

X z!/2Jx (kz)
Äikze

e iir(X+i/2)/2
(itkz\i/2 CD 

Xlv~ j  H x (kz)

\
z -Wl/2

(2/k)’Xr (-X + l)  

Xz1/,2J (kz)
"ikze

e-i7T(X+i/2)/2
/Tkz\l/2 (2)

X ^ -g - )  Hx (kz)

w [ ^ 2] -2X -2X -2 ik - 2ik

Let us con sid er a d ifferen tia l equation o f this kind:

D(X, k, z)ip (X, k, z) = dz^ + g(X, k, z) <p(X, k, z) = h(X, k, z) ip(X, k, z).

(A l.l )

As is  w ell known, the in tegra l equation equivalent to (A 1.1) is

ip(X,k,z) = linup (X, k, z) + W[ \np^ ‘  k< zW X.k.z'Jdz',
zi

w here ipi and ip2 are  two independent solutions of the " fr e e "  equation

D(X, k, z)ip(X, k, z) = 0,

and
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APPENDIX II

H ere we want to give the m a jo r izations o f the in tegral equations deduced 
in App. I in o rd er  to deduce analytic properties  o f the functions <£(X, k, z) 
and f(X, k, z). The in tegra l equations we are dealing with can be written in 
this general fo rm :

Z

g(X, k, z) = g Q(X, k, z) + L(\, k, z ') g(X, k, z ')d z '. (A2.1)

Then

Z

|g(A, k, z)| ^ |g0(X, k, z)| + J  |L(A, k, z ')g(\ , k, z')dz'| .

A1

It is  usefu l to introduce the notations

|g0 (Xj k, z) | ^ M(A, k, z), G (A ,k ,z) =

in o rd e r  to get

z

IgCX, k ,  z ) |  s 1  +  J  |K(X, k ,  z ')  G(X, k ,  z ')d z '| ,

where

K(x- k- z ' ' -  L <x -

By using TITCHM ARSCH's lem m a [15], we obtain

Z

|g(X, k, z) | s  M(X, k, z) exP ^ J  |K (X> k. z ')dz
zi

Let us w rite the solution o f (A 2.1) in the follow ing way:

oo

g(X, k, z) = ^  gn(X, k, z).

n=0

Then T itch m a rsch ’ s lem m a a ssu res  the convergence o f this se r ie s  if  we 
put an upper bound to the in tegral:
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z

fi K(X, k, z ')d z ' . (A2.2)

The com m on  reg ion  o f analyticity o f a ll term s gn represen ts the analyticity 
dom ain o f g(X, k, z). We give in the follow ing the m ajorizations o f the integral 
(A 2.2) fo r  the in tegra l equations p rev iou sly  written:

k, z) = z
o .

A + l /2  X + 1 /2 '
' [ V ( z ')  - k 2]<MX, k, z ')d z ',

X- 1/2 . /\+ 1/2 '

|g0 (X, k, z) | = |zX+1/2| =  M(X, k, z),

>\+ 1/2 z<\+ 1/2 z \+ 1/2

z X- 1/2 z'X - l / 2

.'2X+ 1

2X
- z'\ s  2 z ', Re X s  0,

|v(z') - k*| = Hz'e ‘ 2 + N = Rz'e,e- 2

w here k is  fro m  any finite dom ain o f the k-plane, where the upper lim it o f 
k2 is  N. H and R are constants.

Z

fl K(A, k, z ')dz'| —  f l -  
1*1 J  L

A+1/2

2 I X I J  I z X+ 1/2

Z'X+ 1/2 z X+ 1/2

z X+ 1/2 Z'X - 1/2
V (z ') -k  dz'

R ■ ^  z 'e 2 z 'd z ' R
el X r

It is  now apparent that <f>(X, k, z) is  an in tegra l function o f k, holom orphic 
in the half-plane Re X > 0 (continuous fo r  Re X = 0).

