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Holographic complexity of anisotropic black branes
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We use the complexity = action (CA) conjecture to study the full-time dependence of holographic
complexity in anisotropic black branes. We find that the time behavior of holographic complexity of
anisotropic systems shares a lot of similarities with the behavior observed in isotropic systems. In

particular, the holographic complexity remains constant for some initial period, and then it starts to change
so that the complexity growth rate violates the Lloyd’s bound at initial times, and approaches this bound
from above at later times. Compared with isotropic systems at the same temperature, the anisotropy reduces

the initial period in which the complexity is constant and increases the rate of change of complexity. At late

times the difference between the isotropic and anisotropic results is proportional to the pressure difference
in the transverse and longitudinal directions. In the case of charged anisotropic black branes, we find that
the inclusion of a Maxwell boundary term is necessary to have consistent results. Moreover, the resulting

complexity growth rate does not saturate the Lloyd’s bound at late times.
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I. INTRODUCTION

The gauge-gravity duality [1] provides a framework in
which one can study the emergence of gravity from
nongravitational degrees of freedom. Within this frame-
work, the gravitational theory lives in a higher dimensional
space M, usually called bulk, and the nongravitational
theory can be thought of as living on the boundary of M.
Despite the existence of a dictionary [2,3] relating bulk and
boundary quantities, the description of the black hole’s
interior in terms of boundary degrees of freedom remains
elusive. Recently, there has been progress in this direction,
with the conjecture that the growth of the interior of a black
hole is related to the quantum computational complexity [4]
of the states in the boundary theory. There are two main
proposals relating the complexity to geometric quantities
in the bulk, namely, the Complexity = Volume (CV) [6,7]
and the Complexity = Action (CA) [8,9] conjectures. In
the CV conjecture, the complexity is dual to the volume of a
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certain extremal surface in the bulk and provides an
example of the recent proposal about the connection
between tensor networks and geometry [10-12], while in
the CA conjecture the complexity is dual to the gravita-
tional action evaluated in certain region in the bulk. More
details about CA conjecture will be given in Sec. III.

A convenient gravity setup to study complexity growth is
a two-sided black hole geometry. This geometry has two
asymptotic regions, which we call left (L) and right (R)
boundaries, and an Einstein-Rosen Bridge (ERB) connect-
ing the two sides of the geometry. The Penrose diagram of
this geometry is shown in Fig. 1. From the point of view of
the boundary theory, the two-sided black hole is dual to a
thermofield double (TFD) state, constructed out of two
copies of the boundary theory [13]

)

1 En —i
|TFD> = er 7 e En(tL+tR>‘En>L|En>R, (1)
n

where L and R label the quantum states of the left and
right boundary theories, respectively. The TFD state is
invariant under evolution with a Hamiltonian of the form
H = H, — H,, which means that the system is invariant
under the shifts 1, — 1, + At, and t; — 1, — At. As a
result, the TFD state only depends on the sum of the left
and right boundary times ¢ = ¢, + t;.

The ERB connecting the two sides of the geometry
grows linearly with time. Classically, this behavior goes
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FIG. 1. Penrose diagram for the two-sided black branes we
consider. This geometry is dual to a thermofield double state
constructed out of two copies of the boundary theory.

on forever. In [6] Susskind proposed that this behavior is
dual to the growth of the computational complexity in the
boundary theory, which is known to persist for very long
times. Using the CV proposal, the authors of [7] showed
that the late-time behavior of the rate of change of
complexity is given by dCy/dt = 8zM/(d — 1), where
M 1is the black hole’s mass and d is the number of
dimensions of the boundary theory.

Despite having a qualitative agreement with the behavior
of complexity for quantum systems, the CV conjecture is
defined in terms of an arbitrary length scale, which is
usually taken to be of the order of the AdS radius. In order
to avoid the ambiguity associated to the arbitrary length
scale the authors of [8,9] proposed the CA conjecture. For
neutral black holes, the late time behavior of the rate of
change of holographic complexity reaches a constant value
which is also proportional to the black hole’s mass

i~ df  hm’

(2)

This late-time behavior may be associated with the Lloyd’s
bound on the rate of computation by a system with energy
M [14]. This saturation of the complexification bound lead
to the conjecture that the black holes are the fastest
computers in nature [9]. It was later shown that a more
precise definition of C, requires the introduction of joint
and boundary terms, which were not present in the
calculation of [8,9]. In particular, it was shown that the
CA proposal also have an ambiguity related to the para-
metrization of null surfaces [15]. Using the boundary and
joint terms derived in [15,16], the authors of [17,18]
showed that these ambiguities do not affect the late time
behavior of dC,/dt, but they play a role at early times,
leading to a violation of Lloyd’s bound.

Therefore, both the CA and the CV proposals have
ambiguities which (apparently) cannot be eliminated.
This is not a problem, however, because the same ambi-
guities were found in the definition of complexity for free
quantum field theories [19-21]. Moreover, the quantitative

disagreement between the results obtained with the CA and
CV proposals might be related to other ambiguities in the
definition of complexity, like the choice of the reference
state or the choice of the elementary gates.

The Lloyd’s bound was shown to be violated even at late
times by anisotropic systems, including the SYM theory
defined in a noncommutative geometry [22], and Lifshitz
and hyperscaling violating geometries [23—25]. This raises
the question of whether there is a more general bound
that is also respected by anisotropic systems. With this in
mind, in this paper we use the CA conjecture to study the
holographic complexity of a class of anisotropic black
branes [26]. More specifically, we consider the Mateos and
Trancanelli (MT) model [65,66], the D’Hoker and Kraus
(DK) model [67], and the Cheng-Ge-Sin (CGS) model
[68,69], and study the time dependence of holographic
complexity in thermofield double states which are dual to
two-sided black brane geometries.

The MT model is a solution of type IIB supergravity that
was designed to model the effects of anisotropy in the quark-
gluon plasma (QGP) created in heavy ion collisions. The
anisotropy is present in the initial stages after the collision
and it leads to different transverse and longitudinal pressures
in the plasma. For our purposes, the main motivation to
consider this model is that it describes a renormalization
group (RG) flow from an AdS geometry in the ultraviolet
(UV) to a Lifshitz-like geometry in the infrared (IR). The
transition is controlled by the ratio a/T, where a is a
parameter that measures the degree of anisotropy and 7 is
the black brane’s temperature. From the point of view of the
boundary theory, this parameter is small close to the UV
fixed point and large close the IR fixed point. We would like
to understand how the complexity rate changes as we move
along this RG flow and whether this system respects the
Lloyd’s bound. As a first step towards this, we have
considered small deviations from the UV fixed point, i.e.,
small values of a/T, which can be incorporated by consid-
ering an analytical black brane solution with small correc-
tions due to anisotropy [70].

The DK model is a solution of 5-dimensional Einstein-
Maxwell gravity that is dual to the 4-dimensional N = 4
SYM theory in the presence of a background magnetic
field. This solution describes an RG flow between an AdS
geometry in the UV to a BTZ x R? geometry in the IR. The
parameter controlling such transition is B/T?, where B is
the intensity of the magnetic field, while T is the black
brane’s temperature. We would like to understand how the
magnetic field affects the rate of change of complexity.

