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ABSTRACT 

Some Cosmological Implications of Extended Scalar Tensor 

Theories 

This thesis is devoted to explore some cosmological implications in          
       

gravity and generalized        gravity. Initially, we discuss the cosmological 

reconstruction of         
      theory (where  ,     

   and     represent the 

Ricci scalar, scalar invariant and scalar field) corresponding to power law and de 

Sitter evolution in the framework of FRW universe model. We derive the energy 

conditions for this modified theory which seem to be more general and can be reduced 

to some known forms of these conditions in general relativity,      and        

theories. We also present the general constraints in terms of recent values of snap, 

jerk, deceleration and Hubble parameters. The energy bounds are analyzed for 

reconstructed as well as known models in this theory. Finally, the free parameters are 

analyzed comprehensively.  

         First and second laws of black hole thermodynamics are examined at the apparent 

horizon of FRW spacetime in         
      gravity. In this modified theory, Friedmann 

equations are formulated for any spatial curvature. These equations can be presented into the 

form of first law of thermodynamics for     ̂        ̂         , where    ̂  is an 

extra entropy term because of the non-equilibrium presentation of the equations and     ̂  

         for the equilibrium presentation. The generalized second law of thermodynamics 

(GSLT) is expressed in an inclusive form where these results can be represented in GR,      

and        gravities. Finally to check the validity of GSLT, we take some particular models 

and produce constraints of the parameters. 

          Moreover, we examine static spherically symmetric wormhole solutions in 

generalized        gravity. To do this, we consider three different kinds of fluids: 

anisotropic, barotropic and isotropic. We explore different        models and 

inspect the energy conditions for all of those three fluids. It is found that under some 

models in this theory, it is possible to obtain wormhole solutions without requiring 

exotic matter. From our results, one can conclude that for all three cases of fluids 

stable and realistic wormhole solutions can be constructed. 

         Further, we have considered      action which is non-minimally coupled to the 



 

xi 

 

scalar field. In this context, we obtain the exact analytical solutions for inflationary 

era as well as find a graceful exit condition from inflation. We calculate the perturbed 

parameters, i.e., number of e-folds, slow-roll parameters, scalar and tensor power 

spectra, corresponding spectral indices and ultimately tensor to scalar ratio. It is 

showed that the power spectra lead to blue-tilt for this model. The trajectories of the 

perturbed parameters are plotted to compare the results with recent observations. 

         Finally, we will discuss cosmological models using Bianchi type I for 

anisotropic fluid in        theory of gravity which involves scalar potential. For this 

purpose, we consider power law assumptions of coupling function and scalar field 

along with the proportionality condition of expansion and shear scalars. We choose 

two        models and obtain exact solutions of field equations in both cases. For 

these constructed models, the behavior of different physical quantities like EoS 

parameter, self-interacting potential as well as deceleration and skewness parameters 

is explored and illustrated graphically for the feasible ranges of free parameters. It is 

concluded that anisotropic fluid approaches to isotropy in later cosmic times for both 

models which is compatible with the observational data. 
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Chapter 1

Introduction



The observational data of SNe Ia [1], CMBR [2], LSS [3] and WMAP [4] observed

that the universe is facing accelerating expansion. The reason behind the cosmic expansion

is DE. DE appears as distinctive energy component because of its peculiar properties. It

is distinguished from ordinary matter species in the vicinity of anti gravitational behavior

showing negative pressure. Despite tremendous researches and observations, origin of DE

is still significant as well as challenging area for cosmologists. Present Planck’s data [5]

yield matter distribution of the universe in the ratio: 4.9% baryonic or shining matter,

26.8% dark matter and 68.3% exotic matter, i.e., DE. The classification of this unknown

component is still under consideration as different possibilities have been proposed [6]-[8]

in the background of GR. In GR, cosmological constant Λ was proposed by Einstein in

1917 [9], considering the universe as static. After the discovery of cosmic expansion with

the help of Hubble, Einstein admitted the inclusion of Λ as his “biggest blunder. After the

observational results Λ appeared to be the merest candidate for the DE in which the energy

density is constant [10] but still it involves some issues to be settled. Now, if the Λ is not

the origin of DE then cosmologists need some alternate models or ways for the description

of cosmic expansion.

To describe the reality of DE, various approaches have been reported in literature

through different strategies. These efforts are usually distributed in two groups: modifi-

cations on the right side of dynamical equations and the second one is to modify the left

side of Einstein equations. Cosmological constant [8, 11], Chaplygin gas matter with its

different modified versions [12], scalar field models like quintessence and k-essence [13]

are some prominent cases among the candidates belonging to the first category, whereas the

large-distance modifications of gravity, i.e., modified theories of gravity belong to second

class [14]. Although the members of the first group are fascinating but due to the existence

of ambiguities these could not be proved much promising. On the other hand, modified

frameworks of gravity are regarded as more appropriate candidates due to their successful

cosmological applications. Some well motivated examples of modified theories include

f (R) gravity [15], f (τ) gravity [16], Gauss-Bonnet gravity [17], f (R,T ) gravity, (where T

is the trace of EMT) [18] and the scalar-tensor theories (based on both scalar and tensor

fields) [19, 20] etc.
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In 1961, Brans and Dicke introduced a scalar-tensor gravity as an effort to incorporate

the Mach’s proposal [21] in the Einstein-Hilbert gravitational framework which is known

in the literature as BD theory. Scalar tensor theory is one of the attractive generalizations

of GR in which gravity is manifested by both scalar and tensor fields. This theory is an

example of non-minimally interacting theories yielding a dynamical framework due to the

presence of variable gravitational constant given by the scalar field reciprocal. For a suc-

cessful prediction of solar system tests, the BD parameter should assume a very large value

or should behave asymptotically approaching to infinity [22]. The other physical laws like

weak equivalence principle and Dirac’s large number hypothesis also remain valid in this

gravity. In literature [23], there are two conformally related frames to formulate this the-

ory namely, Jordan and Einstein conformal frames. There is a long term clash between

the physical and mathematical equivalence of these frames and also about their validity

[24]. There are many arguments in the literature [25] but still this issue is debateable.

There are numerous interesting versions of scalar tensor theory due to its increasing ap-

plications in cosmology. Some well-famed versions include generalized BD theory, BD

gravity with curvature correction and chameleonic BD gravity. The curvature corrected

version of BD gravity is motivated by the argument that the introduction of the inverse of R

in the Einstein-Hilbert Lagrangian leads to a coherent phenomenon of cosmic acceleration

[26, 27]. Chameleonic BD gravity is defined on the basis of non-minimal coupling between

the scalar field and the matter.

One of important aspects of cosmology in modified theories is cosmological recon-

struction. The reconstruction procedure in modified theories has been utilized in many

ways to describe the well known cosmic eras. In this perspective, one way is to pick the

known cosmic evolution and utilize the dynamical equations to determine specific form of

Lagrangian that can procreate the defined evolution background. Using FRW spacetime,

the power law cosmology is examined in these modified theories. Generic f (R) gravity

models were developed by Nojiri et al. [28] and further applied to modified Gauss-Bonnet

theories and f (R,G) gravity [29]. In [30], Carloni et al. has developed a new method for the

reconstruction of f (R) gravity models by using cosmic parameters rather than scale factor.

Employing different cosmological scenarios, many authors [31]-[33] have reconstructed
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the some viable models in f (R,T ) gravity.

Energy conditions are very important as these can yield the physical viable solutions

by ensuring the positivity of the matter density. From these conditions, we have four in-

equalities known as strong, weak, null and dominant conditions [34]. The SEC provides a

basis for the conjecture regarding the existence of singularities proposed by Hawking and

Penrose [35] whereas NEC and DEC are taken as the basic ingredients to validate the SLT

for BH and positive mass theorem, respectively [34, 36]. Although these constraints are

earlier derived in GR, but later their application are also extended to other modified grav-

itational frameworks. On cosmological grounds, these conditions are used to restrict the

parameters of the extra added degree of freedom like f (R) or f (ϕ) functions so that they

could be compatible with their corresponding values already found in cosmology. Visser

[37] expressed some cosmological parameters including deceleration, jerk and snap param-

eters, distance formulae as well as lookback cosmic time in terms of red shift using energy

bounds. Banijamali et al. [38] used energy constraints to investigate the possible bounds

on some f (G) models in modified Gauss-Bonnet theory. They argued that in spite of all

physical motivations, the application of energy conditions to modified theories still remains

as an open problem for the researchers that can further be linked with the consistency of the

theory with the observations. For a detailed discussion on the cosmological applications of

these conditions to modified theories, we may refer the readers to study the literature [31],

[39]-[41].

The energy conditions have been discussed in many theories like f (R) gravity [42], BD

theory [40], f (G) theory [43] and f (T ) theory [43, 44]. Sharif and Saira have discussed the

energy bounds in generalized scalar tensor theory of second order [45]. Further Sharif and

Zubair studied these constraints in f (R,T ) gravity [31] and f (R,T,RµνT µν) gravity [46]

in which Ricci tensor and EMT are non-minimally coupled. Moreover, Saira and Zubair

examined these constraints in F(T,TG) gravity where T is the torsion invariant along with

TG which is equivalent to the Gauss-Bonnet term and teleparallel [47].

The BH thermodynamics was first time introduced in 1970s. At that time, physicists

found that there must be some relation between Einstein’s equations and thermodynam-

ics due to the connection between entropy (thermodynamical quantity) and horizon area
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(geometric quantity) of BH. The full attention was on thermodynamic studies to analyze

these in the context of black hole due to the connection between surface gravity (geometric

quantity) and its temperature (thermodynamical quantity) [48]. By the revelation of BH

thermodynamics, Bardeen et al. showed that gravitation and thermodynamics are strongly

connected [49]. Using the FLT δQ= T dS and proportionality between entropy and horizon

area of the BH, Jacobson formulated the Einstein’s equations [50]. Verlinde [51] discovered

that for radiation dominated (FRW) universe, field equation can be written in the form of

Cardy-Verlinde formula. For conformal field theory, this relation represents an entropy for-

mula in higher dimensional spacetime. It can also be seen that radiation can be expressed

by conformal field theory. Using entropy formula, radiation thermodynamics in the uni-

verse has been derived and also can be written on the pattern of Friedmann equation that

represents the dynamics of the space-time. Moreover, the relationship between Einstein’s

equations and thermodynamics was discovered by Verlinde, the related discussion can be

seen in [52].

In Einstein theory and modified gravities, the relation between the field equations and

FLT has been extensively discussed. In Einstein gravity, for spherically symmetric BH,

Padmanabhan [53] has defined such connection and established that the field equations can

be written in the form of FLT stated as dE +PdV = T dS. In case of Lanczos-Lovelock

gravity, same work was done for general static and spherically symmetric spacetimes [54].

Considering the geometric entropy equals to quarter of the apparent horizon area and em-

ploying FLT to the apparent horizon of FRW spacetime, Cai and Kim calculated the Fried-

mann equations that shows the dynamics of the universe having any spatial curvature [55].

In 2006, Akbar has discussed the relation between FLT and Friedmann equations in case of

f (R) gravity and scalar tensor gravity [56]. In phantom dominated era, Sadjadi described

the constraints on GSLT and apply restrictions on Hubble parameter H, future horizon Rh

and temperature T [57]. Akbar [58] has expressed that in FRW universe, the Friedmann

equations filled with viscous fluid can be described in the form of FLT at apparent horizon.

In f (R) theories, the existence of Kerr-Newman and RN BHs were examined and further

discuss the properties of thermodynamics in extended electromagnetic theories and f (R)

theory [59]. In Palatini formalism, Bamba has discussed the FLT and SLT in f (R) grav-

5



ity at apparent horizon [60, 61]. He also discussed the equilibrium and non-equilibirium

descriptions of f (R) gravity and concluded that equilibrium is more transparent than the

non-equilibrium. Furthermore, Sharif et al. [62]-[64] have considered the modified theories

with non-minimal coupling and discussed the laws of thermodynamics in FRW universe at

apparent horizon. In f (R,T ) and f (R,T,Q) gravities they have explored that equilibrium

thermodynamics does not satisfy and discussed the non-equilibrium thermodynamics. In

[65], Huang et al. have discussed the laws of thermodynamics for the scalar tensor theory

involving non-minimally coupling.

Wormholes are hypothetical topological objects that provide a shortcut connecting two

distant regions in a space-time or bridging two distinct universes. The study of such geo-

metrical objects started in 1916 by Flamm [66] and then followed by the work of Einstein

and Rosen in 1935 [67]. In the later work, they found a space-time solution whose geom-

etry consists of two mouths and a throat known as an Einstein-Rosen bridge. Misner and

Wheeler introduced the word wormhole for such objects in 1957 [68]. They also showed

that wormholes cannot be traversable for standard matter due to its instability. The current

interest in wormholes started after the important works done by Morris et al. [69]. They

formally presented a metric, the so called Morris-Thorne metric, and give some conditions

in order to have a traversable wormhole. They showed that wormholes can be traversable

provided that they are backed by exotic form of matter, which involves EMT that vio-

lates the NEC. There already exist an important number of works exploring the possible

existence of wormhole geometries in various physical scenarios. In the literature, some

attempts have been made to reduce the impact of exotic matter and minimize the violation

of energy conditions [70]-[72]. An interesting approach is the one made by alternative

theories of gravity. The main idea of this approach lies in assuming that the matter which

supports the wormhole does not violate the energy conditions but all the new terms coming

from the theory lead towards this violation [73]-[75]. The procedure is the following. In

all of those modified theories, it is possible to rewrite the field equations using effective

fluids defined as the sum of the standard fluid and a new fluid which represents all the new

terms coming from the modified theory. In this scenario, one can see that the standard

matter fluid satisfies the energy conditions (NEC and WEC) but the effective fluids do not.
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Hence, one can say that those new terms coming from modified gravity are responsible for

the violation of the standard energy.

Existence of wormhole solutions has been discussed in various theories such as f (R)

gravity [73], f (T ) gravity [74], f (R,T ) gravity [75], BD theory [76]-[79], metric Palatini

hybrid f (R) [80], scalar tensor teleparallel gravity [81], in Gauss Bonnet gravity [82] and

in many others. In [76], Agnese and Camera found static spherically symmetric solutions

in BD theory which can describe wormhole solutions depending on the choice of post

Newtonian parameter γ > 1. BD theory could admit traversable wormhole solutions for

both positive and negative values of BD parameter (ω <−2 & ω < ∞). In this study, scalar

field plays the role of the exotic matter [77, 78]. Ebrahimi and Riazi [79] used a traceless

EMT to find two classes of Lorentizan wormhole solutions in BD theory. The first one was

obtained in an open universe whereas the second wormhole solution was obtained for both

open and closed universes. However, the WEC is violated for these solutions. The existence

of Euclidean wormhole solutions has also been explored in BD theory and induced gravity

[83].

In GR, to construct the wormholes without exotic matter is not an easy task. For this

purpose, the thin shell wormholes were introduced by Visser [71] in which exotic matter

is minimized at the throat. Many thin shell wormholes has been discovered, discussed in

the literature [84]-[89] but all have two drawbacks: limited or non-physical stability and

the exotic matter as a source. For thin-shell wormholes, stability analysis has been done

by many authors using perturbations that preserve the original symmetries. In [84], Pois-

son and Visser have discussed the linearized analysis of a thin-shell wormhole taking two

Schwarzschild geometries jointly. Barceló and Visser [90] applied this method to construct

wormholes taking brans into account with negative tensions. The linearized stability anal-

ysis was discussed: using ReissnerNordström thin-shell geometries [87], wormholes with

a cosmological constant [85] and dynamical thin-shell wormholes [91].

In literature, Bianchi universe models have been studied by numerous authors. In this

respect, Rodrigues [92] constructed a BI ΛCDM cosmic model. He concluded that the

DE component produces anisotropic vacuum pressure which maintains its non-dynamical

character. Koivisto and Mota [93] have studied the BI model in the presence of DE.
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They investigated that if anisotropic EoS is taken into account, then the cosmic expan-

sion rate becomes direction dependent, in later cosmic times. They also suggested that

using anisotropic EoS, the cosmological models can resolve some of observed deviations

of CMB. In another study [94], this model is examined for the combination of perfect fluid

and DE. In [95, 96], Akarsu and Kilinc proposed that it is not necessary for anisotropic

fluid to support anisotropy, such fluid may support isotropic behavior of the cosmos. It is

also shown [95, 96] that anisotropic BI model with perfect fluid and DE matter contents

corresponds to isotropic behavior in the earlier cosmic times. Sharif and Zubair [97] have

investigated BV I0 model for anisotropic DE. They examined the anisotropic behavior of

DE and the effects of electromagnetic field on cosmic dynamics. It is found that electro-

magnetic field supports the anisotropic behavior of DE that further becomes isotropic in

later stages of the universe. In another study [98], same authors studied BV I0 model for

magnetized anisotropic DE. It is found that universe model and anisotropic fluid do not ap-

proach to isotropy in any cosmic epoch. Sharif and Zubair [99, 100] have studied BI model

for perfect fluid in f (R,T ) gravity. In [99], they found that perfect fluid solutions are quite

similar to the massless scalar field models while in [100], they found solutions of dynam-

ical equations using power and exponential expansion laws. They also examined different

kinematical and physical quantities and concluded that these are satisfied in accordance

with observational data.

In BD scalar tensor theory, Sharif and Waheed [101] studied BI model in the presence

of perfect, anisotropic and magnetized anisotropic fluids. They concluded that in all cases,

anisotropic fluid approaches to isotropy in later cosmic times according to the observational

studies. In another paper [102], they explored the solution of BI field equations in the

presence of charged viscous cosmological strings fluid. They found that this model shows

the accelerated cosmic expansion for some specific values of the free parameters. Also,

Zubair and Hassan [103] examined the nature of NEC, energy density and deceleration

parameter for BI, BIII and Kantowski-Sachs universe models in f (R,T ) gravity. They

concluded that in all cases, the cosmic models corresponds to phantom cosmic evolution.

Sahoo and Reddy [104] studied BI cosmic model containing bulk viscous fluid by taking

linear f (R,T ) model along with time varying deceleration parameter. They concluded that
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their constructed model is physically viable. Ramesh and Umadevi [105] investigated FRW

universe model using perfect fluid in f (R,T ) gravity. Recently, Shamir [106] explored the

solutions of f (R,T ) field equations for BI universe model by using the proportionality

condition of shear and expansion scalars. He found three different solutions and explored

the behavior of corresponding physical quantities.

In 1981, Guth [107] introduced the term cosmological inflation, an influential research

aspect in modern cosmology. Idea of inflation is applied on very initial era of cosmic evo-

lution in the view of HBB theory. Regardless of all of the improvements, there are some

unsatisfactory issues with HBB theory which cultivated inflation [108]. Liddle and Samuel

[109] discussed the impact of substandard evolution between the current stage and end of

inflation, showing that the expected number of e-folding (N) can be modified. Walliser

[110] solved generic scalar tensor theories and found the differential equations which suc-

cessfully inflate the universe. Garcia-Bellido and Quiros [111] discussed the problem of

inflation, based on a generic scalar-tensor theory. They determined a particular class of

models with a BD like behavior during inflation. The result are converted continuously to

GR during the epochs of radiation and matter dominated. They solved dynamical equa-

tions numerically and find a subclass of models. Lahiri and Bhattacharya [112] formu-

lated a general mechanism to analyze the linear perturbations during inflation based on the

gauge-ready approach. They solved the first order slow-roll equations for scalar and ten-

sor perturbations and obtained the super-horizon solutions for different perturbations after

inflation.

Myrzakulov et al. [113] described the inflation with the reference of f (R,ϕ)-theories

and generated a class of models which support early-time acceleration. Sharif and Saleem

[114] studied the warm inflation using LRS BI universe model. They presented the plots of

the perturbed parameters to check the comparability of the considered model with recent

observations. Mathew et al. [115] constructed exact analytical solution in Jordan frame

with non-minimally coupling of f (R) action to a massive scalar field. They proved that the

solutions were same as in scalar tensor theory. They also explained the dynamics of tensor

power spectrum for this model.
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Chapter 2

Basic Concepts



The nature of our universe, its formation and ultimate fate are some mysterious prob-

lems for researchers. Cosmology is a subject which describes the universe intellectually

upto some extent, still some mysteries are unresolved. This global picture of the universe

is supported by the recent advances in modern cosmology on both observational as well as

theoretical grounds. In this chapter we will explain the DE and its candidates, especially

we emphasize on scalar-tensor theories. We will also explain some cosmological notations

and basic concepts.

2.1 Cosmic Expansion and Some Recent Problems of Dark Energy

Herschilian picture of Milky way was the first effort to understand the galactic structure

[116], which describes that our galaxy is like a disk upon which all the stars are distributed

with the Sun at its center. This picture remains acceptable for astronomers till 19th century.

In 1912, Harlow Shapely argued that the Sun is not located at the galactic center rather it

lies far away from it. In 1915, Einstein also attempted to formulate a mathematical model

of cosmos that would be compatible with the expansion. Edwin Hubble was the first person

who reported the cosmic expansion in 1929, which is a cornerstone for cosmology. The

expanding behavior of cosmos was affirmed by the examination of spectral lines coming

from the galaxies that turned out to be red shifted.

The first effort was made in (1912-1925) by an American astronomer Slipher who ana-

lyzed more than twenty extragalactic objects for the the spectra shifts. Furthermore, Hubble

strengthened this expanding picture of cosmos in 1929 by extending those observations to

the other galaxies. He concluded that with time transition, the distance between extragalac-

tic objects is increasing continuously. On the basis of well-known Friedman relationship,

Hubble presented an amazing law dubbed as Hubble law according to which there is a

proportional relationship between the recessional velocity v and the distance between the

Earth and the galaxy D, i.e., v = HD, where the proportionality constant is taken as Hubble

parameter H. This law arose a lot of enthusiasm among the cosmologists in subsequent

decades.

An interesting question that always arises is about the formation of our cosmos: how our
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universe came into existence? A possible satisfactory answer to this question is given by

the phenomenon of big-bang explosion. It is argued that the accelerated cosmic expansion

is the reason to make the form of our cosmos less dense day by day. Thus the existence of

bigbang point (an extremely dense and hot form that is small enough like a point) can be

ensured by assuming this expanding phenomenon of cosmos as a reversible process.

2.2 Dark Energy

In cosmology, DE is mysterious type of energy which is supposed to fill all of the space,

tending to accelerate the cosmic expansion. The DE is a mysterious force which is re-

sponsible for driving the galaxies away from each other against the force of gravity. The

evidence of DE has not been detected directly. It appeared as the anti-gravity force whose

properties are still unknown. The identification of DE appears as a major source in this

cosmos which started a new era of theoretical physics and urged astrophysicists to launch

new probes for detection of its properties. Significant number of attempts have been made

to explain this issue, however the nature of DE is still an open question. Recently, Planck

satellite data [5] shows that only 4.9% of the universe consists of visible matter; the DM

makes up 26.8% whereas “DE” exists in 68.3% of the universe. Most part of the universe

is made up of DE.

2.2.1 The Cosmological Constant

Einstein obtained a static and finite cosmological solution using the cosmological constant

Λ in his dynamical equations [9]. According to him, the universe is positively curved and

attractive gravity is balanced by repulsive gravity of Λ . After the discovery of expansion of

the universe, the cosmological constant was neglected. The energy linked with the vacuum,

i.e., cosmological constant having EoS ω =−1 is the simplest form of DE. Vacuum energy

is opposite to that matter, matter slows down the expansion and finally stops while vacuum

energy shows expansion speedily.

Linde presented a model in 1983, for the expansion of the universe known as chaotic

inflationary model. He also proposed that there is no phase transition and cooling. Accord-
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ing to quantum theory, the spacetime is filled with quantum fluctuations. In spectrometric

theory, the infinitely large positive and negative energies of the ground states are canceled

out between particles of different spin. In some regions, quantum fluctuations would have

large values that’s why all energies would not be canceled. The vacuum energy of those re-

gions would behave like cosmological constant and hence would expand in an inflationary

manner due to the repulsive gravitational effect of vacuum energy [116, 117].

2.2.2 Quintessence

To avoid the extreme fine tuning, Wetterich [118], Caldwell [119], Ratra and Peebles [120]

introduced the quintessence which is needed to adjust cosmological constant at recent

epochs. Quintessence is represented by a scalar field whose evolution depends on its po-

tential. In accelerating universe, the dynamical scalar field explain the role of DE. Taking

constant energy density ρ , pressure p and EoS ω = −1, the cosmological constant is as-

signed to vacuum energy, whereas quintessence is an inhomogeneous field with varying

time have EoS −1 < ω < −1/3 [118]-[122]. In future evolution of the universe, dark

energy dominates the cosmic acceleration in case of quintessence. As the value of ω in-

creases, dominance of quintessence field will also increase.

2.2.3 Phantom

It is the hypothetical form of DE having EoS ω < −1. If we consider the expansion of

the universe we can get the clear idea about the difference between DE with ω < −1 and

ω > −1. The dominated energy condition [123] is violated for phantom energy [124]

that might result in the existence of wormholes. For phantom energy, the energy density

grows speedily and goes to infinity in finite time. The gravitational repulsion is increased

by phantom energy which will destroy the galaxies and then any bound system including

elementary particles [124, 125]. In a finite time the expansion factor of the universe dom-

inated by phantom energy will diverge to future singularity (Big Rip) [125, 126], which is

also stated as cosmic doomsday when all the objects, from galaxies to nucleons, will be

ripped apart. According to Baushev [127], phantom energy is not enough to produce Big

Rip because ω does not seem to be constant throughout the evolution of the universe.
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2.2.4 Quintom

As the name indicates, this DE model is a unification of both the quintessence and phantom

models of scalar field yielding the crossing of cosmological constant barrier from one of

the both sides. The effects of cosmic age and SNe Ia limits were considered by Feng et al.

[128] taking the variations of EoS parameter ω . They found that the variations of amplitude

on the EoS parameter can be lowered by age limits. The transition of ω from quintessence

(ω > −1) epoch to phantom (ω < −1) era is favored by SNe Ia data [1]. The quintom

model predicts some interesting features related to the evolution and fate of the universe.

In quintom scenario, the universe would avoid the singularities such as Big Bang, Big Rip

[129, 130].

2.3 Some Cosmological Measures

Here we will present some important cosmological parameters [131] that are used to mea-

sure the cosmic expansion rate.

2.3.1 Scale Factor

Scale factor is a dimensionless time-dependent positive function which is used to parame-

terize the expansion of the universe and determine its size (the distance between galaxies).

It is also called expansion factor or cosmological radius. It is used as a spatial component

of the metric which describes the universe models.

2.3.2 Hubble Parameter

It is used to measure the cosmic expansion rate and is stated as the quotient of the expansion

factor with its first-order time rate, i.e., H = ȧ
a . The current value of Hubble parameter can

be estimated using the red shift of different galaxies.

2.3.3 Directional and Mean Hubble Parameters

In the case of isotropic expansion, the Hubble parameter H is stated as above but for

anisotropic expansion mean Hubble parameter is used. The average of directional Hubble
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parameters Hi is known as mean Hubble parameter. With the passage of time if directional

Hubble parameters i.e., along x, y and z axes varies then it is defined as

H =
1
3
(lnV )̇ = (lna)̇ =

1
3
(H1 +H2 +H3), (2.3.1)

where Hi(i = 1,2,3) is the expansion rate in each particular direction.

2.3.4 Anisotropy Parameter of Expansion

The anisotropy parameter of expansion can be described as

∆ =
1
3

3

∑
i=1

(
Hi −H

H

)2

. (2.3.2)

In the case of isotropic cosmic expansion, the anisotropy parameter becomes zero, i.e.,

∆ = 0.

2.3.5 Deceleration, Jerk and Snap Parameters

These are some geometrical parameters which are known for the explanation of DE models

and cosmic expansion. The point is that if we can measure the change in the Hubble

parameter then we have important information to explore the nature and fate of cosmos.

The deceleration parameter “q” describes the change of rate at which the cosmic expansion

is slowing as a result of self gravitation. It is defined as the quotient of the time rates of

scale factor, i.e., a(t) and can be defined as

q =−aä
ȧ2 ,

where a(t) denotes scale factor and dot indicates the time derivative. According to the

recent observations, expansion rate of the cosmos is currently accelerating, it is due to the

effects of DE. This yields negative values for the deceleration parameter.

The sign of q shows whether the cosmic expansion is decelerating or accelerating. The

positive sign of q shows the decelerating expansion of the cosmos and negative sign of q in-

dicates the accelerated cosmic expansion. According to the recent observations, q possesses

the negative value which ensures the accelerating cosmic expansion. The deceleration pa-

rameter stated in terms of Hubble parameter H is as follows

q =− 1
H2

ä
a
. (2.3.3)
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Sahni et al. [132] presented the concept of dimensionless diagnostic pair which are the

generalization of usual cosmological parameters H and q depending upon the third-order

time rate of expansion factor referred as statefinders. These parameters are given by

j =
1

H3

...a
a
, s =

1
H4

....a
a
. (2.3.4)

Here, the parameter s can also be represented as a linear combination of parameters r and q

i.e., s = r−1
3(q−1/2) . The parameter j can also be expressed in terms of second-order time rate

of Hubble parameter as r = Ḧ
H3 −3q−2. The most impressive feature of these variables is

that these are universal in nature and determine the features of DE without any specified

model. These are also known as jerk and snap parameters. The motivation behind these

parameters was the fact that it is critical to decide which one DE model is the most effective

for the description of cosmos dynamics in the presence of variety of DE proposals.

These parameters help to investigate the correspondence between constructed DE mod-

els and standard models of cosmos by plotting trajectories in the j− s plane. Some specific

( j,s) pairs correspond to standard models of DE like (1,0) represents the constant cos-

mological constant, (1,1) corresponds to standard cold dark matter while (−∞,∞) shows

static Einstein universe. If the j − s trajectories of a DE model are moving away from

these standard points, then it may be concluded that the models have distinct features from

the standard models of cosmos. Basically, these factors emerge from the Taylors series

expansion of a(t) about the present time t0 given by

a(t) = a0

[
1+H0(t − t0)−

1
2

q0H0
2(t − t0)2 +

1
6

j0H0
3(t − t0)3 + ...

]
,

where H0, q0 and j0 denote the present day values of corresponding parameters respec-

tively.

2.4 The Expansion and Shear Scalar

A congruence in an open region of space-time is a class of curves such that through each

point of the domain one curve of this family passes [133]. The generation of congruences

by null, spacelike and timelike curves are known as null, spacelike and timelike congru-

ences. Considering the congruence of timelike geodesics and associated timelike vector
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field ua (timelike vector connects two events that are causally connected, that is the sec-

ond event is in the light cone of the first event). The timelike curves are also known as

world-lines or field lines [134].

The measure of fractional rate of change of volume per unit time is called expansion

scalar and is defined as [133]

Θ = ua
;a = ua

,a +Γa
abub. (2.4.1)

The congruence is divergent (geodesic flying apart) if Θ > 0, that shows the expanding

universe and Θ < 0 gives convergent congruence (geodesics coming closer) and shows

the decelerating behavior of the universe. The measure of distortion in timelike curves is

called shear tensor and the volume remains constant. It presents the feasibility of distortion

to ellipsoidal shape from initial sphere. This is defined as

σcd = Θcd −
1
3

Θhcd = u(c;d)+ u̇(cud)−
1
3

Θhcd. (2.4.2)

The indices of shear tensor are symmetric. The shear scalar σ is defined as

σ2 =
1
2

σcdσ cd. (2.4.3)

2.5 The Energy Momentum Tensor

The EMT is a symmetric tensor having rank two and is denoted by T αβ , which represents

the flux and density of energy and momentum in space-time. This tensor plays the role

of gravitational field in field equations of GR, as the mass density plays similar role in

Newtonian gravity. In case of vacuum, its value is zero. For an arbitrary manifold it takes

the form as

T αβ = ρuαuβ +σ i jδ α
i δ β

j , (2.5.1)

where uα is the 4-velocity vector, ρ is the matter density and σ i j is the stress density defined

by

σ i j =
dF i

dS j
, (i, j = 1,2,3) (2.5.2)

where dF i denotes the force acting on dS j, the area element. The components of T αβ have

the following meaning:
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• T 00 component represents the energy density of matter and is represented by ρ .

