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anti-de Sitter, conformal, and Poincaré groups; singletons; masslessness; Gupta-Bleuler triplets

Mathematics Subject Classifications (2000): 22E43, 22E46, 22E70, 81R05, 81T20, 81V25, 83E99

Dedicated to the memory of Moshé Flato

1. Introduction

Recently, mainly since the Maldacena conjecture which relates anti-de Sitter theo-
ries ‘in the bulk’ with conformal theories ‘on the boundary at infinity’, singletons
became a widely popular subject in physics on space-times of arbitrary dimensions
(see, e.g. [27, 11, 30, 17, 19, 1]). It is therefore important to know more about
these representations and about massless representations of conformal groups. In
this paper we describe some properties of singletons and characterize them after
having given a rigorous definition. Since the singletons are related to masslessness
it is important to know the nature of that relation and to compare with what happens
in the classical 4-dimensional case.

The n-dimensional anti-de Sitter space-time (AdSn) with (scalar) curvature
−ρ < 0 is defined as the manifold Hρ

n = {(ya)−1≤a≤n−1 ∈ R
n+1/∑yaya = 1/ρ}.

Here ∑yaya
def= ∑yaybηab where η = (ηab) is the matrix

(
12

−1n

)
. We assume

throughout that n ≥ 3. The invariance group of AdSn is the anti-de Sitter group
Sn = SO0(2,n − 1) and one has Hρ

n � Sn/Ln, where Ln = SO0(1,n − 1) is the
Lorentz group of both AdSn and Minkowski space-time Mn = R

1,n−1.
Now the “time axis” of Hρ

n is bounded: It is the S1 (circle) part in Hρ
n � S1 ×

R
n−1. But if one considers the universal covering H

ρ
n � R×R

n−1 of Hρ
n , then

the time axis is no longer compact (of course there is no problem if one needs a
physical theory with a cyclic time).

[3]
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Consequently, the invariance group is an infinite covering Sn of Sn. The best
choice for Sn would be a covering which contains the quantum mechanical Lorentz
group, i.e., the spinor covering group Ln, such that H

ρ
n � Sn/Ln. Having in mind

that an invariance group should be contained in the conformal group, such a choice
is given by the universal covering of Sn if n ≥ 4 and, for n = 3, by the infinite
covering of S3 = SO0(2,2), which is contained in, and has the same center as, the
conformal group G3 = SO0(2,3). Thus the fundamental group of Sn = SO0(2,n) is
isomorphic to Z×Z2 for all n ≥ 3. Another advantage in using this type of infinite
coverings is that we can consider deformations of representations, a useful tool for
constructing Gupta-Bleuler (GB) triplets.

Let Gn = SO0(2,n) the common conformal group 1 of H
ρ
n and Mn. Then Gn con-

tains the Poincaré group Pn = SO0(1,n−1)�Tn (Tn �R
n), the anti-de Sitter group

Sn = SO0(2,n−1), and the de Sitter group Ln+1 = SO0(1,n). It is well known that
the last two are deformations of the former, so that Sn and Ln+1 can be contracted

to Pn. It follows that there is a contraction H
ρ
n
ρ→0−→Mn which implies that a physical

theory on AdSn cannot be independent of the corresponding one on Mn: It must be
compatible, at least for n = 4, with physics in Mn. As a consequence, a massless
particle on AdSn should correspond by contraction to a massless particle on Mn.
This naturally leads to a first (weak) definition of masslessness (see Section 3).

Unfortunately this definition does not fix uniquely the notion of masslessness
on AdSn, even for n = 4: Additional conditions have to be introduced in order
to make it unique. This was done by Flato and Frønsdal for n = 4 in the 80’s
(see [14]). Another way to avoid ambiguity is to consider less weak definitions
of masslessness, introduced in Section 3, such as conformal masslessness or com-
posite masslessness, both related to singletons and to gauge properties. The latter,
as shown by Flato and Frønsdal in [13] (see also [23]), is expressed by the well-
known property “singleton ⊗ singleton =⊕ massless representations”, while the
former is (for n ≥ 3) the property of unique extension from representations of the
anti-de Sitter group to the corresponding conformal group. For n = 4, both notions
coincide.

The paper is organized as follows. In Section 2, we define and characterize
finite-dimensional (nonunitary) and infinite-dimensional (unitary) singleton rep-
resentations of SO0(2,n − 1), along with a classification. We also obtain a gen-
eralization of the theorem of Flato and Frønsdal mentioned above. We define in
Section 3 some notions of masslessness related to singletons, give their properties
and discuss their differences. In section 4, we construct examples of Gupta-Bleuler
triplets for the singletons and for almost all massless representations. We conclude
the paper by a comparison between the 4-dimensional and higher-dimensional
cases.

1 In fact, Gn is a covering of the actual conformal group.
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2. Singletons of SO0(2,n−1)SO0(2,n−1)SO0(2,n−1)

2.1. The fundamental property of singletons
Let Gn = Lie(Gn), Sn = Lie(Sn), Ln = Lie(Ln), and Pn = Lie(Pn). Let (ea)−1≤a≤n

be the canonical basis of R
2,n which is endowed with the metric η . Then a set of

generators of Gn is given by {Mab}−1≤a,b≤n, defined by:

Mab = −Mba and Maby = ybea − yaeb ∀ y =
a=n

∑
a=−1

yaea ∈ R
2,n.

The following commutation relations are satisfied:

[Mab,Mcd] = ηbcMad +ηbdMca −ηacMbd −ηadMcb. (2.1)

Sn, Ln, and Pn are naturally embedded in Gn. To obtain the generators of the
first two Lie algebras one simply restricts the range of indices: {Mαβ}−1≤α ,β≤n−1
and {Mµν}0≤µ ,ν≤n−1, respectively. Pn is the semi-direct sum of Ln and the Abelian
Lie algebra Tn = Lie(Tn), for which a set of generators can be given by
{Eµ = M−1,µ +Mµ ,n}0≤µ≤n−1. They satisfy the commutation relations:

[Eµ ,Eν ] = 0 and [Mµ ,ν ,Eρ ] = ηνρEµ −ηµρEν . (2.2)

The notation used in physics is related to the present one by: Pµ = −√−1Eµ ,
Lµν =

√−1Mµν , and so on.
Let D be an irreducible representation (IR) of the AdSn group Sn =

SO0(2,n− 1) on a Banach space H , not necessarily unitary. Let Kn � SO(2)×
SO(n− 1) be the maximal compact subgroup of Sn and Kn � R× Spin(n − 1)
be the corresponding maximal essentially compact subgroup of Sn. The common
reductive Lie algebra kn is generated by M−1,0 and {Mi j}1≤i, j≤n−1, the latter gener-
ating the semi-simple part of kn. The restriction D|Kn

is completely reducible, i.e.,
under the action of D|Kn

one has the direct sum decomposition:

H ∞ = ⊕µM(µ)⊗K(µ), (2.3)

where each µ is a highest weight (HW) relative to a given order of the roots of kn,
K(µ) is an irreducible kn-module with weight µ and M(µ) is a trivial kn-module
the dimension of which is the multiplicity m(µ) of µ . H ∞ is the subspace of
differentiable vectors. It is known that H ∞ is dense in H . If πµ is an IR of Kn

with weight µ then the relation (2.3) may be written:

D|Kn
= ⊕µm(µ)πµ . (2.4)

Let us write (µ1,�µ) for µ = (µ1,µ2, . . . ,µr) where r is the rank of SC
n (r is

the entire part of n+1
2 ). Let us call µ1 the energy part (we choose −µ1 to be the

energy) and�µ the spinor part. Then the diagram of such kn’s HW µ has more than
one dimension in general (recall that n ≥ 3). Moreover the multiplicity of each
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weight can be different from 0 or 1. But it may also happen that this diagram is
just one dimensional. It is indeed the case for Dirac singletons and the so-called
ladder representations of the conformal group [3, 8, 26, 29] or the representations
of Gn called Cn-massless in [25].

When that diagram is included in a line then each weight may be obtained from
a fixed one by adding an integer multiple of a fixed root. Thus the convex envelope
of the diagram is one dimensional if the representation is not trivial. So let us
write down a definition of the singletons. This definition generalizes the one given
by Dirac [8] in the 4-dimensional case to the representations D(s + 1,s), s being
1/2 or 0, respectively called later on Di and Rac by Flato and Frønsdal (see for
example [3]). More generally, the notation D(E,�λ ) corresponds to the irreducible
representation (up to equivalence) carried by the irreducible quotient L(−E,�λ) of
the Verma module M(−E,�λ).

Definition 2.1 An IR D of Sn is a singleton representation, or more simply a
singleton, if D is not trivial and there exists a weight λ and a root α of kn such
that

D|Kn
= ⊕l∈Zπλ+lα , (2.5)

where πµ is 0, if µ is not a weight of D|Kn
.

An example is given by Dirac singletons (n = 4) D(s + 1,s) and their contra-
gredients D(s+1,s), identified with D(−(s+1),s). Here one has:

D(±(s+1/2),s)|K4
= ⊕l∈Nπ(±(s+1/2+l),s+l)

and K4 � SO(2)×SO(3).
In Theorem 2.2, we shall give the fundamental mathematical property of sin-

gletons. It is a strong property of the enveloping algebra U of gC = so(N)C. We
introduce N in order to treat both conformal and anti-de Sitter cases, hence gC

stands for SN−1
C or GN−2

C. Before stating the theorem let us introduce some
useful notation. Let MN(U ) be the vector space of N ×N matrices whose ele-
ments are in U . MN(U ) is also endowed with a natural U -module structure. Let
δ = (ηabId)1≤a,b≤N and M = (Mab)1≤a,b≤N be two such matrices, Id and the Mab’s
being respectively the identity of U and the generators of the Lie algebra so(N)C.

The commutation relations considered are those given by (2.1). Define M0 def= δ and

Mk for nonzero k ∈N by (Mk)ab =∑N
c=1(M

k−1)acMc
b where Mc

b
def= ∑N

d=1η
cdMdb.

If D is a representation of U and A = (Aab) an element of MN(U ), we write D(A)
for the matrix having entries D(Aab). Finally let C2 = 1

2Tr(M2) be the Casimir
operator.
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Theorem 2.2 A singleton representation D of G = SO(2,N − 2) is a highest or
lowest weight representation and it satisfies 2

D
(
M2 − N−2

2
M− 2

N
C2δ

)
= 0. (2.6)

Moreover D is unitarizable if and only if it is infinite dimensional.
Conversely a representation integrable on the maximal compact subalgebra k

of g = Lie(G) which sends the two-sided ideal spanned by the family (Fab)a,b to 0
has, as irreducible parts, all the singleton representations.

Proof. Case 1: D is finite dimensional. Suppose that D is a finite-dimensional
representation of SO(N) of weight λ = (λ1, . . . ,λr), r being the rank. Let us denote
by D′

µ and D′′
ν the finite-dimensional representations of respective weights µ and

ν = (ν2, . . . ,νr) (up to equivalence) of SO(N−1) and SO(N−2) respectively. Let
us write µ = (µ1, . . . ,µr) if N is odd and µ = (µ2, . . . ,µr) if N is even. Then it is
known that

D|SO(N−1) =

{
⊕λ1≥µ2≥λ2≥···≥λr−1≥µr≥|λr |D

′
µ if N is even,

⊕λ1≥µ1≥λ2≥···≥λr≥µr≥−λr
D′
µ if N is odd.

(2.7)

The same decomposition holds for D′
µ |SO(N−2). Thus (D|SO(N−1))|SO(N−2) decom-

poses into a sum of irreducible representations D′′
ν such that λ1 ≥ ν2 ≥ λ2 and so

on.
Now thanks to the preceding relations one sees that for each index i such that

1 ≤ i≤ r−1, λi > |λi+1| implies that the representation D′
µi

occurs at least twice in
the reduction D|SO(N−1), thus D′′

νi
also occurs at least twice in (D|SO(N−1))|SO(N−2).

But if D is a singleton then what precedes must contain at most one component of
D′′
νi

since after restriction to K (recall that K � SO(2)×SO(N−2)) one gets a sum
of irreducible representations of the form χ(ν1)⊗D′′

ν such that the multiplicities
of ν1 and ν are both 1. Thus one has necessarily λ1 = · · · = λr−1 = |λr| and this is
equivalent, as it is proved in [4], to the relation (2.6).

Case 2: D is infinite dimensional. The Cartan decomposition of g = so(2,N − 2)
writes k+p and the triangular one is given by gC = n−+h+n+. A common Cartan
subalgebra h to kC and gC is generated by H1 = −√−1M−1,0 and, for j running
from 2 to the rank r, Hj =

√−1M2 j−3,2 j−2.We write (ε j)1≤ j≤r for the dual basis
of (Hj)1≤ j≤r, such that the roots are given by ∆ = ∆+ ∪∆− where ∆+ and ∆− are
respectively the sets of positive and negative roots for the lexicographic order, i.e.,
∆− = −∆+ and

∆+ = {ε j ± εk,1 ≤ j < k ≤ r}∪{ε j,1 ≤ j ≤ r}N−2r,

where E0 = /0 and E1 = E for any set E . A more appropriate basis of gC is given
by the family (Xi j)−r≤i, j≤r, such that:

Xi j = −Xji for − r ≤ i, j ≤ r, Hj = X− j, j for 1 ≤ j ≤ r,

2 We use the same notation D for the corresponding representations of U and so(2,N −2).
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and satisfying the following commutation relations:

[H,±X± j,±σk] = ±(ε j +σεk)(H)(±X± j,±σk), ∀ H ∈ h, (2.8)

[Xj,σk,−X− j,−σk] = Hj +σHk, (2.9)

where | j| �= |σk|, 1 ≤ j,k ≤ r, and

σ ∈
{
{−1,1} if N is even,

{−1,0,1} if N is odd.

