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We use the complexity ¼ action (CA) conjecture to study the full-time dependence of holographic
complexity in anisotropic black branes. We find that the time behavior of holographic complexity of
anisotropic systems shares a lot of similarities with the behavior observed in isotropic systems. In
particular, the holographic complexity remains constant for some initial period, and then it starts to change
so that the complexity growth rate violates the Lloyd’s bound at initial times, and approaches this bound
from above at later times. Compared with isotropic systems at the same temperature, the anisotropy reduces
the initial period in which the complexity is constant and increases the rate of change of complexity. At late
times the difference between the isotropic and anisotropic results is proportional to the pressure difference
in the transverse and longitudinal directions. In the case of charged anisotropic black branes, we find that
the inclusion of a Maxwell boundary term is necessary to have consistent results. Moreover, the resulting
complexity growth rate does not saturate the Lloyd’s bound at late times.
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I. INTRODUCTION

The gauge-gravity duality [1] provides a framework in
which one can study the emergence of gravity from
nongravitational degrees of freedom. Within this frame-
work, the gravitational theory lives in a higher dimensional
space M, usually called bulk, and the nongravitational
theory can be thought of as living on the boundary of M.
Despite the existence of a dictionary [2,3] relating bulk and
boundary quantities, the description of the black hole’s
interior in terms of boundary degrees of freedom remains
elusive. Recently, there has been progress in this direction,
with the conjecture that the growth of the interior of a black
hole is related to the quantum computational complexity [4]
of the states in the boundary theory. There are two main
proposals relating the complexity to geometric quantities
in the bulk, namely, the Complexity ¼ Volume (CV) [6,7]
and the Complexity ¼ Action (CA) [8,9] conjectures. In
the CV conjecture, the complexity is dual to the volume of a

certain extremal surface in the bulk and provides an
example of the recent proposal about the connection
between tensor networks and geometry [10–12], while in
the CA conjecture the complexity is dual to the gravita-
tional action evaluated in certain region in the bulk. More
details about CA conjecture will be given in Sec. III.
A convenient gravity setup to study complexity growth is

a two-sided black hole geometry. This geometry has two
asymptotic regions, which we call left (L) and right (R)
boundaries, and an Einstein-Rosen Bridge (ERB) connect-
ing the two sides of the geometry. The Penrose diagram of
this geometry is shown in Fig. 1. From the point of view of
the boundary theory, the two-sided black hole is dual to a
thermofield double (TFD) state, constructed out of two
copies of the boundary theory [13]

jTFDi ¼ 1

Z1=2

X
n

e
−βEn
2 e−iEnðtLþtRÞjEniLjEniR; ð1Þ

where L and R label the quantum states of the left and
right boundary theories, respectively. The TFD state is
invariant under evolution with a Hamiltonian of the form
H ¼ HL −HR, which means that the system is invariant
under the shifts tL → tL þ Δt, and tR → tR − Δt. As a
result, the TFD state only depends on the sum of the left
and right boundary times t ¼ tL þ tR.
The ERB connecting the two sides of the geometry

grows linearly with time. Classically, this behavior goes
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on forever. In [6] Susskind proposed that this behavior is
dual to the growth of the computational complexity in the
boundary theory, which is known to persist for very long
times. Using the CV proposal, the authors of [7] showed
that the late-time behavior of the rate of change of
complexity is given by dCV=dt ¼ 8πM=ðd − 1Þ, where
M is the black hole’s mass and d is the number of
dimensions of the boundary theory.
Despite having a qualitative agreement with the behavior

of complexity for quantum systems, the CV conjecture is
defined in terms of an arbitrary length scale, which is
usually taken to be of the order of the AdS radius. In order
to avoid the ambiguity associated to the arbitrary length
scale the authors of [8,9] proposed the CA conjecture. For
neutral black holes, the late time behavior of the rate of
change of holographic complexity reaches a constant value
which is also proportional to the black hole’s mass

lim
t→∞

dCA
dt

¼ 2M
ℏπ

: ð2Þ

This late-time behavior may be associated with the Lloyd’s
bound on the rate of computation by a system with energy
M [14]. This saturation of the complexification bound lead
to the conjecture that the black holes are the fastest
computers in nature [9]. It was later shown that a more
precise definition of CA requires the introduction of joint
and boundary terms, which were not present in the
calculation of [8,9]. In particular, it was shown that the
CA proposal also have an ambiguity related to the para-
metrization of null surfaces [15]. Using the boundary and
joint terms derived in [15,16], the authors of [17,18]
showed that these ambiguities do not affect the late time
behavior of dCA=dt, but they play a role at early times,
leading to a violation of Lloyd’s bound.
Therefore, both the CA and the CV proposals have

ambiguities which (apparently) cannot be eliminated.
This is not a problem, however, because the same ambi-
guities were found in the definition of complexity for free
quantum field theories [19–21]. Moreover, the quantitative

disagreement between the results obtained with the CA and
CV proposals might be related to other ambiguities in the
definition of complexity, like the choice of the reference
state or the choice of the elementary gates.
The Lloyd’s bound was shown to be violated even at late

times by anisotropic systems, including the SYM theory
defined in a noncommutative geometry [22], and Lifshitz
and hyperscaling violating geometries [23–25]. This raises
the question of whether there is a more general bound
that is also respected by anisotropic systems. With this in
mind, in this paper we use the CA conjecture to study the
holographic complexity of a class of anisotropic black
branes [26]. More specifically, we consider the Mateos and
Trancanelli (MT) model [65,66], the D’Hoker and Kraus
(DK) model [67], and the Cheng-Ge-Sin (CGS) model
[68,69], and study the time dependence of holographic
complexity in thermofield double states which are dual to
two-sided black brane geometries.
The MT model is a solution of type IIB supergravity that

was designed to model the effects of anisotropy in the quark-
gluon plasma (QGP) created in heavy ion collisions. The
anisotropy is present in the initial stages after the collision
and it leads to different transverse and longitudinal pressures
in the plasma. For our purposes, the main motivation to
consider this model is that it describes a renormalization
group (RG) flow from an AdS geometry in the ultraviolet
(UV) to a Lifshitz-like geometry in the infrared (IR). The
transition is controlled by the ratio a=T, where a is a
parameter that measures the degree of anisotropy and T is
the black brane’s temperature. From the point of view of the
boundary theory, this parameter is small close to the UV
fixed point and large close the IR fixed point. We would like
to understand how the complexity rate changes as we move
along this RG flow and whether this system respects the
Lloyd’s bound. As a first step towards this, we have
considered small deviations from the UV fixed point, i.e.,
small values of a=T, which can be incorporated by consid-
ering an analytical black brane solution with small correc-
tions due to anisotropy [70].
The DK model is a solution of 5-dimensional Einstein-

Maxwell gravity that is dual to the 4-dimensional N ¼ 4
SYM theory in the presence of a background magnetic
field. This solution describes an RG flow between an AdS
geometry in the UV to a BTZ ×R2 geometry in the IR. The
parameter controlling such transition is B=T2, where B is
the intensity of the magnetic field, while T is the black
brane’s temperature. We would like to understand how the
magnetic field affects the rate of change of complexity.
The CGS model [68,69] is a generalization of the MT

model to the charged case. The geometry is an anisotropic
RN-AdS solution, being also affected by a charge parameter,
q. When a ≠ 0 and q → 0, the solution reduces to the MT
geometry. When q ≠ 0 and a → 0, the solution becomes an
RN-AdSgeometry. Themotivation to consider this solution is
to understand how the rate of change of complexity is affected

FIG. 1. Penrose diagram for the two-sided black branes we
consider. This geometry is dual to a thermofield double state
constructed out of two copies of the boundary theory.
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by the presence of uncharged and charged matter fields,
and whether the CA prescription can provide sensible results
in the presence of several matter fields.
In the uncharged cases, we find that the time behavior

of holographic complexity is qualitatively similar to the
behavior observed for isotropic systems, namely, the holo-
graphic complexity remains constant for some period,
and then it starts to change so that the rate of complexity
growth violates the Lloyd’s bound at initial times, and
it approaches this bound from above at later times.
Additionally, we find that the net effect of anisotropy is
basically a vertical upward shift in the curves of the rate of
change of holographic complexity versus time. At later
times, the difference between the isotropic and anisotropic
results is proportional to the difference in pressures in the
longitudinal and transverse directions. In the charged case,
we find that the inclusion of a Maxwell boundary term is
necessary to have consistent results.
The remainder of paper is organized as follows. In Sec. II

we review the MT and DK solutions and present some
of its thermodynamic properties. In Sec. III we use the CA
conjecture to study the full-time behavior of holographic
complexity of thermofield double states which are dual to
two-sided anisotropic black branes solutions. The case of
charged anisotropic black branes is considered in Sec. IV.
We discuss our results in Sec. V. We relegate some technical
details of the calculations to the Appendixes A and B.