The CGS model [68,69] is a generalization of the MT
model to the charged case. The geometry is an anisotropic
RN-AdS solution, being also affected by a charge parameter,
q. When a # 0 and g — 0, the solution reduces to the MT
geometry. When g # 0 and a — 0, the solution becomes an
RN-AdS geometry. The motivation to consider this solution is
to understand how the rate of change of complexity is affected
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by the presence of uncharged and charged matter fields,
and whether the CA prescription can provide sensible results
in the presence of several matter fields.

In the uncharged cases, we find that the time behavior
of holographic complexity is qualitatively similar to the
behavior observed for isotropic systems, namely, the holo-
graphic complexity remains constant for some period,
and then it starts to change so that the rate of complexity
growth violates the Lloyd’s bound at initial times, and
it approaches this bound from above at later times.
Additionally, we find that the net effect of anisotropy is
basically a vertical upward shift in the curves of the rate of
change of holographic complexity versus time. At later
times, the difference between the isotropic and anisotropic
results is proportional to the difference in pressures in the
longitudinal and transverse directions. In the charged case,
we find that the inclusion of a Maxwell boundary term is
necessary to have consistent results.

The remainder of paper is organized as follows. In Sec. II
we review the MT and DK solutions and present some
of its thermodynamic properties. In Sec. III we use the CA
conjecture to study the full-time behavior of holographic
complexity of thermofield double states which are dual to
two-sided anisotropic black branes solutions. The case of
charged anisotropic black branes is considered in Sec. IV.
We discuss our results in Sec. V. We relegate some technical
details of the calculations to the Appendixes A and B.

II. GRAVITY SETUP

A. Anisotropic black branes: The MT model

The Mateos and Trancanelli (MT) model [65,66] is a
solution of type IIB supergravity whose effective action in
five dimensions can be written as

1 12
— 16”GN/Md5x\/_[R+———(8¢)
—%62[’5(8)()2} + ScH, (3)

where ¢, ¥ and g, are the dilaton field, the axion field and
the metric respectively, G, is the five-dimensional Newton
constant, and Sgy is the Gibbons-Hawking term. The
solution in Einstein frame takes the form

ds? = [2e=9()/2 {—;’25’:(;’)5’(r)dt2

d 2
+ Wr(r) + r2(dx® + dy* + H(r)dz?) |, (4)
with
x=az,  p=¢(r), H=e", (5)

where (1, x,y, z) are the gauge theory coordinates and r is
the AdS radial coordinate. Here L is the AdS radius, which
we set to unity in the following [71]. The above solution
has a horizon at r = r, and the boundary is located at
r = oo, where F = B="H =1 and ¢ = 0. The axion is
proportional to the z-coordinate and this introduces an
anisotropy into the system, which is measured by the
anisotropy parameter a. For a # 0, the above solution
corresponds to the gravity dual of A" =4 SYM theory,
with gauge group SU(N), deformed by a position-
dependent theta term. When a = 0, the above solution
reduces to the gravity dual of the undeformed SYM theory.
The functions F, 1B, H and the dilaton ¢ can be determined
analytically [73] for small values of the anisotropy param-
eter a as

ry 5
F=1- Py ; 8r2rZ — 2r% (4 + Slog?2)
2
+ (3r* +7r%) log (1 + i—g)} + O(a%) (6)

a’ 1077 r}
B=1-——5 +log(1+—= ||+ 4
2452 ry [r —|—r2 g( 2)] (’)(a ) (7)

2 2
¢ = —f?log <1 +:§'> + O(a%). (8)

H

By requiring regularity of the Euclidean continuation of
the above metric at the horizon, one obtains the Hawking
temperature as

T:r_,,_l_(510g2—2)a_2
/4 487 ry

+ O(a%). 9)
The Bekenstein-Hawking entropy can be obtained from the
horizon area as

r3

4G, (1 + 1566,2 )Vs +O(a*). (10)

where V3 = f dxdydz is the volume in the xyz-directions.
Using holographic renormalization, the stress tensor of the
deformed SYM theory can be obtained as [66,74]

S =

Tij - diag(E,Px),Px},P ) (11)
where
372N?*T* N2T?
E=2" e gy @+ 0. (12)
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is the energy density of the black brane and

7EN2T*  N2712

P = 2 4 1

Xy 8 32 a +O(a )’ ( 3)
2N2T4 N2T2

p.=" e~ g @+ 0l (14)

are the pressures along the transverse and longitudinal
directions, respectively. The mass of the black brane can
then be calculated as

372N2TY  N2712
8 32

M=EV;= ( a2> Vi+0O(a*), (15)

A more simple way of calculating the black brane’s mass is
through the expression

M= /TdS: / 7(ry) B0n) 4y
0 dry

rka?

4

= 162G, (5log2—1)| +O(a*) (16)

£ {Srﬁ +
where the integral was calculated using the Egs. (9)
and (10) for T(r,) and S(r,), respectively. Expressing
ry as a function of the temperature 7 and using that
Gy = n/(2N?), we recover the expression for the mass
given in Eq. (15).

Note that the mass of the anisotropic black brane is larger
than the mass of an isotropic black brane with the same
temperature, or with the same horizon radius. For future
reference, we note that

- (Py=P)+0(a). (17)

B. Magnetic black branes: The DK model

The D’Hoker and Kraus (DK) model [67] is a magnetic
black brane solution of 5-dimensional Einstein-Maxwell
gravity. The action of this model reads

1
S p—
167G,

/de\/—_g(R + 12 = FyyFMN). (18)

For very large values of the magnetic field (B/T? > 1), the
solution takes the form [75]

dr?
ds? = =3(r2 = P2)di* + —
s (r* = ry)dr + 37 =12
B
— —(dx* + dy?) + 3r*dz>. (19)
V3

with field strength F' = Bdx A dy.

The Hawking temperature and the Bekenstein-Hawking
entropy associated to the above solution are easily found
to be

_3 g 3VaBry (20)

T - 9
27 4G,

where V3 = [ dxdydz. The black brane’s mass can then be
calculated as

v,
My= [ TdS =—-
B / 167G,

x 3Br2. (21)

C. Penrose diagram

Lastly, we comment that the above gravitationals sol-
ution can be extended to a two-sided eternal black brane
geometry, with two asymptotic boundaries. See Fig. 1. The
extended solution is dual to a thermofield double state
constructed out of two copies of the boundary theory.

The Penrose diagram is obtained as follows. We consider
a general metric of the form given in Eq. (25). We first
define Kruskal-Szekeres coordinates U and V as

U=4er, V = —e7" ) (lefit exterior region)
U=—ern V = tefnt) (right exterior region)
U= +ef, V = +e7/" ) (future interior region)
U=—ern V = —e7"+)(past interior region)
(22)

where f is the black hole inverse temperature, and r, is the
tortoise coordinate, which is defined in (27). In terms of
these coordinates, the metric (25) becomes

le,(UV)dUdV + Gl-j(UV)dx"dxf. (23)
The Penrose diagram is obtained with one additional change
of coordinates, U/ = tan~!(U) and V = tan~!(V), in terms
of which the boundaries of the spacetime lie at finite
coordinate distance. The Penrose diagram will have the
form given in Fig. 1 as long as the blackening factor F ()
has a single root, and the tortoise satisfies three conditions,
namely: (I) lim,_r.(r) =0; (D) lim,_, r.(r) = —o0;
(IIT) lim,_qr,(r) = 0. Each point in the Penrose diagram
is a three-dimensional space, with metric G;;. The fact that
G;; is anisotropic does not affect the diagram, because the
diagram is only constructed out of the coordinates ¢ and r.,.
We explicitly checked that both the MT and the DK models
satisfy the above conditions. The Penrose diagram of the
charged MT model, considered in Sec. IV, is different
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because in that case the blackening factor F(r) has
two roots.

