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This project makes progress towards a first calculation of the second-order gravitational
self-force in extreme-mass-ratio binaries. This is an important component in the mod-
eling of these key astrophysical sources of gravitational waves. Computing the second-
order self-force requires the second-order metric perturbation, which can be calculated
by solving the Einstein field equations through second order in the mass ratio. Here
we have developed, for the first time, a practical scheme for solving the second-order
equations. The main ingredient is a certain “puncture” field, which describes the local
metric perturbation near the small member of the binary, and for which we obtain a
useful covariant-form expression. We apply this method to the case of a quasicircular
binary of nonrotating black holes. As a first test we numerically solve the first-order field
equations and compute the first-order self-force, finding good agreement with previous
results obtained using a different method. The calculation of the second-order metric
perturbation brings about two additional technical difficulties: the need for a certain
regularization at infinity and on the event horizon of the large black hole, and the strong
divergence of the second-order source of the field equations near the small object. We
show how these issues can be resolved, first in a simple scalar-field toy model, and then
in the second-order gravitational problem. We finally apply our method in full in order
to numerically solve the second-order perturbation equations in the quasicircular case,

focusing on the monopole piece of the perturbation as a first example.
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Chapter 1

Introduction

1.1 Gravitational-wave astronomy and the binary inspiral

problem

In 1915 Einstein published [3] the theory of General Relativity (GR). The theory came
as a radical generalisation of Newton’s law of gravity and describes gravity in terms of
a geometrical curvature of spacetime. In 1916 Einstein found that the linearized weak-
field equations possessed wave solutions, which spurred the prediction of the existence of
gravitational waves (GWs), tiny ripples in the fabric of spacetime that propagate at the
speed of light. Almost 100 years later, on September 14, 2015, GWs were detected for the
first time [4] at the Laser Interferometer Gravitational-Wave Observatory (LIGO). The
GWs in this observation originated from a binary black-hole system merging into one
black hole. Less than a year later LIGO detected GWs from another black-hole binary
[5]. These landmark observations verify that GWs exist, and stand as an important test
of the validity of GR [6]. They also directly prove the existence of black holes in nature,
and demonstrate that black holes can occur in binaries and merge. LIGO’s observations
mark the dawn of a new age in astronomical research: the age of Gravitational Wave

Astronomy.

1.1.1 Brief history of gravitational waves

GWs are a relativistic phenomenon manifest in spacetimes with a large time-varying
quadrupole moment, or higher multipole moments. An example is the spacetime ge-
ometry of a binary system of two compact bodies, such as neutron stars or black holes

(BHs). The gravitational field of such a system contains propagating GWs.

The very existence of GWs has historically been marked by controversy. Poincaré

first postulated the existence of GWs in 1905 [7], suggesting that by analogy with the



2 Chapter 1 Introduction

electromagnetic waves emanating from an accelerated electric charge, so too an accel-
erated mass in a relativistic field theory should emit GWs. Following this Einstein
investigated whether the field equations predicted the existence of GWs, and under cer-
tain assumptions attempted to simplify and cast them into a format analogous to the
Maxwell equations of electromagnetism. Einstein vacillated on the question of their ex-
istence, because people thought the waves were ripples in coordinates, not ripples in the
spacetime geometry. But finally, in 1936 Einstein and Rosen submitted a paper to the
Physical Review claiming that GWs could not exist because any such solution of the field
equations would have a singularity. The paper was reviewed by Robertson who reported
that the singularities in question were simply the harmless coordinate singularities of
the cylindrical coordinates used [8]. Initially Einstein angrily withdrew the manuscript,
but was later convinced by Infeld that the criticism was in fact correct [9], and the paper
was rewritten with the position that GWs do in fact exist, and published in a different
journal [10]. Afterwards the question of whether GWs transmit energy was addressed at
the first GR conference at Chapel Hill in 1957. Richard Feynman answered the question
based on the “sticky bead argument” [11], convincingly demonstrating that GWs do in
fact transmit energy. This was later explained by Bondi in detail in Ref. [12].

The first experimental evidence of GWs came following the discovery of the binary
pulsar PSRB19134-16 by Hulse and Taylor in 1974 [13]. The gradual decay of its orbital
period, observed over many years, precisely agreed with the loss of energy and angular
momentum due to GW radiation as predicted by GR [14].

The binary pulsar provided indirect evidence of GWs. A more direct method for
detecting GWs was proposed by Joseph Weber in the early 1960s, using resonant bars.
Weber’s bar detectors consisted of solid aluminum cylinders, about two meters long and
one meter in diameter, suspended on steel wires. A passing GW would set one of these
cylinders vibrating at its resonant frequency (about 1660 Hz), and piezoelectric crystals
firmly attached around the cylinder’s waist would convert that vibration into an electrical
signal. Weber published his results in 1968 in [15], claiming that he had detected GWs.
However, his experiment was repeated by others, none of whom detected anything but
random noise. By the late 1970s, everyone but Weber agreed that his claimed detections

were spurious.

The main technology used today for detecting GWs is based on the idea of Michael-
son-type laser interferometry. This method was first proposed by Gertsenshtein and Pus-
tovoit in 1962, only a year after Weber’s proposal [16]. After the pioneering development
of the GEO600 detector in Germany during the 1990s, the search for GWs using laser in-
terferometry began in earnest in 2002, when the Laser Interferometer Gravitational-wave
Observatory (LIGO) began its initial phase of operation. The LIGO experiment consists
of two detectors: one in Hanford, Washington, and another in Livingston, Louisiana,

3002 km away. These two widely separated detectors operate in unison, to help rule
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Figure 1.1: Schematic diagram of LIGO, taken from Fig. 2 in Ref. [17]. The laser emits a
light beam, which is split by the beam splitter into two beams that travel repeatedly between
two sets of mirrors. The system is calibrated so that, in the absence of incident GWs, the
interference between the two beams directs all of the light back toward the laser. If there is
any difference between the lengths of the two arms due to a passing GW, some light will travel

to where it can be recorded by a photo-detector

out false signals from local disturbances. Figure 1.1 illustrates the operation principle

of each of the two LIGO interferometers.

Currently there are several more ground-based detectors being constructed that
will complement LIGO’s existing efforts. The Kamioka Gravitational Wave Detector
(KAGRA), Advanced Virgo and LIGO-India detectors will all become operational within
the next decade. There is also a strong motivation for having detectors in space, since
this will open up the possibility of detecting GWs in the mHz band, not accessible from
Earth due to noise from seismic gravity-gradient perturbations. To this end, plans are
underway for the Laser Interferometer Space Antenna (LISA). LISA will be comprised
of three satellites in a triangular formation that follows behind Earth’s orbit around
the Sun. The satellites are separated by a distance of the order of one million km,
and that distance is continuously measured via laser interferometry. There is also a
proposal for the space-based Deci-Hertz Interferometer Gravitational-Wave Observatory
(DECIGO) [18,19], designed to be sensitive in the frequency band between 0.1 and 10
Hz, filling in the gap between the sensitivity bands of LIGO and LISA.

1.1.2 Inspiralling binaries as sources of gravitational waves

The first directly detected signal [4], GW150914, came from the merger of two BHs
of mass 36f2M@ and 29J_rf‘1M@, into a single BH of mass 62J_rf‘1M@, 410 mega-parsecs
from Earth. The second signal, GW151226, detected on December 26 2015 [5], came
from the coalescence of two BHs of mass 14.2J_r§:?7’M@ and 7.5f§:§M@, into one BH of
mass 20.8J_r(15:%M@, 440 mega-parsecs from Earth. Both signals were confidently detected,

despite having a gravitational wave-strain as small as 1.0 x 1072



4 Chapter 1 Introduction

Binaries of this kind, comprising two closely bound, very dense objects such as
BHs or neutron stars, are intrinsically strong emitters of GWs. As they radiate, they
continuously lose energy. Consequently, the two bodies spiral in towards each other and

eventually merge.

Such binaries are characterised by the mass-ratio M/u, M being the mass of the
larger object and p the mass of the smaller object (see Fig. 1.2). They come in three
categories: comparable-mass inspirals have M /u values between 1 and a few; extreme
mass-ratio inspirals (EMRIs) have p < M (10* < M/u < 107 for astrophysically
relevant sources); and intermediate mass-ratio inspirals (IMRIs) span the intermediate
range of mass ratios (M /u from a few tens to a few thousand for astrophysically relevant
sources). The GW frequency of inspiralling binaries in the final stage of the inspiral is
roughly inversely proportional to the total mass of the system. A merging binary of two
stellar-size masses emits in the LIGO/Virgo band, while a binary of two massive BHs
(MBHSs) emits in the LISA band. Examples of IMRIs include the inspiral of a neutron
star or a stellar-mass BH into an intermediate-mass BH (one of mass between a few tens
and a few thousands); and the inspiral of an intermediate-mass BH into an MBH. The

former are potential sources for LISA, while the latter emit in the LIGO/Virgo band.

This work focuses on EMRIs. EMRIs are binary systems comprised of a stellar-
mass compact object (a white dwarf, neutron star or stellar-mass BH) spiraling into
an MBH. EMRIs emit GWs with frequencies within the bandwidth of LISA. A typical
EMRI spends the last few years of inspiral in a tight orbit around the MBH, emitting
~ M/ GW cycles over that period, while the small object is in close proximity to the

event horizon of the BH. This scenario will be discussed in more detail in Sec. 1.1.4.

1.1.3 Models of binary systems

A number of methods are available for modeling binary systems. Different methods apply
in different regimes, depending on the mass ratio and orbital separation. A diagram
showing which methods are relevant for which types of binaries can be found in Fig. 1.2.
At large orbital separations post-Newtonian (PN) theory applies. Numerical relativity
(NR), which solves the full non-linear Einstein equations, is in principle valid across
the entire parameter space depicted in Fig. 1.2. However, in practice, computational
burdens restrict its use to comparable mass inspirals with small orbital separations.
Effective-one-body (EOB) theory is a phenomenological model that is also theoretically
valid across the entire parameter space. It models the binary system as a test particle
moving in an effective external metric, taken to be a deformed Schwarzschild metric with
extra free functions and parameters. NR-calibrated EOB waveforms had an important

role in enabling the exact interpretation of both LIGO’s first [4] and second [5] signal.
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Figure 1.2: The two-dimensional space of the essential parameters of a binary system,
which consists of two compact objects or black holes of masses M and u. The horizontal axis
shows the mass ratio (M/p) and the vertical axis shows the orbital separation. The diagram
schematically illustrates the parameter regions where post-Newtonian theory, self-force theory
and numerical relativity apply.

In the case of IMRIs and EMRIs, where p is significantly smaller than M, there are
currently no accurate models available. In the case of EMRIs, PN theory is inaccurate
because the system is highly relativistic, and NR cannot accommodate the two very
different length scales and large number of orbits in the inspiral. The natural method
for providing an accurate description of EMRIs is the gravitational self-force (GSF)
model, which (roughly speaking) is an expansion of the binary’s metric in powers of the
mass ratio p/M. In this expansion, the smaller object’s gravitational field represents a
small perturbation of the field of the larger object, and it exerts a “self-force” back on

the smaller object.

A detailed overview of SF physics and its history is given in Sec. 1.2 of this intro-
duction. Not only is the SF model directly relevant to the EMRI problem, but also GSF
results have an important application further afield in improving models of binaries in
other regimes of the problem. At first order, numerical SF data has been fruitfully used
to fix higher-order terms and otherwise-free parameters in PN [20-23] and EOB [24-27]

models. In addition, SF data set benchmarks in the extreme-mass-ratio limit of NR.

1.1.4 Extreme mass ratio inspirals

Many types of GW sources offer strong observational tests of GR. However, EMRIs
are particularly powerful in that regard. EMRIs have a long inspiral time and they

generate many tens of thousands of GW cycles in the strong-field regime, as the small
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object orbits very close to the MBH. As such, they trace out a detailed map of the
curved spacetime around the MBH, and the emitted radiation carries precise information
about its physical parameters. For example, the mass of the MBH can be measured to
within an accuracy of 0.1 %, as well as the spin and quadrupole moment to within a
similar accuracy [28,29]. The GWs also encode information about the orbital dynamics.
Typically, EMRI orbits can be eccentric, inclined and rapidly precessing, offering a rich
set of relativistic phenomena to study. For example, the precession rate of the orbit can

be extracted from GW signals.

While EMRI GWs transmit information on the physical parameters of the MBH,
the “no-hair” theorem restricts the amount of information that exists. The “no-hair”
theorem states that all stationary vacuum BH solutions of the Einstein equations are
completely characterized by three parameters: mass, spin and electric charge. For as-
trophysical objects the electric charge is typically zero since any net electric charge will
have been neutralized. Thus, the Kerr geometry is believed to represent the unique
final state of any collapsing star [30]. The Kerr metric depends on two parameters, the
mass (M) and spin (aM) of the BH. All higher mass and spin multipole moments of the

spacetime are uniquely determined by M and a.

Information carried by EMRI GWs can be used to directly probe the spacetime in
the region close to the MBH and provide a detailed picture of its curved geometry. In
particular this will tell us whether or not the surrounding spacetime differs from Kerr
spacetime, and hence whether the no-hair theorem is valid. We can also determine if

there is an event horizon present, simply from the sudden truncation of the signal [31].

In order to extract this detailed information, detailed models are needed so that
we can filter out the GW data from instrumental and foreground noises. EMRI signals
are expected to be relatively weak and typically buried deep within the noise. We can
dig them out using the matched filtering technique. An explanation of matched filtering
can be found in the introduction of Ref. [32]. One important reason we need matched
filtering is that GW detectors (unlike optical telescopes) cannot be “pointed” to a source;
they hear all sources mixed together at the same time. To filter out irrelevant sources
we need at our disposal theoretical templates of the waveforms. Inspirals are driven by
the gravitational SF. Therefore, knowledge of the gravitational SF is a prerequisite for

modeling the waveforms.

1.2 The self-force

1.2.1 Historical overview

The history of SF research began with the study of the electromagnetic (EM) radiation-

reaction force. The EM radiation-reaction force acts on an accelerating charged particle
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and is caused by the particle emitting EM radiation. The emission of radiation removes
energy and angular momentum from the particle, which leads to a damping of its ac-
celeration. It was first studied by Abraham and Lorentz [33] prior to the publication of
Special Relativity, and named the Abraham-Lorentz force. Later on, Dirac [34] in 1938

derived its special-relativistic extension.

In 1960 DeWitt and Brehme generalised Dirac’s result to curved spacetime [35]. In
their result, the equation of motion has the same form as Dirac’s, but with an additional
“tail” term. This tail term is the integral of the retarded EM Green’s function along
the past worldline of the particle. The origin of this term, which lies in the scattering
of waves off spacetime curvature, will be explained in Sec. 1.2.3. In flat space the tail
integral vanishes and the equation of motion reduces to Dirac’s equation. In curved
space, the particle deviates from geodesic motion even in the absence of any external
EM forces, due to the tail effect. Hobbs corrected DeWitt and Brehme’s result [36]
some years later, finding the addition of an explicit Ricci-tensor term in the equation of

motion.

The field progressed from EM to linearized gravity in 1997, when Mino, Sasaki
and Tanaka derived the GSF to first order in p [37], using an approach called matched
asymptotic expansions, to be discussed in Chapter 2. Soon after, the same result was
derived [38] by Quinn and Wald using an axiomatic approach. The equation of motion
they derived, now referred to as the MiSaTaQuWa equation, represents the first sub-
leading correction to the geodesic, test-particle approximation. Like the EM SF, the

GSF was found to arise from tail effects.

Since then, GSF theory has been given a rigorous mathematical foundation [39,40],
extended to arbitrary perturbative order in u [41], and even developed in the fully
nonlinear context [42]. Explicit equations of motion have been derived through second
order in p by Gralla [43], Pound [44] and Rosenthal [45]. The formulation of Pound will

provide the basis for the work in this thesis.

1.2.2 The electromagnetic self-force in flat space

In this and in the following sections, we give an overview of the physics underlying SF
theory and some of its main results. Our description closely follows the review article
by Poisson, Pound and Vega [46]. We begin with the Dirac radiation-reaction force [34]
acting on a charged particle in flat space. An electric charge moving in flat spacetime

produces a vector potential A% that satisfies the wave equation

OA® = —4mj®, (1.1)
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where j¢ is the particle’s current density, and the Lorenz gauge condition

Da A% = 0. (1.2)

The charge current j“ is infinite on the particle’s worldline, and so too is A% based
on Eq. (1.1). Because the field is infinite, it is unclear what force it exerts on the
charge, or whether there even exists a sensible force. To gain some insight into the
nature of the force, consider the case of a negatively charged particle orbiting a much
heavier, positively charged particle. Neglecting quantum effects, the negative charge
will emit EM radiation, lose energy and eventually spiral into the positive charge. This
inspiral must be driven by a dissipative, time-asymmetric radiation-reaction force in the
particle’s equation of motion. Based on that fact, the form of the radiation-reaction force
can be derived by the following heuristic argument. We first note that in the retarded

solution to Eq. (1.1), A%,, radiation propagates outwards, breaking the time-reversal

«

oqv instead, radiation

invariance of Maxwell’s theory. Choosing the advanced solution A
would propagate inwards. The linear combination®

1
A = = (A2
§=5(

ret

+ A%) (1.3)

adv

is a solution that restores time-reversal invariance. It corresponds to an equal amount
of radiation propagating outwards and inwards. Hence, no radiation reaction occurs,
rather the particle’s energy remains constant. Ergo, A¢ has no contribution to the

radiation-reaction force.

The remaining, time-asymmetric piece of A* must therefore be entirely responsible
for the radiation-reaction force. Inasmuch as the radiation-reaction force is defined on
the particle, the piece of A* that generates it must be non-singular on the worldline.

But Ag is just as singular on the worldline as the retarded potential, since Ag, A%y,

«
ret

and Ag all satisfy Eq. (1.1). Hence, the singular behaviour of Ag,; can be removed by

subtracting Ag, leaving a well-behaved, regular-on-the-worldline potential Ag, where?

a ot « 1 a ot

ret ret — ‘tadv

With this in mind, we can reasonably suppose that Af generates an ordinary
Lorentz force, as
pay = [+ eFﬁ,u”, (1.5)

!The subscript “S” refers to its symmetric time-dependence, or the fact that it is singular on the
worldline, as we will see below.

2 The subscript “R” stands for “regular”, because A% is nonsingular on the worldline, or “radiation”
since this field gives rise to the radiation-reaction force.
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where p is the mass of the charge, F E;/ = GMAE” — 8VA5 and fﬁXt is any external force
acting on the charge. Dirac arrived at Eq. (1.5) by considering stress-energy conser-
vation in a small tube around the particle’s worldline [34]. It can be most rigorously
derived from stress-energy conservation of an extended charge distribution in the limit
of zero mass, charge, and size [47]. Explicitly evaluating Af leads to the more concrete

expression
2¢? df?.
xt xt
pay, = f + 3 (0% + utu,) —deT . (1.6)

The second term is the radiation-reaction force. It is orthogonal to the four-velocity,

proportional to e and depends on the rate of change of the external force.

To prepare the ground for our discussion of the SF in curved spacetime, it is worth-
while to examine the properties of A§ and Af in the language of Green’s functions. In

analogy with Egs. (1.3) and (1.4), we may define singular and regular Green’s functions

1
GSO,[B’ (l’, CL'/) :§ [Gﬁﬁ/ (QT, .17/) + Giaﬁ/ (I’, CL',):| N (17)
« ]' (6% o
G (@,2') =5 [G+B/ (2,2') — G_% (w, x')} 7 (1.8)
where a subscript ‘+’ denotes the retarded Green’s function, and a subscript ‘—’ the

advanced Green’s function. Then the potential
A3(0) = [ Gy (a,!)y () e (19)
satisfies the flat-space wave equation of Eq. (1.1) and is singular on the worldline, while
A% (z) = / Gy (@,2")% (2') d*a’ (1.10)

satisfies the flat-space homogeneous equation [JA® = 0 and is smooth on the worldline.

In flat space, the Green’s functions can be written explicitly as
Gfﬂ,(m,x’) =0g/0(t — t'Flz—2')/|z— x| (1.11)

Eq. (1.11) suggests that the retarded potential, A, at z, is sourced at the point where
the worldline and z’s past light cone intersect, as depicted in Fig. 1.3. EM radiation
propagates from the point 2’ on the past worldline to the field point z, along null curves.
Similarly, the advanced potential, A, , is sourced at the intersection of the worldline

and the future light cone of the field point z, also shown in Fig. 1.3. Away from the

«

worldline, Af inherits this noncausal dependence from A%, .

However, when evaluated

at a point on the worldline, AR} depends only on the state of the particle at that point.
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advanced

Figure 1.3: In flat spacetime, the retarded potential at = depends on the parti-
cle’s state of motion at the retarded point 2’ , where the worldline intersects the
past light cone of z. The advanced potential depends on the state of motion at
the advanced point 2/, where the worldline intersects the future light cone of x.

1.2.3 The electromagnetic self-force in curved space

In a curved spacetime with metric g,g, the field A% obeys
OA* — RGAP = —4rj®, (1.12)

where 0 = ¢*¥V,V 3 is the covariant wave operator, V,, denotes covariant differentiation
consistent with g,g and R, is the spacetime’s Ricci tensor. The Lorenz gauge condition
(1.2) in curved space becomes

VA% = 0. (1.13)

The retarded /advanced solutions are given in terms of the corresponding Green’s

functions as

@) = [ Gyl @) Vgt (114

where g is the determinant of the metric, G_%, (z, 2') is the Green’s function for Eq. (1.12),
x is an arbitrary field point and 2’ is a source point on the worldline. Tensors at z are

identified with unprimed indices, while primed indices refer to tensors at a’.

In curved spacetime the Green’s functions take a more complicated form than in
flat space. G¢ 5 (z,2') has support not only when z is on the past or future light cone of
2/, but within that light cone. This failure of Huygens’ principle can be interpreted as a
consequence of EM waves scattering off spacetime curvature, effectively causing them to
propagate at all speeds smaller than or equal to the speed of light. Formally speaking,
G %/(v,2") is nonzero for all x € J*(2'), the entire causal future of 2', and G %, (z, 2")
is nonzero for all = € J~(2'), the entire causal past of 2. Here we define J*(z’) as the
set of events that can be reached by a future directed causal curve, i.e. a curve whose
tangent vector is timelike or null, starting from z’. An analogous definition holds for
J~(z'). This follows the convention that can be found on p.190 in Ref. [48]. Fig. 1.4

describes the retarded and advanced solutions if the source is a point charge.
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retarded advanced

Figure 1.4: In curved spacetime, the retarded potential at x depends on the
past history of the worldline, which lies inside the past light cone of z. The
advanced potential at x depends on the future history of the worldline, which
lies inside the future light cone of x.

On the grounds that the curved-space advanced Green’s function has support on
the entire causal future, Gg ,, as defined in (1.8) would lead to an unphysical SF in curved
space. True, the resulting potential AR would satisfy the homogeneous equation, and be
regular on the worldline, but it would also depend on the particle’s entire future history.
A SF constructed from this potential would be non-causal, so an alternative definition

for Gf‘w, is needed.

The correct singular and regular Green’s functions were eventually derived by De-
tweiler and Whiting (DW) [49]. They introduced the Green’s functions

(6% 1 (6% o (6%
Gy (@,2') = [G+ﬂ, (w,2') + G% (w,2') — H%, (x,x’)], (1.15)
GRaﬁ’ (-’L', CL’/) :G aﬂ/ (.’L’, Jf/) — Gsaﬁ/ (JI, .’L’/)
1 « « (6%
= [G+6, (,2") — G % (x,2') + H%, (a:,x/)]. (1.16)

The two-point function H%, (z, ') is a homogeneous solution to the wave equation (1.12).
Its introduction in Egs. (1.15) and (1.16) is designed to yield a SF that is causal, through

the following imposed conditions. Firstly,
H% (z,2") = G % (2,2") when z € I ('), (1.17)

where I*(2') is the chronological future (past) of the point z’. Here we define I*(2') as
the set of events that can be reached by a future directed chronological curve, i.e. a curve
whose tangent vector is timelike, starting from z’. An analogous definition holds for
I~ (a"), where we follow the convention on p.190 in Ref. [48]. Since G %, (z,2") = 0 when
z € I7(2'), (1.17) guarantees that Gg%, (v, 2’) vanishes when z is in the chronological

past of 2/. The retarded and advanced Green’s function satisfy the reciprocal property
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singular regular

Figure 1.5: In curved spacetime, the singular potential at = depends on the
particle’s history during the interval v < 7 < v, where (v, u) are the advanced
and retarded time coordinates associated with the point x. The regular potential
at x depends on the particle’s history during the interval —oco < 7 < w.

Gzﬁ, (x,2') = GE,a(l'/, x), which implies straight from (1.17) that
H%(z,2") = G (x,2") when z € I'*(z). (1.18)

Then, because G %, (z,2') = 0 when z € I7(z), (1.18) ensures that Gg (v,2') also

vanishes when z is in the chronological future of z’.

Accordingly, the dependence of A§(x) is limited to the worldline segment between
times u < 7 < v, where (v, u) are the advanced and retarded time coordinates associated
with the point z, as shown in Fig. 1.5. This potential satisfies Eq. (1.12), and thus A§(z)

is just as singular as the retarded potential close to the worldline.

Similarly, the Detweiler-Whiting regular two-point function (1.16) ensures that the
regular potential has the desired properties. On the right-hand side of (1.16) there is
GSO‘B,(:U,:B’ ), which has support only for spatially separated z and 2, and G %, (z, "),
which has support on and within the past light cone of x. Hence, the potential Af(x)
constructed from Gg'y (2, 2') depends on the worldline segment highlighted in Fig. 1.5,
at all times 7 prior to the advanced time v. Even though Af(z) is non-causal when
evaluated away from the worldline, on the worldline it is causal, depending only on the
past history. Furthermore, like its flat-spacetime analogue, it satisfies the homogeneous

wave equation and is smooth on the worldline.

As in the flat-space case, one can show that the self-force is simply the Lorentz
force exerted by the regular field, eF, Byu” , where F /ﬁ, = VQAE — VBAE. Hence, the

curved-spacetime generalization of the equation of motion (1.5) is

pay, = fﬁXt + eFﬁ,u”, (1.19)
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where a* = Du*/dr is now the covariant acceleration and feXt accounts for any external

(non-gravitational) forces acting on the particle.

A detailed derivation of the explicit form of Flf;j can be found in the review article
[46]. Substituting it into (1.19) leads to a more concrete version of the equation of

motion, which reads

pat =fh o+ e* (5", + u'u,) (3 jeXt + 3R AM)

+ 2€2u, / V“G:]/\, (2(7), Z(T/))UN dr’, (1.20)

where all terms in this expression are evaluated at z(7) on the worldline. The integration
range in the final term stops at 7/ = 7= = 7 — 0T, avoiding the singular behaviour of

the retarded Green’s function at coincidence.

As discussed in Sec. 1.2.1, the equation of motion (1.20) was first derived by DeWitt
and Brehme [35] and later corrected by Hobbs [36]. They followed Dirac’s method, but
as in the flat-space case, the result has since been more rigorously derived by considering
the point-particle limit of an asymptotically small but extended charge distribution [47].
The equation differs from the flat-space result (1.6) most prominently by the presence of
a tail integral. This integral arises from the fact that the Green’s function has support
inside the past light cone, unlike in flat space. It represents radiation emitted earlier

and coming back to the particle after interacting with the spacetime curvature.

1.2.4 The (linearized) gravitational self-force

In this section we review relevant results for the first-order GSF. A detailed derivation of
these results will be given later, in Chapter 2. Consider a small body of mass y moving in
a smooth vacuum region of spacetime, described by a background metric g,3; although
we are primarily interested in EMRIs, the discussion applies in any vacuum background.
The small body generates a gravitational field described by a metric perturbation hg.
Fig. 1.6 illustrates this for the particular case of an EMRI. At leading order the small
body moves along a geodesic of the background g.gs, just like a test particle. But due
to its finite mass and size there are corrections to this geodesic motion at each order
of mass p. At first order in y, the field h,g is a linear perturbation of the background
gap- The GSF arises due to the back reaction from this perturbation on the small body,
as depicted in Fig. 1.7, accelerating it away from geodesic motion in the background

spacetime.

Our description of the SF in linearized gravity closely parallels the description in

EM. The geometry of the full spacetime is described by the metric g,g, where g,3 =
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geodesicin g

eodesicing + "
8 gaﬁ ”

Figure 1.6: The small body of
mass u gives rise to a gravitational
field hapg shown in red, and the large
black hole of mass M is the source of
the background spacetime g3 shown
in blue. At leading order, neglect-
ing the interaction of the small body
with its own field, the small body
moves along a geodesic of the back-

ground gag.

Figure 1.7: The gravitational field
hap of the small body (red) induces
a perturbation to the background
spacetime gop (blue). The back reac-
tion of hag on the small body accel-
erates it away from geodesic motion
in the background spacetime (solid
black line) to a geodesic in the space-
time described by the effective metric
gas + hixs (dotted line).

Jap + hap. It satisfies the Einstein equation
Gagle] = 877Tas, (1.21)

where 7 is the exact energy-momentum tensor of the small body. Here and throughout
this thesis, standard geometrized units are used with G = ¢ = 1. Retaining only linear
terms in h on the left-hand side, and defining the trace-reversed metric perturbation

Baﬁ = hap — %(g”‘shw;)gaﬁ, leads to the linearized Einstein equation
Ohagp + 2R shys = — 16775, (1.22)

where RVJ 3 is the Riemann tensor of g, where indices are raised with the inverse of g,z
and T ;5 is an approximate stress-energy tensor for the small body. As was shown by
D’Eath [50] and later by Gralla and Wald [39], the extended body can be treated as a
point mass at linear order. This is true even if the body is a black hole, when the exact
stress-energy 77 vanishes; we will explain how this result is derived from the method

of matched asymptotic expansions in Chapter 2. Therefore, Tollﬁ is given by

0 (x — 2 (7))

T, (1.23)

T, =pu / dr uqug
g
where z#(7) are coordinates on the particle’s worldline v, u® = dz®/dr is the particle’s

four-velocity, and 7 is proper time on 7 with respect to the background metric gqg.
8 (z — 2(7)) = 0 (w0 — 20(7)) § (1 — 21(7)) § (x2 — 22(7)) § (23 — 23(7)), where § (z — ¥)
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is the standard Dirac-delta function. Like in the EM case, we arrived at the wave

equation (1.22) by making a particular choice of gauge. Specifically, we have imposed
Vh*® = 0. (1.24)

Eq. (1.24) is the Lorenz-gauge condition for the gravitational field h,g.

The retarded solution to (1.22) is

78 (2) = 4p / GoB (o, 2(r))ul dr + O(4?), (1.25)
o

where G f’iy(x, z) is the retarded Green’s function associated with Eq. (1.22). In exact
analogy with the DW singular-regular split of the EM field described above, the retarded

field can be written as the singular-regular decomposition [49]
ey = RS g + his. (1.26)

hiﬁ is a certain singular piece of the retarded field defined from a Green’s function
analogous to (1.15), which is just as singular as the retarded field on the worldline, and
has no effect on the particle’s motion. It satisfies the wave equation (1.22). hgﬁ , defined
from a two-point function analogous to (1.16), is regular on the worldline and is entirely
responsible for the motion of the particle. It satisfies the homogeneous version of the

wave equation (1.22).

Just as the point charge behaves as an ordinary test particle in the regular potential
AR the point mass behaves as a test particle in the regular metric g + hR. Its equation

of motion is

1 R R A 2
at = —5(9‘“’ + utu”) (2hu>\;p - hAp;V)u u? +O0(p”), (1.27)
where a# = Du*/dr is the four-acceleration and “;” refers to covariant differentiation

consistent with g,,, with all terms on the right-hand side evaluated on 7. Eq. (1.27)
is identical to the geodesic equation in g + h® (expanded to linear order in A®). The
right-hand side of (1.27) can be thought of as an effective gravitational force per unit
mass. Explicitly evaluating it in terms of Green’s functions leads to an expression for
the GSF analogous to (1.20), involving a tail integral. As discussed in Sec. 1.2.1, it was
that form of the equation of motion that was first derived by Mino, Sasaki, and Tanaka
and Quinn and Wald. Like in the EM case, the result is most rigorously derived by
considering an appropriate limiting process for a small body, which we will describe in
Chapter 2.
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1.2.5 Nonlinear gravitational self force

In the above discussion, we have only discussed the linear effects of the small object’s
perturbation. Over the last twenty years, since the MiSaTaQuWa equation was first de-
rived, there has been an international effort to compute those effects in binary inspirals.
Major progress has been made toward that end, which we review in the next section.
However, the first-order GSF alone is insufficient for interpreting GW data coming from
EMRIs because the contribution from the second-order GSF can be important, as the

following argument [1] will demonstrate.

Let us denote the particle’s energy as E and let F refer to its rate of change. Note
that E decreases due to the dissipation of GWs. The inspiral will take place over a
time-scale At = E/E ~ M?/u. Therefore, for a typical EMRI where M/u ~ 109, the
inspiral time is very large (compared to the orbital period), and a sufficiently accurate
model is needed that relates the waveforms to the motion over that large time-scale.
To quantify how accurate, consider the acceleration a* of the smaller object due to the
GSF, which will cause a shift §z# away from geodesic motion in the background. After
the inspiral time At this shift §z* will be of the order

5zt ~ a" A = (aff + €'aff + e2al + O(€)) At?, (1.28)

where aff, the leading order acceleration, is zero. The parameter ¢ = 1 simply counts
powers of the mass p. ah is the nth-order-in-mass piece of the acceleration. Hence,
Eq. (1.28) tells us that after an inspiral time, the second-order correction to the acceler-
ation will lead to an accumulated shift of order 62a§ At? ~ M, which is large. Therefore,
we cannot neglect second-order effects. Furthermore, if we include the second-order ac-
celeration term, then the remnant error in Eq. (1.28) is only e3a4 At? ~ u < M, which
we can safely neglect. In light of this, we can expect that second-order results will be

both necessary and sufficient to model the waveform produced by an EMRI.

