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Relativity and quantum mechanics

B.G. Sidharth

G.P. Birla Observatory & Astronomical Research Centre, B.M. Birla Science Centre, Adarsh
Nagar, Hyderabad - 500 063, India

Abstract. We first deduce Special Relativity from Quantum Mechanics. Then we discuss the
implications and ramifications.

It is well known that both Special and General Relativity, and quantum theory had independent
origins and development. This brand of quantum mechanics was the non-relativistic theory. It
was only around 1930 that Paul Dirac could “unite” Special Relativity and Quantum Theory
through his famous Dirac equation.

Can we go the reverse way? Let us see how Special Relativity can be “derived” from Quantum
Theory. We first define a complete set of base states by the subscript 1 and U(f,t;) the time
elapse operator that denotes the passage of time between instants ¢; and f,, t, greater than t;.
We denote by, C,(t) = (1|g(t)), the amplitude for the state |i(¢)) to be in the state |1) at time ¢,

and [1, 2]
1

h

We can now deduce from the superposition of states principle that,

<Z|U|]> = LL]-; Lllj (t + At, t) = 51] - sz(t)At.

Cit+at) =Y [6;— 7
i

H,i(t)AHC(t) D

and finally, in the limit At — 0,

G0 _ 5 o @

j
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where the matrix H,;(t) is identified with the Hamiltonian operator.

Starting from equation (2) Feynman had deduced a version of the Schrodinger equation using
the probability amplitude for a particle to diffuse from one point to another. We had argued
earlier at length that (2) leads to the Schrodinger equation [1, 2]. In the above we had taken the
usual unidirectional time to deduce the non relativistic Schrodinger equation. If however we
consider in (1) that time is oscillating between t — At and t + At, then we will have to consider
instead of (2)

C(t—A)+C(t+AH) =Y [2% - %H,j(t)} Ci(). 3)
7
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Equation (3) in the limit was seen to lead to the relativistic Klein-Gordon equation rather than
the Schrodinger equation [3].

This follows if we consider a simple Taylor expansion:

f'(x>:,1}§})f(x+h,1_f(x) @
£(x) = lim f(x) —i’(x—h) ~ lim f(x+h) —f(X)h—Zf(X) + f(x—h)
_ o St h) + f(x —h) —2f(x)
= pm 2 ©)
so that by analogy
1 1 /1 2
U(E+ALE) = 1= ZH(DA + (EH(t)At) +0(AP) (6)
Ci(t+ At) +Cy(t — At) = ) _26,,C;(t) + [(;H(t)At)z] Ci(t) + 0(AF) 7)
i 1j
C(t+At) +C(t—At) —2G,(t) = [(;H(t))z} Ci(H)AR +0(AF) 8)
j 1j
2 1
et = |(310)’| ¢ ©)

)

From this expression, the Klein-Gordon equation is motivated, and it is already evident that
the generator of time translations H(t) is the square root of the operator in the Klein-Gordon
equation, in the limit rather than the Schrodinger equation. In other words considering a
process in (1) that is time oscillating between t — §t and t + Jt we reach the relativistic equation
[3]. This has been discussed in great detail over the years, (cf [5] and references therein). In
this case we have (At)? = BAx exactly as in a typical Wiener process. We should bear in mind,
that here we are dealing with a non-differential spacetime manifold as in the Fokher-Planck
theory (cf. [6]). This is the beginning of some modern Quantum Gravity approaches. More
specifically, if we can neglect the fundamental scale a which stands for a minimum scale as in
(14) below, we have classical theory. If a2 can be neglected, we have the usual Quantum Theory
and Quantum Field Theory. But if a’ has to be retained, we have the Quantum of area and the
above approach which encompasses fractal spacetime.