• T i0 components represent the energy flux.

• T 0i components denote the momentum flux.

• T i j components represents the stress tensor that is pressure.

Now, we discuss the energy-momentum tensor for perfect fluid.

2.5.1 Isotropic Fluid

A fluid having no heat conduction and viscosity is called perfect fluid and defined in terms

of ρ and p. For perfect fluid, the stress energy tensor with signature (+, −, −, −) can be

described as

Tαβ = (ρ + p)uαuβ − pgαβ . (2.5.3)

If we use the signature (−, +, +, +) then it is stated as

Tαβ = (ρ + p)uαuβ + pgαβ . (2.5.4)

In case of dust, we have p = 0 and EMT reduced to

Tαβ = ρuαuβ . (2.5.5)

In co-moving frame i.e., (uα = (1,0,0,0)), the trace of Tαβ for signature (+, −, −, −) is

T = ρ −3p. (2.5.6)

2.5.2 Anisotropic Fluid

For perfect fluid or isotropic fluid, pressure remains constant in every direction but in case

of anisotropic fluid, pressure varies in spatial directions. It can be stated that anisotropic

fluid is the simplest generalization of the perfect fluid in which we vary pressure on each

axis separately. For an anisotropic fluid, the EMT with signature (+, −, −, −) is defined

as follows

Tαβ = (ρ + pt)VαVβ − prgαβ +(pr − pt)XαXβ , (2.5.7)
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where ρ , pr and pt indicate the energy density, directional pressures of the fluid, respec-

tively, measured in the orthogonal direction of the unit space-like vector in the radial vector

Xα = 1√
−g11

δ α
1 . Additionally, Vα = 1√

g00
δ α

0 is the 4-velocity which satisfies the conditions

XαXα =−1, V αVα = 1 and also XαVα = 0.

2.5.3 Barotropic fluid

In fluid dynamics, barotropic fluid is defined as the fluid whose density is a function of

pressure only. It is stated as

ρ = ρ(p) . (2.5.8)

In our work, we apply an EoS parameter involving energy density and radial pressure, i.e.,

ω = p/ρ . EoS is a dimensionless parameter, not necessarily constant. The quintessence

yields dynamical EoS describing the relationship between the state variables like fluid en-

ergy density and pressure.

2.5.4 Equation of State

The EoS in cosmology is described by dimensionless number ω as, ω = p/ρ where ρ ,

p are notions of matter density and pressure. If we evaluate the EoS by considering the

universe isotropic, homogeneous, and taking the FLRW space-time at the background, then

EoS for ωDE is exactly equal to −1 in Λ CDM model whereas in quintessence model it is

dynamical quantity, and −1<ωDE <−1/3. Moreover ωDE varies with time and ωDE <−1

in phantom model.

2.6 The Einstein Field Equations

Einstein formulated the equations which relate the geometry and matter of the spacetime

known as the EFEs and given by

Gαβ = Rαβ − 1
2

Rgαβ = κTαβ , (2.6.1)

where R, gαβ , Gαβ , Rαβ , Tαβ and κ denote the Ricci scalar, the metric tensor, Einstein

tensor, Ricci tensor, the EMT and coupling constant respectively. The EFEs show the
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relation of energy and matter, how they are related to the curvature of spacetime. These

can also be written as

Rαβ = 8π(Tαβ − 1
2

T gαβ ). (2.6.2)

The metric tensor gαβ in GR and the scalar potential ϕ in Newtonian theory of gravitation

play the same role. In weak field approximation (Newtonian limit), the EFEs are reduced

to the Poisson’s equations. These are the second order coupled non-linear system of differ-

ential equations for the metric components [135].

To determine the metric tensor gαβ , these equations can be solved if EMT ‘Tαβ ’ is

given. Until the gαβ is unknown we cannot explain the EMT Tαβ physically. If the com-

ponents of metric are known, we can find the Einstein tensor and also EMT. In most of the

cases, the Tαβ is found to be non-physical and even it violates the energy bounds. Thus we

should solve these EFEs simultaneously for matter distribution and spacetime metric. In

case of vacuum these equations are solved by taking Tαβ = 0. These equations satisfy the

principle of conservation of energy and momentum, i.e. T αβ
;β = 0 for matter distribution

which gives information about the behavior of the matter [135].

2.7 Modified Theories of Gravity

To interpret the behavior of DE, modified theories of gravity are introduced by adding an

extra degree of freedom that may be vector, scalar or tensor field. There is a class of DE

models in which role of gravity is played by different parameters. Some famous theories are

f (R) gravity, f (R,T ) gravity, f (τ) gravity, Gauss-Bonnet theory and its generalizations,

f (R,G) gravity with Ricci scalar R, trace of EMT T , torsion scalar τ and Gauss-Bonnet

invariant term G and scalar-tensor gravity accommodating both scalar and tensor fields.

In this chapter, we shall discuss only the modified approach of scalar-tensor gravity in

detail.

2.8 Scalar-Tensor Gravity

For the modification of GR, one of oldest approach is scalar-tensor gravity in which the

simplest field of nature, i.e., scalar field is included [20]. This gravitational proposal is
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very old even before the elegant publication of Einstein. In 1912, Nordström presented the

first idea and introduced the conformally flat scalar-tensor gravity [136]. Dirac presented a

new idea in 1937, regarding dynamical Newton gravitational coupling [137]. He drew his

conclusion after analyzing the quotients of various cosmological as well as fundamental

constants used in physics and argued that one of these constants in such ratios should vary

over the time scales in cosmology. In 1959, Jordan presented a gravitational proposal with

varying Newton’s coupling of gravity on the basis of Dirac’s idea. Another important idea

was given by Ernst Mach (1893) which states that inertia is a property of matter as well as

of the background provided by rest of the universe.

Later on, Brans and Dicke (1961) attempted to formulate a new scalar-tensor gravity

by accommodating both the Dirac’s hypothesis and the well-known Mach’s principle. This

was named as BD gravity and is considered as the most strong competent of GR. In scalar-

tensor gravity, the reciprocal of the scalar-field plays the role of Newton’s gravitational

coupling. The action proposed by Brans-Dicke is given by [20]

S =
∫

dx4√−g
[

ϕR− ω0

ϕ
ϕ ,αϕ,α +Lm

]
, α = 0,1,2,3, (2.8.1)

where ω0 is the BD coupling parameter, Lm is the matter part of the Lagrangian and ϕ is

the scalar field. Varying this action with respect to both metric tensor and scalar field one

can find the following set of field equations

Gαβ =
ω0

ϕ 2

[
ϕ,αϕ,β − 1

2
gαβ ϕ,αϕ ,α

]
+

1
ϕ
[
ϕ,α ;β −gαβ2ϕ

]
+

Tαβ

ϕ
, (2.8.2)

2ϕ =
T

3+2ω0
. (2.8.3)

The notations Tαβ , T , ∆α and 2 are used for the EMT, its trace, covariant derivative and

box or d’Alembertian operator (2= ∆α∆α), respectively.

Eq.(2.8.3) is the Klein-Gordon equation for this framework. Choosing scalar field as a

constant and asymptotically large BD coupling parameter (ω0 → ∞), GR can be recovered.

However, it does not seem true for exact solutions. For non-vanishing trace of EMT this

limit recovers GR. Scalar-tensor gravity have correspondence with other modified theories

for different values of ω0; we can get f (R) gravity, Palatini metric and string theory with

low energy by replacing ω0 = 0, ω0 =−3/2 and ω0 =−1, respectively.
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The generalization of the action (2.8.1) can be discussed by taking the scalar field and

geometry coupling by a general function f (ϕ) and the BD constant by a dynamical cou-

pling ω(ϕ) and also including scalar field potential. It can be written as

S =
∫

dx4√−g
[

f (ϕ)R− ω(ϕ)
ϕ

ϕ,αϕ ,α −U(ϕ)+Lm

]
. (2.8.4)

This theory is known as generalized scalar-tensor gravity.

2.9 f (R,ϕ) gravity

The f (R,ϕ) theory with scalar potential is given by

Sm =
∫

d4x
√
−g
[

1
κ2 ( f (R,ϕ)+ω(ϕ)ϕ;α ϕ ;α)+V (ϕ)

]
, (2.9.1)

where f is a function of R and ϕ , V (ϕ) denotes the scalar field potential and ω(ϕ) denotes

the coupling function.

Varying the action (2.9.1) with respect to metric we have field equations of the form

fR Rαβ − 1
2
( f +ω(ϕ)ϕ;α ϕ ;α) gαβ − fR;αβ +gαβ 2 fR +ω(ϕ)ϕ;α ϕ;β = κ2 Tαβ , (2.9.2)

2ω(ϕ)2ϕ +ωϕ (ϕ)ϕ;α ϕ ;α − fϕ +Vϕ (ϕ) = 0 , (2.9.3)

where 2= gαβ ∇α∇β and κ2 ≡ 8πG.

2.10 f (R,RµνRµν ,ϕ) gravity

In generalized scalar tensor theories, the f (R,RµνRµν ,ϕ) gravity have very interesting

prospects. The action of f (R,RµνRµν ,ϕ) theory is [138],

Sm =
∫

d4x
√
−g
[

1
κ2

(
f
(
R,RµνRµν ,ϕ

)
+ω(ϕ)ϕ;αϕ ;α)+Lm

]
, (2.10.1)

where the unspecified function f is depending on R, ϕ and Rαβ Rαβ ≡ Y .

One can find the field equations corresponding to (2.10.1) of the form

fRRµν −
1
2
( f +ω(ϕ)ϕ;αϕ ;α)gµν − fR;µν +gµν2 fR +2 fY Rα

µ Rαν −2[ fY Rα
(µ ];ν)α

+2[ fY Rµν ]+ [ fY Rαβ ]
;αβ gµν +ω(ϕ)ϕ;µϕ;ν = κ2Tµν , (2.10.2)

2ω(ϕ)2ϕ +ωϕ (ϕ)ϕ;α ϕ ;α − fϕ = 0 , (2.10.3)

where 2= gµν∇µ∇ν and κ2 ≡ 8πG.
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2.11 Universe Models

2.11.1 Friedmann-Lemaitre-Robertson-Walker metric (FLRW) Space time

The FLRW model is compatible with the Copernican principle of cosmology having spec-

ifications spatially homogeneous and isotropic but not necessarily flat. In cosmology it is

considered as the most realistic standard model. This model was first time formulated in

1922 by Alexander Friedman. Later on, in 1935 its modification was presented by Howard

Percy Robertson and Arthur Geoffrey Walker. The metric of this model in terms of curva-

ture index k = {−1,0,1} (open, flat and closed, respectively) and expansion factor a(t) can

be written as [131]

ds2 = c2dt2 −a(t)2
[

dr2

1− kr2 + r2dθ 2 + r2sin2θdϕ 2
]
. (2.11.1)

• de-Sitter (dS) Universe Models

The dS cosmic solutions seems very useful in explaining the current picture of cosmos. In

dS model, the Hubble parameter, scale factor and Ricci tensor are defined as,

H = H0, a(t) = a0eH0t , R = 12H2
0 . (2.11.2)

One of the major characteristic of such model is constant EoS ω , so that

ρ = ρ0e−3(1+ω)H0t , ω ̸=−1. (2.11.3)

• Power Law Solutions

These solutions are very effective to discuss different eras of cosmic evolution. These

solutions are very helpful in explaining the all cosmic evolutions such as DE, DM and

radiation dominated eras. In this case, the scale factor, Hubble parameter and Ricci scalar

are defined as [31, 33]

a(t) = a0tn1, H(t) =
n1

t
, R = 6n1(1−2n1)t−2, (2.11.4)

where n1 > 0. If 0 < n1 < 1, we have decelerated universe which leads to the dust domi-

nated era (n1 =
2
3) or radiation dominated (n1 =

1
2) while n1 > 1 leads to the accelerating

picture of the universe.
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2.11.2 Bianchi Models

Homogeneity refers to the similar pictures to observers at different locations of the cosmos

whereas isotropy implies the results independent of directions. The FLRW models are spa-

tially homogeneous, but these models are in a very limited subclass of cosmic candidates

due to their property of isotropy. Bianchi models are homogeneous and anisotropic. There

have been a large number of papers to investigate the Bianchi models, finding the exact

solution of the field equations and explaining the dynamical behavior of the models. The

BI model points to the generalization of flat FLRW models which confirms the distinct

expansion factors. BI model is given by

ds2 = dt2 −A2(t)dx2 −B2(t)dy2 −C2(t)dz2, (2.11.5)

where A(t), B(t) and C(t) are the scale factors, x is transverse direction and y, z are equiva-

lent longitudinal directions. The average expansion scale factor is a=(ABC)
1
3 . The volume

V , for the above BI spacetime, is V = a3 = ABC.

For LRS BI model we set C = B so that metric of the form

ds2 = dt2 −A2(t)dx2 −B2(t)(dy2 +dz2), (2.11.6)

Here, the average expansion scale factor is a = (AB2)
1
3 and volume V is V = a3 = AB2.

Here, we represent the Bianchi type classification in the following table.

Class A B

Type I II V I0 V II0 VIII IX V IV V Ih III V IIIh

n(1) 0 +ve 0 0 -ve +ve 0 0 0 0 0

n(2) 0 0 +ve +ve +ve +ve 0 0 +ve +ve +ve

n(3) 0 0 -ve -ve +ve +ve 0 +ve -ve -ve +ve

a 0 0 0 0 0 0 +ve +ve +ve
√

−n(2)n(3) +ve

Table 2.1: Classification of Bianchi Models

These parameters n(i) and a can be set to either ±1 or zero.
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2.12 Energy Conditions

The energy conditions play an important role in GR and also have useful applications in

modified theories of gravity. Here, we firstly present the energy conditions in GR and then

describe the extended version of these bounds in modified gravitational framework. In

GR, energy conditions have four explicit forms named as: the NEC, WEC, SEC and DEC

[34] which are obtained using Raychaudhuri equation along with appealing properties of

gravity. Assuming uα and kα , the tangent vectors to the timelike and null curves of a

spacetime manifold, the Raychaudhari equation yields the temporal evolution of expansion

θ for the corresponding timelike curves in terms of the Ricci tensor Rαβ , shear tensor σαβ

and rotation ωαβ and is given by

dθ
dτ

=−θ 2

3
−σαβ σαβ +ωαβ ωαβ −Rαβ uαuβ , (2.12.1)

dθ
dτ

=−θ 2

3
−σαβ σαβ +ωαβ ωαβ −Rαβ kαkβ . (2.12.2)

Since the attractive property of gravity implies dθ
dτ < 0 indicating the geodesics become

closer to each other and hence corresponds to converging congruence of geodesics. It

further imposes,

Rαβ uαuβ ≥ 0, and Rαβ kαkβ ≥ 0. (2.12.3)

for time-like and null vectors, respectively. We obtain the energy conditions by replacing

Ricci tensor Rαβ with the EMT Tαβ of perfect fluid. We get the following forms of the

point-wise energy conditions.

2.12.1 Null Energy Condition (NEC):

For any null vector kα the relation for NEC is given by Tαβ kαkβ ≥ 0. In terms of Tαβ

(2.5.7) it implies, ρ + pi ≥ 0 ∀ i. In modified gravitational framework, assuming that

the total matter contents act like a perfect fluid, these constraints can be determined by

replacing p with pe f f and ρ with ρe f f

ρ(e f f )+ pi(e f f ) ≥ 0 ∀ i . (2.12.4)
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2.12.2 Weak Energy Condition (WEC):

For any timelike vector uα , WEC is represented as Tαβ uαuβ ≥ 0. Physically, Tαβ uαuβ

represents matter density which is evaluated by any observer in timelike position having

four-velocity uα . In case of generalized theories we can write

ρ(e f f ) ≥ 0 and ρ(e f f )+ pi(e f f ) ≥ 0 ∀ i . (2.12.5)

2.12.3 Strong Energy Condition (SEC):

In case of uα the timelike vector, we have the inequality,
(

Tαβ − T
2 gαβ

)
uαuβ ≥ 0. For

perfect fluid it takes the form as ρ + pi ≥ 0, ρ +∑pi ≥ 0 ∀ i, which can be generalized as

ρ(e f f )+ pi(e f f ) ≥ 0 and ρ(e f f )+∑pi(e f f ) ≥ 0 ∀ i. (2.12.6)

The SEC holds the NEC but it is not necessary that it holds WEC too.

2.12.4 Dominant Energy Condition (DEC):

DEC is given by Tαβ uαuβ ≥ 0, where Tαβ uα is not spacelike. For Tαβ (2.5.7), we have the

conditions, ρ ≥ 0, ρ ± pi ≥ 0 ∀ i, for effective components it takes the form

ρ(e f f ) ≥ 0 and ρ(e f f )± pi(e f f ) ≥ 0 ∀ i. (2.12.7)

DEC reduces to WEC and hence the NEC.

2.13 Black Hole Thermodynamics

The relation between black hole (BH) mechanism and laws of thermodynamics is known

as BH thermodynamics. To setup the BH thermodynamics one can generalize the law

of BH dynamics depending on their counterparts in classical theory. BHs satisfy specific

mathematical laws which correspond to classical laws. Classically, BHs appear as perfect

absorbers but do not radiate, however, these objects do not emit particles beyond the hori-

zon. In fact, this theory helped us to formulate a coherent relation between thermodynamics

and gravity.
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2.13.1 Generalized Second Law of Thermodynamics (GSLT)

Here, we discuss some theoretical parameters which helped to formulate GSLT. Classi-

cally theory argues that total entropy of the entire cosmos can never decrease, however the

presence of BHs can create some issues. In the presence of BH we have to concentrate

on its surroundings (matter and radiations outside it). Matter falls into a singularity as BH

accretes, then it is not easy for external observer to get the complete information beyond

the horizon. As a result, entropy of external contents of BHs decreases which cannot be

recovered through any means. In [139], Bekenstein introduced a relation of BH entropy in

terms of the horizon area. A new generalized entropy was proposed as a combination of

BH entropy (SBH) and entropy associated to radiation and matter outside. Thus the SLT

was replaced by GSLT, i.e. the total entropy can never decrease dS = d(SBH + Sm) ≥ 0

[140].

Hawking presented a theorem about BHs which states that the surface area of a BH can

never be decreased i.e., dA ≥ 0. It can be seen that due to the presence of BH, quantum

effects and area theorem, the GSLT is violated. Initially, Bekenstein presented GSLT with-

out considering the possibility of this decrease in area. Bekenstein also stated that increase

in horizon area compensates the loss of matter outside the BH. The condition of validity

for area theorem is violated by quantum effects, that can be stated as “BH evaporation is

accompanied by a rise in entropy in the surroundings space through the emitted thermal

radiations”. Thus the GSLT can be stated as the total cosmic entropy including BH en-

tropy cannot be decreased, i.e. dS = d(Sext + S) > 0 and Sext denotes the cosmic entropy

excluding BH.

2.14 Wormhole geometries

The existence of spacetimes having non-trivial topological structure makes GR more fasci-

nating. Misner and Wheeler [68] named such solutions of the field equations as wormhole

solutions. The following equation gives the line element for static and spherically symmet-

ric wormhole spacetime, established by Morris and Thorne [69]

ds2 = ea(r)dt2 − eb(r)dr2 − r2(dθ 2 + sin2θdϕ 2), (2.14.1)
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where,

e−b(r) = 1− β (r)
r

.

Redshift function a(r) determines the gravitational redshift of very light particle (photon)

and β (r) represent the shape of the wormhole. So, they must have some characteristics for

wormhole geometry [72]. These properties as function of radial coordinate r are discussed

bellow.

• The behavior of r is non-monotonic as it decreases from ∞ to minimum value r0

which represents the location of wormhole throat, i.e., β (r0) = r0 then it increases

back from r0 to ∞.

• The proper radial distance, L (r) should be finite throughout the space. Nevertheless,

we can have the following real and regular integral outside the throat,

L (r) =±
∫ r

r0

(
1− β (r)

r

)−1/2

dr, r ≥ r0.

The signs ± are associated with the configuration of two portions joined together by

the wormhole.

• In order to have geometries and proper shape of wormhole at the throat which flares

outward, the following condition is imposed,

β (r)− rβ ′(r)
β 2(r)

> 0.

The above inequality is accountable for the violation of NEC in GR. If the throat

radius is denoted by r0, then this condition implies β (r0) = r0 while β ′(r0)≤ 1.

• For the proper length, the function should be finite and well defined everywhere. So,

it is required that:

1− β (r)
r

≥ 0.

• For two way travel through wormhole and keeping the throat open, requirement is

that there are no horizons present, i.e. ea(r) → 0. The magnitude of a(r) should be

limited (finite) everywhere. For this purpose, we may take constant redshift function

i.e., a′(r) = 0.
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We notice that the schwarzschild wormhole depends on the mass of wormhole, but the

Morris-Thorne wormhole is a particular case that does not depend on its mass. For arbitrary

choices of shape function and as well as of redshift function there exist various solutions

that satisfy the above conditions.

2.15 Inflation

In cosmology, inflation represents the early time expansion of the universe. Inflationary

theory was developed in 1981 by Alan Guth and Sato [107, 141], who explain the ther-

malization of the universe and resolved the issues associated with the initial conditions

on Friedmann cosmos. Inflation states that our universe goes under the superluminal ex-

pansion in early times. Inflation describes why our universe is homogeneous, flat and so

large. The field moves gradually at the end of inflation through a minimum of the potential

and reheating happens for the creation of particle. In the scenario of “warm inflation” the

reheating is not necessary, only radiation arises at the end of inflation.

Many models have been proposed which can produce the deceleration, expansion and

early time cosmic acceleration. One interesting approach to derive inflation is the use of

modified theories of gravity. A model is compatible for inflation if for Friedmann universe

spectral index and tensor to scalar ratio can be derived at the origin of the cosmological

fluctuations.

For inflation, the necessary condition in terms of comoving Hubble length H−1

a is stated

as

Inflation ⇔ d
dt

(
H−1

a

)
< 0 .

In the context of GR, the condition for inflation is given by

Inflation ⇔ ρ +3p < 0 .

The energy density ρ is taken as positive, so in this case p should be negative to fulfill this

condition.

In inflationary models, the scalar potential has scalar field having slow evolution [142,

143]. Sometimes, exact solution exists but in detail it can be studied numerically or by
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using approximation scheme, the approximation mostly used is “slow-roll approximation”

[139, 144, 145]. ρ and p associated with the scalar field are defined as [21]

ρ =
ϕ̇ 2

2
+V (ϕ), p =

ϕ̇ 2

2
−V (ϕ) .

Depending on different choices of V (ϕ) there are various inflationary models. Using above

expressions in continuity and Friedmann equations we find equations of motions of the

form

ϕ̈ −3Hϕ̇ +
dV
dϕ

= 0, H2 − 1
3

(
V (ϕ)+

ϕ̇ 2

2

)
= 0 .

For inflation, the ρ and p meet the condition ϕ̇ 2 ≪ V (ϕ). Using this approximation we

have equations of the form

H2 ≃ V (ϕ)
3

, 3Hϕ̇ ≃−dV
dϕ

,

where dot indicates the derivative with respect to time and ≃ shows that for slow-roll ap-

proximation the quantities are equal.

Validity of slow-roll approximation is a sufficient condition for inflation but not neces-

sary. To show this, one can express the condition for inflation as

ä
a
= Ḣ +H2 > 0,

which will be valid if Ḣ > 0 or − Ḣ
H2 < 1. The standard slow-roll parameters are

ε1 =− Ḣ
H2 ≪ 1, ε2 =

ϕ̈
Hϕ̇

≪ 1, ε3 =
Ḟ

2HF
≪ 1, ε4 =

Ė
2HE

≪ 1 .

The inflation is guaranteed if ε ≪ 1. These parameters tell about the inflation, it might

occur for a certain potential e.g., V (ϕ) = m2ϕ 2

2 . For this potential, one can find the validity

of above conditions subject to ϕ 2 > 2.
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Chapter 3

Cosmological reconstruction, energy

bounds and Thermodynamics in

f (R,Rαβ Rαβ ,ϕ) gravity



3.1 Cosmological reconstruction and energy bounds in f (R,Rαβ Rαβ ,ϕ)

gravity

3.1.1 Field Equations of f (R,Rαβ Rαβ ,ϕ) gravity

We are considering the FRW space time with a(t) as

ds2 = dt2 −a2(t)dx2 −a2(t)dy2 −a2(t)dz2. (3.1.1)

The gravitational field equations (2.10.2) corresponding to perfect fluid (2.5.3) as matter

content, are given by

κ2ρ = −3
(
H2 + Ḣ

)
fR +3H∂t fR +

1
2
(
ω(ϕ)ϕ̇ 2 − f

)
−6H

(
2 ˙H +3H2

)
∂t fY +

(
24Ḣ2

+ 114ḢH2 +42H4) fY , (3.1.2)

κ2 p = −∂tt fR −2H∂t fR +
1
2
(

f +ω(ϕ)ϕ̇ 2)+ (Ḣ +3H2) fR +4H
(
3H2 + Ḣ

)
∂t fY +

(
6H2

+ 4Ḣ
)
∂tt fY +

(
4

...
H +20ḦH +10ḢH2 +16Ḣ2 −18H4) fY . (3.1.3)

The field equation (2.10.2) can be rearranged in the following form

Gµν = Rµν −
1
2

Rgµν = T e f f
µν , (3.1.4)

that is similar to the standard field equations in GR and T e f f
µν in f (R,Y,ϕ) gravity is defined

as

T e f f
µν =

1
fR

[
κ2Tµν +

1
2
( f +ω(ϕ)ϕ;αϕ ;α −R fR)gµν + fR;µν −gµν2 fR −2 fY Rα

µ Rαµ

+ 2[ fY Rα
(µ ];ν)α −2[ fY Rµν ]− [ fY Rαβ ]

;αβ gµν −ω(ϕ)ϕ;µϕ;ν

]
.

The effective energy density and pressure can be defined in the form

ρe f f =
1
fR

[
κ2ρ − 1

2
(
ω(ϕ)ϕ̇ 2 − f

)
+3
(

ȧ2

a2 +
ä
a

)
fR −3

ȧ
a

∂t fR +6
(

ȧ3

a3 +2
ȧä
a2

)
∂t fY

+

(
24

ä2

a2 −66
ȧ2ä
a3 +48

ȧ4

a4

)
fY

]
, (3.1.5)

and

pe f f =
1
fR

[
κ2 p− 1

2
(

f +ω(ϕ)ϕ̇ 2)−3
(

ä
a
+

ȧ2

a2

)
fR +2

ȧ
a

∂t fR +∂tt fR −2
(

ä
a
+2

ȧ2

a2

)
× ∂tt fY −4

(
ȧä
a2 +2

ȧ3

a3

)
∂t fY −

(
4

....a
a
+4

ȧ
...a

a2 −34
ȧ2ä
a3 −4

ä2

a2 −4
ȧ4

a4

)
fY

]
. (3.1.6)

32



3.1.2 Reconstruction of f (R,Y,ϕ) gravity

Now, we are presenting the reconstruction of f (R,Y,ϕ) gravity by applying dS and power

law cosmologies which are established cosmological solutions.

• de-Sitter f (R,Y,ϕ) Model

Here we are using [146]

ω(ϕ) = ω0ϕ ζ , ϕ(t)∼ a(t)β1. (3.1.7)

Using these quantities along with Eqs.(2.11.2) and (2.11.3) in Eq.(3.1.2), we obtain

3H2
0 β1ϕ fRϕ −18H4

0 β1ϕ fY ϕ −3H2
0 fR +42H4

0 fY − 1
2

f (R,Y,ϕ)+
1
2

β1
2ω0H2

0 ϕ ζ+2

−κ2ρ0a3(1+w)
0 ϕ− 3

β1 = 0, (3.1.8)

which is a partial differential equation of second order that is converted into canonical form

and solving we have solution of the form

f (R,Y,ϕ) = α1α2α3eα1Reα2Y ϕ γ1 + γ2ϕ γ3 + γ4ϕ γ5, (3.1.9)

where α ′
i s are constants of integration and

γ1 =
18β1α1H2

0 −108β1α2H4
0 −5+6α1H2

0 −84α2H4
0

6
(
H2

0 α1β1 −6β1α2H4
0
)

γ2 = ω0β1
2H2

0 , γ3 = ζ +2, γ4 =−2κ2ρ0a3(1+w)
0 , γ5 =− 3

β1
.

(3.1.10)

• de-Sitter model independent of Y

Here we are taking function f (R,ϕ) and inserting Eq.(3.1.7) along with Eqs.(2.11.2) and

(2.11.3) in Eq. (3.1.2) we obtain

3H2
0 β1ϕ fRϕ −3H2

0 fR −
1
2

f (R,ϕ)+
1
2

ω0β1
2H2

0 ϕ ζ+2 −κ2ρ0a3(1+w)
0 ϕ− 3

β1 = 0. (3.1.11)

Solving the above equation, we have solution of the form

f (R,ϕ) = α1α2eα1Rϕ γ1 + γ2ϕ γ3 + γ4ϕ γ5, (3.1.12)

where α ′
i s are constants of integration and

γ1 =− 1
β1

(1+
1

6H2
0 α1

), γ2 = ω0β1
2H2

0 ,

γ3 = ζ +2, γ4 =−2κ2ρ0a3(1+w)
0 , γ5 =− 3

β1
.

(3.1.13)
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• de-Sitter model independent of R

Now we are taking function f (Y,ϕ) and inserting Eq.(3.1.7) along with Eqs.(2.11.2) and

(2.11.3) in Eq.(3.1.2) we get

18H4
0 β1ϕ fY ϕ −42H4

0 fY +
1
2

f (Y,ϕ)− 1
2

ω0β1
2H2

0 ϕ ζ+2 −κ2ρ0a3(1+w)
0 ϕ− 3

β1 = 0, (3.1.14)

whose solution yields

f (Y,ϕ) = α1α2eα1Y ϕ γ1 + γ2ϕ γ3 + γ4ϕ γ5, (3.1.15)

where α ′
i s are constants of integration and

γ1 =− 7
3β1

+
1

36H4
0 α1β1

, γ2 = ω0β1
2H2

0 ,

γ3 = ζ +2, γ4 =−2κ2ρ0a3(1+w)
0 , γ5 =− 3

β1
.

(3.1.16)

• Power Law Solution independent of R

Here, we are taking f (Y,ϕ) function, using Eqs.(2.11.3), (3.1.7) and (2.11.4) in Eq.(3.1.2)

we obtain

2(3n1 −2)
4n12 −3n1 +1

Y 2 fYY − n1(3n1 −2)
2(4n12 −3n1 +1)

ϕY fY ϕ +
7n1

2 −19n1 +4
2(4n12 −3n1 +1)

Y fY − 1
2

f

−κ2ρ0ϕ− 3
β1 a3(1+w)

0 +
1
2

ω0β1
2n1

2a
2

n1
0 ϕ ζ+2− 2

n1β1 = 0, (3.1.17)

solving it we have the following f (Y,ϕ) model

f (Y,ϕ) = α1α2ϕ γ1Y γ2 + γ3ϕ γ4 + γ5ϕ γ6, (3.1.18)

where α ′
i s are constants of integration and

γ1 =
2(3n1 −2)α1

4n12 −3n1 +1
+

7n1
2 −31n1 +12

n1(3n1 −2)
− 2(4n1

2 −3n1 +1)2

n12(3n1 −2)2α1
,

γ2 =
n1(3n1 −2)α1

2(4n12 −3n1 +1)
, γ3 =−ω0β1

2n1
2a

2
n1
0 , γ4 = ζ +2− 2

n1β1
,

γ5 =−2κ2ρ0a3(1+w)
0 , γ6 =− 3

β1
.

