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Abstract

SAM (Sequential Access through Meta-data) is the data
access and job management system for the D0 high energy
physics experiment at Fermilab. The SAM system is being
developed and used to handle the Petabyte-scale experiment
data, accessed by hundreds of D0 collaborators scattered
around the world. In this paper, we present solutions to
some of the distributed data processing problems from the
perspective of real experience dealing with mission-critical
data. We concentrate on the distributed disk caching, re-
source management and job control. The system has ele-
ments of the Grid Computing and has features applicable
to data-intensive computing in general.

1. Introduction

The SAM system[1] is being developed for the D0 RunII
High Energy Physics (HEP) experiment at Fermilab, see
[2, 3] for a recent review. HEP experiments are typically
characterized by data-intensive applications, and SAM per-
forms functions that are common to all settings. Most no-
table functions are data replication, disk cache manage-
ment, resource management and job control, data catalogs,
dataset definition and processing history. In the present
paper, we concentrate on distributed caching and resource
management; metadata management is more D0-specific
and is described elsewhere.

With over 60 participating collaborator institutions,
SAM is a truly global distributed system. As such, the sys-
tem has elements of the Grid, although it is not strictly a
Grid in a sense that e.g., it handles distributed collections of
data and its processing rather than links heterogenous col-
lections.

In the data-intensive environment, the computational
economy is extremely data-centric. Consequently, SAM
is primarily (and historically) a data handling system, and
most of the following is given from such perspective.

1.1. Applications and Data Intensity

The D0 experiment collects (from the FNAL collider)
and studies particle collision data. During its operation in
the first few years of the new millennium, the experiment
will accumulate the total of about 1 Peta-byte of event data.
Each event is represented in a D0-specific format and usu-
ally takes about 250 Kilo-bytes of digitized data. Events are
recorded at a rate of a few Hertz.

The D0 applications process sequentially, i.e., one at
a time, these event objects stored in files. The end user
deals with unordered collections of events, the D0 appli-
cation infrastructure[4] translates such logical collections
into physical collections of files. When, for example, an
application generates a stream of events to be imported into
the system, the infrastructure chops the stream into files. A
complete file is made self-describing, i.e. it contains infor-
mation about the events stored. The application infrastruc-
ture then hands the file and its detailed description over to
SAM. Thus, the physical data movement in SAM is done
at the file level whereas the application infra-structure per-
forms object-level access.

There are several types of applications representing cor-
responding types of data processing, which we roughly out-
line here. One type produces data, by either digitizing real
detector read-outs or performing Monte-Carlo simulation.
Real data taking is the most critical for the experiment, of
course, but it is not as strenuous on the system as the sub-
sequent studies of the data. Another application type recon-
structs the data, i.e., uses sophisticated scientific algorithms
to translate raw read-outs into particles and similar objects.
This processing is both CPU and I/O intensive but has to be
done only a finite number of times (usually once) for every
collected event. Finally, a recurrent analysis of the recon-
structed data occurs indefinite number of times on a time
scale usually extending years beyond the actual data taking
from the accelerator. Typically, analysis applications filter
events by certain criteria or extract highly condensed vari-
ables for histogramming. This recurrent activity is mostly
I/O intensive.



While the SAM architecture handles all of the above ap-
plication types, the most interesting and difficult problems
occur with the analysis type applications. Other processing
types, aside from having to be performed few times, usually
can have dedicated hardware (and people) resources. Thus,
for the purposes of resource management, we categorize our
applications as highly data I/O intensive.

1.2. SAM Meta-data

The SAM architecture uses CORBA[5] as the means
for client-server communication. The Meta-data in SAM
is also accessible via the several CORBA interfaces. Its
complete description may be found in some of the project
reviews[2, 3] as well as on the SAM project Web pages[1].
Here we give a brief description of selected aspects. For
the end user, the interfaces exist as command-line and Web-
based forms. The most useful user-visible meta-data are the
global event catalog (short description of each event and a
mapping into file containing them) as well as the catalog
of logical data collections calleddatasets. Various appli-
cations may store logical datasets, as well as combine and
reuse them. In addition, users may view processing history
of datasets as well as of individual physical data units (files),
for book-keeping and error recovery.

