
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

PT-symmetric quantum theory
To cite this article: Carl M Bender 2015 J. Phys.: Conf. Ser. 631 012002

 

View the article online for updates and enhancements.

Related content
Nonlinear eigenvalue problems and PT-
symmetric quantum mechanics
Carl M. Bender

-

PT symmetric interpretation of effective
potentials
Sarben Sarkar

-

Fast Track Communication
Zafar Ahmed

-

Recent citations
Entanglement in Nonunitary Quantum
Critical Spin Chains
Romain Couvreur et al

-

Phase time and transmission probability in
the traversal of a PT-symmetric potential:
The case of an electromagnetic
waveguide
M. Di Mauro et al

-

Weyl Exceptional Rings in a Three-
Dimensional Dissipative Cold Atomic Gas
Yong Xu et al

-

This content was downloaded from IP address 131.169.4.70 on 26/12/2017 at 23:21

https://doi.org/10.1088/1742-6596/631/1/012002
http://iopscience.iop.org/article/10.1088/1742-6596/873/1/012002
http://iopscience.iop.org/article/10.1088/1742-6596/873/1/012002
http://iopscience.iop.org/article/10.1088/1742-6596/873/1/012051
http://iopscience.iop.org/article/10.1088/1742-6596/873/1/012051
http://iopscience.iop.org/article/10.1088/1751-8113/42/47/472005
http://dx.doi.org/10.1103/PhysRevLett.119.040601
http://dx.doi.org/10.1103/PhysRevLett.119.040601
http://dx.doi.org/10.1142/S0217979217502137
http://dx.doi.org/10.1142/S0217979217502137
http://dx.doi.org/10.1142/S0217979217502137
http://dx.doi.org/10.1142/S0217979217502137
http://dx.doi.org/10.1103/PhysRevLett.118.045701
http://dx.doi.org/10.1103/PhysRevLett.118.045701


PT -symmetric quantum theory

Carl M. Bender
Physics Department, Washington University, St. Louis, MO 63130, USA

E-mail: cmb@wustl.edu

Abstract. The average quantum physicist on the street would say that a quantum-mechanical
Hamiltonian must be Dirac Hermitian (invariant under combined matrix transposition and
complex conjugation) in order to guarantee that the energy eigenvalues are real and that time
evolution is unitary. However, the Hamiltonian H = p2 + ix3, which is obviously not Dirac
Hermitian, has a positive real discrete spectrum and generates unitary time evolution, and
thus it defines a fully consistent and physical quantum theory. Evidently, the axiom of Dirac
Hermiticity is too restrictive. While H = p2 + ix3 is not Dirac Hermitian, it is PT symmetric;
that is, invariant under combined parity P (space reflection) and time reversal T . The quantum
mechanics defined by a PT -symmetric Hamiltonian is a complex generalization of ordinary
quantum mechanics. When quantum mechanics is extended into the complex domain, new
kinds of theories having strange and remarkable properties emerge. In the past few years, some
of these properties have been verified in laboratory experiments. A particularly interesting
PT -symmetric Hamiltonian is H = p2 − x4, which contains an upside-down potential. This
potential is discussed in detail, and it is explained in intuitive as well as in rigorous terms why
the energy levels of this potential are real, positive, and discrete. Applications of PT -symmetry
in quantum field theory are also discussed.

1. Introduction
Physical systems whether they are classical or quantum-mechanical, are described by a quantity
called the Hamiltonian. In conventional quantum physics two kinds of Hamiltonians are used, (i)
Hermitian Hamiltonians, which govern the behavior of isolated systems, and (ii) non-Hermitian
Hamiltonians, which govern the behavior of systems in contact with the environment. Hermitian
Hamiltonians describe idealized systems in equilibrium whose total energy and probability are
conserved; the energy levels of such systems are real. Non-Hermitian Hamiltonians describe the
phenomenological behavior of experimental systems involved in scattering or decay processes.
Such systems receive energy from and/or deposit energy into their environment, so they are
typically not in equilibrium, the total energy and probability are not conserved, and the energy
levels are complex numbers; the imaginary part of an energy level is associated with the lifetime
of the physical state or the width of a scattering resonance.