(3.1.19)
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• Power Law Solution independent of Y

Now we are taking function f (R,ϕ), using Eq.(2.11.3) along with Eqs.(3.1.7) and (2.11.4)

in Eq.(3.1.2) yields

1
3n1 −1

R2 fRR +
n1 −1

2(3n1 −1)
R fR −

n1β1

2(3n1 −1)
ϕR fRϕ −κ2ρ0a3(1+w)

0 ϕ− 3
β1 − 1

2
f

+
1
2

ω0β1
2n1

2a
2

n1
0 ϕ ζ+2− 2

n1β1 = 0. (3.1.20)

Solving this we have,

f (R,ϕ) = α1α2ϕ γ1Rγ2 + γ3ϕ γ4 + γ5ϕ γ6, (3.1.21)

where α ′
i s are constants of integration and

γ1 =
α1

3n1 −1
+

n1 −3
n1β1

− 2(3n1 −1)2

n12β1
2α1

, γ2 =
n1(n1 −3)β1α1

(3n1 −1)2 ,

γ3 = ω0β1
2n1

2a
2

n1
0 , γ4 = ζ +2− 2

n1β1
, γ5 =−2κ2ρ0a3(1+w)

0 , γ6 =− 3
β1

.

(3.1.22)

3.1.3 Energy Conditions

The energy conditions (2.12.4)-(2.12.7) for scalar tensor fourth order gravity are:

NEC: ρe f f + pe f f =
1
fR

[
κ2 (ρ + p)−ω(ϕ)ϕ̇ 2 +∂tt fR −H∂t fR −2

(
2Ḣ +3H2)∂tt fY

+
(
8ḢH +6H3)∂t fY −

(
4

...
H +20HḦ +28ḢH2 +40Ḣ2) fY

]
, (3.1.23)

WEC: ρe f f =
1
fR

[
κ2ρ +

1
2
(

f −ω(ϕ)ϕ̇ 2 −R fR
)
−3H∂t fR +6H

(
2Ḣ +3H2)∂t fY

− fY
(
18ḢH2 +24Ḣ2 +18H4)] , (3.1.24)

SEC: ρe f f +3pe f f =
1
fR

[
κ2 (ρ +3p)−2ω(ϕ)ϕ̇ 2 − f +R fR +3H∂t fR +3∂tt fR

−6
(
2Ḣ +3H2)∂tt fY −18H3∂t fY −

(
12

...
H +60ḦH +48ḢH2 +72Ḣ2 −36H4) fY

]
,

(3.1.25)

DEC: ρe f f − pe f f =
1
fR

[
κ2 (ρ − p)+ f −R fR −∂tt fR −5H∂t fR +2

(
2Ḣ +3H2)

×∂tt fY +
(
16ḢH +30H3)∂t fY +

(
4

...
H +20HḦ −8ḢH2 −8Ḣ2 −36H4) fY

]
.

(3.1.26)
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Inequalities (3.1.23)-(3.1.26) represent the NEC, WEC, SEC and DEC of f (R,Y,ϕ) gravity

with FRW spacetime.

In terms of deceleration, jerk and snap parameters [147, 148], the Ricci scalar and its

derivatives can be written as

R = 6H2(q−1), Ṙ = 6H3(q− j+2), R̈ = 6H4(s+q2 +8q+6), (3.1.27)

where q, j, s are defined in (2.3.3), (2.3.4) and using these parameters, Hubble parameter

and its time derivatives can be expressed as [46, 47]

H =
ȧ
a
, Ḣ =−H2 (q+1) , Ḧ = (3q+ j+2)H3,

...
H = H4 (s−6−4 j−12q−3q2) .

(3.1.28)

Using the above definitions, the energy conditions (3.1.23)-(3.1.26) can be rewritten as

NEC: −ω(ϕ)ϕ̇ 2κ2(ρ + p
)
−6H4{s− j+(q+8)(q+1)

}
fRR +

{
Ÿ −HẎ +12H6

×
{

s(1−2q)+ j
(
4q+1

)
+
(
1+q

)(
4−2q2 −17q

)}}
fRY − fRϕ

(
Hϕ̇ − ϕ̈

)
−2H2

×
(
HẎ + Ÿ

)
−2q fYY

(
Ÿ −2HẎ

)
−2H2 fY ϕ

{(
Hϕ̇ + ϕ̈

)
+2q

(
2Hϕ̇ − ϕ̈

)}
+36H6

×( j−2−q)2 fRRR −12H3 ( j−2−q)
{

6H5 ( j−2−q)(1−2q)+ Ẏ
}

fRRY −12ϕ̇H3

×( j−2−q) fRRϕ + Ẏ fRYY

{
Ẏ +24H5( j−q−2)(1−2q)

}
+ ϕ̇ 2 fRϕϕ +2ϕ̇

{
Ẏ

+12H5( j−q−2)(1−2q)
}

fRY ϕ + Ẏ
(
Ẏ fYYY + ϕ̇ fYY ϕ

)
+ ϕ̇

(
ϕ̇ fY ϕϕ + Ẏ fYY ϕ

)
−4H4

×
(
s+ j+7q2 +16q+7

)
fY ≥ 0, (3.1.29)

WEC: κ2ρ +
1
2
(

f −ω(ϕ)ϕ̇ 2)− 1
2

R fR +18H4 ( j−q−2)
{

fRR −2H2 (1−2q) fRY
}

−3H
(
Ẏ fRY + ϕ̇ fRϕ

)
+6H3 (1−2q)

(
Ẏ fYY + ϕ̇ fY ϕ

)
−6H4 (4q2 +5q+4

)
fY ≥ 0,

(3.1.30)

SEC: κ2 (ρ +3p)− f −2ω(ϕ)ϕ̇ 2 +R fR −6H4 (2s+2 j−6q2 +14q
)
+17 fY −18H4

×
(
s+q2 + j+4+7q

)
fRR +3

{
Ÿ +HẎ +12H6 (s+8q+q2 +6

)
(1−2q)+36H6

×( j−2−q)
}

fRY +3
(
ϕ̈ +Hϕ̇

)
fRϕ −6H2 fYY

{
3Ẏ H + Ÿ (1−2q)

}
−6H2{ϕ̈(1−2q)

+3ϕ̇H
}

fY ϕ +108H6 fRRR ( j−q−2)2 −36H3( j−2−q)
{

6H5( j−q−2)(1−2q)

+Ẏ
}

fRRY −36H3( j−q−2)
{

Ẏ +6H5(1−2q)( j−q−2)
}

fRRY −36H3ϕ̇
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×( j−2−q) fRRϕ +3
{

24H5(1−2q)( j−q−2)Ẏ + Ẏ 2} fRYY +3ϕ̇ 2 fRϕϕ +6
{

ϕ̇Ẏ

+12H5ϕ̇(1−2q)( j−q−2)
}

fRY ϕ −6H2ϕ̇(1−2q)(ϕ̇ fY ϕϕ + Ẏ fYY )−6H2Ẏ (1−2q)

(ϕ̇ fYY ϕ + Ẏ fYYY )≥ 0, (3.1.31)

DEC: κ2(ρ − p)+ f −R fR − (R̈+5HṘ) fRR −
{

Ÿ +5HẎ −2H2R̈(1−2q)−2ṘH3

×(7−8q)
}

fRY −
(
5Hϕ̇ + ϕ̈

)
fRϕ − Ṙ2 fRRR −2Ṙ

(
Ẏ − ṘH2(1−2q)

)
fRRY −2ϕ̇ Ṙ

× fRRϕ +
(
4H2(1−2q)Ṙ− Ẏ

)
Ẏ fRYY − ϕ̇ 2 fRϕϕ +2ϕ̇

{
2H2Ṙ(1−2q)− Ẏ

}
fRY ϕ

−2H2Ẏ
(
2q−1

)(
ϕ̇ fYY ϕ + Ẏ fYYY

)
−2H2ϕ̇(2q−1)

(
ϕ̇ fY ϕϕ + Ẏ fYY ϕ

)
+H2{2Ÿ

×(1−2q)+2Ẏ H(7−8q)
}

fYY −2H2{(2q−1)ϕ̈ +Hϕ̇(8q−7)
}
+4H4( j+ s

−5q2 −5−q) fY ≥ 0. (3.1.32)

3.1.4 Energy Conditions of de-Sitter models and their Viability Ranges

• de-Sitter f (R,Y,ϕ) model

Introducing model (3.1.9) in the energy conditions (3.1.23)-(3.1.26), it follows

NEC: κ2 p+κ2ρ0e−3H0(1+w)t −ω0β1
2H2

0 aβ1(ζ+2)
0 eβ1(ζ+2)H0t +β1(β1γ1 −1)α1α2α3

×γ1H2
0
(
α1 −6α2H2

0
)

aβ1γ1
0 eβ1γ1H0t+12α1H2

0+36α2H4
0 +β1

2α1α2α3γ1H2
0 aβ1γ1

0 (γ1 −1)

×
(
α1 −6α2H2

0
)

eβ1γ1H0t+12α1H2
0+36α2H4

0 ≥ 0, (3.1.33)

WEC: κ2ρ0e−3H0(1+w)t +
1
2

α1α2α3aβ1γ1
0 eβ1γ1H0t+12α1H2

0+36α2H4
0
(
1−12α1H2

0 −36α2

×H4
0
)
+ γ2aβ1γ3

0 eβ1γ3H0t + γ4aβ1γ5
0 eβ1γ5H0t − 1

2
ω0β1

2H2
0 aβ1(ζ+2)

0 eβ1(ζ+2)H0t −3β1α1α2

α3γ1H2
0
(
α1 −6α2H2

0
)

aβ1γ1
0 eβ1γ1H0t+12α1H2

0+36α2H4
0 ≥ 0, (3.1.34)

SEC: κ2ρ0e−3H0(1+w)t +3κ2 p+α1α2α3aβ1γ1
0 eβ1γ1H0t+12α1H2

0+36α2H4
0
(
36α2H4

0 −1

+12α1H2
0
)
− γ2aβ1γ3

0 eβ1γ3H0t − γ4aβ1γ5
0 eβ1γ5H0t −2ω0β1

2H2
0 aβ1(ζ+2)

0 eβ1(ζ+2)H0t +3β1

×(1+β1)α1α2α3γ1H2
0
(
α1 −6α2H2

0
)

eβ1γ1H0t+12α1H2
0+36α2H4

0 aβ1γ1
0 +3β1

2α1α2α3γ1

×(γ1 −1)H2
0
(
α1 −6α2H2

0
)

aβ1γ1
0 eβ1γ1H0t+12α1H2

0+36α2H4
0 ≥ 0,
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DEC: κ2ρ0e−3H0(1+w)t −κ2 p+α1α2α3aβ1γ1
0 eβ1γ1H0t+12α1H2

0+36α2H4
0
(
1−12α1H2

0

−36α2H4
0
)
+ γ2aβ1γ3

0 eβ1γ3H0t + γ4aβ1γ5
0 eβ1γ5H0t +β1(β1 +5)α1α2α3γ1H2

0
(
6α2H2

0 −α1
)

×aβ1γ1
0 eβ1γ1H0t+12α1H2

0+36α2H4
0 +β1

2α1α2α3γ1(γ1 −1)H2
0
(
6α2H2

0 −α1
)

aβ1γ1
0

×eβ1γ1H0t+12α1H2
0+36α2H4

0 ≥ 0. (3.1.35)

Variations of α ′
i s Validity of WEC Validity of NEC

α3 = 0, ∀ β1 & ζ α3 < 0 with ∀ ζ & β1

α1 > 0,α2 > 0 α3 > 0, β1 ≥ 0, ∀ ζ α3 = 0 with (ζ ≥ 0, β1 ≤−1) or (ζ ≤−2.8, β1 ≥ 2)

α3 < 0,β1 ≤−1, ∀ ζ

α1 < 0, α2 > 0 ∀ α3, ζ & β1 ≥ 0 α3 = 0 with (ζ ≥ 0, β1 ≤−2) or (ζ ≤−2.8, β1 ≥ 2)

α3 > 0 with β1 > 0 or β1 < 0 ∀ ζ

α1 > 0, α2 < 0 ∀ α3, β1, ζ & t > 3.6 ∀ α3 with (ζ ≥ 0, β1 ≤−1.5) or (ζ ≤−3, β1 ≥ 2.8)

α1 < 0, α2 < 0 ∀ α3, β1, ζ & t ≥ 3.6 ∀ α3 with (ζ ≥ 0, β1 ≤−1.4) or (ζ ≤−3.6, β1 ≥ 1)

α1 < 0 with β1 ≤−1, ∀ ζ α1 < 0 with β1 > 0 or β1 < 0 & ∀ ζ

α2 > 0, α3 > 0 α1 = 0 with t ≥ 3.6, ∀ ζ & β1 α1 = 0 with (ζ ≤−3, β1 ≥ 2.8) or (ζ ≥ 0, β1 ≤−1)

α1 > 0 with β1 > 0, t ≥ 3.6, ∀ ζ

α1 < 0, β1 > 0, ∀ ζ α1 = 0 with (ζ ≤−3, β1 ≥ 1) or (ζ ≥−1, β1 ≤−1)

α2 > 0, α3 < 0 α1 > 0, β1 ≤−1, ∀ ζ α1 > 0 with β1 < 0 or β1 > 0 & ∀ ζ

α1 = 0, t ≥ 3.6, ∀ β1 & ζ

α2 < 0, α3 > 0 ∀ α1, β1 & ζ with t ≥ 3.6 ∀ α1 with (β1 ≤−1, ζ ≥ 1) or (β1 ≥ 2.8, ζ ≤−3)

α2 < 0, α3 < 0 ∀ α1, β1 & ζ with t ≥ 3.6 ∀ α1 with (β1 ≤−1, ζ ≥ 0.8) or (β1 ≥ 2.5, ζ ≤−3.5)

α1 > 0, α3 > 0 α2 > 0 with β1 > 0, ∀ ζ α2 ≤ 0 with (β1 ≤−1.5, ζ ≥ 0) or (β1 ≥ 2.8, ζ ≤−3)

α2 ≤ 0 with ∀ β1, ζ & t ≥ 3.6

α1 > 0, α3 < 0 α2 ≤ 0 with ∀ β1, ζ & t ≥ 3.6 ∀ α2 with (β1 ≤−2, ζ ≥ 0) or (β1 ≥ 1, ζ ≤−3)

α2 > 0 with β1 ≤−0.5 & ∀ ζ

α1 < 0, α3 > 0 α2 ≤ 0 with ∀ β1, ζ & t ≥ 3.6 α2 > 0 with ∀ β1 & ζ

α2 > 0 with β1 ≤−0.5 & ∀ ζ α2 ≤ 0 with (β1 ≥ 2.8, ζ ≤−3) or (β1 ≤−1.4, ζ ≥ 0)

α1 < 0, α3 < 0 α2 > 0, β1 ≥ 0 & ζ α2 ≤ 0 with (β1 ≥ 2, ζ ≤−3.5) or (β1 ≤−1.4, ζ ≥ 0)

α2 ≤ 0 with ∀ β1, ζ & t ≥ 3.6

Table 3.1: Validity regions of WEC and NEC for dS f (R,Y,ϕ) model.

The inequalities (3.1.33)-(3.1.35) depend on six parameters α1, α2, α3, β1, ζ and t.

First we will fix two parameters and discuss the validity region taking the feasible ranges of

other parameters. We will fix the constants of integration and discuss the NEC and WEC.

Here we will use the present day values of fractional energy density, Hubble parameter

and cosmographic parameters as Ωm0 = 0.315, H0 = 67.3 [146], s = −0.22, j = 2.16,

38



q =−0.81 [31]. The validity ranges of all cases for dS f (R,Y,ϕ) model are given in Table

3.1.

First we will vary α1 and α2 to show the viability of NEC and WEC for different values

of β1, α3 and ζ . Taking both α1 and α2 as positive, the WEC is valid for all values of ζ but

some particular ranges for β1 are: (α3 > 0, β1 ≥ 0), (α3 = 0, ∀ β1) and (α3 < 0, β1 ≤−1).

The validity of NEC depends on α3 ≤ 0 and the validity regions of α3 and ζ are (α3 < 0,

∀ ζ , β1), (α3 = 0, ζ ≥ 0, β1 ≤ −1) and (α3 = 0, ζ ≤ −2.8, β1 ≥ 2). In Fig. 3.1, we have

shown the evolution of NEC and WEC to show the validity regions in this case.

Figure 3.1: Energy conditions for the dS f (R,Y,ϕ) model using α1 > 0 & α2 > 0. The

left plot shows the feasible regions of WEC where we fix ζ =−10 (any value of ζ can be

chosen since WEC is valid for all values of ζ ) and the variations of α3 & β1 are shown. In

right plot viability regions of NEC are shown for α3 = 0.

If α1 < 0 and α2 > 0, for β1 ≥ 0 WEC is satisfied for all ranges of α3 & ζ . The validity

of NEC is stated in cases: (i) α3 > 0 with all values of ζ and β1 except β1 = 0 (ii) α3 = 0

with (ζ ≥ 0, β1 ≤ −2) or (ζ ≤ −2.8, β1 ≥ 2). Taking α1 > 0 and α2 < 0, the validity of

WEC requires t > 3.6 for all values of α3, β1, ζ and the NEC is valid for all values of

α3 with (β1 ≤ −1.5, ζ ≥ 0) or (β1 ≥ 2.8, ζ ≤ −3). If α1 < 0 and α2 < 0, the validity of

WEC requires t ≥ 3.6 and for all values of α3, β1 and ζ . The validity of NEC requires

(β1 ≤−1.4, ζ ≥ 0) or (β1 ≥ 1, ζ ≤−3.6) and all values of α3.

Next we will vary α2 and α3, first we will take α2 > 0 and α3 > 0. For α1 < 0, NEC

is satisfied for all values of ζ & β1 except β1 = 0, for α1 > 0 it violates and for α1 = 0,

it is valid for (ζ ≥ 0, β1 ≤ −1) and (ζ ≤ −3, β1 ≥ 2.8). The WEC is valid for all values

39



of ζ with three cases: (i) α1 > 0 with (β1 > 0 & t ≥ 3.6), (ii) α1 < 0 with β1 ≤ −1, (iii)

α1 = 0 with β1 ≤ −1. Now we are taking α2 > 0 and α3 < 0, first we will discuss the

NEC. For α1 < 0 NEC violates, for α1 > 0 it is valid for all values of ζ & β1 except β1 = 0

and for α1 = 0, its validity depends on (β1 ≥ 1, ζ ≤ −3) and (β1 ≤ −1, ζ ≥ −1). Now

we will discuss the validity of WEC. If α1 < 0, WEC is valid for β1 > 0 & all values of ζ ,

for α1 > 0, it is valid for β1 ≤ −1 & all values of ζ and if α1 = 0, for all values of β1 &

ζ the WEC is valid with t ≥ 3.6. Taking α2 < 0 & α3 > 0, NEC is valid for all α1 with

(β1 ≤−1, ζ ≥ 1) or (β1 ≥ 2.8, ζ ≤−3) while WEC is satisfied for all values of α1, β1 & ζ

with t ≥ 3.6. Next we are taking α2 < 0 and α3 < 0, NEC is valid for (β1 ≤−1, ζ ≥ 0.8)

or (β1 ≥ 2.5, ζ ≤−3.5) for all α1 and WEC is satisfied for all values of α1, β1, and ζ with

t ≥ 3.6.

Now we will vary α1 and α3, first we will take α1 > 0 & α3 > 0. Taking α2 > 0, NEC

violates and WEC is valid for all values of ζ & β1 > 0. Taking α2 ≤ 0, for all values of

β1 WEC is valid for t ≥ 3.6 & for all values of ζ while NEC is satisfied for (β1 ≤ −1.5,

ζ ≥ 0) or (β1 ≥ 2.8, ζ ≤−3). Choosing α1 > 0 and α3 < 0. The NEC is valid for all values

of α2 with (β1 ≤ −2, ζ ≥ 0) and (β1 ≥ 1, ζ ≤ −3) and for all values of ζ , WEC is valid

for α2 > 0 with β1 ≤−0.5 and for α2 ≤ 0 with t ≥ 3.6 & for all values of β1. Next we are

choosing α1 < 0 and α3 > 0. For α2 > 0, NEC is valid for all values of ζ & β1 ≤ −0.5

while for α2 ≤ 0 its validity regions are (β1 ≥ 2.8, ζ ≤ −3) and (β1 ≤ −1.4, ζ ≥ 0). The

WEC is valid in both cases for all values of β1 & ζ while for α2 ≤ 0 it requires t ≥ 3.6.

Now we will take α1 < 0 and α3 < 0. For α2 > 0, NEC violates and for α2 ≤ 0 the validity

regions are (β1 ≥ 2, ζ ≤ −3.5) and (β1 ≤ −1.4, ζ ≥ 0) while WEC is valid for all values

of ζ : (i) α2 > 0 with β1 ≥ 0, (ii) α2 ≤ 0 with t ≥ 3.6 and ∀β1.

• de-Sitter f (R,ϕ) model

Introducing model (3.1.12) in inequalities (3.1.23)-(3.1.26) it follows,

NEC: κ2ρ0e−3H0(1+w)t +κ2 p−ω0β1
2H2

0 aβ1(ζ+2)
0 eβ1(ζ+2)H0t +β1(β1 −1)α2

1 α2γ1H2
0

×aβ1γ1
0 eβ1γ1H0t+12α1H2

0 +β1
2α2

1 α2γ1 (γ1 −1)H2
0 aβ1γ1

0 eβ1γ1H0t+12α1H2
0 ≥ 0, (3.1.36)

WEC: κ2ρ0e−3H0(1+w)t +
1
2

α1α2aβ1γ1
0 eβ1γ1H0t+18α1H2

0 +
1
2

γ4aβ1γ5
0 eβ1γ5H0t −6α2

1 α2H2
0

×aβ1γ1
0 eβ1γ1H0t+12α1H2

0 −3β1α2
1 α2γ1H2

0 aβ1γ1
0 eβ1γ1H0t+12α1H2

0 ≥ 0, (3.1.37)
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SEC: κ2ρ0e−3H0(1+w)t +3κ2 p−α1α2aβ1γ1
0 eβ1γ1H0t+12α1H2

0 − γ2aβ1γ3
0 eβ1γ3H0t − γ4aβ1γ5

0

×eβ1γ5H0t −2ω0β1
2H2

0 aβ1(ζ+2)
0 eβ1(ζ+2)H0t +12α2

1 α2H2
0 aβ1γ1

0 eβ1γ1H0t+12α1H2
0 +3β1α2

1 α2

×(1+β1)γ1H2
0 aβ1γ1

0 eβ1γ1H0t+12α1H2
0 +3β1

2α2
1 α2γ1(γ1 −1)H2

0 aβ1γ1
0 eβ1γ1H0t+12α1H2

0 ≥ 0,

(3.1.38)

DEC: κ2ρ0e−3H0(1+w)t −κ2 p+α1α2aβ1γ1
0 eβ1γ1H0t+12α1H2

0 + γ2aβ1γ3
0 eβ1γ3H0t + γ4aβ1γ5

0

×eβ1γ5H0t −12α2
1 α2H2

0 aβ1γ1
0 eβ1γ1H0t+12α1H2

0 −β1(β1 +5)α2
1 α2γ1H2

0 aβ1γ1
0 eβ1γ1H0t+12α1H2

0

−β1
2α2

1 α2γ1(γ1 −1)H2
0 aβ1γ1

0 eβ1γ1H0t+12α1H2
0 ≥ 0. (3.1.39)

Now we will discuss the energy bounds for f (R,ϕ) dS model, above constraints show

that these bounds involve five parameters, α1, α2, β1, ζ and t. It can be noted that WEC

involve only α1, α2 and t. We have observed that the validity of WEC stated for two choices

of α1: (i) α1 > 0 with α2 ≥ 0 (ii) α1 < 0 with for all α2. Now we will discuss NEC in three

cases: first we take α1 > 0 and α2 > 0, the validity regions for NEC are (β1 < 0, ζ >−2)

and (β1 > 0, ζ ≤−2). Choosing α1 < 0 and α2 > 0, NEC is satisfied for (β1 ≥ 3, ζ ≤−5)

& (β1 ≤ −1, ζ ≥ 0.8). Taking α1 < 0, α2 < 0 NEC is valid for (β1 ≥ 3.5, ζ ≤ −5) and

(β1 ≤−1, ζ ≥ 1).

• de-Sitter f (Y,ϕ) model

Using model (3.1.15) in constraints (3.1.23)-(3.1.26), it follows

NEC: κ2ρ0e−3H0(1+w)t +κ2 p−ω0β1
2H2

0 aβ1(ζ+2)
0 eβ1(ζ+2)H0t −6β1(β1 −1)α2

1 α2H4
0

×γ1aβ1γ1
0 eβ1γ1H0t+36α1H4

0 −6β1
2α2

1 α2γ1 (γ1 −1)H4
0 aβ1γ1

0 eβ1γ1H0t+36α1H4
0 ≥ 0, (3.1.40)

WEC: κ2ρ0e−3H0(1+w)t +
1
2

α1α2aβ1γ1
0 eβ1γ1H0t+36α1H4

0 +
1
2

γ4aβ1γ5
0 eβ1γ5H0t +18α2

1 α2γ1

×H4
0 aβ1γ1

0 eβ1γ1H0t+36α1H4
0 −18α2

1 α2H4
0 aβ1γ1

0 eβ1γ1H0t+36α1H4
0 ≥ 0, (3.1.41)

SEC: κ2ρ0e−3H0(1+w)t +3κ2 p−α1α2aβ1γ1
0 eβ1γ1H0t+36α1H4

0 − γ2aβ1γ3
0 eβ1γ3H0t − γ4aβ1γ5

0

×eβ1γ5H0t −2ω0β1
2H2

0 aβ1(ζ+2)
0 eβ1(ζ+2)H0t −18β1(1+β1)α2

1 α2γ1H4
0 eβ1γ1H0t+36α1H4

0

×aβ1γ1
0 −18β1

2α2
1 α2γ1(γ1 −1)H4

0 aβ1γ1
0 eβ1γ1H0t+36α1H4

0 +36α2
1 α2H4

0 eβ1γ1H0t+36α1H4
0

×aβ1γ1
0 ≥ 0, (3.1.42)
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DEC: κ2ρ0e−3H0(1+w)t −κ2 p+α1α2aβ1γ1
0 eβ1γ1H0t+36α1H4

0 + γ2aβ1γ3
0 eβ1γ3H0t + γ4aβ1γ5

0

×eβ1γ5H0t +6β1(β1 +5)α2
1 α2γ1H4

0 aβ1γ1
0 eβ1γ1H0t+36α1H4

0 +6β1
2α2

1 α2γ1(γ1 −1)H4
0 aβ1γ1

0

×eβ1γ1H0t+36α1H4
0 −36α2

1 α2H4
0 aβ1γ1

0 eβ1γ1H0t+36α1H4
0 ≥ 0. (3.1.43)

Here, the dependence of WEC is only on t, α1 & α2. The validity of WEC holds only

for α2 ≤ 0 and for all values of α1. Varying α1 and α2 we will discuss the ranges for which

NEC holds. If we choose α1 > 0 & α2 > 0 then NEC violates although in all remaining

cases, (α1 < 0, α2 > 0), (α1 > 0, α2 < 0) and (α1 < 0, α2 < 0) NEC is valid for all values

of ζ and β1 except β1 = 0.

3.1.5 Energy Conditions of Power Law models and their validity ranges

• Power Law f (Y,ϕ) model

Introducing (3.1.18) in the energy constraints (3.1.23)-(3.1.26), it can be seen that the in-

equalities involve six parameters t, α1, α2, β1, ζ and n1. We are discussing here only NEC

and WEC by fixing n1 and αi’s where i = 1,2 for different values of β1 and ζ . We start

with α1 > 0 and α2 > 0, th validity of WEC requires n1 > 1, t ≥ 1.1, β1 ≤ −0.1 & ζ ≥ 0

while NEC is valid for n1 > 1, β1 ≥ 0 and all values of ζ . Now taking α1 < 0 and α2 > 0,

the validity of WEC requires 1 < n1 ≤ 1.8 with ζ ≥ 0, β1 ≤−3 and n1 ≥ 2.3 with β1 ≥ 2

& ζ ≤ −1. Similarly, the validity of NEC requires t ≥ 1.01, n1 > 1, β1 ≤ −0.12 and all

values of ζ . Now taking α1 > 0 and α2 < 0, NEC requires t ≥ 1.07, n1 > 1, β1 ≥ 0 and all

values of ζ for the validity while WEC requires n1 ≥ 1.7 with β1 ≥ 0.1 & ζ ≤ −10. For

α1 < 0 and α2 < 0, WEC has two validity regions 1 < n1 ≤ 1.9 with (t > 1, β1 > 0 and

ζ ≤ −6.5) and n1 ≥ 2 with (β1 ≤ 0 & ζ ≥ 4) while NEC also have two validity regions

(i) 1 < n1 ≤ 1.5 with (t ≥ 1.9, β1 ≥ 0 & ζ ≤ −2.6), (ii) n1 ≥ 2 with (t ≥ 1.05, β1 < 0 &

ζ ≥ 0) and (t ≥ 1.08, β1 ≥ 0 & ζ ≤−4).

• Power Law f (R,ϕ) model

Inserting (3.1.21) in the energy conditions (3.1.23)-(3.1.26) we can calculate the energy

bounds for f (R,ϕ) model. Now we will discuss the viability of NEC and WEC taking

different values of β1, ζ , t and some specific values of n1, αi’s where i = 1,2. Taking
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α1 > 0 and α2 > 0, WEC is viable for n1 = 3 with β1 ̸= 0 and for all values of ζ while the

validity of NEC requires n1 = 3 with t ≥ 1.03, β1 ≤−2 and ζ ≥ 0. For α1 < 0 and α2 > 0,

the validity of NEC requires n1 > 1 with t ≥ 1.05, β1 > 1 and ζ ≤ −5 while in case of

WEC, we have two validity regions for n1 = 3: (ζ ≥ 0, β1 ≥ 2.6, t ≥ 0.65) and (ζ ≤ −2,

β1 ≥ 22.5). Now taking α1 > 0 and α2 < 0, the validity of NEC is satisfied for n1 = 3, all

values of ζ and β1 except β1 = 0 while in case of WEC we have n1 = 3 with (β1 ≥ 2.7 ,

ζ ≥ 0 & t ≥ 0.65) and (β1 ≤−2, ζ ≤−5.5 & t ≥ 0.65). Taking α1 < 0 and α2 < 0, NEC

and WEC both are valid for n1 = 3, β1 ̸= 0 and for all values of ζ .

3.1.6 Energy Conditions for Some known Models

Now we will show that using energy bounds how limits can be applied on f (R,Y,ϕ) gravity.

For this purpose, we are taking some familiar models given below.

• f (R,ϕ) Models

Here, we are taking f (R,Y,ϕ) gravity models independent of Y represented as f (R,ϕ)

gravity. We will find the energy conditions for these models

f (R,ϕ) =
R−2Λ(1− eb1ϕκ3R)

κ2 ,

f (R,ϕ) = R

(
ω0β1

2n1
2a2/n1

0 (ζ n1β1 +2n1β1 +6n1 −2)
ζ n1β1 +2n1β1 −2

)
ϕ ζ+2− 2

n1β1 ,

f (R,ϕ) = R(1+ξ κ2ϕ 2),

f (R,ϕ) = ϕ(R+αR2).


(3.1.44)

Now we will explore the energy conditions for these models in the background of power

law solutions with n1 > 1 which favors the accelerated expansion of the universe.

Model-I

Myrzakulov et al. [113] have studied the inflation in f (R,ϕ) theory by analysing the tensor-

to-scalar ratio and spectral index and found the results compatible with the recent observa-

tional data. Here, we are using the following f (R,ϕ) model [113]

f (R,ϕ) =
R−2Λ(1− eb1ϕκ3R)

κ2 , ω(ϕ) = 1. (3.1.45)
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The term κ3 is introduced for dimensional reasons and b1 is a dimensionless number of

order unity.