Internally, SAM also uses meta-data for the physical data
and resource management. Of primary importance is the
replica catalog where each physical file is associated with
zero or morelocations. These include Mass Storage Sys-
tem (MSS) locations (e.g. in an Automated Tape Library,
ATL), SAM-managed disks, and externally managed loca-
tions. (Administrative interfaces exist for managers of the
latter to update the replica catalog.) In addition, SAM main-
tains persistently configuration and dynamic state of certain
servers, for the purposes of crash recovery.

The meta-data catalog is implemented at present in a
centralized Oracle database. The D0 experiment con-
templates replication and decentralization of the metadata;
however at present it is satisfied with the performance and
reliability of the centrally managed database.

We emphasize that unlike the meta-data catalog, the
physical data handling (which is the primary factor in user
application latencies), is already fully distributed as we dis-
cuss in the remainder of the paper.

2. Data Replication

The SAM system has advanced facilities for distributed
caching and data replication. These are realized through
a network of processingstationswhich provide both lo-
cal caching services and global data exchange across the
WAN at the multi-Terabyte level. In the following, we
will sometimes use “data replication” inter-changeably with

“caching”. The term “caching” is largely historical: canon-
ically, the data-intensive HEP applications relied heavily on
the Mass Storage Systems (MSS) as the primary places for
data storage, with disks serving as caches for the most ac-
tively accessed data. It is remarkable that, with the prolifer-
ation of cost-efficient clusters and de-centralization of com-
puting resources, exponentially growing amounts of dis-
tributed disk become available so that the distributed disk
cache becomes a storage in its own right at D0; in fact, the
distributed disk is the primary storage for the analysis ap-
plications. The term “caching” also represents the physical
proximity of the data to the application, which in D0 case
always accesses local disk, whether it was the data or the
application that was brought to the proximity.

2.1. Local Data Replication for Cluster Computing

A stationin SAM is a locally managed collection of ma-
chines with their resources. In the data-intensive world the
most important local resource is the disk, that is why thesta-
tion masterwas originally, and is primarily, responsible for
management of data on disk. Thus, the station master keeps
track of a collection of disk mounted possibly on physi-
cally multiple machines, and the SAM files on the disks.
When users run their jobs, their requested datasets are made
known to the station master, Sec. 3.1, so that it can replenish
the caches, possibly erasing unused files.

In doing so, the SM analyzes the access history of each
cached file (also stored persistently as part of the meta-data)
and uses one of the several cache replacement algorithms
available to different groups. Cache usage is categorized by
groups of physics researchers, and different groups may use
independent caching algorithms. In the course of the cache
replacement, the SM updates the aforementioned replica
catalog accordingly. See our earlier description[6] for more
details.

Eventually (whenever the underlying Batch System de-
cides), user processes are started on the cluster for this data
consumptionproject. From SAM’s viewpoint, processes of
the same job areconsumer processessharing the samecon-
sumer ID. A special server calledproject master(PM) co-
ordinates input data consumption[6]. In particular, it en-
sures that each file from the project dataset is delivered
to exactly one process. (For a special SAM access mode
called “Freight Train” the PM also supports multiple con-
sumers whereby each consumer must “see” each file from
the dataset.) It is the PM that on its consumer behalf com-
municates to the SM files from the dataset being released,
so as to trigger the cache replacement algorithm in the SM
when necessary. As we will describe later (Sec. 3.1), the
SM interacts with the user job submission system (the Batch
System) so as to attempt the proximity of user jobs to the



Figure 1. File routing while storing data with
SAM.

data. Nevertheless, the SM will in general replicate the data
on demand within the cluster as to ensure a proper data con-
sumption. Such intra-cluster, orintra-station in SAM ter-
minology, transfers are executed by the SM based on the
knowledge ofconsumption sitesfor each job provided to it
by the project master.

The SM translatesconsumption sitesinformation into
the one about thedelivery sitesusing a Cache Accessibil-
ity Matrix which specifies what disks are accessible from
what nodes. This matrix is part of the station configuration
stored persistently as part of the SAM metadata catalog. In
the absence of shared file systems, the matrix is a unity, i.e.,
consumer processes running at a node may only access data
from that node. In order to efficiently allow the highly inten-
sive I/O for the applications running on clusters of low-end
workstations, SAM never relies on shared file systems and
always provides the data locally.