III. HOLOGRAPHIC COMPLEXITY

In this section we compute the holographic complexity
using the complexity = action (CA) [8,9]. Here we follow
closely the analysis of [17], with adaptations for anisotropic
systems. We consider neutral anisotropic black branes with
a generic bulk action of the form

d / r 24
S—] N/dxd’ gﬁ(’x)9 ( )

and metric
ds* = =G (r)df* + G, (r)dr* + G;;(r)dx'dx’  (25)

where r is the AdS radial coordinate and (f,x') are the
gauge theory coordinates. Here i = 1,2, ...,d — 1. We take
the boundary as located at r = co and we assume the
existence of a horizon at r = r,, where G,, has a zero and
G,, has a simple pole. We denote as G the determinant of
Gij’ i.e., G = det(GU)

In the computations of holographic complexity it is
convenient to use coordinates that cover smoothly the
two sides of the geometry. We use Eddington-Finkelstein
coordinates

u=t-r*(r), v=rt+rir), (26)

where the tortoise coordinate is defined as

r() =sen(G) [Tar\[En )

The CA conjecture states that the quantum complexity of
the state of the boundary theory is given by the gravitational
action evaluated in a region of the bulk known as the
Wheeler-DeWitt (WDW) patch

IWDW
= . 2
€y =0 (28)

The WDW patch is the domain of dependence of any
spatial slice anchored at a given pair of boundary times
(1,,1;). See Fig. 2. The gravitational action in the WDW
patch is divergent because this region extends all the way
up to the asymptotic boundaries of the space-time. We
regularize this divergence by introducing a cutoff surface at
r = rmax Near the boundaries. We also introduce a cutoff
surface » = €, near to the past and future singularities.
Without loss of generality, we consider the time evolution
of holographic complexity for the symmetric configuration
t, =ty = t/2. More general cases can be obtained from the
symmetric configuration by using the fact that the system is

r=10

t, t.
8 8
Il Il
. =

r=10
(a)

FIG. 2. Penrose diagram and the WDW patch (blue region) for
the two-sided black brane we consider. (a) Configuration at initial
times (¢ < t.) in which the WDW patch intersects both the future
and the past singularity. (b) Configuration at later times (¢ > ¢,)
when the WDW patch no longer intersects the past singularity.
The dashed lines represent the cutoff surfaces at r = r,,.

symmetric under shifts #, — ¢, + Arand ¢, — 1, — At. The
gravitational action in the WDW patch can be written as

Iwpw = lvuk + Lourface + Ijoint’ (29)
where
1 d+1
Lo = 162G, o, dxy/=gL(x) (30)
N

is the bulk action and Igyf,ce and iy, are surface and joint
terms that are necessary to have a well-defined variational
principle when one considers a finite domain of space-time
[15]. The surface terms are given by
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1

surface —
8

1
/ddx\/|h|Ki—/ did®='0,/yx
B 87TGN B
(31)

N

where the first term, which is defined in terms of the trace
of the extrinsic curvature K, is the well-known Gibbons-
Hawking-York boundary term [76,77]. This term is neces-
sary when the boundary includes (smooth) spacelike and
timelike segments, which we denoted as B. The second
term in the above equation includes the contribution of null
segments. This term is defined in terms of the parameter «,
which measure how much the null surface B’ fails to be
affinely parametrized. Here we follow [15] and set x = 0,
so that we do not need to consider these null boundary
terms. This choice of k correspond to affinely parametrize
the null boundary surfaces.

The joint terms are necessary when the intersection of
two boundary terms is not smooth. These terms can be
written as

1
—/ 1V x /o +
s

joint —
872G,

1
ST[GN

/ dxoa  (32)

where the first term [78] corresponds to the intersection
of two boundary segments which can be timelike or
spacelike, so the intersection can be of the type: timelike/
timelike, timelike/spacelike, or spacelike/spacelike. As
the WDW patch do not include such intersection, we do
not need to consider this first term. The second term
includes the contribution of the intersection of a null
segment with any other boundary segment, so it includes
contribution of the type: null/null, null/timelike, and null/
spacelike. A more precise definition of the surface and
joint terms will be given throughout the text along with
the adopted conventions [81]. The quantity & is defined in
Appendix A.

As first pointed out in [20], at early times the WDW
patch intersects both the future and the past singularity,
and this causes Iywpw to be constant for some period of
time 0 < ¢ < 7. At later times, ¢ > t.., the WDW patch no
longer intersects the past singularity, and Iywpw starts to
change with time. These two cases are illustrated in
Fig. 2. The timescales separating these two regimes can
be written as

t. = 2(ri, — r*(0)), ri, = limr*(r) (33)

r—=o0

where we have used that 1, = t, = /2. Figure 3 shows
how the critical time (33) behaves as a function of the
anisotropy parameter in MT model. This figure shows
that, as compared to an isotropic system at the same
temperature, the anisotropy reduces the critical time, i.e.,
the complexity starts to change earlier in anisotropic
systems.

1.0000

= 0.9999 |

£

3 0.9998 |

+5
0.9997 | 1
0.9996 - ) ) ) ) ) )

005 0.10 0.15 020 0.25 0.30
a/T
FIG. 3. Critical time (normalized by isotropic result) versus

a/T. We consider increasing values of a, but we choose r;, in
such a way to keep fixed the temperature as 7 = 1/x.

A. Behavior at initial times: 0 <t <¢,

For initial times 0 <t <, the WDW patch intersects
with both the future and past singularities. The contribu-
tions for Iywpw include: the bulk term, the GHY terms
and the joint terms. In principle, the GHY terms include
contributions from the cutoff surfaces at r = r,, and
r = €p, as well as from the null boundaries of the WDW
patch. However, since we affinely parametrize the null
surfaces, we do not need to consider the surface contribu-
tions from the null boundaries. The joint terms include
contribution from the intersection of the null boundaries of
the WDW patch with the cutoff surfaces at r = r,,, and
r = €. We use the left-right symmetry of the WDW patch
to calculate Iwpw for the right side of Penrose diagram
and then multiply the result by two.