Using model (3.1.45) into the energy bounds (3.1.23)-(3.1.26) along with Eqs.(2.11.3),

(3.1.7) and (2.11.4), we find the following constraints

NEC: κ2(ρ0t−3n1(1+w)+ p)−β1
2H2a2β1

0 t2n1β1 +2Λb1κβ1H2aβ1
0 tn1β1e−6b1ϕκ3(1−q)H2

×(β1 −2−q)−12Λb1
2κ4H4t2n1β1a2β1

0
[
(q2 + s+6+8q)+β1(β1 −1−q)(1−q)

+2β1( j−2−q)+2β1
2(1−q)− ( j−2−q)−β1(1−q)

]
e−6b1ϕκ3H2(1−q)+72Λb1

3

×κ7H6a3β1
0 t3n1β1

[
β1

2(1−q)2 +2β1( j−2−q)(1−q)
]
e−6b1ϕκ3(1−q)H2

≥ 0, (3.1.46)

WEC: κ2ρ0t−3n1(1+w)+
1

κ2

[
3(1−q)H2 −Λ(1− e−6b1ϕκ3(1−q)H2

)
]
− 1

2
β1

2H2a2β1
0

×t2n1β1 −Λb1κH2aβ1
0 tn1β1 (β1 −6+6q)e−6b1ϕκ3(1−q)H2

+36Λb1
2κ4H4a2β1

0 t2n1β1

×{β1(1−q)+( j−q−2)}e−6b1ϕκ3(1−q)H2
≥ 0, (3.1.47)

SEC: κ2(ρ0t−3n1(1+w)+3p)+
2Λ
κ2

(
1− e−6b1ϕκ3(1−q)H2

)
−2β1

2H2a2β1
0 t2n1β1 +6Λb1

×κH2a2β1
0 t2n1β1 [β1(β1 −1−q)+β1 −2(1−q)]e−6b1ϕκ3(1−q)H2

−36Λb1
2κ4H4a2β1

0

×t2n1β1
[
(q2 + s+6+8q)+β1(β1 −q−1)(1−q)+4β1( j−2−q)+2β1

2(1−q)

+( j−2−q)+β1(1−q)
]
e−6b1ϕκ3H2(1−q)+216Λb1

3κ7H6a3β1
0 t3n1β1

[
β1

2(1−q)2

+2β1( j−2−q)(1−q)+( j−2−q)2]e−6b1ϕκ3H2(1−q) ≥ 0, (3.1.48)

DEC: κ2(ρ0t−3n1(1+w)− p)− 2Λ
κ2

(
1− e−6b1ϕκ3(1−q)H2

)
−2Λb1κH2aβ1

0 tn1β1
[
β1(β1

−q−1)+5β1 −6(1−q)
]
e−6b1ϕκ3H2(1−q)+12Λb1

2κ4H4t2n1β1a2β1
0
[
(s+q2 +6+8q)

+β1(1−q)(β1 −1−q)+4β1( j−2−q)+2β1
2(1−q)+5( j−2−q)+5β1(1−q)

]
×e−6b1ϕκ3H2(1−q)−72Λb1

3κ7H6a3β1
0 t3n1β1

[
β1

2(1−q)2 +2β1( j−q−2)(1−q)

+( j−2−q)2]e−6b1ϕκ3(1−q)H2
≥ 0. (3.1.49)

Now we have only four parameters t, b1, β1 and n1, we will find the ranges of these param-

eters according to NEC and WEC. First we will take b1 ≥ 0, the validity of WEC requires

b1 = 0, n1 > 1, t ≥ 1.1 and β1 ≤ 0 whereas NEC requires n1 > 1 with β1 ≤ −1.5. Now

taking b1 < 0, NEC and WEC both are valid for n1 > 1 and all values of β1. In Fig. 3.2,

the plot of NEC is shown for this model taking n1 > 1 verses the parameters ζ , β1 and t.
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Figure 3.2: Plot of NEC for Model-I versus the parameters ζ , β1 and t with n1 = 1.1.

Model-II

In f (R,ϕ) gravity, we have calculated this model using the form R f (ϕ). Using Klein-

Gordon equation (2.10.3) with power law assumptions (3.1.7) we have derived f (ϕ) form.

Using f (ϕ) we have the following model

f (R,ϕ) = R

(
ω0β1

2n1
2a2/n1

0 (ζ n1β1 +2n1β1 +6n1 −2)
ζ n1β1 +2n1β1 −2

)
ϕ ζ+2− 2

n1β1 , (3.1.50)

where ω0 and a0 are constants. Inserting this model in energy bounds (3.1.23)-(3.1.26)

along with Eqs.(2.11.3), (3.1.7) and (2.11.4) we have energy conditions,

NEC: κ2ρ0t−3n1(1+w)+κ2 p−ω0β1
2H2a(ζ+2)β1

0 t(ζ+2)n1β1 +ω0β1
2H2a(ζ+2)β1

0 {n1β1

×(ζ +2)+2(3n1 −1)}{(ζ +2)n1β1 −2(n1 +1)−n1q} t(ζ n1β1+2n1β1−2) ≥ 0,(3.1.51)

WEC: κ2ρ0t−3n1(1+w)− 1
2

ω0β1
2H2a(ζ+2)β1

0 t(ζ+2)n1β1 −3ω0n1β1
2H2a(ζ+2)β1

0 {n1β1

×(ζ +2)+2(3n1 −1)} tζ n1β1+2n1β1−2 ≥ 0, (3.1.52)

SEC: κ2(ρ0t−3n1(1+w)+3p)−2ω0β1
2H2a(ζ+2)β1

0 t(ζ+2)n1β1 +3ω0β1
2H2a(ζ+2)β1

0

{(ζ +2)n1β1 +2(3n1 −1)} t(ζ n1β1+2n1β1−2) {(ζβ1 −q)n1 +2(n1β1 −1)} ≥ 0,(3.1.53)

DEC: κ2(ρ0t−3n1(1+w)− p)+ω0β1
2H2a(ζ+2)β1

0 {(ζ +2)n1β1 +2(3n1 −1)}{n1(q

−ζ β1)+2(1−2n1 −n1β1)} tζ n1β1+2n1β1−2)β1 ≥ 0. (3.1.54)

We have examined the WEC and NEC versus the parameters t, β1, n1 and ζ . We have

found that for t ≥ 1.3, WEC is valid for all values of ζ and β1 whereas the validity of NEC

is divided in two parts: ζ ≥ 0 with (t ≥ 1.5 & β1 ≤ 0) and ζ <−2 with (t ≥ 1.2 & β1 ≥ 0).
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Model-III

Now we choose the model [149] and discuss the energy conditions

f (R,ϕ) = R(1+ξ κ2ϕ 2), (3.1.55)

where ξ denotes the coupling constant. This model is already used to study the cosmo-

logical perturbations for non-minimally coupled scalar field DE in both Palatini and metric

formalisms. The interaction has been analyzed depending on the coupling constant. In-

serting this model in energy bounds (3.1.23)-(3.1.26) along with Eqs.(2.11.3), (3.1.7) and

(2.11.4) we get,

NEC: κ2(ρ0t−3n1(1+w)+ p)−ω0β1
2H2a(ζ+2)β1

0 t(ζ+2)n1β1 +2β1ξ κ2H2a2β1
0 t2n1β1(β1

−q−1)+2β1
2ξ κ2H2a2β1

0 t2n1β1 −2β1ξ κ2H2a2β1
0 t2n1β1 ≥ 0, (3.1.56)

WEC: κ2ρ0t−3n1(1+w)− 1
2

ω0β1
2H2a(ζ+2)β1

0 t(ζ+2)n1β1 −6β1H2ξ κ2a2β1
0 t2n1β1 ≥ 0,

SEC: κ2(ρ0t−3n1(1+w)+3p)−2ω0β1
2H2a(ζ+2)β1

0 t(ζ+2)n1β1 +6ξ κ2β1H2a2β1
0 t2n1β1

+6ξ κ2β1H2(β1 −1−q)a2β1
0 t2n1β1 +6ξ κ2β1

2H2a2β1
0 t2n1β1 ≥ 0, (3.1.57)

DEC: κ2(ρ0t−3n1(1+w)− p)−10β1H2ξ κ2a2β1
0 t2n1β1 −2β1H2ξ κ2(β1 −1−q)a2β1

0

×t2n1β1 −2β1
2H2ξ κ2a2β1

0 t2n1β1 ≥ 0. (3.1.58)

We will discuss the validity of WEC, NEC and find the feasible ranges of the parameters

t, β1, ξ , n1 and ζ . Here, we develop three cases depending on the value of ζ . First we

will take ζ > 0 and n1 > 1, for all values of ξ , WEC is valid for t ≥ 2.8 with β1 ≤ −3.4

and NEC is valid for t ≥ 3 with β1 ≤ −3.7. Now we will take ζ < 0 with n1 > 1, NEC

is viable for t ≥ 3.1 with β1 ≤ −3.7 and ∀ t with ξ > 0, β1 > 0. For β1 ≤ −3.4, validity

of WEC requires t ≥ 2.8 & ∀ ξ and for β1 ≥ 0 WEC requires all values of t with ξ ≤ 0.

Now taking ζ = 0 and n1 > 1, the validity of WEC requires ξ ≤−8.35 with β1 ≥ 0 and ∀

ξ with t ≥ 2.8 & β1 ≤ −3.4 while NEC is valid for β1 ≥ 0 with ξ ≥ 0.28 and β1 ≤ −3.7

with t ≥ 3 & ∀ ξ .
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Model-IV

Bahamonde, S. et al has used the expression f (R) [150]

f (R,ϕ) = ϕ(R+αR2), (3.1.59)

where α is a constant with suitable dimensions. This gravitational action is very familiar

in the text as it is able to reproduce inflation. Inserting this model in the energy conditions

(3.1.23)-(3.1.26) along with Eqs.(2.11.3), (3.1.7) and (2.11.4) we have energy conditions,

NEC: κ2(ρ0t−3n1(1+w)+ p)−ω0β1
2H2a(ζ+2)β1

0 t(ζ+2)n1β1 −24αβ1H4aβ1
0 tn1β1( j−q

−2)−12αH4(s+q2 +8q+6)aβ1
0 t(n1β1 +β1(β1 −1−q)H2aβ1

0 tn1β1 −12αβ1H4(β1

−q−1)(1−q)aβ1
0 tn1β1 +12αH4( j−q−2)aβ1

0 tn1β1 −β1H2aβ1
0 tn1β1 +12αβ1H4aβ1

0

×(1−q)tn1β1 ≥ 0, (3.1.60)

WEC: κ2ρ0t−3n1(1+w)− 1
2

ω0β1Ha(ζ+2)β1
0 t(ζ+2)n1β1 −18αH4(1−q)2aβ1

0 tn1β1 +36α

×H4( j−q−2)aβ1
0 tn1β1 −3β1H2aβ1

0 tn1β1 +36αβ1H4(1−q)aβ1
0 tn1β1 ≥ 0, (3.1.61)

SEC: κ2(ρ0t−3n1(1+w)+3p)−2ω0β1
2H2a(ζ+2)β1

0 t(ζ+2)n1β1 +36αH4(1−q)2aβ1
0 tn1β1

−36αH4( j−q−2)aβ1
0 tn1β1 +3β1H2aβ1

0 tn1β1 −36αH4(s+q2 +8q+6)aβ1
0 tn1β1 −36α

×β1H4aβ1
0 tn1β1 +3β1H2(β1 −1−q)aβ1

0 tn1β1 −72αβ1H4( j−q−2)aβ1
0 tn1β1 −36αβ1

×H4(β1 −1−q)(1−q)aβ1
0 tn1β1 ≥ 0, (3.1.62)

DEC: κ2(ρ0t−3n1(1+w)− p)+36αH4(1−q)2aβ1
0 tn1β1 +60αH4( j−q−2)aβ1

0 tn1β1

−5β1H2aβ1
0 tn1β1 +60αβ1H4(1−q)aβ1

0 tn1β1 +24αβ1H4( j−q−2)aβ1
0 tn1β1 +12αH4

×aβ1
0 (s+q2 +8q+6)tn1β1 −β1H2(β1 −1−q)aβ1

0 tn1β1 +12αβ1H4(β1 −1−q)

×(1−q)aβ1
0 tn1β1 ≥ 0. (3.1.63)

Here, we are considering WEC, NEC and will examine the viability for different values of

t, β1, α , n1 and ζ . Now we will vary the coupling parameter α and find the ranges of other

parameters for which the NEC and WEC are valid. For α > 0, WEC is valid for n1 > 1

with (β1 ≥ 0, ζ ≤−1 & t ≥ 1) and (β1 ≤−9, t ≥ 6 & all values of ζ ). Taking α < 0 then

validity of WEC requires n1 > 1, all values of ζ and β1 ≤ 0 while for validity of NEC we

have two regions with n1 > 1; (β1 ≤−0.7, ζ ≥ 0 & t ≥ 1) and (β1 ≥ 0.85, ζ ≤−1 & t ≥ 1).
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Now we are taking α = 0 with n1 > 1, the validity of WEC requires β1 ≤ 0 and all values

of ζ whereas for NEC we have two regions: β1 ≥ 0 with (ζ ≤−1.05, t > 1.01) and β1 ≤ 0

with (ζ ≥ 0, t ≥ 1).

3.2 Thermodynamics in f (R,Rαβ1
Rαβ1,ϕ) gravity

For a perfect fluid, the EMT is defined in (2.5.3), we are writing in this way

T (m)
µν = (ρm + pm)uµuν + pmgµν . (3.2.1)

Here, we are assuming that matter of the universe has zero pressure pm = 0 (dust). From

Eq. (2.10.2) we can write an effective EFE as

Rµν −
1
2

Rgµν = 8πGe f f T (m)
µν +T (d)

µν , (3.2.2)

where Ge f f denotes the effective gravitational matter and T (d)
µν represents an effective EMT

related with all the new terms of the theory defined as

Ge f f =
G
fR

, (3.2.3)

T (d)
µν =

1
fR

[
− 1

2
Rgµν fR +

1
2
( f +ω(ϕ)ϕ;αϕ ;α)gµν + fR;µν −gµν2 fR −2 fY Rα

µ Rαν

+ 2[ fY Rα
(µ ];ν)α −2[ fY Rµν ]− [ fY Rαβ ]

;αβ gµν −ω(ϕ)ϕ;µϕ;ν

]
. (3.2.4)

The metric describing the FRW universe is

ds2 = hαβ dxαdxβ + r̃2dΩ2, (3.2.5)

with the 2-dimensional metric hαβ = diag
(
−1, a(t)2

1−kr2

)
, (x0,x1) = (t,r), and k = ±1,0 is

the spacial curvature. The second term is r̃ = a(t)r and dΩ2 = dθ 2 + sinθ 2dφ2 is the 2-

dimensional sphere with unit radius. The gravitational field equations for the metric (3.2.5)

are given by

3
(

H2 +
k
a2

)
= 8πGe f f ρm +

1
fR

[
1
2
(R fR − f )− 1

2
ω(ϕ)ϕ̇ 2 −3H∂t fR −6H

(
2Ḣ

+ 3H2 +
k
a2

)
∂t fY − fY

(
...
H +4HḦ +6ḢH2 −2H4 − 4kH2

a2

)]
,

(3.2.6)
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−
(

2Ḣ +3H2 +
k
a2

)
=

1
fR

[
1
2
( f −R fR)−

1
2

ω(ϕ)ϕ̇ 2 +∂tt fR +2H∂t fR +
(
4Ḣ +6H2

+
2k
a2

)
∂tt fY +4H

(
Ḣ +3H2 +

2k
a2

)
∂t fY + fY

(
4

...
H +20HḦ

+ 10ḢH2 +16Ḣ2 −18H4 − 18kḢ
a2 − 20kH2

a2 − 18k2

a4

)]
. (3.2.7)

Here, dot represents the total derivative and ∂t represents the partial derivative with respect

to time t. The term H = ȧ/a represents the Hubble parameter, these equations can be

rewritten as

3
(

H2 +
k
a2

)
= 8πGe f f (ρm +ρd) , (3.2.8)

−2
(

Ḣ − k
a2

)
= 8πGe f f (ρm +ρd + pd) , (3.2.9)

where ρd and pd are the energy density and pressure of dark components with G = fRGe f f ,

are given by

ρd =
1

8πG

[
1
2
(R fR − f )− 1

2
ω(ϕ)ϕ̇ 2 −3H∂t fR −6H

(
2Ḣ +3H2 +

k
a2

)
∂t fY − fY

(...
H

+ 4HḦ +6ḢH2 −2H4 − 4kH2

a2

)]
, (3.2.10)

pd =
1

8πG

[
1
2
( f −R fR)−

1
2

ω(ϕ)ϕ̇ 2 +∂tt fR +2H∂t fR +

(
4Ḣ +6H2 +

2k
a2

)
∂tt fY

+ 4H
(

Ḣ +3H2 +
2k
a2

)
∂t fY + fY

(
4

...
H +20HḦ +10ḢH2 +16Ḣ2 −18H4 − 8k2

a4

−18kḢ
a2 − 20kH2

a2

)]
. (3.2.11)

The EoS parameter ωd for a dark fluid can be obtained from (ωd = pd
ρd
)

ωd = −1+
1

ρd

[
−ω(ϕ)ϕ̇ 2 +∂ttΨ−H∂tΨ+

(
4Ḣ +6H2 +

2k
a2

)
∂tt fY −2H

(
4Ḣ

+ 3H2 +
k
a2

)
∂t fY + fY

(
3

...
H +16HḦ +4ḢH2 +16Ḣ2 −16H4 − 18kḢ

a2 − 8k2

a4

− 16kH2

a2

)]
. (3.2.12)

The semi-conservation equation for an ordinary matter is

ρ̇ +3Hρ = q , (3.2.13)
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and the conservation equation for dark component is

ρ̇d +3H(ρd + pd) = qd, (3.2.14)

ρ̇total +3H(ρtotal + ptotal) = qtotal, (3.2.15)

where ρtotal = ρm+ρd, ptotal = pm+ pd, qtotal = q+qd represents the total energy exchange

term and qd denotes the energy exchange term for dark component. Substituting Eq’s.

(3.2.8) and (3.2.9) in the above equation, we have

qtotal =
3

8πG

(
H2 +

k
a2

)
∂t fR. (3.2.16)

Taking f (R,Y,ϕ) = f (R), we can get the energy exchange term for the gravity and in GR

taking f (R,Y,ϕ) = R we will get qtotal = 0 .

3.2.1 Generalized Thermodynamics laws with non-equilibrium description

Here, for a more general f (R,Y,ϕ) gravity we will discuss the FLT and SLT at the apparent

horizon of FRW universe.

First Law of Thermodynamics

Now, we will analyze the viability of FLT for f (R,Y,ϕ) gravity at apparent horizon in FRW

universe. The dynamical apparent horizon is calculated by the relation hαβ ∂α r̃∂β r̃ = 0

from which we have the radius of apparent horizon as r̃A =
(
H2 + k/a2)− 1

2 . Taking time

derivative of r̃A and using Eq. (3.2.9), we have

fRdr̃A = 4πGHr̃3
A(ρ̂total + p̂total)dt , (3.2.17)

where ρ̂total = ρ̂m + ρ̂d is total energy density and p̂total = p̂d is total pressure. Here, dr̃A

denotes the infinitesimal change in the radius of the apparent horizon during an infinitesi-

mal time interval dt. Through surface gravity Ksg, the temperature of apparent horizon is

defined as Th = |Ksg|/(2π) and the Ksg [55] is given by

Ksg =− 1
r̃A

(
1−

˙̃rA

2Hr̃A

)
. (3.2.18)

50



The horizon entropy in GR defined by Bekenstein and Hawking is Sh = A/4G, where A

denotes the area of apparent horizon given by A = 4π r̃2
A [48, 49, 151]. In the literature

of modified theories of gravity, the horizon entropy with a Noether charge was introduced

by Wald [152], that can be obtained by varying the Lagrangian density of the modified

theory with respect to Riemann tensor. Wald entropy is defined as Ŝh = A/4Ge f f [153],

where Ge f f represents the effective gravitational coupling. In f (R,Y,ϕ) gravity, the Wald’s

entropy is defined as

Ŝh =
fRA
4G

. (3.2.19)

By differentiating Eq. (3.2.19) and using (3.2.17), we have

1
2π r̃A

dŜh = 4π r̃3
A (ρ̂total + p̂total)Hdt +

r̃A

2G
d fR. (3.2.20)

Multiplying the above equation by 1− ˙̃rA/(2Hr̃A) on both sides, we have

ThdŜh =−4π r̃3
A (ρ̂total + p̂total)Hdt +2π r̃2

A (ρ̂total + p̂total)dr̃A +
π r̃2

ATh

G
d fR. (3.2.21)

Now, we will define the energy of the universe inside the apparent horizon. The defined

Misner-Sharp energy is E = r̃A/(2G) [154] while for f (R,Y,ϕ) gravity it can be written as

[155]

Ê =
r̃A

2Ge f f
. (3.2.22)

Further, using the relation V = (4/3)π r̃3
A, above equation can also be rewritten as

Ê =
3V

8πGe f f

(
H2 +

k
a2

)
=V ρ̂total , (3.2.23)

which represents the total energy inside the sphere of radius r̃A. In f (R,Y,ϕ) gravity,

choosing positive Ge f f we have Ge f f = G/ fR > 0. It can be concluded that Ê > 0. From

Eqs. (3.2.8) and (3.2.23) we will have

dÊ = 4π r̃2
Aρ̂totaldr̃A −4π r̃3

A (ρ̂total + p̂total)Hdt +
r̃A

2G
d fR . (3.2.24)

Using Eq. (3.2.24) in (3.2.21), it follows that

ThdŜh = dÊ −ŴdV − (1−2π r̃ATh) r̃A

2G
d fR , (3.2.25)

51



where the work density Ŵ = (1/2)(ρ̂total − p̂total) [156] is used. Rewriting the above equa-

tion we have

ThdŜh +ThdiŜh = dÊ −ŴdV , (3.2.26)

where

diŜh =
(1−2π r̃ATh) r̃A

2GTh
d fR =

(Ê − ŜhTh)

Th

d fR

fR
. (3.2.27)

Comparing the above expression of f (R,Y,ϕ) gravity with GR, Gauss-Bonnet gravity and

Lovelock gravity it can be seen that in FLT we have an additional term diŜh. That extra

term is known as the entropy production term which is produced due to the non-equilibrium

behaviour of f (R,Y,ϕ) gravity. In this expression taking f (R,Y,ϕ) = f (R) we can get the

non-equilibrium FLT for f (R) gravity [60]. Moreover, taking f (R,Y,ϕ) = R, we can get

the standard FLT in GR.

Generalized Second Law of Thermodynamics

In modified gravitational theories, the GSLT has been widely discussed [60]-[65],[155,

157, 158]. For the validity of GSLT in f (R,Y,ϕ) gravity, the following inequality [155]

must be satisfied
˙̂Sh +di

˙̂Sh +
˙̂Sν ≥ 0 , (3.2.28)

where Ŝh is the horizon entropy, di
˙̂Sh = ∂t(diŜh) is entropy due to all the matter inside the

horizon and Ŝν is the entropy due to energy sources inside the horizon. The Gibb’s equation

which includes the entropy of matter and energy fluid is given by [159]

TνdŜν = d(ρ̂totalV )+ p̂totaldV , (3.2.29)

where Tν is the temperature inside the horizon. Assuming the relation between the temper-

ature of the apparent horizon and the temperature inside the horizon given by

Tν = bTh , (3.2.30)

where b is a constant having range 0 < b < 1 and it guarantees the positivity of the temper-

ature Tν and also assure that temperature is smaller than the horizon temperature. Substi-

tuting Eqs. (3.2.26) and (3.2.29) in Eq. (3.2.28), we obtain

Ṡtot =
˙̂Sh +di

˙̂Sh +
˙̂Sν =

2πΣ
r̃AbR

≥ 0 , (3.2.31)
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where

Σ = (1−b) ˙̂ρtotalV +(1− b
2
)(ρ̂total + p̂total)V̇ ,

which is the general condition in modified gravitational theories [155] to satisfy the GSLT.

Utilizing Eqs. (3.2.8) and (3.2.9), the condition (3.2.31) is reduced to

2πΞ

Gb
(

H2 + k
a2

)(
Ḣ +2H2 + k

a2

) ≥ 0, (3.2.32)

where

Ξ = (b−1)∂t fR

(
H2 +

k
a2

)
+2H fR(b−1)

(
Ḣ − k

a2

)
+(b−2) fRH

(
Ḣ − k

a2

)2

×
(

H2 +
k
a2

)−1

. (3.2.33)

In flat FRW universe, the GSLT is valid for ∂t fR ≥ 0, fR ≥ 0, Ḣ ≥ 0 and H ≥ 0. To protect

the GSLT, the condition (3.2.32) is equivalent to Ξ ≥ 0.

3.2.2 Validity of GSLT

To check the validity of GSLT, Ṡtot ≥ 0 for different cosmological solutions we will use

some interesting models in f (R,Y,ϕ) gravity and some specific f (R,ϕ) models.

3.2.3 Model constructed from de-Sitter Universe

• de-Sitter model f (R,Y,ϕ)

The f (R,Y,ϕ) model is defined in (3.1.9). To examine the viability of GSLT we will use

this model. Introducing this model in (3.2.31), the GSLT will be valid if the following

inequality holds

Ṡtot =
2π
Gb

[
−12kH0(b−1)α3

1 α2α3aβ1γ1
0 eα1R+α2Y (a2

0H2
0 + ke−2H0t)e−2H0teβ1γ1H0t

−24
a2

0
kH0(b−1)

(
a2

0H2
0 + ke−2H0t)(3a0H2

0 e−3H0t +2ke−4H0t)α2
1 α2

2 α3aβ1γ1
0 eα1R+α2Y

×eβ1γ1H0t +β1H0(b−1)α2
1 α2α3γ1aβ1+2

0 eβ1H0t (a2
0H2

0 + ke−2H0t)eα1R+α2Y aβ1(γ1−1)
0

×eβ1(γ1−1)H0t −2kH0a2
0(b−1)α2

1 α2α3e−2H0taβ1γ1
0 eα1R+α2Y eβ1γ1H0t +2k2H0a2

0α2
1 α2

×α3

(
b
2
−1
)(

a2
0H2

0 + ke−2H0t)−1
e−4H0teα1R+α2Y aβ1γ1

0 eβ1γ1H0t
](

a2
0H2

0 + ke−2H0t)−1

×
(
2a2

0H2
0 + ke−2H0t)−1 ≥ 0 . (3.2.34)
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For dS f (R,Y,ϕ) model, the validity of GSLT depends on five parameters t, α1, α2, α3

and β1. In this perspective, fixing two parameters we can observe the feasible ranges of

other parameters. In our case, we are fixing α1, α2 and will check the validity of Ṡtot . We

are setting here the present day values of cosmographic parameters and Hubble parameter

as j = 2.16, q = −0.81, s = −0.22, and H0 = 67.3 [5]. The feasible ranges for all dS

f (R,Y,ϕ) models are presented in Table 3.2.

First we start with the variations of α1 and α2 to show the validity of Ṡtot for different

values of t, α3 and β1. Taking α1 > 0 and α2 > 0 the validity of Ṡtot ≥ 0 holds for every

time, however α3 and β1 must be in the ranges (α3 ≥ 0, β1 ≤−0.78) and (α3 ≤ 0, β1 ≥ 0).

Figure 3.3: Validity region of the GSLT for dS f (R,Y,ϕ) model with α1 = 1 and α2 = 3.

If α1 < 0 and α2 > 0, the GSLT is valid for all times with (α3 ≥ 0, β1 ≤ −0.78) or

(α3 ≤ 0, β1 ≥ 0). For (α1 > 0, α2 < 0), Ṡtot ≥ 0 holds for all values of α3, β1 and t. For

(α1 > 0, α2 < 0) and (α1 < 0, α2 < 0), the GSLT is valid for all values of t, α3 and β1.

Fig. 3.3 is shown as an example for the evolution of GSLT verses the parameters t, α3 and

β1 by fixing α1 > 0 and α2 > 0.

• de-Sitter model independent of Y

Now taking f (R,ϕ) model that is independent of Y given by (3.1.12). Introducing this

model in (3.2.31), the GSLT will be valid if the following inequality holds
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Ṡtot =
2π
Gb

[
−12kH0(b−1)α3

1 α2aβ1γ1
0 eα1Re−2H0teβ1γ1H0t +β1H0(b−1)α2

1 α2γ1a2
0aβ1γ1

0

×
(
a2

0H2
0 + ke−2H0t)eα1Reβ1γ1H0t −2kH0(b−1)α2

1 α2a2
0aβ1γ1

0 eα1Reβ1γ1H0te−2H0t +2k2H0

×a2
0e−4H0t

(
b
2
−1
)(

H2
0 a2

0 + ke−2H0t)−1 α2
1 α2eα1Reβ1γ1H0taβ1γ1

0

](
a2

0H2
0 + ke−2H0t)−1

×
(
2a2

0H2
0 + ke−2H0t)−1 ≥ 0 . (3.2.35)

In dS f (R,ϕ) model, viability of GSLT involves four parameters t, α1, α2 and β1. We will

fix β1 and check the variations of α1, α2 for the validity of GSLT. The GSLT is valid for all

values of t and β1 whereas we have two cases for other parameters (i) α1 ≤−0.1 with all

values of α2 (ii) α1 > 0 with α2 ≥ 0.

3.2.4 Model constructed from power Law method

• Power Law model independent of Y

The power law f (R,ϕ) model is defined in (3.1.21). Now our concentration is on this model

to check the validity of GSLT. By substituting this f (R,ϕ) model in (3.2.31) we get

Ṡtot =
2π
Gb

[
H0(b−1)α1α2γ2

{
( j−q−2)H2

0 +
k

a2
0t2n1

}{
(1−q)H2

0 +
k

a2
0t2n1

}γ2−2

×(γ2 −1)aβ1γ1
0 tn1β1γ1 +β1H0α1α2γ1γ2(b−1)aβ1γ1

0 tn1β1γ1

{
(1−q)H2

0 +
k

a2
0t2n1

}γ2−1

−2H0(b−1)α1α2γ2aβ1γ1
0 tn1β1γ1

{
(1−q)H2

0 +
k

a2
0t2n1

}γ2−1
1+

qH2
0

H2
0 +

k
a2

0t2n1


+2H0α1α2γ2aβ1γ1

0 tn1β1γ1

(
(1−q)H2

0 +
k

a2
0t2n1

)γ2−1(b
2
−1
)1+

qH2
0

H2
0 +

k
a2

0t2n1

2


×
(
(1−q)H2

0 +
k

a2
0t2n1

)−1

≥ 0. (3.2.36)

The above constraint has five parameters t, α1, α2, n1 and β1. Now, we will fix α1, α2 and

check the validity of Ṡtot ≥ 0 for the possible ranges of t, n1 and β1. All possible cases of

this model are written in Table 3.2.
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We are starting with α1 > 0 and find the viable ranges of t, α2 and β1. Considering this

we will discuss the three cases depending on α2,

(i) α2 < 0, n1 ≥ 3 with (t ≥ 1, β1 ≤−35.8) or (t ≥ 0.94, β1 ≥ 2.81).

(ii) α2 = 0, n1 > 1 and ∀ t with β1 > 0 or β1 < 0.

(iii) α2 > 0 with (t ≥ 0.8, n1 ≥ 8.6, 0 < β1 ≤ 20) or (t ≥ 0.9, n1 ≥ 12.7, −20 ≤ β1 < 0).

Now taking α1 < 0, again we have three cases for the validity of the GSLT

(i) α2 < 0 with (t ≥ 0.8, n1 ≥ 8.6, −20 ≤ β1 < 0) or (t ≥ 0.9, n1 ≥ 12.7, 0 < β1 ≤ 20).

(ii) α2 = 0, n1 > 1 and ∀ t with β1 > 0 or β1 < 0.

