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Abstract: The recent derivation of an exact integer partition function (IPF) is related to a

generating function for strings which compose the states of a black hole. Quantum gravity states

have representations as modular functions for exception algebras. The SLOCC group for the

accounting of these states is a quotient group on the Jordan matrix algebra. Quantum gravity

is then described by a set of symmetries which act as quantum Golay codes. The emulation of

quantum gravity in n-partite entanglements is then a technology for quantum computing and

encryption.
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1. The Quantum Coded Universe

This paper addresses quantum gravity as quantum encryption system. The microstates

of a black hole are modeled by the integer partition function. The modular structure, or

more explicitly the Dedekind η-function, suggests the most general symmetry for quantum

cosmology and gravity is the Jordan matrix algebra.

The simulation of quantum black holes within this structure will lead to quantum

computing and encryption-communication technology of a general variety. A black hole

may be optically simulated, where entangled qubits may be integrated into a quantum

optical computer. The first step will be with the optical simulation of black holes with

4-partite entanglement configurations with 8 states. A triality condition, or O⊗3, of three
sets of these will then be a simulation of a black hole which obeys the proper integer

partition of microstates.
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2. Why Quantum Gravity?

Black holes are a theoretical laboratory for research into quantum gravity. Black holes are

simpler to model than cosmologies and the models are comparatively straight forwards.

They were also in the case of Hawking radiation the first general relativistic object to be

considered in a quantum mechanical setting. Further, it is more plausible to build up a

black hole from quantum states, or strings, than it is the entire universe. The black hole

is defined by a set of simple parameters, mass, angular momentum and charge, which are

macrostates that conceals a vast set of possible microstates. This fact was used to derive

early thermodynamics and quantum mechanical properties of black holes.

The quantum mechanics of black holes could have had a much earlier start. At the

1930 Solvay conferences Niels Bohr and Albert Einstein debated the nature of quantum

mechanics [1]. Einstein was convinced of reality and locality and argued staunchly for an

incompleteness of quantum mechanics. Quantum theory could only be made complete if

there are some hidden variables that underlay the probabilistic, nonlocal quirky aspects

of quantum mechanics. Einstein proposed an interesting thought experiment. Einstein

considered a device which consisted of a box with a door in one of its walls controlled

by a clock. The box contains radiation, similar to a high-Q cavity in laser optics. The

door opens for some brief period of time t, which is known to the experimenter. The

loss of one photon with energy E = h̄ω reduces the mass of the box-clock system by

m = E/c2, which is on a scale. Einstein argued that knowledge of t and the change in

weight provides an arbitrarily accurate measurement of both energy and time which may

violate the Heisenberg uncertainty principle ΔEΔt � h̄ [1-2].

Bohr realized that the weight of the device is made by the displacement of a scale in

spacetime. The clocks new position in the gravity field of the Earth, or any other mass,

will change the clock rate by gravitational time dilation as measured from some distant

point the experimenter is located. The temporal metric term for a spherical gravity field

is 1 − 2GM/rc2, where a displacement by some δr means the change in the metric term

is � (GM/c2r2)δr. Hence the clocks time interval T is measured to change by a factor

T → T
√
(1 − 2GMδr/(rc)2) � T (1 − GMδr/r2c2), (1)

so the clock appears to tick slower. This changes the time span the clock keeps the door

on the box open to release a photon. Assume that the uncertainty in the momentum is

given by the Δp � h̄/Δr < TgΔm, where g = GM/r2. Similarly the uncertainty

in time is found as ΔT = (Tg/c2)δr. From this ΔT > h̄/Δmc2 is obtained and the

Heisenberg uncertainty relation ΔTΔE > h̄. This demands a Fourier transformation

between position and momentum, as well as time and energy.

This holds in some part to the quantum level with gravity, even if we do not fully

understand quantum gravity. Consider the clock in Einsteins box as a black hole with

mass m. The quantum periodicity of this black hole is given by some multiple of Planck

masses. For a black hole of integer number n of Planck masses the time it takes a photon

to travel across the event horizon is t ∼ Gm/c3 = nTp, which are considered as the
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time intervals of the clock. The uncertainty in time the door to the box remains open is

ΔT � Tg

c(δr − GM/c2)
, (2)

as measured by a distant observer. Similarly the change in the energy is given by E2/E1 =
1 − 2M/r1
1 − 2M/r2

i, which gives an energy uncertainty of

ΔE � h̄g

T1c2(δr − GM/c2)
. (3)

Consequently the Heisenberg uncertainty principle still holds ΔEΔT � h̄. Thus general

relativity beyond the Newtonian limit preserves the Heisenberg uncertainty principle.