Motivated by this need, several researchers have developed second-order (and
higher) extensions of the MiSaTaQuWa results. Rather than the linearized approxi-
mation (1.22), we must consider the Einstein equations through second order. The

exact Einstein tensor can be expanded in orders of the metric perturbation hqg, as
Gaplg] = Gaplg] + 0Gas[h] + 8°Gaglh] + O(h?), (1.29)

where the first term is the Einstein tensor associated with the background metric gqg,

and 1 d"Goglg + ]
g
" Goplh] = ~ LGB AN (1.30)
n! dA™ =0
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We then consider the full metric as a one-parameter family with parameter u, and

expand it in terms of that parameter:
8ap = €' gap + €hbg + €hl5 + O(). (1.31)

After substituting this into Eq. (1.29), we seek equations for the perturbations héﬁ and
hiﬁ. However, an obstacle arises in deriving the right-hand sides of those equations
because at second order, the point-mass approximation breaks down. To understand
why we can no longer model the body as a point mass, let us suppose that we could
use a point-mass stress-energy tensor in the full equation (1.21). Staying with the same
notation as Sec. 1.2.4, we shall refer to the worldline of this point mass as . Then
substituting Egs. (1.29) and (1.31) into Eq. (1.21) would lead to the Einstein equations

at each order in p, through second order, as

6Gaplh'] = 87T g, (1.32)
0Gaph?®] = —0°Gagl[h', h'] + 87T, (1.33)

where T(i 3 and TD[2 5 are the first- and second-order in u pieces of the stress-energy tensor

for a point mass. The full stress-energy tensor for the point mass would read

0 (z — 2 (1)
T4 :u/dtuu, 1.34

af . altp \/jg ( )
where u® = dz®/dt and t is proper time on the worldline with respect to the metric of
the full spacetime. Tiﬁ would be the correct, well-defined point source in (1.23). But

Tgﬂ would contain terms of the form

Yo —2(r
/A/WdT UaUg <—;g’“’h}“,> (5((_9)1/(2)) (1.35)

This leads to difficulties, since the solution for h}xﬂ diverges as 1/r on the worldline,
where r is a measure of distance to the particle. Consequently, Tiﬁ diverges like 6(r)/r
on the worldline, which is ill-defined and precludes Eq. (1.33) from having a solution.
Even if we do not assume (1.34) but instead take To%ﬁ to be some well-behaved point
source, difficulties still arise from the term 62G[h', h'] in Eq. (1.33). Since it has the
schematic form 62G[ht, hl] = (8h1)2 + h'92h!, it possesses a 1/r? divergence. This

divergence is not integrable and not a well-defined distribution.

Rather than seeking a distributional equation for the retarded field, we instead
find a local solution for it outside the object, where we can safely solve vacuum field
equations. Based on that solution, we then define field equations for a different variable,

with a well-behaved source, near the worldline. This will be described in the next section.

Because we cannot write down a valid distributional source at second order, we

also cannot define singular and regular fields in terms of Green’s functions. However, we
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can define analogs to them based on the form of the local solution outside the object as
ng=h% + hig. (1.36)

hS™ and hR™ are the nth-order singular and regular fields, respectively, which are a gen-
eralisation of the first-order singular/regular split of Eq. (1.26). Their precise definition
is very technical, and will be given in the next chapter. We mention a few of their key
properties here, which are preserved from first order. The regular field hgg is a smooth
solution to the nth-order vacuum Einstein field equation and causal on the worldline of
the small object. The singular field hi’é is, loosely speaking, the nth-order self-field of
the small object, characterized by the multipole structure of the small object. hS and

hR are identified using matched asymptotic expansions, as will be detailed in Chapter 2.

The equation of motion at second order is given by [41,44]

D22+ Lo o (4 iR (R R\, a8 3
arz T 9 (g™ + uM'u”) (gV —hy ) (Qhﬁv;a o hoaﬁ;’y) utu” + O(€)
= cFl'+ E€F) + 0(€%), (1.37)

where F} is the nth-order GSF per unit mass, and hf},/ = ehf},} + e2h53. Like Eq. (1.27),
Eq. (1.37) is equivalent to the geodesic equation in the vacuum spacetime g, + hf}l,.
Both results can be interpreted as a generalised equivalence principle. We will review

the derivation of this result in Chapter 2.

1.3 Numerical implementations and state of the art

A number of physical effects have been calculated from the conservative part of the
GSF, including the orbital precession in Schwarzschild [51] and in Kerr [52], the shift
in frequency of the innermost stable circular orbit (ISCO) in Schwarzschild [23, 53, 54]
and in Kerr [55], Detweiler’s redshift variable (the ratio of proper time measured along
the geodesic in the regular metric to the time measured by an inertial observer at
infinity) [51, 56], spin precession [57] and tidal effects [58]. The most advanced GSF
code can calculate the GSF along generic bound geodesic orbits in the equatorial plane
of a Kerr BH [52,59].

Generic inspiral orbits incorporating first-order GSF effects have been simulated in
Schwarzschild [60]. Moreover, in Kerr, simulations of bound equatorial inspirals can in
principle be simulated including first-order GSF effects, now that all the necessary input
for the calculation is available [61]. However, these simulations are missing important

second-order effects.

Several strategies are capable of calculating the first-order GSF in the time domain

[62,63] and in the frequency domain [64-66]. Of these strategies there are three main
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categories: The mode-sum approach, the effective-source approach and the worldline

convolution approach.

The worldline convolution approach [67] computes the GSF by constructing a re-
tarded Green’s function and directly evaluating the tail integrals, like (1.20). It is
historically the most obvious approach, since the MiSaTaQuWa equation, as well as the
scalar and EM self-forces were first written in terms of tail integrals. The drawback
of the method is that it is difficult to accurately compute the Green’s function, and in
principle one needs to compute it for all possible pairs of points. The merit is that once
the Green’s function is known, computing the GSF in any given scenario becomes a

simple matter of evaluating an integral.

The mode-sum approach was introduced in Refs. [68,69]. The GSF is calculated
from the formula (1.27), as

Feye = lim [F(2) — FS ()], (1.39)

where F% and F§ are given by pa® where a® is given by Eq. (1.27), with h® replaced
with A" and hS, respectively, and u® replaced with any smooth extension of the four-
velocity off of v. Here, lim,_,, denotes the limit from a generic point x off the wordline to
the point z on the worldline. While F%;(x) and F§'(x) blow up on the particle, referring
to a decomposition into spherical-harmonic modes, the £ modes F2{(z) and F§'(x), are

bounded there. F2; is then obtained from the sum

oo
Fge = Y lim | Fef() - F§' ()] (1.39)
=0

The key idea of mode-sum regularisation is to compute individual modes of h™ by nu-
merically solving Eq. (1.22), and then subtract off the modes of hS, which are found
analytically from a local expansion of A% near the worldline. It is the most easily imple-
mented method and historically the most commonly used. Its basic idea can be applied
to any quantity constructed from the regular field, and the vast majority of numerical

computations, both in Schwarzschild and in Kerr, have been based on it.

At second order the worldline convolution method does not work because the source
is not a well-defined distribution, preventing us from easily obtaining concrete expres-
sions for the regular field in terms of integrals against Green’s functions. Mode-sum
regularization is also ruled out at second-order because the individual multipole modes
of the second-order retarded field diverge at the particle, and again, we cannot directly
solve for the retarded field because it does not have a distributional source. This only

leaves the effective-source method at second order.

The effective-source method (also called a puncture scheme) was first used by

[70,71]. It was designed for situations in which the physical, retarded numerical variable
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would diverge at the worldline, as is the case when solving for the first-order metric
perturbation in 241 or 3+1 dimensions. This made it ideal for solving the Lorenz-gauge
field equations in Kerr, which are nonseparable. At second order it becomes a more

crucial ingredient in the formalism.

In the effective-source method one defines a puncture field k¥ ~ hS to be a trun-
cation of the singular field at a certain order in an expansion in the distance to the
particle. The residual field A® is then defined as

hR = hret — nP. (1.40)

We then rewrite the field equations as equations for h®. Having ascertained that we
cannot write the second-order field equation in the point-particle form (1.33), we instead

start with the vacuum equations outside the object,

6Gaglht] = 0, (1.41)
6Gaglh?] = —0°Gap[ht, h']. (1.42)

We then take the solutions to these equations and extend them down to all points
x ¢ . We write the punctured version of the equations by moving the punctures to the

right-hand sides, which yields

6Ga,3 [th] = _6Ga5[ hlp] = Ségﬁa (143)
6Gap[h*™] = —6G45[h*7) — 602G aplht, b = 5251, (1.44)

valid for all points = ¢ 7. Provided that the expansions of h'* and h?* are sufficiently
high order in powers of distance to 7, we may define the right-hand sides of (1.43)
and (1.44) on ~y also, by taking the limit from off v. Note that (1.43) is equivalent to
Eq. (1.22) but for the absence of an explicit TO[1 5 term. More traditionally, we could have
written Eq. (1.43) as the distributional equation 6G.g[h'"] = 87rT01[r3 — 6Gop[h'?]. In
that case, 6Gag[h'7 ] is treated as a distribution, unlike in (1.43). It contains a delta
function that cancels the one in T’ 01[ L After that cancellation, we are left with a remainder
equivalent to (1.43). But we deliberately did not write the first-order equation like that,

because we cannot write an equation in such a way at second order.

In this way, rather than first solving for the retarded field and then subtracting the
singular field, we directly solve for a field that locally approximates the regular field.
Hence, the effective-source method can be applied at second order because although
we do not have a distributional equation for the retarded field, we can find a local
approximation to it outside the small object. From that local approximation, we can

construct a puncture, and from the puncture we can derive equations for a residual field.

All discussions and derivations of the second-order GSF [41, 43,44, 72, 73] have

put forward a puncture scheme as the most viable way of solving the second-order field
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equations. Although puncture schemes were initially designed for computations in 241D

and 341D, they can work just as well, and more accurately, in the 1D frequency domain.

1.4 Outline of the thesis

The overall goal of this thesis is to develop the tools necessary for implementing a
frequency-domain puncture scheme at second order, and to apply them in the simplest

nontrivial scenario of quasicircular orbits in Schwarzschild spacetime.

In Chapter 2 we review the foundations of self-force theory, which are based on
matched asymptotic expansions. Three things emerge from this: a useful definition
of the second-order singular and regular fields, the equation of motion in terms of the
regular field, and a local expansion of the singular field, which will be the starting point
for the puncture scheme. This local expansion is valid in any background spacetime,

but it is expressed in local coordinates centered on the object’s worldline.

In Chapter 3 we describe the puncture scheme in more detail, in 4D, in an arbitrary
background spacetime. The main goal of this chapter is to convert the local expansion
of the singular field into a more practical, covariant form, utilizing the geometrical

definitions of the local coordinates.

In Chapter 4 we begin to specialize to quasicircular orbits in Schwarzschild. Fo-
cusing on first order to illustrate the basic ideas, we decompose the puncture and the
field equations into tensor spherical harmonics and frequency modes. In this chapter,
we approximate the orbit as a fixed circular geodesic, a restriction to be lifted in later
chapters. We present a new version of the frequency-domain puncture scheme, comple-
mentary to the one used by Wardell and Warburton [74], and we present a successful

numerical implementation of it.

In Chapters 5 and 6 we describe two difficulties that arise in applying the methods of
Chapter 4 to second order. Using a simple scalar toy model, we illustrate the difficulties
and how to overcome them. In Chapter 5, we show how computing the source near the
worldline becomes numerically difficult in the context of a mode decomposition. Closer
and closer to the particle, an arbitrarily large number of modes of the first-order field
are needed to calculate a single mode of the second-order source. We overcome this
problem by expressing the most singular piece of the source in terms of the first-order

4D puncture field, instead of as a sum over pairs of first-order modes.

In Chapter 6, we review key results from [75], which showed why incorporating
the inspiral of the orbit is difficult. We introduce a two-timescale expansion of the
field equations, in which the inspiral of the orbit is encoded in the dependence on a
slow-time variable. But this approximation turns out to fail at large distances, and the

retarded integral over the source develops an infrared divergence. In the context of the
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scalar model, this problem can be overcome by introducing a second expansion at large

distances.

In Chapter 7, taking the lessons of the toy model, we lay out a computational
framework for the second-order puncture scheme, specialized to quasicircular orbits
in Schwarzschild. The scheme is based on a two-timescale expansion of the Einstein
equations, combined with additional expansions near infinity and the horizon. The
two-timescale equations can be solved using the methods of Chapter 4, with boundary

conditions provided by the additional two expansions.

In Chapter 8, as a first test of Chapter 7’s framework, we numerically implement
the puncture scheme for the ¢ = 0 mode at second order. We perform a variety of

consistency checks.

In Chapter 9 we summarize our results and draw conclusions from them. We

discuss ways in which the research of this work can be continued.

This thesis contains a number of appendices. In Appendix A we give explicit for-
mulas for the first- and second-order metric perturbations. In Appendix B we summarise
how to construct Fermi-Walker (FW) coordinates and give explicit formulas for the met-
ric and Christoffel symbols in terms of them. In Appendix C we outline the derivation
of the first- and second-order-in-mass punctures, for a point-particle in a Schwarzschild
background. In Appendix D we give formulas for the mixing matrices in the mode-
decomposed field equations, which appear in Chapter 4. In Appendix E we give explicit
formulas, which describe a certain coordinate transformation between two sets of polar
coordinates, needed for the discussion in Chapter 5. In Appendix F we detail the steps
in the evaluation of a certain integral, which is required for the discussion in Chapter 6.
Finally, in Appendix G we derive a number of analytical properties and relations of the

monopole piece of the second-order Ricci tensor.

This thesis uses the following conventions. A “mostly positive” metric signature,
(=, +,+,4), is used for the spacetime metric, the Christoffel symbols are defined by
Fgﬁ = 39" (9uga + Gva,8 — Yap,y), the Riemann tensor is R“Vaﬁ = I"lfﬁ’a - Fﬁaﬁ +
Fgﬁfga — Fﬁafgﬂ, the Ricci tensor and scalar are R, = R“auﬂ and R = R}, and
the Einstein equations are Gog = Rog — %gagR = 81T,p. Greek indices are used for
four-dimensional spacetime components and lower-case Latin letters are used for spatial

components. Capital Latin letters are used for indices on the two-sphere.



Chapter 2

Gravitational self-force formalism

This chapter is a review of previous work done by other authors. A local analysis of the
metric in a small region around the object is given. Two things come out of the analysis:
(i) the equation of motion and (ii) local solutions for the first- and second-order fields,
which will be the starting point for the construction of the puncture. Full details of the
derivation through first order can be found in [46], and through second order in [44]. We
will begin by reviewing the perturbed Einstein field equations and show how to solve
them for the first- and second-order fields of the small body.

To begin with, in Sec. 2.1 we introduce the method of matched asymptotic expan-
sions, which will be used later in Sec. 2.3 to derive the first- and second-order metric
perturbations in the local region. Next, in Sec. 2.2, starting with the full Einstein equa-
tions, we show how to write the perturbed Einstein equations in a form suitable for our
problem. In Sec. 2.3 we go through the steps of deriving the first- and second-order
fields by solving the perturbed field equations, using the method of matched asymptotic
expansions introduced in Sec. 2.1. In Sec. 2.4 we give a precise definition of the singular-
regular split of the metric perturbation, according to the definition of Pound [1]. We
give a brief synopsis of how the equation of motion at first order is derived in Sec. 2.5,

and at second order in Sec. 2.6.

2.1 Matched asymptotic expansions

Matched asymptotic expansions is a standard method used for solving problems with
two different scales. In our case of a binary inspiral, we have a spacetime with two
disparate lengthscales, associated with the dimensions (or masses) of the two objects.
The spacetime geometry close to the small body is predominantly influenced by the
small body’s gravity, whereas far away from the small body the spacetime geometry is

dominated by the gravity of the large black hole. This sets up two distinct regions of

23
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spacetime with different geometries, although they blend into each other in a smooth
transition. In the above two regions the metric of the spacetime can be expanded in
two different ways. The field of the small body is derived by demanding that the two

expansions agree in a certain buffer region.

Let us now describe how to apply this method in more detail. We will denote by
gap the metric of the background spacetime associated with the large black hole. But
note that this derivation applies in any vacuum background. Let gog(z,€), the metric
of the full spacetime (small compact object + black hole), be an exact solution of the
Einstein equations. We introduce the parameter ¢ in order to count powers of the mass
u, where p/M < 1 for EMRISs. € is a formal expansion parameter which is set equal to
1 after expanding the metric perturbation. Let r be a measure of radial distance from
the small body and let R > u be the radius of curvature of the background spacetime,

which serves to represent the external length scale.

Let us define the two separate regions mentioned above in terms of these two
quantities. The outer region is defined as r 2 R > p. In this region the mass p can be
treated as the source of a small perturbation heg(x,€) to the background metric. The
first of three assumptions we make is that in the outer region, the full metric can be

expanded in powers of € as

Figure 2.1: A schematic representation of the buffer region in which we apply matched
asymptotic expansions. The black blob in the center of the diagram depicts the small compact
body of mass p in the binary inspiral. L loosely refers to the size of the small body, where
L ~ p since the small body is compact. R refers to the radius of curvature of the external
spacetime due to the large black hole, which is used to quantify the scale of the external
spacetime. The outer region depicted here is the region where the radial distance r from the
small body ~ R. The inner region shown is the region where r ~ u. ryysfer refers to the
radial distance from the small body in the buffer region, where p < ryusfer < R.
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gaﬁ(mua 6) = gaﬁ(x) + hoz,@(l'a 6) ) (2'1)
hap(x,€) = ehgg(w;7) + €hgg(z57) + O(€), (2:2)

on a manifold Mpg. We call this the outer expansion. In this setup, (gas, ME) defines
an external background spacetime with no small body in it, and hqg(z,€) describes
perturbations due to the small body. The perturbation fields A, 3 depend on the motion
of the small body itself. We will encode that motion in a representative, e-dependent
worldline v € Mg, and we write hy,; = gﬁ(x; 7). Allowing hy to depend on v in this

way is called the self-consistent approach [40].

The inner region is defined by r ~ €R < R, very near to the small body. We take
the e — 0 limit in this region by using re-scaled coordinates, where the radial coordinate
gets re-scaled as 7 = r/e. We fix 7 when we take the e — 0 limit, which ensures that we
remain close to the small body. Our second assumption is that in the inner region, the

metric can be expanded as

gaﬁ( ) = gb;dy(t7 T, QA) + Haﬁ(t7 T, HA) ) (23)
Hop(t,7,0%) = "Hy(t,7,6), (2.4)
n>1

on a manifold Mj;. We call this the inner expansion. In this setup, (gaﬂ M 1) is the
internal background metric, which describes the geometry of the spacetime around the
small body, were it isolated. Hp; are perturbations to the field of the small body due

to interactions with the external spacetime of the black hole.

We define the buffer region to be the region where p < r < R, which lies between
the outer region and the inner region, as depicted in Fig. 2.1. Our third assumption is
that the outer and inner expansions are sufficiently well behaved, such that the overlap
condition holds, namely their domains of validity can be extended into the buffer region
and overlap with one another. This implies that an order-by-order matching condition
holds. To perform the expansion we impose that the inner- and outer-expansions are
both in the Lorenz-gauge and in Fermi-Walker (FW) coordinates (,r,04) centered on
7, as described in Sec. 2.3. As such, when the outer expansion (2.1) is re-expanded
for small r at fixed ¢, and the inner expansion (2.3) is re-expanded for small e (after
replacing 7 with r/e€) at fixed r, the two expansions must agree order by order in r and

€, because they are expansions of the same exact metric g,g.

Practically speaking, this means that we take the terms in the outer expansion

(2.2), valid in the outer region r > €, and expand them for r < R as

"hly €N (0" (2.5)

p>—n
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where 64 = (6, ¢) are the usual angular coordinates defined from z®. The expansion

(2.5) starts with the leading-order term of order €”r~", such that
nyn €’ n,—n A n,.—n+1
€"hog(z) = T—nhaﬁ (t,07) + O(e"r ) (2.6)

The reason for this is that we allow no negative powers of € in the inner expansion (2.3)-
(2.4), meaning €"h};,, must have no negative powers of € when written as a function of
7 = r/e. This follows from our third assumption, that it has to match (2.3) in the buffer

region.

Next we re-expand the terms in the inner-expansion (2.3) for the case where 7 > e,

as

1

bod ~ nA bod A

Gop " (17, 0%) =1ag + > —gh 2 (1,6%)
p>1

— g+ Y (;)p o (1,0%), (2.7)
p>1

CHpg(t,7,00) =" Y %HZ@’” (t,0)
p>—n

— e S L (1,94

=€ Z ,',,p O{ﬁ ( ) )
p>—n

= r"Hyy " (6,6%) + 0 (er" 1), (2.8)

where n = diag (—1,1,1,1) is the flat-space Minkowski metric. The summation limit in
Eq. (2.8) follows from the matching condition: there can be no negative powers of € in
the re-expansion of H at fixed r, because there are no negative powers of € in the outer

expansion in Eq. (2.5).

The matched asymptotic expansions method stipulates that the outer expansion
(2.6) and the inner expansion (2.7) have to match order by order. Hence, the most
singular term in the nth-order perturbation hy; (the 1/r" term) is equal to the 1/r"

contribution to the nth-order piece of the metric of the small body gZEOdy:

hivs " (8, 04) = g5 (¢, 0). (2.9)
Eq. (2.9) states that at each order in €, the most singular piece of the perturbation hgﬁ
in the buffer region is equal to the r > pu asymptotic behaviour of the unperturbed
metric of the small body gs%dy. It follows from the fact that when the outer expansion
is written in terms of 7, €"h™~"/r™ = K™~ /™ is the only term that’s independent of
€. This tells us that it must match to something in the zeroth-order metric of the inner
expansion, and the behaviour with 7 then tells us that ¢”P°% /7" is the particular term

it must match.
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Because gz%dy varies slowly with time (when compared to its spatial variation), it
has standard, well-defined multipole moments, which we can think of as the moments
of the body itself. Each coefficient gg/g‘)dy in its large-7 expansion is fully characterized
by those moments. Therefore, based on the statement in Eq. (2.9), we find that the
leading-order contribution to the nth-order field h7 5 1s determined from the multipole
structure of the small body. This important result will be key to deriving the first- and

second-order fields of the small body.

2.2 The perturbed Einstein field equations

In this section we will introduce the perturbed Einstein equations for the binary inspiral,
which we began to describe in Sec. 1.2.5 of the introduction. The vacuum Einstein field

equations of the full spacetime read
Gaglg] =0, (2.10)

where Gop[g] = Rag[g] — 38asR [g] is the Einstein tensor. Eq. (2.10) applies in the
vacuum region of spacetime outside the small body. Taking the trace of both sides

implies that R[g] = 0, so Eq. (2.10) can be re-cast in the equivalent format

Raplg] = 0. (2.11)

Let Raglg] = Raglg + h] be written as an expansion in orders of the metric
perturbation h as

Raglg] = Rap[g] + 0Rag [h] + 8°Rag [h] + O(h%) =0, (2.12)

where 0" R, [ h] is the piece of Rypg[g + h] which is nth-order in h, given by

. 1 d"Raslg + AR
5" Roplh] = HZ# R (2.13)

The expression for §R,g [h] is given by [46]

1

0Rap[h] = —5 (Baglh] = Bag[h] + gapVuZ"[h]) (2.14)

where
E.s[h] = VY hap + ZRMQVBhW, (2.15)
Bog[h] = 9apViZ"[h] —VaZs|h] = VgZy[h], (2.16)

Zalh] = VPhag. (2.17)
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We will refer to E,g[h] as the wave operator. The covariant derivatives are compatible
with the background g and indices are raised and lowered with g. The formula for the

second-order variation of the Ricci-tensor 52Raﬂ is

1 7 pv
6°Rag [h] =5Vl (2V (ahg) = Vihap)

1 1 1
v AN AN
1 Vah"Vahy + 5V Ve = SV RV e
1
—h (2VuViahgyp — ViVihas — VaVhu) . (2.18)
A derivation can be found in Ref. [37].

The perturbations hy; depend on e through their dependence on ~. Hence, we
cannot just solve Eq. (2.12) order by order in €. Instead, we impose the Lorenz gauge

condition on the full perturbation. The Lorenz gauge condition reads
Zo|h] =0. (2.19)

By imposing the gauge condition on hag, we split Eq. (2.12) into two equations, one
being a weakly non-linear wave equation for the perturbation fields, and the other being
the gauge condition, which constrains the matter degrees of freedom, in particular the
equation of motion for v and evolution equations for the multipole moments of the small
body. Unlike Eq. (2.12), the wave equation can be split up into a sequence of equations

for each subsequent hgﬁ, even if v depends on ¢, as

O(e) : Raplg] =0, (2:20)
O(eh) : E.s[h'] =0, (2.21)
O(é?) : E.s[h?] = 20°Rop b, B, (2.22)
O(e") : Eap[h"] = Sks[ht, ..., n" 1], (2.23)

where the source term, S5, consists of nonlinear terms in the expansion of the Ricci
tensor. Here we define A}, 5 asa functional of v to be the retarded solution to the nth-
order equation in the sequence, for arbitrary . Our goal is to solve Egs. (2.21) and
(2.22), such that the solution preserves the correct motion of the worldline and agrees
with the inner expansion in the buffer region. The latter requirement acts as a free

boundary value.

We impose the gauge condition in order to determine . The gauge condition
splits up into a set of equations, which can be solved exactly for the acceleration of
7, in the following way. Let z#(7) refer to coordinates on v and 7 be proper time on
~. Proper time is defined with respect to the background metric g. The acceleration

of 7 is defined as a*(7) = Dut(7)/dr, where D/dr denotes covariant differentiation
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and u*(7) = Dz#(1)/dr is the worldline’s four-velocity. We assume that a*(7) can be

expanded in powers of € as
at () = af (1) + eaf (1;7) + €ab (1:7) + O(e%). (2.24)

The fields hgﬁ will depend on the acceleration, such that when substituted into the

gauge condition (2.19), we recover a set of gauge conditions at each order of ¢, as

O(e') : Zo[h'] =0, (2.25)

O(€?) : ZHht) = =70 2], (2.26)

O™ty ZM bt = — Zn: Zrm gt (2.27)
m=1

where Zg[h] is the Lorenz-gauge operator acting on h,p evaluated with a* = afj, and
Z}[h]is the piece of Z,,[h] linear in terms like ap, a1a,-1, a1a1a,-2, etc. Imposing this
set of gauge conditions on the solutions to the wave equations determines the acceleration

of the worldline, order by order. In this way, the equation of motion can be derived.

2.3 The first and second-order fields

In this section we will outline the approach used to derive the first- and second-order
fields. The full formulas for the first- and second-order fields through O(r) are given in
Appendix A. By constraining the solutions to satisfy the Lorenz gauge condition, the

equation of motion through first order is obtained.

Rather than v being the worldline of the center of mass of the small object, as one
might expect, in this section v is a worldline that is allowed to be displaced from the
center of mass. We will ultimately choose v to be the center-of-mass worldline when
presenting an equation of motion for the body, but it will be useful to have intermediate
results that allow for a slightly different . These results will be essential in Chapters 7
and 8, in which we will need to expand the center-of-mass worldline around a different,

nearby worldline.

We begin by introducing new notation. (t,z%) denotes FW coordinates centered on
a given worldline v. r = y/dgz%2? is the radial distance from v and (6, ) are the usual
angular coordinates defined from z®. Lowercase Latin indices are raised and lowered
with J4p. For a more comprehensive overview of FW coordinates see Appendix B. The

quantity

nt = (2.28)
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denotes the radial outward pointing unit vector, such that n,n® = 1. The upper-case

letter L when it appears as an index refers to a multi-index, e.g.
nt = niini2pis | pit, (2.29)

Tensors with indices between angular brackets (. ..) refer to symmetric trace-free (STF)
tensors with respect to the flat three-dimensional metric d4p, i.e. 6“bA<abC> =0, Aiapey =

Alcaby = Apea)- Tensors with a hat on top indicate that the tensor is STF, e.g.
k= nlipi | pie, (2.30)

We use the following notation for background tidal quantities:

5ab = ROaObv (2.31&)
1

Bab = §€pq(aRb)0pq7 (231b)

gabc = STb‘F R0a0b|c7 (231C)
3

Babc = é S(;{f 6pqaRb0pq‘c, (231(1)

where ‘STF’ denotes the STF combination of the indicated indices. &, and B, are
the even- and odd-parity tidal quadrupole moments of the background spacetime in
the neighbourhood of v, and £, and By are the even- and odd-parity tidal octupole
moments. &y is symmetric, and trace-free if the Ricci tensor vanishes. Similarly By,
is symmetric, but trace-free by virtue of the Bianchi identity, regardless of whether the
Ricci tensor vanishes. Note that &, is transverse in the sense that Eub = 0. In this

notation, the Riemann tensor’s spatial components can be expressed as

Rabed =0acEbd + 0ba€ac — 6adEbc — Obcad » (2.32a)
RObcd = - 5cdi81i- (232b)

Note the following contraction identities:

8%E, =0, 8 Rucbd = Eab » 8% Roape = 0. (2.33)

The first- and second-order wave equations (2.21) and (2.22) are given explicitly as

VHV uhag + 2R Y shy, =0, (2.34)
VIV uhis + 2R sh7, = 26°Rag [h', h']. (2.35)

«

The covariant derivative and the Riemann-tensor terms in Egs. (2.34), (2.35) are associ-

ated with the background metric g, which we write in terms of FW coordinates. Explicit
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expressions for the background metric and Christoffel symbols in terms of FW coordi-
nates are given in Egs. (B.29)-(B.31). It turns out that in these coordinates the covariant
derivative has the form V, = 229, + O(r?), such that O = ¢g*°V,V 3 = 099, + O(1/r),
00, being just the flat-space Laplacian. Hence, the wave operator E,g consists of a

flat-space Laplacian plus corrections of order 1/r.

In these coordinates, Eq. (2.5) has the explicit form
his(x) = —h;gl + haﬁ +rhly+r2hE 4+ 0(r%), (2.36)
hZg(x) = fhaﬂ + haﬂ + B2+ Inrh g™ 4 rhlg + O(r?), (2.37)

where the h,, ’ are functions of (¢, 6, ¢) and also have an implicit functional dependence
on v. To obtaln a general solution to the Einstein equation we write each h” aﬂ as an

expansion in terms of irreducible STF pieces as (see p.146 in Ref. [46])

™ = ARk, (2.38a)
>0
p = 0B aE T [ RE  e DG A (2.38D)
>0 >1
hgbm—%bZKnm +2Enm
>0 >0
~  L—1A(n,m)
+ Z[ P ( b)c GdL 1}
>1
cd  7(n,m) L-2
+ Z[ abL— 2” + (aIb)dL an } (2.38C)
>2

Note that in the above STF decomposition, the coefficients A(Ln’m), B(Ln’m), etc. in front
of the n%’s are functions of ¢, while the 2’ depend only on the angular coordinates (0, 0).
From the definitions of Eqgs. (2.28) and (2.29) stem the useful relations d,7 = n, and

n®d,n™ = 0. The eigenvalue equation
r20%9,nt = —0(0 4+ 1)A" (2.39)

makes this expansion particularly useful.

The first-order field is derived by substituting the expansions (2.36) and (2.38) into
Eq. (2.34) and solving order by order in r. To solve the second-order equation, we take
the solution to Eq. (2.34) for h! and substitute it into the RHS of (2.35), as well as
substituting the expansions (2.37) and (2.38) into the LHS of Eq. (2.35). We then solve
Eq. (2.35) order by order in r to obtain the second-order field.

The bulk of the calculation consists of determining the unknown coefficients Am)
B™m) and so on. Some of these coefficients can be determined from the matching con-
dition (2.9) together with the gauge conditions (2.25) and (2.26). Some of the coefficients
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remain undetermined, and these terms go into the unknown, regular piece of A' and h2,

whose precise definition will be given below.

To see how the matching condition (2.9) is used, consider its explicit form for n = 1.
It tells us that the most singular (1/7) piece of the first-order field, hi’_l, is equal to the
first-order piece of the metric of the small body g1 body  We identify p with the ADM
mass of the internal background spacetime of the small body. The matching formula
(2.9) allows us to replace g' "°% with A1~1 in the formula for the ADM mass (see Chap.
4 of [76]). Doing so, and writing h1~! using the STF decomposition (2.38) leads to the

result
A=Y =9y (2.40)

Hence, we have recovered héﬂ oc 2u/r + O(rY), where the leading-order term is just the

Newtonian-like potential, as expected.

Likewise at second-order, from Eq. (2.9) the leading-order (1/r?) piece of the
second-order external metric, hi/; 2, and the second-order piece of the small body’s

metric, g2]§°dy, are equal. The formulas for the mass dipole moment, M;, and spin

2 body M

dipole moment, S;, are given in terms of 9o 1dz;, where dz; is the coordinate

body>s center of mass relatlve to the origin of the coordinates. S; is

displacement of g,
equal to the ADM angular momentum of gEde. By replacing giEOdy with hZ’EQ in these

formulas, and writing hiﬂ_ % as the STF decomposition (2.38), we find that

A gy, D Zas, 1)

2.4 The singular-regular split of the metric perturbation.

In the introduction we described the singular-regular split of the metric perturbation
at first order. We now give a concrete definition of the singular and regular pieces at
nth order. We use the choice of hS,B and hi,@ defined by Pound [44]. This definition
agrees locally with the Detweiler-Whiting definition [49] at first order, but unlike the
Detweiler-Whiting definition, applies at all orders.

The metric perturbation in Fermi-Walker coordinates has a local expansion [41]

= 37 N )l )ik, (2.42)

p>—n ql

where we have generalized Eq. (2.5) to allow for logarithms and combined the various

hatted tensors in Eq. (2.38) into the coefficients hiw T 7). The nth-order singular-regular

split of this field is defined in terms of the coefficients hfufzﬂ), which we will now describe.
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Substituting Eq. (2.42) into the wave equations (2.21) and (2.22) transforms them

into a sequence of Poisson equations of the form

00, [P () hHO ()il | = Py [B < <P EIRE (2.43)

which can be solved order by order in 7. As indicated, the source on the right-hand side

depends on modes with lower n and p. Since we begin with no source at the very lowest

order (n = 1, p = —1), it follows that when solving order by order in r, every mode
hi?}fz) will be written as a linear or nonlinear combination of the modes satisfying the
homogeneous equation

00 | (it | = o. (2.44)

These special modes come in the forms

1 (n,—t-1,00

i A% for modes with p < 0, (2.45)
Pt L
reh(??o’z)ﬁL for modes with p > 0. (2.46)

The functions hg;,;zfl,o,z) (t) and hfﬁ’i’o’z) (t) are determined by (i) the multipole

moments of the spacetime gbgdy, (ii) the gauge condition, and (iii) global boundary

hffL’L*LLO,E) to multipole moments of gBde or

conditions. Factor (i) relates the modes
corrections to them. Eqs (2.40) and (2.41) are two such examples. Factor (ii) provides
evolution equations for the multipole moments and relationships between the various
modes. Our choice of singular-regular split is made in a way that is independent of

global boundary conditions. Specifically, we define the regular field to be the piece of
(n,—Z—l,O,Z).
nan ’
other words, prior to imposing any global boundary conditions, it does not involve the

Eq. (2.42) containing no linear or nonlinear combinations of the modes h in

object’s multipole moments and is made up of freely specifiable functions. We define

the singular field to be everything else in Eq. (2.42), meaning hiﬁ = hjy, — hf}]}.
With these definitions, the regular field hffl, =>. e”h}}ﬁ possesses several nice
properties [41,44,77]:
o ItisC>* atr=0.

e It is a solution to the vacuum Einstein equation; through second order that means
Ry lg + hR] = 0(63), including at r = 0.

e Through second order, the equation of motion is found to be equivalent to geodesic
motion in the effective metric g, + ehl}},} + e2h53 (assuming the object’s leading-

order spin and quadrupole moments are negligible).

