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We present results showing the efficiency of the spherical Mexican Hat wavelet in detecting 
non-Gaussian CMB features on the sphere. We compare its performance with that of the 
spherical Haar wavelet for two non-Gaussian fields artificially generated using the Edgeworth 
expansion to introduce skewness and kurtosis respectively. By combining all the information 
present in all the wavelet scales with the Fisher discriminant, we find that the spherical 
Mexican Hat wavelets are clearly superior to the spherical Haar wavelets. The former can 
detect levels of the skewness and kurtosis of i:::: 1 % for 33' resolution. The introduction of 
instrumental white noise in the maps, S/N = 1 ,  does not change the main conclusion of this 
work. These results are relevant to test the Gaussian character of CMB and therefore the 
standard inflationary scenario. 

1 Introduction 

Establishing the statistical character of the CMB fluctuations will provide crucial evidence about 
the physical origin of the primordial density fluctuations in the early universe. Simple inflation
ary models predict a homogeneous and isotropic Gaussian random field for the temperature 
fluctuations. On the contrary, non-standard inflation and cosmic defects generically -predict 
non-Gaussian random fields. Relevant information on the non-Gaussian nature of the data 
which is otherwise hidden in the temperature fluctuation maps can be extracted using specific 
methods. These methods are grouped by the spaces (real, Fourier,. .. ) in which they act. As it 
is often pointed out, wavelets are a very useful tool for data analysis due to its space-frequency 
localisation. It has been already demonstrated in many applications in a wide variety of scientific 
fields. In particular in relation to the CMB the COBE-DMR data has been studied with several 
wavelet bases acting on the faces of the quad-cube COBE pixelisation 12;n;t . More appropriate 
analyses should involve the use of spherical wavelets as in Tenorio et al. 14 .  More recently Bar
reiro et al. 3 and Cay6n et al. 6 have convolved the COBE-DMR data with spherical wavelets 
in the HEALPiX pixelisation 9 to test the Gaussianity of these data. Those works used the 
Spherical Haar Wavelet (SHW) and the Spherical Mexican Hat Wavelet (SMHW), respectively. 

2 The MEXHAT on S2 

For CMB analyses we are interested in the extension of these isotropic wavelets to the sphere. 
Recently, Antoine & Vandergheynst 2 have followed a group theory approach to deal with this 



problem. This extension incorporates four basic properties: a)_ the basic function is a compen
sated filter, b) translations, c) dilations and d) Euclidean limit for small angles. They conclude 
that the stereographic projection on the sphere is the appropriate one to translate the wavelet 
properties from the plane to the sphere. A particular example is the MEXHAT wavelet defined 
by 

(1 )  

(2) 

We remark that the normalization constant has been chosen such that J d()dcp sinB'I!2(B; R) = 1. 
This is the wavelet we are going to use to analize non-Gaussianity associated to different models. 
We comment that the stereographic projection of the MEXHAT wavelet has been recently used 
to analize maps of the cosmic microwave background radiation ( CMB) 6•  

3 Spherical Haar Wavelet 

SHW were introduced by Sweldens 13 as a generalization of planar Haar wavelets to the pixelised 
sphere. They are orthogonal and adapted to a given pixelisation of the sky which must be 
hierarchical, contrary to the SMHW which are non-orthogonal and redundant. However they 
are not obtained from dilations and translations of a mother wavelet, contrary to planar Haar 
wavelets and SMHW. As for the planar Haar wavelets, they possess a good space-frequency 
localisation. However, their frequency localisation is not as good as that of the SMHW. The 
SHW decomposition is based on one scaling efij,k and three wavelet functions '1/Jm,j,k at each 
resolution level j and position on the grid k. For HEALPix the resolution is given in terms of 
the number of divisions in which each side of the basic 12 pixels is divided, Nside = 2i- 1 .  Thus, 
for level j the total number of pixels with area µj is given by nj = 12 x ,V-1. Each pixel k at 
resolution j, Sj,k is divided into four pixels Sj+l,ko , .. ., Sj+l,k3 at resolution j+l .  The generation 
of coefficients start with the original map, finest resolution j = J, for which the coefficients AJ,k 
are identified with the temperature fluctuation at pixel k. Finally, from the definition of the 
SHW it is easily seen that this wavelet is not rotationally invariant, contrary to the SMHW. 