II. GRAVITY SETUP

A. Anisotropic black branes: The MT model

The Mateos and Trancanelli (MT) model [65,66] is a
solution of type IIB supergravity whose effective action in
five dimensions can be written as

S ¼ 1

16πGN

Z
M

d5x
ffiffiffiffiffiffi
−g

p �
Rþ 12

L2
−
1

2
ð∂ϕÞ2

−
1

2
e2ϕð∂χÞ2

�
þ SGH; ð3Þ

where ϕ, χ and gμν are the dilaton field, the axion field and
the metric respectively, GN is the five-dimensional Newton
constant, and SGH is the Gibbons-Hawking term. The
solution in Einstein frame takes the form

ds2 ¼ L2e−ϕðrÞ=2
�
−r2F ðrÞBðrÞdt2

þ dr2

r2F ðrÞ þ r2ðdx2 þ dy2 þHðrÞdz2Þ
�
; ð4Þ

with

χ ¼ az; ϕ ¼ ϕðrÞ; H ¼ e−ϕ; ð5Þ

where ðt; x; y; zÞ are the gauge theory coordinates and r is
the AdS radial coordinate. Here L is the AdS radius, which
we set to unity in the following [71]. The above solution
has a horizon at r ¼ rH and the boundary is located at
r ¼ ∞, where F ¼ B ¼ H ¼ 1 and ϕ ¼ 0. The axion is
proportional to the z-coordinate and this introduces an
anisotropy into the system, which is measured by the
anisotropy parameter a. For a ≠ 0, the above solution
corresponds to the gravity dual of N ¼ 4 SYM theory,
with gauge group SUðNÞ, deformed by a position-
dependent theta term. When a ¼ 0, the above solution
reduces to the gravity dual of the undeformed SYM theory.
The functions F , B,H and the dilaton ϕ can be determined
analytically [73] for small values of the anisotropy param-
eter a as

F ¼ 1 −
r4H
r4

þ a2

24r4r2H

�
8r2r2H − 2r2Hð4þ 5 log 2Þ

þ ð3r4 þ 7r4HÞ log
�
1þ r2H

r2

��
þOða4Þ ð6Þ

B ¼ 1 −
a2

24r2H

�
10r2H

r2 þ r2H
þ log

�
1þ r2H

r2

��
þOða4Þ ð7Þ

ϕ ¼ −
a2

4r2H
log

�
1þ r2H

r2

�
þOða4Þ: ð8Þ

By requiring regularity of the Euclidean continuation of
the above metric at the horizon, one obtains the Hawking
temperature as

T ¼ rH
π
þ ð5 log 2 − 2Þ

48π

a2

rH
þOða4Þ: ð9Þ

The Bekenstein-Hawking entropy can be obtained from the
horizon area as

S ¼ r3H
4GN

�
1þ 5a2

16r2H

�
V3 þOða4Þ: ð10Þ

where V3 ¼
R
dxdydz is the volume in the xyz-directions.

Using holographic renormalization, the stress tensor of the
deformed SYM theory can be obtained as [66,74]

Tij ¼ diagðE;Pxy; Pxy; PzÞ; ð11Þ

where

E ¼ 3π2N2T4

8
þ N2T2

32
a2 þOða4Þ; ð12Þ
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is the energy density of the black brane and

Pxy ¼
π2N2T4

8
þ N2T2

32
a2 þOða4Þ; ð13Þ

Pz ¼
π2N2T4

8
−
N2T2

32
a2 þOða4Þ ð14Þ

are the pressures along the transverse and longitudinal
directions, respectively. The mass of the black brane can
then be calculated as

M ¼ EV3 ¼
�
3π2N2T4

8
þ N2T2

32
a2
�
V3 þOða4Þ; ð15Þ

A more simple way of calculating the black brane’s mass is
through the expression

M ¼
Z

TdS ¼
Z

rH

0

TðrHÞ
dSðrHÞ
drH

drH

¼ V3

16πGN

�
3r4H þ r2Ha2

4
ð5 log 2 − 1Þ

�
þOða4Þ ð16Þ

where the integral was calculated using the Eqs. (9)
and (10) for TðrHÞ and SðrHÞ, respectively. Expressing
rH as a function of the temperature T and using that
GN ¼ π=ð2N2Þ, we recover the expression for the mass
given in Eq. (15).
Note that the mass of the anisotropic black brane is larger

than the mass of an isotropic black brane with the same
temperature, or with the same horizon radius. For future
reference, we note that

MðaÞ ¼ Mð0Þ þ V3

2
ðPxy − PzÞ þOða4Þ: ð17Þ

B. Magnetic black branes: The DK model

The D’Hoker and Kraus (DK) model [67] is a magnetic
black brane solution of 5-dimensional Einstein-Maxwell
gravity. The action of this model reads

S ¼ 1

16πGN

Z
d5x

ffiffiffiffiffiffi
−g

p ðRþ 12 − FMNFMNÞ: ð18Þ

For very large values of the magnetic field (B=T2 ≫ 1), the
solution takes the form [75]

ds2 ¼ −3ðr2 − r2HÞdt2 þ
dr2

3ðr2 − r2HÞ
−

Bffiffiffi
3

p ðdx2 þ dy2Þ þ 3r2dz2: ð19Þ

with field strength F ¼ Bdx ∧ dy.

The Hawking temperature and the Bekenstein-Hawking
entropy associated to the above solution are easily found
to be

T ¼ 3rH
2π

; S ¼ 3V3Br2H
4GN

: ð20Þ

where V3 ¼
R
dxdydz. The black brane’s mass can then be

calculated as

MB ¼
Z

TdS ¼ V3

16πGN

× 3Br2H: ð21Þ

C. Penrose diagram

Lastly, we comment that the above gravitationals sol-
ution can be extended to a two-sided eternal black brane
geometry, with two asymptotic boundaries. See Fig. 1. The
extended solution is dual to a thermofield double state
constructed out of two copies of the boundary theory.
The Penrose diagram is obtained as follows. We consider

a general metric of the form given in Eq. (25). We first
define Kruskal-Szekeres coordinates U and V as

U ¼ þe
2π
β ðr�−tÞ; V ¼ −e

2π
β ðr�þtÞðleft exterior regionÞ

U ¼ −e
2π
β ðr�−tÞ; V ¼ þe

2π
β ðr�þtÞðright exterior regionÞ

U ¼ þe
2π
β ðr�−tÞ; V ¼ þe

2π
β ðr�þtÞðfuture interior regionÞ

U ¼ −e
2π
β ðr�−tÞ; V ¼ −e

2π
β ðr�þtÞðpast interior regionÞ

ð22Þ

where β is the black hole inverse temperature, and r� is the
tortoise coordinate, which is defined in (27). In terms of
these coordinates, the metric (25) becomes

ds2 ¼ −
β2e−

4π
β r�

8π2
GttðUVÞdUdV þ GijðUVÞdxidxj: ð23Þ

The Penrose diagram is obtained with one additional change
of coordinates, Ũ ¼ tan−1ðUÞ and Ṽ ¼ tan−1ðVÞ, in terms
of which the boundaries of the spacetime lie at finite
coordinate distance. The Penrose diagram will have the
form given in Fig. 1 as long as the blackening factor F ðrÞ
has a single root, and the tortoise satisfies three conditions,
namely: (I) limr→∞r�ðrÞ ¼ 0; (II) limr→rHr�ðrÞ ¼ −∞;
(III) limr→0r�ðrÞ ¼ 0. Each point in the Penrose diagram
is a three-dimensional space, with metric Gij. The fact that
Gij is anisotropic does not affect the diagram, because the
diagram is only constructed out of the coordinates t and r�.
We explicitly checked that both the MT and the DK models
satisfy the above conditions. The Penrose diagram of the
charged MT model, considered in Sec. IV, is different
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because in that case the blackening factor F ðrÞ has
two roots.