The singular field hfw =>. e"hlsﬁ satisfies the following properties:

v



34 Chapter 2 Gravitational self-force formalism

e In any domain that excludes r = 0, its first- and second-order terms are solutions
to the equations 0 R, [h5!] = 0 and E,,[h%?] = 262R,,, [k}, h'] — 202 R, [ARY, ARY].
If there exist boundary conditions for which hf}l} = 0, then with those boundary
conditions and for r # 0, hlsw satisfies the vacuum equation R,,[g + bS] = O(€3).

e In a domain including r = 0, hlsul, is a solution to the wave equation with a point-
mass source, E,, [h5] = —87md,,63(z?), while hii is not known to satisfy any

distributionally well-defined equation.

e Unlike the regular field, it carries local information about the object’s structure;
it is made up entirely of terms that explicitly depend on the object’s multipole

moments or corrections to them.

This list of properties does not uniquely define the singular and regular fields. Neither
is the regular field defined to be the piece of the full field responsible for the GSF.

Alternative choices exist that satisfy all of the above properties. For example, we could
(1,£,0,0) (1,£,0,0) d h(l,f,O,Z) d
uvL (1)uvL an (2)pvL

(1,£,0,0)
(2uvL
from the regular field to the singular field. The Pound choice of definitions is convenient,

split one of the functions h with ¢ > 2 into two pieces, h

all terms in the solution (2.42) that are proportional to h could then be moved
because before making reference to any global boundary conditions, all the terms that
involve the object’s multipole moments go into the singular field, and all the terms made
up entirely of unknown functions go into the regular field. At least through order 2, the
singular and regular fields hill, and hl}},} defined in this way coincide with those defined
by Detweiler and Whiting [49]. This can be seen concretely in the results displayed in

Chapter 3 below.

The full formulas for the first- and second-order fields through order O(r) can be
found in Appendix A. We briefly describe here their form. The first-order singular field

near v has the schematic form
RSl = —2 bap + hS! (7’ at, & By) (2 47)
af r aB T Hap(Ts G, Cab, By ) - :

The leading-order term in (2.47) is the Newtonian-like potential and ﬁilﬁ contains the
O(r) corrections to hil , which are functions of tidal quantities and of the acceleration
of 7. The first-order singular field describes the self-field of the small body through first
order. It diverges on the worldline at » = 0. For r # 0 it is a homogeneous solution of
the first-order wave equation, Eaﬁ[h51] = 0, and on the domain r > 0 it is a solution
to the point-particle equation E,z[h5!] = 1677 5. where T ;5 is the trace-reversed first-
order point-particle energy-momentum tensor give in Eq. (1.23). On the other hand,
hg% is a solution everywhere to the homogeneous equation E,s[hR!] = 0, even at r = 0.
hgé remains unknown analytically and can only be calculated after imposing global

boundary conditions.
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At second order, the singular field hi% can be expressed in the form

hoh = hS% + WS + WO + BN + B, (2.48)

hSS

The first piece, 3> can be written schematically as

haﬁ ~ + L hi%(r, a', Eqp, BY), (2.49)

where ﬁg% (r,a’, Eap, BY) begins at order 1/r and depends on tidal quantities of the back-
ground. The A% piece is a solution to E,g[h™] = 202R,s k5!, 5] away from the

worldline (i.e., 7 # 0). The second piece, hS®, is given by
th ab
hit = “i o000, (2.50a)
th ~ ab
hot = —% +0(r), (2.50b)
hSR — [th(a b° = Sah At — (B8 + hfEY) fiy] +O(0). (2.50¢)

It is a solution to Eng [hSF] = 262R,s [R5, R ] + 202 Ryp [ARY RS!]. The term ho™
is given by

him 57”“ +0(0), (2.51a)
hyy! 5?” +0(r), (2.51b)
hi = 5”;“1’ +0(r"). (2.51c)
It is a solution to the homogeneous wave equation E,z[h°™] = 0 at r # 0. In a

domain that includes » = 0, it is a solution to the sourced wave equation Eag[h‘sm] =
—47mdmap(t)63(x?). As such, as far as the wave equation is concerned, each component
dmqp is an arbitrary of function of time, but the gauge condition (2.26) at order O(1/r)
constrains its components to have the form given explicitly in Eqgs. (A.9). dmqg is a
correction to the monopole moment of the small object, that enters into the second-order
field. The term A®P™ is given by

REP™ = O(1/7), (2.52a)
) 2S%e4iimd

R = % +O(1/r), (2.52b)

hop" = O(1/r), (2.52¢)

where €45 is the totally antisymmetric, three-dimensional Levi-Civita tensor.
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The final piece, h%%, is given by

208 zan
hi? = ’”‘TZQ" +O(rY), (2.53a)
heZ = O(r), (2.53D)
28 2enS,
nly = S b L 00), (2.53¢)

r2

where 0z% is the deviation of the small object from the reference worldline that lies at
the center of our FW coordinates. hizﬁ is a solution to the homogeneous wave equation
E.s[h*] = 0 off r = 0. In a domain including r = 0, it is a solution to the wave

equation with a source equivalent to that created by the displacement of a point mass,
Eog[h% ] = 87 1u00p02%0,0° (z*). (2.54)

In later sections of this chapter, hgfﬂ will be set to zero to ensure that v represents the

center of mass, but it will be utilized in later chapters.

The second-order regular field haRg) satisfies the second-order vacuum equation
E,p[h??] = 262 Ro5[hR, ARY). Like h®L it remains unknown analytically and can only

be calculated after imposing global boundary conditions.

The regular field haRﬁ = ehg% +é? hgg is responsible for the self-force through second
order, and the small body moves on a geodesic in the effective spacetime g+ A®. This is
shown by the equation of motion through second order, which we will discuss in Secs. 2.5
and 2.6.

2.5 The first-order equation of motion

The equation of motion through first order is derived by imposing the gauge conditions
(2.25) and (2.26) on the first- and second-order fields. The O(e) gauge condition (2.25)
yields

o =0, ap=0. (2.55)

This tells us that the small body has constant mass and the zeroth-order acceleration
vanishes. Hence, at leading order the small body behaves as a test particle and v is a

geodesic of the background spacetime.

The first-order equation of motion falls out from the second-order gauge condition
(2.26). Solving (2.26) at each order of r yields the conditions

OpSq = 0, (2.56)
O2M, + EpMP = —pal + %aahﬁl — R — B (2.57)
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where all quantities are evaluated on v. Eq. (2.56) tells us that the small body’s spin is
constant at leading order. Eq. (2.57) gives the first-order acceleration of . In covariant

form it can be written as

D% M+ 1
dT2 - R’ua,}ﬁuauyM'B e _/"Laff + QR/'LO“/BUQSBV
- g (" + utu”) (2hgga — hap) u®’. (2.58)

Eq. (2.58) is the equation of motion of the centre-of-mass of the small body relative to =,
where M = M'z&, u* is the four-velocity along v, a{ is the first-order acceleration of
v, and S* = gh®g"b Sy, Sap = €4piS” is the spin written in covariant form. The second
term on the LHS represents the fact that the background curvature will cause the small
body to accelerate relative to +, if the body is displaced from . If we set v to be the
worldline of the small body, then M® = 0 and a{ becomes the acceleration of the small
body itself. If we further specialise to a non-spinning object, Eq. (2.58) simplifies to
D22+ 1

Gz = 5 (0" ) (kg — gy ) utu’ 4+ O(). (2:59)

Eq. (2.59) is the first-order equation of motion of the small body. The right-hand side
equals the self-force per unit mass. As Eq. (2.59) shows, the self-force arises due to the
interaction of the small body with its own regular field h®!, whereas the singular field

K81 does not contribute to the self-force at all.

After some algebra, Eq. (2.59) can be re-arranged to yield

WV’ = 0(€?), (2.60)

where V is the covariant derivative associated with the metric g + AR

, and u® is the
four-velocity normalized in the effective spacetime as (gag + hgé)aaaﬁ = —1. Hence, an
important implication of Eq. (2.59) is that the small body moves along a geodesic of the

effective spacetime g,z + hgﬂ through first order.

2.6 The second-order equation of motion

Now we turn to describing the derivation of the equation of motion at second order.
We closely follow the strategy detailed in [44, 78], where full details can be found. Note
that the first-order equation of motion was derived from the gauge condition on the
second-order field. Analogously, the second-order equation of motion would be derived
from the third-order field. Rather than tackling the arduous task of directly solving the
third-order field equations in the outer expansion, we instead make greater use of the
inner expansion. We specialize to a small body which is spherical and non-spinning.

Since the equation of motion will be derived in the buffer region, where the metric is
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dictated by the multipole structure of the small body, we can look at an inner expansion
for any such small body which is both spherical and non-spinning. A convenient example
of such a metric that we have at our disposal is that of a tidally-perturbed, non-rotating

black hole gggal BH of mass y, derived by Poisson in [79] through third order in e.

The tidal distortion of the spacetime of the small black hole is caused by the
curvature of the external spacetime, as well as by interactions between the external
spacetime and the small object’s own field. The small black hole metric in [79] is
given in light-cone coordinates (U, R, OA), centered on the worldline of the small black
hole. Because we will write this metric as an inner-expansion, we use R for the radial
coordinate, so as not to conflict with r used for the radial coordinate in the outer
expansion in Sec. 2.1. In the buffer region, these coordinates differ from those in the
preceding sections by a small amount, and the matching conditions in Sec. 2.1 is imposed
only after applying a small coordinate transformation, as discussed later in this section.
The metric is written in a certain gauge (not the Lorenz gauge), where mass-dipole
terms and acceleration terms do not appear in the metric, telling us that the black hole
is mass-centered on the worldline and also at rest on it. The way that we will extract
the second order acceleration is to find a gauge transformation that will take us from
this gauge to the Lorenz gauge, while preserving the location of the worldline on which
the black hole is centered.

Let us write this metric in the form of the inner expansion (2.3). We take the metric
of the tidally perturbed black hole in [79], and rewrite it in terms of scaled coordinates
R = R/e. This, as we explained in Sec. 2.1, re-scales the coordinates and keeps us in
a region close to the small body, which in our case is the tidally perturbed black hole.

This gives us an inner expansion of the form
gl BH(y R, 04) =e"gH (v, R,0%) + €' HY5(v, R,04) + € HZ2 5(v, R, 6%)
+ € H35(v, R, 0%) + O(e*) . (2.61)

The first term on the right hand side, gggal BH "is the metric of the unperturbed black
hole,

gt =~ (1-2u/R) (2.62a)
g B =1, (2.62b)
9o =0, (2.62c)
1
ﬁg/ﬁg = Qup, (2.62d)
Here, Qap is the metric on the two-sphere, with Qs = (1,sin2 9). gﬁ are tidal

perturbations, which are functions of &, and B,, and their derivatives, where £, =
EY + €0Eap + O(€?), Bap = BY, + 6By + O(€®). The zeroth order fields £, BY, will
be identified with the tidal fields of the external background. The self-tides §&,, and
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0By, are corrections to the tidal fields due to the field of the small black hole interacting
with the background. The H/}; are given below explicitly, in Tables 2.1-2.3. Symbols
in Table 2.2 are defined in terms of the unit vectors Q% = (sin 0 cos ¢, sin 0 sin ¢, cos #),
which are related to n® by a small transformation. The tidal perturbations are given in
a light-cone gauge, in which Hyr = 0 for all . This gauge preserves the geometrical
meaning of the Eddington-Finkelstein coordinates in the perturbed spacetime: v remains
a label on ingoing lightcones, and R remains an affine parameter on ingoing null rays.
Table 2.1: Tidal perturbation terms H} 5 that appear in the inner expansion of the tidally
perturbed black hole metric (2.61). Definitions of the irreducible tidal fields, £9, B and so on,

can be found in Table 2.2. The explicit form of the radial functions e, = e, (r) and b, = b, (r)
can be found in Table 2.3. A dot on top of a term denotes a time derivative.

HL, ~ 0
H2, = —RZ%e &9
H3, = —%R‘gegqu — %R‘gegé’o — R2%e,6&4
R, = -1 (ea] — baBY)
RS, = SR (esff — bsBY) = 1R® (eol3 — 632)
—2R% (e40EY — b468BY)
RP*Hip = —3R*(er€lp —biBly)
R2HYy = SR (esély—bsBlp) — AR (035 — bo0B3p)

—1R? (er68%, — 0708 )

Currently, the inner metric (2.61) is in a mass-centered rest gauge [44]. Our goal
is to derive an equation of motion, through second order, for the small body in the
Lorenz gauge. Let us refer to the worldline in the mass-centered rest-gauge as 7, and
the worldline in the Lorenz gauge as . Since 7 is a good representative of the black
hole’s center-of-mass position, we impose v = 4. We will derive the equation of motion
by performing a gauge transformation z# — x'# = x# — £# from the mass-centered rest-
gauge to the Lorenz gauge. The gauge-vector £ shall be determined by the matching of
the inner expansion, Eq. (2.61), with the outer expansion that we have already derived
in Sec. 2.5. We further demand that the smooth part of £“ vanishes at the origin
of our coordinate system. This condition, which will be stated more explicitly below,
preserves the location of the worldline at the coordinate origin. Otherwise the gauge-
transformation would cause a shift in the coordinates’ origin, leading to an arbitrary
relationship between these two coordinates, and an arbitrary relationship between ~y

and 7.

The calculation proceeds as follows. Take the inner expansion (2.61) and perform
an outer expansion, which means replacing R with R /€ and then re-expanding in powers

of e. This is tantamount to expanding in powers of the mass p of the small black hole.
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Table 2.2: tidal fields, taken from [79], that appear in Table 2.1. Each field is identified

1%}

with a sans-serif superscript that specifies its multipole content. A field labeled with a “q” is
a quadrupole field, and one labeled with an “0” is an octupole field. The tidal fields appearing
in Table 2.1 are related to the ones listed here by the coordinate transformations £ = £3Q%,

Elp = E3,940%, and so on, where Q% = 9Q /064

g = £9000
E = (0,5 — Q09)EL01
Egp = 200" = Q) (8" — WOQ)EY, + (Sap — Q) ET
BS = €achbBOCde
BY = £,aQ°B%7 (6% — Q) + (a ¢ b)
g = &9 Qubae
£ = (82— Q.0)E Qe
o = 2(8,5 — 2,095, — BANEL, O + (54 — Qap)E°
BY = 3eaca¥BY, Q07
= 3%acd2B05(0% — Q) + (a < )

The first step is to transform to pseudo-Cartesian coordinates X¢ = RQ%, with Q¢

defined in Table 2.2. We will end up with an expansion that looks like

8ap (v, X% €) = gap(v, XO) + ehg(v, X®) + Ehig(v, XO) + hyjs (v, X)
+ O(eh). (2.63)

There are some subtleties related to the ordering of terms, which we will not go into but
which are discussed in [78]. We note that (2.63) is valid not only for a black hole, but

for any non-spinning compact object with no quadrupole moments.

The next thing we want to do is perform a coordinate transformation from light-
cone to FW coordinates, so that the outer expansion (2.63) is in the same coordinates as
the outer expansion we derived in Sec. 2.5. Take the light-cone coordinates (v, X%) and
write them in terms of ordinary FW normal coordinates (¢, 2%) centered on the worldline

as the expansions

v=t—R+ Y R’InR'uv.na", X'=2"4+) RPImRFsX}a", (2.64)
L.k p,l,k

where the dvy, 6.X }J are functions of . In what follows, a bar above indices refers to com-
ponents in light-cone coordinates, and indices with no bar are components in ordinary

FW coordinates. Aided by these expansions, take the background metric g&B(U,X *,
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Tablp 2.3: Radial functions that appear in the metrics of Table 2.3, expressed in terms of
z=R/(2u) and f =1—2u/R. At R =2u we have e7 = 3, e9 = &, by = —%, and by = — 15,
with all other functions vanishing.

e1 = f?
e 3(41 +9)+1(121 +5)+1
€9 = —_— — — /& ogxr -_— ogxr
2 At T4 T 42 Az %8
. 1
63:f2<1—2$>
ea=f
1 3 5 1
= fl-— -2 -2 4+ (121 13) + 1
@ f< 224 223 2:E2+6£L'( 08T+ 3)+>

1
er=1— —
7 272
3 1 2 1
€8 = ¢ 7 53(3ogx+7)—52+§(3og:c+4)+1
-
0 1043
by=f
1 1 3
by=f—e 0 — 2 4 (121 1
5 f( 601 25 227 6 ng+7)+>
~ 2
bo=F(1- =
6 f( 3x>
3
by =1— >
7 222
1 1 9 6logz + 5
by = —— — (31 9) 0 4 OBTTY
87 byt 5:):3( g +2) 5x2+ 5z +
- 1
bg_f_10x3

and the hl@% (v, X?) in light-cone coordinates and transform them to FW coordinates, as

. 0z 9P ;
ga,3<t7x ) = oo 8mﬂgaB(U’X )7 (265)
dx® 0xP
n ay __ m a
hap(t, o) = 920 9P ap(v, X9). (2.66)

In this format g.g(t, 2%) is the background metric of the large black hole in FW coordi-
nates, derived in Eq. (B.29). The numerical coefficients in (2.64) are determined from
Eq. (2.65).

Now inserting (2.64) into (2.65) and (2.66) puts the outer expansion in the same
coordinates as (2.2), except (2.64) is in the rest gauge and (2.2) is in the Lorenz gauge.
We need a gauge transformation that brings (2.64) into the form of (2.2), so that we
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can match them to determine what the form of the gauge transformation should be. To
match the two expansions at orders € and €2, we require a unique gauge transformation
o — ot — el — € (&) — 3800,&1) + O(e?). We have

hi(t,a®) = hlg(t,a") + Le gap(t, ') | (2.67)

7 7 7 1 7 7
hiZ(t, @) = h25(t, a") + Leygap(t, ) + 5,6?19&5(75, 2') 4 Le hg(t,z') (2.68)

where h’alﬁ(t,xi) are the metric perturbations in the mass-centered rest gauge, and
h; B(t’ x') are the metric perturbations in the Lorenz gauge. Note that all of the terms in
Egs. (2.67) and (2.68) are expressed in FW coordinates. As such the hf; are the same
metric perturbations whose expressions were derived in the previous section. Lx repre-
sents the Lie derivative with respect to the vector X%, and &; and &; are the first-order

and second-order contributions to the gauge vector.

The final step in our derivation is to insert the expansion of the gauge vector,
& = Zpl rpﬁ(an’p’g)’ LﬁL, and insert the local expressions for hiﬁ and hi,@ derived in
Sec. 2.5 into Eq. (2.67) and Eq. (2.68). We demand that the specific piece lemo’o), which
corresponds to a translation of the origin, vanishes. This ensures that the worldline
remains at the origin of our coordinates, as discussed above. We find that if 5&7070) =0,
then Eqs. (2.67) and (2.68) can only be satisfied if the acceleration terms a!, satisfy
certain equations. Fixing all the coefficients in the gauge vector ensures that this result
is unique; all the freedom in the transformation is exhausted, so it cannot be used to

change the result.

Matching the metric perturbations uniquely determines the result of Eq. (2.59) for
the first-order acceleration ea/. Matching order-er? terms in the metric determines the
0Eqp and 0B, as a function of hiﬁ. The order €? transformation up to order r uniquely
determines the second-order acceleration € ah. Adding the first-order and second-order
accelerations, a# = ea/ + €?a}, leads to the final expression for the self-force through

second order,

— v v R R R
at = 9 (9" + u'u”) (%7 —hy y) (2h5'y;a - haﬁ;v) utu?, (2.69)

where haRﬂ = ehi% + ezh% . Eq. (2.69) confirms that at second-order the worldline of
the small body is a geodesic of the effective spacetime g,g+ ehgé +é? hgg. We can write

an equation analogous to Eq. (2.60) as
Vi’ = 0(e3). (2.70)

where V is the covariant derivative associated with the metric g + A%, and @ is the

four-velocity normalized in the effective spacetime as (go5 + hgé + hgg)ﬂaaﬁ = —1.



Chapter 3
The puncture scheme

In this chapter we begin to develop the puncture scheme that we will use to solve the field
equations (2.21) and (2.22) globally. We recall, as described in the introduction, that
at second order, the source 52Ra5 is not integrable in any region covering the worldline,
meaning we cannot easily solve for the full field. The puncture scheme gets around
this problem by rewriting Eqs. (2.21) and (2.22) as equations for “residual” fields that

hR! and AR2. This scheme ensures that our total metric perturbation

locally approximate
(puncture plus residual field) agrees with the metric outside a small compact object, as
derived in the previous chapter. As a convenient numerical output, it also directly yields

a field that can be used in the equation of motion (2.69).

There have been a collection of previous implementations of a puncture scheme.
Barack and Golbourn [70] implemented such a scheme for a scalar charge in Schwarzschild
spacetime. A similar calculation was performed by Vega and Detweiler [71]. Whereas
Barack and Golbourn utilized an azimuthal-mode decomposition, with the intention of
later capitalizing on the azimuthal symmetry of Kerr, Vega and Detweiller solved the
scalar wave equation directly in 3+1 dimensions. Later implementations of the punc-
ture method include the calculation of the scalar-field self-force for circular orbits in
Schwarzschild by Barack and Dolan [80], and in Kerr by Barack, Dolan and Wardell [81].
This calculation was generalised to computing the gravitational self-force at first order
for circular orbits in Schwarzschild [63] and in Kerr [82]. Diener et al. calculated the self-
consistent orbital evolution of a (scalar) particle [83] in Schwarzschild in 341 dimensions,
and Thornburg and Wardell computed the scalar self-force for highly eccentric orbits in
Kerr in 241 dimensions [84]. I in collaboration with Pound [1] have constructed generic
covariant formulas for the first- and second-order punctures, which may be applied to any
spacetime, in any chosen coordinate system. This calculation is detailed in this chapter.
With the eventual aim of numerically implementing our second-order punctures in a 1D,
frequency-domain scheme, Warburton and Wardell have performed frequency-domain
puncture-scheme computations for a scalar field [85] and for the first-order gravitational

field [74].
43
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This chapter is organised in the following way. In Sec. 3.1 we will show how to
construct the puncture-scheme system of equations, which allows us to solve the field
equations for the residual field. Next in Sec. 3.2 we give an overview of our derivation
of a practical, covariant expression for the puncture field. Finally, in Sec 3.3 we show

how to write the puncture in a specified coordinate system.

3.1 The basic idea of the puncture field

We start by restating the vacuum field equations that we are trying to solve, at first-
and second-order as given in Eqs. (2.21) and (2.22). We take these vacuum equations,

valid in a region outside the small object, and extend them down to all points > 0, as

Eq
Eq

s[h']=0 r >0, (3.1)
s[h?] = 26%Rap[ 1t A ] r > 0. (3.2)
The goal is then to solve these equations, and to find the corresponding regular fields,
subject to the condition that near r = 0, the solutions must agree with the locally
determined ones in Chapter 2. Based on that condition, as discussed below Eq. (2.47),

we can also write (3.1) in the more familiar form

Eop[h'] = —167T,5. (3.3)

The basic idea of the puncture method is to subtract a puncture field from the full
field of the small body and then solve for the residual remainder. Given a particular
choice of singular and regular fields, we define a puncture field, hf”, as a truncation of
a local expansion of the nth-order singular field, hz%, in powers of spatial distance from
the worldline of the small object, 7, at a certain order. The puncture contains all the
divergent terms of the field on the worldline, at » = 0. We then define the residual field

hi5 = hig — bl (3.4)
We then write field equations for hz)?ﬁ" instead of the nth-order retarded field, hgﬁ.
Removing the puncture field allows us to work in global coordinates everywhere, even in
the region including ~. The better hgg represents hz%, the better hz)?ﬂ” represents hgﬁ.

For example, if

tim (15 (@) — hS()] = O, (35)
then
tim (15 () — W5 ()] =0, (36)

that is, the residual field agrees with the regular field on the worldline. Throughout

the discussion in this chapter, we will use the dimensionless parameter A\(= 1) to count
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powers of distance from the worldline. If hzg is one order more accurate, meaning
hls — b3 = O()), then

. R . R

lim V,hqs = ;gl}y Vohas- (3.7)

Ty

Because the self-force is constructed from first derivatives of hgg, as in Eq. (2.69), this
condition guarantees that the self-force can be calculated from hsg" That is, we may
calculate the self-force by replacing hgg with hZfB" in Eq. (2.69), with hgﬂ = ehzlzﬁl—{—e? hgg,
as

DQZa 1 uv w, v o' Ry R R a, B
—5 =5 (9" + utu”) (g, — h ") (2h5%a - haﬁ;'y) uu” . (3.8)
In some circumstances, we require less of the puncture, and in the calculations in later

chapters, we will use a lower-order truncation than needed for Eq. (3.7).

We are going to calculate the residual fields using the worldtube method [70]. In
this approach, the worldline v is surrounded by a worldtube I'. Outside I', we solve
the wave equations for the retarded fields h}xﬁ and hiﬁ. Inside I', we solve the wave
equations for the residual fields h?g and h§§ The puncture scheme is then summarized

by the coupled set of equations

Eog[ W™ = —E5[n™'] = S inside T, (3.9a)
E.s[h'] =0 outside T, (3.9b)
Eog[h®?] = 20°Rop[h' b ] — Eqp[ W] = SCI2 inside T, (3.9¢)
E,5[h?] = 20°Rop[ A, 1] outside T, (3.9d)

and the equation of motion (3.8). In the self-consistent approach, the puncture diverges
on the worldline z# determined by (3.8). Solving Egs. (3.9) for hgﬁl and hgg, the motion

of the worldline is calculated by feeding the result into the equation of motion (3.8).

The source terms in Egs. (3.9a) and (3.9¢) are initially only defined for points = ¢ ~,
but we can include v in our domain as follows. In Eq. (3.9a), we evaluate —E[h'7 ] as a
field on the domain z ¢ +; unless we have h'” = h15 exactly, the result will then exhibit
some nonremovable nonsmoothness at v, but it will be integrable and hence be a valid
source on the whole domain I'. (As per the discussion in Sec. 1.3, this treatment differs
slightly from the one in which we write the source as —167T" — E[h'"], but the two
sources are ultimately the same.) Similarly, in (3.9¢), we evaluate 202R[h', h! |- E[h?¥]
as a field on the domain x ¢ ~ , canceling the nonintegrable singularities, and then
take the resulting integrable function as our effective source on the whole of I'. If the
expansions of 2'7 and h?” in powers of distance from 7 (powers of \) are of sufficiently
high order, then the effective sources can be defined on « by taking the limit from off
~; however, continuity of the effective source is not necessary, and in this thesis our h%%

will not be of such a high order in .
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Now we need a practical way of calculating the puncture field. This will be the

goal of the next section.

3.2 A practical covariant puncture

Having formulated a way of solving the field equations using the puncture scheme, we
now need practical covariant formulas for the puncture field through second order. Such
expressions give us the freedom to write the puncture field in any coordinates we desire.
We follow a two-step procedure, whereby we first obtain the puncture in a tensorial
form, and then write it as a coordinate expansion. In the next chapter, when we come
to solve for the first-order field for circular orbits in Schwarzschild, we will write the
puncture field as a coordinate expansion in Schwarzschild coordinates, suitable for that

scenario.

Throughout the discussion in this chapter we will refer to a generic timelike world-
line as =y, and we will allow v to differ slightly from the worldline of the center of mass of
the small object, by a small distance of order €. The reasoning behind this set up is that
we will eventually use the two timescale expansion mentioned in the introduction, in
which we expand the center-of-mass worldline of the small object around a slowly evolv-
ing, leading-order worldline. We note however that this slowly evolving, leading-order

worldline is not a geodesic of the background.

3.2.1 Outline of conversion strategy

Currently we have expressions for the singular field components, hilﬁ and hz%, given in
Appendix A in terms of local Fermi-Walker coordinates. These expressions were derived,
using matched asymptotic expansions, as described in Chapter 2. The basic idea is to

take the singular fields and write them in a tensorial form, as
hS = hSdt @ dt + hS,(dt ® dz® + dz® @ dt) + hSyda® @ da® . (3.10)

Here, hS is used as a short-form that refers to the first- or second-order singular fields.
Using geometrical definitions of the Fermi-Walker coordinates, we will express each
of the components and one-forms in Eq. (3.10) in terms of covariant quantities. In
this approach Eq. (3.10) will become a covariant expression which no longer depends
on Fermi-Walker coordinates, or indeed on any other coordinate system. From the
expression (3.10), we are free to pick whatever coordinate system suits us and truncate

the resulting expression at the desired order of distance.

Firstly let us introduce Synge’s world function. Here we follow the formalism that

can be found on p.42 of Ref. [46]. Consider two points z and z, and a geodesic, 5 that
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S|

Figure 3.1: The base point Z, the field point x, and the geodesic segment
that links them. The geodesic is described by parametric relations z#(¢£) and
tH = dz"/d€ is its tangent vector.

connects them described by parametric relations z#(§), as illustrated in Fig. 3.1. Let &
be an affine parameter along 3, with &j, &1 being the values of £ at « and Z, respectively.
In terms of £ we define the tangent vector t* at coordinate points z#(§) along S, as
tH = dz/d€. Synge’s world function is a scalar function of the source point Z and the
field point x, defined by

&1
e,) = 5~ &0) [ gz de (3.11)

where g, is the metric of the background spacetime and the integral is evaluated on
the geodesic S that links = to . But we note that the geodesic equation implies that

¢ = gutt't” is constant along 3. Hence,

o(x,T) = %C(& - &) (3.12)

If the geodesic is timelike, we may set £ equal to the proper time 7, which implies

¢ = —1. If the geodesic is spacelike, then £ can be set equal to the proper distance s,
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which implies that ¢ = 1. If the geodesic is null, then o(z, Z) vanishes. Therefore,

(A7)* B timelike,
(As)? 3 spacelike, (3.13)
6 null,

that is, in general, o(x, Z) is half the squared geodesic distance between the points Z and
x, assuming that Z lies within a normal convex neighbourhood of x. In flat spacetime,
the geodesic linking x to Z is a straight line, and o(z,Z) = 3na5(z — 2)%(z — 2)” in

Lorentzian coordinates.

Covariant derivatives are written as o, (z,z) = Vo(2,%), 05(z,z) = Vao(z,Z),
where barred (unbarred) indices indicate that the derivative is evaluated at the point z
(z). oa(x,T) is a vector that is tangent to S at the point x and o5(z, Z) is a vector that

is tangent to £ at the point Z.

Fermi-Walker coordinates (¢, z%) are constructed from a tetrad (u®, e?) established

along v. The spatial triad is Fermi-Walker transported along the worldline according to

De®

a

T = aau” (3.14)

where a, = ayu€; is a spatial component of 7’s acceleration, a*. At each instant 7
of proper time, spatial geodesics are sent out orthogonally from the point z = z(7)
on . These geodesics generate a spatial hypersurface ¥z, and on that hypersurface,
coordinates x® are defined as

% = —e%o®, (3.15)

The geodesic distance from Z to x is given by r = \/dgp2%2?. 0 is tangent to a generator
of Yz, satisfying
ogu® = 0. (3.16)

Each of the hypersurfaces is labeled with time ¢ = 7, defining the coordinates (¢, z%) at

each point in the convex normal neighbourhood of ~.

We will frequently write tensor components contracted with members of the tetrad

as, for example

_ (e B v
Rsnpo,7u”eqge,e;

Q21

. (3.17)

Raal}ém €

We will use the metric in Fermi-Walker coordinates to raise and lower indices, given
through order r® in Eqgs. (B.29).

Now let us move on to describe how we obtain the covariant puncture. The singular-
field components hilﬁ and hg% are currently written as functions of Fermi-Walker coor-
dinates (t,7,n%), as in Egs. (A.2) and (A.4). We will replace the dependence on t with
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a dependence on T, and we will replace r and n® through the relations

r =27, (3.18)

a +Q
nt = %% (3.19)
20
The notation
g=o(x,T) (3.20)

is adopted to refer to the world function o(z, x).

The other ingredients required to construct the covariant puncture, as in (3.10), are
expressions for the one-forms dt and dx® We can derive identities for these one-forms
in Fermi-Walker coordinates, by taking total derivatives of Egs. (3.15) and (3.16) [46].
This derivation is given in Appendix B, while just the final result is stated here:

dt = Bogau®dz® , dz® = —el (Jg + uagaa7u6u7> dy® . (3.21)

Here, y® are an arbitrary set of coordinates, and

_ N1
B=-— (Uaguauﬂ + Jaao‘> . (3.22)

The next step is to re-write these expansions in terms of z/, an arbitrarily chosen
point on the worldline within a convex normal neighbourhood of . We do this because
expressing the field at x in terms of quantities at z is not ideal. T is always connected to
x by a geodesic that intersects v orthogonally, and if we wished to implement a puncture
scheme in a particular coordinate system, we would have to express the coordinates at
Z in terms of the coordinates at x, which would create unnecessary complications. So
rather than leaving our results in terms of Z, we expand the dependence on T about
a nearby point 2’ on 7. x’ is spatially related to x, but it is otherwise arbitrary. The
general relationship between z, Z, and 2’ is illustrated in Fig. 3.2; since 2’ is arbitrary,
its specific relationship to x can be chosen to maximize convenience. For example, x
and 2’ can be made to have the same coordinate time in the coordinates one uses in
one’s numerics. In Chapter 4 we will choose 2’ to have the same Schwarzschild time as
x. We will use the notation

o=o(x,2') (3.23)

for Synge’s world function for the points x, 2, not to be confused with . Primed indices,

as in o/, 04p, shall refer to derivatives evaluated at the point 2.

The worldline ~ is described by the parametric functions z#(7). Hence, to express
our quantities in terms of z’, we may write Z = z(7) and 2’ = z(7'), and we expand in
powers of

Ar=7-171. (3.24)
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Figure 3.2: Tlustration of the relationship between the points Z and z’ on the worldline « of
the small body, depicted by the thick blue line, and the field point z. The field point z and the
point Z are connected by a unique geodesic 3 of spatial length 7, which intersects the worldline
~ orthogonally at Z. A different point #’ on v that lies in the convex normal neighbourhood of
x, is also connected to x by a unique geodesic. The two points are separated on the worldline
by the proper-time distance Ar.

