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Abstract. We study the minimal possible deviations from the Hermitic Nearest-Neighbour
Interations (NNI) texture in the quark sector such that it is possible to accommodate the
actual experimental data. We also show that the NNI structure can be obtained through the
implementation of an Abelian discrete flavour symmetry at the Lagrangian level, where the
minimal realisation is Z4, requiring at least the presence of two Higgs doublets. Finally, we
explore the consequences on the leptonic sector of this Z4 flavour symmetry, in the context of
SU(5) Grand Unification with the standard fermionic content plus three right-handed neutrinos
and two Higgs quintets.

1. Introduction
A huge effort has been made in the last decades in understanding the pattern of fermion masses
and mixings. In the Standard Model, the Yukawa interaction terms that describe the fermion
masses are unexplained. Many attempts have been made to find a framework where the fermion
masses and mixings can be explained. One possible approach is to impose some zeroes on the
mass matrix elements, for instance the well known Fritzsch Ansatz [1]. Such Ansatz combine
the Nearest-Neighbour Interaction (NNI) [2] form with the Hermiticity condition. The NNI
structure, where entries (1, 1), (1, 3), (2, 2) and (3, 1) vanish, can always be achieved for quark
mass matrices Mu, Md in the SM [2] through a weak basis transformation. However, it is no
longer true in other contexts as is the case of two-Higgs doublet model. One can find many
works in literature where a symmetry leads to the NNI structure, for example [6, 7] or [3] where
a Z4 flavour symmetry was implemented in the context of two Higgs doublets. Some of those
models are based on Grand Unification Theories (GUT), which are very appealing to implement
flavour symmetries once the SM fermions are unified in large multiplets. For example [8, 5]
models based on the SU(5) gauge group [9].

This work is organised as follows. In section 2 we study the minimal deviations from the
Hermitic NNI structure such that both up- and down-quark mass matrices accommodate the
actual quark data. In section 3 we implemet an Abelian discrete flavour symmetry that leads
to quark mass matrices in the NNI form, where the minimal realisation in the context of two
Higgs doublets is Z4. This Z4 flavour symmetry is implemented in the context of the SU(5)
GUT model in section 4 where the leptonic sector is analysed.
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2. Minimal Deviations from Hermiticity: Quark Sector
In this section, we study the minimal deviations from the Hermitic NNI structure such that it
is possible to accommodate the experimental data on both up- and down-quark mass matrices,
Mu, Md.

In the NNI basis, the quark mass matrices can be written as,

Mu =




0 Au 0

A′
u 0 Bu

0 B′
u Cu



 , Md = Kq




0 Ad 0

A′
d 0 Bd

0 B′
d Cd



 , (1)

where (A, A′, B, B′, C)u,d are taken real without loss of generality and K is a diagonal phase
matrix, Kq = diag(eiκ1 , eiκ2 , 1).

Since we are interested in determining the minimal possible deviations from the Hermitic
NNI structure, we introduce the parameters εu

a, εu
b , εd

a and εd
b ,

εu,d
a ≡

A′
u,d − Au,d

A′
u,d + Au,d

, εu,d
b ≡

B′
u,d − Bu,d

B′
u,d + Bu,d

. (2)

To better determine the minimal values of εu,d
a,b we will work with the Hermitian matrices,

Hu, Hd, defined as Hu,d = Mu,d M †
u,d. The complex Hd matrix can be written as,

Hd = K H0
d K† , (3)

where H0
d is a real matrix and the phases κ1, κ2 are given by

κ1 = arg(Hd13
) , κ1 = arg(Hd23

) . (4)

With Hu and H0
d being Hermitian real matrices they can be diagonalised by real orthogonal

matrices Ou and Od respectively as,

Hu = Ou diag(m2
u, m2

c , m
2
t )O"

u , H0
d = Od diag(m2

d, m
2
s, m

2
b)O"

d , (5)

then the quark mixing matrix, the so-called Cabibbo-Kobayashi-Maskawa (CKM) matrix [10,
11], V , is given by,

V = O"
u K Od . (6)

The deviations εu,d
a,b of Eq. (2) can be related to the quark masses through the invariants of

Hu and Hd (see Ref. [3]), hence if the deviations εu,d
a,b , the quark masses and the phases κ1, κ2

are given, the matrices Mu, Md and consequently Hu, Hd can be fully reconstructed.
The CKM matrix is computed by Eq. (6) after diagonalization of Hu and H0

d .