III. HOLOGRAPHIC COMPLEXITY

In this section we compute the holographic complexity
using the complexity ¼ action (CA) [8,9]. Here we follow
closely the analysis of [17], with adaptations for anisotropic
systems. We consider neutral anisotropic black branes with
a generic bulk action of the form

S ¼ 1

16πGN

Z
ddxdr

ffiffiffiffiffiffi
−g

p
Lðr; xÞ; ð24Þ

and metric

ds2 ¼ −GttðrÞdt2 þ GrrðrÞdr2 þ GijðrÞdxidxj ð25Þ

where r is the AdS radial coordinate and ðt; xiÞ are the
gauge theory coordinates. Here i ¼ 1; 2;…; d − 1. We take
the boundary as located at r ¼ ∞ and we assume the
existence of a horizon at r ¼ rH, where Gtt has a zero and
Grr has a simple pole. We denote as G the determinant of
Gij, i.e., G ¼ detðGijÞ.
In the computations of holographic complexity it is

convenient to use coordinates that cover smoothly the
two sides of the geometry. We use Eddington-Finkelstein
coordinates

u ¼ t − r�ðrÞ; v ¼ tþ r�ðrÞ; ð26Þ

where the tortoise coordinate is defined as

r�ðrÞ ¼ sgnðGttðrÞÞ
Z

r
dr0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Grrðr0Þ
Gttðr0Þ

s
: ð27Þ

The CA conjecture states that the quantum complexity of
the state of the boundary theory is given by the gravitational
action evaluated in a region of the bulk known as the
Wheeler-DeWitt (WDW) patch

CA ¼ IWDW

πℏ
: ð28Þ

The WDW patch is the domain of dependence of any
spatial slice anchored at a given pair of boundary times
ðtL; tRÞ. See Fig. 2. The gravitational action in the WDW
patch is divergent because this region extends all the way
up to the asymptotic boundaries of the space-time. We
regularize this divergence by introducing a cutoff surface at
r ¼ rmax near the boundaries. We also introduce a cutoff
surface r ¼ ϵ0 near to the past and future singularities.
Without loss of generality, we consider the time evolution
of holographic complexity for the symmetric configuration
tL ¼ tR ¼ t=2. More general cases can be obtained from the
symmetric configuration by using the fact that the system is

symmetric under shifts tL → tL þ Δt and tR → tR − Δt. The
gravitational action in the WDW patch can be written as

IWDW ¼ Ibulk þ Isurface þ Ijoint; ð29Þ

where

Ibulk ¼
1

16πGN

Z
M

ddþ1x
ffiffiffiffiffiffi
−g

p
LðxÞ ð30Þ

is the bulk action and Isurface and Ijoint are surface and joint
terms that are necessary to have a well-defined variational
principle when one considers a finite domain of space-time
[15]. The surface terms are given by

FIG. 2. Penrose diagram and the WDW patch (blue region) for
the two-sided black brane we consider. (a) Configuration at initial
times (t ≤ tc) in which the WDW patch intersects both the future
and the past singularity. (b) Configuration at later times (t > tc)
when the WDW patch no longer intersects the past singularity.
The dashed lines represent the cutoff surfaces at r ¼ rmax.
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Isurface ¼
1

8πGN

Z
B
ddx

ffiffiffiffiffiffi
jhj

p
K � 1

8πGN

Z
B0
dλdd−1θ

ffiffiffi
γ

p
κ

ð31Þ

where the first term, which is defined in terms of the trace
of the extrinsic curvature K, is the well-known Gibbons-
Hawking-York boundary term [76,77]. This term is neces-
sary when the boundary includes (smooth) spacelike and
timelike segments, which we denoted as B. The second
term in the above equation includes the contribution of null
segments. This term is defined in terms of the parameter κ,
which measure how much the null surface B0 fails to be
affinely parametrized. Here we follow [15] and set κ ¼ 0,
so that we do not need to consider these null boundary
terms. This choice of κ correspond to affinely parametrize
the null boundary surfaces.
The joint terms are necessary when the intersection of

two boundary terms is not smooth. These terms can be
written as

Ijoint ¼
1

8πGN

Z
Σ
dd−1x

ffiffiffi
σ

p
ηþ 1

8πGN

Z
Σ0
dd−1x

ffiffiffi
σ

p
ā ð32Þ

where the first term [78] corresponds to the intersection
of two boundary segments which can be timelike or
spacelike, so the intersection can be of the type: timelike/
timelike, timelike/spacelike, or spacelike/spacelike. As
the WDW patch do not include such intersection, we do
not need to consider this first term. The second term
includes the contribution of the intersection of a null
segment with any other boundary segment, so it includes
contribution of the type: null/null, null/timelike, and null/
spacelike. A more precise definition of the surface and
joint terms will be given throughout the text along with
the adopted conventions [81]. The quantity ā is defined in
Appendix A.
As first pointed out in [20], at early times the WDW

patch intersects both the future and the past singularity,
and this causes IWDW to be constant for some period of
time 0 ≤ t ≤ tc. At later times, t > tc, the WDW patch no
longer intersects the past singularity, and IWDW starts to
change with time. These two cases are illustrated in
Fig. 2. The timescales separating these two regimes can
be written as

tc ¼ 2ðr�∞ − r�ð0ÞÞ; r�∞ ¼ lim
r→∞

r�ðrÞ ð33Þ

where we have used that tL ¼ tR ¼ t=2. Figure 3 shows
how the critical time (33) behaves as a function of the
anisotropy parameter in MT model. This figure shows
that, as compared to an isotropic system at the same
temperature, the anisotropy reduces the critical time, i.e.,
the complexity starts to change earlier in anisotropic
systems.

A. Behavior at initial times: 0 ≤ t ≤ tc
For initial times 0 ≤ t ≤ tc the WDW patch intersects

with both the future and past singularities. The contribu-
tions for IWDW include: the bulk term, the GHY terms
and the joint terms. In principle, the GHY terms include
contributions from the cutoff surfaces at r ¼ rmax and
r ¼ ϵ0, as well as from the null boundaries of the WDW
patch. However, since we affinely parametrize the null
surfaces, we do not need to consider the surface contribu-
tions from the null boundaries. The joint terms include
contribution from the intersection of the null boundaries of
the WDW patch with the cutoff surfaces at r ¼ rmax and
r ¼ ϵ0. We use the left-right symmetry of the WDW patch
to calculate IWDW for the right side of Penrose diagram
and then multiply the result by two.
To calculate the bulk contributions we split the right-side

of the WDW patch into three parts: region I, region II, and
region III, which are shown in Fig. 2(a). We then calculate
the bulk contribution as

Ibulkðt ≤ tcÞ ¼ 2ðIIbulk þ IIIbulk þ IIIIbulkÞ; ð34Þ

where [82]

IIbulk ¼
Vd−1

16πGN

Z
rH

ϵ0

dr
ffiffiffiffiffiffi
−g

p
LðrÞ

�
t
2
þ r�∞ − r�ðrÞ

�

IIIbulk ¼
Vd−1

8πGN

Z
rmax

rH

dr
ffiffiffiffiffiffi
−g

p
LðrÞðr�∞ − r�ðrÞÞ

IIIIbulk ¼
Vd−1

16πGN

Z
rH

ϵ0

dr
ffiffiffiffiffiffi
−g

p
LðrÞ

�
−
t
2
þ r�∞ − r�ðrÞ

�

ð35Þ

with Vd−1 ¼
R
dd−1x. Note that in the above expressions

we are assuming that the on-shell Lagrangian L only
depends on r. Summing all the contributions we obtain

FIG. 3. Critical time (normalized by isotropic result) versus
a=T. We consider increasing values of a, but we choose rH in
such a way to keep fixed the temperature as T ¼ 1=π.
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Ibulk ¼
1

2πGN

Z
rmax

ϵ0

dr
ffiffiffiffiffiffi
−g

p
LðrÞðr�∞ − r�ðrÞÞ: ð36Þ

Note that Ibulkðt ≤ tcÞ does not depend on time. Now we
turn to the computation of the GHY surface terms. These
contribution come from the cutoff surfaces at r ¼ rmax on
the two sides of the geometry and from the cutoff surfaces
at r ¼ ϵ0 both at the past and future singularities. In either
cases the surfaces are described by a relation of the form
r ¼ constant, and the outward-directed normal vector are
proportional to ∂μðr − constantÞ. We write the correspond-
ing normal as

nμ ¼ ðnt; nr; niÞ ¼ bð0; 1; 0Þ; ð37Þ

where b is some normalization constant. We normalize the
normal vector as n2 ¼ nrnr ¼ �1, where the plus sign is
for spacelike vectors at the r ¼ rmax cutoff surface, and the
minus sign if for the timelike vectors at the r ¼ ϵ0 cutoff
surface. We obtain

nðsÞμ ¼ ðnðsÞt ; nðsÞr ; nðsÞi Þ ¼
�
0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GrrðrmaxÞ

p
; 0
�

ð38Þ

nðtÞμ ¼ðnðtÞt ; nðtÞr ; nðtÞi Þ ¼
�
0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Grrðϵ0Þ

p
; 0
�
; ð39Þ

where the superscript (s) denotes spacelike vectors, while
the superscript (t) denotes timelike vectors. The trace of the
extrinsic curvature of these r-constant surfaces can be
calculated as

