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Abstract
The double-folding formalism has been applied to calculate the nucleus-
nucleus potential by the use of the effective nucleon-nucleon (Migdal)
potential and the nuclear densities of the interacting nuclei presented as the
Gaussian-type functions and polynomials. The Coulomb barrier heights
obtained by this way and by different types of the proximity potentials have
been compared. The deviations of the theoretical values of the Coulomb
barrier from the values extracted from the experimental data are discussed. The
capture cross section calculated for the reactions with the light projectiles is in
good agreement with experimental values. The theoretical results obtained for
the 16O+144Sm and 17O+144Sm reactions could reproduce a significant dif-
ference in the experimental results for these reaction, which is related with the
extra neutron in 17O. The overestimation of the experimental data obtained
from different sources by the curve of the theoretical results of the 40Ca+96Zr
reactions is explained by the appearance of the slight hindrance to complete
fusion, i.e the capture and fusion cross sections are not equal in this reaction.
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1. Introduction

In nuclear physics, heavy-ion fusion reaction around the Coulomb barrier is one of the most
popular topics of research [1–4] due to great interest to study the fusion mechanism of nuclei
and its dependence on the entrance channel of the process. The Coulomb barrier of the
entrance channel is an important quantity determining the possibility of realization of dif-
ferent reaction channels in the heavy ion collisions at low energies. Currently, numerous
theoretical and experimental investigations are being related to systematically study the
capture reactions leading to several interesting phenomena, such as the complete fusion,
quasifission, incomplete fusion, fast-fission and formation of the evaporation residues which
has been used to synthesise the superheavy elements (see for instance [4–19] and references
therein). At the analysis of this type of reactions, the nuclear interaction potential plays an
important role in determining the fate of the interacting nuclei [1, 20–30]. The total interaction
potential of the two interacting nuclei is taken as the sum of the short-range nuclear attractive
potential, the long-range Coulomb repulsive potential and rotational energy. The strong
competition between the repulsive Coulomb potential and the attractive nuclear interaction at
the close distances causes the Coulomb barrier and potential well which determine conditions
for the realization of the definite reaction mechanism. The energy of relative motion must
overcome this Coulomb barrier in order for the colliding nuclei to be captured and fused. A
crucial step in investigating these interactions is the calculation of interaction potential
between nuclei that can help us to evaluate the fusion cross-section of various fusion
reactions.

Nevertheless, different theoretical models depending on the vast variety of assumptions
have been developed to analyze the experimental values of the Coulomb barrier: for example,
different versions of the proximity potential [20, 31–35], the Bass model [22, 36–38], the
Christensen and Winther potential [39], the Broglia and Winther potential [23, 40], the
Akyüz-Winther potential [41, 42], and the Woods–Saxon potential [43], the Skyrme energy
density formalism [44] and the double-folding [45] etc. Among such theoretical approaches,
the double-folding potential calculated by the integration of the nucleon densities of the
interacting nuclei with the effective density-dependent nucleon-nucleon (NN) interaction,
which is widely used in describing the heavy-ion fusion reactions.

The Coulomb barrier height can be determined from the barrier distribution extracted
from the fusion (capture) excitation function. In order to obtain the Coulomb barrier heights
as well as positions in fusion reactions the different models such as the Bass model, proximity
potentials, double-folding method (DFM) and other models are used to calculate the nuclear
potentials [20, 21, 28, 37, 40, 46–48]. The nucleus-nucleus potential calculated by the DFM is
very sensitive to the properties of the NN effective interaction. The systematic study of the
role of the parameters of the NN interaction can be found in [49, 50]. In [49], the authors
compared two types of the NN effective interactions: the Reid and Paris M3Y interactions.
They concluded that the calculated fusion barrier energies are generally lower than those
expected, taking into account potential renormalization due to coupling to collective states at
high excitation energies. The nuclear potentials calculated with the DFM using realistic M3Y
interactions are much too attractive. Later, in [50], the results of the nucleus-nucleus potential
calculated in the framework of the DFM by the use of the M3Y and Migdal forces. In this
work [50], the authors have come to conclusions that Migdal interaction always results in the
higher Coulomb barrier. The fact that the realistic M3Y interactions are too attractive has
forced the authors of [51] to add the repulsion term Vrep δ(r) to the effective M3Y (direct +
exchange) interaction.
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The use of the density-dependent Migdal forces in the DFM allows us to avoid adding
the repulsion term Vrep in calculations of the capture and fusion cross sections in the dinuclear
system model [4, 5, 12, 17]. In the case of collision of the intermediate and heavy mass nuclei
the fusion cross section is determined not only by the Coulomb barrier but the peculiarities of
the potential energy surface of the dinuclear system, which is a function of the mass and
charge numbers of its fragments. The peculiarities of the potential energy surface allow us to
reveal a reason for the hindrance to the complete fusion [4, 5, 12, 17]. The advance of the use
of the density dependent Migdal forces is related with the fixed parameters that have been
found from the description of the properties of the excited atomic nuclei [52].

Recently, the behaviors of the Coulomb barrier height is extracted from the analysis of
fusion reactions, since they can provide the valuable information for the experimental
exploration, especially for establishing the beam energy in synthesis of superheavy nuclei.

In the present work, we propose a method that allows us to calculate the nuclear part of
the nucleus-nucleus interaction within the framework of the DFM by using an expansion of
the nuclear density in Gaussian-type functions. Further, we have also calculated the theor-
etical values of the fusion barrier characteristics (i.e., barrier height and curvature) based on
the double-folding formalism. The barrier characteristics have been used to calculate the
fusion excitation function of the reactions with not-so-heavy nuclei.