This talk introduces and summarizes new kinds of Hamiltonians called PT -symmetric
Hamiltonians, which are intermediate between Hermitian and non-Hermitian Hamiltonians.
Like non-Hermitian systems, PT -symmetric systems are not isolated, but their contact with the
environment is highly constrained so that gain from the environment and loss to the environment
is exactly balanced. As a consequence, even though they are not isolated, PT -symmetric systems
behave like Hermitian systems in that they are in equilibrium and their energy levels are real.
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The special kinds of systems discussed here are called PT symmetric because they are
invariant under the combined operation of space reflection (designated parity P) and reversing
the arrow of time (designated T ). PT -symmetric quantum systems were discovered in 1998 (in a
highly theoretical and abstract context) by Prof. Bender [1], who proposed the idea of extending
real (Hermitian) quantum theory into the complex (non-Hermitian) domain. (By analogy, in
mathematics it is extremely useful to extend the real numbers to the complex numbers; doing so
helps to elucidate the properties of the real number system.) Since its inception sixteen years ago
there have been dozens of experimental confirmations published in Nature, Science, and Physical
Review Letters in diverse research areas such as optics [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14],
NMR [15], superconductivity [16, 17], microwave cavities [18, 19], lasers [20, 21], atomic diffusion
[22], electronic circuits [23, 24], chaos and noise [25, 26], mechanical systems [27], and graphene
[28, 29]. Some particularly interesting recent experimental work involves the study of PT -
symmetric whispering-gallery microcavities [30, 31, 32]. New experiments involving Bose-
Einstein condensates are in the planning stage [33, 34, 35] and new PT -symmetric metamaterials
are being developed [36, 37, 38, 39]. As an indication that the study of PT symmetry is now
part of the scientific and technological mainstream, it is noteworthy that in August 2012 the
U.S. Air Force Office of Scientific Research issued a Broad Agency Announcement (BAA) calling
for scientific proposals, including research and development of PT -symmetric optical systems
and synthetic PT metamaterials [40]. (A $5 million experimental MURI grant was awarded in
June 2013.) This BAA is a significant recognition of PT symmetry, which was originated by
Prof. Bender just 14 years earlier.

Over the past sixteen years, the research area of PT symmetry has become highly
interdisciplinary with an explosion of theoretical and experimental research and new papers
appearing on the arXiv daily. There are now nearly two thousand published papers on the
subject of PT symmetry. This explosive growth is reflected in the fact that there have now been
more than twenty international conferences entirely devoted to PT -symmetric quantum theory.

2. Elementary PT -symmetric quantum-mechanical systems
An example of a class of non-Hermitian PT -symmetric Hamiltonians having entirely real,
positive, and discrete spectra is

H = p2 + x2(ix)ε (ε real) (1)

(see Fig. 1). The spectrum of H for ε > 0 is real because its PT symmetry is unbroken (that is,
the eigenstates of H are also eigenstates of PT ). When ε < 0, the PT symmetry of H is broken
and the spectrum is not real. Conventional Hermitian quantum mechanics (here, the harmonic
oscillator) sits at the transition between the regions of unbroken and broken PT symmetry.
Ref. [1] proposed that the physical requirement of PT symmetry (that is, spacetime reflection
symmetry) could be used in place of the mathematical condition of Hermiticity. Because PT
symmetry is a weaker requirement than Hermiticity, Hamiltonians that previously would have
been rejected as unphysical can now be considered as potentially valid descriptions of physical
processes.

A reader unfamiliar with PT -symmetric quantum mechanics will regard Fig. 1 as astonishing
because it shows (contrary to what one would naively expect) that the eigenvalues of H = p2+ix3

(pure imaginary potential) and H = p2 − x4 (upside-down potential) are real, positive, and
discrete. An intuitive explanation of why the eigenvalues of the upside-down −x4 potential are
real, positive, and discrete was given by Bender along with Berry and Ahmed [41] and an exact
calculation can be found in Ref. [42]. Dorey, Dunning, and Tateo proved rigorously that for all
ε ≥ 0 the eigenvalues of H = p2 + x2(ix)ε are real [43, 44]. Their proof establishes a beautiful
mathematical correspondence between ordinary-differential-equation eigenvalue problems and
integrable models, which is known as the ODE/IM correspondence [45].
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Figure 1. Energy levels of the parametric family of Hamiltonians H = p2+x2(ix)ε in (1). When
ε ≥ 0, the eigenvalues are all real and positive, and they increase with increasing ε. When ε
decreases below 0, the eigenvalues disappear into the complex plane as complex conjugate pairs.
Eventually, only one real eigenvalue remains when ε is less than about −0.57, and as ε approaches
−1 from above, this eigenvalue becomes infinite.

