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Abstract
We study the behaviour of five-dimensional fermions localized on branes, which we
describe by domain walls, when two parallel branes collide in a five-dimensional
Minkowski background spacetime. We find that most fermions are localized on both
branes as a whole even after collision. However, how much fermions are localized on
which brane depends sensitively on the incident velocity and the coupling constants
unless the fermions exist on both branes.

1 Introduction

In the 80’s, one may regard our universe as a domain wall, or more generally a brane in a higher
dimensional universe. The idea is that the fermionic chiral matter making up the standard model is
composed of trapped zero modes. A similar mechanism is used in models, such as the Horawa-Witten
model, in which two domain walls are present. The existence of models with more than one brane suggests
that branes may collide, and it is natural to suppose that the Big Bang is associated with the collision [1].
This raises the fascinating questions of what happens to the localized fermions during such collisions? In
this study we shall embark on what we believe is the first study of this question by solving numerically the
Dirac equation for a fermions coupled via Yukawa interaction to a system of two colliding domain walls.
Kink-anti-kink collisions, have recently been studied numerically [2, 3]. One may extend the treatment
to include gravity [4, 5] but in this paper we shall, for the sake of our preliminary study, work throughout
with gravity switched off.

2 Fermions on moving branes

We start with a discussion of five-dimensional (5D) four-component fermions in a time-dependent domain
wall in 5D Minkowski spacetime. As a domain wall, we adopt a 5D real scalar field Φ with an appropriate
potential V (Φ). The 5D Dirac equation with a Yukawa coupling term gΦΨ̄Ψ is given by

(ΓÂ∂Â + gΦ)Ψ = 0, (Â = 0, 1, 2, 3, 5) , (1)

where Ψ is a 5D four-component fermion. ΓÂ are the Dirac matrices in 5D Minkowski spacetime satisfying
the anticommutation relations. We introduce two chiral fermion states

Ψ± =
1
2

(
1± Γ5̂

)
Ψ , Ψ+ =

(
ψ+

ψ+

)
, Ψ− =

(
ψ−
−ψ−

)
, (2)

where ψ+ and ψ− are two-component spinors. The Dirac equation (1) is now reduced to

(±∂5̂ + gΦ)ψ± + Γμ̂∂μ̂ψ∓ = 0 . (3)

As for a domain wall, now we assume the potential form is given by V (Φ) = λ
4

(
Φ2 − η2

)2. Then a
domain wall solution is given by Φ = ε tanh (z/D) where ε = ± correspond to a kink and an anti-kink

1E-mail:takamizu@gravity.phys.waseda.ac.jp
2E-mail:G.W.Gibbons@damtp.cam.ac.uk
3E-mail:maeda@waseda.jp

− 196 −



solutions and D =
√

2/λ is the width of a domain wall. As for a fermion, in the case of a static domain

wall, separating variables as ψ± =
(4)

ψ±(xμ)f±(z) and assuming massless chiral fermions on a brane, i.e.

Γμ̂∂μ

(4)

ψ±(xμ) = 0, we find the solutions are

f± ∝
[
cosh

( z

D

)]∓εgD

. (4)

Hence the positive-chiral (the negative-chiral) fermion is localized for a kink (an anti-kink ) but is not
localized for an anti-kink (a kink). To discuss fermions at collision of branes, we first discuss fermions
on a domain wall moving with a constant velocity. Since 3-space is flat, we expand the wave functions
by Fourier series. In what follows, we shall consider only low energy fermions, that is, we assume that
�k ≈ 0. The equations we have to solve are now

i∂0ψ± = (∓∂5 + gΦ)ψ∓ . (5)

Since up- and down-components of ψ± are decoupled, we discuss only up-components here. With this
ansatz, we can construct a localized fermion wave function on a moving domain wall with a constant
velocity υ. We find for a kink with velocity υ,