To calculate the bulk contributions we split the right-side
of the WDW patch into three parts: region I, region II, and
region III, which are shown in Fig. 2(a). We then calculate
the bulk contribution as

Touc (1 < 1) = 2(F e + Do + Thin)» (34)
where [82]

Vd—l " 4 * *
o = 1t [ ary=a0n) (34 v = )

€o

10 Vd—l

B =gt [ dry=5L(0) s = (1)

Vd— Ty t " "
M, = 1671(;N/ dry/=gL(r) <—§ +ri—r (r))

€o

(35)

with V,_; = [d*'x. Note that in the above expressions
we are assuming that the on-shell Lagrangian £ only
depends on r. Summing all the contributions we obtain
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k= 57 | ArELG) = (). (36)

€0

Note that Iy (¢ < t.) does not depend on time. Now we
turn to the computation of the GHY surface terms. These
contribution come from the cutoff surfaces at r = r,, on
the two sides of the geometry and from the cutoff surfaces
at r = €, both at the past and future singularities. In either
cases the surfaces are described by a relation of the form
r = constant, and the outward-directed normal vector are
proportional to 0,,(r — constant). We write the correspond-
ing normal as

n, = (n,n,,n;) = b(0,1,0), (37)
where b is some normalization constant. We normalize the
normal vector as n*> = n’n, = £1, where the plus sign is
for spacelike vectors at the r = r,,,, cutoff surface, and the
minus sign if for the timelike vectors at the r = ¢, cutoff
surface. We obtain

1

n = (0 ) = (0. /Gy (1) 0) - (38)

nk) =" n) = (0.V/=Go.(e).0). (39)

where the superscript (s) denotes spacelike vectors, while
the superscript () denotes timelike vectors. The trace of the
extrinsic curvature of these r-constant surfaces can be
calculated as

1
K = Vﬂn" = \/—_—gar(\/ —gn )|r:€{l’rmax

R 0.G, 0,G
B 2\/ F Grr Gtt G

(40)

F=€0, max

where we use the minus sign for the r = ¢, surface and the
plus sign for the r = r,, surface. Here G = det(G;;) is the
determinant along the transverse coordinates x', not the full
determinant, which we denoted as g.

The GHY surface contributions can then be written as

Loustace (1 S 1) = 100 4 P 4100 (41)

surface surface surface

where the contributions from the cutoff surfaces at future
and past singularities are given by

e __Vd-1 A
Igu;facezgﬂGNg(r)<2+roo_r(r)>

r=eg

Vi Lo
IES:;ace = 87Z'GN g(}’) <_§ +re—r (l"))

r=e

and the contributions from the cutoff surfaces at the two
asymptotic boundaries read

bdr; Vd—l * *
Isurt};lce = 87TGN g(r)(roo -r (r))‘r:rmax (43)

where

G(r) =

GuG {G;f G] (44)

G, |G, GJ

In the above expressions we have already multiplied the
results by two to account for the two sides of the WDW

patch. Note that Its’srryface does not depend on time. Moreover,

the time dependence of I and P cancel, so that the

total surface contribution is time-independent

Vi
Isurface(t < tc) - 47[(161 g(’")(rzo - r*(r))|r:€0
el O = P (), (49

The only terms left to calculate are the joint contributions
that come from the intersections of the null boundaries
of the WDW patch with the cutoff surfaces at r = r,,, and
r = ¢p. The joint terms can be written as

__ gsing bdry
Ijoint - Ijoint + Ijoint’ (46)

where I8

joint includes the contributions from the past and

. .. bdry
future singularities and 7 joint

from the two asymptotic boundaries. In [31] it was shown
that, for a large class of isotropic systems, the contribution
from the asymptotic boundaries do not depend on time,
while the contributions at r = ¢, vanish. We show in
Appendix A that this also happens in anisotropic systems.
So we can write

corresponds to the contribution

__ gbdry
Ijoint(t < tc) - Ijoint’ (47)
where °% does not depend on time
joint P .

Finally, as none of the terms Zpyy, Lgurfaces and Zjoin
depend on time for 0 <f <t the gravitational action
evaluated on the WDW patch is constant for this period of
time

dlwpw
ZWDW ),
dt

for0<r<rt,. (48)
B. Behavior at later times: ¢ > ¢,

For later times 7> t. the WDW patch no longer
intersects with the past singularity. In this case, there are
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no surface and joint terms related to the past singularity,
but there is an additional joint term that comes from the
intersection of two null boundaries of the WDW patch. See
Fig. 2(b). Again, we calculate all the contribution for the
right side of the WDW patch and multiply the results by
two to account for the two sides of the geometry.

To compute the bulk contribution, we again split the
right side of the WDW patch into three regions, which we
call I, IT and III. See Fig. 2(b). We write the total bulk
contribution as
= 2(Tyu + Ibulk + 1{;1311()7

Touc( > 1) (49)

where now

Vo

I 1 T — E o
Ib‘ﬂk—167rGN[0 dry/—gL(r) <2—|—r r (r))
V Tmax
11 d—1 — Xk
B =g [ a5 = )
<r>)

(50)

Vaia
Bl = g [ aryan) (54 v -

where the only difference from the 0 < ¢ < ¢, case is that
the r-integral in the region III starts at the point r = r,,,
instead of starting at the cutoff surface r = €, at the past
singularity. The point r,, determines the intersection of the
two past null boundaries of the WDW patch and it satisfies
the equation

t
E_rzo"i_r*(rm)zo’

(s1)
which can be solved numerically. Note that we recover the
equation that gives the critical time 7. when we take the
limit r,, = O in the above equation. Summing the above
contributions we can write the bulk term at later times as the
bulk term at initial times plus a time-dependent term

Touc(t > t.) = Ty (1 £ 1)
Vi

8”GN[ dr\/_[,(r)<——r +r()>
O (52)

+

where Iy, (t < t.) is given in Eq. (36). For later times the
GHY term includes contributions from the future singu-
larity and from the two asymptotic boundaries. The con-
tributions from the cutoff surfaces at the asymptotic
boundaries do not depend on time, and have the same
value that they have for t < ¢.. The contribution from the
cutoff surface at the future singularity reads

[huwre - — G(r) (— 4+ - r*(r)) (53)
surface 8 ﬂ'GN 2 o —ey
The total surface term can be written as
Isurface(t > tc) = Isurface(t <t ) + Il:ﬁ#;?:e (54)

where [ .0 (t < t.) is defined in Eq. (45). Finally, we turn
to the computation of the joint terms. These terms include
time-independent contributions from the two asymptotic
boundaries, which are equal to the corresponding quantities
for ¢ < t., a vanishing contribution from the cutoff surface
at the future singularity and a contribution from the
intersection of the two null boundaries of the WDW patch.
The joint term can then be written as

Lot > 1.) = I + 2o

joint joint?

(55)

where IJ“O“IEI is the contribution from the intersection of the

two null boundaries. This term reads

1 _ _
I}g‘igl :—8”GN/dd 'xvVGa

where a is defined in terms of the left and right null vectors
that parametrize the null boundaries of the WDW patch.
These null vectors are given by

(56)

= —ad,(t=r"), kf = ad,(t+r*)  (57)

In terms of kj; and kj the quantity @ can be written as

— 1 Gtt(rm>
Using the above expressions we can write
ull /G
Ijnomt SJTG lOg ’ (59)

where 7, is given by Eq. (51). The null vectors k;; and kj;
are defined in terms of an arbitrary normalization constant
a that introduces an ambiguity in the calculation of Iypw.
With the above results, the joint term can be written as

IJOint(t >1.) = Ijoint(t <te) -

Gtt(rm>
2

G(rm)

871Gy

(60)

Note that for ¢ > ¢, the gravitational action calculated in the
WDW patch can be written as

Iywpw(t > t.) = Iwpw(t < t.) + 61, (61)
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where
Ol = 6lpyi + 6 gurpace + Ojoines (62)
with
Slour = Toui (1 > 1) — Tpui (1 < 1)

- ;ﬂdgN [ Or"' dr/=gL(r) Bt +ri(r)—r* (0)} ;

5Isurface = Isurface(t > tc) - Isurface(t < tc)

Ve, 6t
=826, )3

Oliging = Ijoint(t > tc) - Ijoint(t < tL‘)

J

Vd—l Gtt(rm)

=~ L G log| 2 m)
87Gy (rin) log o?