In this way one sees that when i, j ≥ 1, Xi j corresponds to the root εi + ε j, X−i, j to
the root −(εi − ε j), and so on. The set ∆+

c of positive compact roots is obtained by
restricting the indices i, j, . . . of the roots to {−r, . . . ,r}\{−1,1}. The remaining
positive roots are the noncompact ones, the set of which we write ∆+

n .
Now let D be a singleton representation of G realized on a Banach space H .

Then one can write, under the action of k:

H ∞ = ⊕µK(µ), (2.10)

each K(µ) being an irreducible k-module. The action of p± = pC ∩ n±, which is
generated by the family (X±1, j)| j|�=1, sends a nonzero k-module K(µ1,�µ) to an

irreducible one K(µ1 ± 1, �µ ′) for some �µ ′, since D is a singleton. Suppose that
K(µ) �= {0} but X±1,2K(µ) = {0}. Then the second component of the weights of
U (p±)K(µ) are bounded from above by µ2. Two cases arise: N > 5 or N = 4
(since n ≥ 3), the first one being the only one for which k is semi-simple. Let
N ≥ 5. What precedes implies that U (p±)K(µ) is finite dimensional because each
weight is a ∆+

c -dominant integer. Indeed, some power of X±1, j, | j| /∈ {0,1}, is zero
on K(µ). If N is odd, some power of X±1,0 is also vanishing, thanks to the relation
[Xm

20,X
m
±,−2] = m!Xm

±,0.
Thus for an infinite-dimensional D, there exists ε ∈ {−1,1} such that the pow-

ers of Xε ,2 are not vanishing on nonzero k-modules. Without loss of generality, we
shall consider from now on that ε = −1, i.e., X−1,2K(µ) �= {0} for each nonzero
K(µ). It follows that D|Kn

= ⊕l∈Zπλ+l(ε1−ε2), hence D|Kn
is a highest weight

representation, i.e., there exist a weight λ(0) such that D|Kn
= ⊕l∈Nπλ (0)−l(ε1−ε2).

We shall write Dλ (0) or D(−λ (0)
1 , �λ (0)) for such a representation.

Let K(µ) �= {0}. Since [kC ∩ n+,X−1,2] = {0}, X2
−1,2K(µ) is an irreducible

k-module of weight µ − 2(ε1 − ε2) = (µ1 − 2,µ2 + 2,µ3, . . . ,µr). The element
Y−1,−1 = ∑|k|�=1 X−1,kX−1,−k of U C satisfies [kC,Y−1,−1] = {0}, thus Y−1,−1K(µ)
is also an irreducible k-module of weight µ − 2ε1 = (µ1 − 2,µ2,µ3, . . . ,µr). As
D is an infinite-dimensional singleton, X2

−1,2K(µ) �= {0} and the multiplicity of
µ1−2 is 1. Then one has necessarily Y−1,−1K(µ) = {0}. It follows that Y−1,−1 = 0
on H ∞. Finally the application of the adjoint representation on Y−1,−1 yields the
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following relation on H ∞:

r

∑
i=−r

Xj,−iX−k,i +
N −2

2
X−k, j +

2
N
δ jkC2 = 0, ∀ j,k ∈ {−r, . . . ,r}. (2.11)

The N = 4 case is more simple since gC is isomorphic to a direct sum of two
copies of sl(2)C and D is a singleton if and only if its restriction to one, and only
one, of the two copies is trivial, but this property is equivalent to the relation (2.11).

Finally the fundamental relation (2.6) follows for D as a representation of g and
it has been proved in [4] that each nontrivial representation that satisfies (2.6) is a
singleton (finite or infinite dimensional).

The following result is a characterization of the infinite-dimensional singletons
of the n-anti-de Sitter group (or (n−1)-conformal group) SO0(2,n−1).

Corollary 2.3 Let D an infinite-dimensional IR of Sn = SO0(2,n−1), n ≥ 3. The
following conditions are equivalent:

i) D is a singleton;

ii) The restriction D|Ln
of D to the n-Lorentz group SO0(1,n−1) is a UIR;

iii) The restriction D|Pn−1
of D to the (n−1)-Poincaré group SO0(1,n−2)�Tn−1

is a UIR.

Proof. It has been proved in [4] that an irreducible infinite-dimensional representa-
tion which satisfies the fundamental relation (2.6) is irreducible when restricted
to the n-Lorentz group. This proves the implication i) ⇒ ii). The implication
iii) ⇒ i) has been proved in the same paper and the proof of ii) ⇒ iii) is in [25].

Remark 2.4 The restriction of an infinite-dimensional singleton of the n-anti-de
Sitter group to the (n−1)-anti-de Sitter one (in other words one restricts from the
conformal group to the anti-de Sitter one) is not irreducible in general. In fact there
is only one case for which it is not irreducible, but it is a sum of two irreducible
ones, as shown in theorem 3.4.

Let U a nontrivial UIR of the (n−1)-Poincaré group Pn−1, the invariance group
of the (n−1)-dimensional Minkowski space Mn−1. Then it is proved in [4] that if
U extends to Sn = Gn−1, the conformal group of Mn−1, then the extension is a
singleton uniquely defined by U .

Let D a finite-dimensional singleton of SO(N), N ≥ 4. Then the restriction of
D to SO(N−1) is irreducible if and only if N is even. If it is odd, the restriction is
a sum of two irreducible ones.
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2.2. Classification of the singletons
The following result is a corollary of the theorem 2.2. We write again Dµ or
D(−µ1,�µ) for a highest weight irreducible representation with weight (µ1,�µ),
of the anti-de Sitter group. The corresponding common Cartan subalgebra of Sn

and of its maximal compact subalgebra kn is the one introduced in the preceding
section. An infinite-dimensional highest weight representation is thus, with this
choice, a positive minimal energy representation, −µ1 being the energy.

Theorem 2.5 Let D a singleton representation of G = SO(2,N − 2). Then, for a
certain order of the roots, D is a highest weight IR such that:

If D is finite dimensional, D is equivalent to one of the following series:

D(−1
2
,
1
2
, . . . ,

1
2
), if N is odd, (2.12)

D(−s,s, . . . ,s,εs), 2s ∈ N\{0} and |ε | = 1, if N is even. (2.13)

If D is infinite-dimensional, then it is a unitary representation equivalent to one
of the following series:

D(s+
N −4

2
,s, . . . ,s), s ∈ {0,

1
2
}, if N is odd, (2.14)

D(s+
N −4

2
,s, . . . ,s,σs), 2s ∈ N and |σ | = 1, if N is even. (2.15)

Proof. Assume N ≥ 5. Since D is a weight representation, one can assume that
it is a HW one, with weight λ(0). Let v ∈ H ∞ be a maximal vector, i.e., such
that n+v = {0} and Hv = λ (0)(H)v for all H ∈ h. Then applying the fundamental
relation (2.11) to v yields

(λ (0)
i −λ (0)

i+1)(λ
(0)
i +λ (0)

i+1 +
N −4

2
+1− i) = 0, where 1 ≤ i ≤ r−1, (2.16)

and, if N is odd,
r

∑
i=1

λ (0)
i = − 2

N
C2. (2.17)

Now writing s = λ (0)
2 , (2.16) gives the desired result when N is even, no matter

if D is finite dimensional or not. If N is odd one has also, thanks to (2.17), s(s−
1/2) = 0.