4 Non-Gaussian simulations 

Here the spherical wavelets will be tested against non-Gaussian simulations of artificially spec
ified moments that will be assumed to be small. In this case a useful way to construct non
Gaussian distributions is by perturbing the Gaussian one through a sum of moments, the Edge
worth expansion. The Edgeworth expansion can be obtained from the characteristic function 
¢i(t) by considering the linear terms in the cumulants and performing the inverse Fourier trans
form to recover the density function f ( x) : 

(3) 

where Hn is the Hermite polynomial. Since wavelet coefficients represent linear transformations 
of the original data, in the case of a Gaussian distribution the wavelet coefficients remain Gaus
sian distributed_ This a very nice property of wavelets and all we have to do to test Gaussianity 
in wavelet space is to look for deviations from normality. However, for the case of the sphere 
any given pixelisation scheme will introduce biases. The specific bias introduced will depend on, 



Table 1: Power of the Fisher discriminant at 1 % significance level 

Moment 1 SMHW SHW Temperature 
x 10-2 P(%) P(%) P(%) 
0.9(2.4) 66.8 1.51 2.51 
1 .6(2.3) 100 7.09 4.67 

SKEWNESS 4.6(2.4) 100 36.12 36.85 
6.9(2.4) 100 78.46 73.60 
0.3(2.6) 15.35 3.00 1.42 
0.8(2. 7) 86.89 9.00 3.40 

KURTOSIS 1 .1(2.7) 98.10 16.11 4.90 
1 .4(2.6) 99.90 28.43 3.50 

1 Mean value obtained in the analysed maps. The standard deviation is given within parenthesis. 

for instance, whether the pixels are not of equal area or the distances between one pixel and its 
neighbours vary with the position on the sphere. This bias produces a peaked distribution with 
respect to a Gaussian and therefore a positive kurtosis in the three details of the SHW coeffi
cients even for temperature realizations derived from normal distributions. In the case of the 
SMHW we only have a type of coefficients for each scale. Since this is a continuous, rotationally 
invariant wavelet -and thus not adapted to the pixelisation- no bias is produced in this case. 

5 Discriminating power 

We use as test statistic the Fisher linear discriminant function 8• 7 . The Fisher discriminant 4 is 
a linear function of the data that maximizes the distance between the two pdf's, g(tJHo) and 
g(tJH1 ) ,  such a distance defined as the ratio (ro - r1)2 /(E6 + EI) .  Tk and E�, k = 0, 1 ,  are the 
mean and the variance of g(tJHk) ,  respectively. The Fisher discriminant is given by: t(x) = 
([Io - j1i)Tw-1x, with W = Vo + Vi and Vi the covariance matrix and f1k the mean values of 
f(xJHk) ·  In the particular case that f(xJH0) and /(.iJH1) are both multidimensional Gaussians 
with the same covariance matrix, the Fisher discriminant is equivalent to the likelihood ratio. 
In Figure 1 (top) , we show the deviations from Gaussianity for two non-Gaussian models for 
the first five resolution levels of the wavelets. It is clear that the performance of the SMHW is 
much better than that of the SHW. In Figure 1 (bottom), we show, as an example, the pdfs 
of the statistic t for one walue of skewness of the non-Gaussian models. It is clear that the 
SMWH is able to distinguish between the Gaussian and non-Gaussian models much better than 
the SMW. In table 1 the power p of the Fisher discriminant constructed from the skewness or 
kurtosis of the SMHW, SHW and temperature is given for several values of the cumulants. For 
the case of the temperature of the map the statistic is given directly by its cumulants. Again, 
the performance of the SMHW is superior to the SHW and the temperature in all cases. 

In order to know the effect of instrumental noise (white) on the discriminating power of the 
spherical wavelets we have also added noise to the temperature maps with an amplitude equals 
to the signal, S / N = l .  For this case, the first resolution scale is the most affected and now 
the second scale is the most relevant for discrimination between models. The noise narrows 
the separation between distributions as compared to the no-noise case (bottom Figure 1 ) .  The 
SMHW is still able to discriminate with a high power for the skewness model with a skewness 
value in the analysed map of 1 . 1  %. For the kurtosis model, the addition of noise with the same 
amplitude than the signal, reduces the level of kurtosis in the analysed map from 1 .4% to 0.2%, 
a level too low to be detectable. The main conclusion of this work is that the SMHW bases 
are much more efficient to discriminate between Gaussian and non-Gaussian models with either 
skewness or kurtosis present in the CMB maps than the Spherical Haar Wavelet (SHW) ones. 
For a more complete description of the method and results see Martinez-Gonzalez et al. 10 
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Figure 1: TOP: Comparison of Kurtosis and Skewness for the Spherical Mexican Hat wavelet (black circle) and 
the Spherical Haar Wavelet details. Each point represents the number of sigmas deviated from the Gaussian 
model. BOTTOM: Fisher discriminant for a skewness model from Spherical Haar Wavelet and Spherical Mexican 

Hat Wavelet compared to the Gaussian model (solid line) . 
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