K ¼ ∇μnμ ¼
1ffiffiffiffiffiffi−gp ∂rð

ffiffiffiffiffiffi
−g

p
nrÞjr¼ϵ0;rmax

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi∓ Grr

p
�∂rGtt

Gtt
þ ∂rG

G

�				
r¼ϵ0;rmax

ð40Þ

where we use the minus sign for the r ¼ ϵ0 surface and the
plus sign for the r ¼ rmax surface. Here G ¼ detðGijÞ is the
determinant along the transverse coordinates xi, not the full
determinant, which we denoted as g.
The GHY surface contributions can then be written as

Isurfaceðt ≤ tcÞ ¼ Ifuturesurface þ Ipastsurface þ Ibdrysurface ð41Þ

where the contributions from the cutoff surfaces at future
and past singularities are given by

Ifuturesurface ¼
Vd−1

8πGN

GðrÞ
�
t
2
þ r�∞ − r�ðrÞ

�				
r¼ϵ0

Ipastsurface ¼
Vd−1

8πGN

GðrÞ
�
−
t
2
þ r�∞ − r�ðrÞ

�				
r¼ϵ0

ð42Þ

and the contributions from the cutoff surfaces at the two
asymptotic boundaries read

Ibdrysurface ¼
Vd−1

8πGN

GðrÞðr�∞ − r�ðrÞÞjr¼rmax
ð43Þ

where

GðrÞ ¼
ffiffiffiffiffiffiffiffiffiffi
GttG
Grr

s �
G0

tt

Gtt
þ G0

G

�
: ð44Þ

In the above expressions we have already multiplied the
results by two to account for the two sides of the WDW
patch. Note that Ibdrysurface does not depend on time. Moreover,
the time dependence of Ifuturesurface and I

past
surface cancel, so that the

total surface contribution is time-independent

Isurfaceðt ≤ tcÞ ¼
Vd−1

4πGN

GðrÞðr�∞ − r�ðrÞÞjr¼ϵ0

þ Vd−1

8πGN

GðrÞðr�∞ − r�ðrÞÞjr¼rmax
ð45Þ

The only terms left to calculate are the joint contributions
that come from the intersections of the null boundaries
of the WDW patch with the cutoff surfaces at r ¼ rmax and
r ¼ ϵ0. The joint terms can be written as

Ijoint ¼ Isingjoint þ Ibdryjoint; ð46Þ

where Isingjoint includes the contributions from the past and

future singularities and Ibdryjoint corresponds to the contribution
from the two asymptotic boundaries. In [31] it was shown
that, for a large class of isotropic systems, the contribution
from the asymptotic boundaries do not depend on time,
while the contributions at r ¼ ϵ0 vanish. We show in
Appendix A that this also happens in anisotropic systems.
So we can write

Ijointðt ≤ tcÞ ¼ Ibdryjoint; ð47Þ

where Ibdryjoint does not depend on time.
Finally, as none of the terms Ibulk, Isurface, and Ijoint

depend on time for 0 ≤ t ≤ tc, the gravitational action
evaluated on the WDW patch is constant for this period of
time

dIWDW

dt
¼ 0; for 0 ≤ t ≤ tc: ð48Þ

B. Behavior at later times: t > tc
For later times t > tc the WDW patch no longer

intersects with the past singularity. In this case, there are
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no surface and joint terms related to the past singularity,
but there is an additional joint term that comes from the
intersection of two null boundaries of the WDW patch. See
Fig. 2(b). Again, we calculate all the contribution for the
right side of the WDW patch and multiply the results by
two to account for the two sides of the geometry.
To compute the bulk contribution, we again split the

right side of the WDW patch into three regions, which we
call I, II and III. See Fig. 2(b). We write the total bulk
contribution as

Ibulkðt > tcÞ ¼ 2ðIIbulk þ IIIbulk þ IIIIbulkÞ; ð49Þ

where now

IIbulk ¼
Vd−1

16πGN

Z
rH

ϵ0

dr
ffiffiffiffiffiffi
−g

p
LðrÞ

�
t
2
þ r�∞ − r�ðrÞ

�

IIIbulk ¼
Vd−1

8πGN

Z
rmax

rH

dr
ffiffiffiffiffiffi
−g

p
LðrÞðr�∞ − r�ðrÞÞ

IIIIbulk ¼
Vd−1

16πGN

Z
rH

rm

dr
ffiffiffiffiffiffi
−g

p
LðrÞ

�
−
t
2
þ r�∞ − r�ðrÞ

�
ð50Þ

where the only difference from the 0 ≤ t ≤ tc case is that
the r-integral in the region III starts at the point r ¼ rm,
instead of starting at the cutoff surface r ¼ ϵ0 at the past
singularity. The point rm determines the intersection of the
two past null boundaries of the WDW patch and it satisfies
the equation

t
2
− r�∞ þ r�ðrmÞ ¼ 0; ð51Þ

which can be solved numerically. Note that we recover the
equation that gives the critical time tc when we take the
limit rm → 0 in the above equation. Summing the above
contributions we can write the bulk term at later times as the
bulk term at initial times plus a time-dependent term

Ibulkðt > tcÞ ¼ Ibulkðt ≤ tcÞ

þ Vd−1

8πGN

Z
rm

ϵ0

dr
ffiffiffiffiffiffi
−g

p
LðrÞ

�
t
2
− r�∞ þ r�ðrÞ

�
ð52Þ

where Ibulkðt ≤ tcÞ is given in Eq. (36). For later times the
GHY term includes contributions from the future singu-
larity and from the two asymptotic boundaries. The con-
tributions from the cutoff surfaces at the asymptotic
boundaries do not depend on time, and have the same
value that they have for t ≤ tc. The contribution from the
cutoff surface at the future singularity reads

Ifuturesurface ¼
Vd−1

8πGN

GðrÞ
�
t
2
þ r�∞ − r�ðrÞ

�				
r¼ϵ0

: ð53Þ

The total surface term can be written as

Isurfaceðt > tcÞ ¼ Isurfaceðt ≤ tcÞ þ Ifuturesurface: ð54Þ

where Isurfaceðt ≤ tcÞ is defined in Eq. (45). Finally, we turn
to the computation of the joint terms. These terms include
time-independent contributions from the two asymptotic
boundaries, which are equal to the corresponding quantities
for t ≤ tc, a vanishing contribution from the cutoff surface
at the future singularity and a contribution from the
intersection of the two null boundaries of the WDW patch.
The joint term can then be written as

Ijointðt > tcÞ ¼ Ibdryjoint þ Inulljoint; ð55Þ

where Inulljoint is the contribution from the intersection of the
two null boundaries. This term reads

Inulljoint ¼
1

8πGN

Z
dd−1x

ffiffiffiffi
G

p
ā ð56Þ

where ā is defined in terms of the left and right null vectors
that parametrize the null boundaries of the WDW patch.
These null vectors are given by

kL
μ ¼ −α∂μðt − r�Þ; kR

μ ¼ α∂μðtþ r�Þ ð57Þ

In terms of kL
μ and kR

μ the quantity ā can be written as

ā ¼ log

				 12 kL · kR

				 ¼ − log

				GttðrmÞ
α2

				: ð58Þ

Using the above expressions we can write

Inulljoint ¼ −
Vd−1

8πGN

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GðrmÞ

p
log

				GttðrmÞ
α2

				; ð59Þ

where rm is given by Eq. (51). The null vectors kL
μ and kR

μ

are defined in terms of an arbitrary normalization constant
α that introduces an ambiguity in the calculation of IWDW.
With the above results, the joint term can be written as

Ijointðt > tcÞ ¼ Ijointðt ≤ tcÞ−
Vd−1

8πGN

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GðrmÞ

p
log

				GttðrmÞ
α2

				:
ð60Þ

Note that for t > tc the gravitational action calculated in the
WDW patch can be written as

IWDWðt > tcÞ ¼ IWDWðt ≤ tcÞ þ δI; ð61Þ
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where

δI ¼ δIbulk þ δIsurface þ δIjoint; ð62Þ

with

δIbulk ¼ Ibulkðt > tcÞ − Ibulkðt ≤ tcÞ

¼ Vd−1

8πGN

Z
rm

ϵ0

dr
ffiffiffiffiffiffi
−g

p
LðrÞ

�
δt
2
þ r�ðrÞ − r�ð0Þ

�
;