If N = 4, then one has λ(0) = (λ (0)
1 ,λ (0)

2 ) and thanks to the fundamental relation

one gets |λ (0)
1 | = |λ (0)

2 |, which means that D is trivial on one of the two copies of
so(3)C (see the Remark below).

Remark 2.6 Let J2 be the (second order) Casimir operator of the “spin” subalge-
bra so(N −2) of g. Then the relation (2.6) is equivalent to

J2 −H2
1 =

N−4
N

C2.
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In particular, if N = 4 one has H2
1 = H2

2 , since J2 = H2
2 .

On the lowest energy level of the singleton D the corresponding representation
of so(N − 2) is itself a (finite-dimensional) singleton. If, conversely, one starts
with a singleton representation of so(N − 2), then this can be the ground state of
two singleton representations of g: one being finite dimensional, the other infinite
dimensional.

2.3. A remarkable property of singletons
Here we present a generalization of the theorem of Flato and Frønsdal [13]:
“ singleton ⊗ singleton = ⊕ massless representations ” proved in 1978 for the
case N = 4.

Let Rac = D(N−4
2 ,0, . . . ,0) and Di± = D( 1

2 + N−4
2 , 1

2 , . . . , 1
2 ,ε 1

2), where |ε | = 1
and ± is the sign of ε . Then the former is the spin 0 unitary singleton while the
latter is one of the two unitary singletons (resp. the unitary singleton) with spin 1

2
if N is even (resp. odd). If N is odd, ε = 1. We just write Di when ε = 1, N odd or
even.

Theorem 2.7

Rac⊗Rac = ⊕∞
s=0D(s+N−4,s,0, . . . ,0), (2.18)

Rac⊗Di± = ⊕∞
s− 1

2 =0D(s+N−4,s,
1
2
, . . . ,

1
2
,ε

1
2
). (2.19)

Proof. Let D′ and D′′ two unitary singletons of G, both with the same energy sign,
i.e., both highest weight representations or both lowest ones. We are interested in
reducing the product D′ ⊗D′′. Thus if D is an irreducible representation contained
in this product then D(Mab) = D′(Mab)⊗ 1 + 1⊗D′′(Mab) for all a and b. For
simplicity of the proof we use the notation introduced just before Theorem 2.2 and
we write M′, M′′, and M instead of D′(M)⊗1, 1⊗D′′(M), and D(M), respectively.
Then one has, since D′ and D′′ satisfy the fundamental relation (2.6),

M′2 =
N −2

2
M′ +

2
N

C′
2δ ,

M′′2 =
N −2

2
M′′ +

2
N

C′′
2δ .

(2.20)

Then one gets, because of the relation M2 = M′2 +M′M′′ +M′′M′+M′′2:

M2 =
N−2

2
M +

2
N

(C′
2 +C′′

2)δ +K2, (2.21)

where K2 = M′M′′ +M′′M′. More generally we define Kk, k ≥ 2, by

Kk =

k terms︷ ︸︸ ︷
M′M′′M′M′′ · · ·+

k terms︷ ︸︸ ︷
M′′M′M′′M′ · · · .
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Multiplying both sides of (2.21) by M and using (2.20), one finds

M3 =
N −2

2
M2 +

2
N

(C′
2 +C′′

2)M +
N −2

2
K2 +

2
N

(C′
2M′′ +C′′

2M′)+K3.

(2.22)
Let D′ = D′′ = Rac. Then C′

2 = C′′
2 = −N(N−4)

4 , if one identifies the Casimir

operators with their scalar values. It follows that C′
2M′′ + C′′

2M′ = −N(N−4)
4 M.

The expression of K2 follows from (2.21). It remains to calculate K3. For let us
define the symmetrizer S by S(MabMcd) = 1

2(MabMcd +McdMab) and consider the
element of the enveloping algebra Λ2

abcd = S(MabMcd)+S(MbcMad)+S(McaMbd).
Then Λ2

abcd is completely skew-symmetric in the indices a,b,c,d and is sent to
zero by Rac, what we may write Λ′2

abcd = 0. This implies, for each a, d:

∑
bc

Λ′2
abcdM′′bc =2∑

bc

M′
abM′′bcM′

cd −∑
bc

M′
abM′′bcηcd

+∑
bc

M′
bcM

′′bc(M′
ad −ηcd) = 0,

(2.23)

hence M′M′′M′ = M′M′′ + 1
2Tr(M′M′′)(M′ − δ ). A similar formula holds for

M′′M′M′′. Thus, after adding them, one gets

K3 = K2 +
1
2

Tr(M′M′′)(M−2δ ).

Since C2 = 1
2Tr(M2) = 1

2Tr(M′2 + M′M′′ + M′′M′ + M′′2) one has Tr(M′M′′) =
C2 − (C′

2 + C′′
2) thanks to the relations above and, after factorizing, it follows

that

[M2 − (N−3)M− 1
2

C2δ ](M−2δ ) = 0. (2.24)

Let us determine explicitly the corresponding representations D. Since Rac is a
highest weight representation, D is a also a highest weight one, say λ . The lowest
energy of Rac being N−4

2 , one has necessarily λ1 ≤ −(N − 4). To determine the
possible values of λ , let us complexify g and consider the (Xi j)-basis version of
the relation (2.24):

[X2 +(N−3)X − 2
2

C2δ ](X +2δ ) = 0. (2.25)

Then the application of this relation on the maximal vector (ground state) vλ of D
yields:

[λ 2
1 +(N−3)λ1 − 1

2
C2](λ1 +2) = 0.

Since λ1 ≤−(N−4), if N ≥ 5 it follows:

λ 2
1 +(N−3)λ1 − 1

2
C2 = 0. (2.26)
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If N = 4, we shall see that λ1 = −2 is a solution of Equation (2.26). Thus we
can work only with the latter. For the second component of λ one gets, since this
weight is a ∆+

c -dominant integer:

λ 2
2 +λ1 +(N−4)λ2 − 1

2
C2 = 0. (2.27)

Subtracting this equation from the preceding one gives:

(λ1 −λ2)(λ1 +λ2 +N−4) = 0,

from which follows λ1 = −(λ2 + N − 4). This condition implies that the other
components are zero, i.e., λ = (−s−N + 4,s,0, . . . ,0) where s = λ2. Then the
integrability conditions imply that s is an integer. The necessary condition is thus
proved. To prove that this is sufficient consider the following vectors, where s ∈ N,
v′ is the maximal vector of D′ and v′′ the maximal one of D′′ (see Remark 2.8
below):

vs =
s

∑
l=0

s!(−1)l

(s− l)!l!
Γ(−N−4

2 − l +1)Γ(−N−4
2 − s− l +1)

Γ(−N−4
2 +1)2

(Xs−l
−1,2v′)⊗ (Xl

−1,2v
′′).