In our numerical calculations, we have performed a scan of the deviations εu,d
a,b , the phases

κ1, κ2 and the running quark masses at the electroweak scale within their errors. We have
accepted solutions that lead to a CKM matrix in agreement with the actual data [12] of the
CKM moduli, the angles of the unitary triangle and the strength of CP violation I. We sketched
on Table 1 these input data together with the running quark masses.

To measure the global deviation from the Hermiticity of the pair of quark mass matrices,
Mu, Md, we defined the parameter εq,

εq ≡
1

2

√
(εu

a)2 +
(
εu
b

)2
+ (εd

a)
2 +

(
εd
b

)2
, (7)
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Table 1. Values of the running up- and down-quark masses, CKM element moduli |Vus| , |Vcb| ,
|Vub| and the angles β and γ of the unitarity triangle and the strength of CP violation I, at
the scale MZ = 91.1876 ± 0.0021GeV [12]. The quark masses are calculated [13] to MZ scale
through the renormalisation group equations for QCD in the MS [14, 15, 16, 17, 18] scheme, at
4-loop level.

mu = 1.4 ± 0.5MeV mc = 0.62+0.06
−0.07 GeV mt = 170.2 ± 1.0 GeV

md = 2.9 ± 0.5 MeV ms = 58+16
−12 MeV mb = 2.86+0.16

−0.06 GeV

|Vus| = 0.2253 ± 0.0007 |Vub| =
(
3.47+0.16

−0.12

)
× 10−3

|Vcb| =
(
41.0+1.1

−0.7

)
× 10−3 sin 2β = 0.673 ± 0.023

γ =
(
73+22

−25

)◦
I =

(
2.91+0.19

−0.11

)
× 10−5
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Figure 1. Set of solutions
for εu,d

a,b corresponding to the
constraint εq ≤ 0.3.

The numerical results are shown in Fig. 1 where the deviations εu,d
a,b are plotted as a function

of the parameter εq. From our search one sees that very small values of εu,d
a,b are not possible.

Furthermore, if we consider εa,b = 0 in one sector the deviations in the other become very large.
As the minimal global deviation is εq = 0.188 we conclude that within 20% it is possible to

accomodate the actual experimental quark data on Hermitian NNI mass matrices. The values
of a numerical example can be found in Ref. [3].

3. NNI from a Discrete Flavour Symmetry
In this section we show that it is possible to obtain the up- and down-quark mass matrices
Mu, Md in the NNI form through the implementation of an Abelian discrete flavour symmetry
at the Lagrangian level. We shall show that the minimal realisation on cyclic groups is Z4,
requiring the presence of at least two Higgs doublets.

As we are interested in a minimal flavour symmetry, such that the NNI structure appears in
the quark mass matrices, we restrict our search to Abelian and discrete symmetries and thus
avoid the presence of Nambu-Goldstone bosons. We will search for symmetries of Zn type.
Under such symmetries a field,Ψ j , with charge Q(Ψj) transforms as

Ψj −→ Ψ′
j = ei 2π

n
Q(Ψj) Ψj . (8)
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Let us start with the most general quark Yukawa Lagrangian,

−LY = Yu QLi
uRj

Φu
ij + Yd QLi

dRj
Φd

ij + H.c. . (9)

whereΦ u
ij andΦ d

ij correspond generically to the Higgs fields that couple to the (i, j)-entries of
the up- and down-quark sector. To obtain the NNI form in the quark mass matrices, we must
require zero charges for the trilinear matrix elements corresponding to non-zero mass matrix
entries