This paper is organized as follows. In section 2 we present the relevant details of the
proposed method based on the double-folding formalism. The expansion of the nuclear
density in the Gaussian functions and the extension coefficients have been found by fitting the
Fermi–Dirac distribution of nucleons. In section 3, the calculated results are compared with
experimental data of the fusion barrier and with the theoretical values obtained by the large
set of methods. In section 4, the calculated fusion cross sections are compared with exper-
imental data. A brief conclusion has been given in section 5.

2. Theoretical frameworks for nucleus-nucleus potential

The results obtained by this method are compared by the nuclear part of the interaction
potential between nuclei obtained by the use of the proximity potential.

The total interaction potential V(R) between the projectile and target nuclei is given by

m
= + +

+ 
V R V R V R

l l

R

1

2
, 1N C

2

2
( ) ( ) ( ) ( ) ( )

where VN(R) is the nuclear potential; =V RC
Z Z e

R
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2

( ) represents the Coulomb potential and the

last term is the centrifugal potential; m =
+

m m

m m
p t

p t
represents the reduced mass of the fusion

system, mp and mt denote the masses of projectile and target nuclei in unit of MeV/c2,
respectively; l denotes the angular momentum of the fusion system: L=ℓÿ.

Once the total interaction potential V(R) is calculated, the Coulomb barrier height VB and
position RB can be extracted using the following conditions:

=
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Here we calculate the Coulomb barrier parameters by adding centrifugal terms to the l=0
barrier parameters.
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2.1. An expansion of the nuclear density in Gaussian functions

According to the work by Münchow, Hahn, and Scheid [53] the densities of the nuclei ρi(r)
with i=1,2 have equidensity surfaces of ellipsoidal shapes. Such a surface is given by

=u const, 3i
2 ( )

åå d b l= +
m n

mn mn m n
= =

u x x , 4i
i

i
2
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3
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3
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where = =x y z x x x r, , , ,1 2 3( ) ( ) . The coefficients bmn
i( ) are the deformation parameters and λi

are the length parameters of projectile and target nuclei. After a transformation to principal
axes with coordinates ¢mx , equation (4) can be written as
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Therefore, one can choose two independent deformation coordinates as dynamical variables,
which may be taken as the ratios of the semi-axes of the ellipsoidal equidensity surfaces.

Then, the densities ρi(r) should be expanded as follows:
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where ui
2 is defined in equations (4) and (5).

For the case of a spherical shapes, ui
2 equal to lr i

2 2 and then spherical densities are
given according to equation (6) with b¢mm

i( ) =0:
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For each nuclei, which participates in fusion reactions, the coefficients ain and λi may be
fitted with measured nuclear density distributions. Also, we can determine the exact value of
λi under the following boundary condition:

l
=

R
2. 8i

i

0 ( )

Here radius R0i corresponds to the radii of projectile and target nuclei has the form
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where r0 is a radius parameter.
An expansion of the nuclear densities ρi(r) in the Gaussian functions, we can write

equation (7) as a simplified form
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2.2. Comparison of density distributions

The two-parameter (a and R i0 ) Fermi–Dirac distribution

r
r
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, 11i r R
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00
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( ) ( )

( )

is one of the simplest models for a realistic description of the nucleon distribution in the
interacting nuclei (see figure 1) and at the same time provides considerable flexibility in the
analysis.

The resulting expansion coefficients ain and λi for each nucleus are listed in table 1. The
values of λi obtained from equation (8) are used in equation (7) to determine the density
distribution and then we can determine self-consistently of density distribution coefficients ain
from the following equation as
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The use of the obtained expansion coefficients allows us to describe the nuclear density taken
as the Fermi–Dirac distribution by the Gaussian expansion (7) for a number of nuclei with
Ni=4 as shown in figure 2.

It is seen from figure 2 that 5 terms in the expansion (7) are sufficient to reproduce the
Fermi–Dirac distribution of numerous nuclei reasonably well.

2.3. Double-folding approach

The nuclear potential between the projectile and target nuclei is calculated by the folding of
the strength of the NN interaction vNN(r12) and nucleon densities of interacting nuclei as
follows:

ò ò r r=V R d d vr r r r r . 13N NN1 2 1 1 12 2 2( ) ( ) ( ) ( ) ( )

We prefer to use nucleon-nucleon potential in the form of the zero-range density-dependent
potential proposed by Migdal, which is well known in his theory of finite Fermi systems [52]:

Figure 1. Schematic representation of two interacting nuclei. Coordinates of the nuclei
used in the double-folding calculations.
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where r=  ¢F f f ,ex in ex in ex in 1( ) ( ) ( ) and ρ2 are densities of the projectile and target nuclei,

respectively. The fixed value of the constant C=300MeV fm3 and the following values of
the dimensionless parameters fin=0.09; fex=−2.59; ¢ =f 0.42;in

¢ =f 0.54ex are known
from the description of a large set of experimental data within the theory of finite Fermi
systems [52]. The potential (14) is defined by the external amplitude (Fex), responsible for the

Table 1. The obtained values of the expansion coefficients ai and λi for a some nuclei.
The second column denotes the length parameter of nuclei.