(2.28)
Then U (g)vs carries an irreducible highest weight representation of g with weight
λ = (−s−N +4,s,0, . . . ,0). This finishes the proof for the Rac⊗Rac part.

To prove the other part let again D′ = Rac but D′′ = Di. Then C′′
2 =−N(N−3)

8 �=
C′

2 and Λ′′2
abcd is no longer zero. But considering the fourth degree of M and using

the relations (2.21) and (2.22) one gets:

M4 =(N −2)M3 +
[− (N−2

2

)2 +
2
N

(C′
2 +C′′

2)
]
M2

− (N−2)
2
N

(C′
2 +C′′

2)M− (
2
N

)2(C′
2 +C′′

2)2δ +(K2)2.

(2.29)

After some calculations, we find

(K2)2 = K4 +
N −2

2

[
K3 +

2
N

(C′
2M′′ +C′′

2M′)
]
+

8
N

C′
2C′′

2δ .

From Equation (2.22) one may write K3 + 2
N (C′

2M′′+C′′
2M′) in terms of M, M2,

and M3. Thus it remains to calculate K4. After lengthy calculations one arrives to

S(K4) = [N −2+Tr(M′M′′)][M2 − N −2
2

M− 2
N

(C′
2 +C′′

2)δ ].

This relation, together with the others above yields after other lengthy calculations
an expression for S(M4) from which one gets the factorized relation:[

M2 − (N−3)M− 1
2

(
C2 − (N −4)(N −5)

8

)
δ
](

M− N −1
2

δ
)(

M− 3
2
δ
)

= 0.

(2.30)



14 E. ANGELOPOULOS AND M. LAOUES

Again, in order to identify explicitly the representations contained in Rac⊗Di, we
write the preceding relation in terms of the basis (Xi j) of gC. Then one gets:

[
X2 +(N−3)X − 1

2

(
C2 − (N −4)(N −5)

8

)
δ
]
(X +

N −1
2

δ )(X +
3
2
δ ) = 0.

(2.31)
Using similar arguments as for the case Rac⊗Rac yields

λ 2
1 +(N−3)λ1 − 1

2

(
C2 − (N −4)(N −5)

8

)
= 0, (2.32)

and, for λ2, the weight being a ∆+
c -dominant integer:

λ 2
2 +λ1 +(N−4)λ2 − 1

2

(
C2− (N −4)(N −5)

8

)
= 0. (2.33)

After subtracting this equation from the preceding one it follows:

(λ1 −λ2)(λ1 +λ2 +N−4) = 0,

from which finally one gets λ = (−s−N +4,s, 1
2 , . . . , 1

2 ), where s = λ2 and s− 1
2 ∈

N. Now to obtain the sufficient condition we consider again the vectors vs of (2.28)
but with some changes: We replace in the right-hand side s by s−1

2 . Evidently v′′
is now a maximal vector for Di. Then again U (g)vs carries an irreducible highest
weight representation of g, but now with weight λ = (−s−N +4,s,1

2 , . . . , 1
2).

The case D′′ = Di− is similar. The only change is λr = − 1
2 instead of λr = 1

2 .

Remark 2.8 One may reduce the product Di⊗Di in the same manner as in The-
orem 2.7, i.e., by seeking for an ideal which is sent to zero by each representation
contained in Di⊗Di. Another way to reduce this product is to consider one of the
Di’s as a summand in the product Σ⊗Rac, Σ being the spinor representation, and
consider the product Σ⊗Rac⊗Di.

The vectors vs appearing in (2.28) can be realized explicitly in a very simple
manner. For this, let us realize the Rac on the cone {y ∈ R

2,N−2 | y2 = 0} in the
usual way. Then one may choose v′ to be the function y �→ (x1)−

N−4
2 where x1 =√−1y−1−y0√

2
. For the other Rac, v′′ is defined in a similar manner but with primes

on the variables. For the Di, if v′′ is the maximal vector, one can choose the map
y′ �→ (x′1)−

N−3
2 w 1

2
, where w 1

2
is the maximal vector of Σ. Now let σ = 0 or 1

2 ,

w0 = 1, and define x2 = y1+
√−1y2√

2
and x′2 by a similar formula, but with primes on

the variables. D′′ can be either a Rac or a Di. Then the map

vs : (y,y′) �→ (x1x′1)
− N−4

2 −s(x1x′2 − x2x′1)
s−σwσ ,

where s−σ ∈N, is a maximal vector of the representation D(s+N−4,s,σ , . . . ,σ).
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3. Masslessness

Since the anti-de Sitter space-time Hρ
n contracts to the Minkowski space-time Mn,

it is reasonable to demand that the notion of masslessness on Hρ
n should corre-

spond under the contraction to masslessness on Mn, where the square of the mass
operator (usually denoted by ∑PµPµ) is sent to 0 by massless representations of
the Poincaré group Pn. Such representations, when they do not have continuous
spin (we will say discrete spin)3, are induced by a unitary finite dimensional repre-
sentation of a semi-direct product of the Euclidean subgroup E(n− 2) (contained
in Ln) by the subgroup of translations Tn. Their restrictions to the translations Tn−2

of E(n− 2) are trivial. The subgroup E(n− 2) is such that the isotropic cone of
Mn is homeomorphic to Ln/E(n−2). Contractibility may be used as a criterion for
masslessness on the anti-de Sitter space. In the definition we will give below, by
natural contraction of a representation of the anti-de Sitter group to a representa-
tion of the Poincaré group shall mean a contraction which leaves the restriction to
the Lorentz group Ln (contained in both of them) invariant up to equivalence. It is

thus compatible with the contraction Hρ
n

ρ→0−→ Mn. For example, the minimal energy
representation U = D(E0,�λ ) may be contracted to a representation of the Poincaré
group. In terms of the curvature,

√
ρE0 is sent to the mass. If E0 is fixed, for ex-

ample equal to n−3
2 , then the resulting mass is 0. But the contracted representation

is massless for the Poincaré group if it is not trivial on the translations.

Definition 3.1 A unitary representation U of the anti-de Sitter group Sn is said to
be massless if U contracts naturally to a discrete spin massless representation of
the Poincaré group Pn.

An immediate consequence is that singletons of Sn are not massless represen-
tations. Indeed such a singleton contracts to a representation of the Poincaré group
Pn which is trivial when restricted to the subgroup of translations Tn [25]. But
singletons are not massive particles either, in the sense that a massive particle on
the anti-de Sitter space-time must be described by a representation of Sn which
contracts to a massive representation of the Poincaré group Pn, thus necessarily
nontrivial on the translations. Hence singletons have no analog in Minkowski
spaces Mn. This was already pointed out by Flato and Frønsdal for the n = 4 case
(see for example [15]).

