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1. Introduction

Recently, mainly since the Maldacena conjecture which relates anti-de Sitter theo-
ries ‘in the bulk’ with conformal theories ‘on the boundary at infinity’, singletons
became awidely popular subject in physics on space-times of arbitrary dimensions
(see, eg. [27, 11, 30, 17, 19, 1]). It is therefore important to know more about
these representations and about massless representations of conformal groups. In
this paper we describe some properties of singletons and characterize them after
having given arigorous definition. Since the singletons are related to masslessness
itisimportant to know the nature of that relation and to compare with what happens
in the classical 4-dimensional case.

The n-dimensional anti-de Sitter space-time (AdS,) with (scalar) curvature
—p < 0isdefined as the manifold HE = {(Y?)_1<a<n-1 € R/ Sy2ya = 1/p}.

Here zyayad:ef Eyaybnab where 1 = (nap) is the matrix ( L2 1 >.We assume
N

throughout that n > 3. The invariance group of AdS, is the anti-de Sitter group
S = S0p(2,n — 1) and one has HY ~ S,/Ly, where L, = SOg(1,n — 1) is the
Lorentz group of both AdS, and Minkowski space-time M, = R1"-1,

Now the “time axis’ of Hf is bounded: It isthe S (circle) part in Hf ~ St x
R"1. But if one considers the universal covering H, ~ R x R"™1 of HY, then
the time axis is no longer compact (of course there is no problem if one needs a
physical theory with acyclic time).

(3]
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Consequently, the invariance group is an infinite covering $ of S,. The best
choicefor S, would be acovering which contains the quantum mechanical Lorentz
group, i.e., the spinor covering group L,, such that H? ~ S, /L,,. Having in mind
that an invariance group should be contained in the conformal group, such achoice
is given by the universal covering of §, if n > 4 and, for n = 3, by the infinite
covering of 3 = SOp(2,2), which is contained in, and has the same center as, the
conformal group Gz = SOp(2,3). Thus the fundamental group of §, = SOp(2,n) is
isomorphic to Z x Z, for dl n > 3. Another advantage in using this type of infinite
coverings isthat we can consider deformations of representations, a useful tool for
constructing Gupta-Bleuler (GB) triplets.

Let Gy, = SOy (2, n) the common conformal group ™ of HE, and M. Then G,, con-
tains the Poincaré group P, = SOp(1,n— 1) x Ty, (T, =~ RM), the anti-de Sitter group
Sy = S0p(2,n— 1), and the de Sitter group L1 = SOo(1,n). Itiswell known that
the last two are deformations of the former, so that S, and L1 can be contracted

to Py, It follows that thereisacontraction HY =9 M, which impliesthat aphysical
theory on AdS, cannot be independent of the corresponding one on M,: It must be
compatible, at least for n = 4, with physics in M,. As a consequence, a massless
particle on AdS, should correspond by contraction to a massless particle on M,.
This naturally leads to afirst (weak) definition of masslessness (see Section 3).

Unfortunately this definition does not fix uniquely the notion of masslessness
on AdS,, even for n = 4: Additiona conditions have to be introduced in order
to make it unique. This was done by Flato and Fregnsdal for n = 4 in the 80's
(see [14]). Another way to avoid ambiguity is to consider less weak definitions
of masslessness, introduced in Section 3, such as conformal masslessness or com-
posite masslessness, both related to singletons and to gauge properties. The latter,
as shown by Flato and Freansdal in [13] (see also [23]), is expressed by the well-
known property “singleton ® singleton = & massless representations”, while the
former is (for n > 3) the property of unique extension from representations of the
anti-de Sitter group to the corresponding conformal group. For n = 4, both notions
coincide.

The paper is organized as follows. In Section 2, we define and characterize
finite-dimensional (nonunitary) and infinite-dimensional (unitary) singleton rep-
resentations of SOg(2,n — 1), along with a classification. We also obtain a gen-
eralization of the theorem of Flato and Frensdal mentioned above. We define in
Section 3 some notions of masslessness related to singletons, give their properties
and discuss their differences. In section 4, we construct examples of Gupta-Bleuler
triplets for the singletons and for almost all massless representations. We conclude
the paper by a comparison between the 4-dimensional and higher-dimensional
Cases.

1 Infact, G, isacovering of the actual conformal group.
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2. Singletons of SOp(2,n—1)

2.1. Thefundamental property of singletons

Let%, =Lie(G), /h=LieS), £ =Lie(L,),and £, = Lie(Py). Let (€3) 1<a<n
be the canonical basis of R>" which is endowed with the metric n. Then a set of
generators of ¢, isgiven by {Map} 1, pp,, defined by:

a=n
Map = —Mpa and Maby = Yp€a — Yol Yy = > Yea € R>".
a=—1
The following commutation relations are satisfied:
[Mab, Mcd] = nbcMad + MbdMea — NacMbd — NadMeb. (21

Y, £, and 2, are naturaly embedded in ¢,. To obtain the generators of the
first two Lie algebras one simply restricts the range of indices: {M,g}_1<4 g<n-1
and {My }o<u v<n—1, respectively. &, isthe semi-direct sum of .%, and the Abelian
Lie algebra %, = Lie(Ty), for which a set of generators can be given by
{Ex =M_1, +My nto<u<n—1. They satisfy the commutation relations:

[E.,Ev]=0 and [My.,Ep]l =nvpEu—nupEyr. (2.2

The notation used in physics is related to the present one by: B, = —v/—1E,,,
Luv = v—1M,,, and so on.