Nuclear λ a0 a1 a2 a3 a4

C12 1.26 0.163 51 0.194 86 −0.015 71 0.080 25 −0.003 02
O16 1.39 0.163 51 0.200 62 −0.016 18 0.080 48 −0.003 08
O17 1.42 0.163 51 0.200 91 −0.016 64 0.080 91 −0.003 09
F19 1.47 0.163 51 0.201 36 −0.016 81 0.081 50 −0.003 41

28Si 1.68 0.163 51 0.204 12 −0.018 62 0.083 91 −0.003 85
S32 1.75 0.163 51 0.205 01 −0.019 02 0.085 12 −0.003 97
S34 1.79 0.163 51 0.205 64 −0.019 64 0.086 23 −0.004 03

35Cl 1.81 0.163 51 0.205 72 −0.019 71 0.086 88 −0.004 11
S36 1.82 0.163 51 0.205 81 −0.019 79 0.086 96 −0.004 18

40Ca 1.89 0.163 51 0.211 54 −0.021 16 0.088 65 −0.004 29
48Ca 1.94 0.163 51 0.215 24 −0.021 79 0.090 24 −0.004 42
54Cr 2.02 0.163 51 0.217 17 −0.035 73 0.092 18 −0.004 78
56Fe 2.04 0.163 51 0.217 95 −0.040 18 0.098 23 −0.004 86
58Fe 2.06 0.163 51 0.218 02 −0.040 35 0.099 51 −0.005 28
58Ni 2.06 0.163 51 0.218 02 −0.040 35 0.099 51 −0.005 28
64Ni 2.13 0.163 51 0.220 43 −0.060 45 0.113 19 −0.007 72
70Zn 2.20 0.163 51 0.220 84 −0.061 22 0.114 45 −0.007 95
78Kr 2.28 0.163 51 0.223 68 −0.062 37 0.114 51 −0.008 02
86Kr 2.35 0.163 51 0.224 43 −0.062 65 0.114 68 −0.008 41

Y89 2.38 0.163 51 0.225 43 −0.063 22 0.116 41 −0.008 45
90Zr 2.39 0.163 51 0.225 51 −0.063 53 0.116 58 −0.008 51
92Zr 2.40 0.163 51 0.225 34 −0.065 73 0.120 11 −0.008 62
94Sr 2.42 0.163 51 0.225 48 −0.065 89 0.120 24 −0.008 69
96Zr 2.44 0.163 51 0.225 59 −0.065 98 0.120 43 −0.008 73
100Zr 2.48 0.163 51 0.225 68 −0.066 11 0.120 51 −0.008 75
104Mo 2.50 0.163 51 0.225 85 −0.066 89 0.120 95 −0.008 78
124Sn 2.66 0.163 51 0.226 13 −0.067 11 0.122 48 −0.008 87
131Sn 2.71 0.163 51 0.226 45 −0.067 75 0.123 81 −0.009 04
144Sm 2.80 0.163 51 0.226 86 −0.068 17 0.125 62 −0.009 29
148Sm 2.82 0.163 51 0.226 91 −0.068 33 0.125 69 −0.009 41
166Er 2.93 0.163 51 0.227 34 −0.070 21 0.127 14 −0.009 54
197Au 3.10 0.163 51 0.227 55 −0.071 19 0.129 41 −0.009 83
198Pt 3.11 0.163 51 0.227 61 −0.071 25 0.129 50 −0.009 88
204Pb 3.14 0.163 51 0.228 20 −0.071 47 0.130 36 −0.010 15
208Pb 3.16 0.163 51 0.228 43 −0.072 86 0.132 02 −0.010 48
233Am 3.28 0.163 51 0.228 87 −0.073 41 0.132 64 −0.011 32

U238 3.30 0.163 51 0.229 30 −0.074 06 0.134 19 −0.011 53
248Cm 3.35 0.163 51 0.231 06 −0.074 94 0.136 38 −0.011 95
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interaction of nucleons from the tails of the nuclear density distributions; by the internal
amplitude (Fin), responsible for the nucleon-nucleon interaction inside the nucleus. Hence,
inserting the components of the Migdal potential (14) and equation (7) into double-folding
integral (4), we can obtain the nuclear part of the total interaction potential as follows:
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r r
r

r r
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2 2
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where Ni, Zi and Ai are neutron, proton, and mass numbers of the nuclei, respectively.
In equation (15) an expanded form of r -r R2 ( ) in the Gaussian functions we can write as
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Figure 2. The spherical radial density distribution of few nuclei. The dashed line is the
Fermi–Dirac distribution. The full line is the Gaussian expansion according to
equation (7) using the expansion coefficients which are corresponded in table 1.
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where q- = + -r R rRr R R2 cos ,2 2∣ ∣ characterizes the magnitude and direction of the
shift of the second nuclei relative to the first one.

After inserting equations (10) and (16) into equation (15) we can numerically evaluate of
the double-folding potential as follows:

ò ò
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p q q r r
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q q r r
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Equation (17) allows the numerical evaluation of the nuclear interaction potential between
two nuclei. The total interaction potential V(R) is then obtained by adding the nuclear, direct
plus exchange parts to the Coulomb one. As a result the Coulomb barrier heights (VB) and
positions (RB) have been studied.

2.4. Proximity potential

The proximity potential is a well-known approach for its simplicity and numerous applica-
tions to study a variety of phenomena. All versions of proximity potential are based on the
proximity force theorem. Two approaching surfaces interact with each other via force F(s)
due to the proximity of the surface within a small distances of s=2 to 3 fm [20]. The final
form of proximity potential is defined as a product of two functions. That is dependent on the
shapes of two nuclei or the geometry of the nuclear system and the other is a universal
function Φ(s) that only depends on the separation distance s between the half-density surfaces
of the fragments.