δIsurface ¼ Isurfaceðt > tcÞ − Isurfaceðt ≤ tcÞ

¼ Vd−1

8πGN

GðrÞ δt
2

				
r¼ϵ0

;

δIjoint ¼ Ijointðt > tcÞ − Ijointðt ≤ tcÞ

¼ −
Vd−1

8πGN

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GðrmÞ

p
log

				GttðrmÞ
α2

				: ð63Þ

It is convenient to work with the time variable δt ¼ t − tc,
which is related to rm as

δt
2
þ r�ðrmÞ − r�ð0Þ ¼ 0: ð64Þ

Finally, the time derivative of each contribution reads

dδIbulk
dt

¼ Vd−1

16πGN

Z
rm

ϵ0

dr
ffiffiffiffiffiffi
−g

p
LðrÞ; ð65Þ

dδIsurface
dt

¼ Vd−1

16πGN

G

				
r¼ϵ0

; ð66Þ

dδIjoint
dt

¼ Vd−1

16πGN

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
G

GrrGtt

s
G0

tt

!				
r¼rm

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffi
Gtt

GrrG

s
G0 log

				Gtt

α2

				: ð67Þ

The time derivative of IWDW can then be computed as

dIWDW

dt
¼ Vd−1

16πGN

�Z
rm

ϵ0

dr
ffiffiffiffiffiffi
−g

p
LðrÞ þ GðrÞ

				
r¼ϵ0

þ
 
1

2

ffiffiffiffiffiffiffiffiffiffiffi
Gtt

GrrG

s
G0 log

				Gtt

α2

				þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
G

GrrGtt

s
G0

tt

!				
r¼rm

�
:

ð68Þ

Therefore, the time derivative of the holographic complex-
ity can be obtained as

dCA
dt

¼ 1

πℏ
dIWDW

dt
: ð69Þ

1. Late time behavior

In this section we now apply the formula (68) for the MT
and DK models to study the late time behavior of the time-
derivative of CA. We first observe that, at later times, rm
approaches rH. This can be seen in Fig. 4, where we plot rm
versus δt.
Therefore, the late time behavior of dIWDW=dt is

obtained by taking the limit rm → rH in the Eq. (68)

dIWDW

dt
¼ Vd−1

16πGN

�Z
rH

ϵ0

dr
ffiffiffiffiffiffi
−g

p
LðrÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
G

GrrGtt

s
Gtt

0
					
r¼rH

þ
ffiffiffiffiffiffiffiffiffiffi
GttG
Grr

s �
G0

tt

Gtt
þG0

G

�				
r¼ϵ0

�
: ð70Þ

We have checked that the same late-time result for dCA
dt can

be obtained by following the approach developed by Brown
et al. [9]. See Appendix B.

Results for the MT model.—Substituting the metric func-
tions GmnðrÞ and the on-shell Lagrangian LðrÞ for the MT
model and expanding the above contributions for small
anisotropies, we obtainZ

rH

ϵ0

dr
ffiffiffiffiffiffi
−g

p
LðrÞ ¼ −2r4H −

5

6
r2Ha2 log 2

þOðϵ40 log ϵ0Þ;ffiffiffiffiffiffiffiffiffiffi
GttG
Grr

s �
G0

tt

Gtt
þ G0

G

�				
r¼ϵ0

¼ 4r4H þ 1

6
r2Ha2ð5 log 2 − 1Þ

þOðϵ40 log ϵ0Þ;ffiffiffiffiffiffiffiffiffiffiffiffiffi
G

GrrGtt

s
∂rGtt

				
r¼rH

¼ 4r4H þ 1

3
r2Ha2ð10 log 2 − 1Þ:

ð71Þ

FIG. 4. rm=rH versus δt for the MT model (blue curve) and for
the DK model (black curve). Here, for the MT model, we have
fixed rH ¼ 1 and a=T ¼ 0.314. For the DK model we fixed
B ¼ 3 and rH ¼ 1. The curves obtained for another values of
these parameters are indistinguishable from the above results.
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By summing the above contributions and taking the limit
ϵ0 → 0, we find

dIWDW

dt
¼ V3

16πGN

�
6r4H þ r2Ha2

2
ð5 logð2Þ − 1Þ

�
¼ 2MðaÞ;

ð72Þ

where the mass of the black brane MðaÞ is given by
Eq. (16). Therefore, the late time behavior of the time
derivative of holographic complexity reads

dCA
dt

¼ 2MðaÞ
πℏ

; ð73Þ

which saturates the Lloyd’s bound.

Results for the DK model.—For the DK model, we obtain
the following results

dIWDW

dt
¼ V3

16πGN

ðδ_Ibulk þ δ_Isurface þ δ_IjointÞ ð74Þ

where the contributions from bulk, surface and joint terms
are given by

δ_Ibulk ¼
Z

rH

0

dr
ffiffiffiffiffiffi
−g

p
LðrÞ ¼ −6Br2H;

δ_Isurface ¼
ffiffiffiffiffiffiffiffiffiffi
GttG
Grr

s �
G0

tt

Gtt
þG0

G

�				
r¼0

¼ 6Br2H;

δ_Ijoint ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
G

GttGrr

s
G0

tt

				
r¼rH

¼ 6Br2H: ð75Þ

With the above results, the late-time rate of change of
holographic complexity reads

dCA
dt

¼ 1

π

dIWDW

dt
¼ V3

16πGN

× 6Br2H ¼ 2MB; ð76Þ

which precisely saturates the Lloyd’s bound. This provides
another example where, despite the anisotropy, the Lloyd’s
bound is still respected.

2. Full time behavior

In this section we study the full time behavior of
holographic complexity for the MT and DK models. We
numerically solve the Eq. (64) to find rm as a function of δt
and then we use the result in Eq. (68) to obtain IWDW as a
function of δt.

Results for the MT model.—The geometry in the MT model
is controlled by the dimensionless parameter arH, where a
is the parameter of anisotropy. The values of ða; rH;MÞ
for which we study the complexity growth are shown in

Table I, and they were chosen such that the temperature is
fixed as we increase the anisotropy. In this table we can see
that the black brane’s mass increases as we increase awhile
keeping T fixed. Figure 5 shows the time dependence of the
gravitational action in the WDW patch for the choice of
parameters presented in Table I. The behavior of dCA=dt is
qualitatively similar to the behavior observed in isotropic
systems. The anisotropy increase the mass of the black
brane and its effects on the rate of change of complexity
seem to be just a vertical shift in the curves of dCA=dt
versus t.

Results for the DK model.—The geometry of the DK model
is controlled by the dimensionless parameter B=T2, where
B is the intensity of the magnetic field, while T is the black
brane’s temperature [83]. In Fig. 6 we show the full time
behavior of the rate of change of complexity for different
intensities of the magnetic field. Just like in the MT model,
there is a violation of Lloyd’s bound at early times, and the
result approach the bound from above at later times.
Moreover, the net effect of the magnetic field is just a
vertical shift in the curves of _CA versus δt.

FIG. 5. The time dependence of holographic complexity
calculated with the CA proposal. The curves correspond to:
ða;rH;2MÞ¼ð0;1;6Þ (black curves), ða; rH; 2MÞ ¼ ð0.1; 0.9997;
6.005Þ (blue curves) and ða; rH; 2MÞ ¼ ð0.15; 0.9993; 6.011Þ
(red curves). The continuous curves represent the results [in
units of V3=ð16π2ℏGNÞ] for the time derivative of holographic
complexity, while the dashed horizontal lines represent 2M.
We fix the normalization of the null-vector in Eq. (57) by
taking α ¼ 0.1. The qualitative behavior is the same for other
values of α.