Let D be an irreducible representation (IR) of the AdS, group S =
SOp(2,n— 1) on a Banach space #, not necessarily unitary. Let K, ~ SO(2) x
S0(n — 1) be the maximal compact subgroup of S, and K, ~ R x Spin(n — 1)
be the corresponding maximal essentially compact subgroup of $. The common
reductive Lie algebra ¢, is generated by M_1 g and {M;j }1<i j<n-1, the latter gener-
ating the semi-simple part of &. The restriction DI is completely reducible, i.e.,
under the action of Dl one has the direct sum decomposition:

A =DM(u) @K(n), (23)

where each u is ahighest weight (HW) relative to a given order of the roots of &,
K(u) isan irreducible £,-module with weight u and M(u) is atrivia &-module
the dimension of which is the multiplicity m(u) of u. 2#* is the subspace of
differentiable vectors. It is known that 77 is dense in /7. If , isan IR of K,
with weight u then the relation (2.3) may be written:

Dl = @um(u)7m,. (2.4)

Let us write (ug, i) for u = (ug, uz,...,u) where r is the rank of .7 (r is
the entire part of ﬁzl). Let us call u; the energy part (we choose —u; to be the
energy) and 1 the spinor part. Then the diagram of such §’s HW u has more than
one dimension in general (recall that n > 3). Moreover the multiplicity of each
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weight can be different from 0 or 1. But it may also happen that this diagram is
just one dimensional. It is indeed the case for Dirac singletons and the so-called
ladder representations of the conformal group [3, 8, 26, 29] or the representations
of G, called C,-masslessin [25].

When that diagram isincluded in aline then each weight may be obtained from
afixed one by adding an integer multiple of afixed root. Thus the convex envelope
of the diagram is one dimensional if the representation is not trivial. So let us
write down a definition of the singletons. This definition generalizes the one given
by Dirac [8] in the 4-dimensional case to the representations D(s+ 1,s), s being
1/2 or O, respectively called later on Di and Rac by Flato and Frensdal (see for
example [3]). More generally, the notation D(E,K) corresponds to the irreducible
representation (up to equivalence) carried by the irreducible quotient L(—E}») of
the Verma module M(—E,i).

Definition 21 An IR D of S, is a singleton representation, or more simply a
singleton, if D is not trivial and there exists a weight A and a root a of § such
that

D’Kn = DIz tlas (25)

where i, is0, if u isnot aweight of Dl .

An example is given by Dirac singletons (n = 4) D(s+ 1,s) and their contra-
gredients D(s+ 1,s), identified with D(—(s+ 1),s). Here one has:

D(£(s+1/2),9)[g, = DleNT(+(st1/211)s+)

and K4 ~ SO(2) x SO(3).

In Theorem 2.2, we shall give the fundamental mathematical property of sin-
gletons. It is a strong property of the enveloping algebra % of ¢ = so(N)C. We
introduce N in order to treat both conformal and anti-de Sitter cases, hence ¢
stands for ._1€ or % _,C. Before stati ng the theorem let us introduce some
useful notation. Let My (%) be the vector space of N x N matrices whose ele-
mentsarein % . My (% ) is also endowed with a natural % -module structure. Let
0 = (Napbld)1<ap<n and M = (Map)1<ap<n be two such matrices, Id and the Map's
being respectively the identity of % and the generators of the Lie algebraso(N¥.
The commutation relations considered are those given by (2.1). Define M 5 and
MK for nonzero k € N by (MX)gp = SN_; (MK~1)2cMC, where M€, & SN n%Mgp.
If D isarepresentation of %7 and A= (Aap) an element of My (% ), wewrite D(A)
for the matrix having entries D(Agw). Finaly let C, = 3Tr(M?2) be the Casimir
operator.
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Theorem 2.2 A singleton representation D of G = SO(2,N — 2) is a highest or
lowest weight representation and it satisfies?

D(M2—¥M——C26) 0. (2.6)

Moreover D isunitarizable if and only if it isinfinite dimensional.
Conversely a representation integrable on the maximal compact subalgebra ¢
of g = Lie(G) which sends the two-sided ideal spanned by the family (Fp)ap to O

has, asirreducible parts, all the singleton representations.

Proof. Case 1: D is finite dimensional. Suppose that D is a finite-dimensional
representation of SO(N) of weight A = (A4,..., ), r being the rank. Let us denote
by D/, and Dy the finite-dimensional representations of respective weights u and
v = (v2,...,v) (up to equivalence) of SO(N — 1) and SO(N — 2) respectively. Let
uswrite u = (u1,...,w ) if Nisodd and u = (up,...,ur) if Niseven. Thenitis
known that

Dlss _ ) Przpzio> o >a el Dl if Niseven, @7
SON-1) P> u>r0> > >ur>—Ar D., if Nisodd. '

The same decomposition holds for D}, [sgy_2)- Thus (Dlsgny_1)) lsgn—2) decom-
poses into a sum of irreducible representations D, such that A; > v, > A, and so
on.

Now thanks to the preceding relations one sees that for each index i such that

1<i<r—1,2 > |Aiy1] impliesthat the representation D’ occurs at least twicein
the reduction Dgg 1), thus DY, also occurs at least twicein (Dlssn-1))I55(N-2)-
But if D isasingleton then what precedes must contain at most one component of
Dy, since after restriction to K (recall that K ~ SO(2) x SO(N — 2)) one gets a sum
of irreducible representations of the form x(v1) ® D, such that the multiplicities
of v; and v are both 1. Thus one has necessarily 44 = --- = A,_1 = |A;| and thisis
equivalent, asit is proved in [4], to the relation (2.6).
Case 2: D isinfinite dimensional. The Cartan decomposition of g = so(2,N —2)
writes ¢+ p and thetriangular oneisgiven by g =n~ +h-+n*. A common Cartan
subalgebra b to £© and g is generated by Hy = —/—1IM_; ¢ and, for j running
from 2 to the rank r, Hj = v/— 1My ~32j- _2.We write (¢j)1<j< for the dual basis
of (Hj)1<j<r, such that the roots are given by A = A* UA~ where AT and A~ are
respectlvely the sets of positive and negative roots for the lexicographic order, i.e.,
A~ =—-A"and

:{gjj:gk’l<j<k<r}U{8j,1<j }N—2r

where E? = 0 and E! = E for any set E. A more appropriate basis of g€ is given
by the family (Xj)_r<i j<r, such that:

Xij=—Xjifor —r<i,j<r, Hj=X_jjfor1<j<r,

2 We use the same notation D for the corresponding representations of % and so(2,N — 2).
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and satisfying the following commutation relations:

[H,ﬂ:Xijiak] = :I:(Ej + OEk)(H)(:‘:Xﬂ:j7iOk)7 VHeb, (2.8)
[Xj.ok, —=X-j,—ok] = Hj+ oHy, (2.9)

where |j| # |ok|, 1 < j,k<r, and

oe {—1,1} if Niseven,
{=1,0,1} if N is odd.

