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Introduction 
      By destructive breakdown we mean a breakdown event that results in surface melting over 

large areas on the iris tip region of an accelerator structure. The melting is the result of the 

formation of macroscopic areas of plasma in contact with the surface. The plasma bombards the 

surface with an intense ion current (~10
8
 A/cm

2
), which is equivalent to a pressure on the order 

of a thousand Atmospheres. A radial gradient in the pressure produces a ponderomotive force 

that causes molten copper to migrate away from the iris tip, resulting in a measurable change in 

the iris shape. This distortion in the iris shape in turn produces an error in the cell-to-cell phase 

shift of the accelerating wave with a consequent loss in synchronism with the electron beam and 

a reduction in the effective accelerating gradient. Assuming a long lifetime is desired for the 

structure, such breakdowns must be avoided or at least limited in number. The accelerating 

gradient at which these breakdowns begin to occur imposes, therefore, an absolute limit on an 

operationally attainable gradient. 

     The destructive breakdown limit (DBL) on the accelerating gradient depends on a number of 

factors, such as the geometry of the irises and coupler, the accuracy of the cell-to-cell tuning 

(“field flatness”), and the properties of the metal used in the high E-field regions of the structure. 

In this note we consider only the question of the dependence of the DBL on the metal used in the 

high surface field areas of the structure.  

      There are also various types of non-destructive breakdowns (NDB’s) that occur during the 

“processing” period that, after the initial application of high power, is necessary to bring the 

gradient up to the desired operating level. During this period, as the input power and gradient are 

gradually increased, thousands of such NDB’s occur. These breakdowns produce a collapse in 

the fields in the structure as energy stored in the fields is absorbed at the breakdown site.They  

are often marked by vacuum bursts and an increase in power reflected from the structure. The 

usual cause for NDB’s during processing is the “explosion” of field emitters at sharp geometrical 

features on the metal surface. Exposed impurities in the metal surface can also produce NDB’s as 

they are “burned” off by H-field heating or explosive field emission. 

     The breakdown process can be roughly divided into four stages: (1) the formation of “plasma 

spots” at field emission sites, each spot leaving a crater-like footprint; (2) crater clustering, and 

the formation of areas with hundreds of overlapping craters; (3) surface melting in the region of a 

crater cluster; (4) the process after surface melting that leads to destructive breakdown. 

 

Plasma spot formation 
     As the gradient in an accelerating structure is increased after the initial application of high 

power, sharp geometrical features in high field regions (near the iris inner radius) will begin to 

field-emit. Following the theory under development here, at some level of field emission current 

the tip of a sharp feature will begin to melt. The radius of curvature of the liquid tip is 

determined by the equilibrium between the pull of the E
2
 force and the restraining force of 

surface tension. As the field is increased further, the radius of the tip will decrease until, at a 

critical radius an instability causes the tip to literally explode, emitting a jet of liquid metal 
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micro-droplets. The field emission current quickly vaporizes the micro-droplets and ionizes the 

resulting metal gas, leading to the formation of a plasma at the emitter site with a diameter on the 

order of a few microns. The plasma forms a Debye sheath where the plasma is in contact with 

the metal. The sheath is essentially a space charge limited Child’s law diode, injecting electrons 

into the plasma and bombarding the metal surface with an intense ion counter-current on the 

order of 10
8
 A/cm

2
. The metal below the spot melts on a sub-nanosecond time scale. Both the 

molten area and associated plasma spot expand until the plasma quenches after some tens on 

nanoseconds. A small crater-like feature with a diameter of 5–20 microns is left behind. The 

physics of the formation of plasma spots (called cathode spots in the literature on DC vacuum 

arcs) is essentially identical for both DC and RF fields. The craters left behind are 

indistinguishable.  

     The energy from ion bombardment at the plasma sheath that goes into creating a crater is very 

small––only about 1x 10
-5

J. However, the electrons injected into the vacuum by the plasma spot 

(~10 A) pick up several hundreds of keV in energy from the RF field. The energy extracted from 

the field in 10 ns is on the order of 0.03 J. This is enough to collapse the field in a cell of a  

typical standing-wave structure, producing RF reflected power and tripping off the klystron 

powering the structure. In a typical traveling-wave structure, energy flows into the cell rapidly 

enough to prevent field collapse. However, there is often a vacuum burst associated with the 

formation of the plasma spot, which can also trip off the RF source. In any case, the formation of 

a single crater some ten microns across has a completely negligible effect on the measurable RF 

properties of the structure.   