Q(QLi
uRj

Φu
ij) = 0 , Q(QLi

dRj
Φd

ij) = 0 , (10)

and non-zero charges for the trilinear matrix elements corresponding to zero mass matrix entries

Q(QLi
uRj

Φu
ij) &= 0 , Q(QLi

dRj
Φd

ij) &= 0 . (11)

Writing down Eqs. (10) and (11) for all entries and solving for the charges of the Higgs
doubletsΦ u

ij ,Φd
ij , we find that at least two Higgs doublets are requiredΦ 1 andΦ 2 with charges

φ1 and φ2 respectively (see details in Ref. [3]). The quark field charges are then given by the
following assignment,

(q1, q2) = (q3 + φ1 − φ2, q3 − φ1 + φ2) ,

(u1, u2, u3) = (q3 − φ1 + 2φ2, q3 + φ1, q3 + φ2) ,

(d1, d2, d3) = (q3 − 2φ1 + φ2, q3 − φ2, q3 − φ1) ,

(12)

where Q(QLi) ≡ qi, Q(uRi) ≡ ui, Q(dRi) ≡ di with QLi the left-handed quark doublets.
Hence, the quark Yukawa Lagrangian in Eq. (9) becomes

−LY = Y 1
u QLΦ̃1 uR + Y 2

u QLΦ̃2 uR + Y 1
d QLΦ1 dR + Y 2

d QLΦ2 dR + H.c. , (13)

where Φ̃j ≡ i σ2 Φ∗
j and j = 1, 2. After spontaneous symmetry breaking, the quark mass matrices

are given by,
Mu = v∗1 Y 1

u + v∗2 Y 2
u , Md = v1 Y 1

d + v2 Y 2
d , (14)

taking precisely the NNI form, with 〈Φi〉 ≡ vi and 〈Φ̃i〉 ≡ v∗i and Y 1,2
u,d the Yukawa matrices.

At this point we have found that two Higgs doublets are enough to achieve the NNI structure
for both up- and down-quark mass matrices and the general Zn quark charges are given by
Eq. (12). Let us now find the minimal Zn symmetry in which this implementation is possible.

From the bilinears, QLi
uRj

,



−2φ1 + 3φ2 φ2 −φ1 + 2φ2

φ2 2φ1 − φ2 φ1

−φ1 + 2φ2 φ1 φ2



 , (15)

and QLi
dRj

, 


−3φ1 + 2φ2 −φ1 −2φ1 + φ2

−φ1 φ1 − 2φ2 −φ2

−2φ1 + φ2 −φ2 −φ1



 (16)

one sees that neither Z2 nor Z3 are compatible with the NNI form for both up- and down-quark
sectors. For instance, taking (1, 1)-element of Eq. (15) one gets,

−2φ1 + 3φ2 = φ2 (mod 2) , −2φ1 + 3φ2 = φ1 (mod 3) , (17)

as the up-quark sector couples with Φ̃1 and Φ̃2, where Q(Φ̃i) = −φi; this entry becomes non-
zero in the mass matrix, which is not desired. Hence, in the context of two Higgs doublets, the
minimal symmetry that makes the NNI structure achievable is Z4. In fact this conclusion is true
even if the number of Higgs doublets is three or more.
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4. NNI in the context of SU(5)
In this section we extend the Z4 flavour symmetry, discussed in the last section, in the context
of SU(5) Grand Unification.