2.2. Global Data Replication

In addition to local caching and replication, SAM repli-
cates data globally, i.e., at multiple sites (institutions partic-
ipating in the D0 collaboration). SAM provides this service
in a dynamic and fully automated fashion by routing of data
through the network of communicating stations, each man-
aging its disk cache. The exact location on site and lifetime
of each replica is therefore controlled by the local station(s)
as described in Sec. 2.1. In this section, we consider the
station a point-like node on the global grid. The SAM grid
is formed by the stations as well as MSS’s connected with
Wide-Area Network (WAN) links, see Fig. 1. The MSS’s
are leaf nodes whereas stations are capable ofdata routing.

Consider a real example that includes SAM installation

at Nikhef in the Netherlands, which is a D0 collaborator in-
stitution. Files are produced at one station at Nikhef which
is specifically tailored for Monte-Carlo generation of simu-
lated data. The data is then routed to Fermilab site, to either
a station or to the Fermilab’s primary Mass Storage System
(Enstore[7]). In the end, there are replicas of the data both
locally in the Netherlands and at FNAL (in addition to the
MSS’s when applicable). Thus, the two SAM features of
data routing and disk caching in combination yield global
data replication in a dynamic and natural fashion, see [8].

When a SAM station on such a Grid retrieves a file, it
will need to choose the best location for each replica. In
the future, SAM will use information about relative costs of
obtaining a replica. At present, we have given the station
administrators the facility to configure their stations as to
prefer, semi-statically, some locations over other (e.g., disk
over tape, onsite location over offsite, etc.).

3. Computational Economy: Resource Man-
agement

Given the volume of data and access intensity, hard-
ware resource management (RM) is critical to SAM. While
many resource management issues are inter-related, it has
been possible to architect a hierarchical RM scheme. The
goals of all the RM components are fundamentally com-
mon, however, and stem from the experiment (conflicting,
and therefore prioritized) requirements:

1. Implement the experiment policies for resource usage
by data access modes (e.g., types of processing) and
by research groups of the experiment members;

2. Optimize the resource usage so as to maximize the
overall throughput defined in terms of ”real” (physics
applications) jobs.

In what follows we describe the two levels of RM in SAM
as well as the common strategies used to achieve the goals.

3.1. The Hierarchy of Resource Managers

At the level of the processing stations, the SAM sys-
tem integrates the data delivery and caching infrastructure
with the user job control (allocation and scheduling). Such
integration is one of SAM’s main novelties; it has never
been fully addressed before despite its fundamental impor-
tance to the data-intensive HEP computing. In its initial
implementation, SAM performs user job control through
interfaces to the abstract batch system. The batch system
uses its specific, opaque logic to schedule and run data
processing jobs using SAM-supplied additional constraints
and requirements. By co-allocating processing (computing)



resources together with the data delivery resources SAM
increases overall throughput. Furthermore, while a pure
batch system typically schedules user jobs based on highly
compute-centered considerations (e.g., CPU usage), SAM
provides a more comprehensive and flexible framework de-
scribed later.

From SAM’s perspective, the end user job consists of
two parts: the input dataset (project) to be processed and
the application, such as a script, name to invoke. The fol-
lowing sequence of events occurs when a user submits a job
to SAM.

1. The SM client forwards the request to the SM which
retrieves the explicit file set comprising the project
from the Meta-data catalog;

2. The SM initiates input file delivery for the project as
the disk space becomes available;

3. The server further determines whether there is enough
data (at least one file in fact) to start the user job; the
job is marked as runnable or suspended accordingly;

4. The SM client wraps the user application with another
SAM client and submits the job into the batch sys-
tem, possibly in a state suspended “until further no-
tice” from SAM. The exact suspension mechanism de-
pends on the Batch System and may be a resource
specification or external event occurrence;

5. If there were not enough data initially, then when even-
tually the data start arriving, the SM notifies the Batch
System via the adapter, which takes the BS-specific ac-
tion and the job is released, i.e., becomes runnable;

6. When the job is eventually dispatched, the SAM wrap-
per performs some SAM-related book-keeping in a
user-transparent way.

Note that the most of the job scheduling is done by the
Batch System; all that SAM really needs to do is impose
one additional requirement (data availability) onto each job.