The notion of masslessness is not unique since several nonequivalent repre-
sentations of Sn may be contracted to a massless representation of Pn. Below we
shall consider two notions of masslessness, both closely related to singletons. To
distinguish them we give the following Definitions.

3 When the space-time dimension n is even helicity is easily defined: It is a straightforward
generalization of the notion of helicity in the 4-dimensional case. Thus a discrete spin representation
is nothing but discrete helicity representation when n is even (see Remark 7 in [25]).
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Definition 3.2 A massless representation U of the anti-de Sitter group Sn is said
to be conformal massless if there exists a singleton D of the conformal group Gn

such that U ∼ D|Sn
.

This is the classical definition of masslessness given by Flato and Frønsdal when
n = 4 (see for example [14]). A remarkable fact is that a conformal massless rep-
resentation U ∼ D|Sn

contracts naturally to the restriction D|Pn
of the singleton D

to the Poincaré group. D|Pn
is irreducible (see Corollary 2.3) and is a discrete spin

massless representation of Pn (see [4]).
It is important to notice that since the unitarity of U is required, only infinite-

dimensional (unitary) singletons D may be used in the preceding definition.
Next, we present a second notion of masslessness. We shall see that it does not

coincide with the first notion given, if n ≥ 5.

Definition 3.3 A massless representation U of the anti-de Sitter group Sn is said to
be composite massless if U occurs in the reduction of the tensor product D1 ⊗D2

where D1 and D2 are irreducible weight representations, with the same energy
sign, equivalent to a Rac or a Di.

This definition means that a composite massless representation describing a
massless particle on the anti-de Sitter space is composed of two subparticles, the
singletons, in the same manner as nucleons are composed of quarks, except that
singletons are unobservable for kinematical reasons while the unobservability of
quarks is due to their confinement [15]. The representations appearing in the right-
hand side of Theorem 2.7 are composite massless representations. They were
considered for n = 5 by Ferrara and Frønsdal as the massless ones in [11, 12].
Irreducibility and Gupta-Bleuler (GB) quantization are almost always possible,
but there are few exceptions. Some results concerning GB quantization are given
in Section 4. Here we list the conformal massless representations.

Theorem 3.4. ([25]) Let U be a conformal massless representation of the anti-de
Sitter group Sn. Then for a certain order of the roots:

n even =⇒
{

U ∼ D(s+ n−2
2 ,s, . . .,s), for s �= 0 such that 2s ∈ N or

U ∼ D( n−2
2 ,0, . . .,0)⊕D(n

2 ,0, . . .,0),
(3.1)

n odd =⇒
{

U ∼ D( n−1
2 , 1

2 , . . ., 1
2)⊕D( n−1

2 , 1
2 , . . ., 1

2 ,− 1
2) or

U ∼ D( n−2
2 ,0, . . .,0)⊕D(n

2 ,0, . . .,0).
(3.2)

In particular there is no conformal massless representations with spin different
from 0 or 1

2 in odd-dimensional anti-de Sitter spaces. It can be seen that this is still
true in odd-dimensional Minkowski spaces if one defines conformal masslessness
in a similar fashion, i.e., by restricting a singleton of the conformal group to the
Poincaré group.
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The following questions naturally arise: Are the conformal massless represen-
tations composite massless? What about the converse? The answer is practically
negative. In fact, we have:

Theorem 3.5. ([25]) A conformal massless representation is composite massless
if and only if n = 3 or n = 4. More precisely, there is no tensor product of unitary
weight representations with the same energy sign containing such a representation.

Thus for n ≥ 5, conformal invariance is not compatible with singleton com-
posed of massless particles, provided that those singletons have the same energy
sign. Though other type of composite particles are allowed. For example one can
find conformal massless representations contained in the tensor product of a single-
ton by some multipleton or in the product of some two multipletons (see Remark 1
in [25]). Here we call a multipleton (or m-ton, for a certain m) a representation for
which the diagram of maximal weights is included in m parallel lines: a 1-ton is a
singleton, a 2-ton is a doubleton, and so on. Multipletons are generally not unitary;
it is the case of the multipletons concerned by the “compositeness” of conformal
massless representations.

4. Gupta-Bleuler quantization

For simplicity, we consider in this section that n ≥ 4.
The method used to construct GB triplets is the following: Suppose that the

IR D(E,�λ ) is unitary if E ≥ E0 (E0 is the limit of unitarity). Then usually when
E → E0 (E �= E0), even for E < E0, the IR D(E,�λ) becomes indecomposable.
More precisely one obtains a (non-direct) sum of D(E0,�λ ) with another repre-
sentation. The (physical) representation D(E0,�λ ) is realized as a quotient (by the
gauge representation). Then using a third (scalar) representation together with
some conditions usually satisfied one may construct a GB triplet.

The physical and gauge representations are usually minimal or maximal energy
representations and are related to the Verma modules in the following way. Let
g a noncompact semi-simple Lie algebra, the typical example being so(2,N − 2).
Let k the (reductive) maximal compact subalgebra of g; k � R⊕ so(N − 2) for
so(2,N − 2). Let K(λ ) a finite-dimensional simple k-module with weight λ . As
usual the energy is E = −λ1. Then there exists E0 depending on�λ such that the g-
module N(λ ) = U (gC)⊗U (kC+p+) K(λ ) is not unitarizable if E = |λ1|< E0 [2, 9].
In particular, if g = so(2,N −2), this module is unitarizable if and only if E ≥ E0,
E0 = λ2 +k, where k a constant depending on�λ . N(λ ) is not always irreducible. If
g = so(2,N −2), N(λ ) is irreducible (i.e., N(λ ) = L(λ )) if and only if E > E0. If
E = E0 then N(λ ) is not irreducible. It contains a maximal submodule I generated
by relations similar to those of (2.6), the fundamental relation of singletons, or
to those of (2.24) and (2.30), satisfied by the composite massless representations,
obtained in Section 2. The irreducible quotient L(λ ) = N(λ )/I corresponds to
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the physical space and carries the representation D(E0,�λ ) while an irreducible
quotient of I corresponds to the gauge space. To construct a GB triplet one needs
a third space, endowed with an indefinite metric, and a representation conjugated
to the gauge defined on a quotient space, the so-called scalar space. This is the
method for constructing GB triplets which we shall call natural in the remaining.

Note that GB triplets do not require unitarity of the three representations; only
the physical one has to be unitary.

In what follows we will give some examples of GB triplets for all singletons
and almost all of the massless representations. Futher details can be find in [25].

The representations we shall consider are those of the anti-de Sitter group Sn.
The Lorentz conditions, i.e., the conditions which define the space H2 (the physical
space is H2/H3), follow directly from the relations defining the submodule I (e.g.,
see (2.6)).