In the SU(5) model the three generations of 10, 5∗ fermionic multiplets are completely filled
by the left-handed SM fields (q, uc, dc,( , ec)i, where i = 1, 2, 3 is the generation index,

10i = (q, uc, ec)i , 5
∗
i = ((, dc)i , (18)

Beyond the standard field content we have added, to this SU(5) × Z4 model, three right-
handed neutrinos, νR i, and two Higgs quintets. The SU(5) fields assignment stated in Eq. (18)
implies the follow charge relations

Q(10i) = Q(QLi
) = −Q(uRi

) = −Q(eRi
) , (19a)

Q(5∗i ) = Q((Li
) = −Q(dRi

) , (19b)

from which one gets φ2 = −2q3. The Z4 charges of the SU(5) multiplets are then given as:

Q(10) = (3q3 + φ1, −q3 − φ1, q3) , Q(5∗) = (q3 + 2φ1, −3q3, −q3 + φ1) . (20)

Writting down the bilinear 10i10j and 10i5
∗
j one verifies that the NNI structure is achieved.

Let us now explore the leptonic sector. Due to the SU(5) field assignments, Eq. (18), the
charged lepton mass matrix, m", gets the NNI form. However, since the right-handed neutrino
fields, νRi

, are singlets under SU(5), their Z4 charges are free. Such freedom leads to a non
parallel structure in the leptonic sector.

In this model, neutrinos acquire Majorana masses through type-I seesaw [19, 20, 21, 22]. The
effective neutrino mass matrix, mν , can be computed from the seesaw formula, well approximated
by:

mν = −mD M−1
R m"

D , (21)

where the symmetric Majorana mass matrix, MR, is determined directly by the right-handed
neutrino charges, νi, while the Dirac mass matrix, mD, is determined in a similar way to the
quark mass matrices Mu, Md in Eq. (14). As mentioned before, the charged lepton mass matrix
gets the NNI form and can be written as,

m" = K†
"




0 A" 0
A′

" 0 B"

0 B′
" C"



 , (22)

where the constants (A, A′, B, B′, C)" are taken to be real and positive and the diagonal phase
matrix is K" = diag(eiσ1 , eiσ2 , 1).

Performing a scan of the charges φ1, q3 and νi one finds that only six effective neutrino mass
matrix textures are possible. From the counting of the number of parameters one finds that only
two of those textures are physically viable. The remaining ones lead to small mixing angles,
which is not acceptable. The two textures zeroes left,

a)




0 Aν 0

Aν Bν Cν

0 Cν Dν eiϕ



 , b)




Aν Bν Cν

Bν 0 0
Cν 0 Dν eiϕ



 , (23)

have a total of twelve parameters which are sufficient to explain the twelve physical ones (the
six lepton masses, the three mixing angles, one Dirac phase and two Majorana phases).
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The lepton mixing matrix or Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [23, 24, 25],
U , is given by

U = O"
" K†

" Uν , (24)

where Uν is the matrix that diagonalise the effective neutrino mass matrix, a) and b) of Eq. (23).
To determine the matrix O" that diagonalises the charged lepton mass matrix it is convenient
to introduce the Hermitian mass matrix h",

h" = m" m†
" . (25)

Since the charged lepton mass matrix has NNI form, one can parameterise it in the same way
as is done for quark sector, Eq. (2),

ε"
a ≡

A′
" − A"

A′
" + A"

, ε"
b ≡

B′
" − B"

B′
" + B"

, (26)

and also define the global deviation parameter for the charged lepton mass matrix, ε",

ε" ≡
1

2

√
(ε"

a)
2 +

(
ε"
b

)2
, (27)

In our numeric procedure we have computed the PMNS matrix and taken the solutions

Table 2. Values [26] of the charged lepton masses, mixing angles θ13, θ12 and θ23 and neutrino
mass squared differences,∆ m2

21, |∆m2
31|. The charged lepton masses are calculated [17, 18] at

MZ scale, MZ = 91.1876 ± 0.0021GeV [12], through the renormalisation group equations for
QED in the MS scheme at 1-loop level.