More resource management is done at the site level.
Each SAM site - consisting of multiple compute, storage
and caching resources - is controlled through a ”Site Opti-
mizer”. The Site Optimizer accepts information about the
state, current and past performance of the components of
the system. We anticipate that the most scarce resource
for delivery of D0 data files will be the movement of the
robot arm to mount the tapes, and the number of tape drives
allocated to the group. In the current initial implementa-
tion, therefore, for each data analysis job submitted the op-
timizer evaluates the resources required in delivery of the
data files. It looks at the number of tape mounts in the robot,
the number of tape drives used, the current performance of
the route from the storage system and the expected rate of

file processing by the job. It authorizes execution of the jobs
based on the resource needs and their current availability.
Scheduling of the job execution is based on an attempt to
minimize the number of tape mounts and the length of time
the tape drives will be ”occupied” transferring data. In the
next version information gathered from the actual network
performance and file delivery will be incorporated into the
scheduling algorithms.

In the present SAM implementation, all the sites share
the site optimizer so that it is in fact global. In the future,
we plan to split such Optimizer into at least two levels: site-
wide (controlling local MSS’s and LANs) and truly global
(controlling inter-station data transfers over the WAN).

3.2. Economic Concepts for Job Scheduling

For the most efficient global data and job management,
a unified approach to the allocation and scheduling of all
the resources is being developed that pertains both to data
delivery jobs and to the user jobs. It is based on the eco-
nomics concepts of ”benefit”, ”cost”, ”value”, ”fair share”.
Scheduling of jobs is based on a fair share allocation (FSA)
algorithm. We say that execution of a job (either data deliv-
ery job or real user job)benefitsthe associated abstract user.
Abstract user is either a physics research group (D0 chose
not to manage resources on a person level) or a special data
processing activity done on behalf of the entire experiment,
such as data taking from the detector. The benefit is a vector
of calculable quantities. Benefit types (components of the
vector) include different resource usages as well as number
of data units processed, amount of ”useful physics work”
done, etc. We additionally compute the cumulative bene-
fit vector received by an abstract user. From the vector, we
compute a scalar benefit for each abstract user (see below).
For every submitted job, therefore, we can determine where
in the queue of jobs it should be placed, by comparing the
total scalar benefit received by the user with the allotted (fair
share) fraction. This comparison is done at the time of job
submission and optionally during the job run (depending on
the functionality offered by the particular underlying queu-
ing system). Benefits are accounted every time when sig-
nificant events occur such as file transfer, file processing,
whole job completion, etc.

The exact way the scalar benefit is computed is outside of
the scheduling algorithm. A very practical way to compute
the scalar benefit for an abstract user is a linear weighted
sum of the benefit vector components (to be exact, the vec-
tor components are dimensionless fractions of each benefit
received by the user). Thus, each benefit type is assigned
a dynamically configurable weight. The numerical values
of these weights represent the current views of D0 (and/or
a local processing station administrator) on the relative im-
portance of the different resource types as well as amount



of work done. For example, at the time of writing this pa-
per, D0’s most scarce resource is, as was already mentioned
above, the tape volume mount in the ATL (robot), thus, the
weight for the benefit type ”volume mounts” will likely be
higher than others.

The general job scheduling scheme based on benefit ac-
counting is another principal novelty of the SAM system
presented in this paper. Our scheme is dramatically more
flexible than existing job scheduling systems. For example,
the LSF commercial batch system bases FSA solely on the
CPU usage (which in fact is not even the most important
factor in data-intensive computing); such a simple scheme
is trivially reproduced in SAM by setting the ”CPU” benefit
type weight to one and all other weights to zero. Benefit
weight reconfiguration can be done at run time.

Our present “benefits” are in fact a mixture of costs and
real benefits. In the future, we plan to develop a more con-
sistent economic framework of costs and benefits, inspired
by works on computational economy [9, 10, 11]. Such
a framework could be useful for the general problem of
scheduling of user jobs in the data-intensive environment
such as SAM. One simple illustration of the problem is
given by the dispatch of physics analysis jobs on a clus-
ter where the set of nodes whose disks hold data does not,
at any given time, correlate with the set of the nodes whose
processors are idle. The application is data-intensive and
the job control system must balance the ”expensive” data
delivery onto the nodes which don’t have the job data with
forcing the job to wait for the processors where the data is
already present. The decisions must be made depending on
relative ”costs” of data delivery and on user benefits which
decrease as the job latency increases. The data transfer costs
must incorporate experiment policies, local prioritization of
system resources, and conditions at the mass storage sys-
tems. All such costs are dynamic and influenced by the job
placement decisions (since job submission initiates data de-
livery soon), yet largely measurable and predictable.