It is interesting to note in the Newtonian limit this leads to a spread of frequencies

Δω �
√
c5/Gh̄, which is the Planck frequency.

The uncertainty ΔE � h̄/Δt larger than the Planck mass gives an event horizon.

The horizon has a radius R � 2GΔE/c4, which is the uncertainty in the radial position

R = Δr associated with the energy fluctuation. Putting this together with the Planckian

uncertainty in the Einstein box we then have

ΔrΔt � 2Gh̄

c4
= �2Planck/c. (4)

So this argument can be pushed to understand the nature of noncommutative coordinates

in quantum gravity.

By this simple argument a new type of quantization appears. The parallel translation

of vectors in spacetime defines curvature, but where this can manifest itself in a quantized

form. This could have been realized far earlier than when quantum gravity started to

gain interest in the late 1960s. The uncertainty above defines a unit of area, such as a

quantal unit of area on a black hole.

3. Black holes as Degenerate States and the Partition function

The entropy of a black hole is a measure of the number of microstates, where for N

degenerate microstates the entropy is S = k log(N), which is associated with gravity

[3]. The entropy for large N is determined by the area of the event horizon S = kA/4L2
p,

where for the Schwarzschild black hole A = 16πM2. The black hole is a system which

holds a set of states with energy E = M in a degeneracy g(E) = exp(4πE2) and the

partition function is [4]

Z(β) =
∑
E

e4πE
2

e−βE. (5)

This partition function is divergent for E → ∞. The statistics for the number of degen-

erate microstates for a black hole is unbounded, and thus the partition function diverges.

Black hole entropy is a coarse graining microstate states, which has been accomplished

in string theory for large N . The horizon area is a summation of these quantum numbers

A = 16πα
N∑
i=1

ni, (6)
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for αp a Planck area. The quantum numbers ni determine an element of the horizon area.

The energy is then counted as En = αEp

√
n, for n =

∑N
i=1 ni[4]

The degeneracy for En is the number of ways n > 0 is a sum of N or less positive

integers ni. It is the cardinality of the set of elements {n1, n2, , . . . , nm}, such that

n =
∑m

i=1 ni for 1 ≤ m < N . The number of ways a positive integer m may be

written as a sum of m positive integers is the same problem as computing the number of

ways of arranging n balls in m cells in a row. The result is a degeneracy for the energy

En

g(En) =
N∑

m = 1

(
n − 1

m − 1

)
, (7)

for N ≤ n. We also have that m ≤ n, which cuts the degeneracy further in

g′(En) =
n∑

m = 1

(
n − 1

m − 1

)
. (8)

The partition function is a summation of the two degenerate sets,

Z(β) =
N∑

n=1

n∑
m=1

(
n − 1

m − 1

)
e−Epα

√
n +

∞∑
n=M+1

N∑
m=1

(
n − 1

m − 1

)
e−Epα

√
n. (9)

The two portions of the partition functions play a role at n small and n >> N , and

may be computed independently [4]. The convergence occurs for n >> N with

Z(β) �
∞∑

n = N+1

(n − 1)N−1e−βEpα
√
n. (10)

This is a convergent partition function. Conversely for a low black hole temperature

n << N , the degeneracy from the binomial theorem is g′(En) � 2n−1 and the black
hole entropy is S = k ln(2n−1) = (n − 1)ln2. The area A = 16πα2n permits us to

set α = (1/2)
√
ln2/π. This gives the entropy of the black hole S = A/4.