'-z)_e -ik(z'- z) V (z ') f(X, k, z ')d z ',

|g. {K  k, z) | = | e '  z| s  M(X, k, z),

90 OO

j | K ( z ' ) d z ' |  = - - l _ y | e - ik(z ' - z ) | | e ik(z/- z) - e ' ik (z S z ) V (z ') +
,»2

dz ',

|l - e '2lk̂ z "z* I s  N = c o n s t . , Im k i  0.



324 T. REGGE

Then

2, Z

d z 's  Const.

T herefore , f(X, k, z) is  an in tegra l function of X, holom orphic in the half-plane 
Im  k < m /2  (continuous fo r  Im k = 0 ).

F o r  rea l X and Yukawian potentials this analyticity domain o f f(X, k, z) 
can be extended to Im  k < m /2 , and it is  continuous fo r  Im k = m /2 . This 
can be shown by treating the in tegra l equation

in a way s im ila r  to that used before .
This method cou ld  have been used to derive the game analytic properties 

fo r  the prim e derivatives o f the solutions considered .

We know from  standard textbooks the m ost im portant properties of 
Legendre functions. It is  w ell known that Legendre functions are particular 
ca se s  o f h ypergeom etric functions with singularities located at ± 1 and oo. 
T h ere fore ,th e  only singu larities o f P$(x) and Q t (x) lie  on ±1 o r  » .

F rom  the gen era l theory  o f Legendre equations one finds out at once 
that in  ± 1 the solutions either are regu lar o r  have a logarithm ic singu­
la rity . It is  alw ays p oss ib le , how ever, to ch oose  the param eters in the general 
in tegra l o f the equations in such a way as to make the solution regular in 
a given point. In particular, P f (x) is  regu lar in x = 1 and P t (1) = 1 and Q t (x) 
is  regu lar at x = »  provided Re (c) + 1/2 ^ 0. Since f enters in the d iffe r­
ential equation under the fo rm  0 ( P+ 1) and since the boundary conditions 
fo r  P j(x ) a re  ( -independent, it fo llow s from  a general theorem  o f Poincare 
that P{ (x) is  an entire function o f f fo r  x fixed  and that R j-i (x) = P £ (x) b e ­
cau se  f(C + l) is  invariant under the substitution C—- f -1 .  A lso ,if X = ( + 1 /2 ,

P{ (z) has a cut between -1  and - « .  It is  otherw ise regular in z. Its asym p­
totic  behaviour fo r  large  X is  given by

f(X, k, z) = f 0(X, k, z)

Z

APPENDIX III

P\ - l/i*} ~ p-x- i /^ x). (A 3.1)

P i - i f t l c o s h « ) «  . (A3.2)
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F o r  la rge  z P f (z) = 0 (z { ). Q t(z) is  instead defined through its behaviour 
fo r  large  z; that is ,

If Re f + 1 /2  > O.this is  the only solution which does so apart from  a m ulti­
p lica tive  fa ctor . We have a lso  fo r  large  X

This relation  says th at-Q*. 1 / 2 (2') has poles in Re C < 0 at the negative half­
in teger points. In these points the residuum  o f Q x - i / j i s  given by the c o r r e ­
sponding P v i/2 . which turn out to be polynom ials. F rom  the pre-ex isting  
literature one knows already that Qx-1/2 is  regu lar in Re 0 > 0.

We have a lready listed  the sym m etries  arisin g  from  the reflection  
o r  1. But the L egendre equation turns out also to be sym m etric

under the exchange z -» = z. The consequences of this fact are

T here is  am biguity in taking e±i,r because Q v i /2(z) has a cut -1 a 2 a - 00.
It has to be rem arked  that,in en circ lin g  anticlockw ise both points ± 1, 
is  m ultiplied by the fa cto r  e -2™ ^ so  that Q x - i / iz ) 1/,2is  left unaffected. 

