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1. INTRODUCTION 

The mathemat ica l  forms suppo r t i ng  supersymmetry are obta- 

ined from the f a m i l i a r  ones of  mathemat ical  phys ics  by a Gras- 

smann-a lgebra ic  ve rs ion  of  c o m p l e x i f i c a t i o n ,  the s o - c a l l e d  

" G r a s s m a n n i f i c a t i o n " .  I t  means the replacement o f  rea l  or  

complex numbers w i th  elements from a Grassmann a lgeb ra .  Some 

o f  the bas ic  ob jec t s  ob ta ined  in t h i s  way are ,  f o r  example, 

supe rma t r i ces ,  supe rg rou rs ,  superman i fo lds  I )  

In t h i s  t a l k  we i n v e s t i g a t e  the l i n e a r  i n v a r i a n t s ,  ge- 

n e r a l i z i n g  the t race  f u n c t i o n ,  f o r  a lgebras of  s u p e r m a t r i -  

ces. F i r s t  we r e c a l l  2) some bas ic  r e s u l t s  on Grassmann a l -  

gebras.  

Denote by Bp(F) ,  p f i n i t e ,  the Grassmann a lgebra  over  

the f i e l d  F generated by the i d e n t i t y  and the p m u t u a l l y  

ant icommut ing genera to rs  e i , i = l , 2 , . . . , p .  For convenience 

we suppress ment ion of  the f i e l d  F, which is  e i t h e r  the real  

or complex numbers. The subspace Bp,e ( resp .  Bp,u) is  the 

even ( resp .  uneven or odd) subspace, c o n s i s t i n g  of  l i n e a r  

combinat ions of  products  o f  an even ( resp .  odd) number o f  
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generators. B e is the d i rec t  sum of the 2P-l-dimensional 

subspaces Bp,e and Bp,u. The elements of Bp,e commute with 

a l l  elements of Bp, whereas the elements of Bp, u mutually 

anticommute. 

There is an a l te rnat ive  decomposition Bp=Bnum (~)Bni l ,  

where Bnum=F1 is called the numeric component of Bp and 

Bni] consists of al l  l inear  combinations of a non-zero num- 

ber of generators. 

Considering B~ to be formal l inear  combinations of f i -  

ni te products of elements of a countably i n f i n i t e  number 

of independent anticommuting generators, a l l  these de f in i -  

t ions can be extended to p i n f i n i t e  3) 

A supermatrix over Bp is a block-form matrix 

where the entr ies in A , D (resp. B , C) belong to Bp,e 

(resp. Bp,u). We denote by gl(m,n) the f u l l  matrix algebra 

Over Bp, consist ing of supermatrices M, where A, D have 

sizes mxm and nxn, respect ively.  

The algebra of f u l l y  Grassmannified matrices of size 

nxn is isomorphic to a subalgebra q(ptn) or simply q(n) of 

gl(p~n,n) consist ing of the so-called Q-type supermatrices 

M with A = D and B = C 4) 

The supertrace function is a map str: gl(m,n) ÷ Bp,e 
defined by 

strM = trA - trD , (2) 

Where t r  is the usual trace funct ion. The basic property, 

implying invariance of supertrace under equivalence by an 

inver t ib le  supermatrix, is 

str(MN) : str(NM), (3) 

for a l l  M , N in gl(m,n). 

The m-supertrace is a map strm : q(n) ÷ Bp, e 
defined 4) by 



106 

strmM = mtrB, (4) 

where m is an arb i t rary  element in Bp,u and t r  is the usual 

trace function. 

The problem we consider in this talk is the following: 

are there any other functions which sat isfy the invariance 

condition (3)? Obviously, without any further condition we 

cannot expect an interest ing answer. Bearing in mind that 

gl(m,n) is a Bp,e-module and that the supertrace function 

(2) is Bp,e-l inear, i t  is reasonable to require that this 

condition holds. Then we find a generalized supertrace fun- 

ction which is a l inear combination of the supertrace and 

a modestly d i s t inc t  function, for p f i n i t e .  For p=- the su- 

pertrace function is unique. 