In this way one seesthat when i, j > 1, X corresponds to the root g + ¢j, X_j j to
theroot — (& — ¢j), and so on. The set A{ of positive compact roots is obtained by
restricting the indices i, j,... of therootsto {—r,...,r}\ {—1,1}. The remaining
positive roots are the noncompact ones, the set of which we write A .

Now let D be a singleton representation of G realized on a Banach space .77°.
Then one can write, under the action of &:

A=@K (), (2.10)

each K (u) being an irreducible ¢-module. The action of p* = p© Nn*, which is
generated by the family (Xiyj)|j1, Sends a nonzero ¢&-module K(wy, i) to an

irreducible one K(u + 1, ﬁ’) for some u/, since D is a singleton. Suppose that
K(u) # {0} but X1 2K(u) = {0}. Then the second component of the weights of
% (p*)K(u) are bounded from above by wp. Two cases arise: N > 5 or N = 4
(since n > 3), the first one being the only one for which ¢ is semi-simple. Let
N > 5. What precedes implies that % (p*)K (u) isfinite dimensional because each
weight isa A{ -dominant integer. Indeed, some power of X.1 j, | j| ¢ {0,1}, iszero
on K(u). If N isodd, some power of X1 ¢ isalso vanishing, thanks to the relation
X530, XD, =miXD.

Thusfor an infinite-dimensional D, there exists € € {—1,1} such that the pow-
ers of X, » are not vanishing on nonzero £-modules. Without loss of generality, we
shall consider from now on that ¢ = —1, i.e., X_12K(u) # {0} for each nonzero
K(w). It follows that Dig = ©icz7m.11(e,—¢,), hENCE Dig is a highest weight
representation, i.e., there exist a weight %) such that Dl = @1enm; 0

We shall write D, o, or D(—Al(o),)»(o)) for such a representation.

Let K(u) # {0}. Since [(€ NnT,X_15] = {0}, X2, ,K(u) is an irreducible
e-module of weight u — 2(e; — &) = (u1 — 2, uz + 2, ua, ..., ur). The element
Y1 1= E|k\7é1>L1.k>Llfk of %C satisfies [EC,Y,;L,]_] = {O}, thus Y,;L,]_K(‘LL)
is aso an irreducible ¢-module of weight u —2¢g = (u1 — 2, up, us, ..., w). As
D is an infinite-dimensional singleton, X2, ,K(u) # {0} and the multiplicity of
w1 — 21is 1. Then one has necessarily Y,L,lk(u) = {0}. ItfollowsthatY_; 1 =0
on s*. Finally the application of the adjoint representation on'Y_1 _; yields the

£1—€2)"
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following relation on 7:

4 N-—2 2 .
Ex,-v_ix_k,i+Tx_k,j+Na,-kcz:0, Vike{-r,...,;r}.  (211)
i=—r

The N = 4 case is more simple since g€ is isomorphic to a direct sum of two
copies of s[(2)C and D isasingleton if and only if its restriction to one, and only
one, of thetwo copiesistrivial, but this property is equivalent to the relation (2.11).

Finally the fundamental relation (2.6) followsfor D asarepresentation of g and
it has been proved in [4] that each nontrivial representation that satisfies (2.6) isa
singleton (finite or infinite dimensional).

The following result is a characterization of the infinite-dimensional singletons
of the n-anti-de Sitter group (or (n— 1)-conformal group) SO(2,n—1).

Corollary 2.3 Let D aninfinite-dimensional IR of §, = SOp(2,n— 1), n > 3. The
following conditions are equivalent:

i) Disasingleton;
i) Therestriction DI, of D to the n-Lorentz group SOp(1,n—1) isa UIR;

i) Therestriction DJs . of D to the (n— 1)-Poincaré group SOp(1,n—2) x Ty-1
isaUIR

Proof. It has been proved in [4] that an irreducible infinite-dimensional representa
tion which satisfies the fundamental relation (2.6) is irreducible when restricted
to the n-Lorentz group. This proves the implication i) = ii). The implication
iii) = i) has been proved in the same paper and the proof of ii) = iii) isin [25].

Remark 2.4 The restriction of an infinite-dimensional singleton of the n-anti-de
Sitter group to the (n— 1)-anti-de Sitter one (in other words one restricts from the
conformal group to the anti-de Sitter one) isnot irreducible in general. In fact there
is only one case for which it is not irreducible, but it is a sum of two irreducible
ones, as shown in theorem 3.4.

LetU anontrivial UIR of the (n— 1)-Poincaré group P,_1, the invariance group
of the (n— 1)-dimensional Minkowski space M,_1. Then it is proved in [4] that if
U extends to S, = G,_1, the conformal group of M,_1, then the extension is a
singleton uniquely defined by U.

Let D afinite-dimensiona singleton of SO(N), N > 4. Then the restriction of
D to SO(N — 1) isirreducible if and only if N is even. If it is odd, the restriction is
asum of two irreducible ones.
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2.2. Classification of the singletons

The following result is a corollary of the theorem 2.2. We write again D, or
D(—uq, 1) for a highest weight irreducible representation with weight (w, i),
of the anti-de Sitter group. The corresponding common Cartan subalgebra of .4
and of its maximal compact subalgebra &, is the one introduced in the preceding
section. An infinite-dimensional highest weight representation is thus, with this
choice, apositive minimal energy representation, —y being the energy.