As it is well known the Klein-Gordon equation is obtained from the energy momentum
dispersion relation of Special Relativity

E?=p*+m? (c=1=h). (10)

Using the usual Quantum Mechanical substitutions for energy and momentum, (10) becomes
d? 2 2

VZ—m =0. 11

<d t2 > 4 (b

Conversely, from (11) we can deduce (10) with substitutions of the type

h
[ v
p ZV.
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It is well known that the problem with (11) was that there is no fixed eigenvalue, that is loosely
the negative energy states appear because of the second time derivative. On the other hand
Dirac linearized the second time derivative in (11) to obtain his well-known equation

{v"'pu—m}typ=0 (12)

where the symbols have their usual well known meanings. But there was a price to pay for
this linearized relativistic Quantum Mechanical equation. Firstly we encounter spin half which
had (and has) no place in the Classical Theory. Secondly, though (12) was linear in the time
derivative, it still leads to the very same negative solutions. This then led Dirac to propose his
Hole Theory.

We can now see the reason for the appearance of negative energy solutions in the derivation
from (3): time as it were could run forward, this in the usual sense. But now we allow it to run
backward (negative energy).

Let us now take another approach, starting from the coordinate for a Dirac electron as derived
by Dirac himself [7] (cf. Appendix):

x = (PpH ) + %ch(al —cptH HH™! (13)

The first term in (13) is known by the usual (Hermitian) position. The imaginary part of (13) is
of the order of the Compton wavelength.

It is at this stage that a proper physical interpretation begins to emerge. Dirac himself
observed, that to interpret (13) meaningfully, it must be remembered that Quantum Mechanical
measurements are really averaged over the Compton scale [7]: Within the scale there are the
unphysical zitterbewegung effects represented by the second term of (13): for a point electron
the velocity equals that of light.

Once such a minimum spacetime scale a is invoked, then we have a noncommutative geometry
as shown by Snyder [8, 9]:

[x,y] = (1a®/h)L, [t,x] = (1a®/hc) M, [x, px] = th[1 + (a/h)?*p?] etc. (14)

In this analysis, time too is a matrix (operator) — this is because we are allowing it to run
backward and forward, or alternatively, we are allowing for the possibility of positive and
negative energies.

The relations (14) are compatible with Special Relativity as shown by Snyder himself. Indeed
such minimum spacetime models were studied for several decades, precisely to overcome the
divergences encountered in Quantum Field Theory which originate from the point electron [2],
[9]-[14], [15, 16].

Before proceeding further, it may be remarked that when a2, which we will take to be the
squared Compton wavelength (including the Planck scale, which is a special case of the
Compton scale for a Planck mass viz., 10-° gm), in view of the above comments can be
neglected, then we return to ordinary Quantum Theory.

It is interesting that starting from the Dirac coordinate in (13), we can deduce the
noncommutative geometry (14), independently:
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We observe that the first term on the right hand side is the usual Hermitian position. For the
second term which contains «, we can easily verify from the commutation relations of the ¢’s
that

[, ] = Byj - 12 (15)

where [ is the Compton scale which comes from the factor (cz/H) in (13) and B,; are suitable
2 X 2 matrices.

There is another way of looking at this. As can be seen the one dimensional coordinate in (13)
is complex. We now try to generalize this complex coordinate to three dimensions. Then as is
known we encounter a surprise - we end up with not three, but four dimensions,

(1,1) = (I,0),

where [ is the unit 2 x 2 matrix and os are the Pauli matrices. We get the special relativistic
Lorentz invariant metric at the same time. (In this sense, as noted by Sachs [17], Hamilton who
made this generalization would have hit upon Special Relativity, if he had identified the new
fourth coordinate with time).

That is,
X+ 1y — Ixq +1x2 + jx3 + kxy,

where (1, j, k) now represent the Pauli matrices; and, further,

X3+ x5 + x5 — x3
is invariant. Before proceeding further, we remark that special relativistic time emerges above
from the generalization of the complex one dimensional space coordinate to three dimensions.

While the usual Minkowski four vector transforms as the basis of the four dimensional
representation of the Poincare group, the two dimensional representation of the same group,
given by the right hand side in terms of Pauli matrices, obeys the quaternionic algebra of the
second rank spinors (cf [18, 19, 17] for details).