3. The PT phase transition
A crucial aspect of the energy levels in Fig. 1 is that they exhibit a transition, known as the
PT phase transition, in which they become pairwise degenerate at exceptional points and move
off into the complex plane. This transition is a generic characteristic of PT -symmetric systems
but cannot occur in conventional Hermitian quantum systems because such systems can never
have complex energies. This phase transition is the signature and characteristic behavior that
was observed in many of the experiments mentioned above.

4. Extending physical theories into the complex plane tames instabilities
The discovery of complex numbers was a major development in mathematics because it allowed
one to solve equations such as 1 = −x4 that were thought to have no solution. Analogously,
extending physics into the complex plane also yields new insights. For example, the conventional
belief is that one should reject theories based on apparently unstable upside-down potentials such
as V (x) = −x4 because a classical particle on the real axis subject to this potential will zoom
off to ±∞ (unless it is precariously balanced at rest at x = 0). As a consequence, one would
believe that the spectrum of the Hamiltonian for the quantum system is not bounded below and
that there is no ground state. This belief is wrong!

How does an upside-down quartic potential confine classical and quantum particles? Let us
calculate the time for a classical particle of energy E in an −x4 potential to travel to infinity. The
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time of flight T from x = 0 to x =∞ for a particle described by the Hamiltonian H = p2−x4 is

T =
∫ T

t=0
dt =

∫ ∞
x=0

dx

ẋ
=
∫ ∞
x=0

dx

2
√
E + x4

.

This time is finite because the integral exists. After the particle reaches infinity in finite time,
where does it go next? To answer this question we examine the particle’s motion in the complex-
x plane. Figure 2 shows four trajectories in the upper-half x plane; the trajectories are all closed,
periodic, and stable orbits. (One trajectory represents oscillatory motion between the turning
points at x = eiπ/4 and x = e3iπ/4.) We emphasize that all trajectories of a particle of positive
energy E in a −x4 potential are stable PT -symmetric (left-right symmetric) orbits encircling
pairs of turning points, which are the solutions to the equation

E = −x4.

The unstable motion on the real-x axis becomes infinitesimally rare (with probabilistic measure
zero). The classical particles spend almost all their time near the origin x = 0 because this is
where the particles are moving slowest, so x = 0 is NOT a point of instability. As the trajectories
approach the real axis, the classical particle does not simply disappear at x = ±∞. Rather, as
the particle reaches ±∞, it instantly reappears at ∓∞. Thus, the classical particle periodically
completes the transit from ±∞ to ∓∞. (This periodic motion is equivalent to a flux of particles
on the real axis with a source at ±∞ and a sink at ∓∞.) A three-dimensional plot of the
absolute value of the complex classical probability is shown in Fig. 3.

If we quantize the theory, we find that an upside-down potential has discrete quantum
bound states. Indeed, the −x4 potential has bound states that are localized at x = 0. This
counterintuitive, but rigorous fact contradicts the naive view that the origin is unstable. To see
why the quantum energies are discrete and not continuous, recall the Bohr-Sommerfeld concept
of quantization. A quantum particle is a wave, and if the classical motion is periodic, the wave
must interfere with itself constructively. The condition for constructive interference is∮

dx
√
E − V (x) = (n+ 1/2)π (n = 0, 1, 2, . . .),

which is the complex version of the WKB quantization condition. Thus, complex classical
mechanics provides the insight to explain how complex quantum-mechanical systems work and
why complex systems can be stable when their real counterparts appear to be unstable.