’

r=eo

. (63)

It is convenient to work with the time variable 6t = 1 — ¢,
which is related to r,, as

%—i— r*(r,) —r*(0) =0. (64)

Finally, the time derivative of each contribution reads

dolya Vi

Nt / drJ=5L(r), (65)

€0

délsurface Vd—l
— , 66
dt 16erNg,=€O (66)
Aol _ Vi G o
dt 162G, \\| GG, " ]|,
1 |G G
+3 G”GG’log’a;’. (67)

The time derivative of Iwpw can then be computed as

dt 162G,
1 Gtt Gtt
— | —_G log| =&
+ (2 \'G..G Og’ 2

Therefore, the time derivative of the holographic complex-
ity can be obtained as

dlwypw ~ Vaoi [ / " dr=gL(r) + G(r)

r=eg

G
G/
“\a.a, )

m

(68)

dCy _ 1 dlvpw
dt mh dr

(69)

o

T T T T T T T T T T

FIG. 4.
the DK model (black curve). Here, for the MT model, we have
fixed r, =1 and a/T = 0.314. For the DK model we fixed
B =3 and r, = 1. The curves obtained for another values of
these parameters are indistinguishable from the above results.

rn/ 1y versus 6t for the MT model (blue curve) and for

1. Late time behavior

In this section we now apply the formula (68) for the MT
and DK models to study the late time behavior of the time-
derivative of C,. We first observe that, at later times, 7,
approaches r,. This can be seen in Fig. 4, where we plot r,,
versus ot.

Therefore, the late time behavior of dlwpw/dt is
obtained by taking the limit r,, — r, in the Eq. (68)

dIWDW Vd—l /ru G
- drJ=4L G,
At 162Gy | ), V7Y (N +1G,.6,%"

G,G (G, n G’
G, \G, G
We have checked that the same late-time result for % can

be obtained by following the approach developed by Brown
et al. [9]. See Appendix B.

r=ry

] : (70)

Results for the MT model.—Substituting the metric func-
tions G,,,(r) and the on-shell Lagrangian £(r) for the MT
model and expanding the above contributions for small
anisotropies, we obtain

T'n 5
/ dr\/—gL(r) = =2r} — 6r?,a2 log2

€o

+ O(eglogey),

G.G(G, G 1
Gub (T TN 44 2025 10g2 — 1
G ( .t . rp g rua(Slog2 —1)
4 Ocbloge).
L@G :4r4+1r2a2(1010g2—1)
GG, - w3 .

(71)
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By summing the above contributions and taking the limit
€9 — 0, we find

dlwpw V3 4 ”%1612
= log(2)—1) | =2M
dt 162G, 6ri + 2 (Slog(2) —1) (a),

(72)

where the mass of the black brane M(a) is given by
Eq. (16). Therefore, the late time behavior of the time
derivative of holographic complexity reads

dc, _2M(a)
dt  #h

(73)
which saturates the Lloyd’s bound.

Results for the DK model.—For the DK model, we obtain
the following results

dlwpw _ Vi
dt 162Gy

<5ibulk + 5isurface + 5ijoint) (74)

where the contributions from bulk, surface and joint terms
are given by

Slpu = /rH dr\/—gL(r) = —6Br?,
0

. G,G (G;t G )
5Isu ace —+t= :6Br27
i Grr Gtt G r=0 !
. [ G
5Ij0int = WG;, = 637% (75)
n~rr r=ry

With the above results, the late-time rate of change of
holographic complexity reads

dCA - ldIWDW - V3

aA = Bri =2M
at “x di16aG, < OB 5 (76)

which precisely saturates the Lloyd’s bound. This provides
another example where, despite the anisotropy, the Lloyd’s
bound is still respected.

2. Full time behavior

In this section we study the full time behavior of
holographic complexity for the MT and DK models. We
numerically solve the Eq. (64) to find r,, as a function of ¢
and then we use the result in Eq. (68) to obtain /ypw as a
function of 4t

Results for the MT model.—The geometry in the MT model
is controlled by the dimensionless parameter ar,, where a
is the parameter of anisotropy. The values of (a,r,, M)
for which we study the complexity growth are shown in

TABLE 1. Black brane’s mass, measured in units of
V3/(162Gy), for several values of a and r,. Here we chosen
ry such that the Hawking temperature is fixed 7 = 1/x.

anisotropy parameter rysuchthat T = 1/xn 2M
0.00 1.0000 6.000
0.10 0.9997 6.005
0.15 0.9993 6.011

Table I, and they were chosen such that the temperature is
fixed as we increase the anisotropy. In this table we can see
that the black brane’s mass increases as we increase a while
keeping T fixed. Figure 5 shows the time dependence of the
gravitational action in the WDW patch for the choice of
parameters presented in Table 1. The behavior of dC,/dt is
qualitatively similar to the behavior observed in isotropic
systems. The anisotropy increase the mass of the black
brane and its effects on the rate of change of complexity
seem to be just a vertical shift in the curves of dC,/dt
versus f.

Results for the DK model.—The geometry of the DK model
is controlled by the dimensionless parameter B/T2, where
B is the intensity of the magnetic field, while T is the black
brane’s temperature [83]. In Fig. 6 we show the full time
behavior of the rate of change of complexity for different
intensities of the magnetic field. Just like in the MT model,
there is a violation of Lloyd’s bound at early times, and the
result approach the bound from above at later times.
Moreover, the net effect of the magnetic field is just a

vertical shift in the curves of C 4 Versus ot.

Y | S S S S S S ST S S SN ST S S B S SSS SS S S B |

20 25 30 35 40 45 50 55
ot

FIG. 5. The time dependence of holographic complexity
calculated with the CA proposal. The curves correspond to:
(a,ry,2M)=1(0,1,6) (black curves), (a, r,,2M) = (0.1,0.9997,
6.005) (blue curves) and (a,r,,2M) = (0.15,0.9993,6.011)
(red curves). The continuous curves represent the results [in
units of V3/(162*hG,)] for the time derivative of holographic
complexity, while the dashed horizontal lines represent 2M.
We fix the normalization of the null-vector in Eq. (57) by
taking @ = 0.1. The qualitative behavior is the same for other
values of a.
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FIG. 6. Full time behavior of holographic complexity of
magnetic black branes for different values of the magnetic field.
The curves correspond to B = 2 (black curves), B = 2.5 (blue
curves) and B = 3 (red curves). The continuous curves corre-
sponds represent C,, while the dashed horizontal lines represent
2M ;. The results are given in units of V5/(1672°G,). We fixed the
normalization of the null vector in Eq. (57) by taking a = 1.3.
The qualitative behavior is the same for other values of .