4.1. Singletons: spin 0
Let H

(0)
1 the space of square-integrable (with respect to the Riemannian mea-

sure) positive energy solutions of (∂2)2ϕ = 0 and y ·∂ϕ = −n−3
2 ϕ , H

(0)
2 = {ϕ ∈

H
(0)

1 | ∂ 2ϕ = 0} and H
(0)

3 = {ϕ ∈ H
(0)

2 | ϕ has the form y2φ}, where y ∈ H+ =
∪ρ>0H

ρ
n , ∂ 2 =∑∂a∂ a, and y ·∂ =∑ya∂a. Then these spaces realize the GB triplet:

D(
n+1

2
,0, . . . ,0) → D(

n−3
2

,0, . . . ,0) → D(
n+1

2
,0, . . . ,0),

i.e., H (0)
1 /H

(0)
2 and H

(0)
3 (resp. scalar and gauge space) carry the irreducible rep-

resentation D(n+1
2 ,0, . . . ,0) while the quotient H

(0)
2 /H

(0)
3 (physical space) carry

the singleton D(n−3
2 ,0, . . . ,0). Since limy2→0ϕ = 0 if ϕ ∈ H

(0)
3 one may realize

the singletons in H
(0)

2 by taking limy2→0ϕ(y) or, equivalently, at the “boundary”

of the space-time, i.e., by considering limR→∞R
n−3

2 ϕ(y), where R =
√

∑n−1
a=1(ya)2.

4.2. Singletons: spin 1/2
Let Σ be the spinor representation on the spinor module VΣ (not irreducible if n−1
is even), (γa) the Dirac matrices such that {γa,γb} = 2ηab (if n− 1 is odd then
γn−1 is a multiple of the product of the others). As usual/y =∑yaγa, /∂ =∑∂ aγa. To
realize the GB triplet explicitly we reduce the tensor product D(E,�0)⊗Σ, E > n−1

2 ,
to realize the irreducible representation D(E−1

2 , 1
2 , . . . , 1

2 ) and then we let E → n−1
2

to get an indecomposable representation from which we realize the following GB
triplet. The spinors we are using are the maps Ψ : H+ →VΣ.

Let H
(1/2)

1 be the space of spinors which are square-integrable positive energy

solutions of ∂2Ψ = 0, y ·∂Ψ = −n−2
2 Ψ and (/y/∂ )2Ψ = 0. We shall write H

(1/2)
2 =

{Ψ ∈ H
(1/2)

1 | /∂Ψ = 0} and H
(1/2)

3 = {Ψ ∈ H
(1/2)

2 | Ψ has the form /yΦ}. Let
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ν = 0, if n is even, and 1 otherwise. Then these spaces realize the GB triplet:

D(
n
2
,
1
2
, . . . ,

1
2
,(−1)ν

1
2
) → D(

n−2
2

,
1
2
, . . . ,

1
2
) → D(

n
2
,
1
2
, . . . ,

1
2
,(−1)ν

1
2
),

i.e., H
(1/2)

1 /H
(1/2)

2 and H
(1/2)

3 (resp. scalar and gauge space) carry the irre-

ducible representation D(n
2 , 1

2 , . . . , 1
2 ,(−1)ν 1

2) while the quotient H
(1/2)

2 /H
(1/2)

3
(physical space) carries the singleton D(n−2

2 ,1/2, . . . ,1/2). Since limy2→0 /yΨ = 0

whenever Ψ ∈ H
(1/2)

3 one can realize the singletons in H
(1/2)

2 by taking

limy2→0 /yΨ(y) or, equivalently, at the “boundary” by limR→∞R
n−1

2 Ψ(y).

4.3. Singletons: spin s≥≥≥1
Here n − 1 is necessarily even. The tensor product we use is D(E,�0)⊗ (Σ)⊗2s,
with E close to n−3

2 +2s. The corresponding multispinors are the maps Ψ : H+ →
Σ⊗2s. Define γ(t)

a by γ(t)
a v1 ⊗·· ·vt · · ·v2s = v1 ⊗·· ·γavt · · ·v2s, /y(t) = ∑yaγ(t)

a , /∂ (t) =
∑∂ aγ(t)

a , τi j the transposition i ↔ j and

Y =
1
2s

[
∑

1≤t≤2s

τ(t,2s)

]
/y(2s).

Let H
(s)

1 be the space of spinors which are square-integrable and positive en-

ergy solutions of ∂2Ψ = 0, y ·∂Ψ = (−n−3
2 −2s)Ψ, and (∑2s

t=1 /y(t)/∂ (t))2Ψ = 0. Let

H
(s)

2 = {Ψ∈H
(s)

1 | /∂ (t)Ψ= 0,∀t} and H
(s)

3 = {Ψ∈H
(s)

2 |Ψ has the form Y Φ}.
Then these spaces realize the GB triplet:

D(
n−1

2
+ s,s, . . . ,s−1) → D(

n−3
2

+ s,s, . . . ,s) → D(
n−1

2
+ s,s, . . . ,s−1),

i.e., H
(s)

1 /H
(s)

2 and H
(s)

3 (resp. scalar and gauge space) carry the irreducible

representation D(n−1
2 + s,s, . . . ,s − 1) while the quotient H

(s)
2 /H

(s)
3 (physical

space) carries the singleton D(n−3
2 + s,s, . . . ,s). Since limy2→0∑t /y(t)Ψ = 0 when-

ever Ψ ∈ H
(s)

3 , as before one can realize the singletons in H
(s)

2 as the limit

limy2→0∑t /y(t)Ψ(y) or, again, at the “boundary” as the limit limR→∞ R( n−3
2 +2s)Ψ(y).

4.4. Conformal massless representations: spin s≥≥≥1
Define ε by |ε | = 1 if n−1 is even and ε = 1 if n−1 is odd. The limit of unitarity
of the IR D(E0,s, . . . ,s,εs) is E0 = n−2

2 + s if n is even (or n−1 is odd) and s ≥ 1,
E0 = n−3

2 + s if not, i.e., n odd (or n−1 even) or s ∈ {0, 1
2}. Thus the construction

of natural GB triplets for conformal massless representations is only possible in
even-dimensional space-time, i.e., n−1 odd, and for spin greater or equal to 1. So
let s≥ 1 and n even. We use the same tensor product as in the preceding subsection,
but with E close to n−2

2 +2s.
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Let H
(s)

1 be the space of multispinors which are square-integrable positive

energy solutions of ∂2Ψ= 0, y ·∂Ψ= (−n−2
2 −2s)Ψ and (∑2s

t=1 /y(t)/∂ (t))2Ψ= 0. Let

H
(s)

2 = {Ψ ∈ H
(s)

1 | /∂ (t)Ψ = 0, ∀ t}, H
(s)

3 = {Ψ ∈ H
(s)

2 |Ψ has the form Y ψ},
where

Y =
1

2s(2s−1)

[
∑

1≤t≤2s−1

τ(t,2s−1) + ∑
1≤t<t′≤2s−1

τ(t,2s)τ(t ′,2s−1)

][
/y(2s−1)− /y(2s)].