In order to calculate the nuclear part of the total interaction potential, we use the gen-
eralized proximity potential, which is named Prox77 [20]. According to the original version
of proximity potential, the interaction potentialV rN

Prox77( ) between two surfaces can be written
as follows

pg= FV r bR
s

b
4 MeV, 18N

Prox 77 ⎜ ⎟
⎛
⎝

⎞
⎠( ) ( )

where b is the surface width parameter (i.e. p=b a3( ) with a=0.55 fm) and it has been
taken close to 1 fm. R denotes the mean curvature radius and has the form

=
+

R
C C

C C
. 191 2

1 2
( )

Here Ci are the Süssmann central radius [54, 55] of the target and projectile, and it is related to
the effective sharp radius Ri as,

= - + =C R
b

R
i1 ... 1, 2 . 20i i

i

2⎡
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⎛
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⎞
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Ri is given by the semi-empirical formula as a function of the mass number Ai,

= - + =-R A A i1.28 0.76 0.8 fm 1, 2 . 21i i i
1 3 1 3 ( ) ( )

In equation (18), the separation distance between the half-density surfaces of two colliding
nuclei s is
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= - -s r C C . 221 2 ( )

The surface energy coefficient γ in (18) is defined as a function of the neutron/proton excess
as follows

g g= - k A1 MeV fm , 23s s0
2[ ] ( )

where As is the asymmetry parameter for the compound nucleus, which means drastic
reduction in the magnitude of the potential with asymmetry of the colliding pair. It can be
defined as

=
+ - +

+
A

N N Z Z

A A
, 24s

1 2 1 2

1 2

( ) ( ) ( )

where Zi and Ni are the proton and neutron numbers of target/projectile nuclei, respectively.
γ0 and ks are 0.951 7MeV fm−2 and 1.782 6, respectively.

For the original version of the proximity potential, the universal function xF( ) is given by
the following parametrized form [20]:

x

x x

x
x
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Using the above form, one can calculate the nuclear part of the interaction potential
V rN

Prox 77( ). Based on the proximity concept, many other potentials have also been shown in
the literature. In the present work, for comparative study of the Coulomb barrier heights we
use different proximity-type potentials, labeled here as Proximity 1977 (Prox77) [20], Bass
1973 (RB73) [36], Christensen and Wither 1976 (CW76) [39], Broglia and Winther 1991
(BW91) [23], Aage Winther (AW95) [42], Denisov potential (DP) [56] and Ngô 1980
(Ng80) [57].

3. Results and discussion

It is seen from figure 2 that the Gaussian expansion approach allows us to reproduce well the
Fermi distribution of the nucleon density of nuclei 40Ca, 100Zr, 148Sm and 208Pb. Table 1
shows the values of the expansion coefficients ai (i=0,K,4) which have been used to obtain
good agreement between the approximated density and Fermi distributions of the nuclei listed
there.

The nuclear part of the nucleus-nucleus interaction has been calculated for the 16O+58Ni,
40Ca+86Kr, 28Si+166Er and 36Si+208Pb reactions in the frameworks of the double-folding
method by the use of the approximated density functions and of the method the proximity
potential V rN

Prox.77 ( )( ) to see similarities and differences in the results obtained by these
methods.

In panels (a)–(d) of figure 3, the results obtained by these two methods have been
compared. The difference between the nucleus-nucleus potentials calculated by the double-
folding and proximity methods decreases when the Coulomb repulsion is included (at
L=0ÿ) that is seen from comparison of the corresponding solid and dot-dashed lines in
figure 4 where the results are presented for the 32S+40Ca (panel a), 28Si+166Er (b) 40Ca+78Kr
(c), and 48Ti+208Pb (d) reactions. This phenomenon is related with the difference in the
positions of the minimum of the potential wells.
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In figure 5, the results of calculation by the DFM with the including the rotational energy
to the nucleus-nucleus potential are presented as a function of the relative distance between
interacting nuclei for the 36S+238U and 64Ni+208Pb reactions for the orbital angular
momentum L=0, 30, 60 and 90 ÿ.

The theoretical results of the Coulomb barrier VB calculated by the present DFM potential
and different types of the proximity potential for some selected fusion reactions are compared
with experimental data in table 2. To make easy comparison of the results obtained by
different methods with the experimental Coulomb barrier heights we present in figure 6 the
deviations D = -V V VB B

i
B
exp( ) ( ) of those theoretical results from its values VB

exp( ) extracted
from the analysis of the experimental data. It is seen from figure 6 that the barrier heights (full
squares) found by the present double-folding potential are enough close to the values of the
Coulomb barrier heights extracted from the experimental data. The deviation of the results
calculated by the DFM does not exceed 2.3 MeV (maximal deviation in the comparison with

Figure 3. Comparison of the nuclear part of the interaction potential VNucl(R) calculated
through the proposed method in the framework of the double-folding method using
density-dependent NN interaction based on Migdal forces (solid line) and the proximity
potential (dot-dashed line) as a function of internuclear distance R for the four reactions
shown in the corresponding panels.
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40Ca+40Ca reaction). We can note that the versions CW76 and BW91 of the proximity
potential presented in [39] and [23], respectively, allow us to obtain the results which rela-
tively close to the experimental values of VB: the deviation ΔVB does not exceed 3 MeV for
all reactions presented in table 2. The proximity potential used in [42] (AW95) and [20]
Prox77 give deviation more than 4MeV from the experimental values of VB for several fusion
reactions. Moreover, the difference increases for the reactions with massive nuclei including
the case of the last two versions and the RB73 version [36] of the proximity potential. In the
region of light fusion reactions, the results of AW95 are almost identical to those of RB73.
For some fusion systems, the results of BW91 are close to the experimental data, also CW76
and the present double-folding potential are close to each other. The results of DP [56] are
close to the ones of AW95, and the results of RB73, Ng80, Prox77, AW95, DP are far from
the experimental data, particularly, for the reactions with the massive nuclei. In the case of the
86Kr+208Pb reaction, the DFM with the Migdal forces better describe the experimental value
of VB than the methods BW91 and CW76 since they sufficiently underestimate the Coulomb

Figure 4. Comparison of the total interaction potential V(R) calculated using the
proposed method in the framework of the double-folding method (full line) and
proximity potential (dot-dashed line) as a function of the internuclear distance R for
some reactions.
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barrier. In table 3, the theoretical results for the Coulomb barrier heights VB calculated by the
DFM using M3YReid interaction with zero-range exchange part and the Paris CDM3Y3
interaction with finite-range exchange part are compared with the ones calculated in this work
by the Migdal interaction and experimental data obtained from the cited references.