The degeneracy is extended to consider the energy level as due to a spin with an

elementary energy Ej =
√
j(j + 1). The spin is SU(2), which is a double covering

symmetry of the spherical gravity field for a Schwarzschild black hole, with j = 1
2
. There

are two states {1
2
, − 1

2
} and for m spins there are 2m possible spin configurations. Hence

the degeneracy for energy n is

g(En) =
N∑

m=1

(
n − 1

m − 1

)
2m = 3n−1. (11)

The entropy of the black hole is now S = (n − 1)ln 3 and α = (1/2)
√
ln 3/π. This

is then in agreement with the result by Hod [5] that quasi-normal modes are

ωn = α2 =
ln 3

4π
+ 2πi(n +

1

2
) + . . . . (12)

This is equivalent to a redefinition α2 → α2 + ln(j(j+1))/4π. In appropriate units the

normal modes for a black hole of mass M are

ωn =
ln 3

8πM
+

i

4M
(n +

1

2
) + . . . , (13)
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so the partition function of the black hole is

Z[β] =
∑
n

e4πωne−βα
√
n. (14)

The string states in 26 dimensional is described by the Virasoro algebra. The gener-

ating function Tr(qN) is the density of string states for q = e2πiz and N =
∑∞

n=1 α−nαn

the string number operator. The trace Tr(qN) over 24 transverse string oscillations is

Tr(qN) =
∞∏
n=1

Tr(qn) =
∞∏
n=1

(1 − qn)−24, (15)

where
∏∞

n=1(1 − qn) is the partition function[6]. qn counts the number of way to write

n = a1 + 2a2 + . . . mam . . ., for ai a natural number. This partition function is related

to the Dedekind η-function

η = qτ/2
∞∏
n=1

(1 − qnτ ), (16)

for Tr(ρN) = q24τη−24. The generating function written as

Tr(qN) = f(q) = exp
( ∞∑
n=1

ln(1 − qn)
)
=

∞∑
n=0

p(n)qn, ) (17)

which is the p(n) partition of the integers This function p(n) is approximated with the

Hardy-Ramanujan approximate formula for the partition of the integers. The quantum

statistics of states on a black hole are similarly computed, and such generating functions

should be modular. These may be Ramanujan mock Θ functions, as suggested by Dyson

[7].

In both the case of black holes and the string generating function, the fundamental

issue involves the partitioning of states as partitions of integers. The last equation for

Tr(qN) contains the complex term e2πinz, for nz = 4ωn − ln 3/4π. The remainder is

an approximation for the integer partition function

p(n) � 3e−βα
√
n (18)

By using the Hardy-Ramanujan approximation for the integer partition the result is

p(n) � 1

4n
√
3
e4π

√
n, (19)

which is remarkably similar formula to that obtained for the black hole.

This suggests the solution to the partition function is a partitioning of the integers,

and the statistics are accounted for by an IPF. Recently a partition function has been

derived as the finite sum and an algebraic number. This partition function p(n) computes

the partitions of an integer n, which is the sequence of integers:

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231,

297, 385, 490, 627, 792, 1002, . . . , p(100) = 190569292, . . . (20)
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The general form for p(n) has been a major problem in number theory. The circle method

of Hardy and Ramanujan produced an asymptotic approximation function

p(n) � 1

4
√
3n
eπ
√

2n/3. (21)

Bruinier, Folsom, Kent and Ono [8-9] derived a formula for p(n) as a finite sum of algebraic

numbers using the Dedekind η function η = q1/24
∏∞

n=1(1 − qn) and the Eisenstein

series

E2(z) = 1 − 24
∞∑
n=1

∑
d|n
dpn. (22)

A merimorphic form F (z) with weight −2 by the discrete group Γ0(6) is defined according

to Eisenstein series

F (z) =
1

2

E2(z) − 2E2(2z) − 3E2(3z) + 5E2(6z)

(η(z)η(2z)η(3z)η(6z))2
(23)

= q−1 − 10 − 29q − 104q3 − 273q3 − . . . ,

which is eigenvalued on the upper half of the complex plane ΔEk(q) = k(k − 1)Ek(q),

and is a Maass form.

P (z) = −
( 1

2πi

d

dz
+

1

2πy

)
F (z) (24)

with eigenvalue −2 with respect to the hyperbolic Laplacian Δ = − y2(∂2x + ∂2y).