 

Crater clustering 
     The crater left behind by the destruction of a field emitter looks somewhat like a volcano 

crater with material thrown out from the interior of the crater forming a jagged rim surrounding 

it.  These sharply-pointed rim features can themselves become field emitters. As the sharpest 

single features are burned away, it becomes more and more likely that new plasma spots will 

form on the rim of an existing crater, producing two overlapping craters. The total rim 

circumference of the two overlapping craters is larger than the rim circumference of a single 

crater, making the probability higher that an additional plasma spot will be added to this feature, 

rather than at the rim of an isolated crater. In this way clusters of hundreds of overlapping craters 

can form. Conditions are now ripe for dozens of closely spaced plasma spots to be alive at once 

during a time window of 30 ns or so—the lifetime of a single spot. Back-bombardment from the 

electrons emitted by these spots that return to impact the surface can now heat the entire crater 

cluster area and raise the surface temperature to the melting point. The physics of this process is 

outlined in the next section. 

 

 Conditions for surface melting 
     As mentioned above, a plasma spot in contact with a metal surface is essentially a space 

charge limited cathode, obeying Child’s Law, that emits ~10 A of ~20 eV electrons into the 

vacuum. Electrons emitted in the 90 degree phase period after the peak of the RF field will return 

to impact the surface within a radius on the order of 100 microns at an RF frequency of 10 GHz 

(this radius is proportional to the RF wavelength). For a large crater cluster with many spots 

alive at the same time, the areas heated by the individual spots will overlap. The energy spectrum 

of these bombarding electrons ranges from zero to a peak of several hundred keV. To calculate 

the surface heating, it is also necessary to know the number of electrons as a function of energy. 

A crude calculation of the power spectrum of the impacting electrons gives an average impact 

energy on the order of 50 keV (this calculation can easily be refined). Based on the preceding 

information, a rough calculation gives a heating power per unit area of PA ~10
8
 W/cm

2
. 
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However, in this note we are only interested in the dependence of the breakdown gradient on the 

material used to fabricate the iris tips and an absolute value for PA is not needed. 

     The heat equation has a simple solution for the surface temperature as a function of time if the 

incident power is applied exactly at the surface of a semi-infinite slab. In our case, however, the 

incident electrons penetrate into the metal by a distance that depends on their energy. A single 

keV-energy electron produces a shower, with an intensity (power dissipated per unit depth) that 

increases to a maximum at a depth dependent on the material and the incident electron energy. 

The shower intensity then trails off to zero with increasing depth. An examination of the 

literature shows that the shape of the intensity plot is roughly independent of material and the 

depth at the shower maximum scales simply as 1/ , where  is the density of the metal. In the 

energy range of interest, the penetration depth varies with impact energy E as E
1.5

. For E in keV 

and  in gm/cm
3
, the penetration depth is given by 

 

                                                              XP(µm) = 0.07 E
1.5

/ .                                                (1) 

 

A second parameter needed to construct an approximate solution of the heat equation is the 

diffusion depth, XD, at time t: 

 

           XD(µm) = 1 x 10
4
 (Dt)

1/2 
,
                                                                 

(2) 

 

where D is the diffusivity 

 

D(cm
2
/sec) = Kth/ Cs.                                        (3) 

 

Here Kth is the thermal conductivity and CS is the specific heat. 

For a semi-infinite slab with heat applied to the surface, the temperate rise at time t is 

 

T = (2PA/
1/2

Kth)(Dt)
1/2

.
                                                              

(4) 

 

We will assume that the metal surface is brought to the melting point in a very short time—30 ns 

(the reason for this choice will be explained later). At 30 ns we find for all the metals considered 

that the penetration depth is large compared to the diffusion depth. In this case, an approximate 

solution of the heat equation can be formed by considering XD as the “surface” and that the heat,  

PA(XD/XP), dissipated there drives the temperature rise given by Eq. (4). In this simple 

approximation we’ve also assumed that heat is dissipated uniformly over the penetration depth. 

A more rigorous calculation is in progress. 

     The temperature rise normalized to the melting point, Tm, at a fixed time is 

 

( T/Tm) ~ PA(XD/XP)(XD/KthTm). 

 

At the melting point T = Tm. Using Eqs. (1) – (4), we find that at the melting point PA ~ TmCS. 

Both the density and the thermal conductivity have cancelled out. Since the surface E-field is 

proportional to (PA)
1/2

, we obtain finally that the surface field at breakdown scales as 

 

ES ~ (TmCs)
1/2

.                                                          (5) 

The scaling above becomes even simpler using the Debye Approximation for the specific heat of 

metals [see, for example, F. Reif, Fundamentals of statistical and thermal physics (McGraw-
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Hill, NY, 1965) pp. 411-417]. The theory shows that the specific heat can be approximated 

reasonably well at room temperature and above by 

 

Cs(J/g-ºC)  25/A 

 

where A is the atomic weight of the metal (for certain materials having a high “Debye 

temperature”, a small correction to the constant in this expression is necessary). The scaling of 

the breakdown field with iris tip material then becomes simply 

 

ES ~ (Tm/A)
1/2

.                                                            (6) 

 

However, in obtaining values for the relative breakdown fields of various metals we will use Eq. 