This procedure is made straightforward by the fact that each of the quantities k3, A3,
hsb, dt, and dx“ is a scalar at Z, meaning each can be expanded in an ordinary power

series. So, for example,

S

dh
5 = B, 2(7) = B(o,0') + Sl (@, o) A + O(AT2) (3.25)

In the end, we wish our result to be in the form of a near-coincidence expansion in powers

of o®. To achieve that, we will require the standard near-coincidence expansions [86]

Uaﬁl = —gg |:ga161 —|— %AzRa/,}//ﬁlclU’y 0'C — 1*12)\31‘2(3{!,)//[-’}!(/%/O"y O'C O'L + O(}\4) 5 (3263)
0’0/5/ = ga/B/ — %)\ZRO/,Y/K;/C/U’Y/UCI —|— le)\SRa/,y/BICI;L/O"YIO'C/ULI + O()\4), (326b)

!

glC;W/ = gﬁ/ [ — %)\RQIB/M/,Y/O"Y/ + %)\2Ra/ﬁlul,y/;</0ﬁ/0'c + O()\s)] . (3260)
Here, g,’j/ is a parallel propagator. It takes a vector at 2’ and parallel-transports it to x
along the unique geodesic that links these points.

After expanding the components h,, h3,, hib around z’, expanding the one-forms dt

and dz® around 2, and combining the results, we obtain the right-hand side of Eq. (3.10)
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in the form

g Ot Ot g Ot 0z° g 02 Oz’
+ ta + hgp

hSgdy®dy”® = |h dy®dy?, (3.27)
with the quantity in square brackets written entirely in terms of tensors containing no
remnant of Fermi-Walker coordinates. We will eliminate the dependence on the triad

legs in this expression using the identity
e = pb (3.28)

where
P = guw + upuy (3.29)

projects onto a plane orthogonal to «v. We will then be left with a tensorial expression

for hiﬁ .
To simplify expressions, we define the distances
r= uuxa“l, (3.30)

which, in a rough sense, describes the proper time between 2’ and x, and

S = \/PM/,/IO'“/O'V/7 (331)

which roughly describes the spatial distance between 2’ and z. Both bits of notation
are taken from Ref. [87] by way of Ref. [88]. In terms of these distances, we have the
relation

O’M,O'H/ =20 (z,2') =s* — 2 (3.32)

As stated in the previous section, we do not always require a puncture of sufficiently
high order in A to ensure that Eq. (3.7) is satisfied. However, for generality, we will
carry all our expansions to that order. Since hlsu% begins at order 1/A\%, and Eq. (3.7)
demands that we include all terms through order A, we must include four total orders
in our expansions. This is precisely the number of orders included in the FW results in
Chapter 2. For brevity, we truncate some of the explicit expressions at a lower order in

A, but our full results can be found in Ref. [1].

3.2.2 Expansion of At

Rather than moving directly to the components of the singular field, we first obtain
expansions for various quantities that go into the expressions for the singular field.
Since our strategy requires expanding the metric components and the one-forms around

the point 2/, we first derive an expansion of A7, the time interval in (3.24), in terms of
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o. We define the function

p(r) = oo (@, 2(7))u® (3.33)
and expand p(7) around p(7'). Note that from Eq. (3.16), p(7) = 0. Hence 0 = p(7) =
p(7" + A7), which we may expand as

1

gp'/'(T/)ATg’ 4+ ...

p(r' + A7) =p(r') + /() A7 + g () AT +

/ / / /
:Ja/ua + (O’alﬁlua uﬁ + O'a/’u,a ) AT

1 ! / ! ! ! !
+ 5 (O‘a/gl,y/ua uﬁ u’ + 30a/5/u0‘ uﬁ + o a® ) ATQ
1 D3gu® 1 Do u®
+ 5 dTalig T3 + 57d7(—1/4 A7—4 -+ O(ATE)), (334)

where in Eq. (3.34), we have used D/dr’ = u® V4, and similar identities for higher

derivatives.

The next step is to insert the near-coincidence expansions (3.26b) for oq/g...; third
and higher derivatives of ¢ are obtained from (3.26b) recursively. To solve Eq. (3.34)

for A7, we expand A7 itself in powers of A as
AT = AT + N2 A07 + N3 As7 + N AT + O(N). (3.35)

We then insert (3.35) into (3.34), and solve order by order in A. The results are

AT =r, (3.363)
AT = — rag, (3.36b)
1 ' 1 1
A3T = — 6r3aa/aa + §r2dg + r(ao)Z - grRUU’Uﬂ'u (336C)
5 / 1 2 / 3
Ay = — ﬂr4a°‘ Qo + 6r3d" — gr?’aa/aa a’ + §r2a"d”
1 / 1 /
+ r(a")3 — ér?’aa Rorvuo — 5"261& Ryoue — graaRuaua
1. 1
- grQRuauo + ErRuauzﬂaa (336d)

_ Oé, ! ! 6/
where, e.g., Rysus = Ro/piyst o ur o? .

3.2.3 Expansion of o(z, 7)

Continuing to assemble useful ingredients, we next turn to o itself. Since the components
htst7 h’S

5., and h5, involve r = /25, it will be convenient to obtain an expansion of o(z, 7)
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around o(z,z"). We expand o(x,Z) in the interval of proper time A7, as

do 1 d%o 1 o 1 d*o
=)) — ! A - A 2 - 3 - 4
o(x,2(7)) = o(z,2(7")) + dr’ T+ 2 472 T 3! 43 T 4! 4
1 do
+ ng/E)ATE’ + 09, (3.37)

and afterwards insert the expansion (3.35) and the near-coincidence expansions (3.26b).

The outcome is

oz, 2(7)) = Noy(z, ') + Nos(z, o) + Moy(x, ') + Nos(z, ') + O(N°), (3.38)

where
1 2
oy ==, (3.39a)
2
1 2
P (3.390)
1. 1 ’ 1
o zér?’ag — ﬂlAaalag r2(a0)2 - grQRuUuav (339C)
1 ’ 1 1 / 1 1
o5 = — ﬂr“r’aa da/ + ﬂrlldo' - 6r4aa’aa g + §r3a0'd(7 + §r2(ag)3
1 / 1 / 1
- ﬂr[laa Ryvue — érBCLa Ryous — grQGURUUuU
1 5. 1
- ﬂrSRuaua + 274r2Ru0u0|0' (339(1)

3.2.4 Expansions of dt and dz*

The expansion of the one-forms dt and dx® follows the same procedure as the expansion of
o(x,z): first expand in powers of A7, then substitute Eq. (3.35) and the near-coincidence
expansion of derivatives of Synge’s world function. In the case of dz®, we will also have

to make use of Eq. (3.14) for the derivative of €% along the worldline.

It is helpful to first expand B near coincidence; recall this quantity’s appearance

in Egs. (3.21). The result of that expansion is
B =1+ iz + X [(a5)” — §Razaz] + X° [(a5)® — a5 Rasus + 15 Rasuo|s)
+0(\h, (3.40)
where, e.g., Risas = Ragﬁguaaguﬁag . We place a bar over the subscripted o’s and u’s

to distinguish contracted quantities at Z from those we defined at 2’ as, e.g., Ruous =

/ ! ! !
Ralﬁl,y/é‘/ua 0'6 u” 0'6 .
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Following the procedure in the case of dt, beginning from Eq. (3.21), we arrive at

dt = (toy + M1y + N2ta, + N, + O(NY)) dat, (3.41)
where
lop = — g,‘i‘/uau (3.42a)
tiy =— g5 (raw + o) , (3.42b)
a/ 1 2 H/ . 2 1 2 .
toy =9, §r aa” Uy — FagUe! — (ag) U — 5" Ao/ — 2rag/ 0y
2 1 1
- grRa’uua - gRa’auU + 3uo/Ru0'ua>a (3420)

3, :gl‘j’ [%r?’aula“,aa/ — %rQagaa/ + 2r2auxa“,aauo/ — 3ragAeUys
— (a0)3ua/ — %r%a/ — %rQCLa/C'LU — 3I’aa/(ag)2 + %raa/Rugug
+ %r3a“ldu/ua/ — %r?’a”/Ra/w/u — %ero'uo/
+ %r2a“,Ru’o/ua - T12r2aM,Ru/ua’a - %rzaMlRu’aa/u
- %aul rRM’O’O/O’ + %a,u/ r2uo¢’Ru’uua - %raaRa’uua + a,u/ rua’Ru’aua
- %aaRo/o‘ua + %aoua’Ruaua - %r2Ra’uua - %QrRo/aua

+ %rRa’uuala + %Ra’aua\a + %rua’Rucrua - Tgua’Ruauda] . (342(1)

Following the procedure in the case of dz®, beginning from Eq. (3.21), we arrive at

dz® = (zf, + Mz, + )\2:5%“ + >\3:E§M + O()\4)) dzt (3.43)

where
g, =95 a%, (3.44a)
9, =gl " rugaq, (3.44D)

roaf1 15, 1

xg# :gg pac <2r2aa’a5’ + ray agug + §r2aaluﬁl + grQRa’uﬁlu
1
Zr
3

1 1 1

1
— irRa’B’uo - Ro-(a/ﬁ/)u + 6Ra/gg/g - gl’Ug/Ra/mw — BUB/RQIUW,), (3.440)

a _ B ad 2 1.3 . 1.3 . 2 1.2
T3, —gﬁ e [raa/(aa) ug + grlagie + grlagap + riagagas — st ag Ryyus
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1 1.3 / 1.3 u 1.3 u
— graﬁlRa/Gug —3r aa/auxa” ugr + &' at Ral[ulﬂ/}u —5r at UB’Ra’uu’u

/ . .
+ %r‘?a“ Ra’uﬂ/u’ + rQaUaa/UB/ + %r2aa/agu5/ + %r2aaRa/u5/u
1,2 p 1.2 u 1.2 4 1.2 u
— & at Ru'(o/ﬁ’)ff —4r a* Ralﬁlulg + 37 at u5/Ra/[#/g]u —3f at lLﬁ/RO/uulJ
1 1 1 ! 2
- §raO’Ro¢’6’uU — graaRu(a/B/)U — §ra“ uB/RO/O’u’O’ — §ra0uﬁ’Ra’uua
— 305U Royguo + §F oty + 5100 Rgruue + graa R
305UB Lo/ cuo gl Ao/ up 3l Ao/ 108/ yuo 6o/ 108 guo
1 .37 1 37 1,27 1,27
+ sl Ra’uﬁ’u + 1af Roc’uﬁ’u — gl Ra’ﬂ’uo —&f Ra(ﬂ’a’)u
1. T 1 1.2 1
+ ﬁrRo/aB’U + ErRa’B’uoh — 12f Ra’uﬁ’u|a + ErRU(,B’a’)uhT
1 2 1.2 > 1 >
- ﬁRa’oﬂ’zﬂo - §raa’uﬁ’Ruau0 —zf uﬁ’Ra’uua - ZruB’Ra’oua

+ %ru&Ra/uw‘a + %uﬁ/Ralaua-'a- . (3.44(21)

3.2.5 Components of hiﬁ in terms of covariant quantities

We now move onto the components of the singular field. Our first step is to express
the components h?t, htSa, and hgb in terms of covariant quantities. We will replace the
dependence on t with a dependence on Z, and we will replace r with n® through the
relations (3.18) and (3.19). In this way, we can re-cast all of the terms in (A.2) and

(A.4) in terms of the Synge world-function ¢. For example,

. a;eto®  ago® as
ani — _ _ % 3.45
' V26 V26 25 (3.45)

1 o eebeTe®  R__a g% P
EabP™ = Ruono <n“nb - 3(5“’) = R&ﬁBDeg‘egu“u” i 525 = O‘“B;& . (3.46)

where in the second identity the completeness relation (B.5) was invoked and we have

introduced the definitions

ufu” | a5 = ago®. (3.47)

Using the identities given in Table 3.1, the singular-field components hilﬁ in Eq. (A.2)

may be written in terms of & as

2 5 7
htstl = \/72’“76 <2>\_1 — 3\, + §>\R'E6ﬁ6 - 12)\2Rgugug> + O()\a2, \a, )\3) ,  (3.48a)

ped 2 . 4_ 1
htsal = \/% <)\3R@55ﬂ — 4aa@> + A2 <3UR5m6ﬂ - 6R5¢a—5a|5

+ O(Xa?, N2a, \3), (3.48b)
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N2 — & A, D
7 =o0(z,T), a® = aia’, a5 = aa0®, Rysep = Rusgoulu”.

Table 3.1: Conversion of tidal quantities in Fermi-Walker coordinates to covariant format

Eabﬁab = Z;ﬁo
a® Ruaus
8 a“ﬁb —_ o uouo
ab 7\/%
N N 9aplracusc Ri555 _ 3
2n(agb)cn = (RuauB + Oé/825.0 : ;Z—.ﬁa) 6365
R
~ ab o UGUG |G
N CSEE
£ Cdﬁb . _ _Raéaﬂaaﬁ B 2Ra6ad\aaﬁ 2Ruau[3\a 4Raaaa|5 o eB
(a P 3(20)32  3(25)3% ' 15(26)32 ' 15(25)3/2) (V)
ELa‘uyea = <_ o Ruguacs " Ruyuacs | Tuouads R“wﬁag> B
(a (25)3/2 5v26 5v26 5v26 ‘)
£ hoed _ Risus (0adp 1 4Ras0(a05) | 2Rgaqs I
cdab 2% \ 25 798) " T 75 35 )
Bbe,qnd = _Rﬁ‘_’d‘_’ggegebﬁ Rago—é&e(;e’g Ru&aﬁegeg
e (2)3/2 5v/25 5v/20
di b _ 3Rusas|s Rﬂ&ﬁc_faa 2Rﬂ5’ﬂd &
Bpean©e = < 4(25)372 ( )3/2 5\/% eg‘
S1 ,ueg‘ef -1 0 2 1
hap = /o5 2N 9ap + XN 9apts — A ngaB«? + ggéﬁ_Rﬂﬁﬁ?f + 80 Raupa
(3.48c¢)

1
2
+ A ( 9spRacasls + 3

Rwﬁm + 40Rau5u|0) + O(\a?, N2a, \3).

The components of h52 = S + AR £ B9 4 192 given in (A.4)-(A.10) may be written

in terms of & as

BSS — _)\lfa _ 07M2§Uuauo + O\ a),
hS = A0 2 36 asou + O(A, @),
hab = uiefzebﬁ [/\2 (106907/3’ - 705‘05)

160 J—_— 1704 _9

2
X (15%60wa -

4
6 )\\/25)me] +O(\n )\, a),

- ﬁa 2 In(

(3.49a)

(3.49b)

7
Rauﬁu + 500‘05RUUU‘T>

(3.49c¢)
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,uhgl o%oB  paB
hit = — \/% ( 55 3 +0(\Y), (3.50a)
:u’hli{lu’?/eg O'BO'@ Pg
[ % s~ 5| TOOY), (3.50b)
ae) [h,0p07 2 2 1 ol
pSR _ HCaC 3@ 8) _ZpRL__p pR1(Zppp 1 op, o
NG 5 gltap T Fasluy 3T T3 T 5
0503 __ _
B pRY(pAr i) L O 3.50¢
26 H
where P = ¢o8 4 8yf,
Sm - zulus
him = ‘j/% + 0O\, (3.51a)
(5m:u5‘e§
hom f/éf_ + 0O\, (3.51b)
g
5mf-e_eg
W = =2+ O, (3.51¢)
\V 40
with
6m075 1 R1 R1 i, 73 R1
+ dugs (" + 202 ) | (3.52)
and
5z 2u6z250° 0
b= * 0\), (3.53a)
hig = 0(\°), (3.53b)
2116 250%5,
B3 = —“(2”;;/2” + o). (3.53¢)

3.2.6 Expansion of ), h and hS,

The next step in the calculation is to convert the expressions (3.48)—(3.53) in terms of
T, to expressions in terms of the point 2’ on 7. Inserting Eq. (3.38) into Egs. (3.48)
yields

0
= — — ?(r2 + 352)(10- + % ((r2 + 552) Ruous — (r3 + 9I’S2) aa)

2.2 32T 4 4T
_ A (r 2 Rupuote — 15> Ruouo + T5* Ruguole — 131 wa)
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+ 0(\a?, Na, \?), (3.54a)

o[ 2X )
hl?al = —puey {35 (Ralauo —rRyuou + 352%/)

A2 ) .
* % <9r52Ra’Guo - 3S2Ra’oua\a + 3r52Ro/uau\a - (9r252 + 1254)Ra/u¢7U>}

+0(N\a?, N2a, \?), (3.54b)

Y 29 /37 /\0 A
h(?,g = :ue((xaef [ of + 57390//6”@0'(52 — r2) + @ <4r52Ru(0/ﬁ’)a — 252Ra/05/o.

- 1254Ra’u6’u + ga’ﬁ/(r2 - SQ)RUUUU - ga’ﬁ/r(rQ - 352)(.10)]
)\2

+ 1253 ga/ﬁ/(rg - 3r52)Ruo‘ua‘ + 4S2Ro/aﬁ’a|a + ga/5/(52 — r2)Ru0'ua|U

— 4r52Ra/o./3/o.|o. —+ 8r52Ru(a/ﬁ/)U‘a + 8r252Ru(alﬁ/)U

+ 452(r2 + 652) (Ra’uﬁ’u|a — rRo/uﬁ’u) + O()\GQ, )\2(1, )\3> (3540)

Inserting Eq. (3.38) into Eqgs. (3.49)(3.53) yields the second-order singular field com-

ponents in terms of 2/, as

) 2 2)\0

hy = _AT/; - M354 (2r* + 75°) Ruous + O(Aa), (3.55a)
1042\0g’

h?(zs = _% (Ra’aua - rRo/uau) + O()\CL), (355b)

rog 1
hgg = /1,263 65 {)\254 (552911’,3’ — 70'(1/0'5/)

)\0
i

5 1 26 16
ga’ﬁ’ (3I’2 + 1552> Ruauo + %S4Ra'uﬁlu + ErSQRU(alﬁl)U

8 8 14
— *rzszRaluB/u — gSQRO/UB’U =+ 7FO'(OCIR/B/)O.UO, —

2
5 3 =r U(O/R,B/)uau

3

14r? 1
+ <; - 35r2> Ruauaaa’aﬁ’] - £ ln()‘s)Ra’uﬁ'u} + O()‘ In A, a)? (3550)

1
SR = Sﬁg hog + 2ehily + iy — 28 (B Rk [ +0(0), (3.56a)

/

RSR — _ueg [(hm + thl) oo —
ta — 3 uo uu ) Yo’

1

21 R1
35 huoc’

+0(\Y), (3.56b)
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SR N2€glefl R1 R1 2 9 R1
hab = 573 2ha(o¢’05') + thu(a’gﬂl) - §S halﬁ'

2
Y R R R R

—ogog (B + 2050 | + O, (3.56¢)
where hR! = g“/”/ hi{,ly/,
6 /
him — mt;(” + oY), (3.57a)
Omia (77
i = ”“S(T) + 0\, (3.57b)
dmiap (7!
hom — m:(” + OO, (3.57¢)
and
1 (0z5 + Ozyr 1 (dzyra 3rlay 0z
0z __ o U ullo c0%a 0
hiy = O(\), (3.58b)
1 (025 + Ozyr 1 (dzyra 3r2a,0z
0z __ - o U - u o oV<o 0
15 s [ L () 1 (Bane ] oo e

with 62, = 8240 and §z4 = Sz u® .

3.2.7 Covariant form of the singular fields

The final step in the calculation is to combine the covariant expansions of the components
Ry, hP,, and RS, with the expansions (3.30) and (3.31) of the one-forms dt and dz?,
yielding a concrete expression in the form of (3.27). The triad legs are eliminated using
identity (3.28).

The explicit formula for the first-order singular field takes the form

S1 _ 3 S14 Sla
haﬂ = haﬁ + haﬁ , (3.59)

where hi}f is the acceleration-independent part, and hilﬁa is the acceleration-dependent

part. The former is given by

S1 2/J, -V
hi! = S/ 9 (gorpr + 2uarug)
’ ﬁ/
19, 9
A2 = 52) (g + 20arttsr) Rusao
/ 6’
19 g
— 12S4Ro¢/uﬁ/u — 12I’SQU(OC/R/3/)UUU] + )\21;5531/{16I’SQU(Q/R/3/)7LU“|0
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— 16s* (r* +s%) u(a/RB/)wu + (G + 2uarug ) [r(r* — 35%) Ruguo

+ (52 - rQ)Ruauka] + 24s" (Ra’uﬂ/uhf - rRa’uB’u)} + O()‘g)7 (3.60)
and the acceleration-dependent terms are given by

[,L)\O /

hlsul,a = g "gP {(s* = ) ao(gop + 2uug) + 8r52a(a/U5/)}
UA . .

+ 5290 95 {1257 + iz +1(35° = )i (gorp + 2uarug) }

+ O(Na?, N2a, \3). (3.61)

The explicit form for the second-order singular field is
S2 _ 1SS SR 6 1)
hyy = hip + Ry + by + hys,. (3.62)

The covariant forms of hils,, hSR and h5m are given by

hSS =\ 21 4 gﬂ gl, (55 9a'g — 7004’05’ — 14I’U(a/0'ﬁ) (7I’2 - 352) Ua/u/gx)

16 ,
—H2g g8 (AS) Royupry + N0

15 150s 6g’u gy (105 9o’ B (25I’ + s )

+20rs” (35r0 (o Rgryuou + (357 — 318”)u(or Raryuou — S Ro(arp)u)
+ 105" Raropr0 — 350r5°0 (o Rgryoue — 1087 (3512 — 178%)u(or R o

+ 25 (5r% + 265%) Ryrygre, — 70 [ (10r* = 3s*) oo

+4r(5r° — 4sz)u(a,aﬁ,)}3um—20(35r —53r%s —54)ua/u5/RWM>, (3.63)
g g P
by = =2 = <ga,5, <3s2hR1 + (s = r*)hyy — b3 — 2rh5;>

2 R1
*S h o B! + 2h ( /O'B/) + 2h ( /UB/)
— 2hR1ua/u5/ — Rt (0'0/0'5/ - 2ru( 108 + (r2 — SQ)U,O/’U,B/)

+20h oy +2(r = $) + 2(rF — $%)hyyusn

+4rh ’U,( /0'13/) — 2h Ja105/> +O<)\O), (364)

o 5/577’1 13/
1M9M g o' B + O()\O), (365)

hﬁm — —\"
72 S
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where
1
dmag = 1| 3 (2855 + gaph™) + du b, v + (gas + 2uaup) u“u”hf}l}} . (3.66)
and

2u9% 90 (garsr + 2u0rup)
B A2s3

hi;, = (62 + a6: ) oy O (V). (3.67)

We are free to cast these formulas into any coordinate system we choose.

3.3 Puncture as a coordinate expansion

To solve Eqgs. (3.9) numerically, we will require the puncture field in a specific set of
coordinates. With covariant expressions for the singular field it is straightforward to
construct the puncture field as an expansion in coordinate differences Az® =z — xo‘/,
and truncate at some order of Az to obtain the puncture field. The only ingredients
needed are the coordinate expansions of the covariant quantities 0% in powers of Az

Following [88], the expansion of o, is found by writing
o(2,7) = 2 gu () A% Az + Agrgrs (/) A2 Az Az
, = 290/51 o/ By T xT X T
+ Bugrys (&) Az AxP Az Ax® 4. (3.68)

then acting with partial derivatives on (3.68) to determine the coeflicients Aqsp:/,
By gys ete. using ooy = 20(x,2’). Similarly, the expansion of ggl can be found

by writing the expansion
gg/ = 55/, + Gaé/,y/ (I'I)Al',y/ + Gaﬁ,/,yl(sl (IZ‘/)AI'W/AZ'(S/ +..., (369)

acting with partial derivatives, and then determining the coefficients using the identity

o ggf;y, = ggija“/ + Fg;w 92/07/ = 0. The end result is an expansion of the form

(0) 3) (6) 9)
1 P 137 P 13 ,P /3 ,P 13 b
WP (m,a') = — =280 4 \0Z@Bl | \ZoB L 2298 L O(A®) (3.70)
af\ A 3 5 7 ’
p p p p
(2 (5) (8) (11)
1 POI/ / Pa/ ’ Pa/ ! Pa/ ’
hE (e, a) = 55 pf A pﬁﬁ + A0 pgﬁ +A pwﬁ +0(\Y), (3.71)

’ ’ 1/2 n . . ’
where p = <P#/V/Aac“ AxY ) . The 77&,%, are polynomials in Ax* of homogeneous
order n. Each polynomial is of the form

730(;%/ (x,2") = ’lfjvo(;%,u/lm% CAYN Z . (3.72)
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We are now in a position to use Egs. (3.9) to solve for the first- and second-order residual
field. In the next chapter we will show how to implement Egs. (3.9) numerically for
the first-order field, using the puncture field specialised to the case of circular orbits in
Schwarzschild.



Chapter 4

Frequency-domain application of
the puncture scheme at first

order.

We have now formulated a practical way of solving the first- and second-order field equa-
tions, by means of the puncture scheme. Even more, we have constructed a covariant
expression for the puncture field that we can write in any set of coordinates. Now we
want to take this formalism and implement it to solve the field equations, for quasi-
circular orbits in Schwarzschild. In this chapter we will describe a frequency-domain
formulation of the puncture scheme, and we will present results of a concrete numerical
implementation at first order. Similar results have been obtained by numerous authors
using slightly different methods, but our results serve as validation of both our method
and our code. In subsequent chapters, we will discuss and resolve the difficulties that
arise in implementing our formulation at second order. Here, and for the rest of this

thesis, we will refer to standard Schwarzschild coordinates as (¢,r,6, ).

4.1 Quasicircular orbits in Schwarzschild

We consider the simplest nontrivial scenario: quasicircular orbits in Schwarzschild space-
time. These trajectories are approximately circular on the timescale of a few orbits, but
they gradually lose energy due to the dissipative piece of the self-force. For simplicity,
in this section we neglect the self-force and treat the orbit as a circular geodesic. This is
justified by the fact that on the short timescale of a few orbits, the cumulative effect of
the self-force is small, and the orbit remains within a distance ~ ¢ of a circular geodesic.
So, in calculating the first-order metric perturbation on the orbital timescale, we may

consistently treat the orbit as that circular geodesic. In later chapters, when proceeding
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to second order, we will generalize the discussion to account for the orbit’s dissipative

evolution.

We begin by revisiting some familiar details of Schwarzschild spacetime. The metric

of Schwarzschild spacetime, in Schwarzschild coordinates, is given by

gaﬁda:“dazﬁ = —fdt® + = dr? + r2d6® + r?sin? 0dy?, (4.1)
2M
f=1—-—. (4.2)
r

The event horizon is the hypersurface r = 2M. Consider a timelike geodesic with tangent
four-velocity u®. The spherical symmetry of the background spacetime implies that
angular momentum is conserved, which, in turn, means that orbits are planar. Without
loss of generality, then, let our orbit be confined to the equatorial plane, § = 7/2, so that

u? is identically zero. Since 585) = 0 and 5?@) = 0 are Killing vectors, the quantities
&= —f(oé)ua, £ = §(O:0)ua (4.3)

are constants of the motion, representing the (specific) energy and angular momentum

of the orbit, respectively.

The normalisation of the four-velocity, u®u, = —1, together with Eq. (4.3), imply

the following equation of motion for geodesic trajectories in Schwarzschild spacetime:

(Z:)zzgz_v(r), V(r)Ef(1+°iﬂ22), (4.4)

where V(r) is the effective potential and 7 is proper-time along the geodesic. Differen-

tiating the first equation with respect to 7 yields

& B _ldV(T)
dr2 2 dr

(4.5)

For circular orbits, the radius r of the orbit is a constant, which we will denote as

ro. Setting d?r/dr? = 0 in Eq. (4.5), and solving for 7, we obtain

L2 122\ '/

Eq. (4.6) informs us that circular orbits exist, provided #? > 12M?2. For a given .
that satisfies £ > 12M?, there are two circular-orbit solutions: a stable one [+’ in Eq.
(4.6)] and an unstable one [--” in Eq. (4.6)]. For the case .#? = 12M? there is a point of
inflection in the effective potential where these two radii converge. This is the radius of

the “innermost stable circular orbit” (ISCO), given by

risco = 6M. (4.7)
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From Eq. (4.6) it follows that any circular geodesic orbit at radius r has specific angular

momentum

MT’O

L= 4.8
07 1 —3M/ry’ (4.8)
and since &2 = V (r) for circular orbits, it has specific energy
2
&¢ _ (4.9)

T 1-3M/ro’

where fo = 1—2M/rq. Referring to the four-velocity for circular orbits with the notation

u§, Egs. (4.3) tell us that uf) and uf are given by

1 M/rd 12
t_ (L0 ) 4.1
"o ’ o <1 - 3M/r0> (4.10)

The angular-frequency, Q = dg/dt, is easily derived from Egs. (4.10) using Q = uf/uf
and Q = dp/dt = uf /uf, which yields

(4.11)

;

The first-order stress-energy tensor for a point mass moving along a generic world-
line was given in (1.23). Specialising to a circular equatorial orbit in Schwarzschild, it
is given by
—E5(r = 10)3(0 — 00)3(0 — Q) ugatigs. (4.12)

£,.2
UpTy

Here we are taking ¢(t = 0) = 0 without loss of generality.

4.2 Fourier-harmonic decomposition

We now focus our attention on how to solve the puncture-scheme Egs. (3.9a) and (3.9b)
for the first-order field. Rather than solving for the retarded field hiﬁ itself, we will
instead solve for its trace reverse, Btlxﬂ‘ The incentive is that the gauge constraint (2.19),
given in terms of B}lﬂ, reduces the number of equations needed to be solved, as we will
see in this section. To take advantage of this, we re-write Egs. (3.9a) and (3.9b) as

equations for Ba g0 s

Eo5[ AR ] = —Eop A7 inside T, (4.13a)
E.5[h*] =0 outside T (4.13b)

Our goal now is to solve Egs. (4.13), for the particular case of circular orbits in Schwarzschild.
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The most economical way to do this is by decomposing the retarded field into
Fourier-harmonic modes. The motive is that the resulting field equations separate,
leading to ordinary differential equations whose derivatives are just with respect to r.
These are much easier to solve numerically than the partial differential equations in four

variables.

We write h}lﬂ as a sum over tensor, spherical-harmonic modes, as

00 L 10

— M 7 ilm

hé{ﬁ (t, T, 0, QO) = ; Z Z Z Qg hifm (t7 T)Yag (07 2 T)' (414)
{=0 m=—/{ i=1

The factor of p/r serves to factor out the scaling with x4 and the dominant behaviour at
large r. Here we use the particular harmonics introduced by Barack and Lousto [89], as
slightly modified by Barack and Sago [62]:

1 0 00
110 f£2 00
oyt =— / yim, (4.15a)
V2l o 0o 0 o0
0 0 00
0100
_1 1
ij}m:f— 000 ytm, (4.15b)
V21 0 0 0 0
0000
1 0 00
0 —f2 00
ai" = L d yom, (4.15¢)
V2o 0o 00
0 0 00
0 0 9 9,
Y4€m: r 0 O O 0 Y@m
o 26+1) | 9% 0 0 0 ’
d, 0 0 0
(4.15d)
0 0 0
-1 0 0y O
"= £ 0T fytm, (4.15¢)
2(+1) | 0 8 0
08, 0 0
000 0
2000 0
v — ytm, (4.15f)
V21001 0
00 0 s
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00 0 0
2 00 0 0
g — ytm, (4.15g)
IMU+1) [ 0 0 Dy Dy
0 0 D —s2Dy
0 0 s‘law —50p
)y L — oo 00 ytm (4.15h)
200+ 1) | s7'9, 0 0 0 ’
—s8 0 0 0
0 0 0 0
-1 0 0 -9, —s0
9 rf i 5% TG ym (4.151)
200+1) | 0 579, 0 0
0 —sdy O 0
00 0 0
e ! v, (4.15))
o 2\ £+ 0 0 s'D; —sD,
0 0 —SDQ —SD1

s=sinf, A = ({—1)(¢+2), Y™ = Y (0, ) are the standard scalar spherical-harmonics,

and
Dy = 2(0yp — cot 0)0,, Dy = Opg — cot 0 Jp — s 20pyy. (4.16)

The radial factors involving r and f are introduced for dimensional balance and for

settling the horizon behaviour.

This basis is orthogonal in the sense that
2 ™ ) o
/ d(p/d9 sin enaunﬂuyjfmyotéf "= /ﬁji(sij(Sgg/(smm/7 (417)
0 0

where % = diag (1, f=2,r72 r—2sin=2 9), and [62]

m:{ f5i=3, (4.18)

1 otherwise.

The coefficients a;; are introduced in (4.14) for the purpose of simplifying the form of
Egs. (4.25) below. They are defined to be

. 1, i=1,2,3,6,
ait = 5 X [0+ 1)]7/2, i=4,5,8,9, (4.19)
[(C—1)e(+1)(L+2)]7V%, i=7,10.

Let us introduce the parity transformation, § - 7m—60, p - 7+¢. Thei=1,...,7
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tensor harmonics are even (i.e. do not change sign) under the parity transformation
and the i = 8,9, 10 tensor harmonics are odd (i.e. change sign) under the parity trans-
formation [90]. We will refer to the ¢ = 1,...,7 modes as even-parity modes, and the

1 =28,9,10 modes as the odd-parity modes.

As the mode decomposition stands in Eqs. (4.14), the field equations (3.9) would
separate into a set of two-dimensional partial differential equations in the time domain,
with derivatives in both the ¢ and r variables. We further decompose into frequency-

domain modes as

Biém(tv T) = / dw Bilmw (T)eith . (420)

—00

The range of frequencies of the first-order field may be determined from the fol-
lowing argument. In the same vein as (4.14), Tiﬁ may be projected onto a basis of the

same ten, tensor harmonics in the form

o

10
=X Z / dw Y 5" €™ Tigmu(r) (4.21)

i=1 =0 m=—f =X

and, from Eq. (4.17), we readily obtain the i¢mw-modes

00 2 T
Titmer(r) = 5—— / dt / dep / dfsin @ n**n® Ty s Yitlm e, (4.22)
1
0 0

When we substitute Tlﬁ from Eq. (4.12), recalling the factor 6(¢ — Qt) in T} g the
exp(—imyp) factor from the spherical harmonic will integrate against exp(iwt) to yield
d(w—mS). This tells us that for circular orbits, the frequency modes of the stress-energy
tensor are integer multiples of the angular frequency, 2. In light of this, the retarded
h'P and h'R

field naturally picks up the same range of frequencies, as do , and we may

write the following ansatz for the spectrum of the first-order fields:
W= wpy = mf. (4.23)

Based on this the mode-decompositions (4.14) with (4.20) may be re-cast as

14

10 o
hag = ﬁ; Z:% Z aie Yog" e " higm(r) (4.24)

where in Eq. (4.24) and for the rest of the thesis, we omit the w-dependence in the
subscript of higp, ().