IV. THE CHARGED CASE

In this section we use the CA proposal to study the rate of
change of complexity of charged anisotropic black branes.
In particular, we consider the type IIB supergravity solution
found in [68,69]. This solution is basically an extension of
the MT solution to the charged case, therefore, for con-
ceptual clarity, we will refer to it as the charged MT model.
The action of this model reads

1 12 1
— d5 —0|R = _ - 2
5 167rGN/M v g{ 22 00)
1 1
- 56245(8)()2 _Zanan:| + Sau- (77)

The solution in Einstein frame takes the form given by (4)
and (5), with the metric functions given by

4 6 4
s [
+a*Fy(r.q) + O(a*)

B=1+a’B,(r,q) + O(a*)
H=e, with ¢=d*p(r.q)+0(a*) (78)

where the functions F,(r, q), By(r,q) and ¢,(r,q) now
depend on the charge parameter g, which is related to the
black brane’s charge as g = Q Ve Here Q is the black

rZZ
brane’s charge in units of V3 /(167G ). For small values of
g, one can find an analytic solution of the form [68]

For.q) = folr) + f2(r)g* + O(q*),
By(r,q) = bo(r) + by(r)g* + O(q"),
o (r.q) = @o(r) + @2(r)g* + O(q*). (79)

where the O(¢") terms are

1
fo(l") = —W |:8r2r%1 —2l’%<4+510g2)
H

’
+ (3r* +7r}) log <1 —I—:—g)]

1 1072 r
by(r) = e [7;»2 +1;%1 + log (1 +r—g>]
1 r%
@o(r):—ﬁlog I+3). (80)

while second order terms are given by

1
£ o413

- 24r512(r + 12)

+rr(25log2 — 12)r2r8(251og2 — 1)

2
= (2 + 13)(6r° + 7727 + 12r§) log (1 + :—;’)] :

2/ + 322 + 1174 1 2
-Z +2r2rH+2 2rH+ 5 log 1+r_,2, .
24r*(r* + ry) 1274 r

1 1 1 r2
o147, 81
4rr A(rtr?) + 2 o8 ( + r2> (81)

The field-strength and the associated chemical potential
are given by

1
F=-0QVBe?* = dt A dr,
r

(0] 5a®
2 (1-22% 10g2). 82
K 2< 2472 08 (82)

The charged black brane’s mass is given by

2.2
a‘’r
M(a,q):?srj‘,—i— il

(—2+410log2)

2,2
Sa‘ry

e [3ri‘, _28 T (34 Slog 2)] (83

A. Rate of change of complexity

The rate of change of complexity can be calculated as
before, by considering the on-shell action evaluated on
the WDW patch, with the difference that now the Penrose
diagram is modified by the fact that the black hole is
charged. See Fig. 7. The total action is given by a sum of
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0=

FIG.7. Penrose diagram of a charged asymptotically AdS black
hole. We split half of the WDW patch into three regions, I, IT and
III. At later times, the future corner, r),, approaches the inner
horizon, r_, while the past corner, r2, approaches the outer
horizon, r,.

four terms: the bulk contribution, the surface contribution,
the joint contribution, and a boundary term for the
Maxwell field.

Let us first evaluate the sum of the bulk and Maxwell
contributions. Using the equations of motion that result
from the action (78), it is easy to show that the on-shell
Lagrangian density is given by

1
L(r)=-8- gFm,,F’”". (84)
However, this on-shell Lagrangian density can be affected
by the presence of a nonzero boundary term for the
Maxwell field. For a gauge field action of the form

1
IMaxwell = _@/'M dd+1xv _ganan’ (85)

where ¢ is the gauge coupling parameter [84]. The
corresponding boundary term can be written as [85]

bd /4
IMgwell = ;/)M dZmanAnw (86)

where y is an arbitrary parameter that affects the late time
behavior of complexity. Later, we are going to fix this
parameter by requiring consistency with the uncharged
case. Using the equations of motion, one can show that

r

bdry
I =5
on-shell ~ 2g

Maxwell

/ d™ ' x\/=gF,,,F™. (87)
M

Therefore, taking into account the above contribution, the
on-shell Lagrangian density becomes

1-2y

L(r)=-8- g

F,.F". (88)

We now proceed to the evaluation of the bulk action
corresponding to the above on-shell Lagrangian density.
The WDW patch is shown in Fig. 7. The future and past
corners are denoted as r), and r2, respectively. The

r-coordinate of these points satisfy the following relations

L

L r(r2) =0. (89)

The time derivative of the above relations implies

d”rln'z _:I:Sgn(Gtt) &

dt 2 G,

(90)

r=ry?

As before, we calculate the bulk contribution for half of the
WDW patch, and then we multiply the final result by two.
The contributions for regions I, II, and III are given by

Vi T+ f * *
B = Teoe 6; éN / dry/=gL(r) (E tr - (r)),

rh

Vd_ Tmax " "
B = gt [ L =),

Vd—l Ty t » "
m = 167‘[GN/ dry/=gL(r) <_§+ ri—r (r))

©on

By taking the time derivative of the above expressions and
using (89) one can check that

dlyg,

Vi [7
—_ dry=g(8
dt 167G,, / VI < *

We now turn to the evaluation of the joint terms, corre-
sponding to the future and past corners (the red dots in
Fig. 7). These contributions are given by

1 -2y

F2> . (92)

Va G (rk?)
12 _ d-1 12 #t\Um
R L e S
whose time derivative gives
dljl(;iznt _ _ Vd—l Gzt G/(F) lo ﬂ
di 162G, \\/ G,.G i
[ G
—G, 94
+ GrrGtt It(r)) r=rl’2 ( )
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Finally, the surface contributions coming from the two
asymptotic boundaries do not depend on time, and hence
do not contribute the rate of change of complexity. Adding
the above contributions, we find
-2
F2
")

dCA Vi / dr \/—(
G !
* GranG”>

ar 167G,

(95)
At late times, rl, — r_ and r2, — r,, we find
dCA Vi 2y
dr\/— —F2
"ar ~ 161G, / a8ty
G r_

— | =—G . 96
GG ] %)

In order to evaluate the above formula for the charged MT
model, we parametrize the outer and inner horizon as

a2 e
ry=ry, r_—qu[lem(Slogz—l)} (97)

Specializing (96) for the charged MT model, and using
(97), we find

_dCy Vs
"dar T 161G,

2

+1;—2(1 +5¢%(=1 +log2) + 10log2)|. (98)
Iy

(3 —2) [2(1 _P)

The result depends on the arbitrary parameter, y. This
parameter, however, can be fixed by requiring the ¢ — 0
limit of (98) to be consistent with the uncharged case.
This can be done by setting ¢ = 0 in (98) and choosing y
such that the final result matches (72) [86]. By doing that,
we find

3a?
y=——>. (99)
1672

Notice that y = 0 for a = 0, which means that the con-
tribution of the Maxwell boundary term is zero in the
isotropic case. With this choice for y, the final result reads

_dCy vy
3 (6(1= )
ar 16ﬂN<( )i

2.2 5
“2”* [—1 +51og2+q2(—1 +zlog2>D.