Theorem 2.5 Let D a singleton representation of G = SO(2,N — 2). Then, for a
certain order of theroots, D is a highest weight IR such that:
If D isfinite dimensional, D is equivalent to one of the following series:

11 1 N
(_5)5)"'75)5 if N |SOdd, (212)
D(-ss,...,S,¢9), 2se N\ {0} and |¢| = 1, if N iseven. (2.13)

If D isinfinite-dimensional, then it isa unitary representation equivalent to one
of the following series:

2

N-—4 TINT
D(5+T,s,...,s,os), 2sc Nand |o| =1, if Niseven. (2.15)

Proof. Assume N > 5. Since D is a weight representation, one can assume that
it isa HW one, with weight A9, Let v e #* be a maximal vector, i.e., such
that n*v = {0} and Hv = A(9(H)v for al H € . Then applying the fundamental
relation (2.11) to v yields

1. . .
D(s+ ,S,...,9), se {0’5}’ if N isodd, (2.19)

A2 =22+ 49 + # +1-i)=0 wherel<i<r—1, (2.16)
and, if N isodd,
r
2
D 29 = -Gz (2.17)

Now writing s = AZ(O), (2.16) givesthe desired result when N is even, no matter
if D isfinite dimensiona or not. If N is odd one has also, thanks to (2.17), s(s—
1/2) =0.

If N =4, then onehas A(%) = (.%, 1\%) and thanks to the fundamental relation

one gets Ml(o)| = |A2(0) |, which means that D is trivial on one of the two copies of
50(3)C (see the Remark below).

Remark 2.6 Let J, bethe (second order) Casimir operator of the “spin” subalge-
braso(N — 2) of g. Then the relation (2.6) is equivalent to
N—4

J,—HZ= N

Co.
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In particular, if N = 4 one has HZ = HZ, since J, = H2.

On the lowest energy level of the singleton D the corresponding representation
of so(N—2) isitself a (finite-dimensional) singleton. If, conversely, one starts
with a singleton representation of so(N — 2), then this can be the ground state of
two singleton representations of g: one being finite dimensional, the other infinite
dimensional.

2.3. Aremarkable property of singletons

Here we present a generalization of the theorem of Flato and Frensdal [13]:
“singleton ® singleton = ¢ massless representations ” proved in 1978 for the
caseN =4.

Let Rac=D(N52,0,...,0) and Di* = D(3 + 854, 1,... .1 ¢1), where [e| = 1
and =+ isthe sign of . Then the former is the spin O unitary singleton while the
latter is one of the two unitary singletons (resp. the unitary singleton) with spin%
if N iseven (resp. odd). If Nisodd, e = 1. We just write Di when ¢ = 1, N odd or
even.

Theorem 2.7
Rac® Rac = @3 (D(s+N—4,s,0,...,0), (2.18)
1 11
.j: _ 0 . - - -
Rac® Di~ = @sf%:oD(erN 4s, 50 2,52).
Proof. Let D’ and D” two unitary singletons of G, both with the same energy sign,
i.e., both highest weight representations or both lowest ones. We are interested in
reducing the product D' ® D”. Thus if D is an irreducible representation contained
in this product then D(Mg,) = D’'(Mgp) ® 1+ 1® D”(Mg,) for al a and b. For
simplicity of the proof we use the notation introduced just before Theorem 2.2 and
wewriteM’, M”, and M instead of D'(M) ® 1, L& D”(M), and D(M), respectively.
Then one has, since D' and D” satisfy the fundamental relation (2.6),

(2.19)

N-2 2
M’Z = —5 M+ 5 C'20,
"2 N-—2 " 2 " (2.20)
Then one gets, because of the relation M2 = M’2 + M'M” + MM’ + M"?;
N-—-2 2
M2 = ——M+ N(c’z +C")8 + K2, (2.21)

where K2 = M'M” +M”M’. More generally we define KK, k > 2, by
k terms k terms

Kk _ M/M//M/M//---—i— M”M/MNM/---.
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Multiplying both sides of (2.21) by M and using (2.20), one finds

M3 — ¥M2—|— %(Clzﬂ-C”z)M + NT_2K2+ %(ClZM”"’CHZM/) 4+ K?’.

(2.22)

Let D' = D" = Rac. Then C', = C", = —YN=4) if one identifies the Casimir
operators with their scalar values. It follows that CoM” + C7,M’ = —WM.
The expression of K2 follows from (2.21). It remains to calculate K2. For let us
define the symmetrizer Sby S(MgpMcq) = %(Machd + McgMap) and consider the
element of the enveloping algebraz\flbcol = S(MabMcd) + S(MpcMag) + S(McaMpa) -
Then AZ,, is completely skew-symmetric in the indices a,b,c,d and is sent to
zero by Rac, what we may write A’ibcd = 0. Thisimplies, for each a, d:

;Alibch”bc :2; M/abM”bcM,cd . ; M,abM”bcncd
C

(2.23)
+ ; M,bCMNbC(M/ad —Ned) =0,
C

hence M'M”M’ = M'M” + 3Tr(M'M”)(M’ — §). A similar formula holds for
M”M’'M” . Thus, after adding them, one gets

K3=K2+ %Tr(M’M”)(M —29).

Since C; = 3Tr(M?) = 3Tr(M"? + M'M” + M"M’ + M"?) one has Tr(M'M") =
C,— (C', 4+ C";) thanks to the relations above and, after factorizing, it follows
that

[MZ—(N—3)M—%C26](M—26):0. (2.24)

Let us determine explicitly the corresponding representations D. Since Racisa
highest weight representation, D isaalso a highest weight one, say A. The lowest
energy of Rac being N—g“, one has necessarily 43 < —(N — 4). To determine the
possible values of A, let us complexify g and consider the (X;)-basis version of
the relation (2.24):

X2+ (N = 3)X — 2Ca0](X +26) = 0. (2.25)

Then the application of this relation on the maximal vector (ground state) v, of D
yields:

1
[Af +(N=3)A1— 5Cal(A1 +2) = 0.
SinceA; < —(N—4),if N> 5it follows:

1
A2+ (N=3)A — 5C2=0. (2.26)
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If N =4, we shall seethat A1 = —2 is a solution of Equation (2.26). Thus we
can work only with the latter. For the second component of A one gets, since this
weight is a A{ -dominant integer:

g4+ (N=4)r, — %CZ: 0. (2.27)
Subtracting this equation from the preceding one gives.
(7\.1 —)»2)()»1%—7»2%— N —4) =0,

from which follows A3 = —(A2 + N — 4). This condition implies that the other
components are zero, i.e, A = (—s—N+4,5,0,...,0) where s= 2. Then the
integrability conditions imply that sis an integer. The necessary condition is thus
proved. To prove that thisis sufficient consider the following vectors, wheres e N,
V' is the maximal vector of D' and V' the maximal one of D” (see Remark 2.8
below):

: MM -+ yr(-2—s—14+1) o /
vs:;)(s_l)”! r(—83% +1)2 <X—1sz>®<X'1,2(v2 >2.8)

Then % (g)vs carries an irreducible highest weight representation of g with weight
A =(-s—N+4,s0,...,0). Thisfinishes the proof for the Rac ® Rac part.

To prove the other part let again D' = Rac but D” = Di. Then C", = —w +
C’, and A2, is no longer zero. But considering the fourth degree of M and using
therelations (2.21) and (2.22) one gets:

N—2 2

M4 :(N _ 2)M3+ [_ (T)2+ N(Cl2+ CHZ)] M2
) (2.29)
(N 2) (C/2+C// ) ( )Z(C,2+C,,2)26+(K2)2.

After some calculations, we find
N—-2
—— [
From Equation (2.22) one may write K+ 2 (C'2M” + C",M') in terms of M, M?,
and M3. Thusit remains to calculate K*. After lengthy calculations one arrives to

S(K*) = [N =24 Tr(M'M")][M2 — N_ZM _ —(c’ el

(K2)2 _ K4 (C/ M// CNZM/)] + %CIZCHZ(S-

Thisrelation, together with the others above yields after other lengthy calculations
an expression for S(M*) from which one gets the factorized relation:

M2 (N-3Mm - (Co - AN s 2y (- 26) =0

(2.30)
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Again, in order to identify explicitly the representations contained in Rac® Di, we
write the preceding relation in terms of the basis (X;) of gC. Then one gets:

(N—4)(N-5) N—1 3

1
2 — —_— = —_— _— — pry
[X“4+ (N=3)X 2(02 3 )8] (X + 3 6)(X+26) 0.

(2.31)

Using similar arguments as for the case Rac ® Rac yields
Af+(N—3)Al—%(Cz—wéN_5)) =0, (2.32)

and, for A, the weight being a A{ -dominant integer:
1 N—4)(N-5

A§+Al+(N—4)A2—§(CZ—%) =0. (2.33)

After subtracting this equation from the preceding one it follows:
(A—2A2)(M+A2+N—-4)=0,

fromwhich finaly onegets A = (—s—N+4,s,3,...,3), wheres= A ands— 1 €
N. Now to obtain the sufficient condition we consider again the vectors \; of (2.28)
but with some changes: We replace in the right-hand side s by s—%. Evidently v/
is now amaximal vector for Di. Then again % (g)v carries an irreducible highest
weight representation of g, but now with weight 2 = (—s—N+4,s.1,....3).
Thecase D” = Di~ issimilar. The only changeis A, = —3 instead of A, = 1.

Remark 2.8 One may reduce the product Di ® Di in the same manner asin The-
orem 2.7, i.e., by seeking for an ideal which is sent to zero by each representation
contained in Di ® Di. Another way to reduce this product is to consider one of the
Di's as a summand in the product = ® Rac, X being the spinor representation, and
consider the product = ® Rac® Di.

The vectors vs appearing in (2.28) can be realized explicitly in a very simple
manner. For this, let us realize the Rac on the cone {y € R2N~2 | y2 = 0} in the
usual way. Then one may choose V to be the function y — (xl)*N*E4 where x; =
%. For the other Rac, V' is defined in a similar manner but with primes
on the variables. For the Di, if V' is the maximal vector, one can choose the map
y — (x’l)*NTfsw%, where Wy is the maximal vector of =. Now let o =0 or %

Wp = 1, and define xo = yﬁi‘/ffyz and x, by asimilar formula, but with primes on
the variables. D” can be either a Rac or a Di. Then the map

Vs (1Y) — (X1%1)7¥7S(X1%2 —%%1)% "W,

wheres— o € N, isamaximal vector of therepresentation D(s+N—4,s,0,...,0).
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3. Masdessness

Since the anti-de Sitter space-time Hy contracts to the Minkowski space-time M,,
it is reasonable to demand that the notion of masslessness on H; should corre-
spond under the contraction to masslessness on M,, where the square of the mass
operator (usually denoted by ¥ P, P*) is sent to O by massless representations of
the Poincaré group P,. Such representations, when they do not have continuous
spin (we will say discrete spin), are induced by aunitary finite dimensional repre-
sentation of a semi-direct product of the Euclidean subgroup E(n— 2) (contained
in L) by the subgroup of trandations T,. Their restrictions to the trandlations T,_»
of E(n— 2) are trivial. The subgroup E(n— 2) is such that the isotropic cone of
M, is homeomorphic to L, /E(n— 2). Contractibility may be used as acriterion for
masslessness on the anti-de Sitter space. In the definition we will give below, by
natural contraction of arepresentation of the anti-de Sitter group to a representa-
tion of the Poincaré group shall mean a contraction which leaves the restriction to

the Lorentz group L, (contained in both of them) invariant up to equivalence. It is

thus compatible with the contraction Hf P9 M. For example, the minimal energy

representation U = D(EO,K) may be contracted to arepresentation of the Poincaré
group. In terms of the curvature, \/pEp is sent to the mass. If E is fixed, for ex-
ample equal to ”;23 then the resulting massis 0. But the contracted representation
is massless for the Poincaré group if it is not trivial on the trandations.

Definition 3.1 A unitary representation U of the anti-de Sitter group S is said to
be massess if U contracts naturally to a discrete spin massless representation of
the Poincaré group P,,.