After decomposing the field into tensor-harmonic modes, the partial differential

equations (4.13) separate into a set of ten, coupled, ordinary differential equations for
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each /m-mode, which read

Eipm| W™ = —Ejy [ A7) = ST inside T, (4.25a)
Eim[h'] =0 outside T, (4.25b)
with
Eigm[h] = O hign (r) + M7 hjgm, (4.26)
where i,j = 1,...,10, 02¢ is the scalar-field wave operator, given by
1 2M
024 = -1 <f283 + ?f&q + wfn> + Vi(r), (4.27)
and Fl2M e+1)

The second term on the right-hand side of (4.26) is the vector formed by pre-multiplying
the vector ﬁjgm(r) by the matrix M%¥. These are first-order differential operators that
couple between the various ngm’s (with the same ¢,m). Explicit formulas for them are
given in Appendix D. As expected, one finds that the seven equations for the even-
parity modes hjp, with @ = 1,...,7 decouple from the remaining three equations for
the odd-parity modes hjg, with i = 8,9,10: we have M% =0 for any i = 1,...,7 with
7 =28,9,10, and for any ¢ = 8,9,10 with j =1,...,7.

Similarly, the four gauge equations, Vaﬁag = 0, separate into four gauge equations

at each (¢, m)-mode. Suppressing the ¢, m mode numbers in the subscript, they read

iwmhi + f <z‘wm/‘zg + Opho + }_Af - ;:f) =0, (4.29a)
— iwomBs — O + 2O — { (hi — hs — fhs — 2fh) =0, (4.29b)
— iwmhy — % (rdyphs + 2hs + £(€ + 1)hg — h7) =0, (4.29¢)
— iwpmhg — % (rdyhg + 2hg — hig) = 0. (4.29d)

Egs. (4.25) may be solved numerically for the modes of the residual fields, once
formulas for the modes of the puncture have been provided. Wardell first obtained
analytical formulas for the i/m modes of the first-order punctures, for circular orbits in
Schwarzschild [74]. T independently derived formulas for them and successfully checked
my own results with those of Wardell. Expressions for the punctures and details of the
derivation of their frequency-domain, harmonic modes are given in Appendix C. In the

coming sections we detail the algorithm for how to solve Egs. (4.25) numerically.
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Sector Modes calculated | Modes calculated | Vanishing modes
from the field from the gauge
equations conditions
£>2, {+m - odd 1=09,10 1=8 1=1-7
(>2, {+m-even i=1,3,56,7 i=2,4 i=8,9,10
{=1,m=1 i=1,3,5,6 1=2,4 1=17,8,9,10
¢>2even, m=0 i=1,3,5 i=6,7 i=2,4,8,9,10
£ odd,m = 0 - analytic | ¢ =38 none 1#8
{=1,m=0 - analytic | 1 =28,9 none 1#38,9
¢{=0,m=0 - analytic | t=1,3 6 1 =2,4,5,7,8,9,10

Table 4.1: Summary of how the solutions for each mode are obtained. The first column
displays the different sectors, into which the modes are divided. The second column lists
the non-vanishing modes of the fields hiem that are calculated by directly solving the wave
equations (4.25a) numerically. The third column lists the non-vanishing modes of the fields
that can be calculated by solving the gauge conditions (4.29a)-(4.29d) algebraically. The odd-
parity stationary modes (m = 0 with odd ¢) and monopole mode (¢ = 0 = m) can be solved

for analytically.

4.3 Hierarchical structure of the boundary value problem

In this section we will describe the hierarchical structure of the ten coupled equations,
in (4.25a) and (4.25b). This structure significantly simplifies the task of numerically
solving the equations. Focusing on the left-hand side of the equations, we observe that
the odd-parity modes, ¢ = 8,9, 10 are coupled, and the even-parity, ¢ = 1,...,7 modes
are coupled, but these two sets of modes do not mix. Focusing on the right-hand side

of Egs. (4.25), we find that the even-parity modes (i = 1,...,7) of the effective source,

Sffni as defined in Eq. (4.25a), are non-vanishing for £ + m = even, and the odd-parity
modes (i = 8,9,10) are non-vanishing for £ +m = odd. We emphasise that this holds
for orbits confined to the equatorial plane (6 = 7/2), but would not be true in general.

There are also modes that vanish only when m = 0. Overall, the non-vanishing modes

of Sffni fall into the structure
{=0,m=0, 1=1,3,6,
¢ odd,m =0, 1=38,
l even,m = 0, 1=1,3,5,6,7,
(4.30)

{+modd,m >0, ¢=38§,9,10,
{=1,m=1, i=1,...,6
{+meven,m >0, ¢=1,...,7.

We impose regularity at the future horizon and future null infinity. Regularity

at the horizon means that the components of the perturbation in coordinates that are

regular on the horizon, like advanced Eddington-Finklestein (aEF) coordinates (v =
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t+1r*(R),R =r,0,p), are smooth there. The aEF components, BL?,EF), are related to

the Schwarzschild components, l_lm,, of the metric perturbation via

P = Ty, (4.31a)
BE)C;%EF) = Btr - f_lﬁtta (4.31b)
_ hi - 2h
plabry _ Mt g 2 4.31c
RR f2 f ( )
RTE) = g — g, (4.31d)
7(aEF) 7 17
hs‘hp : = h7”<,0 - f 1htcp- (4316)
and Efﬁ,EF) = wa for all other components. Referring to the mode coefficients Bigm(v, T)

in Eq. (4.14), prior to the frequency decomposition, we have the relations

R :ﬁ [P (v, ) + fhaem(v,7)] Y™, (4.32a)
LB :ﬁ [Boem (v,7) = Bigm(v,7) = 7~ haem (v, 7)] YO, (4.32Db)
7(aEF) 1% - - 'm

hRR =T = 5 [hlﬁm(vv 7’) - hQZm(Ua 7’)] Y ) (432(3)

Varf?

B(aEF):_$ h (0, _h (v, 8Y£m
o ﬂrf£(£+1)[4z (v,7) = hsem(v,7)] g
o [hgem (v, 1) = hogm (v, 7)] csc 00,Y*"™. (4.32d)

+\/§7~fz(e+1)

From Egs. (4.32), we see that for the components to be smooth at the horizon, the

modes have to satisfy the following conditions:

R (v, 1) = Bi+17lm(v, ) 4+ fBiom (v, 1) (4.33)
for i = 4,8, where B, is C*° at r = 2M,

Roem (0, 7) = higm(v,7) + f2Bogm (v, 1), (4.34)

and R (v,7), i =1,3,5,6,7,9,10 are C® at r = 2M.

Regularity at r — oo means that the metric perturbation is asymptotically flat at
future null infinity, i.e. its Cartesian components fall off at least as fast as 1/r at large

r (at fixed u =t — r,), and its r-derivatives fall off faster than that.

For the nonzero-frequency modes, we further specify that the solutions behave as

ingoing waves at the horizon, and outgoing waves at r — oo.
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The non-vanishing modes of the effective source, given in (4.30), combined with
the boundary conditions given above, specify the non-vanishing modes of the solution.
The gauge conditions (4.29) allow us to solve for a subset of these modes algebraically,
without the need to numerically solve ODEs for them. With this in mind, we may

compute the modes using the hierarchical structure summarised in Table 4.1 [89].

4.4 Homogeneous solutions

In this section we describe how to solve the homogeneous wave equation FEjp,[h] = 0,
whose solutions will be used to obtain the inhomogeneous solutions to Egs. (4.25a) and
(4.25b), in the manner to be explained in the following section. We will first quote the
analytically known general homogeneous solutions for the monopole and odd-¢, station-
ary sectors, and then proceed to describe the algorithm for solving for the remaining
modes numerically. For each mode, we seek two separate sets of homogeneous solutions.
For each non-stationary mode, one set are regular and behave as outgoing waves at
infinity, and one set are regular and behave as ingoing waves at the horizon. For each
stationary mode, there are no waves at either of the boundaries. Rather we seek two sets
of homogeneous solutions, one set which is regular at infinity, and one which is regular

at the horizon. We will use the notation h, (r) and h;, (r) respectively, for the two

ilm

different types.

To aid the coming discussion it will be useful to write down the homogeneous

equation that we are solving, since we will refer to it frequently in this section. It reads

D22 iem (r) + MY hjgm = 0. (4.35)

4.4.1 Analytical solutions for the monopole (¢ =0,m = 0) mode

For the monopole modes, only the ¢ = 1, 3,6 modes are non-zero. The ¢ = 1,3 monopole
field equations can be further simplified using the gauge equation (4.29b) to decouple

the hgoo mode;

- A T - 1 - -
- — (s - SUr - . 4.
heoo 2f3 h10o 28 h300 + 57 (h100 — fhaoo) (4.36)

The remaining field equations for higg and hsgg are given by

_ 1 _ _ _ _

92h1go = =T [(r — 4M) 9, h10o — haoo — f2 (rOrhsoo — hsoo)] (4.37a)
_ 1 _ _ 1 _ _

83h300 = _ﬁ 70, h3go — h3go + P ((4M — 7“) Orh10o + thO) . (4.37b)
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Prior to stating the homogeneous solutions, we define

M (- - 1- 1 -
H=—1hy, hpr,—shgg = ———5—h
1 { i r2 % T 12gin2g Wz}
= M e+ FRso. = (Raoo — o) T (4.38)
= i 100 3005 72 100 300) 5 1600 ¢ 5 .
The inverse relations are
— 'r‘ — —
hioo = 2\/7?; (hue + f2har) (4.39)
— 7"' — —
h3oo = 2v/T— (hue — f2her) - (4.40)
pf
_ 1 -
hgoo = 4\/7?Eh997 (4.41)

A complete basis of homogeneous solutions to the two coupled monopole field equations
(4.37) is given by [65,89]

M
= {-Lpe). e, Lo}, (4.42b)
MY MB M3

Hp = {% [(W(r) +rP(r)fIn f —8M°In(r/M)] ,

]02,17“4 [K(r) — rQ(r)f In f — 8MP(2r — 3M) In(r/M))] ,
%3 (373 —W(r) —rP(r)fIn f + 8M* In(r/M)] } , (4.42d)
where
P(r) =r*+2rM +4M? (4.43a)
Q(r) =713 —r2M — 2rM? + 123, (4.43D)
W(r) =3r3 —r?M — 4rM?* — 2?781\43, (4.43c)
K(r)=r’M — 5r*M?* — ?T’MS + 28M4. (4.434d)

None of the four solutions are regular at both boundaries. Rather, H4 and Hp are
regular at the horizon, but not regular at » — co. Hg and Hp are regular at r — oo,

but not regular at the horizon, according to the criteria set out in Sec. 4.3.

As is well known, homogeneous monopole perturbations of Schwarzschild spacetime
are always perturbations toward another Schwarzschild solution. In our case, solution

H 4 has a mass-energy of 1/2, Hp has a mass-energy of 3/2, and Hp and H¢ are pure
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gauge. These mass values can be found by, e.g., transforming the perturbations to a
“Schwarzschild gauge” in which they take the form g‘m 0M and then reading off 6 M.

4.4.2 Analytical solutions for the axially symmetric, odd-parity modes

0Odd ¢ > 1,m = 0 modes of the field are constructed, at each ¢, from the single function
hgtm—o(r). Denoting hgym—o(r) = ¢¢(r), the homogeneous field equation for hsgg.,,—o
[Eq. (4.35) with (D.1h)] takes the form

2he + Vi(r)ge = 0. (4.44)

The solution takes a different form for £ = 1 and ¢ > 2. We will discuss ¢ > 2 first and
then discuss the mode £ = 1 separately below. For ¢ > 2, solutions that are regular at

the horizon and at infinity are, respectively [89],

/+1
4 x { . n
p— 4.4
¢422(T) 1+ nzoanx ) ( 5)
/+1
Groa(r) = Ofp(r)Inf+—— Z b ™, (4.46)
where
=r/(2M) -1, (4.47)
and the coefficients read
l—n+1 Vi
" (l=n+1D(n+1)nl’ = kE+1

These solutions have the following asymptotic behaviour at the horizon (r — 2M, x — 0,
f — 0) and at infinity (r,x — o0):

) 2M7
Ppso(r) o { 7J;+1 T (4.49)

, T — 00,

b 5(r) oc{ fing, w2l

rTe, r — 00.

(4.50)

The solution ¢, ,(r) is regular (analytic) at the horizon but diverges at r — oo, whereas
the solution ¢Z>2(r) is regular at r — oo but irregular at the horizon (it vanishes there,

but it is non-differentiable).

For ¢ = 1, the function ¢; (r) of Eq. (4.45) fails to be a solution of the homogeneous
part of Eq. (4.44) (although ¢,_, (r) still is a solution). Instead, the general homogeneous
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solution takes the simple form

¢ (r)  =1/r, (4.51)
b (r) =17 (4.52)

As stated above, the i = 8 mode is the only non-vanishing mode for odd ¢ > 3, m =

0. But for £ = 1, we find that a homogeneous solution

- AM?hg, o(r = 2M)
h9,1,0 =

4.53
. (4.53)
must be added to ensure regularity at the horizon. This stems from the second regularity
condition below Eq. (4.32d).

4.4.3 Numerical solution for the higher modes

The remainder of the modes are obtained through solving (4.35) numerically, using
retarded boundary conditions at the (future) event horizon and at (future) null infinity.
For the purposes of this discussion it will be useful to sometimes refer to the boundaries
in terms of the tortoise coordinate, r, = r + 2M In[r/(2M) — 1]. Spatial infinity is at
r« — 00, or equivalently » — oo, and the event horizon is at r, — —o0, or equivalently
r— 2M.

Since we are interested in constructing the physical retarded solutions, non-stationary

—iwm (t—T4)

modes (w,, # 0) should represent purely outgoing waves e at infinity, and

— W (t+7x)

purely ingoing waves o< e at the horizon. From this we demand that the

solutions exhibit the following asymptotic behaviour:
Bt

ilm

(re — £00) ~ eFiwmrs (4.54)

When we construct boundary conditions, at r — oo we assume a priori that the radial
fields admit an asymptotic expansion in 1/7 up to a factor of exp(iwry), and at r — 2M
we assume an asymptotic expansion in r — 2M, up to a factor of exp(—iwr,). In the
numerical implementation we obviously cannot use r, = +oo for the location of the
boundaries. Instead, we select finite values 74, /i, for the location of the boundaries
at infinity/the horizon. These locations are chosen to be close enough to infinity/the
horizon that any change bringing them closer does not affect the first 16 significant digits

of the numerical solution.
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With this in mind, for the radiative modes we use the following expansions for the

boundary conditions:

k$1x i
hzém(rom) - elmeDut Z k ) (455)
k=0 Tout
kr?lax
Bi_ém(rin) = e—lme‘i*n Z b’;g (Tin - 2M)k 5 (456)
k=0

where 7 Jout = = 74(Tinjout). The coefficients ai and bl depend on ¢, m, wy,. Since the
equations are second order, we also require boundary conditions for the first derivatives of
the fields, which may be taken from Egs. (4.55) and (4.56). We numerically determine the
k.:l:

+ax for each of the sums at every ¢mw,, mode, based on the requirement that the next

term in the summation has relative magnitude less than 10714, compared to the partial
sum. The coefficients ai and b} are determined by substituting the ansatz (4.55) and
(4.56) into the field equations themselves and generating recurrence relations between
the ai and (separately) between the b;. We omit these recurrence relations here, but
the reader is directed to Appendix A of [91], where they can be found. For each ¢mw,,
there are d freely specifiable parameters a}%, and d more freely specifiable parameters b,
where d is the number of coupled equations to be solved according to the second column
in Table 4.1. If we arrange these freely specifiable parameters in vector form as @ =
{a1,a9,...,aq} and b= {b1,ba,...,bg}, then by choosing d linearly independent vectors
a (E) we obtain a basis of d linearly independent asymptotic homogeneous solutions B;;Sl
(hzem) k=1,...,d, for each fm mode. For example [74], for the odd-parity radiative
modes we have d = 2, once the gauge condition (4.29d) has been imposed, i.e., one needs
to solve for hogm, and higsmy,. For the outer homogeneous solutions the two elements of
the basis are formed by setting {af,al’} = {1,0} and {af,a{’} = {0,1}. Similarly, we

can repeat this with {bg, b(l)o} for the inner solutions.

For even-parity stationary modes (¢ even, m = 0), there are no ingoing/outgoing
waves at the boundaries. Instead, we impose numerical boundary conditions that are

regular at the horizon/infinity as

kmax 1 —1
. al + a}. log rout
W (o) = 3 (T T I0E o) (@57
=kt Tout
kl’?l'dx
’Lfm rln Z bz Tln_2M) (458)
k=k_.

min

In contrast to Egs. (4.55) and (4.56), for the static modes the sum in the ansatz starts

at some kim that is not necessarily zero. How they are determined, and the form of

the recurrence relations for the a};, EL}'{, b};, is discussed in [91]. The extra logroyt term in
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(4.57) is needed due to the fact that (4.55) does not produce the necessary number of

freely specifiable parameters a}; (d = 3 in this case - see Table 4.1).

With boundary conditions in place we solve the homogeneous equation (4.35) for
each i¢m mode. The full computational algorithm is described below, in Sec. 4.6. After
computing the homogeneous solutions, we may implement the puncture scheme equa-

tions (4.25a) and (4.25b) using the worldtube method described in the coming section.

4.5 Inhomogeneous solutions and the worldtube method

In this section we will describe the worldtube algorithm for solving the puncture scheme
equations (4.25a) and (4.25b). The worldtube method for solving the first-order equa-
tions was developed in collaboration with Adam Pound and Leor Barack, but its im-
plementation in the later sections of this chapter was entirely my work. Our method
differs from the one used in a similar calculation in [74], where instead of a worldtube, a
window function is used. In our method we construct a worldtube I' around the particle
located at radius 7o, shown schematically in Fig. 4.1, and solve for the residual field
R inside T' and for the retarded field modes, hjsy,, outside T.

modes, h;j

I

;
| |

| |

| |

| |

| |

| |

1 — — | > r
r oo, r

Figure 4.1: The worldtube I' : 7 € [r_, r4] centered on the worldline, such that ro =
(r—r )2

Let

P(r) = : ( ;) for £ =0, m =0, (4.59a)

W(r) = <h8(r)> for £>0, m =0, and £ odd, (4.59b)
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for £ >0, m =0, and £ even, (4.59c¢)

)
)
)
hu(r)
P(r) = hg(T; for 0 =1, m=1, (4.59d)
)

_hg(T’)) for £ >0, m >0, and £+ m odd, (4.59)
(r)
(r)

P(r) = | hs(r) for £ >0, m >0, and ¢ + m even, (4.59f)
(r)
(r)

with analogous definitions for 1/ and 9" in terms of the modes of the residual field, hwm,

and the modes of the puncture field, h%, . respectively. In this notation the first-order

ifm>

puncture-scheme equations (4.25) can be cast as

2
% + B(j%} + A =0 outside T, (4.60)
d2 R d R
d;ﬁz + BdL + AyYR = Jeft inside T, (4.61)

where A and B are r-dependent d x d matrices and the source J°f is a column vector
with d elements. Tt is comprised of modes of ST in the same format as Egs. (4.59).
The domain is r € (2M, c0).

R
Now let ¢ = 8¢¢ and YR = (wa R) . Write the ordinary differential equations
T

X
in first-order form, such that

(jlw + Ay =0 outside T, (4.62)
wR
+ AYR = gt inside T, (4.63)

R 0 —1 N 0
where A = dxd dxd is a 2d x 2d matrix and Jeff = d has 2d elements.
A B Jeff

Then let & = (1&[11 e l/}[Qd]) be a 2d x 2d matrix of independent homogeneous solutions

Y = ViK . This implies ®, + A® = 0. The general solution to Egs. (4.62) and
(K] G ,
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(4.63) is
)T =®a, r<r_, (4.64)
Yt = dat, >y, (4.65)
YR =0 </ oLy 4 aR> , r— <r<ry, (4.66)

where a* and a® are arbitrary constant 2d-vectors. Direct substitution of these expres-

sions into Eqs. (4.62)—(4.63) verifies that these are general solutions.

To determine a* and a”®, we impose the jump conditions

PR*) = F (%) = 7 (r%), (4.67)

which yield
a®—am == r )P (ro), (4.68)
a®—at=— /r+ oty — (I>_1(r+)1ﬂp(r+). (4.69)

Here we have two vector equations for the three unknown vectors a+ and a®. To
solve the equations, we impose retarded boundary conditions. We write d independent
homogeneous solutions that are regular/ingoing waves at the inner boundary and d that
are regular/outgoing waves at infinity, and we want an inhomogeneous solution that

satisfies both those conditions. The matrix ® can then be written as

O = (Y- V] s - - Vpas))s (4.70)

where vf)[k_} is a homogeneous solution regular at r = 2M, and 1/3[k 4] is a homogeneous

solution regular at co. From Egs. (4.64) and (4.65) and the boundary conditions, we

have
a” = (ay,...,a;,0,...,0), 4.71
at=(0,...,0,af,...,a;)7, 4.72)
for some constants ali.
Writing a® = (a?_,...,afﬁ,aﬁ,...,aﬁr)T, we now have 4d scalar equations,

namely Eqs. (4.68), (4.69), (4.71) and (4.72), for the 4d unknowns, aX. and a;". Sub-
tracting Eqs. (4.69) from Eq. (4.68), we find

a = /T+ &1 jeft g + q)_l(’l“Jr)?Z)P(’l“Jr) . @_1(7“7)1217)(7",)7 (4‘73)
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where

a= (—al_,...,—a;,af,...,a:)T. (4.74)

Substituting this back into Eq. (4.69) or (4.68), we find

T+
-1 3 -1,
—J v r = @,

top

- ((I)golt’lﬂfp) ‘7‘,

a® =

, (4.75)

-1
where (I)top

then given by Eqs. (4.64)—(4.66) with Eqgs. (4.73) and (4.75).

and @, Olt are the top and bottom d rows of ®~!. The complete solution is

For the modes obtained from the gauge conditions (as listed in Table 4.1), the
retarded field is calculated using Eqs. (4.29), and the residual field is recovered by
subtracting the puncture directly from the retarded field. (Note that the modes of the

residual field are not guaranteed to satisfy the gauge conditions.)

This completes our formulation of how to solve the puncture scheme equations
(4.25a) and (4.25b). Having calculated h% . the full residual field components are

IR ilm ,—iwmt :
alghingaﬁ e . In the next section we

found from the mode-sum 7156 = u/rd;

ilm

will describe how we implemented this at first order and present our results.

4.6 Implementation and results

4.6.1 Computational algorithm

For the purpose of this discussion we will refer to the the £ = 0 mode and the odd ¢,
m = 0 modes as analytical modes. We will refer to the m # 0 modes, and the even /¢
m = 0 modes that are listed in the second column of Table 4.1 as numerical modes. We
will refer to all of the modes that are listed in the third column of Table 4.1 as gauge

modes. The calculation of the modes of the first-order field proceeds as follows.

e Fix the radius r( of the orbit, and set the mass of the large black hole to be M = 1.

e For the analytical modes, the homogeneous solutions are obtained analytically as

prescribed earlier in Secs. 4.4.1 and 4.4.2.

e For each numerical mode we construct retarded boundary conditions using the
ansatz in Eqgs. (4.55) - (4.58). By substituting the ansatz into the homogeneous
equation (4.35), we obtain recurrence relations for the coefficients. We used Math-
ematica to aid this calculation. The recurrence relations can be found in full detail
in [91]. We have constructed our own recurrence relations and checked our results

numerically against the expressions in [91].
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e For the numerical modes we feed the expressions for the boundary conditions into
a numerical C4++ code. The series in the ansatz for the boundary conditions

truncates automatically at k = k& We determine the cutoffs kt

o ax: ax for each

¢, m,w, such that the next term in the summation has a relative magnitude less

than 10714 compared to the partial sum.

e Then for the numerical modes we solve the homogeneous equations (4.35) using
an 8th-order, Runge-Kutta Prince-Dormand routine (RKPD), which can be found
in the Gnu Scientific Library (GSL) repositories [92]. This is an adaptive routine.
In that routine we set the absolute accuracy goal (eans) to 1076 and the relative
accuracy goal (€pe1) to 10714, €e,hs and €, were determined such that reducing
them made no difference to our numerical results up to the 16th significant figure.
We solved using outer BCs from rq, to r—, and using inner BCs from ry, to ry,
where r4 are the boundaries of the worldtube I'. We set r4 = rg == M. We set the
outer boundary to be roy = 104 M taking into account that moving the boundary
further out did not change our results for the homogeneous solutions up to the
16th significant figure. Using similar considerations we set the inner boundary to
be 7y = 2+ 1078M.

e For all of the modes, we construct JF from the modes of hP! given in (C.25).

e We calculate the constant vectors a® and a”® for the numerical and the analytical
modes according to Egs. (4.73) and (4.75), using the following method. We invert
the ®(r) matrix using the LU-decomposition method and compute &~ (r)J (7
at every value of r, on a grid between r_ and ry. We found that we required
a grid-separation of 1073, in order to evaluate the integrals in (4.73) and (4.75)
accurately. We found that reducing the grid-separation did not alter the result
for these integrals up to machine precision. We calculate these integrals using a

routine based on Simpson’s rule.

e For the analytical and the numerical modes, we calculate the retarded field directly,
in the regions to the left and right of I" using Eqs. (4.64) and (4.65), respectively.
Inside I" we calculate the residual field using (4.66), evaluating the integral as
described above, and adding the modes of the puncture to obtain the full retarded
field.

e For the gauge modes, we calculate the retarded field in all regions from the gauge
conditions (4.29). Whilst at every stage of this algorithm it sufficed to use double
precision variables, when it came to computing the gauge modes we encountered
siginificant numerical errors, in particular in the region close to riy,. We established
that this was due to subtracting one large number from another in the gauge
conditions (4.29), for which more digits beyond double precision were required.
We found that using long double variables to compute those modes resolved this

issue and gave accurate results.
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e We run a self-consistency check on our solutions by checking that the matching
condition (4.67) holds at the tube boundaries.

The monopole mode requires some additional consideration. Physically, this spherically-
symmetric mode describes the perturbation in the mass of the Schwarzschild background.
More precisely, the perturbed geometry g + h™°"°P0e at 1 < g is Schwarzschild with a
certain mass M + M., and the perturbed geometry at r > rg is again Schwarzschild,
with a different mass M + dM~. It can be shown that the mass difference is simply the
geodesic energy of the particle: M~ — M. = ué&'.

Now, the Lorenz-gauge solution constructed as above, which is regular both at the
horizon and at infinity (and anywhere else) was first derived by Berndtson in [93]. It
can be shown (most easily by applying the Abbott-Deser conserved-integral formulation

as explained in Ref. [65]) that, for Berndtson’s solution,

pué (ro —3M)
= 4-
SM- (ro—20) r >, (4.76a)
(ro —3M)
M. = -1 . 4.
oM. 'uéa{(ro—2M) , r<rg (4.76b)

Historically, a different monopole solution has typically been used, in which

OMs =pé, r > T, (4.77a)
OM. =0, r <Tp. (4.77b)

In this more commonly used solution, the only mass in the perturbation is the mass-
energy of the particle. Unfortunately, the metric perturbation in this solution is not
asymptotically flat, but rather one of its components tend to a constant. This choice of
monopole leads to a poorly behaved, very slowly decaying second-order source. While
most people use this solution, in this work we use the former, asymptotically flat solution,

because otherwise the second-order source would behave badly at infinity.

We wish to highlight that the solution which contains mass inside the orbit remains
a physical solution. We may interpret it as a re-definition of the mass of the background,
M. Whereas in the solution satisfying Eq. (4.77), M is identified with the central BH’s
mass, Mpy, we can redefine the background mass as M = Mpy — dM.. This just
corresponds to redistributing the total mass of the system between the background
metric, g, and the perturbation metric, h. An alternative interpretation is that instead
of looking at a specific binary with a fixed black-hole and perturbation mass, rather
we are describing a family of binaries, each with a different black-hole and perturbation
mass. As such, going from the solution satisfying (4.77), to the solution satisfying (4.76),
corresponds to switching from a binary with masses p and M to a different binary with
masses u and M + dM..
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4.6.2 Results
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Figure 4.2: Modes of the first-order retarded and residual fields, for a particle in a circular
orbit, with radius ro = 6M. At the boundaries of the worldtube, at r+ = ro + M and
r_ = ro— M, the plots show that hl,, +hY,, = kit . At the particle, h7S¢ is nondifferentiable
whereas AT is smooth there.

We have performed numerous checks of our results. Fig. 4.2 shows the agreement
between ﬁﬁﬁn and ﬁzﬁm + ﬁzzm at the boundaries of the worldtube, at r4 = rg = M. The
ret

plots also show that while me is nondifferentiable at the particle, BZ}m is differentiable

everywhere within the worldtube.

Fig. 4.3 shows plots for a selection of modes for larger values of r. For the stationary
(m = 0) modes there are no oscillations, as to be expected, while the periodic behaviour
of the m # 0 modes can be seen in the wave zone at large r. For the ¢ = 3 non-stationary
modes, we note a 1/r decay, unlike the other ¢ modes. This is a direct consequence of
the gauge condition (4.29a). h3em = heem, which is proportional to r2QABh 45 at large
r. So we may interpret the 1/r decay of the h3g,, modes as indicating that the correction
to the surface area of the two-sphere falls off relative quickly at large r, or in other words

the background coordinate r approaches the physical areal radius relatively quickly.



84 Chapter 4 Frequency-domain application of the puncture scheme at first order.

0.0 0.0
0.2
S £5-0.004
S 04 <
0 ~0.008
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
r/M r/M
15 15
= 0.5 = 0.5
8 8o
< _(.5 < —0.5
~1.5 -1.5
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
r/M
0.15
0.04
o
53 0.0
2
~0.04
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
r/M r/M

Figure 4.3: Sample of results for the modes of the first-order field, for 100M < r < 1000M,
using the same parameters as in Fig. 4.2. Our results show that stationary (m = 0) modes
have no waves. Non-stationary modes exhibit wave behaviour at sufficiently large values of
r, in line with the boundary conditions imposed at rout. The dashed line in the bottom two
plots is const./r. For ¢ = 3 the modes decay as 1/r.
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Figure 4.4: Relative difference between the retarded field modes computed in this work and
data provided by Warburton, for a Schwarzschild circular orbit at radius ro = 6 M.



Chapter 4 Frequency-domain application of the puncture scheme at first order. 85

We have compared our numerical results for the retarded-field with Warburton and
Wardell [74], and found a relative difference of between 10713 and 1079, as shown in
Figs. 4.4.
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Figure 4.5: Plots of the full retarded field, according to the metric reconstruction formula
(4.24), in the equatorial plane for a circular orbit of radius 7o = 6M, on a log-log scale. The
vertical, dashed line indicates the location of the radius of the orbit, at » = r9. The field is
evaluated at 6 = w/2 and ¢ = Qt.

Fig. 4.5 shows the diagonal components of hfﬁf, as calculated using the metric
reconstruction formula (4.24), for a circular orbit of radius 7o = 6M. The field falls off
as 1/r at large r, and oscillations can be seen for r = 100M . Sufficiently far away from
the particle, the mode sum in (4.24) converges fast enough to accurately approximate
the components of the field. But moving closer to the particle, the field gets larger and
the convergence becomes slower and slower. The mode sum approximates the field less
accurately as we approach the particle and the divergence at the particle itself cannot

be seen in Fig. 4.5, due to this arbitrarily slow convergence.

As a key test of our implementation, we have assessed the large-¢ behaviour of the

residual field on the worldline. The ¢ modes of hR are given by

AR (2 Z Z ay YO0 =7/2,¢ = Qt,ro) e ™t RE (ro). (4.78)

mf—é =1
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ro/M | this work Berndston [93] rel. diff.

6 4.9685669(5) x 1072 | 4.9685669 x 1072 | < 1077
10 1.7454613(7) x 1072 | 1.7454613 x 1072 | < 1077

Table 4.2: Results for the radial component of the first-order self-force, for circular orbits
in a Schwarzschild background. Our results were calculated with £,.x = 50, using the punc-
tures that include terms through O(A\?) in powers of distance to the worldline. Numerals in

parentheses show estimates for numerical error.

The more accurately the puncture approximates the singular field, the smoother the
residual field becomes, and therefore the more quickly its mode sum converges. On the

particle, the £ modes behave as [88]
R (2) ~ £2LED2L (4.79)

where k is the total number of orders of distance in the puncture, and |s| denotes the
largest integer less than or equal to s. Our puncture includes four of orders of distance,
ranging from O(1/A) to O(A\?). Hence, k = 4, and we expect Bff(z) to fall off at least
as fast as 1/¢*. With the residual field in hand, we can compute the self-force using
Eq. (2.59), with h'R replaced with h'®. We add the contribution from £ > fy. by
fitting a power-law tail A/¢* + B/¢5 4+ C /% + D /' to the numerical data. In Table.
4.2 we give our results for the radial component of the self-force at a variety of orbital
radii. We find agreement with the results of Berndtson [93] to a relative accuracy of
10~7. We found that our largest source of error was the value of {j,ay, i.e. the number of
modes included in the mode sum (4.78), and the number of terms in the formula for the
tail. We found that for ¢,,,x > 30 our final value did not change up to seven significant

figures.

Fig. 4.6 shows plots of the /-modes of the non-vanishing components of Bﬁf(z),
as given by Eq. (4.78). R, hRf, BZ};, Bzy and Bﬁﬁ decay like 1/¢4, whereas A%’ and

Bﬁf fall off exponentially with ¢. This exponential decay relates to the puncture either

vanishing for these components, or being time-antisymmetric for these components.
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Figure 4.6: Plots of the non-vanishing components of Bff(z) versus £, according to Eq. (4.78),
for a circular orbit of radius ro = 6M, plotted on a log-log scale. The dots show hff(z) from
¢ =1 — 20, the dashed line is 1/£3, the solid (thin) line is 1/¢* and the solid (thick) line is
1/6°.






Chapter 5

Second-order perturbation theory
in a scalar-field toy model: the

problem of infinite mode coupling

While the first-order equation has been solved numerically without too much trouble,
there are several obstacles standing in the way of us solving the second order equation.
The first issue, which is addressed in this chapter, is that very near the worldline a large
number of modes of the first-order field are required to accurately calculate a single mode
of the second-order source. These findings are covered in our paper [2], together with
a strategy for resolving the problem. The second issue is that the large-r behaviour of
the source prevents the retarded integral from converging. The following chapter gives a

detailed overview of this issue and how it is resolved, based on the findings of Ref. [75].