4. The capture cross section

The knowledge of the barrier height allows us to calculate the capture cross section that
contains the entrance channel effects. The capture cross section is an observable quantity and
it is an interest of experimentalists and theorists studying the reaction mechanism in heavy ion
collisions since only full momentum transfer to the intrinsic and collective degrees of freedom
from the relative motion leads to capture [17, 71]. Its value is important to estimate the fusion
probability PCN, when there is a hindrance to complete fusion: PCN<1. This phenomenon
takes place in the case of collision massive nuclei or in the collision of the two intermediate
mass nuclei. The formation of a dinuclear system gives the start to complete fusion,
incomplete fusion, quasifission and fast fission processes [17, 71] which are in mutual
competition. Contributions of these processes to the capture cross section depends on the
initial mass and charge numbers of the colliding nuclei, orbital angular momentum L and
energy Ec.m. of collision. In this work we are restricted by calculations of the capture cross
section for the light system or very mass-asymmetric reactions since the experimental value of
the capture cross sections were measured relatively unambiguously since the capture and
complete fusion cross sections are nearly equal. It means that the hindrance to complete
fusion small after formation of the dinuclear system. Nevertheless in the 40Ca+96Zr and
48Ca+208Pb reactions the hindrance to complete fusion seems to be presented. This cir-
cumstance will be discussed later.

Figure 5. Comparison of the total interaction potential V(R) calculated for the set of the
angular momentum l values using the proposed method in the framework of the
double-folding method.
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Table 2. Comparison of the Coulomb barrier heights (second column) VB
exp( ) (unit is MeV) with the theoretical results VDFM

B calculated by the DFM
(third column) using density-dependent NN interaction with Migdal forces and by the proximity potentials for some selected fusion reactions. The
results of the different types of proximity potentials corresponding to CW76 (fourth column), AW95 (fifth column), BW91 (sixth column), DP
(seventh column), RB73 (eighth column), Prox77 (ninth column) and Ng80 (tenth column), respectively. The eleventh column shows the
corresponding references to the sources of the experimental data.

Reaction VB
exp( ) VDFM

B VB
CW76 VB

AW95 VB
BW91 VB

DP VB
RB73 VB

Prox77 VB
Ng80 Refs.

O16 + 40 Ca 23.1 24.5 23.7 23.7 23.8 23.9 21.3 24.9 25.0 [35]
C12 + 92 Zr 32.3 33.5 32.3 32.5 32.5 32.4 30.2 33.9 34.1 [58]
O16 + 92 Zr 42.0 43.5 42.1 42.6 42.4 42.7 40.6 44.3 44.6 [58]

40Ca + 48 Ca 52.0 52.5 52.6 53.6 53.0 53.8 51.7 54.2 55.8 [59]
40Ca + 40 Ca 52.1 54.4 54.3 55.3 54.8 55.6 53.5 57.4 57.7 [35]

C12 + 204 Pb 57.6 57.9 57.9 58.8 58.3 58.0 57.9 60.7 61.1 [60]
O16 + 148 Sm 59.8 61.1 60.6 61.7 61.1 61.5 60.7 63.6 64.2 [1]
O17 + 144 Sm 60.6 60.8 60.5 61.6 61.0 61.5 60.6 63.6 64.1 [1]
O16 + 144 Sm 61.0 61.4 61.0 62.0 61.5 61.9 61.1 64.2 64.6 [1]

28Si + 92 Zr 70.9 71.8 70.5 72.0 71.1 72.3 71.4 74.5 75.0 [58]
O16 + 208 Pb 74.5 75.3 75.5 77.0 76.1 76.5 77.2 79.4 79.8 [61]
S36 + 96 Zr 76.7 77.8 77.6 79.5 78.2 79.6 79.3 82.2 82.4 [62]
S34 + Y89 76.9 78.5 77.3 79.1 77.9 79.4 79.0 81.8 82.2 [63]
S32 + Y89 77.8 79.5 78.0 79.8 78.7 80.1 79.8 82.5 83.1 [63]
S36 + 90 Zr 78.0 79.1 78.5 80.4 79.2 80.6 80.4 83.2 83.6 [62]
F19 + 197 Au 80.8 81.1 81.5 83.3 82.1 83.0 83.9 85.7 86.2 [60]

35Cl + 92 Zr 82.9 84.5 83.8 85.8 84.5 86.1 86.2 88.6 89.2 [58]
F19 + 208 Pb 83.0 83.5 83.8 85.6 84.4 85.3 86.4 87.9 88.5 [64]

40Ca + 96 Zr 94.6 96.5 96.7 99.3 97.5 99.5 100.8 102.3 103.1 [65]
40Ca + 90 Zr 96.9 98.1 97.9 100.5 98.8 100.8 102.2 103.6 104.5 [65]
28Si + 144 Sm 104.0 102.2 102.3 105.0 103.2 105.2 107.3 108.0 109.0 [66]
40Ca + 124 Sn 113.1 114.9 116.5 119.8 117.5 120.0 123.4 123.1 124.3 [67]
28Si + 208 Pb 128.1 126.1 127.1 130.6 128.2 130.6 135.6 133.9 135.0 [68]
48Ti + 208 Pb 190.1 190.2 190.1 195.3 192.4 197.0 195.4 200.3 203.1 [69]
54Cr + 208 Pb 205.8 205.2 204.9 208.8 207.5 215.2 210.7 209.9 219.0 [69]
56Fe + 208 Pb 223.0 222.6 221.7 228.2 224.5 230.9 228.4 233.6 237.5 [69]
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Table 2. (Continued.)