5. Differences between PT -symmetric and conventional quantum theory
PT -symmetric quantum theory is not in conflict with conventional quantum theory; rather,
it is generalization of it. An important early discovery regarding PT -symmetric quantum
theory is that there is a (positive-metric) Hilbert space if the PT symmetry of the quantum
theory is unbroken (which means that the energy spectrum is real and bounded below) [46].
This PRL showed that when the PT symmetry is unbroken, the theory possesses a hidden
symmetry represented by a linear operator C, which commutes with the Hamiltonian. C
represents a new observable quantum number mathematically related to particle-antiparticle
symmetry. The Hilbert-space metric is the CPT inner product, and with respect to this
new inner product (rather than the conventional Dirac inner product) the non-Hermitian PT -
symmetric Hamiltonian generates unitary time evolution. Thus, a PT -symmetric theory is
consistent with the fundamental axioms of quantum mechanics. These results were extended
from PT -symmetric quantum mechanics to PT -symmetric (spacetime symmetric) quantum
field theory in a subsequent PRL [47] and in a PRD paper [48]. (For recent work on the C
operator, see Refs. [49, 50, 51].)
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Figure 2. Closed periodic trajectories for H = p2− x4 in the upper-half complex-x plane. The
energy is E = 1. Turning points located at x = eiπ/4 and x = e3iπ/4 are indicated by dots.
(The two other turning points in the lower-half plane are not shown.) Initial conditions are
x0 = i, i/2, i/4, i/8. A key feature of PT -symmetric systems is that while they appear open
from the narrow perspective of the real axis, they become closed when extended to the complex
plane.

To see that PT symmetry is a generalization of standard Hermiticity, we take the limit ε→ 0
in the Hamiltonian H = p2 + x2(ix)ε. In this limit the CPT norm reduces to the Hermitian
conjugate norm of conventional quantum theory. The connection between the C operator in PT -
symmetric quantum field theory and the charge-conjugation operator in conventional quantum
field theory is not yet understood. They are both Lorentz scalars [52], but in particle physics
parity P and charge conjugation C commute; in PT -symmetric quantum theory they do not.
Thus, PT -symmetric “particles” (states of positive C) and “antiparticles” (states of negative
C) may have different masses. It is conceivable that this fact might account for the so-far-
unexplained baryon-antibaryon asymmetry of the universe.
PT -symmetric quantum systems have characteristically different behaviors from ordinary

quantum systems. In addition to the PT phase transition, PT -symmetric systems can evolve
faster than conventional Hermitian quantum-mechanical systems, as claimed in Ref. [53]. The
predicted fast time evolution has been observed in NMR experiments [15]. Also, DeKieviet, an
experimentalist at the University of Heidelberg (probably the world’s expert on atomic-beam
spin-echo experiments) observed this predicted fast time evolution in experiments involving
He3 beams. He presented his work at an ECT conference in 2012 [54]. Another characteristic
difference: Hermitian periodic potentials, such as V (x) = sinx, exhibit energy bands and gaps.
At one edge of each band of allowed energies the wave function is bosonic (2π periodic); at the
other edge the wave function is fermionic (4π periodic). However, while PT -symmetric periodic
potentials such as V (x) = i sinx also have real energy bands and gaps, there are half as many
gaps [55]. At the band edges the wave function is always bosonic and never fermionic. It would
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Figure 3. Three-dimensional plot of the probability (inverse of the absolute value of ẋ) for
a contour beginning at x0 = i/64 in the complex plane. The classical energy is E = 1. The
classical particle executes a rapid loop in the complex plane but goes slowly near the origin.

be a difficult experiment (possibly involving neutron scattering), but a laboratory observation of
a material having this kind of band structure would be clear evidence of a fundamental physical
system described by a PT -symmetric Hamiltonian; such a material could be regarded as a
complex PT -symmetric crystal.

6. Illustrative 2× 2 matrix example of a PT -symmetric Hamiltonian
Let us consider the elementary 2× 2 Hamiltonian matrix

H =

(
reiθ s
s re−iθ

)
,

where the three parameters r, s, and θ are real. (This matrix Hamiltonian was discussed in
Ref. [56].) The Hamiltonian H is, of course, not Hermitian, but it is easy to see that it is PT
symmetric, where we define the parity operator as

P =
(

0 1
1 0

)
and we define the operator T to perform complex conjugation.

As a first step in analyzing the Hamiltonian H, we calculate its two eigenvalues:

E± = r cos θ ± (s2 − r2 sin2 θ)1/2.

There are clearly two parametric regions to consider, one for which the square root is real
and the other for which it is imaginary. When s2 < r2 sin2 θ, the energy eigenvalues form a
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complex conjugate pair. This is the region of broken PT symmetry. On the other hand, when
s2 ≥ r2 sin2 θ, the eigenvalues are real. This is the region of unbroken PT symmetry. In the
unbroken region the simultaneous eigenstates of the operators H and PT are

|E+〉 =
1√

2 cosα

(
eiα/2

e−iα/2

)
and |E−〉 =

i√
2 cosα

(
e−iα/2

−eiα/2

)
,

where
sinα =

r

s
sin θ.