ψ
(K)
+ (z, t; υ) =

√
γ + 1

2
ψ̃(K) (γ(z − υt)) , ψ

(K)
− (z, t; υ) = i

γυ

γ + 1

√
γ + 1

2
ψ̃(K) (γ(z − υt)) (6)

and we also find solution for an anti-kink, where ψ̃(K)(z̃) = f+(z̃) are static wave functions of chiral
fermions localized on static kink. If a domain wall is given by a kink [an anti-kink], we have only the
positive-chiral fermions in a comoving frame [the negative-chiral fermions]. However, from Eqs (6), we
find that the negative-chiral modes [positive-chiral modes] also appear in this boosted Lorentz frame.
The above wave functions on a moving domain wall can be used for setting the initial data for colliding
domain walls.

3 Fermions on colliding domain wall

We construct our initial data as follows. Provide a kink solution at z = −z0 and an anti-kink solution at
z = z0, which are separated by a large distance and approaching each other with the same speed υ. We
can set up as an initial profile for the scalar field Φ and fermions Ψ;

Φ(z, t) = Φ(K)(z + z0, t; υ) + Φ(A)(z − z0, t;−υ)− 1 , (7)

Ψ̂ = Ψ(K)
in (x, z + z0; υ)aK + Ψ(A)

in (x, z − z0;−υ)aA + Ψ(B)
in (x, z)aB , (8)

where Φ(K,A)(z, t; υ) = ± tanh(γ(z−υt)/D), and Ψ(K)
in (x, z; υ) and Ψ(A)

in (x, z;−υ) are the wave function of
right-moving localized fermion on a kink and those of left-moving one on an anti-kink. We also denote the
bulk fermions symbolically by Ψ(B)

in (x, z). To quantize the fermion fields, we define annihilation operators
of localized fermions on a kink and on an anti-kink by

aK = 〈Ψ(K),Ψ〉 and aA = 〈Ψ(A),Ψ〉 (9)

Now we can set up an initial state for fermion by creation-annihilation operators. We shall call a domain
wall associated with fermions a fermion wall, and a domain wall in vacuum a vacuum wall. We shall
discuss two cases: one is collision of two fermion walls, and the other is collision of fermion and vacuum
walls. For initial state of fermions, we consider two states;

|KA〉 ≡ a†Aa
†
K|0〉 and |K0〉 ≡ a†K|0〉 (10)

where |0〉 is a fermion vacuum state. We discuss behaviour of fermions at collision. After collision of two
domain walls, each wall will recede to infinity with almost the same velocity as the initial one υ. We
define final fermion states as

Ψ̂ = Ψ(K)
out (x, z;−υ)bK + Ψ(A)

out(x, z; υ)bA + Ψ(B)
out(x, z)bB , (11)
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where bK, bA and bB are annihilation operators of those fermion states. We find the relations between
ingoing and outgoing states by solving the Dirac equation (5);

bK = αKaK + βAaA , bA = αAaA + βKaK , (12)

Using the Bogoliubov coefficients αK, βK and αA, βA, we obtain the expectation values of fermion number
on a kink and an anti-kink after collision as

〈NK〉 ≡ 〈KA|b†KbK|KA〉 = |αK|2 + |βA|2 , (13)

〈NA〉 ≡ 〈KA|b†AbA|KA〉 = |αA|2 + |βK|2 , (14)

for the case of |KA〉. If the initial state is |K0〉, we find

〈NK〉 ≡ 〈K0|b†KbK|K0〉 = |αK|2 , (15)

〈NA〉 ≡ 〈K0|b†AbA|K0〉 = |βK|2 . (16)

In order to obtain the Bogoliubov coefficients, we have to solve the equations for domain wall Φ [3] and
fermion Ψ numerically. From the solution (4), we find the fermions are localized within the domain wall
width D if g >∼ 2/D. When g < 2/D, fermions leak out from the domain wall. Hence, in this paper, we
analyze for the case of g ≥ 2 with setting D = 1, but leave υ free. To obtain the Bogoliubov coefficients,
we solve the Dirac equation for the collision of fermion-vacuum walls. We shall give numerical results
only for the case that positive chiral fermions are initially localized on a kink. Because of z-reflection
symmetry, we find the same Bogoliubov coefficients for the case that negative chiral fermions are initially
localized on an anti-kink, i.e. |αK|2 = |αA|2. The Bogoliubov coefficients depend on the initial wall
velocity. In Table 1, we summarize our results for different values of velocity and Yukawa coupling
constant.