To introduce the problem, we refer back to the Einstein equations through second
order given in Eqgs. (3.2) and (3.3). Following the approach described in Sec. 4.2, we
reduce the 4D-field equations into a one-dimensional system by decomposing the fields

into a basis of harmonics, as in Eq. (4.14). The field equations at each i¢m-mode read

Eipm[hY] = 87T, (5.1)
Eiém[hQ} = _52Riém[h1; hl] (52)

For the purposes of this discussion, we can continue to neglect the inspiral of the orbit
and work with the frequency spectrum of the circular geodesic. Now consider the source
term 02R;s,. Substituting the expansion (4.14) into 52RW leads to a mode-coupling

formula with the schematic form

2 _ 1141miiolomary 1 1

0°Rigm = E : @ifm [hi1€1m1’hi2€2m2]’ (5'3)
i141m1
i9f2mo

89
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where @”Klmm@m? is a bilinear differential operator (given explicitly in Ref. [94]). A
single mode 2Ry, is an infinite sum over first-order modes h%@m' If hwm falls off
sufficiently rapidly with ¢, then the summation poses no problem. However, if hMm falls
off slowly with ¢, then the summation is potentially intractable. This is precisely the
situation near the point-particle singularity in Eq. (5.1). h}w behaves approximately as
a Coulomb field, blowing up as ~ 1/p, where p is a spatial distance from the particle,
lle/j,l/m, after summing over m, then go as

~ 19 on the particle [74,95], not decaying at all; at points near the particle, the decay

as we saw in (2.47). The individual modes h

is arbitrarily slow.

This behaviour can be understood from the textbook example of a Coulomb field
¢ in flat space. For a static charged particle at radius rg, the field’s modes behave as
¢Zva€m ~ 7“</74N_1

r = 19, we have ¢, Y ~ 0. At any point r # rg, we have exponential decay with

where r- = min(rg,r) and r~ = max(rg, 7). On the particle, where

£, but that decay is arbitrarily slow when r = ry. Extrapolating this behaviour to the
gravitational case (5.3), we can infer that unless the coupling operator @fjﬁ:mli?e?m2
introduces rapid decay (which it does not), we are faced with the following tenuous
position: to obtain a single mode of the second-order source near the particle, we must

sum over an arbitrarily large number of first-order modes.

In this chapter, we explicate this problem and present a robust, broadly applicable
method of surmounting it. Rather than facing the full gravitational field equations (5.1)—
(5.2) head-on, we use a simplified toy-model set of field equations introduced in Ref. [75],
whose second-order source is designed to exhibit the same behaviour as the second-order
gravitational source. The toy-model equations describe first- and second-order scalar

fields, constructed in Minkowski spacetime as

O¢' = —4mp = SO, (5.4)
O¢? = t%89,0M sV = 5. (5.5)

Here, in Cartesian coordinates (t,2%), [0 = —0? + 0°0; is the flat-space d’Alembertian,

. (541'—2 _5($ — X )
:[y Ve dT 7dt/d7 (5.6)

is a point charge distribution moving on a worldline x} (t) = (¢, 2%(t)) with proper time
7, and t* = diag(1,1,1,1). With our chosen source terms, the first-order field ()
and the second-order source S mimics the behaviour of

mimics the behaviour of Al
5 Rilm‘

uvo

Like Eq. (5.2), Eq. (5.5) is well defined only at points off the worldline. To solve it

globally, one would have to rewrite it as
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where here, and for the rest of this chapter, we drop the superscript on S and use
S instead to refer to the toy-model second-order source. ¢ is an analytically de-
termined, singular “puncture” that guarantees the total field has the correct physical
behaviour near the particle as described in Sec. 3.1, and ¢DR = $2) — $(DPis the regular
“residual” difference between the total field and the puncture. However, here we only
wish to address the preliminary question: given the spherical harmonic modes of ON
how can we accurately compute the modes of S?7 Once that question is answered, the
same method can be carried over directly to the gravitational case to compute the source
82 Rim, and Eq. (5.2) can then be solved via a puncture scheme of the sort described in
Secs. 3.1 and 4.5.

Before describing the technical details of our computations, we summarize the
problem, our strategy for overcoming it, and our successful application of that strategy.
For simplicity, we fix the particle on a circular orbit of radius rg. The modes qﬁ?‘jf; of
the first-order retarded field are then easily found; they are given by Egs. (5.15) and
(5.16). (To streamline the notation, we shall omit the subscript “(1)” on first-order
fields.) From those modes, one can naively attempt to compute the modes Sy, of the
source using an analog of Eq. (5.3), given explicitly by Eq. (5.31) below. Figure 5.1
shows the failure of this direct computation in the case of the monopole mode Syg.
Although the convergence is rapid at points far from the particle, it becomes arbitrarily
slow near the particle’s radial position rg. In principle, this obstacle could be overcome
with brute force, simply adding more modes until we achieve some desired accuracy at
some desired nearest point to the particle. However, that relies on having all the modes
of the retarded field at hand; in the first-order computation described in Chapter 4,
the retarded field modes are found numerically, and the number of modes is limited
by practical computational demands. Hence, we should rephrase the question from the
previous paragraph: given the spherical harmonic modes of ¢! up to some mazimum

£ = lmax, how can we accurately compute the modes of 57

Our answer to this question is to utilize a 4D approximation to the point-particle
singularity. As discussed in Sec. 2.3, the retarded field of a point particle can be split
into two pieces as @™ = ¢° + @R, where ¢ is the singular field, which is a particular
solution to Eq. (5.4), and #® is the corresponding regular field, which is a smooth
solution to (¢® = 0. The Detweiler-Whiting split [49] used here is the precise analog
of the ones defined for the EM and gravity cases in the introduction. This is the same
singular-regular split found in Eq. (1.36) of the metric perturbation, described in the
introductory section 1.2.5. The slow falloff of ¢{ with ¢ is entirely isolated in the
modes of the singular field, qﬁfm; because ¢% is smooth, its modes qS?m have a uniform
exponential falloff with . Generally, there is no way to obtain a closed-form expression
for ¢35, but we can easily obtain a local expansion of ¢° in powers of distance from the
particle (i.e. powers of A using the notation introduced in Chapter 3). A truncation

of that expansion at some finite order of A provides a puncture, which we denote by
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Figure 5.1: The source mode Soo[¢**, #*!] as a function of Ar = r—rg, with an
orbital radius ro = 10, as computed from the mode-coupling formula (5.31). To
assess the convergence of the sum in Eq. (5.31), we truncate the first-order field
modes ¢, at a maximum /£ value /., and we display the behaviour of Spg
for various values of #,,x. The insets show that far from the particle, the sum
converges rapidly with ¢,,x. However, near the particle there is no evidence of
numerical convergence.

#%; it is given explicitly by Eq. (5.22) below. It defines a residual field ¢ = ¢t — ¢*
that approximates ¢®. We make use of all this by writing the source in the suggestively
quadratic form S[¢, ¢], and in some region near the particle, splitting the field into the
two pieces ¢F + ¢™. An fm mode of S can then be written as

Sem = Sem[0™, 8™ + 28007, 8] + Sem[0”, 6. (5.8)

The first two terms, S, [0, ¢%] and Sp, [0, ¢7], can be computed from the modes
of ™ and ¢” using Eq. (5.31); for sufficiently smooth ¢, the convergence will be
sufficiently rapid. The problem of slow convergence is then isolated in the third term,
Sim|@d”, #7]. This term cannot be accurately computed from the modes of ¢*. However,
S[¢”, ¢F] can be computed in 4D using the 4D expression for ¢*. Its modes Sp,,[¢7, ¢ ]
can then be computed directly, without utilizing the mode-coupling formula (5.31),

simply by integrating the 4D expression against a scalar harmonic.
Our strategy is hence summarized as follows:

1. compute the modes gbfm by direct integration of the 4D expression (5.40). From
the result, and Eqgs. (5.15)—(5.16), compute the modes ¢)X = ¢t — ¢7

Im
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2. evaluate Sy, [¢%, #™] and Sp,[07, $7] using the mode-coupling formula (5.31)

3. evaluate S[¢¥, "] in 4D, using Eq. (5.40), and obtain its modes Sp,,[¢”, #¥] by

direct integration

4. combine these results in Eq. (5.8).

This strategy is to be applied in some region around r = 7y; outside that region, one

may simply use the retarded modes in Eq. (5.31) without difficulty.

Figure 5.2 displays a successful implementation of this strategy. The true source
mode Spg, as computed via our strategy, is shown in thick solid blue. The same mode
Soo as computed via mode coupling from qﬁ?‘jfl, with a finite £y, = 20, is shown in thin
solid grey. As we can see, the two results agree far from the particle, where the source
mode as computed via mode coupling has converged. But near the particle, the results
differ by an arbitrarily large amount; the true source correctly diverges at r = rg, due
to the singularity in the first-order field, while the source computed via mode coupling

remains finite due to the truncation at finite £;,x.

In the remaining sections of this chapter, we describe the technical details of our
strategy, as well as the challenges that arise in implementing it. Section 5.1 summarizes
the various relevant fields—retarded and advanced, singular and regular, puncture and
residual. Section 5.2 derives the coupling formula that expresses a second-order source
mode Sy, as a sum over first-order field modes. Section 5.3 details the computation of
Sem[0%, #%] and Spn [0, ¢7); Sec. 5.4, the computation of S, [¢7, ¢F]. In Sec. 5.5, we
reiterate the outline of our strategy as it applies to the gravitational case; the successful

application to gravity will be shown in Chapter 8.

To avoid repetition, we state in advance that all plots are for a particle at radius
To = 10.

5.1 First-order fields

5.1.1 Retarded and advanced solutions

To begin, we work in spherical polar coordinates (t,r,64), where 4 = (6, ¢). We place
the particle on the equatorial circular orbit a4, (t) = (¢, 79, 7/2, Qt) with normalized four-
velocity u* = (1 —T%QQ)_UQ(I, 0,0,9), and we adopt a Keplerian frequency Q = \/W.
The point source (5.6) can then be expanded in spherical and frequency harmonics by

rewriting it as
d(r—rp)

Q =
r2yt

> Vi (07 Vi (07 (5.9)
m

and using Yéfn(%‘) = ey, (1/2,0). Here uf = 4 = (1 —r202)71/2,
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Figure 5.2: The source mode Soo[¢"", $*'] as computed with the strategy outlined in the
text. The dot-dashed red curve shows the contribution from Soo[¢™, ¢ + 2S00[¢™%, ¢”], the
dashed black curve shows the contribution from Soo [qﬁp, qﬁp], and the thick solid blue curve
shows their sum Soo[¢™", #*°*], which diverges at Ar = 0. On the scale of the main plot,
Soo[¢T, $7] is indistinguishable from Sgo[¢"°", $*°*]; the insets show that they differ by a small,
but distinguishable amount, which is made up by Soo[¢™, "] +2S00[¢”, ¢”]. For comparison,
the thin grey curve displays the result for Spo[¢™", ¢""] as computed from the mode-coupling
formula (5.31), which agrees with the correct result far from the particle but differs strongly
from it near the particle. All curves were generated with ro = 10, all four orders in the
puncture (5.22), and fmax = 20.

Most of the fields we are interested in can be constructed by integrating this source
against a Green’s function. The retarded and advanced Green’s functions satisfying
OG(x,2") = —4wé*(z — 2') are given by

Y =
Gret/adV(l,’$/) _ 5(t U F ‘.%’ x D’ (5‘10)

|7 — 7|
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Gret Jadv

where T is a Cartesian three-vector. The Fourier transforms, w =
: /
f ezw(tft )Gret/adv(.%" x’)dt, are

eTiw|F—7|

ret/adv _ 11
GUJ |f—f/| ? (5 )

which can be expanded in spherical harmonics as

G = Fi Y wislwr g (@rs) Y (04 Ve (07). (5.12)

Im

Here the upper sign and hgl) correspond to the retarded solution, and the lower sign

and hf) to the advanced. hél) and hf) are the spherical Hankel functions of the first
and second kind, j; is the spherical Bessel function of the first kind, and when used in
the Green’s function, r< = min/max(r,7’). In the static limit w — 0, the retarded and

advanced Green’s functions both reduce to

1 1 rt y

ret/adv __ o < " A n

Gt/ = |7 — 2| _Zgg_{_lrejlyﬁm(e )Y (67). (5.13)
Im

Integrating against these Green’s functions, we find the retarded and advanced

solutions
¢ret/adv _ Z ¢Z‘::L/adV(r)e—imQtnm(9A), (514)
Im
where
ret/adv 4 ] .
qsgnt/ dv _ i%Ngmejg(mQT<)h§l’2)(mQT‘>) (5.15)
for m # 0, and
4
ret/adv 4 Ny T«
o T ut 2041 re>+1 (5.16)
for m = 0. Here
Nop = Yo (7/2,0) (5.17)

and we have reverted to the previous notation r< = min/max(r, o).

As discussed in the introduction to this chapter, the large-¢ behaviour of these fields
is the source of the infinite-coupling problem. Noting that Ny ~ £°, we see that the
stationary modes in Eq. (5.16) behave as ¢y ~ %% Hence, ¢4y decays exponentially
with ¢ at points far from r = rg, still exponentially but more slowly at points close to
r =19, and as £~ at r = 9. The oscillatory, m # 0 modes exhibit similar behaviour,
although it is not obvious from Eq. (5.15). After summing ¢g,;,Ys,, over m, the large-
¢ behaviour becomes ~ ¢ on the particle, with an exponential but arbitrarily weak
suppression at points slightly off the particle. The quantitative consequences of this,

already displayed in Fig. 5.1, will be spelled out in later sections.
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5.1.2 Singular and regular fields

In flat space, the Detweiler-Whiting singular field is simply ¢° = 1 (¢ + ¢24v). Its

four-dimensional form can be written as

8 =5 [16 @) + G o ol ' (5.18)

Its modes are more easily found directly from Eqs. (5.15) and (5.16). For m # 0,

47 )
Do = JNemeJe(mQR)ye(mQB)y (5.19)

where yy is the spherical Bessel function of the second kind. For m = 0, ¢§0 = (bzgt/ adv.

Correspondingly, in flat space the regular field is ¢F = ¢t — ¢S = %(qbret — V),
Its four-dimensional form can be written as an integral analogous to (5.18). Its modes
can be found straightforwardly from Egs. (5.15) and (5.16). For m # 0,

47e . )
Py, = FNgmejg(mQT’<)]g(mQT‘>), (5.20)

and for m = 0, ¢§) =0.

5.1.3 Puncture and residual fields

The puncture field ¢7 is obtained in 4D by performing a local expansion of the integral
representation (5.18) of the singular field. That procedure is common in the literature,
and so we do not belabour it here; instead we refer the reader to, e.g., Ref. [88] for details,
and give here only the main results. Letting A = 1 count powers of distance from the
particle, the covariant expansion of the flat-space puncture to fourth-from-leading order

in distance is

S N~
a?s? (r4 — 6r2s2 — 354) + 902 (r2 — 52)2 — 4rs?oy, (r2 — 352)
2455
1
+ 1o | 2rs"a%an (' — 10777 — 155)
— 3a%s%0, (r6 —5ris? + 15r%st + 556) + 4aaadr52(3r4 —10r%s% + 1554)
—1503(r? — 5%)3 — 20451 (r! — 6r%s? — 354)] +O(\3). (5.21)

where the terms are O(A™1), O(A\Y), O(A') and O(\?), respectively. Here we follow the
notation of Chapter 3, in which oy = o X for any vector X%; the bi-scalar o(z,z’)
is the Synge world function, equal to one half of the squared geodesic distance between

99 the vectors a® = u’Vu?®, a® = u’Vsa® and 4 = uPVza®

/ i
z and z’, and o, = B
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are the acceleration and its first and second derivatives, respectively; and the quantities

r=ogu® and s = \/(go‘ﬂ +u¥uf)oyop are projected components of the geodesic
distance from the field point to the reference point 2’ on the worldline. In our case, go3

is the metric of flat spacetime and V,, is the covariant derivative compatible with it.

To facilitate the computation of spherical harmonic modes, it is customary to
express the field in a rotated coordinate system in which the particle is momentarily at
the north pole. We refer back to Appendix. C, where we used these coordinates in the
derivation of the modes of the first-order puncture. We label the angles in this system
ot = (a, ), such that at a given instant ¢, the particle sits at a = 0. More details can
be found in Appendix E. As we describe there and in later sections of this chapter, in our
calculations this rotation introduces new complications and loses some of its traditional

advantages. Nevertheless, its benefits outweigh its drawbacks.

In terms of the rotated angles o', a puncture satisfying ¢” = ¢° + O(A3) can
be obtained from a coordinate expansion of Eq. (5.21). For the circular orbits we are

interested in here, this is given explicitly by

@7 = X100y + X8 + Adlyy + Ao, (5.22)
where
6P =1L (5.23a)
(-1 — .
p
Ar Ar3
P 2.2 2.2, 4.2
=— 1—-2v%5%) + ——— (1 — 2v°s" + v"s57), 5.23b
0 = " Zropx | Broxox P ) (5.23b)
by = ﬂ (1- 20%s? + U452)2 + p7,1}2[311652 —3(1+ 5%) — 30%(2 — 75?)
W 8rgpoxgx? 24rxdx
Ar?
4 2 4 2 2 8.2 2
+v*(1 — 5s® — 8s )]—i—W[Q—lSv (14 s%) —60°s7(1 — 4s%)
4 2 4 6 2 4 Art 8.2 2
+ 3v%(5 4 85% + 85%) — 207 (1 4+ 4s” + 225°)]| + —5 55— [—18 + 3v°s7(1 — 9s7)
24r¢ p3x3 x>
+ 30%(7 4 195%) — 3v* (1 + 215% 4 20s%) + v°(1 + 5% + 88s)], (5.23c)
5A7r? Arpv?
P 2.2, 4.2\3 10 4 2
QS(Q)—W(l—QUS +U5) —W[(SU 8+3(1+S)
+ 085%(7 — 8% — 325) + 302(11 — 145% 4 25%) + v*(13 — 6252 + 165%)
Ar7

—05(1 4 505% — 1245 + 1659)] (15 — 301254 (1 — 75?)

16r300 XN
— 30%(6 + 255?) + 3v?(1 + 335% 4 465%) — v10s%(1 — 8s% + 1125%)
+ v852(2 + 6552 + 188s1) — v0(1 + 225 + 2115 4 965°)]
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Ar? 12 4 2 2 2 10 2 2 4
— (15 = 3v 757 (7 — 1657) — 3v7(16 + 175s") — v"s(17 — 13s° + 1285")
48r3pxi x>
+ 30 (11 + 6152 + 145%) — 05(26 + 1585% 4 1255 + 4855)
Ar®
8 2 4 6 12 4 2
2+ 11552 + 195 + 152 e [45 — 6 4—15
+v°(2 + 1155° + 195" + S)]+487”8P3X8X3[ v s ( s%)
— 30?%(33 4 615%) — v'95%(13 — 475% 4 400s%) + 30%(23 + 1315 + 945%)
— 20%(5 + 1345% + 2815 + 1085°%) 4 v¥(1 + 535 + 2755" 4 520s9)]. (5.23d)

Here v = 1302 s=sin 8, x =1 —v%s%, xo =1 —0? = 1/(u?)?, and

1/2

2 2
X (52 41— cosa)| ', (5.24)

X0

p=

with 62 = X;ﬁf. Note that the only dependence of the singular field on « appears
0

through p, while 8 appears through p, x, and the explicit powers of s. Also note that

the above expression for ¢” (ozA’) is valid only at the instant when the particle is at the

north pole of the rotated coordinate system.

Given this choice of puncture field, the residual field is defined implicitly by ¢® =
ot — ¢P. Since we do not have a closed-form expression for ¢™*, we cannot write an

exact result for ¢® in 4D. However, we can compute its modes from those of ¢™ and
@7 using ¢, = it — @) .

Before proceeding, note that in Eq. (5.22), we have kept the first four orders from
the local expansion of ¢5. We refer to this as a fourth-order puncture; if in a particular
calculation we include only the first three of them, we refer to it as a third-order puncture,
and so on. The higher the order of the puncture, the smoother the residual field, and
hence the more rapid the falloff of gbgn with £. In the following sections we will explore
how our strategy of computing S is impacted by this, and we shall find that the puncture

must be of at least third order for our strategy to succeed.

5.2 Second-order source

We are now interested in how the modes of the fields are coupled in the source
S = th9,¢010,¢1. For later use, we derive the mode-coupling formula in both 64 and
a? coordinates. The method of derivation, and the end result in 64 coordinates, was

previously presented in Ref. [75], and so we omit some details here.
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5.2.1 1In 64 coordinates

Written as a bilinear functional, S is given more explicitly by
S, 6] = 96M00? +0,600,6%) + 500100056, (5.25)
r

where (1) and ¢ are any two differentiable fields, Qa5 = diag(1,sin? ) is the metric
of the unit sphere and Q47 is its inverse. Substituting ¢(™ = D tm qbg;) (r)e=mty,,,
we get

S =3 et (9,600 0,602, — mmaQ26l)) 02 ) Vim Yesms +

lama Lama

Limy
Lamg

1 .« 2
T72¢é12n1 ¢é22ngaAn1mlaAn2m2} ’ (526)

where indices are raised with Q45.
To obtain the spherical-harmonic coefficient of Eq. (5.26), we first rewrite 94Yp,

in terms of spin-weighted harmonics Y7, (see Ref. [96] for an overview), as

1
O™ = S U+ 1) (Y g = 1Y) (5.27)

where m4 = (1 ‘

’ sin @

) and its complex conjugate m** form a null basis on the unit
sphere. This allows us to compute Sy,,, which is an integral against Y, = oY, , by

appealing to the general formula

€1m151[2m232 ’

fsyem*slyelm182yfzm2d9 — Céms (528)

(see for example Sec. 30B of the text by Hecht [97]) where d2 = sinfdf d¢ and for

5§ =81+ 52,

Céms

fymys1lamasy

oy, [BEEIE 13 4T (ﬂ 0 ﬂz)(f b 52). (5.20)

47 s —81 —89 -m mi Mmo

Here the arrays are 35 symbols, which enforce

m =mi + may, (5.303)
s =81 + S2, (5.30Db)
|fl — EQ’ <l <Vl + V. (530C)

We refer to (5.30c) as the triangle inequality. If s = s1 = s = 0, Eq. (5.28) reduces to
the standard formula for the integral of three ordinary spherical harmonics. We refer
the reader to Ref. [75] for more details.
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After using Eq. (5.27), m?ma = 0, mAm?* = 2, and Eq. (5.28), we find that
Eq. (5.26) can be written as S = ", Spn(r)e ™Y}, with modes given by

m 2 1 2
Sﬁm[gb(l)v ¢(2)] = Z |:C£1W[L)10E2m20 ( ¢£1m1 T¢§22n2 - m1m292¢g127’11¢§22712>

l1mq
Lamy

1 m 2 2 1
= 53Vl + Db+ DCE, mn (¢23m¢§,22m + ¢glzm¢g23n2) ] (5.31)

We have used the freedom to relabel £1m; <> fomo and the symmetry Cg’;‘jl s1lomnsy =

Céms to slightly simplify this result. We note that the range of the sum is

Lomasalimy sy

restricted by the 3j symbols in C/™ which enforce (5.30a) and (5.30c). The

l1im1s1famass’
i(m1+meo)Qt imQt

first of these restrictions has been used to replace e~ with e~ , and it can

be further used to eliminate the sum over ms.

In our toy model, Eq. (5.31) plays the role of Eq. (5.3) from the gravitational case.
When we only have access to a finite number of modes qbg;? up to £ = fax, then the

sum is truncated: explicitly, it becomes the partial sum

max max

Zmax _ Z Z Z flmlfz,m—m17 (532)

l1=00l>=0m1=—41

where we have eliminated the sum over msy, and for brevity we have suppressed the
functional arguments and defined Sfjnmlme as the summand in Eq. (5.31). By appeal-

ing to the triangle inequality, we could write the second sum even more explicitly as

me (bmax,l+11)
Lo=|0—£] :

The slow convergence of the limit ng‘f" — Sem was illustrated in Fig. 5.1. Its

behaviour will be more carefully analyzed in the following sections.

5.2.2 In o? coordinates

Although Eq. (5.31) is the mode-coupling formula that we will utilize in explicit compu-
tations, we will also make use of the analogous formula in the rotated coordinates a?’.
Deriving that result additionally provides an opportunity to introduce the 4D form of

S in these coordinates, which will be essential in Sec. 5.4.

Obtaining the source in the rotated coordinates involves a new subtlety: the 4D
expression for S involves ¢ derivatives, while our expression (5.22) for ¢¥ () is intended
to only be instantaneously valid at the instant when the particle is at the north pole
of the rotated coordinate system. We discuss this subtlety in Appendix E. In brief, we

A

may treat the coordinates a”* as themselves dependent on ¢, and appropriately account

for that time dependence when acting with ¢ derivatives. The 4D expression for § is
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then given by Eq. (E.4), which we reproduce here for convenience:
SI6W, 6] = 64 9 sV 0062 + 0,6M8,6® + S04 9,6V eM,  (5.33)
r

where Q4P = diag(1,csc?a) is the inverse metric on the unit sphere in the rotated
coordinates, and the time derivatives in Eq. (5.25) now manifest in the quantity &4 =
Q(— cos 3, cot asin B3).

The modes of the source in the rotated coordinates are given by

/_jfs VY () dsY. (5.34)

We will consistently use m’ to denote the azimuthal number in the rotated coordinates;

because £ is invariant under rotations, it is the same in both sets of coordinates.

In Sec. 5.4 we will evaluate the integral (5.34) for S[¢”, ¢*| without first decompos-
ing ¢F into modes. But generically, if we expand each ¢ as Dt ¢§:;),ng/, then we
can evaluate the integral analytically in the same way as we did for Sy,,. This is made

possible by first writing &’ in terms of spin-weight +1 harmonics as

A T ’ A’
@t = \/;Q[(lyn + Y )m 4 (Y Y )m . (5.35)

Next, we use Eq. (5.27), which is covariant on the unit sphere and hence also applies
in o’ coordinates. Combining these results, invoking Eqs. (5.28)-(5.29), and using the

properties of the 35 symbols to simplify, we find

A Q _
M ox¢ = 5 > (i Stam 41 = 1 Dt —1) Yo (5.36)

m/!

where ,uztm, =/ {E£mFm +1).

Substituting Eq. (5.36) into Eq. (5.33) and following the same procedure as in the

previous section, we find

- Im’0 (1) (2)
ng/ - Z {Celm 0€2m2 [ T¢E1m’1 8T¢€2m/2
Lam]

!
Lom}

+ 32T 05 e oy — 1 Ber g 1) (B By 1 — 1 By 1]

_ 272%(& TG+ DCE g (60 800, + 60, ¢§;3n,2)}, (5.37)

where ,uii = ufm{ . Note that unlike Eq. (5.31), which gave the coefficient in
St Sem (1)e =Y, (04), Eq. (5.37) gives the coefficient in 3", Spn (1) Yom (@), with

no phase factor; the time dependence is entirely contained in the o’ dependence.
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5.3 Computing Sy, [¢%, ¢%] and Sy, [¢", ¢

Following the strategy outlined in the introduction, we now compute Sg, [0, ¢*] and
Sem [, #7] from the modes of ¢* and ¢* using the mode-coupling formula (5.31). In
Sec. 5.4 we will then complete our calculation by computing Sg,,[¢”, ¢7] from the 4D

expression for ¢¥.

5.3.1 Outline of the strategy

As input for Sp,,[¢7%, ¢%] and Sp,[07, #7] in Eq. (5.31), we require the modes gbfm. We
begin by computing the modes

oF = 74 P (oYY (0 )dSY (5.38)

in the rotated coordinates a®’. The modes in the unrotated coordinates 04 are then

retrieved using
O = > oy D (1, 7/2,7/2), (5.39)

where Dfnm/ is a Wigner D matrix element. Equation (5.39) yields the modes in a
coordinate system in which the particle is on the equator at an azimuthal angle ¢, = 0.
An additional rotation brings it to its original position ¢, = €2t. The sole effect of that

rotation is to introduce the phase e ™ ¢y — dpme” M,
Given the modes gbfm, the rest of the procedure is straightforward. In summary, it
involves four steps:!
1. Decompose the puncture field (5.22) into m’ modes using Eq. (5.38).
2. Use Eq. (5.39) to obtain the ¢m modes ¢} .

3. Compute the residual-field modes ¢ = ¢iet — ¢ [with ¢ given in Egs. (5.15)
and (5.16)].

4. Use Eq. (5.31) to compute Sy, [, ¢™%] and Sp, [0, ¢7).

Sections 5.3.2-5.3.6 describe the first three steps, and Sec. 5.3.7 presents and discusses
the results of the final step.

"We could alternatively compute the modes Sg, [07, $™] and Sepm [¢07, $7] directly from ¢, ., using
Eq. (5.37). Sem[0™, ™) and Sem[¢7, ¢7] would then be computed using the analogs of Eq. (5.39).
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5.3.2 Calculation of gzﬁfm

Concretely evaluating the integrals (5.38) is a nontrivial task. Before addressing that

topic, we make several prefatory remarks.

First, we note that although integrals like (5.38) of local expansions like (5.22) are
common in the literature, in our context they introduce a unique challenge. Typically,
integrals of this sort appear in mode-sum regularization and puncture schemes [95,98].
In those contexts, one’s primary goal is to compute the Detweiler-Whiting regular field
(or some finite number of its derivatives) on the particle’s worldline. This gives one
considerable leeway: If one is interested in computing n derivatives of the regular field,
for example, then so long as one preserves the puncture through order A", one can
smoothly deform the integrand in Eq. (5.38), and one can do so in a different way for
each ¢m’ mode. Similarly, one can evaluate the integral with a local expansion in the
limit Ar — 0, which generally simplifies the integration. And since Yy, vanishes at
a = 0 for m’ # 0, one need only evaluate the m’ = 0 mode (or in the calculations in
Ref. [74], the m’ = 0,41, +2 modes); traditionally, this restriction to m’ = 0 has been a

major advantage of using rotated coordinates like o

In our calculation, we have none of these luxuries. Because we compute Sy, [qbp, d)P]
from the 4D expression for ¢” while we compute Sy, [¢%, ¢7] and S, [¢7, $™] from the
modes qﬁfm,, the modes must correspond to an exact evaluation of Eq. (5.38); otherwise,
Sem[@F, dF] + 2S0m[07, ¢T] + Sem [0, #™] would not be equal to Sy, [¢"*, ¢*t]. This
means that if we deform the integrand in Eq. (5.38), then we must make an identical
deformation of the 4D expression for ¢¥. Similarly, any expansion in powers of Ar
would have to be performed for both the /m’ modes and the 4D expression; because we
must evaluate these quantities over a range of Ar values, we cannot rely on eventually
taking the limit Ar — 0. And finally, we cannot limit our computation to m’ = 0; since
we do not evaluate any quantities at a = 0, there is no a priori limit to the number of
m’ modes we must compute. (If we only required S on the particle, then we would only

require the modes Sy, but even these modes depend on all m’ modes of ¢.)

In brief, we must be exact. We must compute all #m’ modes of ¢* without intro-
ducing any approximations. The lone exception to this, to be discussed in Sec. 5.3.8, is
that in practice we can truncate the number of m’ modes at some |m’| = m/ ... This

is possible because the modes fall off rapidly with |m/|, allowing us to neglect large-|m/|

modes without introducing significant numerical error.

We must address one more issue before detailing the evaluation of Eq. (5.38). As
discussed in Ref. [74], our puncture ¢” is not smooth at all points off the particle.
The particle sits at the north pole v = 0 of the sphere at Ar = 0, and ¢ correctly
diverges as 1/\ there. But even away from the particle, for each fixed Ar # 0, ¢¥

has a directional discontinuity at the south pole a = =, inherited from a directional
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discontinuity in the quantity p. This discontinuity is nonphysical. ¢” is originally
defined from a local expansion in the neighbourhood of the particle, but in order to
evaluate the integrals (5.38), it must be extended over the entire sphere spanned by
at. The particular discontinuity we face is a consequence of the particular manner in
which we have performed that extension. Because the total field ¢* + ¢® is smooth
at all points off the particle, this singularity at o = 7 must be canceled by one in ¢™.
And because nonsmoothness of a field leads to slow falloff with ¢, this discontinuity
limits the convergence rate of Sp,,[¢7, ¢™] and Sp,[¢07, ¢7%] with fpay. Concretely, the
discontinuity introduces terms of the form # into (;Sﬁn, for all m’ # 0.

To eliminate the discontinuity, we must adopt a different extension of ¢ over the

sphere. Following Ref. [74], we do so by introducing a regularizing factor:

oF (Ar,a™)y = W (cos a)g” (Ar, o). (5.40)
Here the parameters n and m are chosen such that n > k and m > m! ., where k is the
order of the puncture and m/ . is the maximum value of |m’| we use. W!’s dependence
on these two parameters is dictated by the required behaviour at the two poles. To
control the behaviour at the south pole, we choose a regularizing factor that scales as
W = O[(m — a)™], which makes WZ¢" a C™~! function at a = 7. For an otherwise
smooth function, standard estimation methods [99] show that this degree of smoothness
ensures that the modes |¢fm,\, and hence \(bgn, |, fall off as < ¢~™*1; for sufficiently large
m, this nonspectral decay will be negligible compared to the slow convergence coming
from the singularity at the particle. Now, at the same time as satisfying these conditions
at the south pole, we must keep control of the behaviour at the north pole. Specifically,
W must leave all k orders intact in the kth-order puncture, implying that it must
behave as Wi = 1+ O(a") near « = 0. We satisfy the requirements at both poles by

choosing

wo =1 ((mHn=2)/2) pl-cosa n m) (5.41)
2 n/2 2 272

where <p) is the Binomial coefficient, and B(z;a,b) is the incomplete Beta function.
q

This choice has the required properties at the poles provided n and m are positive
integers, and additionally that m is even. This is not a significant restriction; as discussed
below, the 8 integrals ensure that only even m’ need be considered in our circular-orbit
toy model, and even if this were not the case we could always choose m to be the smallest

even number greater than m/ ... With these restrictions on n and m, W/ takes the

x*

, whose coefficients and degree both

straightforward form of a polynomial in y = I_C%

depend on the particular choice of n and m. For example, in all our computations we use
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n = 4 (equal to the highest order of puncture we use) and m = 10 (equal to the value of

ml, .. we almost exclusively use), in which case Wﬁ) = 1—15y% +40y> — 45y* + 2415 — 5y/5.

Heeding the warnings above about our need for exactness, we must apply this regu-
larization consistently to the 4D puncture in all our calculations, not solely in evaluating
the integrals (5.38). So henceforth, we will always use Eq. (5.40) as our puncture, with

fixed n and m independent of the particular £, m’ mode being considered.

With our preparations out of the way, we now describe our evaluation of the in-
tegrals (5.38). We use two methods for computing the double integral (5.38), namely
(i) evaluate the « integrals analytically and subsequently evaluate the § integrals as
numerical elliptic-type integrals, and (ii) evaluate both the o and 3 integrals entirely
numerically. The second method is computationally more expensive than the first. How-
ever, we used both methods as an internal consistency check. We will describe method
(i) first and begin by explaining the steps in the the analytical evaluation of the «

integrals.