(100)

By construction, the ¢ — 0 limit of the above result is
consistent with the result for the uncharged case, given
in (72). Furthermore, the a — O limit is consistent with
previous results reported in the literature. See, for instance,
(4.27) of [17].

Now let us discuss our result in the light of the bound
proposed in [9], according to which the natural bound for
states at a finite chemical potential is

R <M - pQ) - 2M —pQ),  (101)

where the second term correspond to the ground state (gs)
value of (M —uQ). As the charged MT model does not
have an extremal limit, the ground state is the vacuum
solution (M = Q = 0). Using the formula (82) for the
chemical potential, and taking into account that the black

brane’s charge is Q = 1‘6/,3[8 .
N

we can see that

aqry

”%_Q(M_ﬂg):

- (—=17+20log2) <0

(102)

which shows that the bound (101) can be saturated in the
a — 0 limit, but it is no longer saturated once we turn on
the anisotropy parameter.

V. DISCUSSION

We have used the CA conjecture to study the time-
dependence of holographic complexity for three aniso-
tropic black brane solutions, namely, the MT model, the
DK model, and the charged MT model.

A. MT model

The MT solution is dual to the N'=4 SYM theory
deformed by a position-dependent theta-term that breaks
isotropy and conformal invariance. The background geom-
etry is controlled by the ratio a/T, where a is the parameter
of anisotropy, and 7 is the Hawking temperature.

Similarly to the case of isotropic systems, the rate of
change of complexity in anisotropic systems is zero for
t <t,, and it is nonzero for ¢t > t., with this critical time
given by Eq. (33). Figure 3 shows the behavior of 7. as a
function of the anisotropy parameter. In this figure we
consider increasing values of the anisotropy parameter,
while keeping fixed the temperature. As compared with
an isotropic system with the same temperature, the holo-
graphic complexity of anisotropic systems remains constant
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for a shorter period, i.e., the effect of the anisotropy is to
reduce f¢,.

In Sec. III B 1 we study the late-time behavior of the ho-
lographic complexity and find an expression for dlwpw/dt
in terms of the metric functions. See Eq. (70).
For simplicity, let us first consider the isotropic case, in
which a = 0. In this case the MT solution reduces to the
five-dimensional black brane solution that is dual to the
undeformed A/ =4 SYM theory. From previous works
[9,17,18], we know that the Lloyd’s bound should be
respected in this case. As we turn on a small anisotropy
parameter, all the metric functions get corrections up to the
second order in a and this leads to a larger black brane’s
mass [see Eq. (16)]. In this case, we expect the formula (70)
to provide the result for a = 0, plus corrections up to the
second order in the anisotropy parameter. Applying our
formulas for the MT model we find that the late time rate of
change of complexity matches the Lloyd’s bound, i.e.,
dC,/dt =2M(a)/mh. This is a highly nontrivial match,
because it means that the anisotropy increases the value of
2M and the late time value of dIwpw/dt precisely in the
same amount.

The full-time behavior of dC,/dt can be seen in Fig. 5.
The results share a lot of similarities with the previous
results obtained for isotropic systems [17]. In particular,
dC,/dt violates the Lloyd’s bound at initial times, and
approaches this bound (from above) at later times. In
this figure we consider increasing values of the anisotropy
parameter, while keeping fixed the temperature. The
resulting black brane’s mass increases as we increase
the anisotropy parameter, and the overall effect of the
anisotropy is a vertical upward shift [88] in the curves of
dC,/dt versus 6t. At later times, the difference between
the anisotropic and isotropic results is proportional to the
difference in pressures in the transverse and longitudinal
directions, namely

dcy, 2M(0) V; .
W_ h +E(ny PZ)—FO(CZ )

(103)
This can be seen from Eqs. (73) and (17).

B. DK model

The behavior of holographic complexity in the MT
model is very similar to the behavior observed in magnetic
branes. By using the CA conjecture, we studied the time
behavior of holographic for the magnetic black brane
solution found by D’Hoker and Kraus in [67]. In this
model one introduces a constant magnetic field that breaks
the rotational symmetry of the background. The geometry
is controlled by the ratio, B/ T2, between the magnetic field
and the temperature squared. For very large values of
values of B/T?, this system has a simple solution, which is
given in (19). For this configuration, the Lloyd’s bound
is violated at early times, but it is saturated at later times.

This provides another example of a system that breaks the
rotational symmetry without violating the Lloyd’s bound at
later times. This should be contrasted with the bound for
n/s, which is known to be violated in anisotropic systems.
This suggests that the violation of Lloyd’s bound [22-25]
in the case of neutral black holes is not due to anisotropy,
but rather to the presence of a conformal anomaly. As
neither the D’Hoker and Kraus nor the Mateos and
Trancanelli model display a conformal anomaly (up to
second order in the anisotropy), this would explain why the
Lloyd’s bound is not violated in these two models. We are
currently investigating whether this last statement is true.

1. Charged anisotropic black branes

In Sec. IV we use the CA conjecture to study the late-
time behavior of holographic complexity for a generaliza-
tion of the MT model to the charged case. In this case the
geometry is not only controlled by the parameter a/7T, but
also by the dimensionless charge parameter g. Following
[85] we consider the inclusion of a Maxwell boundary term
[see Eq. (86)], which introduces an arbitrary parameter y
that affects the late-time rate of change of complexity. This
new boundary term turned out to be necessary to make the
g — 0 limit of the final result consistent with the result for

neutral anisotropic black branes. We find y = 136“:2, which
suggests that the Maxwell boundary term is generically
necessary when we have nontrivial matter fields besides
the Maxwell field. Having fixed the value of y, we find
that the charged MT model respects the bound (101)

proposed in [9].

2. Conclusions and future directions

We have considered three different models in which
matter fields break the rotational symmetry, and we studied
how this affects the holographic complexity. In neutral
black holes, the formula for holographic complexity only
depends on the metric components, having no explicit
dependence on the matter fields (the on-shell Lagrangian
is just a constant). In other words, the matter fields only
affect the holographic complexity through their effect on
the geometry. This should be contrasted with the charged
case, in which the electric charge appears explicitly in the
formulas for the holographic complexity, as well as in the
metric components.

We have observed that the holographic complexity of
anisotropic systems increases as compared to isotropic
systems at the same temperature. This happens because the
matter fields increase the mass of the black hole and, for the
Lloyd’s bound to be respected, the holographic complexity
also has to increase.

We have studied the effects of anisotropy on the
complexity growth considering the case of small anistro-
pies. Our results are valid up to O(a?). It would be
interesting to extend our results to higher anisotropies,
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because in this case the MT model displays a conformal
anomaly [89], which might cause a violation of the Lloyd’s
bound. Besides that, the MT gravitational solution can be
thought of as describing a renormalization group (RG) flow
from a AdS geometry in the ultraviolet (UV) to a Lifshitz
geometry in the infrared (IR). The parameter controlling
this transition is the ratio a/T, which is small close to the
UV fixed point and large close to the IR fixed point. It
would be interesting to study how the complexity growth
behaves under this RG flow. Moreover, as Lifshitz geom-
etries were known to violate the Lloyd’s bound [25], we
expect such a violation to occur in the MT model at higher
anisotropies.