(iii) α2 > 0, n1 ≥ 3 and ∀ t with (β1 ≤−28.1) or (β1 ≥ 35.7).

We have observed that by taking α1 and α2 both with the same sign, for initial values

of n1 and t the GSLT is not valid whereas β1 is restricted to β1 ≤ 20 or β1 ≥−20. The Fig.

3.4 shows the validity region of the GSLT for α1 > 0 and α2 = 5 .

Figure 3.4: Valdity of the GSLT for Power law- f (R,ϕ) versus the parameters n1, β1 and t

with α1 = 1 and α2 = 5.
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Models Variations of parameters Validity of Ṡtot ≥ 0

α1 > 0, α2 > 0 and ∀ t with (α3 ≥ 0, β1 ≤−0.78) or (α3 ≤ 0, β1 ≥ 0)

de-Sitter Model α1 < 0, α2 > 0

f (R,Y,ϕ) α1 > 0, α2 < 0 and ∀ α3, β1 and t

α1 < 0, α2 < 0

de-Sitter Model f (R,ϕ) ∀ β1 ∀ t with (α1 ≤−0.1, ∀ α2) or (α1 > 0, α2 ≥ 0)

α1 > 0 with α2 < 0 n1 ≥ 3 with (β1 ≤−35.8, t ≥ 1) or (β1 ≥ 2.81, t ≥ 0.94)

α2 = 0 n1 > 1, β1 > 0 or β1 < 0, ∀ t

Power Law Model α2 > 0 (n1 ≥ 8.6, 0 < β1 ≤ 20, t ≥ 0.8) or (n1 ≥ 12.7, −20 ≤ β1 < 0, t ≥ 0.9)

f (R,ϕ) α1 < 0 with α2 < 0 (n1 ≥ 8.6, −20 ≤ β1 < 0, t ≥ 0.8) or (n1 ≥ 12.7, 0 < β1 ≤ 20, t ≥ 0.9)

α2 = 0 n1 > 1, β1 > 0 or β1 < 0, ∀ t

α2 > 0 n1 ≥ 3 and ∀ t with (β1 ≤−28.1) or (β1 ≥ 35.7)

b1 = 0 n1 > 1, ∀ β1, t ≥ 0.96

Model-I b1 > 0 (n1 > 1 with β1 ≤−0.6, ∀ t) or (n1 ≥ 2.5 with β1 ≥ 6, t ≥ 2.5)

b1 < 0 not valid

Model-II n1 > 1 ∀ t with (ζ ≥ 2, β1 ≤−1.5) or (ζ ≤−3.2, β1 ≥ 5)

Model-III n1 > 1 (∀ ξ , β1 ≤−3.5 and t ≥ 4) or (ξ ≤ 0, β1 ≥ 0.15 and t ≥ 1)

Model-IV n1 > 1 (β1 ≥ 0, α < 0 and ∀ t) or (β1 ≤−0.25, α ≥ 0 and t ≥ 1)

Table 3.2: Validity regions of Ṡtot ≥ 0 for different models.

3.2.5 f (R,ϕ) Models

Now we will use the f (R,ϕ) gravity models stated in (3.1.44) and discuss the validity of

the GSLT.

First we are using model (3.1.45), inserting the model in (3.2.31) we have inequality of

the form

Ṡtot =
2π
Gb

[
2H0(b−1)Λb1

2a2β1
0 t2n1β1κ4Reb1aβ1

0 tn1β1κ3R +2Λb1κ
(

1+b1aβ1
0 tn1β1κ3R

)
×(b−1)β1H0aβ1

0 tn1β1eb1aβ1
0 tn1β1κ3R − 2

κ2 H0(b−1)
{

1+2Λb1aβ1
0 tn1β1κ3eb1aβ1

0 tn1β1κ3R
}

×

1+
qH2

0

H2
0 +

k
a2

0t2n1

+
2H
κ2

{
1+2Λb1aβ1

0 tn1β1κ3eb1aβ1
0 tn1β1 κ3R

}1+
qH2

0

H2
0 +

k
a2

0t2n1

2

×
(

b
2
−1
)](

H2
0 (1−q)+

k
a2

0t2n1

)−1

≥ 0 , (3.2.37)

where R = 6
[
H2

0 (1−q)+ k/(a2
0t2n1)

]
. It can be seen that the above inequality involves

four parameters t, b1, n1 and β1. We have observed that the GSLT is valid for two cases
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depending on the choice of b1:

(i) b1 = 0 with t ≥ 0.96, n1 > 1 & ∀ β1.

(ii) b1 > 0 with (β1 ≤−0.6, n1 > 1 & ∀ t) and (β1 ≥ 6, n1 ≥ 2.5 & t ≥ 2.5).

Now we will use the model (3.1.50) into (3.2.31) and have the constraint

Ṡtot =
2π
Gb

[
β1

2H0(b−1)ω0n1 (ζ n1β1 +2n1β1 +6n1 −2)aβ1(ζ+2)
0 tζ n1β1+2n1β1−2 −2H0

×(b−1)

{
ω0β1

2n1
2a2/n1

0 (ζ n1β1 +2n1β1 +6n1 −2)
ζ n1β1 +2n1β1 −2

}{
1+qH2

0 (H
2
0 +

k
a2

0
t2n1)−1

}

×a
β1

(
ζ+2− 2

n1β1

)
0 tζ n1β1+2n1β1−2 +2

(
b
2
−1
)

H0a
β1

(
ζ+2− 2

n1β1

)
0

1+
qH2

0

H2
0 +

k
a2

0t2n1

2

×tζ n1β1+2n1β1−2

{
ω0β1

2n1
2a2/n1

0 (ζ n1β1 +2n1β1 +6n1 −2)
ζ n1β1 +2n1β1 −2

}](
H2

0 (1−q)

+
k

a2
0t2n1

)−1

≥ 0. (3.2.38)

It can be observed that the inequality of GSLT for this model involves four parameters t,

β1, ζ and n1. Now by fixing n1 we will check the validity of GSLT for different values of

ζ and β1. For every time t and n1 > 1 we observed two cases for the validity of Ṡtot ≥ 0:

(ζ ≥ 2 with β1 ≤ −1.5) and (ζ ≤ −3.2 with β1 ≥ 5). By fixing n1 > 1, validity of the

GSLT verses the parameters t, ζ and β1 is shown in Fig. 3.5.

Figure 3.5: Regions where the GSLT is satisfied for the Model-II versus the parameters ζ ,

β1 and t with n1 = 1.1.
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Further we are taking model (3.1.55), using this model in (3.2.31) we have

Ṡtot =
2π
Gb

[
2β1H0ξ κ2(b−1)a2β1

0 t2n1β1 −2H0(b−1)

{
1+qH2

0

(
H2

0 +
k
a2

0
t2n1

)−1
}

(
1+ξ κ2a2β1

0 t2n1β1
)
+2
(

b
2
−1
)

H0

(
1+ξ κ2a2β1

0 t2n1β1
)1+

qH2
0

H2
0 +

k
a2

0t2n1

2]

×
(

H2
0 (1−q)+

k
a2

0t2n1

)−1

≥ 0. (3.2.39)

Here, the above constraint involves four parameters t, n1, ξ and β1. To check the validity

of GSLT we fix n1 and find the feasible values of β1 and ξ . We have two validity regions

for n1 > 1 depending on the choice of β1: β1 ≤ −3.5 with (t ≥ 4 & ∀ ξ ) and β1 ≥ 0.15

with (t ≥ 1 & ξ ≤ 0).

Moreover, introducing the model (3.1.59) in (3.2.31) we have inequality of the form

Ṡtot =
2π
Gb

[
12αH0(b−1)aβ1

0 tn1β1

{
( j−q−2)H2

0 +
k

a2
0t2n1

}
+β1H0(b−1)aβ1

0 tn1β1

×
{

1+12α
(
(1−q)H2

0 +
k

a2
0t2n1

)}
−2H0(b−1)

{
1+12α

(
(1−q)H2

0 +
k

a2
0t2n1

)}
×aβ1

0 tn1β1

{
1+qH2

0

(
H2

0 +
k

a2
0t2n1

)−1
}
+2H0aβ1

0

{
1+12α

(
(1−q)H2

0 +
k

a2
0t2n1

)}

×tn1β1

(
b
2
−1
)1+

qH2
0

H2
0 +

k
a2

0t2n1

2](
H2

0 (1−q)+
k

a2
0t2n1

)−1

≥ 0. (3.2.40)

The above inequality involves four parameters t, n1, α and β1. To constraint the above

relation we have n1 > 1 and two validity ranges depending on the choice of α:

(i) α < 0 with (β1 ≥ 0 & ∀ t).

(ii) α ≥ 0 with (t ≥ 1 & β1 ≤−0.25).

The Fig. 3.6 shows the validity region of the GSLT for a specific choice of the param-

eter n1 = 1.1
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Figure 3.6: Validity regions of the GSLT for the Model-IV for the parameters α and β1

with n1 = 1.1.

3.2.6 Equilibrium description of Thermodynamics laws

In entropy production, the existence of non-equilibrium term diS is due to ρd , pd given in

eqs. (3.2.10), (3.2.11) which satisfy the continuity Eq. (3.2.16) and in f (R,Y,ϕ) gravity

its R.H.S. will not vanish because ∂t fR ̸= 0. Otherwise the standard continuity equation

does not satisfy. Now we will define ρd and pd which satisfy the continuity equation and

no extra entropy production term occur, that is known as equilibrium description. Now we

will discuss the equilibrium description of thermodynamics in f (R,Y,ϕ) gravity. The field

equation (2.10.2) is redefined as

Gµν + fRRµν −
1
2
( f +ω(ϕ)ϕ;αϕ ;α)gµν − fR;µν +gµν2 fR +2 fY Rα

µ Rαν +2[ fY Rµν ]

−2[ fY Rα
(µ ];ν)α +[ fY Rαβ ]

;αβ gµν +ω(ϕ)ϕ;µϕ;ν = Gµν +κT (m)
µν . (3.2.41)

For EMT of a perfect fluid (3.2.1), we are assuming here that the matter of the universe has

zero pressure pm = 0 (dust). From Eq. (3.2.41), the EFE can be written as

Rµν −
1
2

Rgµν = 8πGT (m)
µν +T (d)

µν , (3.2.42)

where

T (d)
µν = −1

2
Rgµν fR +

1
2
( f +ω(ϕ)ϕ;αϕ ;α)gµν + fR;µν −gµν2 fR −2 fY Rα

µ Rαν

+ 2[ fY Rα
(µ ];ν)α −2[ fY Rµν ]− [ fY Rαβ ]

;αβ gµν −ω(ϕ)ϕ;µϕ;ν +(1− fR)Gµν ,

(3.2.43)
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represents an effective EMT which involves all the new terms of the theory.

3.2.7 First Law of Thermodynamics

Now, redefining Eq. (3.2.8) and Eq. (3.2.9) in the form

3
(

H2 +
k
a2

)
= 8πG(ρm +ρd) , (3.2.44)

−2
(

Ḣ − k
a2

)
= 8πG(ρm +ρd + pd) , (3.2.45)

where the redefined ρd and pd are

ρd =
1

8πG

[
1
2
(R fR − f )− 1

2
ω(ϕ)ϕ̇ 2 −3H∂t fR −6H

(
2Ḣ +3H2 +

k
a2

)
∂t fY − fY

(...
H

+ 4HḦ +6ḢH2 −2H4 − 4kH2

a2

)
+3(1− fR)

(
H2 +

k
a2

)]
, (3.2.46)

pd =
1

8πG

[
1
2
( f −R fR)−

1
2

ω(ϕ)ϕ̇ 2 +∂tt fR +2H∂t fR +

(
4Ḣ +6H2 +

2k
a2

)
∂tt fY

+ 4H
(

Ḣ +3H2 +
2k
a2

)
∂t fY + fY

(
4

...
H +20HḦ +10ḢH2 +16Ḣ2 −18H4 − 8k2

a4

− 18kḢ
a2 − 20kH2

a2

)
− (1− fR)

(
2Ḣ +3H2 +

k
a2

)]
. (3.2.47)

In this representation, eq. (3.2.17) becomes

dr̃A = 4πGHr̃3
A(ρ̂total + p̂total)dt , (3.2.48)

by using the horizon entropy Ŝh of the form

Ŝh =
A

4G
, (3.2.49)

differentiating Eq. (3.2.49) and using (3.2.48), we have

1
2π r̃A

dŜh = 4π r̃3
A (ρ̂total + p̂total)Hdt , (3.2.50)

multiplying both sides of the above equation by 1− ˙̃rA/(2Hr̃A), we have

ThdŜh =−4π r̃3
A (ρ̂total + p̂total)Hdt +2π r̃2

A (ρ̂total + p̂total)dr̃A . (3.2.51)

By defining the Misner-Sharp energy as

Ê =
r̃A

2G
=V ρ̂total , (3.2.52)
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we get

dÊ = 4π r̃2
Aρ̂totaldr̃A −4π r̃3

A (ρ̂total + p̂total)Hdt . (3.2.53)

Using Eq. (3.2.53) in (3.2.51), we get

ThdŜh = dÊ −ŴdV , (3.2.54)

where we have used the work density Ŵ = (1/2)(ρ̂total − p̂total) [156]. The equilibrium

description of thermodynamics can be derived by redefining ρd and pd to satisfy the conti-

nuity equation.

3.2.8 Generalized Second Law of Thermodynamics

To analyze the SLT for equilibrium description, the Gibb’s equation in terms of all matter

and DE fluid can be written as

TνdŜν = d(ρ̂totalV )+ p̂totaldV , (3.2.55)

where Tν denotes the temperature within the horizon. The SLT can be expressed as

˙̂Sh +
˙̂Sν ≥ 0 , (3.2.56)

where Ŝh denotes the horizon entropy and Ŝν denotes the entropy due to energy sources

inside the horizon. Now, assuming the relation between the temperature within the horizon

and temperature of the apparent horizon as

Tν = Th . (3.2.57)

By substituting Eqs. (3.2.54) and (3.2.55) in Eq. (3.2.56), we obtain

Ṡtot =
˙̂Sh +

˙̂Sν =
2πΣ
r̃AR

≥ 0 , (3.2.58)

where

Σ =
1
2
(ρ̂total + p̂total)V̇ ,

which is the general condition for the validity of the GSLT. Using Eqs. (3.2.44) and

(3.2.45), the condition (3.2.58) reduced to

2πH
(

2kḢ
a2 − Ḣ2 − k2

a4

)
G
(

Ḣ +2H2 + k
a2

)(
H2 + k

a2

)2 ≥ 0, (3.2.59)
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In case of flat FRW universe, for the validity of the GSLT, the condition (3.2.59) must be

satisfied.
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Chapter 4

Static spherically symmetric wormholes

in generalized f (R,ϕ) gravity



4.1 Wormhole Geometries in extended f (R,ϕ) Gravity

In this section we will present the field equations (2.9.2) in the Morris-Thorne geometry

(2.14.1) and then study its generic properties to find out the general energy conditions. The

action of extended f (R,ϕ) theory is defined in (2.9.1) and field eq’s are (2.9.2), (2.9.3).

We can rewrite the field equation (2.9.2) in an effective form,

Gµν = Rµν −
1
2

Rgµν = T e f f
µν , (4.1.1)

where T e f f
µν is defined as

T e f f
µν =

1
fR

[
κ2Tµν +

1
2
( f +ω(ϕ)ϕ;αϕ ;α −R fR)gµν + fR;µν −gµν2 fR −ω(ϕ)ϕ;µϕ;ν

− gµνV (ϕ)
]
. (4.1.2)

The shape function must satisfy the condition that at the throat r0 is equal to β (r = r0) = r0

and then it must increases from r0 to ∞. For the existence of standard wormholes, the shape

function must also satisfy the flaring-out condition which reads

β (r)−β ′(r)r
β (r)2 > 0 , at r = r0 . (4.1.3)

The above condition can be also written in a short way, namely β ′(r = r0) < 1. In addi-

tion, to do not change the signature of the metric, the shape function must also satisfy the

condition 1−β (r)/r > 0.

Since we are interested on studying wormhole geometries for anisotropic, isotropic and

barotropic fluids, we will first derive the equation for the most general of those fluids, i.e.,

the anisotropic fluid. Then, when it is necessary, the other particular cases (barotropic and

isotropic) can be easily recovered. For an anisotropic fluid, the EMT is defined in (2.5.7).

If we consider the EMT (2.5.7) and the Morris-Thorne metric (2.14.1), the generalized

f (R,ϕ) field equations (2.9.2) become

κ2ρ = −e−b f ′′R +
1
2r

e−b (rb′+4
)

f ′R +
1
4r

e−b
(

2ra′′+ ra′2 − ra′b′+4a′
)

fR −
1
2

f

+
1
2

ω(ϕ)e−bϕ ′2 +V (ϕ) , (4.1.4)
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κ2 pr =
1
2r

e−b (ra′+4
)

f ′R −
1
4r

e−b
(

2ra′′+ ra′2 − ra′b′−4b′
)

fR −
1
2

e−bω(ϕ)ϕ ′2

+
1
2

f −V (ϕ) , (4.1.5)

κ2 pt = e−b f ′′R +
1
2r

e−b (ra′− rb′+2
)

f ′R +
1

2r2 e−b
(

rb′− ra′+2eb −2
)

fR +
1
2

f

− 1
2

e−bω(ϕ)ϕ ′2 −V (ϕ) , (4.1.6)

where primes denote differentiation with respect to the radial coordinate r. In GR, worm-

hole geometries are supported by exotic matter which requires the violation of NEC and

WEC. In [160], Harko et al. discussed wormholes in modified theories and showed that

these geometries can be theoretically constructed without the presence of exotic matter. In

such scenario, matter threading a wormhole satisfies the energy conditions and the addi-

tional geometric components coming from the modified theory are the responsible of the

violation of the energy conditions. Hence, the violation of the NEC and WEC are described

in terms of the effective EMT, i.e.,

WEC : W µW νT e f f
µν < 0 , NEC : kµkνT e f f

µν < 0 , (4.1.7)

for any W µ time-like vector and any kµ null-like vector. By doing that, we can then impose

that the matter satisfies those conditions:

WEC : W µW νTµν > 0 , NEC : kµkνTµν > 0 . (4.1.8)

Clearly, if NEC is violated then WEC will be also violated and if WEC is valid, it does not

imply that the NEC is satisfied. In the literature, this approach has been discussed in dif-

ferent contexts including f (R) gravity [73], curvature-matter couplings [161], braneworlds

[162], f (T ) theory [74] and hybrid metric-Palatini f (R) [80].

Applying the flaring out condition (4.1.3), one directly notice that NEC needs to be

violated for the effective fluid. Hence, to have traversable wormhole geometries we must

impose the conditions ρe f f + pe f f
r < 0 and ρe f f + pe f f

t < 0. As we discussed above, those

conditions do not imply that the standard matter violates NEC. Thus, we can then impose

ρ + pr > 0 and ρ + pt > 0 to ensure that the matter satisfies the NEC, which gives us

ρ + pr = −e−b f ′′R +
1
2r

e−b
(

r(a′+b′)+8
)

f ′R +
1
r

e−b(a′+b′) fR > 0 , (4.1.9)
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ρ + pt =
1
2r

e−b(ra′+6) f ′R +
e−b

4r2

[
2r2a′′+ ra′

(
2− rb′

)
+ r2a′2 +2rb′+4eb −4

]
fR > 0 .

(4.1.10)

Let us clarify that WEC will be valid if the above conditions are true and also assuming

that the energy density is always positive ρ > 0. Thus, for the validity of WEC, we also

need to impose that the R.H.S in Eq. (4.1.4) is always positive. For the specific case where

there are not tidal forces, i.e., when a′(r) = 0, the above conditions become

ρ + pr = −e−b f ′′R +
1
2r

e−b
(

rb′+8
)

f ′R +
b′

r
e−b fR > 0 , (4.1.11)

ρ + pt =
3
r

e−b f ′R +
e−b

4r2

[
2rb′+4eb −4

]
fR > 0 . (4.1.12)

Hereafter, we will consider f (R,ϕ) models given in a power-law way given by [163]

f (R,ϕ) = γ̃Rϕ η , (4.1.13)

where γ̃ and η are constants. Using this model, the field equations become

2κ2ρ =
γ̃2e−3b

16r3 ω(ϕ)ϕ ′2ϕ 2η (2ra′′− ra′b′+ ra′2 +4a′
)(

−2r2a′′+ r2a′b′− r2a′2 −4

− 4ra′+4rb′+4eb
)
+

ηγ̃e−b

r
(rb′+4)ϕ ′ϕ η−1 −2ηγ̃e−bϕ ′′ϕ η−1 −2γ̃η(η −1)

× e−bϕ ′2ϕ η−2 +2κ2V (ϕ) , (4.1.14)

2κ2 pr =
ηγ̃e−b

r

(
ra′+4

)
ϕ ′ϕ η−1 − γ̃e−b

2r2

(
−2r2a′′+ r2a′b′− r2a′2 −4ra′+4rb′+4eb

−4)ϕ η − e−bω(ϕ)ϕ ′2 − γ̃e−b

2r

(
2ra′′− ra′b′+ ra′2 −4b′

)
ϕ η −2κ2V (ϕ) ,

(4.1.15)

2κ2 pt =
γ̃e−b

r2 (−ra′+ rb′+2eb −2)ϕ η +
ηγ̃e−b

r
(ra′− rb′+2)ϕ ′ϕ η−1 +2ηγ̃e−bϕ ′′

× ϕ η−1 − γ̃e−b

2r2

(
−2r2a′′+ r2a′b′− r2a′2 −4ra′+4rb′+4eb −4

)
ϕ η +2γ̃ηe−b

× (η −1)ϕ ′2ϕ η−2 − e−bω(ϕ)ϕ ′2 −2κ2V (ϕ) . (4.1.16)

Now, if we replace (4.1.13) into (2.9.3) we get

dV
dϕ

= −ηγ̃e−b

2r2

{
−2r2a′′+ r2a′b′− r2a′2 −4ra′+4rb′+4eb −4

}
ϕ η−1 + e−b dω

dϕ
ϕ ′2

+ 2ω(ϕ)e−b
{

ϕ ′′+

(
a′−b′

2
+

2
r

)
ϕ ′
}
. (4.1.17)
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Additionally, the following power-law functions for the BD function (3.1.7) and the scalar

field [164]

ϕ(r) = ϕ0

(
d
r

)σ1

, (4.1.18)

where ϕ0, d and σ1 are constants.

4.2 Anisotropic generic fluid description

This section is devoted to study wormholes supported by an anisotropic fluid characterized

by ρ , pr and pt without specifying any EoS. Our principal aim is to check the validity of

the energy conditions (WEC and NEC) for our model. To do this, we will specify the b(r)

radial function as follows [74], [165]-[170]

b(r) =− ln
[

1−
(r0

r

)σ2+1
]
, (4.2.1)

where σ2 is a constant and r0 denotes the throat of the wormhole, which gives us that the

shape function is

β (r) = r0

(r0

r

)σ2
. (4.2.2)

This kind of shape function has been used widely in the literature and satisfies all the

conditions needed to have a wormhole geometry if σ2 > −1 (see the flaring-out condition

given by (4.1.3)). Table 4.1 shows the values that the shape function takes for different

constants σ2.

Table 4.1: Some shape functions for different values of the parameter σ2

σ2 σ2 = 1 σ2 = 1/2 σ2 = 1/5 σ2 = 0 σ2 =−1/2

Shape function β (r) r0
2/r r0

√
r0/r r0

6/5r−1/5 r0
√

r0r

Additionally, for this section we will also assume that the redshift function is constant

(a′(r) = 0), or in other words, we will assume zero tidal forces. Using power law ansatz

with model (4.1.13) and radial function (4.2.1) into (4.1.17) and integrating we have scalar

potential of the form
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V (ϕ) =
ηγ̃r0

σ2+1σ1(σ2 −3)ϕ η+
σ2+3

σ1

2dσ2+3ϕ0

σ2+3
σ1 (ησ1 +σ2 +3)

+
ω0ζσ1

3r0
σ2+1ϕ ζ+2+σ2+2

σ1

dσ2+3ϕ0

σ2+3
σ1 (ζσ1 +2σ1 +σ2 +2)

− ω0ζσ1
3ϕ ζ+2+ 1

σ1

d2ϕ0
2/σ1(ζσ1 +2σ1 +1)

+
ω0σ1

2(2σ1 −ζσ1 −2)ϕ ζ+2+ 2
σ1

d2ϕ0
2/σ1(ζσ1 +2σ1 +2)

+
ω0σ1

2r0
σ2+1(ζσ1 −σ2 +3)ϕ ζ+2+σ2+3

σ1

dσ2+3ϕ0

σ2+3
σ1 (ζσ1 +2σ1 +σ2 +3)

+ c0 . (4.2.3)

In the following discussion, we will study the validity of WEC and NEC for the standard

matter (see Eqs. (4.1.9) and (4.1.10)). Let us then study different cases for σ2 to study

the validity of the the energy conditions. To do this, we will fix r0 = ϕ0 = d = ω0 = 1

and κ2 = 8π for simplicity. Additionally, it can be noticed from the equations that the

constant γ̃ which appears from the model (see (4.1.13)) only will change the behaviour

of the wormhole depending on its sign. Hence, we will study mainly two cases for this

parameter, namely, when γ̃ = 1 and γ̃ = −1. Let us also divide our study into two main

theories: BD and induced gravity.

4.2.1 Brans-Dicke theory

To recover the case of BD theory we need to choose η = 1 with ζ = −1. Now, we will

examine the validity of the energy bounds for the remaining parameters γ̃ , σ1 and σ2. As we

have pointed out before, only the sign of γ̃ changes the physical motion of the wormholes

so we will set either γ̃ = 1 and γ̃ =−1. Since we have two free parameter (σ1 and σ2), we

will make region plots to check the validity of all the important energy conditions. For this

model we have that the corresponding energy conditions are

ρ =
(2γ̃ −1)σ2

1
γ̃

+
8πσ1(γ̃(σ2 −3)−2σ1(σ1 +σ2 −3))

γ̃(σ1 +σ2 +3)
+

16πσ 3
1 rσ2+2

γ̃σ1 + γ̃

+
16πrσ1+σ2+3

γ̃
+

σ1
(
σ1(σ1 +16π(3σ1 −2)+2)−2γ̃

(
σ2

1 +5σ1 +6
))

rσ2+1

γ̃(σ1 +2)

−
16πrσ3

1
γ̃(σ1 +σ2 +2)

+σ1σ2 +7σ1 −2σ2 ≥ 0 , (4.2.4)

ρ + pr = −2σ1(σ1 +5)rσ2+1 +2σ2
1 +σ1(σ2 +11)−2(σ2 +1)≥ 0 , (4.2.5)

ρ + pt = −6σ1rσ2+1 +6σ1 −σ2 +1 ≥ 0 . (4.2.6)

69



We can see that it is not so easy to check the validity of the energy conditions. Let us first

study the case where σ2 = 1 to visualize better the behavior of the energy conditions. In that

case, we are able to create 2D region plots for the validity of the energy conditions. Fig. 4.1

shows the validity of ρ ≥ 0 (see (4.2.4)) for different values of σ1 and γ̃ = 1 or γ̃ =−1. Each

blue(yellow) regions represent the validity of this condition for γ̃ =−1(γ̃ = 1). The green

regions are the intersection regions where this condition is valid for γ̃ = 1 and γ̃ = −1.

As we can see from the figure, there is not so much difference in the valid region for

positive or negative values of γ̃ . However, one can directly see that for the region where

−2 . σ1 . −1.3, this condition will be never true. For other values, one can notice that

the validity of this condition depends on the location of the observer. For an observer who

is far away from the throat (located at r0 = 1), the condition ρ ≥ 0 will be always true.

However, for an observer who is located near the throat, this condition will be violated for

some values of σ1.

Figure 4.1: Validity of ρ ≥ 0 given by (4.2.4) for the generic anisotropic fluid in BD theory

when σ2 = 1. The yellow regions represent the regions where γ̃ = 1 whereas the blue

regions represent when γ̃ = −1. Therefore, the green regions represent the regions where

those two regions coincide. We have chosen the values r0 = ϕ0 = d = ω0 = 1 and σ2 = 1.

Figs. 4.3a and 4.3b show similar region plots for the validity of NEC-1 (ρ + pr ≥ 0) and

NEC-2 (ρ + pt ≥ 0) given by the validity of the inequalities (4.2.5) and (4.2.6) respectively.

For almost all σ1, NEC-1 depends on the location of the observer and the sign of γ̃ . How-

ever, there exits a region for γ̃ = −1 given by −1 . σ1 . 2 where NEC-1 is always valid

independently of the location of the observer. For positive values of γ̃ , it does not exist
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a region where NEC-1 is valid everywhere. NEC-2 is independent of the location of the

observer. For γ̃ =−1, NEC-2 is satisfied always if σ1 & 0 and for γ̃ = 1, σ1 . 0 is required.

Hence, there are not regions where NEC-1 and NEC-2 are valid for the intersections γ̃ = 1

and γ̃ =−1 regions.

(a) NEC-I (b) NEC-II

(c) NEC-near the throat (d) NEC-not close to the throat

Figure 4.2: Validity of NEC-1 (ρ + pr ≥ 0) given by (4.2.5), NEC-2 (ρ + pt ≥ 0) given

by (4.2.6) and the full condition for the validity of NEC (ρ + pt ≥ 0 & ρ + pr ≥ 0) for

the generic anisotropic fluid in BD theory. The yellow regions represent the regions where

γ̃ = 1 whereas the blue regions represent when γ̃ = −1. For these plots, we have chosen

the values r0 = ϕ0 = d = ω0 = 1 and σ2 = 1.

In Figs. 4.3c and 4.3d are depicted region plots for the validity of the full NEC

(ρ + pr ≥ 0 & ρ + pt ≥ 0) near the throat and also for locations that are not so close to the

throat. The full NEC is satisfied if Eqs. (4.2.5) and (4.2.5) are true. As we can see from the

figures, for γ̃ = 1, it is not possible to find a suitable σ1 where the full NEC is valid at every

point of the space. Moreover, at points near the throat, NEC is always invalid for γ̃ = 1.

Although, for γ̃ =−1, in the region 0 . σ1 . 2, the full NEC is valid everywhere.
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(a) NEC-I (b) NEC-II

(c) NEC-near the throat (d) NEC-not close to the throat

Figure 4.3: Validity of NEC-1 (ρ + pr ≥ 0) given by (4.2.5), NEC-2 (ρ + pt ≥ 0) given

by (4.2.6) and the full condition for the validity of NEC (ρ + pt ≥ 0 & ρ + pr ≥ 0) for

the generic anisotropic fluid in BD theory. The yellow regions represent the regions where

γ̃ = 1 whereas the blue regions represent when γ̃ = −1. For these plots, we have chosen

the values r0 = ϕ0 = d = ω0 = 1 and σ2 = 1.

Finally, Figs. 4.4a and 4.4b show the validity of the full WEC (ρ ≥ 0 & ρ + pr ≥

0 & ρ + pt ≥ 0) close and not so close to the throat respectively. From those figures, we

can see that the full WEC is valid only for some very special regions for γ̃ = 1 and moreover

for observers closer to the throat, it would be always invalid. This is consistent with the full

NEC (see Figs. 4.3c and 4.3d) since if NEC is violated, then WEC will be also violated. On

the other hand, for γ̃ =−1, there are different ranges where WEC is valid but only for the

range where 0 . σ1 . 2, WEC is valid independently of the location of the observer. As

a consistency checking, Fig. 4.5 shows the behaviour of ρ ,ρ + pr and ρ + pt for a special

model where γ̃ =−1 and σ1 = 1. In this model, WEC is satisfied at all locations since all

the important quantities are always positive.
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(a) WEC-near the throat (b) WEC-not close to the throat

Figure 4.4: Validity of WEC given by the validity of (4.2.4)-(4.2.6) for the generic

anisotropic fluid in BD theory. The figure on the right represents the validity of WEC near

the throat whereas the figure on the left shows the validity for locations that are not close to

the throat. The yellow regions represent the regions where γ̃ = 1 whereas the blue regions

represent when γ̃ =−1. For these plots, we have chosen the values r0 = ϕ0 = d = ω0 = 1

and σ2 = 1.