To put it briefly, the quarternion number field obeys the group property and this leads to a
number system of quadruplets as a minimum extension. In fact one representation of the
two dimensional form of the quarternion basis elements is the set of Pauli matrices. Thus a
quarternion may be expressed in the form of the representation SL(2,C),

Q= —wxt = oox* —10qx! — 10mx? — 1033 = ((Tox4 +10-7)
This can also be written as
Q=—1 x4+ a8 xl —x?
alx? ot =8 )

It is well known that, there is a one to one correspondence between a Minkowski four-vector
and Q [17]. The invariant is now given by QQ, where Q is the complex conjugate of Q.

However, as is well known, there is a lack of spacetime reflection symmetry in this latter
formulation. If we require reflection symmetry also, we have to consider the four dimensional

representation,
I 0 0 ¢
= prnd ]’l
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(cf also [20] for a detailed discussion). The motivation for such a reflection symmetry is that
usual laws of physics, like electromagnetism do indeed show the symmetry.

We at once deduce spin and Special Relativity and the geometry (14) in these considerations.
This is a transition that has been long overlooked [21]. It must also be mentioned that spin half
itself is relational and refers to three dimensions, to a spin network in fact [22, 23].

While a relation like (15) above has been in use recently, in non-commutative models, we would
like to stress that it has been overlooked that the origin of this non commutativity lies in the
original Dirac coordinates.

This can be seen directly from the Dirac theory itself where we have [24] that the velocity
operator is given by

tH (16)

In (16), the first term is the usual velocity. The second term is the extra contribution due to
zitterbewegung.

In fact we can easily verify from (16) that

f=-—% 17)
where % has been defined in (16).

We finally investigate the angular momentum ~ X x p — that is, the angular momentum at the
Compton scale. We can easily show that [25]

= _, Cc . R C
(¥x p). = E(“ X P). = E(Pzﬂﬂ — p102) (18)

where E as usual in the continuum case [26] is the eigenvalue of the Hamiltonian operator
H. Equation (18) shows that the usual angular momentum but in the context of the minimum
Compton scale cut off, leads to the “mysterious” Quantum Mechanical spin. In the above
approach, spin emerges from the Compton scale [27].

In the above considerations, we started with the Dirac equation and deduced the underlying
non commutative geometry of spacetime.

Interestingly, starting with Snyder’s non commutative geometry, based solely on Lorentz
invariance and a minimum spacetime length, which we have taken to be the Compton scale,
(14), it is possible to deduce the relations (18), (17) and the Dirac equation itself.

We have thus established the correspondence between considerations starting from the Dirac
theory of the electron and Snyder’s (and subsequent) approaches based on a minimum or fuzzy
spacetime interval and Lorentz covariance.

Special Relativity however gets “modified” due to Quantum Effects. In fact the relation [28]
(Ax)? — (At)> =0 (19)
goes over to, as is well known [29],

1

(A — (A1) < =

(h=1=c) (20)
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where term on the right side arises from the uncertainty in the Compton wavelength region as
discussed in detail by Weinberg [10]. Effectively, the velocity of light ¢(= 1) becomes ¢/, given
by from (20),
/ 1
2<14 —5—s <
c _1+m2(At)2_2 (21)

as At > L the Compton time. Alternatively, the energy momentum relation gets modified.
So, the usual energy E = mc? becomes E’ where
E < E' <2E. (22)

There is an increase in energy in the extreme relativistic case. The extra energy is the
contribution of the background dark energy as argued by the author elsewhere [29].

The actual situation is that within the Compton time there are superluminal “velocities” or
more realistically the Zitterbewegung effects. These effects are interpreted as the appearance
of anti particles [30].

There is however another perspective: Wigner and Salecker [31] have argued that no physical
measurement is possible within the Compton scale. In other words all our physics originates
outside the Compton scale. There would thus be a minimum spacetime interval within which
there would be no physics (cf [5] for a detailed description). This is exactly what we were
discussing earlier. Such minimum spacetime theories are now in vogue in Quantum Gravity
approaches, including the author’s own.