The group Γ0(6) acts on these modular forms to construct a Γ0(6) equivalence classes

Qn. The anti-holomorphic form P (z) on this class at discrete point in the hyperbolic

half-plane are summed over in a trace formula

tr(n) =
∑

Q∈Qn

P (zQ) (25)

where xQ ∈ Q(x, y). This then gives a formula for the integer partition p(n) = 1
2n+1

Tr(n)

The integer partition function is constructed in the same manner partition functions

are derived in statistical mechanics. The trace formula for the string states is a form of

statistical mechanical device, and this mathematics gives a precise way in which these

states may be partitioned to form an over all Boltzmann-like distribution, or e−iS in a

path integral.

4. Quantum Gravity as O⊗3

The application of the partition of integers to quantum states of gravity means they have

representations as modular functions. The exceptional groups have Jacobi θ-function

representations. The largest of the exceptional groups is the E8 group, which does not

have a complex representation, but subgroups do, such as E6×SU(3). Further, this may
be overcome by extending the heterotic group into the Jordan matrix algebra.

The Jordan algebra is a 3×3 matrix comprised of three scalars andOi, for i = 1, 2, 3.

The 16 supersymmetric partners are the two defined in two sets of spinor fields which
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are the superpartner to 8 vector fields which define three octionionic valued fields or E8s.

These exist in a Jordan exceptional algebra [10] of the 3× 3 matrix with diagonal scalar

elements and octonionic diagonal elements

J3(O) =

⎛
⎜⎝
x O1 O∗2
O∗1 y O3

O2 O∗3 z

⎞
⎟⎠ , (26)

which has 27 = 24 + 3 variables or dimensions. The F4 group is the set of automorphisms

of the J3(O), with the three polynomials in these 27 dimensions, These polynomials are
the result of the trace of the Jordan matrix, the Jordan product J2 = J ◦ J , for
A ◦B = 1

2
(AB + BA), the Freudenthal product

J ∗ J = J2 tr(J)J + tr(J · J)I, σ(J) = tr(J · J),

and the determinant.det(J) = (1/3)tr(J · J) ◦ J . The polynomial invariants are

Tr(J) = x + y + z (27)

s(J) = xy + yz + xz O1O∗1 O2O∗2 O3O∗3 (28)

det(J) = xyz + (O1O3)O2 + O∗2(O∗1O∗3)z|O1|2y|O2|2x|Ox|2.
Consider a theory with the Jacobi matrix algebra, with its θ-function realization. The

3 scalars of the 27 dimensional J3(O) on a light cone reduce to a two dimensional space
∼ R2 and the three octonions form (Ov, Os, Os′ are vector plus spinor elements, related

to each other in N = 8 supersymmetry, where the two spinor elements are conjugates.

The relevant elements are the 24 elements of the Jordan matrix which form the transverse

oscillators. The Leech lattice θ-function series is ΘΛ24(z) = ΘE8(z)
3 − 720Δ24(z), where

Δ24(z) =
∑∞

n=0 τ(n)q
n and τ(n) are Ramanujan numbers [11]. Δ24 = q

∏
n(1 − qn)24,

for q = e2πiz, which gives the Dedekind η-function η(q) = (Δ24)
1/24.

A quotient which can set up this structure is the moduli space by defining the monad

and octad elements of the C24, the C-set preserved by the Mathieu group M24. C24 has
weight distribution 01, 8759, 122576, 16759, 241[11]. Let the 1 monad and 759 octads define

C0,824 . Now construct the moduli space

MΛ24 ∼
C0,824

E⊗38 ×OP 2
, (29)

for OP 2 the 16 dimensional projective Cayley plane. The Mathieu group is a permutation

group on C24, and this moduli restricts the action of the E8 roots. This moduli space

has 760 − (720 + 16) = 24 dimensions. This 24 dimensional moduli space may be

decomposed as

MΛ24 →
SO(24)

SO(16)× 128R4
. (30)

The SO(24) is the multiplet of physical states for the open string. The gravitational

massless state is the symmetric part of Ωμν = αμ
−1α̃

ν
−1|0〉 in the closed string. The
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symmetric part of the state (1/2)|Ωμν〉 is a spin 2 field, which is the graviton. The

antisymmetric portion is a second rank tensor. The reduction from R8 to R4 reflects the

fact the space, here a Euclideanized 8 dimensional spacetime, is reduced to 4 dimension,

as 28/R4..

