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1. introduction

Symmetry groups play an important role in physical theories. In quantum-
mechanical theories of a finite number of particles symmetry groups are tradition-
ally given by unitary group representations on Hilbert space. These representations
are usually continuous and the notion of infinitesimal generator can be introduced.
The infinitesimal generators themselves have direct physical significance; the
generator of space translations is the momentum operator, the generator of time
translations is the Hamiltonian or energy operator, and the angular momentum
operator generates rotations. The guestion of when an operator is an infinitesimal
generator of a unitary group often arises and in particular one often asks whether
certain operators are suitable as Hamiltonians. The answer to this kind of question
is well-known. An operator H on a Hilbert space ¥ generates & strongly continuous
one-parameter group of unitary operators on ¥ if, and only if, the operator is self-
adjoint., Various criteria for self-adjointness have been given in terms of
deficiency spaces, sets of analytic vectors, positivity etc., and these criteria
have played a useful role in such contexts as scattering theory and statistical
mechanics.

In theories of infinite systems it appears both useful and necessary to
interpret symmetries in a more general fashion. The basic observables of the theory
can be taken to form a C* algebraCQand the symmetries enter as groups of auto-
worphism of@l. |f the automorphism group is continuous in a suitable sense one
can again introduce the notion of an infinitesimal generator and such generators
will be symmetric derivations of@l, i.e operators § defined on a dense *subalgebra
D(8)-Blwith the properties
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1. s(AB)

i

s(AYB + Ag(B) A,B € D(8).

It

2, s(Ax) = - (A= A e D(8).

3, If@) contains an identity element 1 then eD(8) and §(1) = 0.
In general § will be an unbounded operator on{l with a precise physical inter-
pretation. it is known that § is bounded, i.e

18(AM < constantlAl, AeD(8),

if, and only if, D(8) =0l; bounded derivations have been extensively studied (for
a review see, for example, [7] Chapter 4). The analysis of unbounded derivations
is at a much more embryonic stage and it is only in the last year that a signifi-
cant number of results concerning such derivations have appeared (see Bratteli and
Robinson [1], Powers and Sakai [3]1[4], and Sakai [8]; earlier results were derived
in Robinson [5], Sinai and Helemskii[2]) Naturally one of the important questions
concerning unbounded derivations is the analogue of the Hilbert space problem
previously mentioned; under what conditions does a derivation generate a strongly
continuous one-parameter group of *auteomorphisms off§]. In this talk we announce
and describe various new results which characterize infinitesimal generators [6]
and review some of the general results given in [11 [3] [4] [8]. Although these
results have not as yet had any striking application to physical theories we are
hopeful that this theory will eventually play the same useful role that the Hilbert

space theory plays.

2. Infinitesimal Generators

Let Gl denote a C* algebra and
T Aelert(A) e, telR
a one-parameter group of * automorphisms of the C*-algebra satisfying the strong
continuity condition
Tim 0 Tt(A) - Al =0, AL,
t+0
Next define & by

8(A) = 1im [Tt(A)'A]/it
t+0

for the set D(8) of Ae] such that the limit exists., It is easily checked that &
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is a derivation of(l, e.g. the automorphic property

Tt(AB) = Tt(A) Tt(B)

leads to the first derivation property listed in the previous section,

1, (A)* = Tt(A*)

the second, and

() = 1
the third. The density of D(8) follows from consideration of certain 'regularized!'
elements of §l and is a standard part of semi-group theory.