On the global scale of Grid Computing, one similarly
seeks to schedule a job at an optimal site participating in
the Grid. For the SAM system, it is interesting to be able
to broker user jobs, or projects, as to balance them properly
among the stations. Work is being done[12, 13] that ad-
dress such issues but concentrate on problems arising from
the crossing of administrative boundaries (e.g., global au-
thentication, heterogenous environments, etc.). Obviously,
in addition to such considerations, we need to build a meta-
computing system for D0 where the data availability drives
the costs of jobs and therefore their scheduling.

3.3. Deadlock Prevention

As in any resource managing system, we need to address
the issue of deadlock, by means of either prevention, avoid-

ance or resolution[14]. The data handling facet per se of the
SAM system is deadlock-free by design. Remember that
the access inSAM is Sequential so that an application can
wait on a file delivery only when it has released the previous
file (i.e. all other files) from the dataset, Sec. 1.1. Thus, the
SAM application does not use any data handling resources
(the disk space) when it is blocking for a data handling re-
source (by means of blocking on a file delivery). Thus, the
pure sequential accesspreventsdeadlock by removing the
partial allocationcondition.

When compute resources (CPU, memory, etc.) are added
to the data handling resources, the situation changes. A job
that blocks on input file delivery (with output storing be-
ing similar) does, in fact, hold compute resources, i.e., there
occurs partial allocation across the different resource types.
Although a single-threaded application does not consume
CPU under such conditions, all applications hold, most no-
tably, virtual memory for the process (10-100 MB for a typi-
cal D0 application) and possibly network connections. Ulti-
mately, the Batch System may not dispatch new jobs whose
data may be available on local disk, because of the shortage
of virtual memory and other compute resources.

We have designed a timeout-with-restart scheme where
such an application receives a special message from the
project master introduced in Sec. 2.1 and by default, the
SAM client in the D0 application framework causes the ap-
plication to exit. If the user so desires, the job is then re-
submitted. If one regards the re-submitted job as the old job
being resumed, we say that we have thereforepreempted
the compute resources. If one views the re-submitted job
as a new job, then we say that by aborting the application
we have resolved the deadlock. The difference in views is
largely cultural but also depends on the underlying batch
system (most BS’s, however, support the re-submission
concept).

Note that, whether a job is submitted initially or after its
SAM application has timed out waiting for data, the job will
never be dispatched unless it can process at least one file
from the dataset before it may block again, see the discus-
sion of SM-BS integration in Sec. 3.1. In addition to com-
pleting our deadlock prevention scheme, this important con-
sideration also prevents a livelock, i.e., the condition where
jobs are continuously dispatched and then pre-empted with-
out making progress!

4. The Project Status

The SAM system has been operational for some two
years. It has been successfully used for storing of several
Terabytes of Monte-Carlo simulated data, which was sub-
sequently reconstructed several times with many datasets
further analyzed repeatedly for the purposes of scientific al-
gorithm development by the physicists. In March 2001, the



experiment has begun real data taking, and real data pro-
cessing both on the FNAL site and outside is commencing
this summer. Collaborators use SAM at their home institu-
tions, with local batch and storage systems, and implement
local site policies for resource allocation and use. Soon we
will possess data on the user access patterns; however, al-
ready in the ramp-up stage of data taking and processing
we begin to see the benefits of disk caching and data repli-
cations.

To support the global and universal data access, SAM
is being interfaced to various Mass Storage Systems and to
various batch systems - Condor (see [15]), LSF, PBS, etc. -
and different optimizing algorithms are being implemented
and tested. As part of the proposed Particle Physics Data
Grid project, D0 is planning to collaborate with Computer
Scientists and incorporate the Grid technologies for job con-
trol, global resource allocation and optimization.
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