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Abstract

Neutrinoless double beta decay is a powerful tool to probe not only for Majorana neutrino masses but for lepton number

violating physics in general. We discuss relations between lepton number violation, double beta decay and neutrino

mass, provide an overview of the general Lorentz invariant parametrization of the double beta decay rate and highlight

a number of different new physics models showing how different mechanisms can trigger double beta decay.
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1. Introduction

The search for neutrinoless double beta decay (0νββ) - the simultaneous transformation of two neutrons

into two protons, two electrons and nothing else - is the most sensitive tool for probing Majorana neutrino

masses. However, while this so-called mass mechanism is certainly the best known example triggering

the decay, Majorana neutrino masses are not the only element of beyond Standard Model physics which

can induce it. In this proceedings report we present possible other mechanisms of 0νββ decay where the

lepton number violation (LNV) does not directly originate from Majorana neutrino masses but rather due to

LNV masses or couplings of new particles appearing in various possible extensions of the Standard Model.

While the same couplings will also induce Majorana neutrino masses, due to the Schechter-Valle black box

theorem [1], the 0νββ decay half life will not yield direct information about the neutrino mass. We rather

consider the 0νββ decay rate by expressing the new physics contributions in terms of effective low-energy

operators [2, 3].

We here focus on the particle physics aspects. On the nuclear physics side, the uncertainties in nuclear

matrix elements are notoriously difficult to estimate and limits derived from 0νββ decay are affected. Unfor-

tunately, despite efforts devoted to the improvement of the nuclear calculations, the latest matrix elements

in the QRPA approach from the Tübingen group [4] differ from the shell model results in many cases by

factors of ∼ (2 − 3). Experimentally, the most stringent bounds on neutrinoless double beta decay are cur-

rently from 76Ge [5] and 136Xe [6]. The results presented below are based on [7], using the limits 76Ge
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Fig. 1. Schematic overview of different contributions to 0νββ: Standard mass mechanism, long–range 6-dim operator, short–range

9-dim operator.

of T1/2 ≥ 1.9 × 1025 y and the recent result T1/2 ≥ 1.6 × 1025 y for 136Xe. In this report, we provide a

brief overview of the possible effective operators (c.f. Figure 1) that can trigger 0νββ beta decay and give a

summary of the most relevant LNV models. For more details, see the review [7] and references therein.

2. Contributions to Neutrinoless Double Beta Decay

Standard Mass Mechanism. Before discussing other contributions, recall that the mass mechanism of 0νββ
probes the effective Majorana neutrino mass 〈mν〉 = ∑ j U2

e jm j ≡ mee, where the sum runs over all active

light neutrinos. This quantity is equal to the (ee) entry of the Majorana neutrino mass matrix. The 0νββ
half life in a given isotope is then given by [T 0νββ

1/2
]−1 = |〈mν〉/me|2G0|ME|2, where G0 denotes the nuclear

phase space factor and |ME| the nuclear matrix element. The current experimental results lead to a limit

〈mν〉 � 0.5 − 1.0 eV.

Long–Range Contributions. Long–range contributions to 0νββ decay involve two vertices, point-like at the

Fermi scale, with the exchange of a light neutrino in between. The general Lagrangian can be written in

terms of effective couplings εαβ [2],

L = GF√
2

⎛⎜⎜⎜⎜⎜⎜⎝ j
μ
V−AJ†V−A,μ +

∑

α,β

ε
β
α jβJ†α

⎞⎟⎟⎟⎟⎟⎟⎠ , (1)

with the hadronic and leptonic currents J†α = ūOαd and jβ = ēOβν, respectively. The sum runs over all

combinations allowed by Lorentz invariance, except for the standard case α = β = (V − A), and all currents

have been scaled relative to the strength of the ordinary (V − A) interaction. The operators Oα are defined as

OV±A = γ
μ(1 ± γ5), OS±P = (1 ± γ5), OT± =

i
2

[γμ, γν](1 ± γ5). (2)

The effective Lagrangian (1) represents the most general low-energy four-fermion charged-current inter-

action. The interpretation of the effective couplings εαβ depends on the specific particle physics model.

Considering only one ε
β
α at a time one can now derive constraints on the effective coupling parameters from

a 0νββ half life measurement or bound,

[T 0νββ
1/2

]−1 = |εβα|2G0k |ME|2, (3)

where G0k denotes the corresponding nuclear phase space factors and |ME| the nuclear matrix elements. For
76Ge and 136Xe, the current limits are shown in Table 1.

Short–Range Contributions. Short–range contributions to 0νββ decay involve one vertex, point-like at the

Fermi scale. The decay rate results from the following general Lorentz invariant Lagrangian [3]

L =
G2

F

2mp

(
ε1JJ j + ε2JμνJμν j + ε3JμJμ j + ε4JμJμν jν + ε5JμJ jμ

)
, (4)
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Isotope |εV+A
V−A | |εV+A

V+A | |εS+P
S−P | |εS+P

S+P | |εTR
T L | |εTR

TR |
76Ge 3.5 · 10−9 6.2 · 10−7 1.1 · 10−8 1.1 · 10−8 6.7 · 10−10 1.1 · 10−9

136Xe 2.8 · 10−9 5.6 · 10−7 6.8 · 10−9 6.8 · 10−9 4.8 · 10−10 8.1 · 10−10

Table 1. Current limits on effective long-range violating couplings. These limits are derived assuming only one ε is different from zero

at a time (taken from [7]).

with the hadronic currents J = u(1 ± γ5)d, Jμ = uγμ(1 ± γ5)d, Jμν = u i
2
[γμ, γν](1 ± γ5)d and the leptonic

currents j = e(1±γ5)eC , jμ = eγμ(1±γ5)eC . In some of the cases the decay rate for the effective coupling εα
depends also on the chirality of the currents involved. The 0νββ decay rate can be expressed as in (3) with

the corresponding phase space and matrix elements. For 76Ge and 136Xe, the resulting limits from current

experiments are shown in Table 2.