This may be further decomposed on the algebra level with

so(24) → so(8)⊕3 ⊕ (8, 8, 8) (31)

Further 128 → (2, 2, 2, 2, 2, 2, 2). And so(16) → so(8) + so(8) + (8, 8). This

produces the reduced moduli space

MΛ24 →
SO(4, 4)

2, 2, 2, 2
. (32)

With SO(4, 4) = [SL(2, R)]4 ⊗ (2, 2, 2, 2, ). The moduli space under this reduction

is SL(2,R)4, which corresponds to an extremal black hole.
The decomposition E8 → SO(16)×128 contains the spinors of SO∗(16) ∼ spin(16)

which contain the 28 monopole charge plus the dual 28 magnetic monopole charges, or

NUT charges, 2 mass scalars and 70 scalar of N = 8 SUGRA. The complex spinor real-

ization indicates the split form E8(8) is decomposed into spin(16)⊗128 and is equivalent

to SO(16, C), which is the corresponding group by the Konstant-Sekiguchi (KS) [12]

which acts on 128. The spin(16) ∼ SO(16, C) is the corresponding n-partite entangle-

ment SLOCC group for the maximal compact subgroup decomposition of the exceptional

group. The Leech lattice restricted to action on monads and octads under maximal de-

composition is SL(2, C)4. The KS correspondence with Λ24 is constructed as O3 and the

E8 lattice has a complex construction by Eisenstein or Gaussian integers. The Λ12 with

Eisenstein integers is a complex realization of the Leech lattice. The Barnes-Wall lattice

Λ16 fixes a 16-dimesional lattice subspace in R
24 of the Leech lattice. This is a complex

realization of the E8 lattice, where the 240 roots of E8 have an 18-fold representation

with Gaussian integers.

This is an introduction to SLOCC groups for the Jordan matrix algebra. It is likely

there exists a range of possible quotient space structures based on octonion triples in the

Jordan matrix algebra. This above is to illustrate the simplest one which conforms to

the integer partition, the Dedekind η-function and the Δ24. This appears to be a wide

open field of investigation in mathematical physics.

5. F4 Diagonalization of J3(O) and Quantum Foundations

The F4 is the exceptional Lie group as an automorphism with respect to the commutative

polynomials, or equivalently is the automorphism of the Jordan algebra. The minimal

automorphism group of the E8 is the G2 group and F4 and G2 are centralizers in E8.

The relationship between the two groups is a triality condition. This triality condition is

found within the F4 as well. The determinant of the Jordan matrix determines a cubic

Lagrangian. Which for the scalar elements gauge valued momenta pj = − i∂j + iAj
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is this is a Chern-Simons Lagrangian. The cubic Lagrangian or Chern-Simons term is

the ω3(Γ) which determines the renormalization group flow of the metric to the Einstein

field equation for the AdS spacetime. The exceptional group F4 is the maximal group of

the 24-cell, which has a representation as B4, or as a set of 16 rectified tetrahedral cells

and one set of 8 octahedral cells. The other representation is according to D4, which are

three sets of 8 rectified tetrahedra. This representation is a homomorphism induced by

the quotient group F4/D4, or F4 splits over D4 ∼ SO(8). The Dynkin diagram for F4 is

�−−−� === o−−− o

and D4 is
o o

\ /

o

|
o

where the circle-dot represents short roots. The quotient group will then have to roots

remaining as o—o which is the S3 or SU(3) group. Let the roots of the D4 be represented

by (x1, x2, x3, x4), where x4 is the central root at the hub. Under the action of SU(3)

with roots (y, z) is then

(x1, x2, x3, x4)
y = (x2, x1, x3, x4), (x1, x2, x3, x4)

z = (x1, x3, x2, x4) (33)

where F4 is then the split extension of D3 by the S3 or F4 = D4S
3. This is a tri-

ality condition of D4 in F4, where there are three copies of SO(8) determined by the

automorphism of E8.

The Jordan matrix algebra with the scalar light cone condition is a 26 dimensional

Lorentzian spacetime, which in general has z = 1. Thus the degrees of freedom lost in

the breaking of the restricted Lorentz symmetry in few dimensions are preserved. They

are preserved in the more general cubic Lagrangian of the Jordan matrix algebra. The

degrees of freedom are preserved in the nonlinear σ-model and the high energy theory

at z = 3 plus the degrees of freedom lost in the breaking of the Lorentz symmetry are

embedded in the F4/B4 model. The theory is then ultimately contained in the J3(O)
group F4 acts as an automorphism over.