We a lso  have:

M ehler has found the follow ing in teresting  inversion  form ula when A is  im ­
aginary (con ica l functions): If

(A 3.3)

Q Vi /2 (C0S h a) = (A 3.4)

Q j(z ) has s ingu larities in both 1 and -1 . M oreover,

Q-x-1 / 2^  = Q v i /2(z) + 7 rt§ ^  PV1A <z>- (A3.5)

(A3.6)

(A 3.7)

i f  A is  half integer, it red u ces sim ply to

Pf (-x ) = (- )* P f (x). (A3.8)

(A3.9)

then

0
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valid  under conditions s im ila r  to those of the F ou rier  transform . They can 
be w ritten as

i «

j* XdX tg ttX Px_1/2(f )P x_1/2 fa) = -2 i 6(S - rj). (A3.10)
-ioo

This is  the prototype o f many in tegrals to be derived. F rom  (A3.5) we have

ioo

I  X d X  P X - l / 2  ( 5 )  Q + X - l / 2 (,l) =  ± i 7 r 6 (?  - »»)• (A 3 - n >

-ioo

We notice  that easily

ioo

\ X d A Q  (z ) Q . , ( z j ......... Q , (zn) = 0, (A3.12)J + X-1/2 l '  +X.-1/2 2' +X-1 A n'
-ioo

w here a ll ± are  corre la ted .
(A 3.11) fo llow s from  the fact that the integrand is  analytic in the right 

(left) hand plane and it vanishes there at large d istances.
Take now H eine’ s form ula:

7 ( 2 ^ 1 )  Q t (?) P (rj) = 1/(1 - n). (A3.13)

which holds fo r  Im a > Im ß where co s  a = g, c o s ß  = rj. Take S, rj rea l > 1
and apply to it the W atson-Som m erfeld  transform . We get

i *

J x d A Q iW/!£ )  Pw /2  (n) tg -A  = i / ( ?  - n); (A3.14)
-iac

and using (A 3.5),

iK

J X d A Q x -!/2( ? )  Q-x -i/2(n) 3 r,)- (A3.15)
- i ®

We can have m ore  com plicated  identities as fo llow s: Take the addition theo­
rem  fo r  L egendre functions ( 5 integer):

P c (x) P t (y) = P f (xy + V i - x 2Vi - y 2 cos  c)

+ 2 L ^ ^ r ü  + m + i) p ™(x) p ™(y) c o s m ^  (A 3 -16)
m = 1

Re x > 0; Re y > 0; | arg (x - 1) | < " ;  ] arg(y  - 1) | < ~.
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Let us integrate this on ^betw een 0 and x. A ll term s containing co s  m ip 
vanish,and we have

7T

Pf (x) P f (y) = j j  Pf (xy + V 1 - x 2 \fl - y2~ cos  ^)d (A 3.17)
o

Let

z = xy + \]l - x 2 \Jl - y 2 c o s  \p

be a new variab le  instead o f ip.
We have

j , j  j  1 dzdi// = —̂ dz = dz j—/. , = ■ —, —; ------d z  dz/dip / ,  2 . A 2 .
' y  1 - x Vl - y sin ^

but

sin ip = \J 1 - c o s 2i// = \/l - (z - xy) 2/ ( i  - x 2)( l  - y 2) 

= \ /l  - z 2 - x2 - y2 + 2xyz/ \/(l - x2)( l  - y 2)

so  that

d^/ = - d z /V l  - z2 - x2 - y2 + 2xyz.

It is  ea sily  seen that the lim its  o f integration in z are the points where
1 - z2 - x2 - y2 +2xyz van ishes. It fo llow s that.