5.3.3 Integration over «

We first recall that all of the o dependence of the puncture (5.23) is contained inside

the quantity p. Hence, the integral that we need to evaluate takes the general form
1 /
/ WE ()P () p" d, (5.42)
-1

where x = cosa, mel (z) are the associated Legendre polynomials, and n is an odd

integer.

H% means that we can

Furthermore, the simple form of W7 as a power series in
use Eq. (5.24) to rewrite it as an even power series in Ar and p. The integrals (5.42)

can therefore all be written in the form

1
/_1Pgm/(x)p” dx (5.43)

for n an odd integer.

Concentrating first on the simplest case of m’ = 0, the integration can be done

analytically using

n+1 n 2
1 (D)7 (0 + 23 [(§) usa]
[ @1y pie) de - = B R (et
- 2/n+2
218 5n+1
- LzFl(—M +1;2 42, -2 (5.44)

n—+ 2
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For any given odd integer n, this is merely a pair of even polynomials of degree 2[ in 4,
one multiplying (62 + 2)2+" and the other multiplying |07+

Turning to the m’ # 0 case, these can now be written in terms of the m’ = 0 result.
Using the definition for the associated Legendre polynomials in terms of the Legendre
polynomials,

B () = (1) (1— 222 Py, (5.45)

d m
the integral (5.43) can be integrated by parts m’ times, resulting in an integral of the

form (5.44) along with a set of m’ boundary terms. These boundary terms are given by

r=—1

Z [(‘Dkﬁwﬂ(%) - ; (5.46)
0

i

and are therefore power series in ¢ of the same kind as in Eq. (5.44). The integrals over

3 then have the same form as for the m’ = 0 case.

5.3.4 Alternative method for evaluating « integrals

An alternative, but equivalent strategy for evaluating the « integrals, Eq. (5.42), is
based on expressing W}k (z) and Pg”/ (x) as finite polynomials in (14 z) and (1 —z). For
example n =4 and m = 10, Eq. (5.41) can be written as

3 5
Wﬁ)( ) = 16(1 + )% — 64(1 + )5, (5.47)
Similarly, for m > 0,
L m
() = Z Z Compg(1 + ) ypra=mi2(1 — g)bmpmatm/2 (5.48)
p=0 q=0

where c¢gy,pq are z-independent constants given by

Compq = (e <€)2 <m> ( (= p) L (5.49)
q

2¢ P t=p—q)!(p—m+q)

Equation (5.48) can be derived by using the standard representation Pp(z) =
2—1Z Zf;:o (;;)2(96 — 1) P(z + 1)? in the formula Pj" = (—1)™(1 — 2?)™/2L2 Py(z) and

dx™
appealing to the Leibniz rule. The analogue of Eq. (5.48) for m < 0 follows from
Py = (-1)™ Eg +Z;’Pg“, but in practice we need not evaluate the integrals (5.42) for

m’ < 0, since for real-valued ¢F we have ¢e,—m’ = (-1 ¢em

Substituting the polynomials (5.47) and (5.48) into (5.42) yields a sum of integrals
of the form F,(d) = f_lldx (1+2)%2(1 — 2)"/2(62 + 1 — 2)™2, where a, b, n are positive

integers. We write the « integral in Eq. (5.38) as a linear combination of these integrals



Chapter 5 Second-order perturbation theory in a scalar-field toy model: the problem of
infinite mode coupling 107

Fopn. Using Wolfram Mathematica, we tabulate analytical formulae for all Fyy, that
appear in this linear combination for qﬁfm, to £ = 200 and m’ = 10. Each of the
tabulated formulae is a finite polynomial in §, and once tabulated, these formulae allow

us to almost instantaneously evaluate the « integral.

5.3.5 Integration over [

We next turn to computing the S integrals. The explicit S-dependent terms in the
puncture, Eq. (5.23), appear in the form of positive, even powers of sin 3. The other
dependences on (3 in the integrand appear through p (where they appear as powers of
x=1 —r%QQ sin? 3), through Y itself, and through the factor of e~ "B from the spherical
harmonic. With this in mind it can readily be shown that odd-m’ modes vanish and all

of the non-vanishing modes are purely real.

Furthermore, following from this structure the net dependence on 3 has two possible

forms. The first term in Eq. (5.44) above yields integrals of the form

2 2\ 5+1
A 2
/ (2 + Xo=8 > X*2dp, (5.50)
0 2rix
where n is an odd integer. For n = —1 and k£ = —1 this can be recognized as a complete

elliptic integral of the third kind, with arguments that depend on Ar, o, and 2 (through
Xo0). All other values of n and k can be reduced to this case by integrating by parts
a sufficient number of times. The second type of integral arises from the second term
in Eq. (5.44). This yields integrands involving x™ with n an integer; their integral is
a polynomial involving 7¢f2. Combining these results, we can therefore compute the

integrals over /3 exactly and analytically (in terms of elliptic integrals).

In practice we found it sufficiently efficient (and simpler) to evaluate the [ integral
directly using numerical integration, rather than manipulating it into elliptic integral

form. In that case, we used the fact that the integrand is symmetric in the sense that

2

F(B)emdB =2 /0 " F(B)omrdp (5.51)

0

to reduce the computational cost. To compute the integrals we used a C++ code

employing a 15-point Gauss-Kronrod rule.

5.3.6 Two-dimensional numerical integration

As a check on our methods, we also evaluated Eq. (5.38) by computing the double
integral entirely numerically. We used a C++ code employing a 25-point Clenshaw-

Curtis integration rule. As the azimuthal mode number m’ increases, the 8 integrals
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Figure 5.3:  Demonstration of rapid convergence of the sum (5.31) for

Soo[¢R, #F] (top panel) and Spg[6™, ¢¥] (bottom panel). The mode S is plot-
ted as a function of Ar for a range of values of f,.c. Here we use rg = 10,

Miax = 10, and all four orders in the puncture (5.22).

become highly oscillatory, resulting in loss of accuracy. We found that to improve the
accuracy of our results, it was necessary to split the 5 integral, over the range [0, 7], into
a sum of m’ separate integrals, each over the range 8 € [(i — 1)/(m/n),i/(m/n)], where
¢ Tuns from 1 to m’. In all cases, this fully numerical method agreed with the mixed

analytical-numerical method described above.

5.3.7 Calculation of S, [¢%, ¢%] and S, [0%, 6]

After obtaining the modes of ¢”, we implement the final three steps in the strategy
outlined at the end of Sec. 5.3.1. The results are shown in Fig. 5.3 for the monopole
modes Spo[¢”%, ¢7] and Spo[d”, $™%]. We see that unlike Sy, [¢"¢t, '], Sem[07, ¢7] and
Sem [0, #™] both converge rapidly with increasing £pa,. On the scale of the main plot,
Sim[0”, ¢7] has numerically converged by £y = 10 and Sp, [0, ¢%] by fmax = 6; the

insets show the small changes at larger fiax.

However, to make useful predictions about how our strategy extends to gravita-

tional fields, we must say more than that it works; we must say something about how
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and when it works. We do this by considering two important convergence properties of
Eq. (5.31):

1. How quickly do Sp,[¢%, #7] and Sy [67%, ¢7%] converge as m! . — 00?

max

2. How does the convergence of Sy, [¢7%, 7] and Spn [0, ¢7%] with £ax depend on
the order of the puncture ¢¥? More pointedly, how high order must the puncture

be in order to guarantee convergence with £y ?

The last of these is the most pertinent: as we shall discuss below, if the puncture is of
too low order, then our strategy simply does not work. However, to elucidate that issue,

it will be useful to first determine the convergence with m/ ...

/
max

5.3.8 Convergence with m

!/

max> We introduce the finite difference

To assess the rate of convergence with m

!

AGmex = Gilimes _ Gmox1, (5.52)

m Im m

where S’Zl,;m" is given by Eq. (5.31) with qbgg, and gbéiz, set to zero for |m/| > m)

max*
/‘ Y

Concretely, this means truncating the sum (5.39) at |m/| = m] ..

Figure 5.4 displays the quantity AS(%/“’“ (¢, ¢7*] as a function of m/ . at a fixed

max
value of fnax and Ar. On the semilogarithmic scale of the plot, ASS?)/”‘&" falls lin-
early, indicating exponential decay. Although we do not display it, the behaviour of
ASS”O;“" [¢%, #] is identical, and the behaviour is independent of Ar. Given this rapid
decay, we conclude that in practice, we need include only a small number of m’ modes;

in all other figures in this paper, we use m/, . = 10.

!/
max

As shown in the inset of Fig. 5.4, this falloff is exponential, like that of ASZ;“X. The

exponential falloff naturally extends from qbfm, to qbgn,, since ¢ will never possess worse

Sem’s rapid convergence with m is a consequence of gi)fm,’s rapid falloff with m/.

convergence properties than those of ¢”, and from there it extends to the convergence
of the sum (5.39) and finally to Eq. (5.31).

We can best understand this behaviour, and predict its extension to the gravity
case, by obtaining analytical estimates of gbfm,’s falloff. First consider the decomposition
into m’ modes, without the attendant decomposition into ¢ modes. An m’ mode is
defined by gbfn, = fo% e ™ByPdB. For all a # 0, we can integrate by parts p times to

express this as

P —i p/27r —im'Bap ;P
0
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Figure 5.4: Influence of m' modes on Sp,. The main plot shows

Asgé;nax [#™%, 7], which is seen to fall off linearly on the plot’s semilog scale,
implying exponential decay with m/ ... The inset shows qﬁfm, as a function of
m’ for ¢ = 10 (open blue circles), £ = 20 (closed black circles), and ¢ = 30
(open red triangles). In all cases, the modes decay exponentially with m/; this

behaviour carries over to ¢Zn, and explains the falloff of ASZ;’"'“‘X. To obtain
this data we used a fourth-order puncture, i = 30, and Ar = 1074,

Hence,
(Ar, )

C
Pl< 54
|| < T (5.54)

where C'(Ar, a) = 2m maxg \8g¢77\ is independent, of m/. Since ¢” is a C*> function of 3
at each fixed a # 0, 7, the bound (5.54) holds for all integers p > 0, and we can see by
induction that QSZ/ falls faster than any inverse power of |m/|. This rate is uniform in
Ar for each « # 0, 7; it is not uniform in (Ar, ) because the divergence at the particle

implies sup C'(Ar, a) = oc.

Now consider the decomposition into #m’ modes, which we may write as

G = Nems [o QSZ/PZ’", (cos a) sin awdcv, where Ny, = ﬁ/% gﬁ;%;: Because the expo-
nential falloff of ¢, is nonuniform, we might worry that it does not extend to ¢y, .

However, we can quickly deduce that that is not the case. Using the bound [100]
\Ngm/PlZ"/\ < /2L and Eq. (5.53), we have

8
1 [20+1 [ 7 ,
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Next we note that 82(]577 has the same behaviour as ¢¥: it is finite except at Ar = 0,
where it diverges as ~ 1/« at small «; the derivatives with respect to 8 do not alter
this behaviour. Hence, the ¢m/-independent integral foﬁ 0% lﬁgqﬁp sin ar|da exists for all
integers p > 0, and we infer by induction that gbfm, falls off faster than any power of
|m’|. Of course, we can only consider large m' if ¢ is at least as large. But because the
only ¢ dependence in the bound (5.55) is the factor v/2¢ + 1, this consideration does not

affect our conclusion.

Of course, exponential convergence does not necessarily mean usefully fast con-
vergence. As we have seen, the falloff of qbfm with £ is exponentially fast at all points
away from Ar = 0, but for practical purposes it is slow for small Ar. However, that is

an artefact of the convergence rate being nonuniform. Crucially, the convergence with

!/

max ¢S uniform in Ar.

m

/

The (uniformly) rapid falloff of AS, > [¢", ¢”] and ASZ;‘“‘""‘ [p%, #R] with m],,.
now follows directly from the rapid falloff of ¢fm,. Because this conclusion relies only

on generic behaviour of the puncture, it will also apply in the gravity case.

5.3.9 Convergence with /.

We now turn to the central issue of the convergence rate with £,,x. To assess that, we

examine the finite difference
Zmax — émax emax_l
AGmax = Ghmax _ Glmax—1, (5.56)

where szf" is the partial sum in Eq. (5.32).

Figure 5.5 displays ASgg““‘ [#7, ¢7] and ASgg‘a" [#7%, 0] at a point very near the
particle (Ar = 10712). We see that when so close to the particle, the sum (5.31)
exhibits power law convergence. At large enough £y,,x, this will morph into exponential
convergence, as ¢g,’s slow exponential decay with ¢ eventually takes over. The further
we move from the particle, the less clean the power laws, and the more quickly the

exponential convergence dominates.

The most important aspect of the power laws are their dependence on the order
of the puncture. As we will discuss below, a subtle competition between power laws
makes determining the true asymptotics nontrivial, and the numerical results can be
misleading. Nevertheless, the numerics provide a useful frame for the discussion. For a

kth-order puncture, Fig. 5.5 suggests that Soo[¢”, ¢*] converges as

Lo ifk=1,
ASGE= R, R ~ L1238 i k=2, (5.57)

0T if k=3 or 4

max



Chapter 5 Second-order perturbation theory in a scalar-field toy model: the problem of
112 infinite mode coupling

107

10 20 30 4050 70 100 10 20 30 4050 70 100
gmax EmaX

Figure 5.5: The impact of the puncture order k£ on Sy,,,’s convergence with fyax.
ASEpx[¢R, ¢P] (left panel) and ASgm=<[¢R, $R] (right) are plotted as functions
of lmax. In both panels, results are shown for £ = 1 (red crosses), k = 2 (blue
triangles), & = 3 (solid black circles), and k = 4 (open purple circles) and
Ar = 10712, The straight lines show the asymptotic behaviour o 5.y of the
data. In the left panel, listed from top to bottom, they are proportional to £9
¢ . and ¢72 ; in the right panel, £7L , ¢=3  and ¢’

max’ max’ max?’ “max? max*

we will demonstrate below that for k = 3, this inferred falloff is incorrect, and that one
would have to go to much larger values of /.« to see the true asymptotic behaviour. But
the essential facts are unaltered by that: In order for Sy, to converge with £y ax, AS’f;;‘La"
must fall off at least as &}é;p with p > 0. Hence, to ensure numerical convergence
of Soo[#, o], we must use at least a second-order puncture. Although exponential
convergence would eventually manifest, in a concrete situation where we have access to
modes up to £ = flyax, the exponential convergence would only assist us at distances

|Ar| ~ rg from the particle.

Because ¢” is singular, Sp[¢”%, ¢¥] converges more slowly than Soo[¢”, #™]. Ac-
cording to Fig. 5.5,

o ifk=1,
ASG[6R ¢P] ~ L gl ik =2, (5.58)
(=3 if k=3 or 4

again, the inferred falloff for k& = 3 is incorrect. But again, we can nevertheless draw
the essential conclusions: Because they are slower than those of Eq. (5.57), the falloff

rates in Eq. (5.58) are the ultimate determiner of how high order our puncture must be.
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To ensure numerical convergence of Spg[6™%, ¢™%] 4 2S00[¢”, 7], and hence to allow our

overarching strategy to succeed, we must use at least a third-order puncture.

All of the behaviour we have just described is generic; it is not particular to the
monopole. We now argue, by way of scaling estimates for arbitrary k, that it also
extends to the gravitational case. As a byproduct of our derivation, we will also discover,
as alluded to above, that the power laws in Egs. (5.57) and (5.58) are not the true
asymptotic falloffs for k£ = 3.

First let us continue to focus on Syg. We will afterward generalize to arbitrary £m.
Although in practice we use Eq. (5.31) to compute Sy, Eq. (5.37) will be more useful
for our argument. For ¢ = 0, Eq. (5.29) simplifies to

COOO _ (_1)m1+s1 54157711 551 5.59
limisilomass — W 2 —Mm2 "~ —82) ( : )

where (5;- is a Kronecker delta. Substituting this into Eq. (5.37) and simplifying, we find

Soo = ;[ (1) 0, (2)/ ( )¢(1)/¢(2)

QQ _ 1 — 2)* 2)*
1 s B 1 = s Sy ) g Oiis = M Bfme) |- (5:60)

Based on the result that ¢, decays exponentially with m’, we may disregard the sum

over m’ for the purpose of finding the scaling with £,... We then obtain the estimate

(1 2
Asgbnax T¢Zmax0/ r¢emax0/ + lnlax¢€m)ax0/ ¢ém)ax0l. (561)

Note that the ¢ derivatives in the original source simply contribute to the second term
here. They appear in Eq. (5.60) as the term proportional to 22, the dominant piece of
which is given by %QQE(K + 1)¢>é(1)? qb%?

We now appeal to standard results for the large-¢ behaviour of ¢%, and qﬁ%, [88]. Tt
is well known that when evaluated on the particle, (a) ﬁﬁgb%,Ygo/ ~ ™ and ﬁﬁq%,Ygo/ ~
¢"=* for a kth-order puncture, and (b) the odd negative powers of £ in chb%/YgO/ iden-
tically vanish. Noting that Yy (0, 8) ~ £}/2, we infer that gb%, ~ Y2 argb%, ~ 012
qﬁ}%, ~ 6_5/2_2L%J, and 8T¢Z%, ~ 6_1/2_%%, where |s] denotes the largest integer less
than or equal to s. These results hold at Ar = 0; at finite Ar, they transition into ex-
ponential decay in the now familiar manner. Substituting this behaviour into Eq. (5.61)
yields

_q_ g k=1
AL 67, §F] ~ i L3 4 g2 (5.62a)

~ (1—2k (5.62D)

max
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and
9|k _q_ok=1
ASGE (R, ¢F) ~ bk + b 2 (5.63a)
~ Lo (5.63b)

In Egs. (5.62a) and (5.63a), the first term arises from (9,¢)? and the second arises from

(0s0)? + T%ama%; these two terms alternate in dominance from one k to the next.

To extend our estimates to generic m modes, we note that in Eq. (5.32), when
b1 ~ Lhax > 1, the triangle inequality also enforces £ ~ £, > ¢. We can then appeal

to the approximation

A dt . 1
vl e e O) (5.64)
m mi Mo vV 61 + 62 +1 Erln/a?x

for £ < (1,09, where cosy = (m1 —mg)/(¢1 + f2 + 1). This implies

Cfms ~ KO

fim/s1fomaoss max"*

(5.65)

Given this, we can apply the same arguments as above and find the same scaling es-
timates: AS;;;‘;‘XMR,QSR] ~ 1=2F and AS;T‘;‘""‘[géR,ng] ~ (1=k " From this, we again

max max-*

conclude that at least a third-order puncture is needed to ensure convergence.

We now return to the numerically determined scalings in Eqgs. (5.57) and (5.58).
Comparing them to Egs. (5.62b) and (5.63b), we see that the numerical estimates agree
with the analytical ones except in the case of k& = 3, as mentioned previously. This
discrepancy stems from Egs. (5.62a) and (5.63a). There we see that for a given k, two
power laws compete for dominance. In practice, we find that the coefficients of these
power laws can dramatically differ. Let us focus on AS&““ [¢™, #%] for concreteness.
For k = 3, the dominant power in Eq. (5.62a) is £,,5., and it arises from (9,¢)?; the

max)
-7

max?

subdominant power is ¢ and it arises from (0;¢)? + r%@AqS@Agb. In our numerical
results, we only see the latter, subdominant behaviour. Why? Because it comes with an
enormously larger numerical coefficient. This is demonstrated in Fig. 77, which plots the
contributions from (9,¢)? and (9;¢)%+ T%(‘)Aqﬁ@Agt separately. Each of the separate terms
is in agreement with Eqs. (5.62a) and (5.63a), but we see that for k = 3, A[(9,¢)?]5
is hugely suppressed relative to A[(9;$)? + T%(?Aqﬁ(?Agb]gg‘“, even though A[(8,¢)2]m=
is decaying more slowly. In fact, by fitting the curves, we can estimate that for £k = 3
and rg = 10, the true asymptotic behaviour would only become numerically apparent

at fmax > 450.

This competition between terms appears to be a robust feature of the model:
numerical investigations show that it is independent of £ and m and largely independent
of g, though it subsides at smaller values of ry. Furthermore, the underlying cause is not

confined to k = 3, as we find that the coefficients of various powers of 1//,ax in ASg;rnf"
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often differ by factors of 10* or more. Indeed, this is true not just in ASfﬁ;‘", but also
within the individual contributions A[(@T@Q}fﬁf", A[(B@)Q]g;‘;fx, and T%[@A¢8A¢]ﬁ;“na".
We have no reason to believe that this is particular to our model. Wildly disparate
coefficients of the powers of 1/l could very well occur in the gravitational case as
well. Because of this, in principle, one might encounter a situation in which one’s
numerical results had appeared to converge, when in fact a divergent power of 1/l ax
was still waiting to emerge at larger £y ax. One can only eliminate this possibility by

appealing to analytical estimates of the sort in Egs. (5.62b) and (5.63b).

With this additional impetus, we now extend our estimates to the gravitational
case. Because 602Gy, has the same form as Sp,, and because h}l?n, and hillf%, have
the same behaviour as qbfm, and (;Szn/, similar estimates will apply. The only difference
between the two cases is that §2G contains terms of the form hd?h and terms that mix

t,r, 04 derivatives. Assume we can account for these changes by adopting a generic form

2 max 2
A5 G’Lfm ~ a”’hjemaxolarhkemaxo/ + gInaX h’jemaxol hkemaxol + elnaxhjemaxola’f’hkemaxol

F P00 Oy Pl (5.66)

in place of Eq. (5.61). Using 92hl, ~ 0372, O?RE, ~ Y2 for k = 1, O?RE, ~
127205 for k> 1, and the scalings given above for the lower derivatives, we find
that AS2G MR, 1hP] ~ Loy and AS2G[hR, hR] ~ Loy F~2L"27). The first of
these convergence rates is the slower of the two, and it is identical to the scalar model.
Therefore, we conclude that like in the scalar model, for our strategy to be effective in

the gravitational case, it requires at least a third-order puncture h}gf

5.4 Computing S;,[¢7, ¢"]

The only term that remains to be computed in Eq. (5.8) is Sg[¢7, ¢7]. As we described
in the outline of our strategy, we calculate the modes of Sy, [¢7, ¢*'] by substituting the
4D expression (5.40) into the 4D expression for S and then integrating against spherical

harmonics to obtain the modes.

More precisely, our procedure is summarized by the following four steps:

1. Begin with the puncture field (5.40) in the rotated coordinates a?
2. Construct the 4D expression S[¢”, ¢”] in a? coordinates using Eq. (5.33).

3. Decompose S[¢7,¢"] into ¢m’ modes Sp[¢7,¢"] by evaluating the inte-
grals (5.34).

4. Use Eq. (5.39) to obtain the #m modes Sg,[¢F, ¢7].
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The nontrivial step in this procedure is the evaluation of the integrals (5.34). We
perform that evaluation in the same manner as we did the integrals in Sec. 5.3.2. Again
we use two independent methods of evaluation: fully numerical and mixed analytical-
numerical. The only new features of the integrals is that the integrand now contains
explicit factors of sina and cosa as well as higher powers, and even powers, of p in
their denominator. Because Eq. (5.44) is defined only for odd n, the method described
in Sec. 5.3.3 is not immediately applicable; an even-n analog of Eq. (5.44) would be
required. However, the even powers of n are readily handled by the methods described
in Secs. 5.3.4 and 5.3.6.

After performing the integrals, we arrive at our promised result displayed in
Fig. 5.2. There we see that near the particle, where Sg,[¢"", ¢™'] converges too slowly
with fpax to see any singularity at Ar = 0, our computed Sy, correctly behaves as
1/(Ar)2. Further from the particle, where Sy, [, ¢"'] rapidly converges with £y,

our computed Sg,, correctly recovers Sg, [¢™, ¢

5.5 Conclusion

We have now demonstrated that our strategy successfully circumvents the problem of

slow convergence described in the introduction. This success is encapsulated by Fig. 5.2.

The core tools in our strategy are adopted from mode-sum regularization and
effective-source schemes, but our analysis has highlighted several unforeseen complica-
tions in applying these standard methods. Specifically, we have found that notable
intricacies arise in computing mode decompositions in rotated coordinates that place
the particle at the north pole. Traditionally, the time dependence of the rotation could
be treated cavalierly, but in the calculations described here, it must be handled with
care; traditionally, as explained in Sec. 4.6 only the m = 0, +1, 2 azimuthal modes are
required in the rotated coordinates (see the mode-decomposition of the puncture given
in Eq. (C.16)), but here a significant number must be computed; and traditionally, the
relevant Legendre integrals can often be simplified by analyzing them in the limit r — rq,

but here they must be evaluated ezactly in some finite range of r around ryg.

Although our implementation has been in a simple scalar toy model, our strategy
and computational tools are not in any way specific to that model, and they can be
applied directly to the physically relevant gravitational problem. This strategy will be
implemented in Chapter 8.
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Figure 5.6: Comparison of two contributions to ASEm**[¢”,¢”] (upper panel) and
ASSmax [pR ¢ (lower), using the same parameters as in Fig. 5.5. AjSimex[¢M) ¢3)] rep-
resents the contribution from 8,¢"d,.¢® and AgSég"‘"‘ [<Z><1), ¢<2)] represents the contribution
from 8,6M 9, + T%QABam(l)ans(”. For k = 1, the dominant contribution comes from
large solid magenta circles; for k = 2, from open black squares; for k = 4, from small solid
green circles. For k = 3, the dominant contribution appears to come from small solid green
circles, but because the solid blue triangles are falling more slowly, they will eventually become
dominant at sufficiently large {max-






Chapter 6

Second-order perturbation theory
in a scalar-field toy model: the

problem of infrared divergences

In Chapter 4, we have computed the first-order field by treating the source orbit as
circular, based on looking at a short interval of time. But going to second order, we

cannot calculate the field with a geodesic source orbit over long timescales.

On the orbital timescale, T = 27/Q ~ €%, deviations from a geodesic in the back-

1
1%

can solve the linearized Einstein equations with a geodesic source orbit. Conveniently,

ground are small (~ €) and can be neglected in the first-order field b}, (x;~y). As such we
such a source has a discrete frequency spectrum, allowing us to solve the equations in

the frequency domain as we did in Chapter 4.

But if we want to model the EMRI over long timescales, we will not have the
luxury of this method because the deviation from geodesic motion grows large in both
the past and the future. Because this deviation contributes to the second-order source,
the accumulated error due to this approximation manifests as a secular growth in the
second-order field. We can quantify this effect by appealing to (1.28). On the orbital
timescale (Atopic ~ €9), the deviation, dz* from a geodesic due to first-order self-force
effects, is small [~ O (¢)]. But during the time of inspiral (Atinspiral ~ 1/€), the deviation

dz" (specifically, the error in the orbital phase, dp,) grows to be much larger.

Even more, because errors propagate at finite speeds, secular errors at large past
times cause growing errors at large distances at fixed time. This is illustrated in Fig. 6.1.
Consider a hypersurface of constant time, t = ¢y, and some point along the worldline at
some time tpas to its past. The radial extent of the domain of influence of the event
tpast Within that hypersurface grows linearly with the time interval tg —¢. Thus, secular

errors in the far past can produce large errors at large distances at present.
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T increasing

At~1/e T (A)

t (D)

past

Figure 6.1: At a fixed time to, fields from source-points on «y within the time scale At ~ 1/e
(such as B), propagate along null lines to points at larger r than the fields from source points
within the time scale At ~ € along -, such as A.

An obvious workaround would be to restrict ourselves to small timescales, in which
we can approximate the source orbit to be bound and periodic. But this leads to a second
problem. Such a bound periodic source at first order, leads to an everywhere-divergent
retarded solution at second order. These divergences are a feature of the fact that the
first-order field itself generates curvature, which induces a non-compact source at second
order, in the sense that it propagates from every point in spacetime. Mathematically
this manifests in a source whose leading-order behaviour falls off too slowly to form
a convergent integral against the retarded Green’s function over all spacetime. This

results in an infrared divergence.

In this chapter, which is entirely based on [75], we show how to overcome both
problems that arise at large r. In doing so we develop a framework that includes all the
physical effects, works on both short and long timescales, and still allows us to work in
the frequency domain. We resolve the problem of secular growth using a two-timescale
expansion of the field. An infrared divergence of the type just described still arises in
this approximation. We cure it by cutting off the retarded integral over r at some large-r
cutoff, and adding a homogeneous solution with a constant coefficient, to account for the
piece of the field that was removed. We refer to the region beyond the cutoff as the far

zone; the region below the cutoff, as the near zone. The coefficient is fixed by matching
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to an exact solution in the far zone, derived via a post-Minkowski (PM) expansion. We
use the scalar-field toy model introduced in Chapter 5 to do the hard work of developing
an approach for resolving these obstacles. We will carry this strategy over to the full

field equations in gravity, when we come to solving them in Chapters 7 and 8.

6.1 Multiscale expansion

In a multiscale expansion of a function f(A, €), where ¢ < 1, we define a fast time
Aast (A, €) ~ €9, and a slow time Agiow(), €) ~ eX. We then assume that the function

can be uniformly approximated as
f ()‘7 6) = Z 6nfn()‘fast, )\slow)' (61)

We may calculate derivatives of f (A, €) with respect to A using the chain rule

df~ 8f~ dAfast af d)\slow
el . 2
dX  OApst dA + OAglow  dA (6.2)

Then, in order to solve differential equations in the dependent variable f(),€), we sub-
stitute Eq. (6.1) for f(\,e€), write derivatives as in Eq. (6.2) and we treat Afg; and Agjow

as independent variables.

In our problem, we adopt ¢ = et as the slow variable on the worldline z#, and as the
fast variable we adopt the azimuthal angle ¢,. The extension away from the worldline
will be discussed below. Writing everything in terms of these two timescales, we expand
in powers of € at fixed ¢ and ¢p. The slow-time t only changes appreciably over the

radiation-reaction time scale ¢ ~ 1/¢; on that scale, £ ~ 1.

6.1.1 Expansion of the worldline

We assume that the worldline depends on a small parameter € < 1 analogous to p/M.
By analogy with the equation of motion (1.37), we write the equation of motion that is
coupled to the toy-model field equations (5.4) and (5.7), as

Dzt 1 2
Tz = Jea +efdi T Efde + O(E), (6.3)
where )
U
et = g0 (6.4)
p

is a relativistic Coulomb-type radial force per unit mass, where U (t) = u'(t) and u =
dz"/dr is the four velocity of the worldline, 7 being proper time on the worldline. STZij

is the nth-order SF per unit mass.
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We write the worldline in the parametric form

2H(t,e) = {t,rp(t,€),m/2, pp(t, €)}. (6.5)

From the normalisation u*u"7,, = —1 in flat space, we straightforwardly find that

Ut.€) = 1/1/1 - ry(t, )20t )% (6.6)
where Q(t,€) = dy,(t,€)/dt.

We next write the worldline coordinates in Eq. (6.5) in terms of a slow-time # = et,
as rp(t, €) = 7p(t, €) and ¢p(t, €) = Pp(t, €). Since the orbital radius and frequency evolve

slowly, we may write 7,(f, €) and Q(t,¢) = Q(f, €) as

Nl

(t,€) = 7o(t) + €1 (1) + O(€), (6.7)
(T, €) = Qo(i) + e (f) + O(e?). (6.8)

O
N

The orbital phase, ¢,(t,€) = @,(Z, €), is recovered from the frequency as

Golf,e) = /0 s [Q0(3) + e (3)] + O0(e)

€
1

€

[2o(F) + ep1(8) + O(*)] - (6.9)

Similarly, writing U(t,€) in terms of slow time as U(t,e) = U(#,€) and inserting the

expansions (6.7) and (6.9) into (6.6), we may derive the expansion
Ul(t,e) = Uy(t) + €U () + O(€?), (6.10)

where Ty = 1/1/1 — 1202 and U (i) = 22597, 0).

Expressions for the 7, and €, may be derived in terms of fohe, by solving the

equation of motion order by order in e. Because there is no motion in the 6 direction
and (DQz” / d7'2) u,, = 0, only two components of the equation of motion are independent,
which we select to be the ¢ and r directions, following the choice in [75]. Inserting the
expansions (6.7) and (6.8) and using d/dt = ed/dt, we find that the ¢ component of (6.3)

reads

dau 1
T U [efsdie + € f2he + O()] (6.11)
and the r component reads
d*r 1 dU dr 11
207Tp 9 P 2 _ 1r 2 £2r 3
U ad —rpfl = 2T [efdle + € fodie + O(€”)] - (6.12)
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Following the approach in [75], on the right hand side of (6.11) and (6.12), we write
the self-forces as a function of slow time, as fi4(t,€) = fI'i(,¢) and expand them in

powers of € at fixed slow time, to yield

ef it €) + Ef Rt €) = ef M (T) + (D), (6.13)
where
FU(d) = fiR(i,0), (6.14)
iy o o O
) = f(5,0) + 8—Sj(t,0). (6.15)

Explicit expressions for f™ can be found in [75]. Substituting the expansions (6.7), (6.9)
and (6.13) into the equations of motion (6.11) and (6.12), we may derive expressions for
n(f) and Q, (%) in terms of fA.

At zeroth order in ¢, (6.11) is trivial but (6.12) yields

At linear order in €, (6.11) yields an equation for the slow evolution of 7y, as

dro _ 275

fi- (6.17)

dt Us
This slow evolution is caused by the dissipative piece of the SF, as the right hand side
of (6.17) implies. At linear order in ¢, (6.12) yields an equation for Q;

) 1 P
le—w[(l—ro)rgfl — 3. (6.18)
To

6.1.2 Expansion of the field

For the expansion of the scalar field, we require an extension of the two-timescale co-
ordinates away from the worldline. This requires slow and fast variables as fields on
spacetime, not only on the worldline. The first-order source is an oscillatory function
of ¢,, with an amplitude that varies slowly with time ¢. The retarded Green’s function
propagates this behaviour outward along null cones, leading to a first-order solution
that (at least at large distances) oscillates with a phase ¢,(u) and has an amplitude
that varies slowly with u, where v = t — r. With this in mind, for our slow and fast

variables we adopt @ = eu and @, (1, €). For conciseness, we refer to the latter as ¢, ().