Figure 4.5: Energy density, sum of the radial pressure and the energy density and the sum

of the lateral pressure and the energy density for the generic anisotropic fluid in BD theory

where σ1 = σ2 = 1 and γ̃ =−1. We have further chosen the values r0 = ϕ0 = d = ω0 = 1.

For this model, the full WEC is always satisfies.

Let us now try to analyse the model for an arbitrary shape function parameter σ2. In this

case, we have three parameters, namely, γ̃ , σ1 and σ2. As we have said before, the sign of γ̃
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is important but not its strength. Figs. 4.6 show region plots for the validity of the full NEC

and WEC for positive and negatives values of γ̃ . One can notice that it is not possible to

model wormholes satisfying the full NEC everywhere for positive γ̃ since depending on the

location of the observer, that energy condition would be valid or not. For negative values

of γ̃ , there are different models depending on σ2 and σ1 which ensures that the wormhole

is supported by non-exotic matter at every point of the space. In those specific models, the

full WEC is always satisfied.

(a) NEC with γ̃ = 1 (b) NEC with γ̃ =−1 (c) WEC with γ̃ =−1

Figure 4.6: Validity of NEC and WEC given by the validity of (4.2.4)-(4.2.6) for the generic

anisotropic fluid in BD theory. The figure on the left represents the validity of NEC for

γ̃ = 1 whereas the figure on the centre represents the validity for γ̃ =−1. Lastly, the figure

on the right shows the validity of WEC for γ̃ = −1. For these plots, we have chosen the

values r0 = ϕ0 = d = ω0 = 1. We can notice that various model exist where the full WEC

is valid for γ̃ =−1 whereas for γ̃ = 1, it is not possible to find that NEC is valid for every

location.

4.2.2 Induced gravity

In this section, we will study the energy conditions for the induced gravity case. To recover

this case, we must choose η = 2 with ζ > 0. Then, we have four free parameters, namely ζ ,

σ1,σ2 and γ̃ . Doing a similar approach as we did in the previous section, we can distinguish

between models that do not violate the energy conditions. Without going into too much

details as in the previous section, in this section we will only show the validity of the full
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NEC and full WEC. If WEC is valid, all the other energy conditions will be valid too. The

validity of WEC will be true if all the following three inequalities hold,

ρ =−
ζ σ3

1 r−(ζ+2)σ1−1

(ζ +2)σ1 +1
+

1
16

σ2
1 r−(ζ+2)σ1−2

(
16ζσ1r−σ2

(ζ +2)σ1 +σ2 +2
− 16((ζ −2)σ1 +2)

(ζ +2)σ1 +2

+
1
π

)
+

σ2
1

16π

{
(16π(ζσ1 −σ2 +3)− (ζ +2)σ1 −σ2 −3)r−(ζ+2)σ1−σ2−3

}
{σ2 +3

+(ζ +2)σ1}−1 +
γ̃

8π
[{

8σ3
1 +σ2

1 (6σ2 +26)+σ1
(
σ2

2 +8σ2 +8π(σ2 −3)+21
)
−σ2

×(σ2 +3)}r−2σ1−σ2−3](2σ1 +σ2 +3)−1 − 1
4π
{

γ̃σ1(2σ1 +3)r−2σ1−2}+1 ≥ 0 ,

(4.2.7)

ρ + pr =
γ̃
(
4σ2

1 +σ1(σ2 +11)−σ2 −1
)

r−2σ1−σ2−3

8π
− γ̃σ1(2σ1 +5)r−2σ1−2

4π
≥ 0 ,

(4.2.8)

ρ + pt =
γ̃(12σ1 −σ2 +1)r−2σ1−σ2−3

16π
− 3γ̃σ1r−2σ1−2

4π
≥ 0 . (4.2.9)

Note that the validity of the last two inequalities do not depend on the parameter ζ . Hence,

the validity of the full NEC will not depend on the parameter ζ . Figs. 4.7a and 4.7b show

the validity of NEC for γ̃ = 1 and γ̃ =−1 respectively. Exactly as the BD case, NEC cannot

be true for every location when γ̃ is positive. Moreover, the problem comes near the throat.

Hence, the full WEC will be also not true at every location for induced gravity when γ̃ is

positive. On the other hand, for negative γ̃ , it is possible to ensure the validity of NEC for

some parameters σ1 and σ2. Fig. 4.7c shows the validity of WEC for ζ = 2 and γ̃ = −1.

Since ρ depends on ζ , the validity of WEC will depend on ζ too. For bigger values of ζ ,

the validity of WEC is more constraint. However, it always exists a small range of values of

σ1 and σ2 where WEC will be true at every location (even near the throat). From the figure

one can notice that this small region is −1. σ1 . 1. Fig. 4.8 depicts the energy density and

the sum of the pressures with the energy density for a model in this range, where σ1 = 0.5.

In the latter figure, we have further chosen ζ = σ2 = 2 and γ̃ =−1. One can see from the

figure, that WEC is always true in this model.
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(a) NEC with γ̃ = 1 (b) NEC with γ̃ =−1 (c) WEC with γ̃ =−1

Figure 4.7: Validity of NEC and WEC given by the validity of (4.2.7)-(4.2.9) for the generic

anisotropic fluid in induced gravity. The figure on the left represents the validity of NEC

for γ̃ = 1 whereas the figure on the centre represents the validity for γ̃ = −1. Lastly, the

figure on the right shows the validity of WEC for γ̃ = −1 and ζ = 2. For these plots, we

have chosen the values r0 = ϕ0 = d =ω0 = 1. We can notice that various model exist where

the full WEC is valid for γ̃ = −1 whereas for γ̃ = 1, it is not possible to find that NEC is

valid for every location.

Figure 4.8: Energy density, sum of the radial pressure and the energy density and the sum

of the lateral pressure and the energy density for the generic anisotropic fluid in induced

gravity where σ1 = 0.5, σ2 = ζ = 2 and γ̃ = −1. We have further chosen the values

r0 = ϕ0 = d = ω0 = 1. For this model, the full WEC always satisfies.

76



4.3 Isotropic Fluid (pr = pt = p)

In this case we will take pr = pt = p and substituting e−b(r) = 1− β (r)
r we have equation in

terms of shape function of the form:

γ̃
drκ2 ϕ0

η
(

d
r

)ησ1
[

d2r(ησ1 −1)β ′(r)+
{
−2ησ1

3(σ1 −1)+d2 (3−7ησ1 +2ησ1
2

−2η2σ1
2)}β (r)+2ηrσ1

{
σ1

2(σ1 −1)+d2(3+ησ1 −σ1)
}]

= 0 . (4.3.1)

We can easily solve this equation analytically and we have shape function of the form

β (r) =−ξ1r+ c1r−η1 , (4.3.2)

where c1 is constant of integration and A1 = d2(ησ1 −1),

A2 =−2ησ1
3(σ1 −1)+d2{3−7ησ1 +2ησ1

2 −2η2σ1
2},

A3 = 2ησ1
{

σ1
2(σ1 −1)+d2 (3+ησ1 −σ1)

}
, ξ1 =

A3
A1+A2

and η1 =
A2
A1

.

Using power law ansatz with model (4.1.13) and radial function (4.3.2) into (2.9.3) and

integrating we have scalar potential of the form

V (ϕ) =
2ηγ̃ξ1σ1d−2ϕ0

−2/σ1

ησ1 +2
ϕ

ησ1+2
σ1 +

ω0σ1
2(1+ξ1)(−2+2σ1 +ζσ1)d−2ϕ0

−2/σ1

ζσ1 +2σ1 +2

× ϕ
ζ σ1+2σ1+2

σ1 − ω0c1σ1
2(−1+η1 +2σ1 +ζσ1)d−3−η1ϕ0

−3−η1
σ1

ζσ1 +2σ1 +η1 +3
ϕ ζ+2+η1+3

σ1

+
2ηc1η1γ̃σ1d−η1−3ϕ0

−η1−3
σ1

ησ1 +η1 +3
ϕ

ησ1+η1+3
σ1 + c0 . (4.3.3)

The throat is located at r = r0 if it satisfy the condition β (r0) = r0. Using this relation we

have calculated that the throat is located at r0 =
(

c1
1+ξ1

) 1
η1+1 . The constant of integration

is calculated c1 = (1+ ξ1)r0
1+η1 by using the relation β (r0) = r0. Using β ′(r0) = −ξ1 −

c1η1r0
−1−η1 one can also conclude that β ′(r0) < 1 imposes the restriction η1 > −1. The

asymptotically flatness condition is β (r)
r →−ξ1 as r → ∞.

Taking η = 1 and ζ = −1, we get f (R,ϕ) = γ̃Rϕ which describes the BD theory. We

will discuss the behavior of β (r), ρ and ρ + p by taking the parameters d = ω0 = c0 =

ϕ0 = 1, σ1 = −2.4, r0 = 1 and γ̃ = −0.5. The behavior of the shape function is shown in

Fig. 4.9. It shows that β (r) is increasing and also satisfy β (r) < r. The behavior of NEC
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and WEC is shown in Fig.4.10. In that case, ρ > 0 and ρ + p > 0 are satisfied throughout

the evolution.

Figure 4.9: The behavior of β (r) versus r taking η = 1, ζ =−1, σ1 =−2.4, r0 = 1 in case

of BD theory.

Figure 4.10: The behavior of ρ and ρ + pr versus r taking η = 1, ζ = −1, σ1 = −2.4,

r0 = 1 for BD theory.

For induced gravity, we have taken η = 2, ζ > 0. To analyze the plots of β (r), ρ and

ρ + p we have chosen the parameters ω0 = −0.5, r0 = d = c0 = 1, ϕ0 = 0.05, σ1 = −2.4

and γ̃ =−0.5.

In Fig.4.11, plot shows the increasing behavior of shape function and validate the term

β (r) < r. The behavior of NEC and WEC is shown in Fig.4.12, which shows the validity
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throughout the evolution.

Figure 4.11: The behavior of β (r) versus r taking η = 2, ζ = 2, σ1 =−2.4, r0 = 1 in case

of Induced gravity.

Figure 4.12: Plot shows the evolution of ρ and ρ + p in case of Induced gravity for the

parameters η = 2, ζ = 2, σ1 =−2.4, r0 = 1, γ̃ =−0.5.

4.4 Barotropic fluid with EoS pr = w(r)ρ

In this section, we are applying a specific EoS pr = w(r)ρ which involves radial pressure,

energy density and a positive radial function w(r). In [171], Rahaman et al. has used that
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type of EoS with varying parameter. We are using here scalar potential of the form

V (ϕ) =
V0

ϕ δ1

4.4.1 w(r) = w =Constant

First we are taking w(r) = w = constant. Utilizing the above EoS with constant parameter

for our field equations (4.1.14), (4.1.15), we have constraint of the following form

ϕ0
−δ1

rκ2

(
d
r

)−δ1σ1
[
−2κ2r3V0(w+1)+2ηrγ̃σ1(−2+3w+ησ1w)ϕ0

η+δ1

(
d
r

)σ1(η+δ1)

−rω0σ1
2(w+1)ϕ0

ζ+2+δ1

(
d
r

)σ1(ζ+2+δ1)

+ω0σ1
2(w+1)β (r)

(
d
r

)σ1(ζ+2+δ1)

×ϕ0
ζ+2+δ1 − γ̃ϕ0

η+δ1

(
d
r

)σ1(η+δ1){
(2−4ησ1 +7ησ1w+2η2σ1

2w)β (r)+ rw

×(2−ησ1)β ′(r)
}]

= 0 . (4.4.1)

It cannot be solved analytically, that’s why we are solving it numerically and results are

shown below.

• Brans-Dicke Theory:

In case of BD we are using η = 1, ζ =−1 and by varying the parameters ω0, σ1, γ̃ , δ1, w,

ϕ0, V0 we will discuss the behavior of β (r), β ′(r), β (r)
r , β (r)− r, ρ , ρ + pr and ρ + pt .

(a) Plot of β (r) (b) Plot of β ′(r)

Figure 4.13: The behavior of β (r) and β ′(r) versus r taking ω0 =−2, σ1 = 0.008, γ̃ =−1,

δ1 = 3, w = 15, ϕ0 = 10, V0 = 0.1.
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(a) Plot of β (r)
r (b) Plot of β (r)− r

Figure 4.14: The behavior of β (r)
r and β (r)− r versus r taking ω0 = −2, σ1 = 0.008,

γ̃ =−1, δ1 = 3, w = 15, ϕ0 = 10, V0 = 0.1.

In Fig.4.13a behavior of the shape function has been shown. It can be analyzed that

it shows the increasing behavior and meet the inequality β (r) < r. It can be seen from

Fig.4.14a that β (r)/r → 0 as r →∞ that means the spacetime is asymptotically flat. Fig.4.14b

shows that β (r)− r < 0, which fulfill the condition 1− β (r)/r > 0. Using β (r0) = r0

we have throat at r0 = 0.2114. The plot of β ′(r) is shown in Fig.4.13b and β ′(r0) =

−0.0709365 which fulfill the condition β ′(r0)< 1. Evolution of NEC and WEC is shown

in Fig.4.15. Here ρ > 0 and ρ + pr > 0 are satisfied throughout the evolution but ρ + pt > 0

is not satisfied.

Figure 4.15: The behavior of ρ , ρ + pr and ρ + pt versus r for the parameters ω0 = −2,

σ1 = 0.008, γ̃ =−1, δ1 = 3, w = 15, ϕ0 = 10, V0 = 0.1.
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• Induced Gravity:

For induced gravity we use η = 2, ζ > 0 and by varying the parameters ω0, σ1, γ̃ , δ1, w,

ϕ0, V0, we will discuss the behavior of β (r), β ′(r), β (r)
r , β (r)− r, ρ , ρ + pr and ρ + pt .

(a) Plot of β (r) (b) Plot of β ′(r)

Figure 4.16: The behavior of β (r) and β ′(r) versus r taking ω0 =−2, σ1 = 0.008, γ̃ =−1,

δ1 = 3, w = 10, ϕ0 = 10, V0 = 0.1.

(a) Plot of β (r)
r (b) Plot of β (r)− r

Figure 4.17: The behavior of β (r)
r and β (r)− r versus r taking ω0 = −2, σ1 = 0.008,

γ̃ =−1, δ1 = 3, w = 10, ϕ0 = 10, V0 = 0.1.

In Fig.4.16a behavior of the shape function has been shown. It can be analyzed that

it shows the increasing behavior and meet the inequality β (r) < r. It can be seen from

Fig.4.17a that β (r)/r → 0 as r → ∞ that means the spacetime is asymptotically flat. The

plot in Fig.4.17b shows that β (r)−r < 0, which fulfill the condition 1−β (r)/r > 0. Using

β (r0) = r0, we have throat at r0 = 0.2159. The plot of β ′(r) is shown in Fig.4.16b and

β ′(r0) = −0.108932 which fulfill the condition β ′(r0) < 1. Evolution of NEC and WEC
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is shown in Fig.4.18. Here ρ > 0 and ρ + pr > 0 are satisfied throughout the evolution but

ρ + pt > 0 is not satisfied in this case.

Figure 4.18: The behavior of ρ , ρ + pr and ρ + pt for the parameters ω0 =−2, σ1 = 0.008,

γ̃ =−1, δ1 = 3, w = 10, ϕ0 = 10, V0 = 0.1.

4.4.2 w(r) = B̃rl

Now we will take w(r) = B̃rl with B̃ and l as positive constants. Utilizing the above EoS

with variable parameter for our field equations (4.1.14), (4.1.15) we have constraint of the

following form

ϕ0
−δ1

rκ2

(
d
r

)−δ1σ1
[
−2κ2r3V0(1+ B̃rl)+2ηrγ̃σ1(−2+3B̃rl +ησ1B̃rl)ϕ0

η+δ1

×
(

d
r

)σ1(η+δ1)

− rω0σ1
2(1+ B̃rl)ϕ0

ζ+2+δ1

(
d
r

)σ1(ζ+2+δ1)

+ω0σ1
2(1+ B̃rl)ϕ0

ζ+2+δ1

×
(

d
r

)σ1(ζ+2+δ1)

β (r)− γ̃ϕ0
η+δ1

(
d
r

)σ1(η+δ1){
(2−4ησ1 +7ησ1B̃rl +2η2σ1

2B̃rl)

×β (r)+ B̃rl+1(2−ησ1)β ′(r)
}]

= 0 . (4.4.2)

We are solving it numerically because analytically it cannot be solved. The results are

shown below.
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• Brans-Dicke Theory:

In case of BD we are using η = 1, ζ = −1 and by choosing the parameters ω0 = −2,

σ1 = 0.008, γ̃ = −1, δ1 = 5, B̃ = 2, l = 5 ϕ0 = 10, V0 = 0.1 we will discuss the behavior

of β (r), β ′(r), β (r)
r , β (r)− r, ρ , ρ + pr and ρ + pt .

(a) Plot of β (r) (b) Plot of β ′(r)

Figure 4.19: The behavior of β (r) and β ′(r) versus r taking ω0 =−2, σ1 = 0.008, γ̃ =−1,

δ1 = 5, B̃ = 2, l = 5 ϕ0 = 10, V0 = 0.1.

(a) Plot of β (r)
r (b) Plot of β (r)− r

Figure 4.20: Left plot shows the behavior of β (r)
r and right plot shows the behavior of

β (r)− r versus r for the parameters ω0 = −2, σ1 = 0.008, γ̃ = −1, δ1 = 5, B̃ = 2, l = 5

ϕ0 = 10, V0 = 0.1.

In Fig.4.19a behavior of the shape function has been shown. It can be analyzed that

it shows the increasing behavior and meet the inequality β (r) < r. The plot in Fig.4.20a

shows that β (r)/r → 0 as r → ∞ that means the spacetime is asymptotically flat. The

plot in Fig.4.20b shows that β (r)− r < 0, which fulfill the condition 1−β (r)/r > 0. For
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β (r0)= r0, the throat is located at r0 = 0.60765. The plot of β ′(r) is shown in Fig.4.19b and

β ′(r0)=−6.06523 which fulfill the condition β ′(r0)< 1. The Fig.4.21 shows the evolution

of NEC and WEC. Here ρ > 0 and ρ + pr > 0 are satisfied throughout the evolution but

ρ + pt > 0 is not satisfied.

Figure 4.21: The behavior of ρ , ρ + pr and ρ + pt versus r for the parameters ω0 = −2,

σ1 = 0.008, γ̃ =−1, δ1 = 5, B̃ = 2, l = 5 ϕ0 = 10, V0 = 0.1.

• Induced Gravity:

For induced gravity we use η = 2, ζ > 0 and by choosing the parameters ω0 = −2, σ1 =

0.008, γ̃ = −1, δ1 = 3, B̃ = 2, l = 2.5 ϕ0 = 10, V0 = 0.1, we will discuss the behavior of

β (r), β ′(r), β (r)
r , β (r)− r, ρ , ρ + pr and ρ + pt .

(a) Plot of β (r) (b) Plot of β ′(r)

Figure 4.22: The behavior of β (r) and β ′(r) versus r taking ω0 =−2, σ1 = 0.008, γ̃ =−1,

δ1 = 3, B̃ = 2, l = 2.5 ϕ0 = 10, V0 = 0.1.
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(a) β (r)
r (b) Plot of β (r)− r

Figure 4.23: The behavior of β (r)
r and β (r)− r versus r taking ω0 = −2, σ1 = 0.008,

γ̃ =−1, δ1 = 3, B̃ = 2, l = 2.5 ϕ0 = 10, V0 = 0.1.

The left plot of Fig.4.22a shows the behavior of the shape function. It can be analyzed

that it shows the increasing behavior and meet the inequality β (r) < r. It can be seen

from Fig.4.23a that β (r)/r → 0 as r → ∞ that means the spacetime is asymptotically flat.

Fig.4.23b shows that β (r)− r < 0, which fulfill the condition 1−β (r)/r > 0. For β (r0) =

r0, throat is located at r0 = 0.43055. The plot of β ′(r) is shown in Fig.4.22b and β ′(r0) =

−4.15156 which fulfill the condition β ′(r0)< 1. Evolution of NEC and WEC is shown in

Fig.4.24. Here ρ > 0 and ρ + pr > 0 are satisfied throughout the evolution but ρ + pt > 0

is not satisfied in this case.

Figure 4.24: The plot shows the evolution of ρ , ρ + pr and ρ + pt for the parameters

ω0 =−2, σ1 = 0.008, γ̃ =−1, δ1 = 3, B̃ = 2, l = 2.5 ϕ0 = 10, V0 = 0.1.
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4.5 Barotropic fluid with EoS pt = w(r)ρ

Now we will apply the EoS pt = w(r)ρ which involves lateral pressure, energy density and

a positive radial function w(r). In [171], Rahaman et al. has used that type of EoS with

varying parameter. We are using here scalar potential of the form

V (ϕ) =
V0

ϕ δ1

4.5.1 w(r) = w =Constant

First we are taking w(r) = w = constant. Utilizing the above EoS with constant parameter

for our field equations (4.1.14), (4.1.15) we have constraint of the following form

1
rκ2

(
d
r

)−δ1σ1

ϕ0
−δ1

[
−2κ2r3V0(w+1)+2ηrγ̃σ1(3w+ησ1 +ησ1w)ϕ0

η+δ1

×
(

d
r

)σ1(η+δ1)

− rω0σ1
2(w+1)ϕ0

ζ+2+δ1

(
d
r

)σ1(ζ+2+δ1)

+ω0σ1
2(w+1)ϕ0

ζ+2+δ1

×
(

d
r

)σ1(ζ+2+δ1)

β (r)− γ̃ϕ0
η+δ1

(
d
r

)σ1(η+δ1){
(−1+ησ1 +7ησ1w+2η2σ1

2

+2η2σ1
2w)β (r)− r(−1−2w+ησ1 +ησ1w)β ′(r)

}]
= 0 .

It is highly nonlinear equation, we are solving it numerically and results are shown below.

• Brans-Dicke Theory:

In case of BD we are using η = 1, ζ = −1 and by choosing the parameters ω0 = −2,

σ1 = 0.009, γ̃ = 1, δ1 = 3, w = 25, ϕ0 = 10, V0 = 0.1 we will discuss the behavior of β (r),

β ′(r), β (r)
r , β (r)− r, ρ , ρ + pr and ρ + pt .

In Fig.4.25a, plot shows the behavior of the shape function. It can be analyzed that

it shows the increasing behavior and meet the inequality β (r) < r. It can be seen from

Fig.4.26a that β (r)/r → 0 as r →∞ that means the spacetime is asymptotically flat. Fig.4.26b

shows that β (r)− r < 0, which fulfill the condition 1−β (r)/r > 0. For β (r0) = r0, throat

is located at r0 = 0.18195. The plot of β ′(r) is shown in Fig.4.25b and β ′(r0) = 0.015082

which fulfill the condition β ′(r0)< 1. Evolution of NEC and WEC is shown in right plot of
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Fig.4.27. Here ρ > 0 and ρ + pt > 0 are satisfied throughout the evolution but ρ + pr > 0

is not satisfied.

(a) Plot of β (r) (b) Plot of β ′(r)

Figure 4.25: The behavior of β (r) and β ′(r) versus r taking ω0 =−2, σ1 = 0.009, γ̃ = 1,

δ1 = 3, w = 25, ϕ0 = 10, V0 = 0.1.

(a) β (r)
r (b) Plot of β (r)− r

Figure 4.26: Left plot shows the behavior of β (r)
r versus r and right plot shows the behavior

of β (r)− r for the parameters ω0 = −2, σ1 = 0.009, γ̃ = 1, δ1 = 3, w = 25, ϕ0 = 10,

V0 = 0.1.

Figure 4.27: The plot shows the evolution of ρ , ρ + pr and ρ + pt for the parameters

ω0 =−2, σ1 = 0.009, γ̃ = 1, δ1 = 3, w = 25, ϕ0 = 10, V0 = 0.1.
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• Induced Gravity:

For induced gravity we use η = 2, ζ > 0 and by varying the parameters ω0 = −2, σ1 =

0.0008, γ̃ = 1, δ1 = 3, w = 25, ϕ0 = 10, V0 = 0.1, we will discuss the behavior of β (r),

β ′(r), β (r)
r , β (r)− r, ρ , ρ + pr and ρ + pt .

(a) Plot of β (r) (b) Plot of β ′(r)

Figure 4.28: The behavior of β (r) and β ′(r) versus r taking ω0 =−2, σ1 = 0.0008, γ̃ = 1,

δ1 = 3, w = 25, ϕ0 = 10, V0 = 0.1.

(a) β (r)
r (b) Plot of β (r)− r

Figure 4.29: Left plot shows the behavior of β (r)
r versus r and right plot shows the evolution

of β (r)− r for the parameters ω0 = −2, σ1 = 0.0008, γ̃ = 1, δ1 = 3, w = 25, ϕ0 = 10,

V0 = 0.1.

In Fig.4.28a behavior of the shape function has been shown. It can be analyzed that

it shows the increasing behavior and meet the inequality β (r) < r. It can be seen from

Fig.4.29a that β (r)/r → 0 as r → ∞ that means the spacetime is asymptotically flat. The

plot of Fig.4.29b shows that β (r)−r < 0, which fulfill the condition 1−β (r)/r > 0. Using

β (r0) = r0, we have throat at r0 = 0.19165. The plot of β ′(r) is shown in Fig.4.28b and
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β ′(r0) = 0.0188052 which fulfill the condition β ′(r0)< 1. Evolution of NEC and WEC is

shown in Fig.4.30. Here ρ > 0 and ρ + pt > 0 are satisfied throughout the evolution but

ρ + pr > 0 is not satisfied in this case.

Figure 4.30: The plot shows the evolution of ρ , ρ + pr and ρ + pt for the parameters

ω0 =−2, σ1 = 0.0008, γ̃ = 1, δ1 = 3, w = 25, ϕ0 = 10, V0 = 0.1.

4.5.2 w(r) = B̃rl

Now we will take w(r) = B̃rl with B̃ and l as positive constants. Utilizing the above EoS

with variable parameter for our field equations (4.1.14), (4.1.15), we have constraint of the

following form

1
rκ2

(
d
r

)−δ1σ1

ϕ0
−δ1

[
−2κ2r3V0(1+ B̃rl)+2ηrγ̃σ1(3B̃rl +ησ1 +ησ1B̃rl)ϕ0

η+δ1

×
(

d
r

)σ1(η+δ1)

− rω0σ1
2(1+ B̃rl)ϕ0

ζ+2+δ1

(
d
r

)σ1(ζ+2+δ1)

+ω0σ1
2(1+ B̃rl)ϕ0

ζ+2+δ1

×
(

d
r

)σ1(ζ+2+δ1)

β (r)− γ̃ϕ0
η+δ1

(
d
r

)σ1(η+δ1){
(−1+ησ1 +7ησ1B̃rl +2η2σ1

2

+2η2σ1
2B̃rl)β (r)− r(−1−2B̃rl +ησ1 +ησ1B̃rl)β ′(r)

}]
= 0 .

We are solving it numerically because analytically it cannot be solved. The results are

shown below.
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• Brans-Dicke Theory:

In case of BD we are using η = 1, ζ = −1 and by choosing the parameters ω0 = −2,

σ1 = 0.008, γ̃ = 1, δ1 = 5, B̃ = 2, l = 5 ϕ0 = 10, V0 = 1 we will discuss the behavior of

β (r), β ′(r), β (r)
r , β (r)− r, ρ , ρ + pr and ρ + pt .

(a) Plot of β (r) (b) Plot of β ′(r)

Figure 4.31: The behavior of β (r) and β ′(r) versus r taking ω0 =−2, σ1 = 0.008, γ̃ = 1,

δ1 = 5, B̃ = 2, l = 5 ϕ0 = 10, V0 = 1.

(a) β (r)
r (b) Plot of β (r)− r

Figure 4.32: Left plot shows the behavior of β (r)
r versus r and right plot shows the behavior

of β (r)− r for the parameters ω0 = −2, σ1 = 0.008, γ̃ = 1, δ1 = 5, B̃ = 2, l = 5 ϕ0 = 10,

V0 = 1.

In Fig.4.31a behavior of the shape function has been shown. It can be analyzed that

it shows the increasing behavior and meet the inequality β (r) < r. It can be seen from

Fig.4.32a that β (r)/r → 0 as r → ∞ that means the spacetime is asymptotically flat. The

plot in Fig.4.32b shows that β (r)− r < 0, which fullfil the condition 1−β (r)/r > 0 and

for β (r0) = r0, throat is located at r0 = 0.0001. The plot of β ′(r) is shown in Fig.4.31b
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and β ′(r0) = 0.267906 which fulfill the condition β ′(r0)< 1. Evolution of NEC and WEC

is shown in Fig.4.33. Here ρ > 0 and ρ + pt > 0 are satisfied throughout the evolution but

ρ + pr > 0 is not satisfied.

Figure 4.33: The plot shows the evolution of ρ , ρ + pr and ρ + pt for the parameters

ω0 =−2, σ1 = 0.008, γ̃ = 1, δ1 = 5, B̃ = 2, l = 5 ϕ0 = 10, V0 = 1.

• Induced Gravity:

For induced gravity we use η = 2, ζ > 0 and by choosing the parameters ω0 = −2, σ1 =

0.008, γ̃ = 1, δ1 = 5, B̃ = 2, l = 2.5 ϕ0 = 10, V0 = 1, we will discuss the behavior of β (r),

β ′(r), β (r)
r , β (r)− r, ρ , ρ + pr and ρ + pt .

(a) Plot of β (r) (b) Plot of β ′(r)

Figure 4.34: The behavior of β (r) and β ′(r) versus r taking ω0 =−2, σ1 = 0.008, γ̃ = 1,

δ1 = 5, B̃ = 2, l = 2.5 ϕ0 = 10, V0 = 1.
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(a) β (r)
r (b) Plot of β (r)− r

Figure 4.35: Left plot shows the behavior of β (r)
r versus r and right plot shows the evolution

of β (r)− r for the parameters ω0 =−2, σ1 = 0.008, γ̃ = 1, δ1 = 5, B̃ = 2, l = 2.5 ϕ0 = 10,

V0 = 1.

In Fig.4.34a behavior of the shape function has been shown. It can be analyzed that

it shows the increasing behavior and meet the inequality β (r) < r. It can be seen from

Fig.4.35a that β (r)/r → 0 as r →∞ that means the spacetime is asymptotically flat. Fig.4.35b

shows that β (r)−r < 0, which fulfill the condition 1−β (r)/r > 0 and for β (r0)= r0, throat

is located at r0 = 0.001. The plot of β ′(r) is shown in Fig.4.34b and β ′(r0) = 0.0785625

which fulfill the condition β ′(r0) < 1. Evolution of NEC and WEC is shown in Fig.4.36.

Here ρ > 0 and ρ + pt > 0 are satisfied throughout the evolution but ρ + pr > 0 is not

satisfied in this case.

Figure 4.36: plot shows the evolution of ρ , ρ + pr and ρ + pt for the parameters ω0 =−2,

σ1 = 0.008, γ̃ = 1, δ1 = 5, B̃ = 2, l = 2.5 ϕ0 = 10, V0 = 1.
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Chapter 5

Inflation in f (R,ϕ) gravity with

exponential model



5.1 Model and Background Solution

The action of f (R,ϕ) theory is described in (2.9.1). We are taking following f (R,ϕ) model

f (R,ϕ) =
1
κ
[R+h(ϕ)R2eα̃R], (5.1.1)

where h(ϕ) is a coupling function. By expanding the exponential in terms of Ricci scalar

up to the first order, we have

f (R,ϕ)≃ 1
κ
[R+h(ϕ)(R2 + α̃R3)]. (5.1.2)

The field equations for f (R,ϕ) gravity are given in (2.9.2) and (2.9.3). In case of scalar

field and modified gravity, the corresponding EMT are defined as, respectively

T ϕ
µν = ω

(
∂µϕ∂νϕ − 1

2
gµν∂cϕ∂ cϕ

)
−gµνV (ϕ) , (5.1.3)

T MG
µν =

1
2

gµν( f −FR)+∇µ∇µF −gµν2F . (5.1.4)

Now, we will find exact solution analytically in dS case.