P, M P, (y) ■ J f  p. (A3.1S)
V I  - z - x - y +2xyz

F rom  th is it is  evident that (x, y, z < 1 and real)
oo

y  (2P + 1) P (x) P (y) P (z)
f = 0

= [ 2 / it) 0 ( 1  - z2 - x 2 - y2 +  2xyz) / \ / 1 _ z2 - x2 - y2 + 2xyz 

= ( 2 / tt) K^x, y,  z) (A3 19)
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TABLE II
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[eo

\ F (X) X d X
-ioo

Q (a) Q (ß)
±X-l/2 ±X-l/2

0 (B2.30)

«X -1 /sW  Q-X-l/2®) iiria-ß)1 (B2.31)

Q ±X-1/2(ö) P x-1/2(ß) ±inö(a-ß) (B2.32)

Q iX -l/2^) i (a -ß ) '1 (B2.33)

P X-l/2(®) F \ - l/ 2 ^ tS7rX - 2i6 (a-ß) (B2.34)

^ iX - l /2 ^  ^ ± X -l/2 ^  ^ ± X -i/2 ^ 0 (B2.35)

Q*x-1/2(«) < W ^  <Z±i-u p )

OO

±ijr^du K(u);a, ß) (u-y) 1 
l

(B2.36)

^±X-l/2^^ P X-l/2 ^ ±iirK(y;a, ß) (B2.37)

Q X-1/2^  Q x-1/2®) P X-1/2M i* jK (a ;0 ,7 ) -K (| 3 ;a ,7 ) j. (B2.38)

Q ±X-1/2(q) Q ±X-l/2(ß) P X-l/2('1')tS7rX

00

dco K(u; a, ß) (uj - y ) 1
l

(B2.39)

Q x-1/2(«) Q -x -i/2(ß) p x-i/2W tg r t
. C/K(„;a y)_K(„;ß,y)^ 

J\ u-p u-a J (B2.40)

Q ±x-1/2W  p x-1/2(ß) p x-i / 2M ±i K l (a J ß, y) (B2.41)

Q±X-l/2(a ) -^X-l/2^) ^ X 'l / 2 ^ ^ 1^ i H(a; ß,y) (B2.42)

P X -l/2 ^  P X -l/2 ^  P X-l/2^^t®7rX (2/ffi) K :  (a, ß,y) (B2.43)
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by definition . This rem arkable  form ula cam e to our knowledge through 
P ro f. G oldberger and does not seem  to appear anywhere in the literature.
It gen era lizes  the usual

oO

■£(2P + 1) Pc (x) P f (y) = 2 6 (x -y ) .  (A3.20)
0

We could  try  the W atson tran sform  d irectly  on (A 3.18),but it would be of 
no use because it does not con verge . A better way is  to m ultiply (A 3.18) 
by 1 / ( ?  - x) and integrate on x between ± 1. The resu lt is

£ ( 2 «  + l )  Q { (?) P { (y) P 4(z) = l M 2+ y + z 2 -2 y z C - 1. (A3.21)

t

(A 3.21) is  valid  a lso  when ? ,y ,  z are com plex,w hile in (A3.19) they had 
to be rea l. The only condition  is  that, i f  c o s  ß = y, c o s  y -■ z, co s  a = f, then 
I m ? >  Im ß + Im 7 . Applying to (A 3.21) the Watson transform ,w e get

i "

j V d X t g r X Q ^ G )  p x. 1/2(n) PX. 1/2(S)
-im

= i / v ? 2 + n + ?2 - 2 ?n i + 1 .

Using identity (A 3.11), (A 3.5) repeatedly, one a rr ives  at a large number of 
in tegra ls . We skip here a detailed p roo f and lim it ou rselves to giving a table 
o f them  (Table II). Here K x is  defined by (A 3:19) and

K (€; n, ?) = 0(5 -5>)/V?2+?2 + n2- 2̂ ?? - 1-,

w here f  > is  the la rgest root o f the denom inator;

H (?; ri, S) = K (? ;n , 5) - K (rj;5 ,5) - K (S ;i.n ).

Many other identities can be written, but they would take much m ore space 
and we re fe r  the reader to a com ing paper by V. de A lfaro, T. Regge and 
G. R ossetti to be published in Nuovo Cimento.
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