Reaction VB
exp( ) VDFM

B VB
CW76 VB

AW95 VB
BW91 VB

DP VB
RB73 VB

Prox77 VB
Ng80 Refs.

64Ni + 208 Pb 236.0 236.5 235.1 243.7 237.6 244.4 261.5 247.6 251.8 [69]
70Zn + 208 Pb 250.6 250.0 249.4 258.8 252.1 259.6 278.3 262.6 267.4 [69]
86Kr + 208 Pb 299.2 297.5 292.7 304.3 296.2 305.6 329.3 308.1 314.6 [70]
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The fusion cross section can be calculated by the potential energy of the entrance
channel, i.e. by the nucleus-nucleus potential. To study the fusion cross sections, we will use
the barrier penetration model given by Wong [72]. The fusion cross section at a given center-
of-mass energy Ec.m. can be written as the sum of the cross section for each partial wave l

ås
p

= +
=k

l T E2 1 , 26f
l

l

l2
0

c.m.

max

( ) ( ) ( )

where = m


k E2
2 and μ is the reduced mass of the colliding nuclei. In the above fusion cross

section formula, lmax corresponds to the largest partial wave for which a pocket still exists in
the interaction potential. The interaction potential around the Coulomb barrier can be
approximated by the inverted parabola. The analytical expression for the penetration
probability T El c.m.( ) is given by the well-known Hill–Wheeler formula [73]

p
w

= + -
-


T E 1 exp

2
V E , 27l c.m. B c.m.

1⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭( ) ( ) ( )

where ÿω is the barrier curvature. ÿω is related to the double derivative of the total potential at
the barrier position calculated as:

w
m

= -
¶
¶

=

 
R

V R . 28
R R

2 2

2

B

( ) ( )

If we assume that the barrier position and width are l-independent, this leads to the following
fusion cross section

Figure 6. The deviation of the theoretical results of the Coulomb barrier VB calculated
by different methods from the experimental data obtained from the set of reactions
presented on the left side of the figure. The references to the sources of the
experimental data in cited papers are presented in column 11 of table 3 in this work.
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In this work, we have used equation (29) to calculate the capture cross sections.
The comparison of the fusion cross section of the 12C+204Pb reaction calculated by

equation (29) with the corresponding experimental data is presented in figure 7. One can see
that the agreement with the experimental data is not so bad. The disagreement is large at the
collision energies near the Coulomb barrier VB which is reproduced well for this reaction by
the DFM as seen from table 2. This fact can be explained by the use of the Fermi–Dirac
distribution for the density of nucleus 12C.

The agreement of the results of this work for the capture cross section with the
corresponding experimental data of the 16O+144Sm reaction (see figure 8) is better in com-
parison with the 12C+204Pb reaction. It means that the use of the Fermi–Dirac distribution for
the density of nucleus 16O and more heavy nuclei is acceptable for the capture cross sections.
It is seen from figure 9 that the results of the capture cross section are more close to the
measured data in the case of the 17O+144Sm reaction. In figure 10 the theoretical and
experimental results obtained for the 16O+144Sm and 17O+144Sm reactions are compared to
see a role of the extra neutron in 17O. Note there is a significant difference between the
experimental results of these reactions and this difference has been reproduced well by the
used DFM. The capture cross section calculated for the 19F+208Pb reaction is in good
agreement with the measured data obtained from [64] (see figure 11). The conclusion is that
the agreement between theoretical and experimental data improves with the increase of the

Table 3. Comparison of the Coulomb barrier heights (second column) VB
exp( ) (unit

is MeV) with the theoretical results calculated by the DFM VDFM
B (the third column),

the DFM potential using the M3YReid interaction with zero-range exchange part ( dVB
R )

and using the Paris CDM3Y3 interaction with finite-range exchange part (VB
Pf),

respectively. The results of dVB
R and VB

Pf are indicated in the fourth and fifth columns,
respectively.

Fusion reaction VB
exp( ) VDFM

B
dVB

R VB
Pf Refs.

O16 + 92 Zr 42.0 43.5 42.26 41.14 [58]
C12 + 204 Pb 57.6 57.9 58.61 57.30 [60]
O16 + 148 Sm 59.8 61.1 61.19 59.61 [1]
O17 + 144 Sm 60.6 60.8 61.10 59.53 [1]
O16 + 144 Sm 61.0 61.4 61.53 59.94 [1]

28Si + 92 Zr 70.9 71.8 71.46 69.59 [58]
O16 + 208 Pb 74.5 75.3 77.08 75.40 [61]
S36 + 96 Zr 76.7 77.8 77.65 75.45 [62]
S34 + Y89 76.9 78.5 77.55 75.42 [63]
S32 + Y89 77.8 79.5 78.21 76.04 [63]
S36 + 90 Zr 78.0 79.1 78.26 76.01 [62]
F19 + 197 Au 80.8 81.1 83.83 81.90 [60]

35Cl + 92 Zr 82.9 84.5 83.57 81.15 [58]
F19 + 208 Pb 83.0 83.5 85.26 83.25 [64]

40Ca + 96 Zr 94.6 96.5 97.01 94.32 [65]
40Ca + 90 Zr 96.9 98.1 97.78 95.01 [65]
28Si + 144 Sm 104.0 102.2 104.37 101.72 [66]
40Ca + 124 Sn 113.1 114.9 117.89 114.96 [67]
28Si + 208 Pb 128.1 126.1 130.90 128.08 [68]
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mass number of the projectile nucleus in the case when light nuclei are used as a projectile.
This observation is related with the fact that the application of the Fermi–Dirac distribution is
favorable to describe the nucleon distribution in more heavy nuclei.