A derivation arising in the above manner will be called the infinitesimal
generator of the group 1. It is of primary interest to characterize those deri-
vations which generate groups. This is a problem analogous to the characterization
of the symmetric operators on Hilbert space which are actually self-adjoint. The
following result gives a characterization simlar to the Stone-von Neumann self-

adjointness criterion,

Theorem 1[1] let & be a derivation of a C* algebracl. The following conditions

are equivalent

i. 8 is the infinitesimal generator of a strongly continuous one-parameter

group of *-automorphisms of Ol

2. 68 is closed, R{s*i) =0l, and

16(A) + zAl > [Imz[1Al (1)
In the foregoing statement R(§ % i) is the range of 6 * i, i.e,
R(6xi) = {B; B = §(A)xiA, AeD(8)},
and the assumption that § is closed means that if | Anﬂ + 0 and HG(An) - B =0
then B must be identically zero.
Theorem 1 should be compared to the Stone-von Neumann criterion; a symmetric
operator H on a Hilbert space J is the infinitesimal generator of a strongly con-
tinuous one-parameter group of unitary operators on ¥ if, and only if, H is closed

and R(Hti) = 3¢, where now we have

R{H£i) = {yedt; v = (Hxi)¢, 4eD(H)}
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Thus the two results differ principally because of the extra lower, bound assumption.
In the Hilbert space case the symmetry of H allows one to immediately conclude
that
IH = i)el2 > Ugl2
This inequality together with the assumption that R(Hxi) = ¥ proves that the

resolvent operators

x
I+

|-

R(z1) = :

are everywhere defined and have norm smaller than one. Exploitation of this fact by
the Hille-Yosida theory of semigroups allows the construction of a group of
unitaries with H as infinitesimal generator. In the algebraic case this estimate is
not necessarily true as the following example shows.

Example (Bratteli) LetOL = ¢([0,1]) the C*algebra of continuous functions over the

interval [0,1] and define the derivation & by

5(H 60 = 1 §E ()

where D(8) is the set of absolutely continuous functions over [0.1].

It follows that & is closed, R{&+i) =6L but

(6 +2) (%) =0

and consequently & is not an infinitesimal generator.

The similarity of Theorem 1 and the Stone-von Neumann theorem suggests that
other theorems concerning symmetric operators on Hilbert space might 1ift to
theorems about derivations on C* algebras. A typical example would be Nelson's
theorem on analytic vectors.

Let & be a derivation. It is natural to define an analytic (entire) element

of § as an element Aeb(8"), n=1, 2, 3, +=-. Such that the function
2" n
zel —y eZ(A) = nZO s (A) e OL

exists and is analytic in some neighbourhood of the origin (is entire). An

analogue of Nelson's theorem would state that 6 is an infinitesimal generator if,
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and only if § is closed § possesses a dense set of analytic (entire) elements,
and estimate (1) is valid. It is unclear whether this theorem is true but a
weakened form of it may be established in terms of geometric elements of 6. A

geometric element of § is defined to be an element AeD(Gn), n=1, 2,...., such that

PROTEAPER

where CA is independent of n. This is equivalent to demanding that

n
Ml Ll — o
n:
n>0 [ t]=ee

for A sufficiently large, i.e. A is required to be an entire element of § with
a certain restriction on the growth properties of eZ(A). The following is now true.

Theorem 2[6] Let & be a derivation of a C* algebrall. The following condi-

tions are equivalent

1. § is the infinitesimal generator of a strongly continuous cne-parameter

group of * automorphisms of@l.

2. & is closed, & possesses a dense set of geometric elements.

hs(A) + zAHzJImz|HAH

Although this result is weaker than the analytic element conjecture it does
have at least one interesting consequence,

Theorem 3[6] Let § be a derivation of a C* algebra@ and suppose that § is

the infinitesimal generator of a strongly continuous one parameter group of

*-automorphisms 1 of Ol.

1f DCD(8) is a dense *-subalgebra of QL with the property that

-rt(o) <o, teR,

then it follows that D is a core for §, i.e. the closure 31 of the restriction

D

of § to D satisfies
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3 Closed Derivations

One of the basic properties that a derivation must have to qualify as an
infinitesimal generator is the property of being closed. A symmetric operator H
on a Hilbert space ¥ always has the property of being closeable (H* and H** are
closed extensions of H); the analogy between symmetric operators on ¥ and derivat-
ions § on a C% a]gebraﬁlautomatically leads to the conjecture that all derivations
are closeable. This conjecture is, however, faise by the following result of
Bratteli and Robinson [1].