Considering the subalgebra q(n) of gl(n,n) we find that 

the m-supertrace is the unique invariant form for p=-. How- 

ever, the m-supertrace is not unique for p f i n i t e .  

Next we review our results 5) on the various types of 

trace functions, start ing with a well-known result  6) for 

the fu l l  matrix algebra gl(n~F), where f is the f i e ld  of 

real or complex numbers. 

Theorem I: Let f : gl(n~F) ÷ F be an F-linear function 

sat is fy ing,  for al l  M,N in gl(n~F), 

f(MN) = f(NM) (5 ) .  

Then, f(M) = ~trM fo r  a l l  M in g l ( n t F ) ,  where ~ belongs 

to F and is independent of  M. In more d e t a i l ,  

= f (El i )  , (6) 

for every i=1 ,2 , . . . n  , where Eii is the elementary matrix 

having 1 in the ( i , i )  position and zero elsewhere. 

2. GENERALIZED SUPERTRACE 

Bearing in mind that ordinary trace is characterized, 

up to scalar multiples, by the l i nea r i t y  condition and the 

invariance relat ion (5), we try to generalize supertrace 
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function using axioms completely s imi lar  to that of 

Theorem 1. Thus we have the fol lowing: 

Theorem 2- Let f: gl(p~m,n) ÷ Bp be a function sat isfying 

( i )  Bp,e-  l i nea r i t y  

( i i )  f(MN) = f(NM) , for a l l  M,N in gl(p~m,n). 

Then 

f(M) = astrM + l~trD, (7) 

where a in Bp is arbi t rary and I~ in Bp annihilates al l  even 

nilpotent elements of Bp. 

Moreover, ~ has p+l degrees of freedom i f  p<® , 

but l~=O , i f  p=~ . 

3. GENERALIZED ~-SUPERTRACE 

C]ear]y, the ordinary supertrace (2) vanishes ident i -  

cal ly on the subalgebra q(n) of the superalgebra g l (n,n) .  

Moreover, the res t r ic t ion  of the generalized supertrace of 

§2 to q(n), gives a Bp,e-linear invariant form and i t  is 

known that thereis a completely d i f ferent  invariant on q(n), 

the ~-super t race (4) .  

We seek a general ized supertace on q(n) which exh ib i t s  

both of these supertraces as specia l  cases. We have the 

fol 1 owing: 

Th_~eorem 3: Let f: q(p~n) ÷ Bp be a Bp,e-linear function 

satisfying the invariance condition 

f(MN) = f(NM) (8) 

for  a l l  M,N in q(p~n). Then 

f(M) = atrA + g(B) , (9) 

Where a in Bp annihilates al l  even ai lpotent elements of 
Bp and 

n 

Where 

g(B) : Z g(Bii E i i ) ,  (10) 
i=I  

n 
B =.Z Bij Eij (11) 

I ,j=1 
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with Bij in Bp,u and Eij being the elementary matrix having 
i in the ( i , j )  position and zero elsewhere. 

Furthermore, the function g is Bp,e-linear and 
g(B) = cotrB + E(B) , ( ! 2 )  

where co in Bp is a sum of  elements o f  maximum degree p-3 , 

p>2 and E(B) cons i s t s  o f  h i g h e r  o rde r  terms. More p r e c i s e l y ,  

the f u n c t i o n  E is  B p , e - l i n e a r  and i t s  va lues are l i n e a r  com- 

b i n a t i o n s  o f  terms o f  degree p-1 and p. This extends to 

p=2, i f  say a term of  o rder  ( - I )  is  i d e n t i c a l l y  zero.  For 

p=~ we have a=O and E(B)=O and the ~ - s u p e r t r a c e  is  comple- 

t e l y  recovered .  
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