(5). Equation (6) does tell us that we’ll do better by looking at metals with low atomic weights. 

 

     By normalizing Eq. (5) so that the relative breakdown field for copper is unity, we obtain a 

figure of merit for various materials defined by 

 

FM = 4.9 x 10
–2

 (TmCs)
1/2

                                              (7) 

                                                                FM (Cu) = 1 

 

Almost all the reasonable metals in the periodic table have been examined for their Figures of 

Merit. A table attached to this note shows the results. The FM’s are separated into seven groups. 

The first group contains metals with FM’s less than 1 (worse than copper). Note that gold is the 

worst of the lot—very high A and not a very high melting point. These metals are given a failing 

grade. The next group contains metals that are only slightly better than copper. They get a D 

grade. Somewhat more interesting are the metals with FM’s in the range 1.1 to 1.2. We’ll give 

them a C. Quite a bit more interesting are the metals with FM’s in the range 1.2 to 1.3. This 

group, which includes niobium, moly and stainless steel, gets a B. The group consisting of 

chromium, titanium, scandium and vanadium is very interesting, with FM’s in the range 1.4 to 

1.5. This group gets an A grade. The superstar metal is beryllium (very low A and a reasonably 

high melting point), which has an FM = 2.37. Also shown in the table is a group of “wild cards”: 

boron, silicon and carbon. The first two are insulators, while carbon has a resistivity about 600 

times that of copper. The FM for carbon is almost as high as that for beryllium. Possibly it could 

be sputtered or in some way coated onto an iris tip. If so, with its very high melting point (about 

3500 ºC), it would make the ideal iris-tip material. Silicon is also an interesting material, with an 

extensive technology for coating it on metals. 

     A second attachment shows the periodic table of the elements with the FM’s color-coded on 

it. From Eq. (6) the FM is proportional to (TM/A)
1/2

, so the FM’s tend to increase as we go 

upward in the table to elements with smaller atomic weights. Within one period, the best FM’s 

tend to cluster in the center, flanked on either side by elements with lower FM’s. There is also a 

left-right asymmetry, with higher FM metals on the left. Since A is reasonably constant along a 

given row in the table, these features can only be explained by the variation in melting 

temperature. The third attachment shows the melting points of the metals in periods 4, 5 and 6. 

The variation in the FM along a given row of the periodic table is explained by these melting 

point plots. There is also a theory for the melting point of a metal, in which the melting point is 

expressed in terms of the  atomic weight, the density and the Debye temperature. 
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From surface melting to destructive breakdown 
     We consider the parameters for the proposed NLC (Next Linear Collider) project, studied at 

SLAC and at KEK in Japan for about a decade. The NLC was based on the use of room-

temperature copper accelerator structures; it would have produced a c.m. energy of 1 GeV. 

Unfortunately, the NLC project is now defunct, an international committee having chosen a 

machine based on superconducting cavities as the collider that will actually be built. However, as 

we show in this note, materials other than copper have the potential to make possible 

accelerating gradients at least double that of copper. This would cut the accelerator length at least 

in half, resulting in a considerable reduction in cost. Since the actual construction of this multi-

billion dollar international machine is still many years away, a higher gradient room-temperature 

accelerator structure technology might yet prove attractive for the final design. In any case, an 

accelerator structure capable of a gradient on the order of 150 MV/m would make a post-ILC 3 

TeV collider much more viable.  

     The NLC design used an RF pulse length of 400 ns. In our theory here, we propose that for 

the major fraction of the pulse length the surface in a crater cluster region, heated by electron 

bombardment from dozens of closely spaced plasma spots, is in the molten state. During this 

time electro-mechanical forces act on the liquid surface to gradually form (over hundreds or 

thousands of pulses) sharp geometric features, following the process outlined below. To 

maximize the time for these forces to act on the molten surface, the surface metal should be 

raised to the melting point in a small fraction of the total pulse length. This is the reason for the 

choice of 30 ns in the preceding section for the melting time.     

     Figure 1 shows the geometric features formed by exposing a thin layer of molten metal to a dc 
electric field. We propose that similar features also form when an rf field acts over many pulses 
on the liquid surface layer produced by back-bombardment heating in a cluster of plasma spots. 
These features follow a somewhat regular pattern. Many of them have a roughly conical base 
with a vertical column or jet emerging from the apex. The sides of the cones make a roughly 45° 
angle with respect to the base. The projections emerging from the tips of the cones all have 
roughly the same diameter. This is indicative of the onset of an instability at a certain apex 
radius. In the following, we develop a model based on this shape.  
 