The PT inner product (which is not the correct inner product) gives

(E±, E±) = ±1 and (E±, E∓) = 0,

where (u, v) = (PT u) · v. With respect to the PT inner product, the vector space spanned
by the energy eigenstates has a metric of signature (+,−). If the condition s2 > r2 sin2 θ for
an unbroken PT symmetry is violated, the states are no longer eigenstates of PT because α
becomes imaginary. When PT symmetry is broken, the PT norm of the energy eigenstate
vanishes.

Next, we construct the operator C:

C =
1

cosα

(
i sinα 1

1 −i sinα

)
.

Note that C is distinct from H and P and it has the key property that

C|E±〉 = ±|E±〉.

The operator C commutes with H and satisfies C2 = 1. The eigenvalues of C are precisely the
signs of the PT norms of the corresponding eigenstates. Using the operator C we construct the
new inner product structure 〈u|v〉 = (CPT u) · v. This inner product is positive definite because
〈E±|E±〉 = 1. Thus, the two-dimensional Hilbert space spanned by |E±〉, with inner product
〈·|·〉, has signature (+,+).

Finally, we show that the CPT norm of any vector is positive. For the arbitrary vector
ψ =

(a
b

)
, where a and b are any complex numbers, we see that

T ψ =
(
a∗

b∗

)
,

PT ψ =
(
b∗

a∗

)
,

CPT ψ =
1

cosα

(
a∗ + ib∗ sinα
b∗ − ia∗ sinα

)
.

Thus,

〈ψ|ψ〉 = (CPT ψ) · ψ =
1

cosα
[a∗a+ b∗b+ i(b∗b− a∗a) sinα].

Now let a = x+ iy and b = u+ iv, where x, y, u, and v are real. Then

〈ψ|ψ〉 =
1

cosα

(
x2 + v2 + 2xv sinα+ y2 + u2 − 2yu sinα

)
,

which is explicitly positive and vanishes only if x = y = u = v = 0.
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Since 〈u| denotes the CPT -conjugate of |u〉, the completeness condition reads

|E+〉〈E+|+ |E−〉〈E−| =
(

1 0
0 1

)
.

Furthermore, using the CPT conjugate 〈E±|, we can represent C as

C = |E+〉〈E+| − |E−〉〈E−|.

In the limit θ → 0, the matrix Hamiltonian H for this two-state system becomes Hermitian
and C reduces to the parity operator P. Thus, CPT invariance reduces to the standard condition
of Hermiticity for a symmetric matrix; namely, H = H∗.

7. PT symmetry clarifies questions in conventional quantum mechanics and
quantum field theory
PT symmetry has explained some long-standing mysteries regarding non-Hermitian
Hamiltonians that were used in the past. For example, in 1959 Wu showed that the ground
state of a Bose system of hard spheres is described by a non-Hermitian Hamiltonian [57]. Wu
found that the ground-state energy is real and conjectured that all energy levels were real. In
1992 Hollowood found that while the Hamiltonian for a complex Toda lattice is non-Hermitian,
the energy levels are real [58]. Non-Hermitian Hamiltonians of the form H = p2 + ix3 and cubic
quantum field theories having imaginary self-interaction terms also arise in studies of the Lee-
Yang edge singularity [59, 60, 61, 62] and in various Reggeon field-theory models [63, 64, 65]. In
all these cases a non-Hermitian Hamiltonian having a real spectrum was confusing at the time;
the explanation is now clear: In each case the non-Hermitian Hamiltonian is PT -symmetric.