The F4 is a representation of the 24-cell according the Hurwitz quaternions. A recent

paper Waegell and Aravind [13] illustrates a proof of the Kochen-Specker theorem with

respect to the 24-cell. The Kochen-Specker theorem is smiilar to the Bell inequality

violation theorem that is a no-go result for hidden variable theories [14]. The 24-cell is a

mathematical structure that comes up in the context of systems of qubits. Asher Peres

[15] gave a proof, which based on the symmetry of the root system of the exceptional Lie

algebra F4. The proof employs 48 vectors in 4-space which are isomorphic to the vertices

of a 24-cell and its dual. These vectors are root vectors of F4, which under multiplication

by any set of scalars defines a set of lines in 4-space. We identify each of these vectors with

a quantum state |ψi〉 i = 1, . . . , 24, and a projection operator Pi = |ψi〉〈ψi|. These
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have three eigenvalues 0 and one of 1. This means one can compute 72 sets of mutually

orthogonal lines, where this is four-fold redundancy, and there are only 18 independent

lines, which correspond to entangled pairs of 9 lines.

Suppose there were some hidden variable which accounts for this system. This would

give an exact value to each of the 18 operators. The 9 must assume the value 1 in each of

the 9 sets of pairs, an odd number, However, there is an even number of 1 with the pairs,

and an underlying theory which determines the values of the 18 operators would require

an even number also be odd. This is an informal proof of the Kochen-Specker theory in

four dimensions.

F4 is the isometry group of the projective plane over the octonions. The exceptional

group G2 is the automorphism on O, or equivalently that F4 × G2 defines a centralizer

on E8. The quotient between the 52 dimensional F4 and the 36 dimensional so(9) ∼ B4

defines the short exact sequence

F4/B4 : 1 → spin(9) → F52\16 → OP 2 −− > 1, (34)

where F52\16 means F4 restricted to 36 dimensions, which are the kernel of the map to

the 16 dimensional Moufang or Cayley plane OP 2. Geometrically the F4 define the sym-

metry of the 24-cell according to Hurwitz quaternions. The B4 defines a more restricted

symmetry on the 24-cell according to 16 tetrahedral cells and 8 octahedral cells. The 16

tetrahedral cells are mapped to OP 2 and the 8 octrahedral cells define so(8) ∈ J3(O).
TheD4 representations is three sets of 8 tetrahedral cells and define the so(8)S

3 ∈ J3(O).
On the algebraic level f4 � so(8) ⊕ V ⊕ θ1 ⊕ θ2, which explicitly describes the trial-

ity condition the three octonions with the so(8). More generally according to octonions

f4 ∼ so(O) ⊕ O3, and f4 diagonalizes the Jordan cubic matrix. The 36 sets of 4 mu-

tually orthogonal rays is contained in F52\16 above. The short exact sequence defines the
f4 ∼ so(9) ⊕ S9 in the short exact sequence above. This means the K-S theorem is a

consequence of qubit structure which has the Kostant-Sekiguchi isomorphism with black

holes.

The 24-cell has the largest group representation F4 in 52 dimensions, of which the

SO(9) in 36 dimension defines a short exact sequence between spin(9) and the Moufang

plane OP 2. The B4 ∼ SO(9) symmetry of the 24-cell by 16 tetrahedral and 8 octahedral

cells. The elements of the exceptional Jordan matrix is composed of elements Vab which

are accompanies by 16 superpartners θab, θ̄ab, where the indices a and b indicate internal

elements which transform these elements to N ×N matrices in SU(N). This obtains for

a single D-brane, in particular here a D0-brane, where for N > 1 this gauge group is

SU(8)N , or the embedding group SU(8N). The Lagrangian assumes the form [16]

L = (1/2)(tr(∂μVi)
2 (1/2g)tr[Vi, Vj]

2 − θ̄iγj[θ
i, V j]), (35)

where integer the indices i, j denote the matrix indices.. Here the superpartners to the

vectors V transform as spinors under the SO(9) transverse rotations, and the matrices

Vab, θab (vectors and spinors in J
3(O)) are components in a 10 dimensional super Yang-