g = 2 g = 2.5
υ |αK|2 |βK|2 |γK|2 |αK|2 |βK|2 |γK|2

0.3 0.94 0.056 0.004 0.47 0.53 0.00
0.4 0.87 0.12 0.01 0.57 0.40 0.03
0.6 0.69 0.30 0.01 0.78 0.17 0.05
0.8 0.42 0.55 0.03 0.88 0.02 0.10

Table 1: The Bogoliubov coefficients of fermion wave functions localized on each domain wall after
collision ( |αK|2 and |βK|2) with respect to the initial velocity υ. We also show the amount of fermions
escaped into bulk space (|γK|2 = 1− (|αK|2 + |βK|2)).

For the coupling constant g = 2, |αK|2 and |βK|2 are almost equal (0.44 and 0.55), but for g = 2.5,
most fermions remain on the kink (|αK|2 = 0.88 and |βK|2 = 0.02). We find that the Bogoliubov
coefficients depend sensitively on the coupling constant g as well as the velocity υ. In Fig. 1, we shows
the g-dependence. Since the wave function is changed at collision, when the background scalar field
evolves in a complicated way, one might think that the behaviour of wave function would be difficult
to describe analytically. However, we may understand the qualitative behaviour in terms of the naive
estimation. As a result, we obtain the formula;

|αK|2, |βK|2 ≈ 1
2

[1± sin (2εgΦcΔt + C0)] , (17)

where ε = ±1 and C0 is an integration constant. Comparing the numerical data and the formula (17)
with Φc ≈ −1.5, we find the fitting curves in Fig. 1 (ε = −1, Δt ≈ 1.4 and C0 = −1.2). This fitting
formula explains our numerical results very well.

Finally, we can evaluate the expectation values of fermion numbers after collision as follows. For the
initial state of fermions, we consider two cases: case (a) collision of two fermion walls |KA〉 and case (b)
collision of fermion and vacuum walls |K0〉. In the case (a), we find

〈NK〉 = |αK|2 + |βA|2 = |αK|2 + |βK|2 ≈ 1 , 〈NA〉 = |αA|2 + |βK|2 = |αA|2 + |βA|2 ≈ 1 . (18)
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Figure 1: The Bogoliubov coefficients (|αK|2, |βK|2) with υ = 0.4 in terms of a coupling constant g. The
circle and the cross denote |αK|2 and |βK|2 respectively. Two sine curves (|αK|2, |βK|2 ≈ [1± sin(4.2g −
1.2))]/2 show the formula (17) with the best-fit parameters.

We find that most fermions on domain walls remain on both walls even after the collision. A small
amount of fermions escapes into the bulk spacetime at collision. In the case (b), however, we obtain

〈NK〉 = |αK|2 , 〈NA〉 = |βK|2 . (19)

Since the Bogoliubov coefficients depend sensitively on both the velocity υ and the coupling constant g,
the amount of fermions on each wall is determined by the fundamental model as well as the details of the
collision of the domain walls.

4 Conclusion

We have studied the behaviour of five-dimensional fermions localized on domain walls, when two parallel
walls collide in five-dimensional Minkowski background spacetime. We analyzed the dynamical behaviour
of fermions during the collision of fermion-fermion branes (case (a)) and that of fermion-vacuum walls
(case (b)). In case (a), we find that most fermions are localized on both branes even after collision. In
case (b), however, some fermions jump up to the vacuum brane at collision. The amount of fermions
localized on which brane depends sensitively on the incident velocity υ and the coupling constants g/

√
λ.

The detailed discussion is shown in [6].
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