But the use of a projectile with the larger mass and charge numbers leads to appearance
of the quasifission events which compete with complete fusion. This means that the complete
fusion becomes smaller than capture cross section. Equation (29) describes the capture events,
which is in close agreement with the complete fusion in case of the light system and/or very
mass-asymmetric system. Therefore, the experimental data of the fusion cross section expects

Figure 7. The comparison of the capture cross section of the 12C+204Pb reaction
calculated by the DFM (solid line) with the corresponding experimental data (squares)
obtained from [74].

Figure 8. The comparison of the capture cross section of the 16O+144Sm reaction
calculated by the DFM (solid line) with the corresponding experimental data (squares)
obtained from [1].
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to be overestimated by equation (29) in case of the appearance hindrance to complete fusion
caused by quasifission.

For example, the results of the capture cross section (thin solid line) in figure 12 obtained
by the DFM for the 40Ca+96Zr reaction overestimate the measured data at low energies. The
agreement with the experimental data can be reached taking into account the hindrance to
complete fusion (thick solid line). The fusion probability estimated by the dinuclear system
model [75] is less than 1 for this reaction and its values depends on energy. At lowest energies
it is around PCN=0.06. It means the fusion cross section should be obtained as a product of
the capture cross section obtained by equation (29) on the fusion probability PCN. The results

Figure 9. The comparison of the capture cross section of the 17O+144Sm reaction
calculated by the DFM (solid line) with the corresponding experimental data (squares)
obtained from [1].

Figure 10. The comparison of the theoretical results calculated by the DFM and
experimental data obtained from [1] for the 16O+144Sm (open triangles) and 17O
+144Sm (full squares) reactions.
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of this procedure are presented by the solid line in figure 12. This method takes into account
the surface vibrations of the spherical nuclei and the possibility of the collision with the
different orientations of the symmetry axis of the nuclei with a deformed shape.

Different methods have been applied to the theoretical estimation of the measured fusion
data of the 40Ca+96Zr reaction [51, 76, 77]. The authors have included into the calculation of

Figure 11. The comparison of the capture cross section of the 19F+208Pb reaction
calculated by the DFM (solid line) with the corresponding experimental data (squares)
obtained from [64].

Figure 12. The comparison of the theoretical results (thin solid line-capture and thick
solid line-fusion) calculated by the DFM, the ones obtained from [76] (dot-dashed line)
and [51] (dot-dot-dashed line Ch-84, short-dashed line Ch-28, dashed line Ch-1) for the
fusion cross section [77] of the 40Ca+96Zr reaction with the corresponding
experimental data obtained from [65] (open circles) and from [78] (solid diamonds).
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the coupling to one- and two-phonon excitations of the reacting nuclei and to one- and two-
nucleon transfer effects [51, 77] to improve an agreement of the theoretical results with the
measured data for this reaction. The authors of [77] have concluded the transfer strength of
one and two neutrons should be taken equal to 2.25 fm and 0.355 fm, respectively, to reach
good agreement with the experimental data of the 40Ca+96Zr reaction. These results
demonstrate that the calculated fusion cross sections are sensitive not only to the pair-transfer
coupling but also to the successive one nucleon transfer mechanism.

The authors of [76] have used the method of calculation including the quantum-
mechanical and non-Markovian effects accompanying the passage through the potential
barrier by the friction and diffusion. To reach an agreement of the results of calculation with
the measured data, the authors of [76] have assumed a possibility that the two neutrons
transfer from 96Zr to 40Ca. As a result the change of Qgg causes the shift ΔE=5.53MeV of
the capture excitation function and the agreement between results of calculation and measured
data has been improved very well.

The advantage of a method of calculations is in its universality to be able to reproduce the
experimental data by the use as possible less free parameters and in its possibility to extract
the information about physics of the reaction mechanism. From this point of view the DFM is
used very widely. A single parameter is radius coefficient r0 for calculation of the spherical
radius of nuclei.

In figure 13, the experimental values of the fusion cross sections of the 48Ca+208Pb
reaction are compared with the theoretical ones. The agreement between theoretical and
experimental data is enough good for the all methods of calculation although the methods of
calculations are completely different. The authors of [80] had reported the capture cross
section was calculated by empirical or quantum channel coupling models (see [84]). The
maximum value of angular momentum ℓcr for capture cross section was used as a free
parameter together with the parameters of the proximity potential. The rich experience of the
authors allowed them to suggest universal formulas (2) and (3) of the fusion probability in
[80] with three adjustable parameters. At the same time the authors had noted that the formula

Figure 13. The comparison of the theoretical results of this work (solid line, DFM),
from [79] (dotted line, WANG) and [80] (dashed line, ZG) for the fusion cross section
of the 48Ca+208Pb reaction with the experimental data (diamonds) obtained from [81],
(squares) [82], and triangles [83].
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(3) in [80] is valid only for the cold fusion reactions of heavy nuclei with the closed shell
targets 208Pb and 209 Bi. In figure 13 the results of fusion cross section from [80] have been
presented. The authors of [79] have used the Wong formula (27) as a function of the barrier
heights corresponding to the deformation parameters to calculate fusion cross section and
they have averaged it by the barrier distribution function D(B). The method has five para-
meters excluding the parameters of the nucleon density functions. Important parameters is γ
which allows authors to take into account the structure effects in nuclei. It changes the width
of the distribution function D(B). The value γ=9.5 was used by authors of [79] to calculate
the theoretical curve (dotted line) presented in figure 13.