5.1.1 Background Inflationary Solution

Using FRW space time (3.1.1) with sign (−,+,+,+), the field equations (2.9.2) and (2.9.3)

can be written as

−ωϕ̇ 2 −6F(Ḣ +H2)+6ḞH +2V − f = 0 , (5.1.5)

4FH2 +2F(Ḣ +H2)−ωϕ̇ 2 −2F̈ −4FH −2V + f = 0 , (5.1.6)

2ωϕ̈ +6ωϕ̇H −
h,ϕ f

h
+

12h,ϕ H2

hκ
+

6h,ϕ Ḣ
hκ

+2V,ϕ = 0 , (5.1.7)

where h = h(ϕ) being the coupling function. Here, we are considering the following as-

sumptions

a(t) = a0eHDt and ϕ = ϕ0e−ñHDt , (5.1.8)

where ñ, ϕ0 and HD are constants. Substituting (5.1.8) in Eqs. (5.1.5)-(5.1.7) and solving

these equations, we get the coupling function of the form

h(ϕ) = h0 +h1ϕ 2 +hñϕ−1/ñ, (5.1.9)
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where h1 =− ñωκ
48HD

2(2ñ+1)(18α̃HD
2+1)

and hñ = ñc1. The scalar field potential is

V (ϕ) =V0 +V1ϕ 2 +Vñϕ−1/ñ, (5.1.10)

where

V0 =
3HD

2h0

κ
, V1 = 24h1HD

4{−18α̃HD
2 + ñ2 (36α̃HD

2 +2
)
−5ñ

(
18α̃HD

2 +1
)}

,

Vñ = −
72hñHD

4 (12α̃HD
2 +1

)
κ

.

Here h0 is the constant of integration. It can be seen that this is an exact solution obtained

from the background equations. We are mentioning here some important points: First,

we have obtained the solution without using conformal transformation. According to best

of our knowledge, in Jordan frame no exact solution exists. Second, in case of exact dS

solution, the scalar field (5.1.8) decreases with increasing time. Third, coupling function

h(ϕ) directly depends on V (ϕ).

From Eqs.(5.1.9) and (5.1.10), it can be seen that V0 depends on h0, similarly, Vñ de-

pends on hñ and h1 is related to V1. If we choose h0 = hñ = 0, then it is obvious that V0 and

Vñ also vanished.

5.2 Special Case: h0 = hñ = 0

Here, we consider h0 = hñ = 0. The coupling function and potential are reduced to

h(ϕ) = h1ϕ 2, V (ϕ) =V1ϕ 2. (5.2.1)

This leads to conclude the following points. It can be seen that h1 is positive definite implies

that 18α̃HD
2+1 < 0 or α̃ <−1/(18HD

2). Since, during inflation the parameter H is large,

leads to small negative value of α̃ . From the EMT (5.1.3) and (5.1.4), we can calculate

ρ +3p as

ρ +3p ≡−T 0
0 +T µ

µ = 2ϕ0
2HD

2e−2ñHDt [ñ2 +V 1−h1
{

72HD
2(1+2ñ+2ñ2)

+ 648α̃HD
4(3+2ñ+4ñ2)

}]
. (5.2.2)

In (5.2.2), the first two terms correspond to the canonical scalar field while the last term

corresponds to the modifications to the gravity. For ñ < 1/2, the third term is always
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negative while positive for ñ > 1/2. However, ñ ≪ 1 leads to ρ + 3p < 0 and for ñ ≫ 1,

we have ρ +3p > 0. In the further analysis, we are taking ñ ≫ 1. We can say from above

discussion that either it corresponds to exit for large values of ñ or by varying the initial

condition of ϕ̇ . If ϕ̇t=0 ̸= ϕ̇ dS
t=0, then we will check that what kind of inflation exists using

the relation ϕ̇ ∝ ñ.

5.3 First Order Scalar and Tensor Perturbations for the Model

The cosmological perturbation theory is an effective and competent tool to study the uni-

verse. The universe is homogeneous, but the actual universe is not homogeneous. If uni-

verse is totally homogeneous then we cannot observe the local structures of the universe

such as galaxies and clusters of galaxies. We are using the FLRW universe, which is per-

fectly homogeneous model and give accurate descriptions only on large scales. If we Intro-

duce inhomogeneities and anisotropies in our model then it will be very difficult to explain

how stars and galaxies were formed. The correct way to explain it through perturbation

theory. We are using FLRW spacetime and apply perturbation theory to deal with inho-

mogeneities and anisotropies. In perturbation expansion, FLRW spacetime can be seen as

the zeroth order term. First we should derive the perturbation expansion, substitute it into

EFEs and find the solution. In this technique, the problem is that EFEs are covariant while

having metric and include perturbations is not a covariant process, it introduces the gauge

dependence.

Now we will discuss the scalar and tensor power-spectra for our model (5.1.2). We have

used the same notation as used in [172] then it will be easy to compare. For our model,

analysis of [172] is not applicable.

5.3.1 Perturbations

For FRW space time first order perturbations are

ds2 =−(1+2θ)dt2 −a(β,α +Bα)dtdxα +a2
[
g(3)αβ (1−2ψ)+2γ,α|β +2Cα|β +2Cαβ

]
.

(5.3.1)
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In the above expression dt ≡ adη and θ(x, t), β (x, t), ψ(x, t), γ(x, t) are the scalar perturba-

tions. Bα(x, t) and Cα(x, t) denote the tracefree vector perturbation and Cαβ (x, t) presents

the tracefree and transverse tensor perturbations. The decomposed form of scalar field is

ϕ(x, t) = ϕ̄(t)+δϕ(x, t).

In Fourier space, scalar perturbed equations of Newtonian gauge are [172, 173]:

−Fψ +Fθ +δF = 0 , (5.3.2)

−2Fψ̇ −2FHθ − Ḟθ + ϕ̇δϕ + ˙δF −HδF = 0 , (5.3.3)

6FHψ̇ +6FH2θ +2F
k2

a2 ψ − ϕ̇ 2θ +3Ḟψ̇ +6ḞHθ + ϕ̇ ˙δϕ − ϕ̈δϕ −3Hϕ̇δϕ −3H ˙δF

+3ḢδF +3H2δF − k2

a2 δF = 0 , (5.3.4)

6Fψ̈ +12FḢθ +6FHθ̇ +12FHψ̇ +12FH2θ −2F
k2

a2 θ +3Ḟψ̇ +6ḞHθ + Ḟ θ̇

+4ϕ̇ 2θ +6θ F̈ −4ϕ̇ ˙δϕ −2ϕ̈δϕ −6Hϕ̇δϕ −3 ¨δF −3H ˙δF +6H2δF − k2

a2 δF = 0 ,

(5.3.5)

¨δϕ +3H ˙δϕ − 1
2

fϕϕ +Vϕϕ δϕ +
k2

a2 δϕ −3ϕ̇ ψ̇ −6Hϕ̇θ − ϕ̇ θ̇ −2ϕ̈θ +3Fϕ ψ̈ +6Fϕ Ḣθ

+3HFϕ θ̇ +12Fϕ Hψ̇ +12Fϕ H2θ +2Fϕ
k2

a2 ψ −Fϕ
k2

a2 θ = 0 , (5.3.6)

δF −Fϕ δϕ +FRδR = 0 . (5.3.7)

where δR = −6ψ̈ − 12Ḣθ − 6Hθ̇ − 24Hψ̇ − 24H2θ − 4 k2

a2 ψ + 2 k2

a2 θ . While the tensor

perturbations are as follows [173]:

C̈α
β +

(
Ḟ
F
+3H

)
Ċα

β +
k2

a2Cα
β = 0 . (5.3.8)

5.3.2 Scalar Power Spectrum

Here we calculate the equation, which satisfy the 3-curvature perturbation R and derive the

related power spectrum. We are using the technique followed in [174]. The R in Jordan

frame is stated as

R = ψ +
H
ϕ̇

δϕ . (5.3.9)
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The equations (5.3.2)-(5.3.7) are highly ordered and non-linear so, we use different tech-

niques to calculate the 3-curvature perturbation equation. First, we will use θ +ψ = Θ and

find the solution of differential equation. Physically, in Einstein frame, Θ represents the

Bardeen potential. Using Eqs.(5.3.3)-(5.3.5), we have differential equation in Θ as:

FΘ̈+

(
3Ḟ +FH − 2F ϕ̈

ϕ̇

)
Θ̇+

(
Fk2

a2 +
2Ḟ ϕ̈

ϕ̇
− 2FHϕ̈

ϕ̇
− F̈ + ḞH +4FḢ

)
Θ

+

(
−ϕ̇ 2 +3F̈ +3ḞH −6FḢ − 6Ḟ ϕ̈

ϕ̇

)
θ = 0 . (5.3.10)

Using background quantities for dS, assuming ñ ≪ 1 and large values of k, we have differ-

ential equation in terms of Θ as

Θ̈+(1−4ñ)HDΘ̇+
k2

a2 Θ−4ñ(1− ñ)HD
2θ = 0 . (5.3.11)

Applying the small wavelength limit k
a ≫ 1, the last two terms of the left hand side can be

written as (
k2

a2 −4ñ(1− ñ)HD
2
)

θ +
k2

a2 ψ ≃ k2

a2 Θ . (5.3.12)

which can further be written as

Θ̈+(1−4ñ)HDΘ̇+
k2

a2 Θ = 0 . (5.3.13)

In terms of Θ, δϕ is as follows

δϕ =−ϕ0e−ñHDt

ñHD
(Θ̇+HDΘ) . (5.3.14)

Rewriting the perturbation equations in terms of R and using Eqs. (5.3.9) and (5.3.13), we

have Θ in terms of R as

Θ =−(3a2R̈+12HDa2Ṙ+2k2R)
ñHD

ϕ0
eñHDt ,

substituting it into the perturbation equations, we get the differential equation in terms of

R:

R̈+3HDṘ+
k2

a2 R = 0 . (5.3.15)

It is an important result which shows that higher order differential equation can be reduced

to second order. For the power-spectrum, we can evaluate solution to the above differential
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equation for the short wavelength limit and using the Bunch-Davies vacuum at the initial

epoch of inflation as

R< =
HD

2a
√

k
e−ikη̃ . (5.3.16)

In the long wavelength limit, we get R> =C. By matching R< and R> at horizon crossing

(|kη̃ |= 2π), we get

C =

√
2HDπ
k3/2 , (5.3.17)

leading to following scale-invariant scalar power spectrum

PR = HD
2.

For ñ ≪ 1, above analysis is an analytical expression. It is not possible to obtain the semi-

analytical expression for other cases, which shows the tilted spectrum. Next, we derive the

tensor power spectrum without using ñ ≪ 1 limit which leads to blue tilt.

5.3.3 Tensor Power Spectrum

Following [173], we can obtain the equation of motion for the tensor perturbation of exact

dS solution

C̈α
β +(3−2ñ)HDĊα

β +
k2

a2Cα
β = 0 . (5.3.18)

Defining Cα
β = vg/zg and zg = ae−ñHDt , we have

vg
′′+

(
k2 −

zg
′′

zg

)
= 0 . (5.3.19)

The solution to the above differential equation is again a sum of Hankel function:

vg =
√
−η̃
(

C̃1H(1)
3/2−ñ(−kη̃)+C̃2H(2)

3/2−ñ(−kη̃)
)
. (5.3.20)

Fixing Bunch-Davies vacuum to the initial state, we have C̃2 = 0 and C̃1 =
√

π/4. Hence

for tensor perturbation Cα
β , we have

vg =

√
π
4

√
−η̃H(1)

3/2−ñ(−kη̃) . (5.3.21)

The tensor power spectrum is given by Pg = 8 k3

2π2 |C α
β |2 and modified as

Pg = 8
(

k
k∗

)2ñ 2−2ñ

4π2 HD
2
(

Γ(3/2− ñ)
Γ(3/2)

)2

e2ñHDt∗ . (5.3.22)
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The tensor spectral index is calculated as nT = 2ñ, which means that for a decaying scalar

field the spectrum obtained is blue tilted i.e., blue tilted for ñ > 1/2 and red tilted for

ñ < 1/2.

5.4 Stability of Inflationary Solution

Now we will discuss the stability of dS solution and will examine the variations of initial

values either they show inflationary phase, super inflation or smooth exit. Hence, to show

the inflationary solution many initial values exist and a mess of models have been discussed

in literature which show the saddle point [175, 176]. The field Eqs (5.1.5)-(5.1.7) in terms

of the variable ∆ = ϕ̇/ϕ can be written as

∆̇ = 2V1 +2592α̃h1ḢH4 +1296α̃h1Ḣ2H2 +1728α̃h1H6 +216α̃h1Ḣ3 −144h1ḢH2

− 144h1H4 −36h1Ḣ2 −3H∆−∆2 , (5.4.1)

Ḧ =
1

36h1H −648α̃h1HḢ −1296α̃h1H3

[
3H2

ϕ0
2 e2ñHDt −180h1ḢH2 +972α̃h1H2Ḣ2

− 3024α̃h1H6 +1296α̃h1ḢH4 +
1
2

∆2 −18h1Ḣ2 +216α̃h1Ḣ3 −V1 −72h1HḢ∆

− 144h1H3∆+648α̃h1HḢ2∆+2592α̃h1H5∆+2592α̃h1H3Ḣ∆
]
. (5.4.2)

The field equations in terms of ∆ shows that the evolution of Hubble parameter, No of

e-folding etc. do not involve ϕ or ϕ̇ , only depends on ∆.

Let us define vector v as:

v =


H

Ḣ

∆

 . (5.4.3)

It is important to note that the dS solution (H = HD) is an equilibrium point (v̇eq = 0) and

{v}eq =


HD

0

−ñHD

 , (5.4.4)
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and the equations for v̇ = f (v) can be written as

v̇ =


Ḣ

Ḧ

∆̇

 . (5.4.5)

As we have mentioned above, perturbing v = veq+δv and expanding f (v) for δv about the

equilibrium point, we have

δvi = {∂ j fi}eqδv j = Ji jδv j . (5.4.6)

where

Ji j =


∂ Ḣ/∂H ∂ Ḣ/∂ Ḣ ∂ Ḣ/∂∆

∂ Ḧ/∂H ∂ Ḧ/∂ Ḣ ∂ Ḧ/∂∆

∂∆̇/∂H ∂ ∆̇/∂ Ḣ ∂ ∆̇/∂∆

 . (5.4.7)

Let the eigen value and eigen vector of Jacobian are λi and µi. Then the phase space

trajectory is given by:

δvi =
i=3

∑
i=1

ciµie(λit) .

where ci’s are constants whose values has to be fixed from initial values of Hubble param-

eter (Hi) and the initial value of ϕ̇
ϕ . In our case, we have one real and two complex eigen

values which are too lengthy in expression due to which we did not mention them in the

paper. For large values of eigen value (λ ), the number of e-folding is given by

N ≈ HD

λ
ln
(

HD
2

λ (HD −H j)

)
.

Fig. 5.1 shows the behavior of slow-roll parameter ε = − Ḣ
H2 versus number of e-folds for

different initial values of ϕ̇ . The parameter ε can be evaluated as under

ε =
24H2 (18α̃H2 +1

)(
2Hh1ϕϕ̇ −2h1ϕ̇ 2 −2h1ϕ̈ϕ

)
2H2 {1−12H2h1ϕ 2 (36α̃H2 +2)}

.

Figure 5.1 is plotted for ε −N trajectories taking some initial values. It can be observed

that for ϕ̇ < 1.4ϕD, the inflationary phase sustained as ε < 1 and ε attains a constant value

less than unity for ϕ̇ ≥ 1.4ϕD, fixing the other parameters as ω0 =−0.005, ϕ0 =−0.3, ñ =

200, HD = 4× 104, H j = 2, α̃ = −10−7. It can be seen that in the space ϕ̇ < ϕD, the
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inflationary phase exist without an exit which represent ε is diverging to −∞ while ϕ̇ > ϕD

leads to the inflationary era with an exit. The initial condition ϕ̇ = ϕD generates ε = 0. In

this case, the results are obtained for standard No. of e-folds, i.e., N ≃ 50, 60, which is in

good agreement with observational data. Further, it is observed that as the value of ϕ̇
ϕD

is

directly proportional to N, as increment in initial value produced an increase in N. Hence

rate of inflation increases as ϕ̇ increases. The trajectories are attracted toward its origin

with increasing initial values. This shows that deviation of initial values form de-Sitter

value leads to either inflation with exit or super inflation, and that the de-Sitter solution is

a saddle point.

Figure 5.1: Evolution of ε versus N for different initial values of ϕ̇ .

The scalar field ϕ is expressed as

ϕ =
6κωHϕ̇

4κv1 −288h1 −3456α̃h1H6 .

Figure 5.2 is plotted for ϕ versus N (left plot) and versus time t (right plot) for standard

No. of e-folds. It can be seen that scalar field is decaying with the evolution of time. The

trajectories of ϕ −N shows the same behavior as ε −N.
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Figure 5.2: Evolution of ϕ versus N for different initial values of ϕ̇ .

The scalar spectral index is defined as [177]

ns = 1−4ε1 −2ε2 +2ε3 −2ε4 ,

where

ε1 =− Ḣ
H2 , ε2 =

ϕ̈
Hϕ̇

, ε3 =
Ḟ

2HF
, ε4 =

Ė
2HE

, E = ωF +
3Ḟ2

2ϕ̇ 2
.

The tensor to scalar ratio is defined as r = Pg
Pr

. For better understanding of the inflationary

model’s compatibility with recent data, we have plotted parametric plots (5.3) in which

scalar spectral index is plotted versus tensor to scalar ratio for ñ > 1. It is observed that for

ñ = 1.61, 1.7, we have the standard value of spectral index ns = 0.968 and an upper bound

of tensor to scalar ratio is obtained as r < 0.11 which is in accordance with Plank 2015 and

2018 data [5]. It can be seen that as the value of ñ increases, the range of ns is compressed.

Figure 5.3: Left plot shows the behavior of r versus ns for ϕ̇ = 0.0065ϕD with ñ = 1.6 and

right plot for ϕ̇ = 0.0065ϕD with ñ = 1.7.
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Chapter 6

Anisotropic Universe Models in f (R,ϕ)

gravity



6.1 Field Equations for Bianchi I Model and Some General Parame-

ters

The field equations of f (R,ϕ) theory are given by (2.9.2) and (2.9.3). The BI is defined in

(2.11.6) for which the scalar curvature R turns out to be

R =−2
[

Ä
A
+2

B̈
B
+2

ȦḂ
AB

+
Ḃ2

B2

]
. (6.1.1)

For the metric (2.11.6), mean Hubble parameter, average scale factor and volume are given

by

H(t) =
1
3

(
Ȧ
A
+2

Ḃ
B

)
a(t) =

(
AB2)1/3

, V = a3(t) = AB2 .

The corresponding directional Hubble parameters are defined as

Hx =
Ȧ
A
, Hy =

Ḃ
B
= Hz . (6.1.2)

The deceleration and anisotropy parameter of expansion are defined as

q =
d
dt

(
1
H

)
−1, ∆ =

1
3

3

∑
ri=1

(
Hi −H

H

)2

. (6.1.3)

For ∆ = 0, we can get the isotropic expansion of the universe. The shear scalar and expan-

sion scalar are turns out to be

σ =
1√
3

(
Ȧ
A
− Ḃ

B

)
, Θ = ua

;a =
Ȧ
A
+2

Ḃ
B
, . (6.1.4)

It is worthwhile to mention here that when t → +∞, V → +∞, ∆ → 0 and ρ > 0, any

universe model becomes isotropic [96, 178].

Now we will define the EMT for anisotropic fluid and also formulate the field equations

for LRS BI model with this matter source. To discuss the accelerated expansion of the

universe, we are taking anisotropic fluid of the form [95, 96]

T µ
ν = diag [ρ ,−px,−py,−pz] , (6.1.5)

where ρ is energy density and px, py, pz are pressures in x, y and z directions, respectively.

For anisotropic fluid, EoS is defined as p = wρ , where w is a variable [179]. By defining
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the directional EoS parameters along x, y and z axes, i.e., wx = w+ δ , wy = w+ γ and

wz = w+ γ , we have (6.1.5) in the following form

Tν = diag [1,−(w+δ ),−(w+ γ),−(w+ γ)]ρ , (6.1.6)

where δ represents the deviation of w on x axis and γ is the deviation on both y and z axes.

Clearly, Eq.(6.1.6) with δ = γ = 0 represents the EMT for isotropic fluid defined below

Tν = diag [ρ ,−wρ ,−wρ,−wρ] . (6.1.7)

For the anisotropic fluid, energy conservation equation can be written as

ρ̇ +(1+w)
(

Ȧ
A
+2

Ḃ
B

)
ρ(t)+

(
δ

Ȧ
A
+2γ

Ḃ
B

)
ρ(t) = 0 . (6.1.8)

Separating the deviation free and anisotropy parts of anisotropic fluid and then by taking

anisotropy part equal to zero [95, 180], we get(
δ

Ȧ
A
+2γ

Ḃ
B

)
ρ(t) = 0 . (6.1.9)

Since energy density is a non-zero quantity, it means either both the deviation parameters

vanish or Hx
Hy

= −2γ
δ . In order to get more general solution, if δ and γ are allowed to be

function of cosmic time t and we constrained δ and γ by assuming a special dynamic which

is consistent with (6.1.9). The dynamic of the deviation parameter on the x axis, δ (t), is

assumed to be [95].

δ (t) =
2n
3

Ḃ
B

(
Ȧ
A
+2

Ḃ
B

)
1
ρ
, (6.1.10)

and thus from (6.1.9) the deviation parameter on the y and z axes, γ(t), is found as

γ(t) =−n
3

Ȧ
A

(
Ȧ
A
+2

Ḃ
B

)
1
ρ
, (6.1.11)

In these assumptions δ (t) and γ(t) are dimensionless parameters and n is a dimensionless

constant that parameterizes the amplitude of the deviation from EoS parameter and can be

given real values. If the deviation parameters approaches to zero or δ (t)−γ(t)
ω → 0 then the

DE is isotropic [95]. For the anisotropic fluid and LRS BI spacetime, the field equations
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take the following form:

(m+2)
Ḃ
B

∂t fR −
{

m(m−1)
Ḃ2

B2 +(m+2)
B̈
B

}
fR +

ω(ϕ) ϕ̇ 2

2
− f

2
+V (ϕ) = κ2 ρ ,

(6.1.12)

∂tt fR +2
Ḃ
B

∂t fR −
{

m(m+1)
Ḃ2

B2 +m
B̈
B

}
fR −

f
2
+V (ϕ)− ω(ϕ) ϕ̇ 2

2
= (w+δ )ρ κ2 ,

(6.1.13)

∂tt fR +(m+1)
Ḃ
B

∂t fR −
{
(m+1)

Ḃ2

B2 +
B̈
B

}
fR −

f
2
+V (ϕ)− ω(ϕ) ϕ̇ 2

2
= (w+ γ)ρ κ2 ,

(6.1.14)

where we have used the condition A = Bm;m ̸= 0, 1 which we have constructed by tak-

ing the term σ
Θ as a constant (assuming the relationship of proportionality between the

expansion and shear scalars). This condition has been widely used in literature, e.g.,

[101, 102, 106]. Basically the set of field equations (6.1.12)-(6.1.14) involve only two in-

dependent equations with five unknown quantities namely B, f , w, V and ρ . Therefore in

order to make a closed system of equations, we have to choose three more conditions. For

this purpose, we consider the well-known power law forms of scalar field and the coupling

constant [146], i.e.,

ϕ = Bβ1, ω(ϕ) = ω0ϕ ζ , (6.1.15)

where β1, ω0 and ζ all are non-zero constants. Feasible graphs can be plotted for all values

of ω0, −∞ < ζ < 6.5 and −∞ < β1 < 1.36. Further, in the coming section, we will consider

two different viable forms of the function f (R,ϕ).

6.2 Solution of field Equations

In this section, we will explore the solution of field equations (6.1.12)-(6.1.14) by using

ansatz (6.1.15) for two different f (R,ϕ) models. Here we will also illustrate the physical

importance of the constructed solutions graphically.

6.2.1 The Model: f (R,ϕ) = R(1+ξ κ2ϕ 2)

First we are choosing the model (3.1.55). Subtracting Eq.(6.1.13) from Eq.(6.1.14) and

then by using the ansatz (6.1.15) with the model (3.1.55), we have the following differential
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equation:

B̈
B
− (m+1)

Ḃ2

B2 +

(
2β1ξ κ2B2β1

1+ξ κ2B2β1

)
Ḃ2

B2 +

(
η2

1+ξ κ2B2β1

)
Ḃ2

B2 = 0 , (6.2.1)

where η2 =
n(m+2)2κ2

3(m−1) . Its twice integration leads to the following form:

Bm−η2

m−η2
+ξ κ2

(
−1+

η2

2β1

)
Bm−η2+2β1

m−η2 +2β1
= c1t + c2, (6.2.2)

where c1, c2 are constants of integration. For x = X , y = Y , z = Z and B = T , LRS BI

metric becomes

ds2 =
1

c12 T 2η2−2m−2
(

1+ξ κ2T 2β1
)2−η2/β1

dT 2 −T 2mdX2 −T 2 (dY 2 +dZ2) . (6.2.3)

The corresponding physical parameters become

V = T m+2, ∆ =
2(m−1)2

(m+2)2 ,

Hx = mHy = mc1 T m−η2
(

1+ξ κ2T 2β1
)−1+ η2

2β1 ,

H =

(
m+2

3

)
c1 T m−η2

(
1+ξ κ2T 2β1

)−1+ η2
2β1 ,

Θ = 3H = (m+2) c1 T m−η2
(

1+ξ κ2T 2β1
)−1+ η2

2β1 ,

σ2 =
1
3
(m−1)2 c1

2 T 2m−2η2
(

1+ξ κ2T 2β1
)−2+η2

β1 ,

q =
3

m+2

{
(η2 −m)+(2β1 −m)ξ κ2T 2β1

1+ξ κ2T 2β1

}
−1,

where β1 > 0 for expanding universe and m > 0, (m ̸= 1). Clearly, the deceleration pa-

rameter is a dynamical quantity. Here by taking some specific values of free parameters,

one can get the negative values of the deceleration parameter. In particular, for T → 0,

the deceleration parameter reduces to q = 3(η2−m)
m+2 − 1 while, for later phases of universe,

i.e., T → ∞, it takes the value q = 3(2β1−m)
m+2 − 1. The behavior of these specific values of

deceleration parameter is shown in Fig. 6.1. The blue curve corresponds to its value when

T → 0 indicating a deceleration phase of the universe while red curve provides its behavior

for later cosmic epochs indicating a negative behavior and hence supports to accelerated

late phases of universe. For m > 0; m ̸= 1, in earlier times, expansion and shear scalar
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goes to infinity and volume is zero while in later times volume goes to infinity and ex-

pansion as well as shear scalars of the universe approaches to zero where the constraints

m < η2 < 2β1 should be satisfied. Which shows the expanding universe at infinite rate of

expansion from zero volume to infinitely large size. For all values of m except m = 1, the

anisotropic parameter of expansion is constant. Hence, in later times the model does not

isotropize.
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Figure 6.1: The left plot represents the behavior of deceleration parameter q versus m while

right plot indicates the behavior of energy density versus T where n= 0.02, β1 = 0.2, m= 2,

ξ =−0.5, ζ =−1.5, ω0 = 0.5, c1 =−0.01 and c3 = 1.

Using model (3.1.55) in (2.9.3), we can write the scalar potential V as follows

V (ϕ)≈V (T ) = ω0 β1
2 c1

2 {2η2 −ζβ1 −2β1 −2m} T ζβ1+2β1+2m−2η2

ζβ1 +2β1 +2m−2η2

+ω0 ξ κ2 c1
2
{

2η2 −2β1 −6η2β1
2 −ζβ1

2η2 −2β1
2η2 +2ζβ1

3 +4mβ1
2 −2mβ1η2

+8β1
3
} T ζβ1+4β1+2m−2η2

ζ β1 +4β1 +2m−2η2
+

4ω0 β1
2 ξ 2 κ4 c1

2(η2 −3β1)

ζβ1 +6β1 +2m−2η2
T ζβ1+6β1+2m−2η2

+
8β1

2 ξ 2κ4 c1
2(m+2)

4β1 +2m−2η2
T 4β1+2m−2η2 +8β1 ξ 3 κ6 c1

2(m+2)(η2 −3β1)

× T 6β1+2m−2η2

6β1 +2m−2η2
+ c3 . (6.2.4)
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Substituting (6.2.4) into (6.1.12), we have

κ2 ρ(T ) = (2m+1)c1
3T 2m−2η2 +

ξ κ2c1
2

β1

(
2mβ1

2 +4β1
2 +2mη2 −2mβ1 +η2 −β1

)
×T 2m−2η2+2β1 +

ξ 2κ4c1
2

β1

{
(η2 −2β1)(2mβ1 +2m+4β1 +1)+

8β1
3(m+2)

2m−2η2 +4β1

}

×T 2m−2η2+4β1 +
8β1ξ 3κ6c1

2(m+2)
2m−2η2 +6β1

(η2 −3β1)T 2m−2η2+6β1 +ω0β1
2c1

2 {2η2 −ζβ1

×−2β1 −2m} T ζβ1+2m−2η2+2β1

2(ζβ1 +2β1 +2m−2η2)
+ω0ξ κ2c1

2
{

2η2
2β1 −8η2β1

2 −ζβ1
2η2

+2ζβ1
3 +8β1

3 −2mβ1η2 +8mβ1
2
} T ζβ1+2m−2η2+4β1

2(ζβ1 +4β1 +2m−2η2)
+4ω0β1

2ξ 2κ4c1
2

×(η2 −3β1)
T ζβ1+2m−2η2+6β1

ζ β1 +2m−2η2 +6β1
+ c3 , (6.2.5)

where c3 denotes the constant of integration. Eq’s (6.1.8) and (6.1.9) leads to

w =−1−
dρ
dt

(m+2)ρ Ḃ
B

. (6.2.6)

Using (6.2.5), we can write the EoS parameter as

w(T ) =−1− 1
(m+2)ρ

[
(2m+1)(2m−2η2)c1

3T 2m−2η2 +
ξ κ2c1

2

β1
(2m−2η2 +2β1)

×
(

2mβ1
2 +4β1

2 +2mη2 −2mβ1 +η2 −β1

)
T 2m−2η2+2β1 +

ξ 2κ4c1
2

β1
(2m−2η2

+4β1)

{
(2mβ1 +2m+4β1 +1)(η2 −2β1)+

8β1
3(m+2)

2m−2η2 +4β1

}
T 2m−2η2+4β1 +8β1ξ 3

×κ6c1
2(m+2)(η2 −3β1)T 2m−2η2+6β1 +

ω0β1
2c1

2

2
T ζβ1+2m−2η2+2β1 {2η2 −ζβ1

−2β1 −2m}+ 1
2

ω0ξ κ2c1
2
{

2β1η2
2 −2mβ1η2 −8β1

2η2 +8β1
3 −ζβ1

2η2 +2ζβ1
3

+8mβ1
2
}

T ζ β1+2m−2η2+4β1 +4ω0β1
2ξ 2κ4c1

2(η2 −3β1)T ζβ1+2m−2η2+6β1

]
, (6.2.7)

where ρ is given by (6.2.5) and the skewness parameters becomes

δ (T ) =
2n(m+2)

3ρ
c1

2T 2m−2η2
(

1+ξ κ2T 2β1
)−2+η2

β1 , (6.2.8)

γ(T ) = −nm(m+2)
3ρ

c1
2T 2m−2η2

(
1+ξ κ2T 2β1

)−2+η2
β1 , (6.2.9)
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and the anisotropic expansion measure of anisotropic fluid becomes

δ − γ
w

=
n(m+2)2c1

2T−2η2+2m
(

1+ξ κ2T 2β1

)−2+η2
β1

3ρ(T )w(T )
, (6.2.10)

where ρ(T ) is given by (6.2.5) and w(T ) is given in (6.2.7).
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Figure 6.2: Left plot represents ρ and right plot indicates scalar potential versus T for

n = 0.02, β1 = 1.2, m = 2, ξ =−0.5, ζ =−1.5, ω0 = 0.5, c1 =−0.01 and c3 = 1.
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Figure 6.3: Left plot refers to skewness parameter δ while right plot provides γ versus T

for n = 0.02, β1 = 1.2, m = 2, ξ =−0.5, ζ =−1.5, ω0 = 0.5, c1 =−0.01 and c3 = 1.