An immediate consequence is that singletons of $, are not massless represen-
tations. Indeed such asingleton contracts to a representation of the Poincaré group
P, which is trivial when restricted to the subgroup of trandations T, [25]. But
singletons are not massive particles either, in the sense that a massive particle on
the anti-de Sitter space-time must be described by a representation of $ which
contracts to a massive representation of the Poincaré group R, thus necessarily
nontrivial on the trangations. Hence singletons have no analog in Minkowski
spaces M. This was already pointed out by Flato and Frensdal for the n = 4 case
(see for example [15]).

The notion of masslessness is not unique since several nonequivalent repre-
sentations of §, may be contracted to a massless representation of B,. Below we
shall consider two notions of masslessness, both closely related to singletons. To
distinguish them we give the following Definitions.

3 When the space-time dimension n is even helicity is easily defined: It is a straightforward
generalization of the notion of helicity in the 4-dimensional case. Thus a discrete spin representation
isnothing but discrete helicity representation when n is even (see Remark 7 in [25]).
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Definition 3.2 A massless representation U of the anti-de Stter group S, is said
to be conformal massless if there exists a singleton D of the conformal group G,
such that U ~ Dlg .

Thisisthe classical definition of masslessness given by Flato and Frensdal when
n = 4 (see for example [14]). A remarkable fact is that a conformal massless rep-
resentation U ~ Dfg contracts naturally to the restriction D of the singleton D
to the Poincaré group. DI isirreducible (see Corollary 2.3) and is a discrete spin
massl ess representation of P, (see [4]).

It is important to notice that since the unitarity of U is required, only infinite-
dimensional (unitary) singletons D may be used in the preceding definition.

Next, we present a second notion of masslessness. We shall see that it does not
coincide with the first notion given, if n > 5.

Definition 3.3 Amassless representation U of the anti-de Sitter group S, issaid to
be composite massless if U occurs in the reduction of the tensor product Dy ® D>
where D1 and D, are irreducible weight representations, with the same energy
sign, equivalent to a Rac or a Di.

This definition means that a composite massless representation describing a
massless particle on the anti-de Sitter space is composed of two subparticles, the
singletons, in the same manner as nucleons are composed of quarks, except that
singletons are unobservable for kinematical reasons while the unobservability of
quarksisdueto their confinement [15]. The representations appearing in the right-
hand side of Theorem 2.7 are composite massless representations. They were
considered for n = 5 by Ferrara and Frgnsdal as the massless ones in [11, 12].
Irreducibility and Gupta-Bleuler (GB) quantization are almost always possible,
but there are few exceptions. Some results concerning GB quantization are given
in Section 4. Here we list the conformal massless representations.

Theorem 3.4. ([25]) Let U be a conformal massless representation of the anti-de
Stter group S,. Then for a certain order of the roots:

~D(s+%2 s ... ), for s#£0suchthat 2se N or

n even —> (njrz 259, . 7 < (3.2)
D=1 1 Lyapnsll 11

nOdd U (ng ’ 29 72)69 (n2 ’ 29 ’» 29 2) or (32)
ND(T707 70)@D(§707 70)

In particular there is no conformal massless representations with spin different
from O or 3 in odd-dimensional anti-de Sitter spaces. It can be seen that this is till
true in odd-dimensional Minkowski spaces if one defines conformal masslessness
in asimilar fashion, i.e., by restricting a singleton of the conformal group to the
Poincaré group.



SINGLETONSON AdS, 17

The following questions naturally arise: Are the conformal massless represen-
tations composite massless? What about the converse? The answer is practically
negative. In fact, we have:

Theorem 3.5. ([25]) A conformal massless representation is composite massless
if and only if n = 3 or n = 4. More precisely, there is no tensor product of unitary
weight representations with the same energy sign containing such a representation.

Thus for n > 5, conformal invariance is not compatible with singleton com-
posed of massless particles, provided that those singletons have the same energy
sign. Though other type of composite particles are allowed. For example one can
find conformal massless representations contained in the tensor product of asingle-
ton by some multipleton or in the product of some two multipletons (see Remark 1
in [25]). Here we call amultipleton (or m-ton, for a certain m) a representation for
which the diagram of maximal weightsisincluded in m paralel lines: al-tonisa
singleton, a 2-ton is adoubleton, and so on. Multipletons are generally not unitary;
it is the case of the multipletons concerned by the “compositeness’ of conformal
massl ess representations.

4. Gupta-Bleuler quantization

For simplicity, we consider in this section that n > 4.

The method used to construct GB triplets is the following: Suppose that the
IR D(E,K) is unitary if E > Eg (Ep is the limit of unitarity). Then usualy when
E — Eo (E # Ep), even for E < Ep, the IR D(E,X) becomes indecomposable.
More precisely one obtains a (non-direct) sum of D(Eo,i) with another repre-
sentation. The (physical) representation D(Ey, 1) is realized as a quotient (by the
gauge representation). Then using a third (scalar) representation together with
some conditions usually satisfied one may construct a GB triplet.

The physical and gauge representations are usually minimal or maximal energy
representations and are related to the Verma modules in the following way. Let
g anoncompact semi-simple Lie algebra, the typical example being so(2,N — 2).
Let ¢ the (reductive) maxima compact subalgebra of g; ¢ ~ R @ so(N —2) for
s50(2,N —2). Let K(A) afinite-dimensional simple ¢-module with weight A. As
usual the energy isE = —A1. Then there exists Ey depending on 7. such that the g-
module N(4) = % (§%) ® 4 (sc1 ) K(A) isnot unitarizable if E = [A1] < Eo [2, 9].
In particular, if g =so0(2,N — 2), thismodule is unitarizable if and only if E > K,
Eo = A2 +k, where k aconstant depending oni.N (1) isnot waysirreducible. If
g=250(2,N—2),N(A) isirreducible (i.e, N(1) = L(A)) if and only if E > Ep. If
E = Ep then N(A) isnot irreducible. It contains a maximal submodule | generated
by relations similar to those of (2.6), the fundamental relation of singletons, or
to those of (2.24) and (2.30), satisfied by the composite massless representations,
obtained in Section 2. The irreducible quotient L(A) = N(A)/I corresponds to
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the physical space and carries the representation D(EO,X) while an irreducible
quotient of | corresponds to the gauge space. To construct a GB triplet one needs
athird space, endowed with an indefinite metric, and a representation conjugated
to the gauge defined on a quotient space, the so-called scalar space. Thisis the
method for constructing GB triplets which we shall call natural in the remaining.