The experimental values of the fusion cross section of the 48Ca+208Pb reaction were
deduced from the analysis of the yields of mass symmetric binary products registered in
coincidence by two detectors. The amount of the quasifission products mixed into fission
products depends on the border of the frame including the mass distribution of the binary
products taken around mass symmetry point +  DM M M21 2( ) at the analysis. The fusion
cross sections of the experiments in [81] (solid diamonds) were deduced from the mass-
energy distributions of the fission-like products while the authors of [83] (triangles) and [82]
(solid squares) had used mass-angle distributions of the fission-like products. The contrib-
ution of the quasifission products, which are concentrated around initial mass numbers of the
projectile and target nuclei into the analyzed volume of events, is very small. Therefore, the
deduced capture cross section is nearly equal to fusion cross section. It should be noted that,
in the 48Ca+208Pb reaction, the contribution into fusion (capture) cross sections from the yield
of the evaporation residues is very small. The presence of the quasifission in this reaction was
discussed in [85] in the framework of the dinuclear system model. The fusion probability was
enough small and its value was obtained in the range = -P 0.05 0.1CN indicating the strong
hindrance to the complete fusion in the framework of the dinuclear system model.

This reaction has been considered in the recent experiments of the Australian group [86].
The problem of the extraction of the quasifission events from fusion-fission and deep-inelastic
events are very actual and very important to clarify the reaction mechanisms in heavy ion
collisions (see [85, 87]).

5. Conclusion

The double-folding method by the use of the expansion of the nuclear density in the Gaus-
sian-type functions and polynomials can give the reasonable values for the Coulomb barrier
heights due to the calculation of the nucleus-nucleus potential. The deviation
D = -V V VB B

DFM
B
exp( ) of the Coulomb barrier heights calculated by the double-folding

method from the values of the Coulomb barrier extracted from the analysis of the exper-
imental barrier distributions for the 29 reactions does not exceed 2.3 MeV for all reactions
presented in table 2.

The versions CW76 and BW91 of the proximity potential presented in [39] and [23],
respectively, allow us to obtain the results which are relatively close to the experimental
values of VB

exp( ): the deviation ΔVB does not exceed 3 MeV for all reactions presented in
table 2. The proximity potential used in [42] (AW95) and [20] Prox77 give results that deviate
more than 4MeV from the experimental values of VB for several fusion reactions. The
deviation of the theoretical results of the Coulomb barrier from the experimental values
increases with the increase of the mass numbers for the reactions with massive nuclei. In the
region of light fusion reactions, the results of AW95 are almost identical to those of RB73.
For some fusion systems, the results of BW91 [23] are close to the experimental data, also
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CW76 [39] and the present double-folding potential are close to each other. The results of DP
[56] are close to the ones of AW95 [42], and the results of Ng80 [57] are far from the
experimental data particularly for the reactions with massive nuclei. In the case of the
86Kr+208Pb reaction, the double-folding method describes better the experimental value of VB

than the methods BW91 and CW76 since they sufficiently underestimate the Coulomb barrier.
The capture cross section calculated for the reaction 12C+204Pb with the light projectile-

nucleus is in a good agreement with experimental values but it is worse than in reactions with
more heavy projectiles 16O and 19F.

The theoretical and experimental results obtained for the 16O+144Sm and 17O+144Sm
reactions are compared to see a role of the extra neutron in 17O. Note there is a significant
difference between the experimental results of these reactions and this difference has been
reproduced well by the used DFM.

But the increase of the mass and charge numbers of a projectile-nucleus in the reaction on
the same target-nucleus leads to the appearance of the quasifission events which compete with
complete fusion. As a result the probability of the compound nucleus formation is reduced.
For example, the agreement with the experimental data obtained for the 40Ca+96Zr reaction
can be reached taking into account the hindrance to complete fusion. The fusion cross
sections calculated by equation (29) has overestimated the measured data at low energies. Our
estimation of the fusion probability by the dinuclear system model [75] showed that it is less
than 1 for this reaction and its values depends on energy. At lowest energies it is around
PCN=0.06. So, the fusion cross section should be obtained as a product of the capture cross
section obtained by equation (29) on the fusion probability PCN. Therefore, the experimental
data of the fusion cross section expects to be overestimated by equation (29) in case of the
appearance hindrance to complete fusion caused by quasifission. This is seen from figure 13
where the experimental values of the fusion cross section of the 48Ca+208Pb reaction are
compared with the theoretical ones. The fusion experimental data does not contain quasi-
fission and, therefore, this data has been described well as pure fusion cross section by the
theoretical models [79, 80] and DFM used in this work. This circumstance does not mean that
there is not hindrance to complete fusion in the 48Ca+208Pb reaction. The unambiguous
establishment of the fusion probability (strength of hindrance to complete fusion) in the
reaction with massive nuclei is difficult since there is a problem of identify the all capture
events, i.e. the events corresponding to the full damped (full momentum transfer) reactions
which are mixed with the events deep-inelastic collisions. At the same time the significant
events of the quasifission events are considered as fusion-fission events (see [87]) and the
hindrance to complete fusion seems to be small. The recent paper [86] is one of efforts of the
experimental study of this very difficult and important problem in the analysis of the reaction
mechanism in case of formation of a massive system.
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