Isotope |ε1| |ε2| |εLL(RR)
3

| |εLR(RL)
3

| |ε4| |ε5|
76Ge 3.2 · 10−7 1.8 · 10−9 2.2 · 10−8 1.4 · 10−8 1.5 · 10−8 1.5 · 10−7

136Xe 2.6 · 10−7 1.4 · 10−9 1.1 · 10−8 1.7 · 10−8 1.2 · 10−8 1.2 · 10−7

Table 2. Current limits on effective short-range violating couplings. These limits are derived assuming only one ε is different from zero

at a time (taken from [7]). For ε3, the result depends on the chirality of the hadronic currents as shown.

3. Models of Lepton Number Violation

Left-Right Symmetry. The minimal Left-Right symmetric model (LRSM) extends the Standard Model gauge

symmetry to the group SU(2)L ⊗ SU(2)R ⊗ U(1)B−L [8]. Right-handed neutrinos are a necessary ingredient

to realize this model and the LRSM can accommodate a general seesaw type I+II neutrino mass matrix.

The model provides several mechanisms that contribute to 0νββ decay: (i) Standard light neutrino exchange

with mass helicity flip; (ii) Long-range light neutrino exchange with right-handed currents; (iii) Short-

range heavy right-handed neutrino exchange; (iv) Short-range right-handed doubly-charged triplet Higgs

exchange. Lepton number violation can also be probed via heavy neutrino production at the LHC [9].

The potential to discover lepton flavour and lepton number violation using this process has recently been

analyzed in [10, 11].

R–Parity Violating Supersymmetry. In RP violating SUSY, the terms λi jkLiL jĒk + λ
′
i jkLiQ jD̄k + εiLiHu +

λ′′i jkŪiD̄ jD̄k, are added to the MSSM, where indices i, j, k label generations. Since the LNV terms generate

Majorana neutrino masses, a small amount of RP violation could explain the observed neutrino oscillation

data. In addition, 0νββ decay can occur through Feynman graphs involving the exchange of superpartners.

Current experimental limits correspond to λ
′
111 � 2.6 · 10−4 × (mq̃/(100 GeV))2(mg̃/(100 GeV))1/2, for

md̃R
= mũL . Complementary information can be obtained from the 0νββ decay analogue at the LHC, i.e.

single selectron production with two like sign electrons in the final state [12].

Leptoquarks. Leptoquarks (LQs) are hypothetical scalar or vector particles coupling to both leptons and

quarks. They appear in low-energy Technicolor or Compositeness models. LQs which conserve baryon

number can be relatively light, possibly within reach of accelerator experiments. Lepton number violating

LQ-Higgs couplings YLQ−H lead to a contribution to 0νββ decay [13] and the current experimental limits

roughly correspond to YLQ−H � 10−6, for LQ masses of the order 200 GeV.

Extra Dimensions. Theories with large extra dimensions of TeV size provide an additional source of LNV.

The minimal higher-dimensional framework of LNV considers a 5-dimensional theory compactified on a

orbifold, in which one 5-dimensional sterile neutrino is added to the SM [14]. This model generates neutrino

masses via a higher-dimensional seesaw mechanism, and the Kaluza-Klein excitations of the sterile neutrino

additionally contribute to the 0νββ decay rate.
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Majorons. Majorons have been originally introduced as Nambu-Goldstone bosons responsible for breaking

a global lepton symmetry and generating neutrino Majorana masses [15]. This however requires severe fine-

tuning in order to respect the bounds on neutrino masses and at the same time induce observable 0νββ. Other

models have been proposed where the term Majoron simply refers to a light or massless boson that couples

to neutrinos. In these modes, one or more Majorons is emitted in 0νββ in addition to the two electrons.

Recent experimental limits correspond to a bound on the Majoron-neutrino coupling constant of g � 10−4.

4. Summary

Neutrinoless double beta decay is a crucial observable in search for physics beyond the Standard Model

as it tests the fundamental symmetry of lepton number. Lepton number violation is predicted in many

new physics scenarios. In this context, searches for 0νββ are highly complementary to neutrino oscillation

experiments, direct neutrino mass determinations in Tritium decay and cosmological observations of the

impact of neutrinos on large scale structure formation. The lightness of neutrinos is still be unexplained and

0νββ decay is the only realistic probe to distinguish between the Dirac or Majorana nature of light neutrinos.

The observation of 0νββ decay at a level corresponding to an effective 0νββ mass mee � 10−2 eV would

be an indication for light neutrino exchange. On the other hand, such a conclusion is not straightforward as

there is a large number of models which can trigger 0νββ decay. As briefly outlined in this report, there is

large number of effective operators and an even larger number of new physics scenarios that can give rise

to 0νββ decay. Within the context of 0νββ decay, relevant techniques include the comparison of 0νββ decay

rates in different isotopes [16] and the determination of the electron angular and energy distribution [17, 18].
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