Another interesting extension of this work would be
to study the effects of the anisotropy in the holographic
complexity calculated using the CV conjecture. Although
this calculation is relatively easy for isotropic systems
[7,17,18], the extension for anisotropic systems is non-
trivial, because in this case the ansatz for the maximum
volume surface is more complicated, preventing the use of
the techniques used in [7,17,18]. More specifically, the
volume functional of the codimension one surface can be
generically written as

Y- / dio/detlgy),

where 6, and g,;, = 0,X"0,X"G,,, are the coordinates and
the induced metric along the surface, respectively. Here
X"(o,) are the embedding functions describing the surface,
while G,,,, are the metric components of the background
geometry. In isotropic geometries, one can assume the
ansatz X" = (v(4),r(4),x,y,x), where v =r+r,. The
xyz-rotational symmetry of this ansatz results in a simple
form for the volume functional (104), which can be easily
extremized. In anisotropic systems, one no longer has this
rotational symmetry, because G, # G,,, and that results in
a more complicated form for X and V.

(104)
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APPENDIX A: JOINT TERMS AT THE r=r,,y
AND r=¢, CUTOFF SURFACES

In this Appendix we briefly review how to calculate the
joint terms at the asymptotic boundaries and at the singu-
larities. We show that the contributions from the asymptotic
boundaries are time-independent, while the contributions
from the singularities vanish.

A joint term for a corner involving the connection of at
least one null surface has the form [16]

1

) S ——— Al
joint 87TGN ( )

/ d"'x\/oa

where o is the induced metric on the surfaces and a is
defined as

log |k - n'9]
a==£{ log|k-n¥|
log |k - k= /2]

for spacelike-null joints
for timelike-null joints

for null-null joints

where kT and k= are outward directed null normal
vectors, while nl)(nl)) are outward directed timelike
(spacelike) normal vectors. The overall sign depends on
the orientation of the normal vectors. For more details,
see the Appendix A of [16]. The relevant normal vectors
can be written as

n;(f) _ (ngt)’ngr)’ngt)) — (O, \/ _Grr<€0)’0), (A2)
n® () 2 n®) = (o, VG (rma)s o), (A3)
ke = +ad,(t + ). (A4)

With the above definitions, the joints term coming from
the singularities can be written as

. 1
[hE = /dd‘lx\/glog k- n]

joint 87TGN
— — =L G(r) log G (1) (a3)
8rGy —
For the MT model, one can show that I;i)?ft ~ €3 log €.

Therefore, the contribution from this joint term vanishes in
the limit ¢; — 0. The joint terms coming from the asymp-
totic boundaries are given by

bd 1 _ ;
Tigin = 842G, d*'xv/slog k- |

_ Vau
872G,

G(r)log|G,(r)|

I'=Tmax
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For the MT model I}fi;yt gives rise to a divergent contri-
bution that is independent of time, because it only depends
on quantities calculated on the outside of the black brane,
and this region has a time-translation symmetry. Therefore,
this term do not contribute to the rate of change of

holographic complexity.

APPENDIX B: COMPARISON
WITH BROWN ET AL.

The CA conjecture was proposed by Brown et al. in
[8,9]. In those papers the authors find a clever way of
calculating the late time rate of change of complexity
without having to take into account the contributions from
joint and null boundary terms. In a later work, Myers et al.
[15] derive the expressions for the joint and null boundary
terms and showed how to include the corresponding
contributions to the rate of change of holographic complex-
ity. Myers et al. find a perfect match with the results of
Brown et al. at later times and carefully explain the reasons
behind the agreement in [15]. In this Appendix we briefly
review the approach of Brown et al. and we show that it
gives the same results obtained in Sec. III using the
approach of Myers et al. [15,16].

In the approach of Brown e al. it is more convenient to
consider the time evolution of the WDW patch when we
increase the time in the left boundary, while keeping fixed
the time in the right boundary, as shown in Fig. 8.

Figure 8 shows that, as the time evolves in the left
boundary, the WDW patch increases in the region shown in
red, while it decreases in the region shown in light-blue. To
calculate the corresponding variation of the WDW patch,
the authors of [9] argue as follows:

(i) the parts of the WDW patch that lie outside of the

horizon are time-independent because this region
has a time-translation symmetry. As a consequence,

FIG. 8. Change in the WDW patch as the time evolves in the
left boundary.

FIG. 9. Piece of the WDW patch that contributes to the rate of
change of complexity at late times.

these parts do not contribute to the rate of change of
complexity;

(ii) the part of the WDW patch that lies inside the past
horizon contributes at early times, but it is highly
suppressed at later times. Hence, at later times, the
only contribution for the rate of change of complex-
ity comes from the region of the WDW patch that
lies inside the future horizon. This region is shown
in Fig. 9;

(iii) under time evolution the surface B is replaced by the
surface B’, while the corners HB and SB are
replaced by the corners HB' and S'B, respectively.
The surfaces B and B’ are related by a time-
translation symmetry and so their contributions
cancel. The same cancellation occurs between the
contributions coming from HB and HB' and be-
tween the contributions coming from SB and B’'S;

With the above cancellations the only terms left to be

computed are the bulk contribution and the surface con-
tributions coming from the horizon H and from the
singularity S. Therefore, the gravitational action evaluated
in the WDW patch can be written as

Iwpw = Thuk + Tsurfaces (B1)
where the bulk contribution reads
1
I = d™x./=qL B2
bulk 167G, /M Xy/—g (x) ( )

while the GHY surface contribution reads

1 /
Turface = =—— d?x hKJr/ dx hK]
surface 87Z'GN |: —r | | e, | |

(B3)

where r = r, indicates the boundary surface at the horizon
and r = ¢, indicates the boundary surface at the singularity.
For the general action and metric given in (24) and (25) we
can write

046014-16



HOLOGRAPHIC COMPLEXITY OF ANISOTROPIC BLACK BRANES

PHYS. REV. D 100, 046014 (2019)

I _ Vd—l
WOV T 162G

; [/ dthH dr\/=gL(r)

G,IG G;t G’

=ry

G,G(G, (G

e

where we have used (40) to express K in terms of the metric
functions. The time-derivative reads

dr 162G, [ / dry=gL(r)

/
Gtt | r= rH
tt rr rr

GQ, G’

)
r=ey

(BS)

where we have used that G,,/G,, vanishes at the horizon
to simplify the expression for the GHY term at the
horizon. The above results for the late-time rate of
change of Iwpw precisely coincides with the result
(70) obtained with the approach of Myers et al
[15,16]. The reason for the agreement is the following:
both approaches contain identical bulk contributions and
identical surface contributions coming from the future
singularity. The only difference is that in the calculation
of Brown et al. there is a GHY-like term for the horizon,
while in the calculation of Myers et al. there is no
such term, but there is instead a joint contribution
coming from a corner that lies just behind the past
horizon. Surprisingly, these two terms precisely coin-
cides and both approaches give the same result. A more
detailed explanation for the agreement between the two
approaches can be found in [15].
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