TABLE I. Black brane’s mass, measured in units of
V3=ð16πGNÞ, for several values of a and rH. Here we chosen
rH such that the Hawking temperature is fixed T ¼ 1=π.

anisotropy parameter rH such that T ¼ 1=π 2M

0.00 1.0000 6.000
0.10 0.9997 6.005
0.15 0.9993 6.011
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IV. THE CHARGED CASE

In this section we use the CA proposal to study the rate of
change of complexity of charged anisotropic black branes.
In particular, we consider the type IIB supergravity solution
found in [68,69]. This solution is basically an extension of
the MT solution to the charged case, therefore, for con-
ceptual clarity, we will refer to it as the charged MT model.
The action of this model reads

S ¼ 1

16πGN

Z
M

d5x
ffiffiffiffiffiffi
−g

p �
Rþ 12

L2
−
1

2
ð∂ϕÞ2

−
1

2
e2ϕð∂χÞ2 − 1

4
FmnFmn

�
þ SGH: ð77Þ

The solution in Einstein frame takes the form given by (4)
and (5), with the metric functions given by

F ¼ 1 −
r4H
r4

þ
��

rH
r

�
6

−
�
rH
r

�
4
�
q2

þ a2F 2ðr; qÞ þOða4Þ
B ¼ 1þ a2B2ðr; qÞ þOða4Þ
H ¼ e−ϕðrÞ; with ϕ ¼ a2ϕ2ðr; qÞ þOða4Þ ð78Þ

where the functions F 2ðr; qÞ;B2ðr; qÞ and ϕ2ðr; qÞ now
depend on the charge parameter q, which is related to the
black brane’s charge as q≡ Q

r3H2
ffiffi
3

p . Here Q is the black

brane’s charge in units of V3=ð16πGNÞ. For small values of
q, one can find an analytic solution of the form [68]

F 2ðr; qÞ ¼ f0ðrÞ þ f2ðrÞq2 þOðq4Þ;
B2ðr; qÞ ¼ b0ðrÞ þ b2ðrÞq2 þOðq4Þ;
ϕ2ðr; qÞ ¼ φ0ðrÞ þ φ2ðrÞq2 þOðq4Þ; ð79Þ

where the Oðq0Þ terms are

f0ðrÞ ¼ −
1

24r4r2H

�
8r2r2H − 2r2Hð4þ 5 log 2Þ

þ ð3r4 þ 7r4HÞ log
�
1þ r2H

r2

��
;

b0ðrÞ ¼ −
1

24r2H

�
10r2H

r2 þ r2H
þ log

�
1þ r2H

r2

��
;

φ0ðrÞ ¼ −
1

4r2H
log

�
1þ r2H

r2

�
; ð80Þ

while second order terms are given by

f2ðrÞ ¼
1

24r6r2Hðr2 þ r2HÞ
�
6r6r2H þ r8H

þ r4r4Hð25 log 2 − 12Þr2r6Hð25 log 2 − 1Þ

− ðr2 þ r2HÞð6r6 þ 7r2r4H þ 12r6HÞ log
�
1þ r2H

r2

��
;

b2ðrÞ ¼ −
2r4 þ 3r2r2H þ 11r4H
24r2ðr2 þ r2HÞ2

þ 1

12r2H
log
�
1þ r2H

r2

�
;

φ2ðrÞ ¼ −
1

4r2
−

1

4ðrþr2HÞ
þ 1

2
log

�
1þ r2H

r2

�
: ð81Þ

The field-strength and the associated chemical potential
are given by

F ¼ −Q
ffiffiffiffi
B

p
e3ϕ=4

1

r3
dt ∧ dr;

μ ¼ Q
2

�
1 −

5a2

24r2H
log 2

�
: ð82Þ

The charged black brane’s mass is given by

Mða; qÞ ¼ 3r4H þ a2r2H
8

ð−2þ 10 log 2Þ

þ q2
�
3r4H −

5a2r2H
8

ð−3þ 5 log 2Þ
�
: ð83Þ

A. Rate of change of complexity

The rate of change of complexity can be calculated as
before, by considering the on-shell action evaluated on
the WDW patch, with the difference that now the Penrose
diagram is modified by the fact that the black hole is
charged. See Fig. 7. The total action is given by a sum of

FIG. 6. Full time behavior of holographic complexity of
magnetic black branes for different values of the magnetic field.
The curves correspond to B ¼ 2 (black curves), B ¼ 2.5 (blue
curves) and B ¼ 3 (red curves). The continuous curves corre-
sponds represent _CA, while the dashed horizontal lines represent
2MB. The results are given in units of V3=ð16π2GNÞ. We fixed the
normalization of the null vector in Eq. (57) by taking α ¼ 1.3.
The qualitative behavior is the same for other values of α.
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four terms: the bulk contribution, the surface contribution,
the joint contribution, and a boundary term for the
Maxwell field.
Let us first evaluate the sum of the bulk and Maxwell

contributions. Using the equations of motion that result
from the action (78), it is easy to show that the on-shell
Lagrangian density is given by

LðrÞ ¼ −8 −
1

6
FmnFmn: ð84Þ

However, this on-shell Lagrangian density can be affected
by the presence of a nonzero boundary term for the
Maxwell field. For a gauge field action of the form

IMaxwell ¼ −
1

4g2

Z
M

ddþ1x
ffiffiffiffiffiffi
−g

p
FmnFmn; ð85Þ

where g is the gauge coupling parameter [84]. The
corresponding boundary term can be written as [85]

IbdryMaxwell ¼
γ

g2

Z
∂M

dΣmFmnAm; ð86Þ

where γ is an arbitrary parameter that affects the late time
behavior of complexity. Later, we are going to fix this
parameter by requiring consistency with the uncharged
case. Using the equations of motion, one can show that

IbdryMaxwell

			
on-shell

¼ γ

2g2

Z
M

ddþ1x
ffiffiffiffiffiffi
−g

p
FmnFmn: ð87Þ

Therefore, taking into account the above contribution, the
on-shell Lagrangian density becomes

LðrÞ ¼ −8 −
1 − 2γ

6
FmnFmn: ð88Þ

We now proceed to the evaluation of the bulk action
corresponding to the above on-shell Lagrangian density.
The WDW patch is shown in Fig. 7. The future and past
corners are denoted as r1m and r2m, respectively. The
r-coordinate of these points satisfy the following relations

t
2
þ r�∞ − r�ðr1mÞ ¼ 0;

t
2
− r�∞ − r�ðr2mÞ ¼ 0: ð89Þ

The time derivative of the above relations implies

dr1;2m

dt
¼ � sgnðGttÞ

2

ffiffiffiffiffiffiffi
Gtt

Grr

s 				
r¼r1;2m

: ð90Þ

As before, we calculate the bulk contribution for half of the
WDW patch, and then we multiply the final result by two.
The contributions for regions I, II, and III are given by

IIbulk ¼
Vd−1

16πGN

Z
rþ

r1m

dr
ffiffiffiffiffiffi
−g

p
LðrÞ

�
t
2
þ r�∞ − r�ðrÞ

�
;

IIIbulk ¼
Vd−1

8πGN

Z
rmax

rþ
dr

ffiffiffiffiffiffi
−g

p
LðrÞðr�∞ − r�ðrÞÞ;

IIIIbulk ¼
Vd−1

16πGN

Z
rþ

r2m

dr
ffiffiffiffiffiffi
−g

p
LðrÞ

�
−
t
2
þ r�∞ − r�ðrÞ

�
:

ð91Þ

By taking the time derivative of the above expressions and
using (89) one can check that

dIbulk
dt

¼ −
Vd−1

16πGN

Z
r2m

r1m

dr
ffiffiffiffiffiffi
−g

p �
8þ 1 − 2γ

6
F2

�
: ð92Þ

We now turn to the evaluation of the joint terms, corre-
sponding to the future and past corners (the red dots in
Fig. 7). These contributions are given by

I1;2joint ¼ −
Vd−1

8πGN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gðr1;2m Þ

q
log

				Gttðr1;2m Þ
α2

				 ð93Þ

whose time derivative gives

dI1;2joint

dt
¼ −

Vd−1

16πGN

 ffiffiffiffiffiffiffiffiffiffiffi
Gtt

GrrG

s
G0ðrÞ log

				Gtt

α2

				
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
G

GrrGtt

s
G0

ttðrÞ
!					

r¼r1;2m

: ð94Þ

FIG. 7. Penrose diagram of a charged asymptotically AdS black
hole. We split half of the WDW patch into three regions, I, II and
III. At later times, the future corner, r1m, approaches the inner
horizon, r−, while the past corner, r2m, approaches the outer
horizon, rþ.
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Finally, the surface contributions coming from the two
asymptotic boundaries do not depend on time, and hence
do not contribute the rate of change of complexity. Adding
the above contributions, we find