Interestingly this interplay between Special Relativity and Quantum Mechanics manifests itself
in graphene [32, 33]. As is known graphene is a two dimensional form of carbon with a
honeycomb structure. The particles in graphene obey the equation

ved - Vp(r) = Ey(r) (23)

This is the two dimensional Dirac equation that describes neutrinos, except that v ~ 10° m/s
replaces the velocity of light c. A finite graphene sheet cannot be expected to be Lorentz
invariant, by the very nature of its finiteness. However we have argued that an infinite sheet
reproduces Special Relativistic effects [34]. In fact in this case we have

2
Vi = (Z’f) = (4)

where A the area is ~ 12, Ithe inter lattice distance.

Whence we get

2,2
m-ve

hZ
We can see from (25) that if vr tends to the velocity of light ¢, i/mvr tends to the Compton

wavelength consistently. That is spacetime can be modelled consistently with an infinite lattice
sheet.

12~ 0(1) (25)

Indeed following this train of thought it has been argued [35] that the Hall Effect parallels the
Lorentz Force of electromagnetic theory.
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Finally, it may be mentioned that graphene resembles a wind tunnel in the sense that there are
Reynold number type scalings that lead to 3D Minkowski space [34]. Specifically, L ~ 1031, ¢ =
300ve and Mgraphene ~ 10~2m where m is the electron mass.

This suggests that graphene can be used as a test bed for High Energy experiments in view of
the fact that it can be used to harvest protons, as confirmed by Andre Geim [36]. We must also
remember that its mysterious minimum conductivity gives a source of protons themselves.

Appendix (Based on The Principles of Quantum Mechanics by P.A.M. Dirac [7])

The x1-component of the velocity is
X1 = [Xl,H] = CK1. (26)

The x; given by (26) has as eigenvalues *£c, corresponding to the eigenvalues £1 of ;. That is
a measurement of a component of the velocity of a free electron is £c. This conclusion is easily
seen to hold also when there is a field present. We must remember that the velocity in above
is the velocity at one instant of time while observed velocities are always average velocities
through appreciable time intervals. Actually the velocity is not at all constant, but oscillates
rapidly about a mean value which agrees with the observed value. This can also be seen from
an application of the Uncertainty Principle.

To measure the velocity we must measure the position at two slightly different times and then
divide the change of position by the time interval. “...In order that our measured velocity may
approximate to the instantaneous velocity, the time interval between the two measurements
of position must be very short and hence these measurements must be very accurate. The
great accuracy with which the position of the electron is known during the time-interval must
give rise, according to the principle of uncertainty, to an almost complete indeterminacy in its
momentum. This means that almost all values of the momentum are equally probable, so that
the momentum is almost certain to be infinite. An infinite value for a component of momentum
corresponds to the value *c for the corresponding component of velocity.

Let us now examine how the velocity of the electron varies with time. We have
thiy = w1 H — Ha;.
Now since a1 anticommutes with all the terms in H except ca1p1,
x1H + Hay = ajcaqpr + cagproay = 2cpy,

and hence
lhD'él = ZDélH — 2cp1 = —2HDC1 + 2Cp1. (27)

Since H and p; are constants, it follows from the first of equations (27) that
Zhljél =21 H. (28)
This differential equation in &; can be integrated immediately, the result being

ity = e 2HI/N, (29)
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where zic(f is a constant, equal to the value of &1 when t = 0. The factor e~ 2HY/I must be put to

the right of the factor 154(1) in (29) on account of the H occuring to the right of the &; in (28). The
second of equations (27) leads in the same way to the result

We can now easily complete the integration of the equation of motion for x;. From (29) and the
first of equations (27)

1
= Ezhd?e’let/hH’l +cprHY, (30)

and hence the time-integral of equation (26) is
1
X1 = —ZchZéc?e*z’Ht/hH*Z + czle’lt + a1, (31)

a1 being a constant.”

This is the desired result.
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