Note that GB triplets do not require unitarity of the three representations; only
the physical one has to be unitary.

In what follows we will give some examples of GB triplets for all singletons
and amost all of the massless representations. Futher details can be find in [25].

The representations we shall consider are those of the anti-de Sitter group $.
TheLorentz conditions, i.e., the conditions which define the space 7% (the physical
space is 751.743), follow directly from the relations defining the submodule | (e.g.,
see (2.6)).

4.1. Singletons: spin 0

Let %(O) the space of sguare-integrable (with respect to the Riemannian mea-

sure) positive energy solutions of (62)? (;0 Oandy-do = 5 Q, %” © ={p¢c
yaz(p 0} and%” {(pe% )|  hastheformy2¢}, wherey € H* =

up>oHn 0% = =Y dad?, andy d = Y y*da. Then these spaces realize the GB triplet:

n+1 n-3 n+1

D(~5~0.....0) = D(~5~.0,...,0) = D(~~.0....,0),

i.e, jf /%ﬁ andff (resp. scalar and gaugespace) carry theirreducible rep-
resentation D(”Jrl 0,...,0) while the quotlentjf /%” (physical space) carry
the singleton D("5* 3.0,...,0). Since lime_op=0if ¢ € %”3( % one may realize
the singletons in ji” 0 by taking limz_, @ (y) or, equivalently, at the “boundary”

of the space-time, i.e., by considering limg_,« Rz (y), whereR= g;i(ya)z.
4.2. Singletons: spin 1/2
Let = be the spinor representation on the spinor module \4 (not irreducibleif n—1
is even), (ya) the Dirac matrices such that {ya, b} = 2nap (if N—1 is odd then
yn—1isamultiple of the product of the others). Asusual¥ = 3 y?ya, 6 = 3 aaya To
realize the GB triplet explicitly we reduce the tensor product D(E O) ®I,E> "=
torealize theirreducible representation D(E —3, 3,..., 1) andthenwelet E — Tl
to get an indecomposabl e representation from which we realize the following GB
triplet. The spinors we are using arethe maps W : Ht — V.

Let %ﬁw 2 pethe space of spinors which are square-integrable positive energy
solutions of 92¥ =0, y- dW = — "2 and (¥4)>W = 0. We shall write M) =

(w e 4 | hw = 0} and %“/2 = (W e 4" | Whastheform¥d}. Let
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v =0, if niseven, and 1 otherwise. Then these spaces realize the GB triplet:

nl 1 1 2 1 1 ni
(5’5""’5’(_1)v_) — D( ) — D(i’i"”’i’(_l)vi)’
i.e, %”(1/ 2) /%(1/ 2 and %(1/ 2 (resp. scalar and gauge space) carry the irre-
ducible representation D(5,3,.... 3, (- 1)”1) while the quotient 42 /M2
(physical space) carries the smgleton D(%54 21/2,...,1/2). Since Iimyzﬁolflll =0
whenever W € %%W 2 one can redize the singletons in j@l/ 2) by taking
limz_o ¥ (y) or, equivalently, at the “boundary” by limg_.. R"Z W(y).
4.3. Singletons: spin s>1

Heren—1is necessarily even. The tensor product we use is D(E 0) ® ()%,
with E close to 3 +2s. The correspondl ng multispinors arethe mapSIP HJr
£9% Define 1} by VL@V Vs =V @ Yalg - Vas, ¥ = Sy2yl!)
Eaayé), Tj thetranspostlon i j and

1
W = T Y3
2s [1 SZSZS (“25)}

Let :%,’1(5) be the space of spinors whi ch are squareintegrable and positive en-
ergy solutions of &ZII! 0,y- 9% = (-3 —29)w, and (225 YOO — 0, Let

{WE% AR = OVt}andff {IPE% | W has the form Z ®}.
Then these spaces redlize the GB triplet:

-1 -3 1
D(nT+s,s,...,s—1)—>D(nT+s,s,. )—>D(T+ss .,5—1),

i.e., %”l(s) /jfz( and %’g (resp. scalar and gauge space) carry the |rredUC|bIe
representation D("5= 1 1ss,...,s—1) while the quotient %ﬂ /jf (physical
space) carries the singleton D(”23 +s,5,...,9). S|nceI|myzH02t 'y = 0 when-
ever W ¢ %‘gjs), as before one can realize the singletons in j@ as the limit
limyz o 3 YUw(y) or, again, at the “boundary” asthe limit limg ... RCZ° +259(y).
4.4. Conformal massless representations. spin s>1

Definee by |[e| =1if n—1iseven and e =1if n—1isodd. Thelimit of unitarity
of the IRD(Ey,s, ...,s,S) isEg = 252 + sif niseven (or n— 1isodd) and s > 1,
Eqg = ”;23 +sif not, i.e, nodd (orn— 1 even) or se {0,2} Thus the construction
of natural GB triplets for conformal massless representations is only possible in
even-dimensional space-time, i.e.,, n— 1 odd, and for spin greater or equal to 1. So
let s> 1 and n even. We use the same tensor product asin the preceding subsection,
but with E close to %52 + 2s.



20 E. ANGELOPOULOSAND M. LAOUES

Let :%’1(5) be the space of multispinors which are square-integrable positive
energy solutions of 2W = 0, y- 9W = (22 — 29w and (32, ¥V V)2w — 0. Let
A ={(we | hOw=0,vt}, 4 = {We | Whastheform Zy},
where

1 25-1)  y(29)
@:7 2 ‘L’72,1+ ‘L’72 ‘L’/72,1 y( —y .
25(2s—1) Lgtg s 1 (271 1gt<ézs—1 (129728 )M }

Then these spaces realize the GB triplet:

n n—3 n—1
D(T +s,s,...,5—1) — D(T+s,s,...,s) — D(T+s,s,...,s— 1),

e, 49/ and 4 (resp. scalar and gauge space) carry the irreducible
representation D("5 +s;s,...,s— 1) while the quotient A )4 (physical
space) carries the conformal massless one D(”;Z3 +s,5,...,9).