π
dCA
dt

¼ Vd−1

16πGN

"Z
r2m

r1m

dr
ffiffiffiffiffiffi
−g

p �
8þ 1 − 2γ

6
F2

�

−

 ffiffiffiffiffiffiffiffiffiffiffi
Gtt

GrrG

s
G0 log

				Gtt

α2

				þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
G

GrrGtt

s
G0

tt

!					
r1m

r2m

#
:

ð95Þ

At late times, r1m → r− and r2m → rþ, we find

π
dCA
dt

¼ Vd−1

16πGN

"Z
r−

rþ
dr

ffiffiffiffiffiffi
−g

p �
8þ 1 − 2γ

6
F2

�

−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
G

GrrGtt

s
G0

ttðrÞ
					
r−

rþ

#
: ð96Þ

In order to evaluate the above formula for the charged MT
model, we parametrize the outer and inner horizon as

rþ ¼ rH; r− ¼ rHq

�
1þ a2

48r2H

�
5 log

q2

4
− 1

��
: ð97Þ

Specializing (96) for the charged MT model, and using
(97), we find

π
dCA
dt

¼ V3

16πGN

r4Hð3 − 2γÞ
�
2ð1 − q2Þ

þ a2

12r2H
ð1þ 5q2ð−1þ log 2Þ þ 10 log 2Þ

�
: ð98Þ

The result depends on the arbitrary parameter, γ. This
parameter, however, can be fixed by requiring the q → 0
limit of (98) to be consistent with the uncharged case.
This can be done by setting q ¼ 0 in (98) and choosing γ
such that the final result matches (72) [86]. By doing that,
we find

γ ¼ 3a2

16r2H
: ð99Þ

Notice that γ ¼ 0 for a ¼ 0, which means that the con-
tribution of the Maxwell boundary term is zero in the
isotropic case. With this choice for γ, the final result reads

π
dCA
dt

¼ V3

16πGN

�
6ð1 − q2Þr4H

þ a2r2H
2

�
−1þ 5 log 2þ q2

�
−1þ 5

2
log 2

���
:

ð100Þ

By construction, the q → 0 limit of the above result is
consistent with the result for the uncharged case, given
in (72). Furthermore, the a → 0 limit is consistent with
previous results reported in the literature. See, for instance,
(4.27) of [17].
Now let us discuss our result in the light of the bound

proposed in [9], according to which the natural bound for
states at a finite chemical potential is

π
dCA
dt

≤ 2ðM − μQÞ − 2ðM − μQÞgs; ð101Þ

where the second term correspond to the ground state (gs)
value of ðM − μQÞ. As the charged MT model does not
have an extremal limit, the ground state is the vacuum
solution (M ¼ Q ¼ 0). Using the formula (82) for the
chemical potential, and taking into account that the black
brane’s charge is Q ¼ V3Q

16πGN
, we can see that

π
dCA
dt

−2ðM−μQÞ¼a2q2r2H
4

ð−17þ20log2Þ<0 ð102Þ

which shows that the bound (101) can be saturated in the
a → 0 limit, but it is no longer saturated once we turn on
the anisotropy parameter.

V. DISCUSSION

We have used the CA conjecture to study the time-
dependence of holographic complexity for three aniso-
tropic black brane solutions, namely, the MT model, the
DK model, and the charged MT model.

A. MT model

The MT solution is dual to the N ¼ 4 SYM theory
deformed by a position-dependent theta-term that breaks
isotropy and conformal invariance. The background geom-
etry is controlled by the ratio a=T, where a is the parameter
of anisotropy, and T is the Hawking temperature.
Similarly to the case of isotropic systems, the rate of

change of complexity in anisotropic systems is zero for
t ≤ tc, and it is nonzero for t > tc, with this critical time
given by Eq. (33). Figure 3 shows the behavior of tc as a
function of the anisotropy parameter. In this figure we
consider increasing values of the anisotropy parameter,
while keeping fixed the temperature. As compared with
an isotropic system with the same temperature, the holo-
graphic complexity of anisotropic systems remains constant
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for a shorter period, i.e., the effect of the anisotropy is to
reduce tc.
In Sec. III B 1 we study the late-time behavior of the ho-

lographic complexity and find an expression for dIWDW=dt
in terms of the metric functions. See Eq. (70).
For simplicity, let us first consider the isotropic case, in
which a ¼ 0. In this case the MT solution reduces to the
five-dimensional black brane solution that is dual to the
undeformed N ¼ 4 SYM theory. From previous works
[9,17,18], we know that the Lloyd’s bound should be
respected in this case. As we turn on a small anisotropy
parameter, all the metric functions get corrections up to the
second order in a and this leads to a larger black brane’s
mass [see Eq. (16)]. In this case, we expect the formula (70)
to provide the result for a ¼ 0, plus corrections up to the
second order in the anisotropy parameter. Applying our
formulas for the MT model we find that the late time rate of
change of complexity matches the Lloyd’s bound, i.e.,
dCA=dt ¼ 2MðaÞ=πℏ. This is a highly nontrivial match,
because it means that the anisotropy increases the value of
2M and the late time value of dIWDW=dt precisely in the
same amount.
The full-time behavior of dCA=dt can be seen in Fig. 5.

The results share a lot of similarities with the previous
results obtained for isotropic systems [17]. In particular,
dCA=dt violates the Lloyd’s bound at initial times, and
approaches this bound (from above) at later times. In
this figure we consider increasing values of the anisotropy
parameter, while keeping fixed the temperature. The
resulting black brane’s mass increases as we increase
the anisotropy parameter, and the overall effect of the
anisotropy is a vertical upward shift [88] in the curves of
dCA=dt versus δt. At later times, the difference between
the anisotropic and isotropic results is proportional to the
difference in pressures in the transverse and longitudinal
directions, namely

dCA
dt

¼ 2Mð0Þ
πℏ

þ V3

πℏ
ðPxy − PzÞ þOða4Þ: ð103Þ

This can be seen from Eqs. (73) and (17).

B. DK model

The behavior of holographic complexity in the MT
model is very similar to the behavior observed in magnetic
branes. By using the CA conjecture, we studied the time
behavior of holographic for the magnetic black brane
solution found by D’Hoker and Kraus in [67]. In this
model one introduces a constant magnetic field that breaks
the rotational symmetry of the background. The geometry
is controlled by the ratio, B=T2, between the magnetic field
and the temperature squared. For very large values of
values of B=T2, this system has a simple solution, which is
given in (19). For this configuration, the Lloyd’s bound
is violated at early times, but it is saturated at later times.

This provides another example of a system that breaks the
rotational symmetry without violating the Lloyd’s bound at
later times. This should be contrasted with the bound for
η=s, which is known to be violated in anisotropic systems.
This suggests that the violation of Lloyd’s bound [22–25]
in the case of neutral black holes is not due to anisotropy,
but rather to the presence of a conformal anomaly. As
neither the D’Hoker and Kraus nor the Mateos and
Trancanelli model display a conformal anomaly (up to
second order in the anisotropy), this would explain why the
Lloyd’s bound is not violated in these two models. We are
currently investigating whether this last statement is true.

1. Charged anisotropic black branes

In Sec. IV we use the CA conjecture to study the late-
time behavior of holographic complexity for a generaliza-
tion of the MT model to the charged case. In this case the
geometry is not only controlled by the parameter a=T, but
also by the dimensionless charge parameter q. Following
[85] we consider the inclusion of a Maxwell boundary term
[see Eq. (86)], which introduces an arbitrary parameter γ
that affects the late-time rate of change of complexity. This
new boundary term turned out to be necessary to make the
q → 0 limit of the final result consistent with the result for
neutral anisotropic black branes. We find γ ¼ 3a2

16r2H
, which

suggests that the Maxwell boundary term is generically
necessary when we have nontrivial matter fields besides
the Maxwell field. Having fixed the value of γ, we find
that the charged MT model respects the bound (101)
proposed in [9].

2. Conclusions and future directions

We have considered three different models in which
matter fields break the rotational symmetry, and we studied
how this affects the holographic complexity. In neutral
black holes, the formula for holographic complexity only
depends on the metric components, having no explicit
dependence on the matter fields (the on-shell Lagrangian
is just a constant). In other words, the matter fields only
affect the holographic complexity through their effect on
the geometry. This should be contrasted with the charged
case, in which the electric charge appears explicitly in the
formulas for the holographic complexity, as well as in the
metric components.
We have observed that the holographic complexity of

anisotropic systems increases as compared to isotropic
systems at the same temperature. This happens because the
matter fields increase the mass of the black hole and, for the
Lloyd’s bound to be respected, the holographic complexity
also has to increase.
We have studied the effects of anisotropy on the

complexity growth considering the case of small anistro-
pies. Our results are valid up to Oða2Þ. It would be
interesting to extend our results to higher anisotropies,
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because in this case the MT model displays a conformal
anomaly [89], which might cause a violation of the Lloyd’s
bound. Besides that, the MT gravitational solution can be
thought of as describing a renormalization group (RG) flow
from a AdS geometry in the ultraviolet (UV) to a Lifshitz
geometry in the infrared (IR). The parameter controlling
this transition is the ratio a=T, which is small close to the
UV fixed point and large close to the IR fixed point. It
would be interesting to study how the complexity growth
behaves under this RG flow. Moreover, as Lifshitz geom-
etries were known to violate the Lloyd’s bound [25], we
expect such a violation to occur in the MT model at higher
anisotropies.
Another interesting extension of this work would be

to study the effects of the anisotropy in the holographic
complexity calculated using the CV conjecture. Although
this calculation is relatively easy for isotropic systems
[7,17,18], the extension for anisotropic systems is non-
trivial, because in this case the ansatz for the maximum
volume surface is more complicated, preventing the use of
the techniques used in [7,17,18]. More specifically, the
volume functional of the codimension one surface can be
generically written as