Mills space. This Lagrangian is applied as the SO(9) theory in the BFSS matrix theory

[16].
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The F4 diagonalizes the Jordan algebra and is the automorphism of the Jordan prod-

uct [17]. The Freudenthal product system

A∗B = A◦B − AoB − (1/2)(ATr(B) + BTr(A)) +
1

2
Tr(A)Tr(B) − Tr(A◦B) (36)

is preserved under F4, as well as the determinant

det(A) = (1/3)[Tr(A ∗ A)oA] (37)

The determinant of the Jordan Matrix M is the cubic characteristic equation

det(M − λI) = − λ3 + (Tr(M)λ2 − σ(M) + det(M)I = 0 (38)

for σ(M) = (1/2)(Tr(M)2 − Tr(M2)) and with real eigenvalues λ. The matrix M as a

form O3 may be written as a 24×24 matrix. The projector matrices for F4 Pi = |ψi〉〈ψi|
or as viv

†
i diagonalize M with

Mvv† = λvv†, vv†M = λvv†, (39)

or Mvv† + vv†M = 2λvv†. Multiplication on the right with v and v†v = 1 gives

Mv + vv†Mv = 2λv and under the trace Tr(vv†) = 1 this gives Mv = λv. The

determinant of M − λI

det(M − λI) = (M − λI)o((M − λI) ∗ (M − λI)), (40)

for X ∗X = X2 − (tr X)X + σ(X)I, defines (M − λI) ∗ (M − λI) as the projector

matrix which diagonalizes the X = M − λI. Thus X ∗ X = vv† when normalized
is a projector in the Cayley plane. Given two projectors with different eigenvalues λ and

λ′ have the determinant

Pλ ◦ (M ◦ Pλ′) = (Pλ ◦M) ◦ Pλ′ , → λ′Pλ ◦ Pλ′λ(Pλ ◦ Pλ′ , (41)

and for the two eigenvalues λ �= λ′. If we consider the two projectors nonzero this means
they are orthogonal. If we assume three eigenvalues with Tr(Pλ) = σ(M − λI) the

determinant formula above is derived. The matrix M =
∑3

i=1 λiPλi
, and composed of

projectors.

The Cayley plane is F4/B4, and the short exact sequence defines the projective octo-

nionic plane. The quotient defines the 36 dimensional space which contains two copies of

the 18 lines with eigenstates {0, 0, 0, 1}. This may be interpreted as a type of quantiza-
tion. Further, the OP 2 plane is a quotient of the E6 group with the parabolic subgroup

P1. This is a Borel subgroup of matrices which defines the Heisenberg group.

6. Counting States and Quantum Error Correction Codes

The integer partition function is the accounting system for black hole microstates requires

the quantum states transform by exception groups. These groups act as quantum error
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correction codes which conserve quantum information. The equivalency between quantum

entanglement groups and the moduli space for black holes is a form of qubit conservation,

for the semi-simple and nilpotent orbit configuration on the moduli space are Noetherian

conservation laws. A complete partition function for black hole microstates extends this

system to the exceptional group J3(O).
This quantum error correction code model of quantum gravity means that quantum

information in the entire universe is conserved. This should then be applied to the

universe as a whole. Spacetime cosmologies should be organized similarly with a corre-

spondence between entangled quantum states and the symmetries of the cosmology. The

cosmological horizon in a deSitter spacetime defines the entropy of the spacetime, and

this may be defined by determinants or hyperdeterminants that correspond to entangled

states. These states may be entangled with the bulk or with other cosmologies in the

multi-verse.

This theoretical prospect for quantum gravity has some possible applications, though

of course not directly with black holes. The Leech lattice is a representation of the

Mathieu group M24, which is the automorphism of a Golay code. The Steiner system

of the octads S(5, 8, 24) defines a binary Golay code in a vector space spanned by the

octads. The connection to the Cayley plane or OP with F4 indicates this could be run on

a quantum computer. The simulation of this quantum gravity model would amount to

a quantum Golay code encryption or error correction system. A computerized modeling

of black holes with this exceptional group realization is an encryption system of states,

which can be used in a real world quantum computerized system of communications.