Then these spaces realize the GB triplet:

D(
n−1

2
+ s,s, . . . ,s−1) → D(

n−3
2

+ s,s, . . . ,s) → D(
n−1

2
+ s,s, . . . ,s−1),

i.e., H
(s)

1 /H
(s)

2 and H
(s)

3 (resp. scalar and gauge space) carry the irreducible

representation D(n−1
2 + s,s, . . . ,s − 1) while the quotient H

(s)
2 /H

(s)
3 (physical

space) carries the conformal massless one D(n−3
2 + s,s, . . . ,s).

4.5. Composite massless representations: spin s≥≥≥1
If ε is defined in the same way as in the preceding subsection and if σ is the
fractional part of s, then the limit of unitarity of the IR D(E0,s,σ , . . . ,σ ,εσ), is
n−3+s if s≥ 1, and n−3

2 +s otherwise. Thus natural GB triplets for the composite
massless representations of this form can be obtained only for s ≥ 1, regardless to
the parity of n. So let s ≥ 1. Then the corresponding GB triplets are realized in a
somewhat known fashion (see for example [6, 7, 20, 22]).

First suppose that s ∈N. We reduce the tensor product D(E,�0)⊗D(−s,�0), with
E close to s + n− 3. D(−s,�0) is a finite-dimensional representation realized on
the space of polynomials in the variables z−1, . . . ,zn−1. The GB triplet is realized
on the space of functions (y,z) �→ φ(y,z) with the usual conditions on the variable
y∈H+. This is equivalent to realizing the representation on the space of symmetric
tensor fields of rank s on H+. The generators of the Lie algebra are Mab = ya∂b −
yb∂a + zaδb − zbδa, δc = ∂

∂ zc . Once the irreducible representation D(E,s,0, . . . ,0)
is realized for E �= s + n− 3, then one obtains an indecomposable representation
after taking the limit E → s+n−3. From there one constructs the GB triplet:

D(s+n−2,s−1,0, . . . ,0)→D(s+n−3,s,0, . . . ,0)→D(s+n−2,s−1,0, . . . ,0).

As above one needs some Lorentz conditions to fix the space H ′(s)
2 which de-

fines the physical situation: Its elements are the tensor fields ϕ which satisfy
∂ 2ϕ(y,z) = 0, y · ∂ϕ(y,z) = −(s + n − 3)ϕ(y,z) (homogeneity), z · δϕ(y,z) =
sϕ(y,z), δ 2ϕ(y,z) = 0 (ϕ is traceless), ∂ · δϕ(y,z) = 0 (ϕ is divergenceless) and
y ·δϕ(y,z)= 0 (ϕ is transverse). The physical representation D(s+n−3,s,0, . . . ,0)
is realized on the quotient H ′(s)

2 /H ′(s)
3 where the gauge space H ′(s)

3 is the sub-

space of elements ϕ ∈H ′(s)
2 of the form ϕ(y,z) =

[
y2z ·∂ +(n−3+2s)y ·z]φ(y,z).
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Now suppose that s is a half-integer, i.e., s− 1
2 ∈ N. The tensor product we

consider is D(E,�0)⊗ D(−(s − 1
2),�0)⊗ Σ, with the same material as above but

with s− 1
2 instead of s for the first two representations. The desired representa-

tions act on tensor-spinor fields Ψ on H+. The generators of the Lie algebra are
Mab = ya∂b − yb∂a + zaδb − zbδa + 1

4 [γa,γb]. To get the needed indecomposable
representation we let E → s+n−3+ 1

2 . Then one gets the GB triplet:

D(s+n−2,s−1,
1
2
, . . . ,ε

1
2
) → D(s+n−3,s,

1
2
, . . . ,ε

1
2
) →

→ D(s+n−2,s−1,
1
2
, . . . ,ε

1
2
).

The value of ε , ±1, depends as usual on the parity of n and on the irreducible
component of Σ used (Σ is irreducible only if n−1 is odd).

H ′(s)
2 is defined from the Lorentz conditions: ∂2Ψ(y,z) = 0, y · ∂Ψ(y,z) =

−(s+n−3+ 1
2 )Ψ(y,z), z ·δΨ(y,z) = (s− 1

2)Ψ(y,z), δ 2Ψ(y,z) = 0, ∂ ·δΨ(y,z) =
0, y ·δΨ(y,z) = 0, /y/∂Ψ(y,z) = 0, and /z/δΨ(y,z) = 0. Finally the physical represen-

tation D(s+n−3,s, 1
2 , . . . ,ε 1

2) is realized on the quotient H ′(s)
2 /H ′(s)

3 where the

gauge space H ′(s)
3 is the subspace of elements Ψ ∈ H ′(s)

2 of the form Ψ(y,z) =[
y2z ·∂ +(n−3+2s−1)y · z+ /y/z

]
Φ(y,z).

5. The unreasonable effectiveness of the 4-dimensional space-time

From what precedes one sees that singletons of the anti-de Sitter group are well
defined for n ≥ 3. They are defined for all half-integer spin if the space-time
dimension n is odd and only for spin 0 or 1/2 if n is even. Moreover singleton
theory is always quantizable in the sense of Gupta and Bleuler and the resulting
gauge theory is topological in the sense that singletons appear at spatial infinity,
since in the Lorentz condition one lets the “radius” R of space-time tend to infinity.
Apparently there is no noticeable difference with the n = 4 dimensional case.

However masslessness behaves differently. Indeed if one needs conformal in-
variance one has to work with conformal masslessness, but then the space-time
dimension must be even if massless particles with spins other than 0 or 1/2 are
necessary. Furthermore the corresponding massless particles cannot be composed
of subparticles like singletons if n > 4. Obviously the conformal invariance of
masslessness is not always needed, in which case there is in general no unique
way to define the masslessness notion, even in n-dimensional Minkowski space-
time. This is due to the fact that if n is sufficiently large, the rank of the maximal
compact subalgebra k is greater than 2, thus there is no unique way to choose the
right spinor part of the weight of the representation. But if the composite aspect
of singletons is important, as they are in some theories, then composite massless-
ness becomes more appropriate, since for every spin and for every parity of the
space-time dimension composite massless representations occur in the reduction



22 E. ANGELOPOULOS AND M. LAOUES

of the tensor product of two singletons, i.e., the corresponding massless particles
are composed of two singletons. Unfortunately the two notions of masslessness
we have at hand are not compatible if n > 4: A physical theory on the anti-de
Sitter space-time such that masslessness is conformal invariant and composite (the
particle-anti-particle case being excluded) does not exist for n > 4.

Thus the n = 4 anti-de Sitter space-time appears to be the only one for which
masslessness is well defined and is conformal invariant and composite, if one
considers that an n-dimensional physical space-time satisfies necessarily n ≥ 4.
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ing discussions. Both authors thank Professor D. Sternheimer for helpful criticism
on the manuscript.
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