Theorem b4 Let Ol be the CAR algebra and B an increasing sequence of 2"x2" full

matrix algebras;generatiqgﬁ\.

There exists a non-zerc derivation § of Ol such that

1. Every Br is in the domain D{(8) of &

2. 6 restricted to each Bl is zero.

Hence 8§ is not closeable.

The existence of abelian algebras with non-closeable derivations is establish-
ed as a by-product of the constructionused to prove Theorem 5.

The foregoing result proves that the property of closeability of derlvations
is a real restriction in contrast to the situation with symmetric operators. We
next consider the problem of characterizing closeable derivations. This Is an
algebraic problem and the first criterion for closeability is given by a functional
analytic property of the domain of the derivation

Theorem 5 Let § be 3 derivation of a C* algebra
172

If 8 is such that A "“eD{8) whenever 0s8eD{8) then § is closeable.

Conversely if & is closed and AcD(4) is positive and invertible than A]/ZED(G).

The first statement of the theorem is given by Powers and Sakai [4] the
second statement occurs in Bratteli and Robinson [1]. In fact the latter authors
develop a more detailed functional~analytic description of the domains of closed
derivations. The essential point is that If § is closed and A = A%*cD(8) then
the resolvent {x -A}-] is also in D(8) whenever A Is not in the spectrum o(A) of A,

Note that the foregoing result is not a good characterization of closed der-

ivations because the converse statement places the extra requirement of Invertibility.
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In general the domain of a derivation is not closed under the square root operation.

1fFQl= CO(R) and § is the infinitesimal generator of translations then

fx) = ixIB/z e_xz

is such that feD(s) but f'/2 $0(s).

It remains an open question whether a derivation § whose domain D(8) is
invariant under the formation of resolvents, i.e. AcD(8) Tmplies (A -A)-]gD(G)
for aeo(A}, is automatically closeable.

A second criterion for closeability can be given in terms of an invariance
condition. Assume for the moment that § is the infinitesimal generator of an
automorphism group T and that w is a state overCOlL which is invariant under T, i.e.

m(Tt(A)) = w(A)

for all Aefand tefR. This invariance condition is equivalent to the following
condition expressed in terms of §

w(s(a)) =0
for all AeD(§). The following result considers derivations with faithful invariant
states.

Theorem 6 Let & be a derivation of a C* algebrafl.

Assume that 0L possesses a state w which generates a faithful cyclic representation

(ﬂb,ﬂw,ﬂm) and also satisfies the invariance condition

w(s(A}) =0
for all AeD(s).
It follows that
1. & is closeable

2. There exists a symmetric operator H on 3 such that
U 47

1l

D(HG) {y; w=ﬂw(A)Qm’ AeD(8)}

n (8(A)Y = [y, T (A1

for all AeD{§) and WQD(H&l;

The theorem as stated occurs in Bratteli and Robinson [1]; Powers and Sakai [4]



310

give a special version of the theorem for UHF algebras.
It remains unclear whether Theorem 6 has a converse. |s it true that for
each closed derivation of a C*-algebra(] () there exists a state w such that
w(s(A) =0
for all AgD(8)? This result has been established in [1] for special algebras,
C* algebras acting on a Hilbert space X and containing the C% a]gebraZ,C(m of
compact operators on ¥ as subalgebra. It is also true ifQll and 6 is an infini-

tesimal generator by a simple compactness and fixed point argument,
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Discussign
Doplicher {Comment): It seems that the difference between the Hilbert
space situation and the derivation situation is related to the
different definition of adjoints: the adjoint of a Hilbert space
linear operator can be alsoc made to correspond to the transpose of a
linear operator between Banach spaces; if the transpose is densely
defined the initial operator is closable. For the sake of * auto-
morphism groups you use rather the "skew adjointness”
§(A*)* = _-8(A), which as you say does not force & to be closable.