The overlap of a state and its time development is

|〈ψ|ψ + δψ〉|2 = |〈ψ|ψ〉|2 − (〈 H2 〉 − 〈 H 〉)δt, (42)

which gives the Berry phase of a state

φ =
∫
dt
√
〈 H2 〉 − 〈 H 〉, (43)

where this is the Fubini-Study metric. This is the phase angle for a principal bundle

π : H → PH. This principal bundle may be Lie algebra valued. Photons under certain
conditions may emulate quantum field in curved spacetime [18]. Consider the energy

eigenvalues of the state space be Ei = h̄ω which are functions of a one dimensional

parameter r, which is a function of time r = r(t). The spectrum becomes a continuum

and frequencies a continuous function of this parameter. This dependency is a Doppler

shift with frequency spectrum ω′ = (1 − nv/c)ω, where n is an index of refraction,

v = dr/dt a velocity and c the speed of light. The index of refraction along the one

dimensional space is then assumed to vary according to n = n0 + δn. The Doppler

equation defines a retarded time 1 − nv/c = ω/ω′ = ντ for τ = t − r/v. The

effective frequency ν ′ is then

ν ′ =
v

c

∂n

∂τ
=

v2

c

∂δn

∂τ
. (44)
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The Hawking temperature is kT = h̄α/2π for

α = − 1

δn

∂δn

∂τ
(45)

Now consider the photons in entangled states. In general the SLOCC states in an

entanglement permit the teleportation of states [12]. Two states are SLOCC related by

a teleportation if they can be inter-converted to each other in a reversible manner with

some probability of success. This uses group theory, where the group GSLOCC for this

process is an N-partite system of qubits with some group GL(2, C). The states further
transform as a (2, 2, . . . , 2).

GSLOCC = SL(2, C)1 ⊗ SL(2, C)2 ⊗ . . .⊗ SL(2, (C)N , (46)

where the composite state

|ψ12...N〉 = SL(2, C)1 ⊗ SL(2, C)2 ⊗ . . .⊗ SL(2, C)N |φ12...N〉. (47)

This is then an N -partite quantum information system where the entanglements are

determined by the group element GSLOCC and polynomials of this group. This is the

moduli space for black holes composed of qubits and the U-duality group.

For a 2 Q-bit system this construction is apparent. You have a stat of the form∑
ij aij|i, j〉 for i and j running form 0 to 1. The elements aij transform as (2, 2) of

the GSLOCC . The invariant element is the determinant of these matrices so det(aij)

transformed under the GSLOCC into

det(aij) → det(a′ij) = det(Ui′iaijU
′∗
j′j) = det(aij) (48)

with the obvious result on the determinant of a product that the transformation ele-

ments have unit determinant. The entanglement entropy is given by this measure so

Sij = 4|det(aij)|2. For multipartite systems the same rule generally applies, but the

matrix interpretation is different. For an N-partite system the entanglement entropy is

given by a 2 × 2 × . . . × 2 (N times) set of elements. This leads to the entangled states

|00〉 + |11〉 and |01〉 + |10〉, without normalization, for singlet and triplet entangled

states. The isomorphism SO(2, 2) � SL(2, C)× SL(2, C) connects the SLOCC state by

the KS theorem to the local Lorentz symmetry induced optically.

This may be extended to 3 and 4 qubit systems, such as the W state or cat state, and

the GHZ state. The algebraic structure is established by the entanglement employed.

The exceptional E8 group is decomposed as E8 → SL(2, R)⊗8. The entanglement

SLOCC group is the associated product SL(2, C)⊗8. There are 8 qubits, where 7 of them
are spin-valued elements on the Fano-plane and the remainder is a unit element. There

are 7 triplets of elements which may be ordered, with the additional unit element, and 7

four-way multiplications which do not include the unit. Then with 8 qubits there are 14

independent basis vectors composed of 4 elements for a state built up accordingly. This

may then be extended further into the Jordan matrix algebra.
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This emulation of quantum gravity entanglement with various n-partite configurations

will lead to the implementation of quantum Golay coding. At this time the largest

entangled state is an N = 5 Noon state. Clearly progress is needed in the preparation

of states. The emulation of quantum gravity states means that the optical black hole will

process qubits in ways which are encrypted in a complicated manner. An eavesdropper

who wishes to read a qubit stream needs to have access to a large data set, which can be

deprived to him.
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