4.5. Composite massless representations. spin 1
If ¢ is defined in the same way as in the preceding subsection and if o is the
fractional part of s, then the limit of unitarity of the IR D(k,s, 0,...,0,¢0), IS
n—3+sifs>1, and ”;23 + sotherwise. Thus natural GB tripletsfor the composite
massless representations of this form can be obtained only for s > 1, regardless to
the parity of n. So let s> 1. Then the corresponding GB triplets are realized in a
somewhat known fashion (see for example [6, 7, 20, 22]).

First suppose that s € N. We reduce the tensor product D(E,0) ® D(—s, 0), with
E close to s+n— 3. D(—s,0) is a finite-dimensional representation realized on
the space of polynomials in the variables z_ 1,...,z,_1. The GB triplet is redized
on the space of functions (y,z) — ¢(y, z) with the usual conditions on the variable
y € HT. Thisisequivalent to realizing the representation on the space of symmetric
tensor fields of rank son H™. The generators of the Lie algebra are May = Yadp —
Vb0a + Zadp — Zy0a, 6c = % Once the irreducible representation D(E,s,0,...,0)
isrealized for E #£ s+ n— 3, then one obtains an indecomposable representation
after taking the limit E — s+ n— 3. From there one constructs the GB triplet:

D(s+n-2,5-1,0,...,0) - D(s+n-3,;5,0,...,0) - D(s+n—2,5—1,0,...,0).

As above one needs some Lorentz conditions to fix the space /7’ (25) which de-
fines the physical situation: Its elements are the tensor fields ¢ which satisfy
9%¢(y,2) = 0, y- d¢(y,2) = —(s+n—3)g(y,2) (homogeneity), z- d¢(y.2) =
sp(y,2), 8%¢(y,z) = 0 (¢ istraceless), - d¢(y,z) = O (g is divergenceless) and
y-0¢(Y,z) =0(p istransverse). The physical representation D(s+n—3,s,0,...,0)
is realized on the quotient 7Y /7' where the gauge space 5 is the sub-
space of elements ¢ € %’(25) of theform ¢(y,2) = [y?z- 9 + (n—3+25)y-Z (Y, 2).
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Now suppose that s is a haf-integer, i.e., s—% € N. The tensor product we
consider is D(E,0) ® D(—(s— %),6) ® X, with the same material as above but
with s— % instead of s for the first two representations. The desired representa-
tions act on tensor-spinor fields W on H*. The generators of the Lie algebra are
Mab = Yadp — Ybda + Zadp — Zp0a + %[Ya, p]. TO get the needed indecomposable
representation we let E — s+ n— 3+ 1. Then one gets the GB triplet:

1 1 1 1
D(s+n—2,s—1,§,...,s§)—>D(s+n—3,s,§,...,s§)—>
1 1
—>D(s+n—2,s—1,§,...,s§).

The value of ¢, £1, depends as usual on the parity of n and on the irreducible
component of = used (X isirreducible only if n— 1 isodd).

'Y is defined from the Lorentz conditions: d2W(y,2) = 0, y- W¥(y,2) =
—(s+Nn—3+1)W(y,2), z-8¥(y,2) = (s— 3)¥(y,2), °¥(y,2) =0, 9 - 5¥(y,2) =
0,y-0W(y,z) =0, ¥W¥(y,z) = 0, and HW(y,z) = 0. Finaly the physical represen-
tation D(s+n—3,s,3,...,£3) isrealized on the quotient %”’(25)/%’%5) where the
gauge space %) is the subspace of elements W € "% of the form W(y,2) =
[Y?z- 9+ (n—3+2s—1)y-z+YF|D(y,2).

5. Theunreasonable effectiveness of the 4-dimensional space-time

From what precedes one sees that singletons of the anti-de Sitter group are well
defined for n > 3. They are defined for all haf-integer spin if the space-time
dimension n is odd and only for spin 0 or 1/2 if n is even. Moreover singleton
theory is always quantizable in the sense of Gupta and Bleuler and the resulting
gauge theory is topological in the sense that singletons appear at spatia infinity,
sincein the Lorentz condition one letsthe “radius’ R of space-time tend to infinity.
Apparently there is no noticeable difference with the n = 4 dimensional case.
However masslessness behaves differently. Indeed if one needs conformal in-
variance one has to work with conformal masslessness, but then the space-time
dimension must be even if massless particles with spins other than 0 or 1/2 are
necessary. Furthermore the corresponding massless particles cannot be composed
of subparticles like singletons if n > 4. Obviously the conformal invariance of
masslessness is not always needed, in which case there is in general no unique
way to define the masslessness notion, even in n-dimensional Minkowski space-
time. This is due to the fact that if n is sufficiently large, the rank of the maximal
compact subalgebra t is greater than 2, thus there is no unique way to choose the
right spinor part of the weight of the representation. But if the composite aspect
of singletons is important, as they are in some theories, then composite massless-
ness becomes more appropriate, since for every spin and for every parity of the
space-time dimension composite massless representations occur in the reduction
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of the tensor product of two singletons, i.e., the corresponding massless particles
are composed of two singletons. Unfortunately the two notions of masslessness
we have at hand are not compatible if n > 4: A physica theory on the anti-de
Sitter space-time such that masslessness is conformal invariant and composite (the
particle-anti-particle case being excluded) does not exist for n > 4.

Thus the n = 4 anti-de Sitter space-time appears to be the only one for which
masslessness is well defined and is conformal invariant and composite, if one
considers that an n-dimensional physical space-time satisfies necessarily n > 4.
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ing discussions. Both authors thank Professor D. Sternheimer for helpful criticism
on the manuscript.
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