me(MZ) = 0.486661305 ± 0.000000056 MeV

mµ(MZ) = 102.728989 ± 0.000013 MeV

mτ (MZ) = 1746.28 ± 0.16 MeV

∆m2
21 =

(
7.59+0.23

−0.18

)
× 10−5 eV2

∣∣∆m2
31

∣∣ =
(
2.40+0.12

−0.11

)
× 10−3 eV2

sin2 θ12 = 0.318+0.019
−0.016 sin2 θ23 = 0.50+0.07

−0.06 sin2 θ13 < 0.035 at 90% C.L.

that are in aggreement with the neutrino oscillation data [26]. We made a scan of all
input parameters within their allowed range, namely the neutrino mass squared differences,
m2

21 , |∆m2
31| (∆m2

ij ≡ m2
i − m2

j ), the lightest neutrino mass (m1 for normal hierarchy (NH) or
m3 for inverted hierarchy (IH)), the phases φ,σ 1, σ2, the charged lepton masses, the parameters
ε"
a, ε"

b and Dν is taken as a free parameter. The lightest neutrino mass matrix was scanned
for different magnitudes below 2 eV. We sketch in Table 2 the experimental data used in the
numerical procedure.

In addition to the restriction imposed by the neutrino oscillation data, one has to further
consider the constraints on the effective Majorana mass, mee, proportional to the neutrinoless
double beta decay amplitude [27], the constraint from Tritium β decay [12], mνe , and the bound
on the sum of light neutrino masses from cosmological and astrophysical data [28]. We found
that an effective neutrino mass matrix of the form a) is only compatible with experimental data
in the case of normal neutrino mass spectrum and b) only in the case of inverted neutrino mass
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Table 3. Summary of the predictions for texture a) and b).

a) b)

NH NH

— sin2 θ13 > 0.010

0.0013 eV ≤ m1 ≤ 0.016 eV 0.0042 eV ≤ m3 ≤ 0.011 eV

6.4 × 10−4 eV < |mee| < 2.2 × 10−3 eV 0.015 eV < |mee| < 0.022 eV

ε" > 0.0011 ε" > 0.0013

0.002 0.004 0.006 0.008 0.01 0.012
m1(eV)

0.005

0.01

0.015

0.02

0.025

sin2
θ13

sin2
θ13= 0.006

Figure 2. Plot of sin2 θ13 over
m1 for texture a) and normal
hierarchy.

0.004 0.006 0.008 0.01
m3 (eV)

0.01

0.015

0.02

0.025

sin2
θ13

sin2
θ13= 0.006

Figure 3. Plot of sin2 θ13 over
m3 for texture b) and inverted
hierarchy.

spectrum. The limits of the lightest neutrino mass for both cases are bounded. We plot in
Figures 2 and 3 sin2 θ13 as a function of the lightest neutrino mass m1 for NH and m3 for IH,
respectively.

Our results are in agreement with the other constraints considered. We summarise in Table 3
the most important results of this SU(5) × Z4 GUT model, for more details see Ref. [5].

5. Conclusions
In this work we have studied the minimal deviations from the Hermitic NNI structure, such that
the quark mass matrices Mu and Md could accommodate the experimental quark data. It is
shown in Figure 1 the deviations for both sectors as a function of the global deviation, εq. One

sees that the deviations εu,d
a,b can not be very small, if they are zero for one sector we obtain large

deviations in the other sector. It is possible to accommodate the actual quark data on mass
matrices in the NNI form with a deviation of order of 20%.

We have shown also that it is possible to obtain the NNI structure for the both up- and down-
quark mass matrices through the implementation of Z4 flavour symmetry at the Lagrangian level
in the context of two Higgs doublet model.

Then, with Grand Unification in mind, we extend this Z4 flavour symmetry in the context of
SU(5), where we added right-handed neutrinos and two Higgs quintets. Due to the SU(5) field
assignments, the charged lepton mass matrix takes the NNI form while the effective neutrino
mass matrix does not, leading to two viable textures a) and b) in Eq. (23). After analising
the physical viability of those effective neutrino mass matrix textures we resume in Table 2 the
relevant results.
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