V ¼
Z

ddσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgabÞ

p
; ð104Þ

where σa and gab ¼ ∂aXm∂bXnGmn are the coordinates and
the induced metric along the surface, respectively. Here
XmðσaÞ are the embedding functions describing the surface,
while Gmn are the metric components of the background
geometry. In isotropic geometries, one can assume the
ansatz Xm ¼ ðvðλÞ; rðλÞ; x; y; xÞ, where v ¼ tþ r�. The
xyz-rotational symmetry of this ansatz results in a simple
form for the volume functional (104), which can be easily
extremized. In anisotropic systems, one no longer has this
rotational symmetry, because Gxx ≠ Gzz, and that results in
a more complicated form for Xm and V.
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APPENDIX A: JOINT TERMS AT THE r= rmax
AND r= ϵ0 CUTOFF SURFACES

In this Appendix we briefly review how to calculate the
joint terms at the asymptotic boundaries and at the singu-
larities. We show that the contributions from the asymptotic
boundaries are time-independent, while the contributions
from the singularities vanish.
A joint term for a corner involving the connection of at

least one null surface has the form [16]

Ijoint ¼
1

8πGN

Z
dd−1x

ffiffiffi
σ

p
ā ðA1Þ

where σ is the induced metric on the surfaces and ā is
defined as

ā ¼ �
8<
:

log jk · nðtÞj for spacelike-null joints

log jk · nðsÞj for timelike-null joints

log jkþ · k−=2j for null-null joints

where kþ and k− are outward directed null normal
vectors, while nðtÞðnðsÞÞ are outward directed timelike
(spacelike) normal vectors. The overall sign depends on
the orientation of the normal vectors. For more details,
see the Appendix A of [16]. The relevant normal vectors
can be written as

nðtÞμ ¼ ðnðtÞt ; nðtÞr ; nðtÞi Þ ¼
�
0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Grrðϵ0Þ

p
; 0
�
; ðA2Þ

nðsÞμ ¼ðnðsÞt ; nðsÞr ; nðsÞi Þ ¼
�
0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GrrðrmaxÞ

p
; 0
�
; ðA3Þ

k�μ ¼ �α∂μðt� r�Þ: ðA4Þ

With the above definitions, the joints term coming from
the singularities can be written as

Isingjoint ¼
1

8πGN

Z
dd−1x

ffiffiffi
σ

p
log jk · nðtÞj

¼ −
Vd−1

8πGN

GðrÞ log jGttðrÞj
				
r¼ϵ0

: ðA5Þ

For the MT model, one can show that Isingjoint ∼ ϵ30 log ϵ0.
Therefore, the contribution from this joint term vanishes in
the limit ϵ0 → 0. The joint terms coming from the asymp-
totic boundaries are given by

Ibdryjoint ¼
1

8πGN

Z
dd−1x

ffiffiffi
σ

p
log jk · nðsÞj

¼ Vd−1

8πGN

GðrÞ log jGttðrÞj
				
r¼rmax

: ðA6Þ
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For the MT model Ibdryjoint gives rise to a divergent contri-
bution that is independent of time, because it only depends
on quantities calculated on the outside of the black brane,
and this region has a time-translation symmetry. Therefore,
this term do not contribute to the rate of change of
holographic complexity.

APPENDIX B: COMPARISON
WITH BROWN ET AL.

The CA conjecture was proposed by Brown et al. in
[8,9]. In those papers the authors find a clever way of
calculating the late time rate of change of complexity
without having to take into account the contributions from
joint and null boundary terms. In a later work, Myers et al.
[15] derive the expressions for the joint and null boundary
terms and showed how to include the corresponding
contributions to the rate of change of holographic complex-
ity. Myers et al. find a perfect match with the results of
Brown et al. at later times and carefully explain the reasons
behind the agreement in [15]. In this Appendix we briefly
review the approach of Brown et al. and we show that it
gives the same results obtained in Sec. III using the
approach of Myers et al. [15,16].
In the approach of Brown et al. it is more convenient to

consider the time evolution of the WDW patch when we
increase the time in the left boundary, while keeping fixed
the time in the right boundary, as shown in Fig. 8.
Figure 8 shows that, as the time evolves in the left

boundary, the WDW patch increases in the region shown in
red, while it decreases in the region shown in light-blue. To
calculate the corresponding variation of the WDW patch,
the authors of [9] argue as follows:

(i) the parts of the WDW patch that lie outside of the
horizon are time-independent because this region
has a time-translation symmetry. As a consequence,

these parts do not contribute to the rate of change of
complexity;

(ii) the part of the WDW patch that lies inside the past
horizon contributes at early times, but it is highly
suppressed at later times. Hence, at later times, the
only contribution for the rate of change of complex-
ity comes from the region of the WDW patch that
lies inside the future horizon. This region is shown
in Fig. 9;

(iii) under time evolution the surface B is replaced by the
surface B0, while the corners HB and SB are
replaced by the corners HB0 and S0B, respectively.
The surfaces B and B0 are related by a time-
translation symmetry and so their contributions
cancel. The same cancellation occurs between the
contributions coming from HB and HB0 and be-
tween the contributions coming from SB and B0S;

With the above cancellations the only terms left to be
computed are the bulk contribution and the surface con-
tributions coming from the horizon H and from the
singularity S. Therefore, the gravitational action evaluated
in the WDW patch can be written as

IWDW ¼ Ibulk þ Isurface; ðB1Þ

where the bulk contribution reads

Ibulk ¼
1

16πGN

Z
M

ddþ1x
ffiffiffiffiffiffi
−g

p
LðxÞ ðB2Þ

while the GHY surface contribution reads

Isurface ¼
1

8πGN

�Z
r¼rH

ddx
ffiffiffiffiffiffi
jhj

p
K þ

Z
r¼ϵ0

ddx
ffiffiffiffiffiffi
jhj

p
K

�
ðB3Þ

where r ¼ rH indicates the boundary surface at the horizon
and r ¼ ϵ0 indicates the boundary surface at the singularity.
For the general action and metric given in (24) and (25) we
can write

FIG. 8. Change in the WDW patch as the time evolves in the
left boundary.

FIG. 9. Piece of the WDW patch that contributes to the rate of
change of complexity at late times.
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IWDW ¼ Vd−1

16πGN

�Z
dt
Z

rH

ϵ0

dr
ffiffiffiffiffiffi
−g

p
LðrÞ

þ
Z

dt

ffiffiffiffiffiffiffiffiffiffi
GttG
Grr

s �
G0

tt

Gtt
þG0

G

�				
r¼rH

þ
Z

dt

ffiffiffiffiffiffiffiffiffiffi
GttG
Grr

s �
G0

tt

Gtt
þG0

G

�				
r¼ϵ0

�
; ðB4Þ

where we have used (40) to expressK in terms of the metric
functions. The time-derivative reads

dIWDW

dt
¼ Vd−1

16πGN

�Z
rH

ϵ0

dr
ffiffiffiffiffiffi
−g

p
LðrÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
G

GttGrr

s
G0

ttjr¼rH þ
ffiffiffiffiffiffiffiffiffiffi
GttG
Grr

s �
G0

tt

Gtt
þG0

G

�				
r¼ϵ0

;

ðB5Þ

where we have used that Gtt=Grr vanishes at the horizon
to simplify the expression for the GHY term at the
horizon. The above results for the late-time rate of
change of IWDW precisely coincides with the result
(70) obtained with the approach of Myers et al.
[15,16]. The reason for the agreement is the following:
both approaches contain identical bulk contributions and
identical surface contributions coming from the future
singularity. The only difference is that in the calculation
of Brown et al. there is a GHY-like term for the horizon,
while in the calculation of Myers et al. there is no
such term, but there is instead a joint contribution
coming from a corner that lies just behind the past
horizon. Surprisingly, these two terms precisely coin-
cides and both approaches give the same result. A more
detailed explanation for the agreement between the two
approaches can be found in [15].
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