8. PT symmetry tames instabilities in quantum field theory
When a quantum field theory has ghosts (negative-norm states) that arise when renormalizing
the field theory, it is because the Hamiltonian has become non-Hermitian as a consequence of
renormalization. Often, as in the case of the Lee Model, this Hamiltonian is PT -symmetric, and
if it is quantized using the CPT metric appropriate for the Hamiltonian instead of the standard
Dirac inner product, these “ghost states” can be re-interpreted as conventional physical states
having positive norm. A case in point is the Lee model, which was proposed by T. D. Lee in 1954
as a quantum field theory in which the renormalization program could be carried out exactly
and in closed form [66]. One year later, Källén and Pauli found that upon renormalization
the model develops a new negative-norm state that makes the S matrix nonunitary [67]. The
problem of how to treat this ghost state was studied by well-known physicists, including Pauli,
Heisenberg, and Wick, but it remained unsolved for 50 years. The prevailing belief was that the
Lee model was fundamentally flawed [68, 69]. However, in 2005 this 50-year-old problem solved
[70]. This paper showed that the renormalized Lee-model Hamiltonian is PT -symmetric. The
C operator was calculated exactly, the “ghost” state was shown to be a physically acceptable
state, and that the S matrix was demonstrated to be unitary. Smilga et al. [71] and Curtright
et al. [72, 73] followed this approach and showed that other quantum theories that were thought
to contain ghost states actually have physically acceptable positive-norm states when the theory
is quantized according to the techniques of PT -symmetric quantum theory.

9. PT symmetry tames instabilities in the Pais-Uhlenbeck model
In 2008 it was shown that PT symmetry also eliminates the ghost states in the Pais-Uhlenbeck
Model, which is a model higher-derivative quantum field theory. The solution to this 50-year-old
problem was given in Refs. [74, 75]. Again, the Hamiltonian for this model is not Hermitian but
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it is PT -symmetric, and the long-standing belief that this model possesses states of negative
norm is false. These papers show that there may not be a problem with quantizing higher-
derivative field theories. Indeed, the “ghost” in Pauli-Villars regularization may not be a ghost
at all, but rather an indication that the wrong Hilbert-space metric is being used.

10. PT symmetry tames instabilities in the double-scaling limit
The conventional double-scaling limit of an O(N)-symmetric quartic quantum field theory is
inconsistent because the critical coupling constant is negative. Thus, the partition function
integral for the critical theory does not exist. Bender, Moshe, and Sarkar showed that PT -
symmetric quantum theory resolves this problem. In a first paper they demonstrated that
a zero-dimensional O(N)-symmetric quantum field theory avoids this difficulty if the original
quartic theory is replaced by its PT -symmetric analog [76]. A second paper on one-dimensional
O(N)-symmetric quartic quantum field theory [O(N)-symmetric quantum mechanics] showed
that the PT -symmetric formulation of the Schrödinger equation provides a consistent double-
scaling limit [77].

11. Stable PT -symmetric timelike logarithmic Liouville quantum field theory
Complex Liouville quantum field theory has a self-interaction term of the form eiφ and is a
topic of great interest at both the experimental and the theoretical level [78, 79, 80, 81, 82, 83].
A quantum field theory having such a self-interaction term is PT symmetric. However, it is
a remarkable fact that the seemingly unstable PT -symmetric self-interaction term of the form
iφeiφ also gives a theory with a stable vacuum. In fact, this interaction leads to an infinite
number of quantum field theories each of which has a stable vacuum [84].

12. Possible applications of PT -symmetry in the Higgs sector of the SM
There are a number of interesting possible applications of PT -symmetric quantum theory to
the Higgs sector of the Standard Model. In the conventional formulation the Higgs field has
a quartic φ4 interaction term. However, in four dimensions a φ4 quantum field theory is not
asymptotically free and the theory is trivial (noninteracting). In contrast, a PT -symmetric −φ4

theory is asymptotically free and nontrivial. Furthermore, the vacuum expectation value 〈φ〉
is nonzero, not because of spontaneous symmetry breaking, but simply because the boundary
conditions on the partition functional integral automatically imply that 〈φ〉 6= 0. Of course, in
the past a −φ4 model for the Higgs particle was not considered because it was assumed that
the energy spectrum would be unbounded below. In fact, this is not a problem; a −φ4 theory is
stable and has a positive spectrum.

There are further problems with the Higgs model. If one renormalizes the model, one
generates a new interaction term of the form −φ4 log φ in addition to the original φ4 interaction
term, which suggests that the Higgs vacuum becomes unstable [85]. One possible interpretation
of this result is to concede that the vacuum really is unstable but that the lifetime of the
vacuum is sufficiently long that one need not be concerned. We believe that this is a rather
unappealing interpretation. However, as we have repeatedly pointed out, by extending this
quartic interation into the complex domain and treating the interaction term by using the
methods of PT -symmetric quantum theory, we believe that the vacuum actually becomes stable.
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