The Right panel of Fig. 6.1 indicates the behavior of density function versus T . Here

we have taken β1 = 0.2. Clearly ρ shows positive decreasing behavior that is consistent

with phenomenon of cosmic expansion. According to which with the expanding universe

T → ∞, the density of cosmos will almost vanish. The left curve of Fig. 6.2 also refers to

positive behavior of energy density for β1 = 1.2 however, it shows increasing behavior that

is a non-physical case. The scalar potential is also positive and shows increasing behavior.

In Fig. 6.3, the behavior of skewness parameters is shown, these are finite at initial time

while in later times, both tends to zero and hence supporting isotropic behavior of fluid in

final stages. Now we will discuss the EoS parameter for β1 >
2(η2−m)

ζ+6 and β1 <
2(η2−m)

ζ+6 . In
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early times of the universe, we get EoS of the form w =−1+ 2(η2−m)
m+2 which may show the

quintessence or decelerated cosmic phase by an appropriate selection of free parameters.

While in later times, we have w = −1 − β1(ζ+6)−2(η2−m)
m+2 , in case of β1 > 2(η2−m)

ζ+6 , we

have w < −1 which shows the phantom region and for β1 <
2(η2−m)

ζ+6 , we can get w > −1

shows the quintessence region. Thus in both cases, we get accelerated phases of cosmos.

In Fig. 6.4, its behavior versus cosmic time has been given. Here the EoS parameter

shows negative behavior indicating the phantom cosmic phase. Also, in the same figure, the

anisotropic expansion measure of anisotropic fluid indicates that in initial cosmic epochs,

this parameter takes infinitely large values but later on, it decreases and converges to zero

for the final stages of universe.
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Figure 6.4: Right plot represents anisotropic expansion measure of anisotropic fluid δ−γ
w

versus T and left plot corresponds to the deviation free EoS parameter w versus T for the

same choice of parameters

.

6.2.2 The Model: f (R,ϕ) = R−2Λ(1−eb1ϕκ3R)
κ2

The second model we have chosen is (3.1.45). Now we will use this model to discuss the

solution of field equations in the presence of anisotropic fluid.

Subtracting (6.1.13) from (6.1.14) and then by using power law ansatz (6.1.15) along

with the model (3.1.45), we have the following differential equation:

B̈
B
− (m+1)

Ḃ2

B2 −

(
2Λb1κ3β1Bβ1

1−2Λb1κ3Bβ1

)
Ḃ2

B2 +

(
η2

1−2Λb1κ3Bβ1

)
Ḃ2

B2 = 0 , (6.2.11)
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where η2 =
n(m+2)2κ4

3(m−1) . Its twice integration yields

Bη2−m

η2 −m
− 2Λb1κ3

β1
(2β1 −2η2)

Bη2−m+β1

η2 −m+β1
= k1t + k2 , (6.2.12)

where k1, k2 are constants of integration. Taking B = T , x = X , y =Y , z = Z, the space-time

reduces to

ds2 =
1
k2

1
T 2η2−2m−2

(
1−2Λb1κ3T β1

)2− 2η2
β1 dT 2 −T 2mdX2 −T 2 (dY 2 +dZ2) . (6.2.13)

The corresponding parameters become

∆ =
2(m−1)2

(m+2)2 , V = T m+2,

Hx = mHy = mk1 T m−η2
(

1−2Λb1κ3T β1
)−1+η2

β1 ,

H =

(
m+2

3

)
k1 T m−η2

(
1−2Λb1κ3T β1

)−1+η2
β1 ,

Θ = 3H = (m+2) k1 T m−η2
(

1−2Λb1κ3T β1
)−1+η2

β1 ,

σ2 =
1
3
(m−1)2 k2

1 T 2m−2η2
(

1−2Λb1κ3T β1
)−2+ 2η2

β1 ,

q =
3

m+2

{
(η2 −m)+(m−β1)2Λb1κ3T β1

1−2Λb1κ3T β1

}
−1,

where β1 > 0 and m > 0, (m ̸= 1). Here we will illustrate the behavior of these physi-

cal parameters. For 0 < m < 1, these parameters have increasing behavior with increasing

T . Also, the appropriate selection of free constants can lead to the negative behavior of

deceleration parameter. For example, for initial and later cosmic epochs, the deceleration

parameter becomes q = 3(η2−m)
m+2 − 1 and q = 3(m−β1)

m+2 − 1, respectively. The graphical be-

havior of these values versus parameter m indicates a similar behavior as shown in Fig. 6.4

and hence supports to the same arguments. In earlier cosmic times, the expansion and shear

scalars goes to infinity and volume turns out to be zero while in later cosmic stages, volume

goes to infinity while the expansion and shear scalars of the universe model approaches to

zero. That supports to expanding behavior of universe at infinite rate of expansion. For all

values of m the anisotropic parameter of expansion appears constant except m = 1, so in

final stages of cosmos it did not approach to isotropy.

114



Utilizing model (3.1.45) in (2.9.3), we can write the scalar potential as follows

V (ϕ)≈V (T ) =
ω0β1

2k1
2

ζβ1 +2m−2η2 +2β1

{
ζβ1 −2β1 −2m−4Λb1κ3β1 +2η2

}
×T ζ β1+2m−2η2+2β1 +2ω0β1Λb1κ3k1

2{(2m−ζβ1 +2β1)(2η2 −2β1)+4β1Λb1κ3

×(2η2 −3β1)−2η2(2η2 −3β1)}
T ζβ1+2m−2η2+3β1

ζβ1 +2m−2η2 +3β1
+2Λb1κβ1k1

2{2m2 +4m

+3−η2(m+2)} T 2m−2η2+β1

2m−2η2 +β1
+4Λ2b1

2κ4k1
2
{

β1
2(m+2)− (2m2 +4m+3)

×(2η2 −2β1)+η2(m+2)(2η2 −3β1)}
T 2m−2η2+2β1

2m−2η2 +2β1
−8Λ3b1

3κ7β1k1
2(m+2)

×(2η2 −3β1)
T 2m−2η2+3β1

2m−2η2 +3β1
+ k3 . (6.2.14)

Using the self-interacting potential (6.2.14) into (6.1.12), we have

κ2 ρ(T ) =
1
2

ω0β1k1
2T ζβ1+2m−2η2+β1 +ω0k1

2
{

ζβ1
3 −2mβ1

2 −4Λb1κ3β1
3 −2β1

3

+2η2β1
2 +Λb1κ3(2η2 −2β1)(ζβ1 +2m−2η2 +2β1)

} T ζβ1+2m−2η2+2β1

ζβ1 +2m−2η2 +2β1

+
2ω0β1Λb1κ3k1

2

ζβ1 +2m−2η2 +3β1

{
(2m−ζβ1 +2β1)(2η2 −2β1)+4β1Λb1κ3(2η2 −3β1)

−2η2(2η2 −3β1)}T ζβ1+2m−2η2+3β1 +
(2m+1)k1

2

κ2 T 2m−2η2 +
2Λb1κβ1k1

2

2m−2η2 +β1

×
{
(2m2 +4m+3)− (m+2)(2m+β1 −2η2)−

2m+1

β1
2 (2η2 −β1)(2m−2η2 +β1)

−η2(m+2)}T 2m−2η2+β1 +4Λ2b1
2κ4k1

2
{

β1
2(m+2)− (2m2 +4m+3)(2η2 −2β1)

+(2m+2β1 −2η2)(m+2)+η2(m+2)(2η2 −3β1)}
T 2m−2η2+2β1

2m−2η2 +2β1
−8Λ3b1

3κ7

×β1k1
2(m+2)(2η2 −3β1)

T 2m−2η2+3β1

2m−2η2 +3β1
+ k3 , (6.2.15)

where k3 is an integration constant. Equations (6.1.8) and (6.1.9) show that

w =−1−
dρ
dt

(m+2)ρ Ḃ
B

. (6.2.16)
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From (6.2.16), we can write the EoS parameter as

w(T ) =−1− 1
(m+2)ρ

[
1
2

ω0β1k1
2(ζβ1 +2m−2η2 +β1)T ζβ1+2m−2η2+β1 +ω0k1

2

×
{

ζ β1
3 −2β1

3 −2mβ1
2 −4Λb1κ3β1

3 +Λb1κ3(2η2 −2β1)(ζβ1 +2m−2η2 +2β1)

+2η2β1
2
}

T ζ β1+2m−2η2+2β1 +2ω0β1Λb1κ3k1
2 {(2m−ζβ1 +2β1)(2η2 −2β1)

+4β1Λb1κ3(2η2 −3β1)−2η2(2η2 −3β1)
}

T ζβ1+2m−2η2+3β1 +
1

κ2 (2m+1)k1
2

×(2m−2η2)T 2m−2η2 +2Λb1κβ1k1
2{(2m2 +4m+3)− (m+2)(2m+β1 −2η2)

−2m+1

β1
2 (2η2 −β1)(2m−2η2 +β1)−

n(m+2)3κ4

3(m−1)

}
T 2m−2η2+β1 +4Λ2b1

2κ4k1
2

×T 2m−2η2+2β1
{
(m+2)(β1

2 +2m+2β1 −2η2)− (2η2 −2β1)(2m2 +4m+3)

+
n(m+2)3κ4(2η2 −3β1)

3(m−1)

}
−8Λ3b1

3κ7β1k1
2(m+2)(2η2 −3β1)T 2m−2η2+3β1 + k3

]
,

(6.2.17)

where ρ is given by (6.2.15). Further the skewness parameters are defined below:

δ (T ) =
2n(m+2)

3ρ
k1

2T 2m−2η2
(

1−2Λb1κ3T β1
)−2+ 2η2

β1 , (6.2.18)

γ(T ) = −nm(m+2)
3ρ

k1
2T 2m−2η2

(
1−2Λb1κ3T β1

)−2+ 2η2
β1 , (6.2.19)

and the anisotropic expansion measure of anisotropic fluid is given by

δ − γ
w

=
n(m+2)2k1

2T−2η2+2m
(

1−2Λb1κ3T β1

)−2+ 2η2
β1

3ρ(T )w(T )
, (6.2.20)

where ρ(T ) is given by (6.2.15) and w(T ) is given in (6.2.17).

The plots of energy density, potential, skewness parameters and EoS parameter denoted

are shown in Figures 6.5-6.7. In Fig. 6.5, the behavior of scalar potential and energy density

is given. Scalar potential shows increasing behavior and energy density shows decreasing

behavior and approaches to zero in later times.
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Figure 6.5: Left plot represents ρ for three values of β while right plot indicates scalar

potential versus T for n = 0.002, β1 = 1.2, m = 4, b1 = 1, ζ = 2.5, ω0 = 0.5, k1 = 1 and

k3 = 1.
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Figure 6.6: Plot represents skewness parameters δ and γ versus T for n = 0.002, β1 =

1.2,m = 4, b1 = 1, ζ = 2.5, ω0 = 0.5, k1 = 1 and k3 = 1.

In initial cosmic epochs, the skewness parameters are finite and turns out to be zero

in later cosmic times as shown in Fig. 6.6. Now we will discuss the EoS parameter for

β1 >
2(η2−m)

ζ+3 and β1 <
2(η2−m)

ζ+3 . The EoS parameter, in early times of the universe, turns

out to be w = −1+ 2(η2−m)κ2

m+2 which may show any of quintessence or phantom region

by choosing suitable choice of free parameters. While in later times, we have w = −1−
{β1(ζ+3)−2(η2−m)}κ2

m+2 which shows the quintessence region (w > −1) for β1 <
2(η2−m)

ζ+3 and

phantom region (w < −1) for β1 > 2(η2−m)
ζ+3 . The EoS parameter indicates the phantom

region of cosmic expansion as shown in Fig. 6.7. Also, the anisotropic expansion measure

of fluid shows infinite behavior initially but goes to zero for later cosmic epochs.
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Figure 6.7: Left plot provides the behavior of EoS parameter w versus T for n = 0.002,

β1 = 1.2, m = 4, b1 = 1, ζ = 2.5, ω0 = 0.5, k1 = 1 and k3 = 1 while right plot indicates the

anisotropic expansion measure of fluid versus T for the same choice of free parameters.
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Chapter 7

Conclusions



Scalar tensor theories of gravity are very useful to discuss accelerated cosmic expansion

and to predict the universe destiny. These theories proved to be much promising due to their

vast applications in gravitation and cosmology. These theories play key role in developing

models of inflation and DE. One of more general modified gravity is, f (R,RµνRµν ,ϕ)

which include the Ricci scalar, contraction of Ricci tensors and scalar field. In this chapter

we have summarized the main results of the thesis and discuss the conclusions. Focussing

on FRW, Morris-Thorne geometry and LRS BI universe models we have discussed the

cosmological issues.

In first section of Chapter 3, we have applied the reconstruction programme to f (R,RµνRµν ,ϕ)

theory. The action (2.10.1) in the original and specific forms as regards f (R,ϕ), f (Y,ϕ)

is reconstructed for some well-known solutions in FRW background. The existence of

dS solutions has been investigated in modified theories [181]. Here, we have developed

multiple dS solutions which may be useful in explaining the different cosmic phenom-

ena. In a dS universe, we have constructed the more general case f (R,Y,ϕ) and establish

f (R,ϕ) considering the function independent of Y and f (Y,ϕ) by taking function indepen-

dent of R. The power law expansion history has also been reconstructed in this modified

theory for both general as well as particular form of the action (2.10.1). These solutions

explain the matter/radiation dominated phase that connects with the accelerating epoch.

The f (R,RµνRµν ,ϕ) model can also be reconstructed which will reproduce the crossing of

phantom divide exhibiting the superaccelerated expansion of the universe.

The Lagrangian of f (R,RµνRµν ,ϕ) gravity is more comprehensive implying that differ-

ent functional forms of f can be suggested. The change in Lagrangian arouse the question

how to constrain such a theory on physical grounds. In this chapter, we have formulated

the constraints on f (R,T,RµνT µν) gravity and its specific forms by examining the energy

conditions. The energy conditions are also developed in terms of deceleration, jerk, and

snap parameters. To show how energy conditions constrain the f (R,RµνRµν ,ϕ) gravity,

we have examined the free parameters in reconstructed and well known models. In gen-

eral dS case f (R,Y,ϕ) energy conditions are depending on six parameters β1, ζ , t and αi’s

where i = 1,2,3. In this procedure we have fixed the αi’s and observe the feasible region

by varying the other parameters.
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In dS f (R,ϕ) and f (Y,ϕ) models, the NEC depend on five parameters t, α1, α2, β1 & ζ

and WEC depend only on three parameters t, α1 & α2. In case of NEC we have fixed α1, α2

and find the constraints on the other parameters. In WEC we are changing α1 and explore

the possible ranges on α2 and t. For power law f (R,ϕ) and f (Y,ϕ) models, functions

depend on six parameters α1, α2, β1, ζ , n1 and t. In power law case we have n1 > 1, and

varying α1, α2 we have analyzed the viable constraints on β1, ζ and t. Further more we

have considered three particular forms of f (R,Y,ϕ) gravity taking function independent

of Y , i.e., f (R,ϕ), R f (ϕ), ϕ f (R) from which we can deeply understand the applications

of energy conditions. Model-I is a function of four parameters b1, β1, n1 and t, we have

checked the validity of NEC and WEC by varying b1. Model-II is depending on β1, ζ , n1

and t, for n1 > 1 we have explored the viability of other parameters. Next in model-III we

have five parameters β1, ξ , n1, ζ and t, for n1 > 1 we have find the feasible constraints on

other parameters by fixing ζ . In model-IV the conditions are depending on five parameters

β1, α , n1, ζ and t. we have n1 > 1 and varying β1 we examined the possible regions for the

other parameters.

Finally, we generally discuss the variations of parameters involved in power law solu-

tions and scalar field coupling function, denoted by ζ and n1 respectively. In dS models

we have examined that the more general case f (R,Y,ϕ) is more effective as compared to

f (R,ϕ) and f (Y,ϕ) models since in general case one can specify the parameters in more

comprehensive way. In all cases of dS models, WEC is valid for all ζ and NEC is valid

if (ζ ≥ 1 & ζ ≤ −5). In power law case f (R,ϕ), for both NEC and WEC n1 has a fixed

value n1 = 3 and ζ has variations (ζ ≥ 0 & ζ ≤−5.5). For f (Y,ϕ) case we have (n1 ≥ 2.3

with ζ ≥ 4, ζ ≤ −1) for WEC and for NEC we have n1 ≥ 2 with (ζ ≥ 0, ζ ≤ −4). In

other known f (R,ϕ) models, the validity of these conditions require n1 > 1 with (ζ ≥ 0,

ζ ≤−2).

In second section of Chapter 3, we have discussed the thermodynamical laws in the

context of modified f (R,RµνRµν ,ϕ) theory. This theory can be regarded as an extended

form of f (R,ϕ) gravity. Here, we have presented the general formalism of field equa-

tions for FRW spacetime with any spatial curvature in this theory and shown that these

equations can be cast to the form of FLT ThdŜh + TindŜin = δQ, in non-equilibrium and
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ThdŜh = δQ in equilibrium description of thermodynamics. In this structure of FLT we

find that entropy is contributed from two factors, first one corresponds to horizon entropy

defined in terms of area and second represents the entropy production term dS̄ which is

produced because of the non-equilibrium description in f (R,Y,ϕ) gravity. It is important

to mention here that no such term is present in Einstein, Gauss-Bonnet, scalar-tensor theory

with non-minimally derivative coupling, Lovelock and braneworld modified theories [55]-

[58]. However, in case of modified theories like f (R) and scalar tensor theories people

have suggested various schemes to avoid the additional entropy term in FLT [60, 61, 182].

Following such approach one can also discuss the equilibrium thermodynamics as done in

[60, 65].

Moreover, the validity of GSLT at the apparent horizon of FRW universe is also tested

in this modified theory. We present the general relation involving contributions from hori-

zon entropy, auxiliary entropy terms and associated with the matter contents within the

horizon is presented in comprehensive way. Here, we have assumed the proportionality re-

lation between the temperatures related to apparent horizon and matter components inside

the horizon. To discuss the validity of GSLT, we have selected the more generic models

reconstructed in Sec. 3.1. The discussions are indetail as we have also considered some

well known models from different backgrounds to validate the GSLT. We can retrieve the

results in other modified theories depending on the choice of the Lagrangian f (R,Y,ϕ).

When we consider function independent of Y we can reduce the results of f (R,Y,ϕ) into

f (R,ϕ) gravity and choosing f (R,Y,ϕ) = Rϕ we get the results for BD theory. Further, by

considering a function independent of Y and ϕ we get the results for f (R) gravity. Table

3.2 summarizes the regions where the GSLT is satisfied for all the models that we have

discussed.

In a dS f (R,Y,ϕ) model, one can notice that the validity of the GSLT depends on five

parameters α1, α2, α3, β1 and t and hence we fixed two parameters, α1 and α2 to show the

viable regions by varying the other parameters. Next we have considered f (R,ϕ) using dS

model whose GSLT constraint depends on four parameters α1, α2, β1 and t. Here we are

fixing β1 and observe the feasible regions by varying the other parameters. In power law

f (R,ϕ) case by varying α1, α2 we have examined the feasible constraints on β1, n1 and t.
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Next we have considered four known models of f (R,Y,ϕ) gravity independent of Y , which

are of the form f (R,ϕ), R f (ϕ), ϕ f (R). Model-I is depending on four parameters b1, n1, β1

and t, we have checked the validity of Ṡtot ≥ 0 by varying b1. Model-II is a function of four

parameters β1, ζ , n1 and t, by fixing n1 we have discussed the viability of the GSLT for

feasible values of β1, ζ and t. In model-III the constraint is depending on four parameters

n1, ξ , β1 and t. By fixing n1 > 1 we examined the possible regions for the other parameters.

Next in model-IV we have four parameters n1, α , β1 and t. For n1 > 1 we have find the

feasible constraints on other parameters.

Wormhole solutions in GR do not satisfy all the standard energy conditions. Other

approach is then to modify Einstein field equations in terms of an effective EMT that satisfy

the energy bounds and the exotic part of the wormholes are supported by higher order

curvature terms.

In Chapter 4 we have studied whether in f (R,ϕ) modified theory, the ordinary matter

can support wormholes. In the last decades, it has been mentioned that in highly com-

pacted astrophysical objects, pressures are anisotropic, which means that the tangential

and radial pressures are not equal for such objects. Investigating the existence of worm-

holes for different kind of fluids are then an interesting question to address. To investigate

this we have analyzed the behavior of NEC and WEC for three different supporting flu-

ids: a barotropic fluid, an anisotropic fluid and an isotropic fluid. Additionally, we have

constructed wormholes satisfying the flaring-out condition β ′(r = r0) < 1 where r0 is the

throat which satisfies β (r = r0) = r0.

To analyse the physics of wormhole solutions, different methods have been discussed

in the literature. One method is to find wormhole solutions giving a specific shape function.

On the other hand, a second approach is considering the matter content and then calculate

the shape function directly from the field equations.

We have explored f (R,ϕ) gravity involving coupling between the Ricci scalar and mat-

ter field. Here the resulting equations are highly non-linear and complicated involving

unknowns pt , pr, ρ , a, b, f (R,ϕ). Therefore, we have focussed our study in a power-law

case f (R,ϕ) = γ̃Rϕ η , where γ̃ and η are constants. Then, by choosing η = 1 and ζ =−1,

BD theory is recovered and by choosing η = 2 and ζ > 0, Induced gravity is recovered.
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Then, for an anisotropic, isotropic and barotropic fluids, we have constructed wormhole

solutions and then examine the energy conditions.

In the case of an anisotropic matter content, we assumed a specific form of the shape

function (power-law type) to obtain a solution and then to check the existence of worm-

holes. Then, we investigated the validity of standard energy conditions. We have found

that in both BD and Induced gravity, an anisotropic generic fluid verifying all the energy

conditions can support a wormhole geometry. However, to satisfy all the energy condi-

tions, we must have negative values of γ̃ . For positive values of γ̃ , the matter given by the

anisotropic fluid will violate some of the energy conditions.

In the case of an isotropic fluid pr = pt = p, it is possible to solve the field equations

to get the shape function and the potential. The shape function then can be constraint to

satisfy the wormhole conditions. This is valid for a generic power-law f (R,ϕ) gravity.

Then, we found that isotropic fluids satisfying all the energy conditions (WEC and NEC)

can support wormholes in both BD and Induced gravity.

For an anisotropic matter satisfying a barotropic EoS pr = w(r)ρ , the field equations

are complicated to solve. Therefore, we studied some special cases numerically focussing

on BD and Induced gravity. This study was carried out by choosing some special values of

the parameters. We analyzed the cases where the barotropic function is a constant w(r) = w

and also when w(r) = B̃rl , where B̃ and l are constants. For both cases, we have constraint

the parameters in such a way that ensures the conditions to have a traversable wormhole

geometry. In both cases, we have found some models where ρ + pr > 0 and also ρ > 0

but ρ + pt can be negative, so that WEC is not always satisfied. Then, for our potential,

barotropic fluids in BD and Induced gravity do not satisfy all the energy conditions to

support a wormhole geometry. Note that one can also assume a barotropic EoS pt = w(r)ρ ,

when now the transverse pressure is related to the energy density. If ones carries out the

same analysis mentioned above with the same potential, we also get a similar conclusion:

wormholes can be constructed satisfying all the geometric required properties but the full

WEC is not satisfied. For this case, one has that ρ + pt > 0 and also ρ > 0 but ρ + pr can

be negative.

In Chapter 5, we have derived the exact inflationary model in Jordan frame for f (R,ϕ)
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model. Even though it is common to study the f (R) models in Einstein frame, we showed

explicitly that in the Einstein frame, action contains non-canonical kinetic term. Thus, the

advantage of the conformal transformation is negated. Thus, we performed the background

and the first order perturbation analysis in the Jordan frame. The massive scalar field is

non-minimally coupled to f (R) action and do not have self-interacting potential. We have

evaluated the expression ρ+3p, which led to conclude that for the values ñ≪ 1, ρ+3p< 0

and for ñ ≫ 1, we have ρ +3p > 0. In [115], authors also calculated the term ρ +3p and

showed that for ñ ≫ 1 ⇒ ρ +3p = 0 which did not lead to inflation. While ñ ≪ 1 leads to

ρ +3p < 0.

We showed explicitly that the model supports inflationary solution with an exit and the

number of e-foldings depends on the deviation of initial values from dS scenario. Further,

we have discussed the scalar and tensor perturbations for the chosen f (R,ϕ) model. We

have used the new analytical method devised in [115] to reduce the higher order scalar per-

turbation equations to second order in 3-curvature perturbation. We analytically obtained

the scalar power spectrum in ñ≫ 1 limit and showed that the scalar power spectrum is scale

invariant. We obtained the tensor power-spectrum for ñ > 1
2 and showed that the spectrum

is blue tilted.

To get insight, we plotted the graphs of slow-roll parameter and scalar field for different

initial values of ϕ̇ i.e., ϕ̇ = 0.3ϕD, 0.6ϕD, 0.9ϕD, 1.2ϕD, 1.5ϕD and ϕ̇ = ϕD. The ε −N

trajectories showed that in the parametric space ϕ̇ < 1.4ϕD, the inflationary phase sustained

as ε < 1 and ε attains a constant value less than unity for ϕ̇ ≥ 1.4ϕD. It can be seen that in

the space ϕ̇ < ϕD, the inflationary phase exist without an exit which represent ε is diverging

to −∞ while ϕ̇ > ϕD leads to the inflationary era with an exit. The initial condition ϕ̇ = ϕD

generates ε = 0. In this case, the results are obtained for standard No. of e-folds, i.e.,

N ≃ 50, 60, which is in good agreement with observational data. Further, it is observed

that as the value of ϕ̇
ϕD

is directly proportional to N, as increment in initial value produced an

increase in N. Hence rate of inflation increases as ϕ̇ increases. The trajectories are attracted

towards its origin with increasing initial values. This shows that deviation of initial values

form dS value leads to either inflation with exit or super inflation, and that the dS solution

is a saddle point. The plot ϕ −N represents the decaying behavior with evolution of time.
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The slow-roll parameter and scalar field versus N for different initial values of ϕ̇ are also

plotted in [115] for ñ = 0.01, 0.1. These plots show inflationary era and then an exit from

inflation for ϕ̇ < ϕD (which is opposite to our case) and No. of e-folding lies between 80 to

90. Our results are compatible with [115] for standard values of perturbed parameters.

For better understanding of the inflationary model’s compatibility with recent data, we

have plotted parametric plots (5.3) in which scalar spectral index is plotted versus tensor

to scalar ratio for ñ > 1. It is observed that for ñ = 1.61, 1.7, we have the standard value

of spectral index ns = 0.968 and an upper bound of tensor to scalar ratio is obtained as

r < 0.11 which is in accordance with Plank 2015 and 2018 data [5]. It can be seen that as

the value of ñ increases, the range of ns is compressed.

One of main point is that the inflationary models in general relativity goes to red-tilt

[183, 184]. Our discussion and the references [115, 174] led to a conclusion that the modi-

fied theories of gravity and general relativity can be distinguished by the fact that in modi-

fied theories, the tensor spectrum is blue-tilted. It is worth mentioning here that our results

reduced to [115, 174] by choosing α̃ = 0.

In Chapter 6, we have reconstructed different LRS BI cosmic models in f (R,ϕ) grav-

ity in the presence of anisotropic matter source. For this purpose, we have chosen two

f (R,ϕ) models and developed the exact solutions for each of these models. For the sake

of simplicity in calculations, we have chosen some power law ansatz as well as a specific

condition for scale factors that arises from the proportionality condition of expansion and

shear scalars. We have also explored the dynamics of the constructed models by investigat-

ing the graphical behavior of scalar potential, energy density, EoS parameter and skewness

parameters by taking some particular non-zero values of the involved free parameters. For

this purpose, we have fixed the m > 1 and n = 0.002 through out the graphical discussions.

In [149], the authors has selected two values of the coupling constant to explore the

evolution of linear density contrast and virial overdensity that are: ξ = −0.5 & ξ = 0.15.

It is concluded that in such a case, the negative choices of coupling constant yield the least

deviation from the ΛCDM model. We have taken that particular negative value ξ = −0.5

for graphing purposes everywhere. Similarly, for the second model which has been used

to discuss inflation and spectral index as well as the tensor-to-scalar ratio [113]. Actually,
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authors constructed this model by extending a viable class of exponential f (R) models

involving Λ to accommodate phenomenon of cosmic inflation. For this purpose, they in-

troduced a substitution of the form: 1
R0

→−b1κ3ϕ , where b1 is a dimensionless number of

order unity and κ has the usual meaning. Following this, we fixed this parameter by taking

the simplest choice of b1 = 1. We have also used the power law ansatz for scalar field

where it can be easily seen that the scalar field as a DE candidate plays a dominant role

in late time acceleration with expanding universe when β1 > 0, whereas β1 < 0 indicates

that the scalar field vanishes with the cosmic expansion (B → ∞). Thus the possible best

choices of this parameter will be β1 > 0 and particularly, we have fixed this parameter as

β1 = 1.2 in the graphical analysis of both models. A brief summary of the obtained results

is given in the following.

• For both constructed models with m > 1, the skewness parameters approaches to

zero in later cosmic epochs which supports to the isotropic expansion of models

in last stages of universe. Also, the anisotropy expansion measure of anisotropic

fluid δ−γ
w indicates infinite value in initial cosmic epochs while it vanishes with the

passage of cosmic time and hence corresponds to the isotropic expansion of universe

in final stages. This is in agreement with the results already discussed in the literature

[97, 101, 185] for BV I0 model in GR and BI model in BD scalar-tensor theory.

• In both constructed models, the energy density shows the positive decreasing behav-

ior as indicated in Figures. This is also compatible with the discussions [5, 101,

103, 186] indicating that the universe was highly dense in initial epochs but later on,

energy density decreases with the passage of time and goes to zero due to expansion.

• For both these models, the self-interacting potential is also positive and increases

with the increasing time. Hence it can be concluded that the scalar field plays a

dominant role in late cosmic expansion.

• The physical parameters like σ , Θ, Hx, Hy and H show decreasing behavior with the

increasing cosmic time and hence approaches to zero as T → ∞ under some specific

conditions on the free parameters. This result is also in agreement with the literature

[103].
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• For the discussed models, the deceleration parameter is a dynamical quantity that can

be positive or negative by choosing some appropriate values of free parameters. In

particular, for the selected set of free parameters, it is observed that for final cosmic

epochs, the deceleration parameter shows negative behavior and hence supports to

accelerated expansion of cosmos [5, 186].

• In both cases, the graphical behavior of deviation free EoS parameter indicates strongly

negative behavior and hence corresponds to quintessence or phantom phases of cos-

mos in late eras [5]. Thus the constructed models show the accelerated expansion of

the universe. Furthermore, for all permissible values of m, we have constant value of

the anisotropic parameter of expansion which leads to model anisotropy even in the

later cosmic epochs.

It would be worthwhile to construct exact solutions for other Bianchi type models with

anisotropic or viscous matter contents in f (R,Rαβ Rαβ ,ϕ) theory of gravity.
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