 

 
 

             Figure 1: Surface features after action of an electric field on a thin layer  
                           of  molten metal on a planar electrode [G.A. Mesyats, Explosive electron 
                           emission (URO–Press. Ekaterinburg, 1998) p. 29]. 

 

     The model first assumes that the back-bombarding electrons produce sufficient heating to 

melt a thin layer of the surface in 30 ns or so at the beginning of each rf pulse, cooling and 

solidifying between pulses. Since the molten material cannot move very far in one rf pulse, 
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geometric features with a scale of tens of microns must develop over hundreds or even thousands 

of pulses. Next assume that there are random height perturbations on the liquid surface, and that 

these can be modeled as a portion of a spherical surface with radius r1 (see Fig.2). This radius is 

given by the balance between the E
2
 force pulling on the surface and the force due to the surface 

tension of the liquid metal (  = 1.3 Nt/m for copper). It is given by  

 
                                                       r1 = 8 / 0ES

2
,                                                             (8) 

 

where the surface field ES is approximately equal to the unperturbed electric field, E0, at the 

surface. The scale of these perturbations is set by Eq. (8), where ES is given by the unperturbed 

field. The field will actually be slightly enhanced at the surface of the perturbation causing it to 

grow higher by the process outlined below. This in turn enhances the field still more, etc. 

Following the shape of the surface projections suggested by Fig. 1, we model the growing 

perturbation as a conical pyramid with sides making angle  with respect to the base. We assume 

that the cone is capped by a segment of a sphere with radius r, as show in Fig. 2. We assume that 

the analytic part of the growth process, where the cap radius is set by the condition for 

hydrostatic equilibrium, Eq. (8), starts with the initial spherical segment of radius r1. As the 

height of the cone increases, the radius of the cap decreases and the surface field ES and 

enhancement factor  = ES/E0 also increases. Simulations show that beta can be modeled as   

r
–n

, where n is a function of the base angle . For the molten cap to be in hydrostatic equilibrium, 

the radius must vary as r/r1 = E1
2
/ES

2
, giving  = 1 (r/r1)

–1/2
, where 1 is the value of beta at r = 

r1. Simulations show that for n to be exactly 1/2 the base angle  must be 41 degrees with 1 = 

1.90. 

     We next develop a model for the growth of the cone height with time. The liquid metal in the 

molten cap is under negative pressure from the E
2
 force per unit area, FA, pulling on the surface. 

This force also acts at the junction between the cap and the side of the cone, serving to pull the 

viscous molten metal up the side by means of the ponderomotive force, given by the gradient of 

FA. The average flow velocity of the material follows the expression v = 0ES
2
d/8 , where  is 

the viscosity and d is the thickness of the molten layer. This can be converted to a growth rate in 

height and hence in . With a little algebra, we obtain  

 

                                                          = 1.9[1 – BE0
4
T]

–1/6
                                               (9) 

 

                                                               B = 6d
2

0
2
/ r1                                                             

 

                                        

 

where T is the integrated time (repetition rate times the pulse length, with an initial melting time  

 30ns subtracted from the pulse length).  Note that E0
4
T is a constant at the singularity, in 

agreement with experiment [V. S. Dolgashev and S. G. Tantawi, “RF Breakdown in X-Band 

Waveguides, EPAC2002 (see also SLAC–PUB–10355)].  
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Fig. 2. Geometry modeling the pyramidal features in Fig.1. 

 

 

 

Figures of Merit for Metals  
 

1. FM less than 1.0 2. FM = 1.00 – 1.09 3. FM = 1.10 – 1.19 4. FM = 1.20 – 1.29 

Au      0.57 

Zn       0.62 

Ag       0.74 

Pt        0.75 

Ir         0.88 

Hf       0.88 

Pd       0.96 

Os       0.97 

          

Cu       1.00 

Ta       1.01 

Re       1.02 

W        1.04 

Y         1.04 

Tc        1.05 

Rh       1.07 

Zr       1.12 

Ca       1.14 

Ru       1.15 

Al       1.19 

Mn       1.20 

Ni         1.24 

Nb        1.25 

Mo       1.26 

Mg       1.26 

Co        1.28 

Fe         1.29 

SS        1.29 

5. FM = 1.43 – 1.50 6. FM = 2.28 7. Wildcards  

Cr       1.43 

Ti       1.45 

Sc       1.47 

V        1.50 

Be       2.28* Si       1.54 

B        2.26 

C        2.28* 

 

*Adjusted for high 

Debye temperature 
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