Using the same notation as in Chapter 5 for the first- and second-order fields, we

write them as harmonic expansions, ¢y, (z,€) = >, &%, (t,7,€)Y“™(64), and then write
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the coefficients in terms of two-timescale coordinates, as

Fom (8,7, €) = O (4,7, P (@), ). (6.19)
Now expand the coefficients in powers of € at fixed @ and fixed ¢, (@), to yield

_ _ O™
S 1,7, (), €) = G (0,7, By(@),0) (5,7, 3,(3),0) + O(). (6.20)

We may then define new first- and second-order fields:

g?)%m(ﬂ,’r‘, @P(ﬂ)) = gg%m(ﬂ,rv gﬁp(’&),O), (6'21)

- - Ol
Bl 7,0 (0)) = (.7, By, 0) + €20 i, 2y (@), 0). (622

We may write each of the variables qu‘m explicitly in terms of ¢, (%) as
G 7, Bp () = Rip (11, 7)€ 0 (), (6.23)
Similarly, we may expand the source-term, g, in Eq. (5.4) as the harmonic expansion

o(x,€) =D 4 0em(t,r, e)ytm (9‘4), and write the coefficients in terms of two-timescale

coordinates, as ¢y, (t,7,€) = 0pm (U, 7, or(0),€). We may then define the new source

variables
Bt (17, Bp(T)) = B (@7, Bp(10), 0), (6.24)
~ ~ ~ o~ ~ ~ ~ o~ 8é€m ~ ~ /~
g (7, Pp(@)) = B (T, 7, §p(T0), 0) + € e (@, 7, Pp(a),0), (6.25)
with
o0, (@, 7, Gp(@)) = o, (@, 7)e ™ mer(®), (6.26)

Explicit expressions are found by substituting Eqgs. (6.7)-(6.9) into Eq. (5.9), and then
expanding functions of ¢ around @ = t — er, which yields
efimflo(ﬂ)r

————0(r—"7o()), (6.27)

Ot () = NowUp ' (8) —

e—imflo (a)r

2{ [71(@) + r7o(@)]6' (r—7o (@)

G, 7) = N 05 (1)
+ U5 (@) [Ul(a) n rffo(a)] 5 (1 —7o(@)
+im [rﬁl(a) + ;ﬂﬁo(a)} 5(r—f0(a))}, (6.28)

with Ny, given by Eq. (5.17).
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After combining all of the above expansions in Egs. (5.4) and (5.7), we group terms

by powers of € at fixed @ and ¢,(%, €). This leads to the equations
2 pn 2 - A ~n 1 = ~ =
87, Rfm —+ ; (]. —+ ZmQOT) angm —+ 7‘72 [QZmQOT‘ — g(f —+ ].) Rém = ng, (629)
where the sources are

Sk = —AT},, (6.30)

- - - - 1 -
Si. =52 —Anpr +2(0; — imS) (&R}m + TR§m> i (6.31)

ng are the modes of the nonlinear source term t*%9,¢'03¢! in Eq. (5.7). We have
dropped ¢®?P | where ¢(PP is the puncture at the particle from Eq. (5.7), because
we will solve for the second-order field in a large-r region in which ¢?% vanishes. We
will define this region more precisely, when we come to solve for the second-order field
in Sec. 6.3.

An explicit formula for SZQm may be derived by setting t*? 8a¢185¢1 =
St Yo S2, €7@ - and substituting Eq. (6.23) into the left hand side. Integrating
both sides against Y, over the unit two-sphere, the formula for S’?m is readily obtained.

The details of the derivation can be found in Sec. 5.2.1. The result is

ng = Z Z [Cgffngofum//o <—2m/m”Q%Ré/m/R%//m// + im/QOR}/m/arR%//m//
o'm! 0 m!
+Z'm”Q()a7~R%/m/R%//m// + 87~R%/m/arR%//m//)
1

- ﬁ(cﬁg}n{)_leﬁml!l + Cg%glgl/m//_l)\/gl(el + 1)£//(€// + 1)R%lm/Ré//mll . (6.32)

where C{ms is given by Eq. (5.29).

£imys1lamasa

6.2 First-order solution

We obtain the first-order solution to Eq. (6.29) via the method of variation of parameters,

just as in Chapter 4. The solution has the form

R%m(r) EH(T)ij(T) + 6517; (r)RZm(r), (6.33)

="¢m

where R;m(r) is a homogeneous solution regular at the origin, and where Rzrm(r) is a

homogeneous solution regular at r — co. The coefficients are

oy [ RS0
i (r) = /0 TGS (6.34)
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oo p+ ! 31 r
& (r) = / Rém%@)f%( Jar' (6.35)

For m # 0 the homogeneous solutions are
R = e 0D (mQr), (6.36)
Ry, = e ™07y (mgr), (6.37)

where hgl) is the spherical Hankel function of the first kind, j, is the spherical Bessel

function of the first kind, and the Wronskian is

5 e—ZimQOT
Wi = ——————. 6.38
o imQor? (6.38)
For m = 0, the homogeneous solutions are
- 1
RéO = P+ (639)
R, =", (6.40)
and the Wronskian is 00 1 1
_l’_
W = — 2 (6.41)

6.3 Infrared divergence in the second-order source

To characterize the behaviour of the second-order solution, we split it into two terms,

namely ¢y = 1) + 8¢y, with a corresponding split
R2, =Ry + R (6.42)

The first term is generated by S7  in Eq. (6.31). R%j is sourced by the remaining
terms in Eq. (6.31), which arise due to the slow evolution of the worldline. The infrared

divergence of the source comes solely from the ng piece, as we will now show.

The equation for R}Zm reads
. 2 - L7 1 - L7 .
ORR,, + - (1+imQor) 0,15, + > 2imQor — (¢ + V)| By, = S3,. (6.43)

We solve (6.43) using the method of variation of parameters, to yield the retarded
solution. We restrict our solution to r > ry for some very large ry, which ensures
that the dominant piece of R?m comes from the leading-order, 1/72 piece of ng (see
Eq. (6.46) below). 74 is a function of slow retarded-time, as r4 = 74 (@), but to save

on notation we suppress this dependence. Ignoring the contribution of the source in the
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region r < r4, we write the solution as

- TR (#\S2 (! B © Rt (¢N\S2 (4 B
Ry, (r) = /HJWW R} (r)+ / Ry 7)) 3 R, (r). (6.44)

r Wém (T,)

The homogeneous solutions R;tm are precisely the same as the ones given in Egs. (6.36),
(6.37),(6.39) and (6.40). If we take a look at the asymptotic behaviour of (6.32), and
note that the 3j-symbols impose m = m’ +m”, we find that the slowest decaying terms

in Sfm behave as
im/Qor 6im"§~20r 61'ng7‘
= , (6.45)

r r r2

e

coming from the terms atR;,m,atR;,,m,, ~ O (r_le_imlﬁo(t_’")) Oy (T_le_im”%(t_r)) and
O Ry, O Rbn s ~ Oy (T_le_imlﬂo(t_r)> O (r_le_imuﬁo(t_r)) Note that only oscilla-
tory, m # 0 modes in é1 contribute to the 1/r? piece of the source. The stationary
modes, which are t-independent, do not contribute at order 1/r2, but rather decay as
1/r*. Eq. (6.45) is exactly the bad behaviour which emerges in the second-order grav-
itational source 62RW. The toy-model source was designed in order to exhibit this

behaviour.

We will show now how a source term of the form (6.45) leads to a badly behaved

retarded solution in (6.44). Let us write the source modes as

B 51(*2)61‘771(207’
57 = fmT +0(1/r3), (6.46)

where S*lﬁ;f) is a constant. With this in mind, let Ré;f) be the part of the solution

sourced by 7“7255;2)61'”1@07‘ at points r > r*. Then,

B TR— N imQor! 5 OOR+ N imQor’
R;m(r)/ Ben()E™ 0 10 R (1) / Bun()E™ 2 il (6.47)

Ry (r) =857 o o
2 Wi (1) 2 W (r")

tm

We are primarily interested in the integral that extends to infinity, the part of the
solution which draws information about the first-order solution over large distances.
For m # 0, Eq. (6.47) reads

RG? = —imQoS 2 WV F) | @) ' + o) [ V(e dr' |, (6.48
Im Im 14 14

+ T

where 7 = mQor’. At large r, the behaviour of hél) and 7jy is

h{P(z) = (—z’)“liz +0(1/2%), (6.49)
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and

( ) (_1)f/2% + 0(1/22) for even f, ( )
jf 2) = z 6.50

(1) @29 ) o422y o oad 0,
z

These asymptotic expressions show that

r o £+11
/ Ge()e dr’ = ="+ 0(r0), (6.51)
rt 2on
W) oy e s (1) e ,
MY (e dr! = 2 — 1 O(1/r?). oo
/r ¢ () om0 (1/r%) (6.52)

Hence,
Ch + 557 ] v

Rgr_’f) = 2imTor +0 (r_2 Inr), (6.53)
for some constant Cj,,. Due to the logarithm, this behaviour is not smooth at null
infinity. In the gravitational problem, such terms would violate asymptotic flatness at
future null infinity. However, when we apply the matching procedure in Sec. 6.4, we
will find out that this behaviour correctly describes solution in the large-r region of the
near zone. In PM theory [101,102], terms with this type of behaviour arise due to the
metric perturbation deforming light cones, along which the solution to the wave equation
propagates. They can be removed through a gauge transformation to an asymptotically

regular gauge [102].
The most worrisome case is when m = 0, for which Eq. (6.46) reduces to

&(=2)

Y S
Sz, = if; +0(1/r%). (6.54)

Eq. (6.54) is stationary and non-oscillatory, and stems from destructive interference from
waves of opposite phase in the coupling formula (6.32). The contribution from (6.54) to
the source leads to the infrared divergence problem in the second-order field, as we will

now show.

Substituting Eqgs. (6.39)—(6.40) into Eq. (6.47) yields

T {4 oo . —f—1
52 _ 1 &) v’ ea-2) [T
For ¢ > 0 Eq. (6.55) evaluates to
. 5(=2)
RGP =20 o/t (6.56)

00 +1)

Hence, every m = 0, £ > 0 mode approaches a constant at large r. In the gravity

problem, this seemingly corresponds to a lack of asymptotic flatness. But like the
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behaviour for m # 0, we will find that it is physically correct in the large-r limit of the

near zone.

For the ¢ = 0 mode, Eq. (6.55) yields

Jr
H(—2) r : "\ a(=2)
=(——-14 lim In— : .
Ry, ( " + Aim In 72) Soo (6.57)
The final term is infinite and the solution diverges at all values of r. In the next section

we will shed light on the origin of the divergence and explain how to rectify it.

6.4 Curing the divergence using matched asymptotic ex-

pansions

6.4.1 Boundary conditions at infinity

To cure the infrared divergence of the source, we choose a large-r boundary at r = R,
cut off the retarded integrals at that point, and then add a homogeneous solution to
account for the part of the source that lies at » > R, multiplied by some unknown
constant. The constant is determined by matching the multiscale expansion in the near
zone to the exact solution for the retarded field at large distances, as found from the
PM methods of Blanchet and Damour [101-106]. The matching procedure will be the
subject of Sec. 6.4.2.

To ensure regularity at » = 0, the added homogeneous solution must be regular

there. In terms of the variables R%m, this implies

R}, =it (RS, + (g, (r) + kem Ry, (6.58)
with coefficients
r R— / 512 /
iy = [ Fen g (6.59
T4+ WEm (T )
R R+ / 512 /
Com (1) = / Mdr’, (6.60)
T ng (7“ )

and some unknown, r-independent functions k¢, (@, R) that are to be determined by
matching. This is the most general solution compatible with (i) the assumptions of the
multiscale expansion and the ansatz (6.23), (ii) retarded propagation inside the near
zone, and (iii) regularity at » = 0. We then find that the analogues of Egs. (6.53) and
(6.56) are

o) (Com+ 85 mr)

= — + ko (@0, R)jo(mQor) + O(r21Inr) (6.61)
2imQor
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for the m # 0 modes, and

&(=2)
p(=2) _ S ~ ‘ 1/76+1 9
Ry, W+ + kgo(a, R)r* + O(1/r") (6.62)

for the m = 0, £ > 0 modes. From the matching procedure to be described in Sec. 6.4.2,
the following result is derived [75]:

kem(,R) =0 for £ # 0. (6.63)

In other words, for £ # 0 we need not have restricted the solution to the near zone, and
we may simply send R — oo. For £ = 0 we cannot send R to oo, because the result for
the field reads

B + i
RiY = <Tr —1+1In ;) 567 + kool R). (6.64)

Instead we write the total monopole mode as

. + . - "
R2, = (rr _ 1) S5 +1(r)855? + koo(, R) — In(R) S, ?
= n(r)8;? + koo + O(r " Inr), (6.65)

where
oo (i) = koo (i1, R) — In(R) S5y (6.66)

must be independent of R. We will calculate kop using the matching procedure in
Sec. 6.4.2.

Thus, for all modes ¢ > 0, we can set R = oo. While this is not the case for
the ¢ = 0 mode, we can nevertheless find a more convenient form for dealing with the

In r-divergence in (6.65), by introducing a puncture.

We define the puncture at infinity as
RP> (i1, ) = 0(r — r™) In(r)S$s 2 (@), (6.67)

where (@) > r*(a) is arbitrary. Then we can define an effective variable, similar to
the residual field defined in Chapter 3, as

RST = RZ, — RP*® — k. (6.68)

Then we transfer RF> to the right-hand side of the field equation (6.29), leading to the
equation
(9% 4+ 2r710,) RS = Seif (6.69)
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where Sgg is the effective source given by

Sl = 82, — (92 + 2r19,)RP> (6.70)
Séo !

= S‘OO fOI' r> 7100. (671)

The effective source, Sgg , falls off as 1/r3, and we can write the solution using the

standard method of variation of parameters as

R3S = &gt R + &5 R, (6.72)
where
aoff+ — M dr’, (6.73)
0 Woo(r)
sei— _ [ Bo()S§ () ) (6.74)
C200 : Woo(r)

The Wronskian Woo (1) = 0, Ry () Rog(r) — - Ry (1) Ry () is given in Eq. (6.41). The

physical field can then be recovered using

Rgy = RgG + RP™ + koo. (6.75)

6.4.2 Matching to the exact solution in the far zone

To determine the constant 12:00, we will match to the known PM solution using an
approach developed by Blanchet and Damour [103]. They derived a general formula
[101-104, 106] for the retarded solution to the PM field equations, which is valid at all
points outside of the source. They also showed [103] how to construct a global solution,
by matching this general form to an expansion in a suitable, smaller zone containing the

matter. Our method in the discussion below closely follows their approach.

The general retarded solution to the first-order equation (5.4) at all points r >
rp(u), is given by

(D Py
¢ = ; R (6.76)
where L = 41 .. .14, is a multi-index, dr = 0;; ... 0;,, and summation over the ¢ contracted
indices is implied. This is the generic form of a homogeneous solution containing no
incoming waves. When the matching procedure is applied, the set of functions FLl(u)

may be determined by matching to the expansion at large r in the near zone.

Again at points r > 7,(u), the retarded solution to the second-order equation (5.5)

reads
P = PP 4 M, (6.77)
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where

¢hom _ Z (_é})z or Fgr(u) (678)
7 !

is another homogeneous solution containing no incoming radiation, and

PPt = FPO_L (rBS[F})) (6.79)

ret

is a particular solution also containing no incoming radiation. In the region r > r*(u)
where the puncture field vanishes, S[F Ll] is the source t*? Va®1Vge1 with ¢ given by
Eq. (5.4), O

all spacetime, and “FP” denotes the “finite part”, obtained by extracting the coefficient

~+ denotes integration against the standard retarded Green’s function over

of BY in the Laurent series around B = 0.

Physically speaking, Eqgs. (6.77) and (6.79) are the same thing as taking a particular
solution CI_1 S (2 )| where R = r, whose source S is valid in the region r > 7 (u), and
then in the region r < r; we replace the physical source with the analytical extension
of the source from r > r;. We can see this from the fact that Eq. (6.79) can be written
as the sum of the retarded integral of the true source over the region » > ry and a
homogeneous solution given by the finite part of the retarded integral of the fictitious

source 7B S[F}] .

Based on (6.76) for ¢1, the source S can be conveniently written as a sum in explicit

S::E:EZ;%Sg*NwﬁL. (6.80)

{ k>2

powers of r as

As described in [103], for each term in the source (6.80), the retarded integral appearing
in Eq. (6.79) can be simplified to

ret

0 A _ o \B—k+0+2 _ B—k+0+2
- FPK(;k)/ dz SVR (- 2)dy, [(Z r) - (z47) , (6.81)

FPO-! (rB_kSI(;_k)ﬁL)

where

(B—k+2)!
B—k—(+1)

K(B, k) =2B7k+3 (6.82)
We are only concerned with the most slowly falling term in the source, T_QSgQ)ﬁL . As
discussed above, terms that fall off faster than 1/r? generate retarded solutions that fall
off as ~ 1/r. With this in mind, we will specialize Eq. (6.81) to k = 2. Since 1/r? is
integrable at r = 0, for this term in the source the FP operation is equivalent to taking
the limit B — 0. Thus, the retarded integral of the leading-order term in (6.80), which

we may denote as WUy, can be written as

ret

v, =0 <r—2S§‘2)ﬁL) . (6.83)
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The details of how to evaluate the integral (6.83) for the case of £ = 0 are left for the
Appendix F. The final result, which is derived in Eq. (F.17), reads

2 ( S
Uy = <ln il 1> S$52 (@) — / 3 S$5? (i — 8)In 5 + o(), (6.84)
€ 0

where “o(eP)” means “goes to zero faster than €?”. Since ¢3, = [t (7“_25'(()0_2)) +0(1/r),
Eq. (6.84) provides the leading large-r behaviour of the second-order monopole. It must
agree with the previous expression (6.65) from the multiscale expansion, which fixes the
previously unknown function 12:00(1]). A direct comparison with Eq. (6.65) leads to the

conclusion that

koo = —Siy (@) (1 +1In %) - /0 d5 8552 (i — 5) In 3. (6.85)

Equipped with this result, the infrared divergence is resolved. The final term
in Eq. (6.85) shows that the divergence was caused by neglecting hereditary effects
in the wave propagation, which could not have been determined within the near-zone
expansion. The first term in Eq. (6.85) shows that these hereditary effects introduce In e
terms into the field, a well-known fact in PN theory. Again, this logarithm could not

have been determined without knowledge of the solution outside the near zone.

The integrals for £ > 0,m = 0 and ¢ > 0,m > 0 are evaluated following similar
steps to those outlined in Appendix F. We just quote the results here and refer the
reader to [75] for details:

S @ |
v =58 o), (6.56)
In (1) gé_Q)e*im%(ﬂ) _1 0
Uy = — m_ +0 + , 6.87
¢ 2imSQor (T ) ole’) ( )

where the O(r~!) remainder has the form “constant/r” +O(r~?Inr). Comparison of
(6.86) with (6.62) shows that kg = 0, because no terms of the form r* appear in (6.86).
Similarly, comparison of (6.87) with (6.61) shows that kg, = 0, since no terms of the

form “oscillation/r” appear in (6.87).






Chapter 7

Computational framework for
second-order gravitational

self-force

In the previous two chapters we developed a treatment in the scalar toy-model for
resolving the problems we encounter on the particle and at large . In this chapter we
show how to apply the lessons we learned in the scalar toy-model to the gravity case,
and set up the equations that we will solve for the monopole piece of the second-order
field, in Chapter 8. The material in this chapter was developed in collaboration with

Adam Pound but its implementation in Chapter 8 was entirely my work.

We divide the spacetime outside the black hole into three zones: The near-horizon
zone where we expand around r ~ 2M, the near zone |r* — 75| < M /e where we use a
multiscale expansion, and finally the far zone r* > M where we use a Post-Minkowski
expansion. In this chapter we derive the multiscale expansion of the field equations
explicitly, for the monopole piece of the second-order field. The expansions in the near-
horizon zone and the far-zone provide boundary conditions for these equations. One
could apply these these expansions to calculate physical quantities including the flux,
total mass and angular-momentum of the system, and the multipole moments of the
black hole.

This chapter is structured in the following way. In Sec. 7.1 we describe the mul-
tiscale expansion, based largely on the material of the previous chapter. In Sec. 7.2
we derive the multiscale expansion of the equation of motion. In Sec. 7.3 we present
the multiscale expansion of the field equations for generic ¢-modes of the second-order
field. Such an expansion was first suggested by Hinderer and Flanagan [107], but this
represents the first time it has been worked out in detail. In Sec. 7.4 we discuss bound-
ary conditions near the horizon. Physical boundary conditions at the horizon have not

yet been worked out, but in the meantime, we present a method of deriving boundary

135
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conditions that at least avoids the infrared divergence of the retarded integral. Sec. 7.5
describes the Post-Minkowski expansion in the far zone, used to construct boundary
conditions at r — oo. This section also draws most of its results from the previous
chapter. Appendix G contains a number of asymptotic results for the monopole piece
of the second-order source, from which we derive a formula for the energy flux at null

infinity.

7.1 Multiscale expansion

7.1.1 Multiscale expansion of the worldline

We write the coordinates z* on the worldline of the particle, moving along a quasicircular
orbit, as in Eq. (6.5), and we use the same two-timescale coordinates described in Section
6.1.1. That is, we adopt t = et as the slow time and (,(t,¢€) as the fast time. Then,
the coordinates on the worldline may be written in the slowly evolving, quasicircular
form 7,(t,€) = 7y(,€) and ,(t,€) = P,(t,€), where 7,(t,€) and @,(t,€) are given by
the two-timescale expansions in Eqgs. (6.7) and (6.9), respectively. The orbital phase is

recovered from the frequency, as in Eq. (6.8).

7.1.2 Multiscale expansion of the fields

Just like we constructed a multiscale expansion of the scalar field in Sec. 6.1.2, we expand

the fields 7121, in gravity in a multiscale form. We use a slow time, w, defined as [108] !
w=elt—k(r). (7.1)

Surfaces of constant w foliate the spacetime as horizon-penetrating hyperboloidal slices,
as shown in Fig. 7.1. k(r) is chosen such that @ tends towards slow retarded time, eu,
close to future null infinity, and slow advanced time, ev, close to the future horizon of the
background BH. Elsewhere over a large spatial region, w is close to et. In our numerical
computation of the monopole piece of Biy, we use the simpler choice of ¢ = et. We
will come to this in Sec. 7.3. As the fast time we adopt ¢,(t,€). We write it in slowly

evolving form in terms of @ as ¢,(t,€) = ¢(w, €).

In analogy with the multiscale expansion in Eqs. (6.19)—(6.20), we write the grav-

itational field BZV = BZV(QIJ, 7,04, 5, €) as

R (@,7,0%, Gy €) = B, (W, 7,0, 3y, 0) + €Dchlt, (0,7,0%, 5, 0) + O(e?).  (7.2)

Tn [108] the notation h(r) is used instead of k(r) in the definition of . We choose k(r) to avoid
confusion with the metric perturbation.
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Figure 7.1: Penrose diagram of Schwarzschild spacetime illustrating the slow-time coordinate
w. v is the particle’s inspiralling worldline.

This yields new first- and second-order fields, analogous to Egs. (6.21) and (6.22):

Bl (0,7, 0%, 3p) = bl (10,7,0%, 3, 0), (7.3)
2 (i, r, 0%, 3p) = h2 (i, 7,07, 3y, 0) + Och, (b,7,0%, &y, 0). (7.4)

We decompose Egs. (7.3)—(7.4) into tensor spherical-harmonic modes, as

Z aighlyy, (v, w)e = mer @y itm, (7.5)

zﬁm

where Ylffm are the Barack-Sago basis of tensor spherical harmonics, given explicitly in
Egs. (4.15).

Substituting the two-timescale expansion of the field leads to a two-timescale ex-
pansion of the second-order Ricci tensor. We may write it as a decomposition into

tensor-harmonic modes, in a form analogous to (7.5), as

10 oo l

PR [P A =300 N 62RY, (R R e @Y 4 Oe). (7.6)
i=1 =0 m=—/
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The mode coefficients (52]%?%1[ ht, Bl] depend on r and w. They only include the leading
order piece, Qo of the frequency, and do not include any slow time derivatives. An

explanation of how to compute these modes is postponed until Chapter 8.

7.2 Multiscale expansion of the equation of motion

The equation of motion in Schwarzschild coordinates reads

Pt AU dP e

il = U 2FH 7.7
dt2 dt dt t 8 dt dt ’ (7.7)

where U = dt/dr, with 7 being proper time on the worldline, and F* is the self-force
per unit mass. Our goal is to substitute the form of (6.5) for the worldline coordinates,

and derive expressions for them at each order of e.

F* is a functional of z#, so we write it in the form
FU(t,€) = eFl'(237) + EFL(z7) + O(), (7.8)

where on the right-hand side, z = z(t), and each F}; is a functional of the worldline 7.
The self-force through second order, eF}'(z;v) + €2F}'(z;+) is given by the right-hand
side of Eq. (2.69), in terms of the regular field. By substituting for the regular field the
form of Eq. (7.5) and then evaluating all the derivatives, the ¢ and ¢, dependence has
the same form as the right-hand side of Eq. (7.5). With that, on v, ¢ = ¢, and the
e~ ™m¢p cancels with the ¢p dependence in the tensor spherical-harmonic. So, we end up
with an expression for the self-force independent of fast-time. The self-force is then a

sum over modes Y, (r,w), their derivatives, and terms like Q(u?)ﬁ?gm(r, w). ﬁ?gm(r, W)

im
depends on slow time through the source-modes’ dependence on the orbital radius, and
the explicit powers of frequency that appear in the field equations. Like in Sec. 6.1.1,
the frequency can be written in terms of the orbital radius. Therefore, we can express

the w dependence of the self-force in terms of the orbital radius, and write it as
FH(t,€) = eFY (Fp; Tp) + € FY (i Tp) + O(€%). (7.9)

Here, 7, = 7, (). The first argument refers to the radius at which we evaluate the regular
field in the self-force formula. The second argument refers to the implicit dependence

on the radius of the source orbit.

By substituting the expansions (6.7) and (6.9) into Eq. (7.9), we find that

FH(t,€) = eF (ro;m0) + €2E (ro;m0,71) + O(€?), (7.10)
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where

O Pl (i) . (7.11)

. 0
Fl'= Ff'(ro;ro) + | =—F{"(ro;m0) + Sro

87’0

where 8%0 acts on the first argument in F!'(ro; 7o), and % on the second.

Substituting Egs. (6.5), (6.7), (6.8), and Eq. (7.10) into Eq. (7.7) leads to a sequence
of equations for the terms 7, () and ,(f) in the expansions of the orbital radius and
frequency. At order €, the only nontrivial piece of Eq. (7.7) is the r component, which

yields

~ M
Qo= 4/=- (7.12)
7o

This is precisely the same result derived in Eq. (4.11) for the frequency 2 of an exactly

circular orbit with radius rg.

At higher order in € we will need an expansion for U, which can be found from the
normalization condition U?g,, "3 = —1. By substituting Egs. (6.5) and (7.12) into

this expression, we derive

3M - -
U™2=1- " 272000 + O(%). (7.13)

To

At linear order in €, from the ¢ component of Eq. (7.7), we find an equation for the

slow evolution of ry as

dig _ 2(fo — 3M)*(ro — 2M)

- = FH(Fo: 7). 7.14
di M (7o — 6M) 1(7o; 7o) (7.14)

This tells us that the slow evolution of the radius is because of the dissipative piece of
the first-order self-force. From the r component of Eq. (7.7), we obtain an equation for
Q as

1
27 fod0
where Uy 2 = 1—3M /7y and fo = 1—2M /7. Eq. (7.15) relates the first-order correction

to the radius, 71, and the first-order correction to the orbital frequency, i, to the

. o 3M .,
Ql = — UO 2F1 (7"(); 7’0) + 7:73']007'1 s (715)
0

conservative piece of the first-order self-force.

At second order in €, from the ¢ component of Eq. (7.7), we obtain an equation for

the slow evolution of 71 as

7 + 272 | QoQ1 Ff (ro;70)

= Uy *F3(Fo; 7o, 71)- (7.16)

2M dify (7“0>2 - d N [(fo + 3M)(7o — 3M)7 fo
P2f di  \Up) " di M (7o — 6M)

This tells us that the slow evolution of 7 and € are due to the dissipative piece of the

second-order self-force.
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In Chapter 4, at first order we fixed the orbital frequency, but at second order we
cannot expand the orbit at fixed frequency, because all quantities are evolving with slow
time due to dissipative self-force effects. We only have the freedom to fix the frequency
if we choose a preferred value of slow time #(=const). In our calculation of the monopole
piece of the second-order field, we do just that. This affords us the freedom to set Q=0

and O = 0. As a result, a formula for 7 in terms of F] emerges from Eq. (7.15), as

7 FY (o; 7o)

7.17
SMUZ fo (7.17)

=

7.3 Multiscale expansion of the field equations

The equations that we want to solve through second order are given in Egs. (3.9). While
we are primarily interested in solving the second-order equations (3.9¢) and (3.9d), we
include the first-order equations (3.9a) and (3.9b) in the discussion because the two-
timescale expansion yields second-order contributions from them. We remind the reader
that we solve for the trace-reversed field variable }_liw as we did at first order for reasons
explained in Sec. 4.2. With this in mind, the wave equations obtained by trace-reversing

Egs. (3.9) are

E.p[h™'] = —Eu5[ A7 inside T, (7.18a)
E.s[h']=0 outside T, (7.18b)
E,p[h™?] = 26°Rop[ b, '] — Eap[h7?] inside T, (7.18c¢)
E.s[h*] = 20°Rop[ b, 0] outside T (7.18d)

Now we want to replace h7,(t,, 64) with its counterpart ﬁzy(f, 7,04, 5,). Then
we want to substitute the decomposition (7.5) into Egs. (7.18), in much the same way
as we did in Chapter 4. To do the substitution, we note that the derivatives take the
form

ilm im

8t(~" efim“aP) = (—zm@fzf’em + edgph, )efim‘ﬁp(w), (7.19a)

ar(%me—im%) - (a,.i};;m imQH R, e f—la@ﬁ;;m) e~imE (@) (7.19D)
where € is given by the expansion (6.8), f = 1 — 2M/r, and following the notation
in Ref. [108], we have defined H(r) = dk(r)/dr*. The first term in parentheses on
the right-hand side of Eq. (7.19a), and the first term in parentheses on the right-hand
side of (7.19b), are precisely the same derivatives that appear in the frequency-domain
equations (4.25). The second term in parentheses in Eq. (7.19b) arises from our use of
w =t — k instead of ¢; the same term would appear if we used an expansion in Fourier

—imQuw

modes e , without a two-timescale expansion. The final terms in Egs. (7.19) arise

from the slow evolution of the system
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In this way we derive new first- and second-order equations, as

Efy BR') = = E,,, [A71] inside T, (7.20a)

Efy[ 2] =0 outside I',  (7.20b)

Mm[ hR2 ] 2a RzZm[ Bl’ iLl ] - ?Zm[ hPQ ] zlém[ hpl ] inside L, (720C)

EY [h?] = -5 " 82RO, [RY,R'] - EL, [h'] outside I'.  (7.20d)
Qg

Rn
ny o

Egs. (7.18). They have forms analogous to (7.5), with corresponding mode coefficients
th(T w) and hR"( w). EY and E! are given by

itm\T

Here, Bfﬁ and BEJ‘ are two-timescale expansions of hP" and h that appear in

B[ 1) = O (r, @) + MY By (r, ), (7.21a)
Ezlfm[ B] = Ijlﬁifm(ru lb) + lejﬁjfm(rg 'JJ)7 (721b)
where

~ 1 [

0'=-7 f2a,?+ fa +imQoH f0, + imQo fH' — m*Qg| + Vi(r), (7.22a)

- 1r -~ -~ - ~

Ot =— 1 2m2QoQ — imQy fH'imQ4 fHO,

+2imQodg + fH' 0y + fHO 03| , (7.22b)

with H' = 0,H and V} given in Eq. (4.28). Méj are given by M% in Eqgs. (D.1) with
the replacements 9, — 8, +imQoH /f and wy, = mQ — mQo. The terms /f\/lvllj are given
by M% with the replacements 9, — ileHf_l — Hf '0g, iwm — imQy — 03 and
w2, = 2imQo — im0y, and including only terms containing exactly one @ derivative

or factor of Q.

To satisfy the Einstein equations, the solution to the wave equations must also
satisfy the gauge condition V“ﬁﬁy = 0. By substituting the mode decomposition (7.5),

we derive gauge conditions analogous to Eqs. (4.29), as

Z9[h'] =0, (7.23a)
D h?] == 7k, (7.23b)
n=1,2, 3,4, where
.@?[ﬁ] = imQohiom
h%m B4€m
+ f ZmQthgm + 0, hggm + ’LmQ()Hf hggm + — - , (7.24a)

T

P29 h] = — imQohaem — FOrhitm — imQoHhypm + f28r713zm +imQoH fhaom
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- % [ﬁum — hsem = [ — 2fﬁeem] , (7.24b)
29[ h] = — imQohaem,
- % [Ta?jlﬂm + imQOHfflr}Nle + 2B5Zm + 5(5 + 1)i~lﬁgm — ilmm] , (7.24C)

@2[?7,] = — imﬁoilggm — % [Tarilgém + Z'mQ[)Hfflrilgzm + 2ilggm — illogm} , (7.24(1)

.@11[;1] = imﬁlillgm — (%z,iblg,n
+f (imfllﬁum — Oghaom + imQ H [~ hogn, — Hf_law;b%m) , (7.25a)

_@Zl[fz] = — imQ1 howm + Ophoem — imQy Hhiom

— Hdgh1pm — imS H fhaem + H fOghsem, (7.25b)
P3[h] = imQyhom — Ophaom — 1m0 Hhog + HOghom, (7.25¢)
P h) = — imQy hgem + Ophgem — i Hhsp + HOghsm. (7.25d)

Combining the expansion of the equation of motion with the expansion of the field
equations, we end up with frequency-domain equations (7.20) that can be solved at
each fixed value of slow time, plus evolution equations (7.14), (7.16), and (7.23b) that
determine the evolution with slow time. The wave equations (7.20¢)—(7.20d) and gauge
condition (7.23b) have different roles in that respect: because the wave equation can
be solved for any source, slow-time derivatives in (7.20) do not constrain the evolution,
instead simply acting as sources; the gauge condition (7.23b) then serves to determine

the evolution, just as it served to determine the equation of motion in Chapter 2.

7.3.1 General retarded solutions

To find a solution we use the same method of variation of parameters used in Chapter
4, but with different boundary conditions. These boundary conditions will be absorbed

into punctures, allowing us to use the methods of Chapter 4 even more directly.

We can write the general solution in this domain as
Gil,r) = (B @)+ Ki (@) )0, 1)+ Gt ) + K3 0) ) 5,00, (7:26)

n

where 1 (w,r) is a column vector of d solutions, hl; (@,r), whose elements are in

the format of (4.59). Likewise, 1/;25”(7") is a column vector of d homogeneous solutions,

hi (r), whose elements follow the same format. A} _(r) are regular at infinity and

ilm im
h,,(r) are regular at the horizon. The weighting coefficients, C’Z’;f(u?,r) are d X d

matrices, determined using the method of variation of parameters. KZf in Eq. (7.26)
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are d X d matrices of constants that are determined by matching the general solution
in the near-zone to an exact solution in the far zone, which we calculate using a Post-
Minkowski expansion, as described in Sec. 7.5. K, " in Eq. (7.26) are d x d matrices
of constants that are determined by matching the general solution in the near-zone to
an exact solution in the near-horizon zone. Unlike the former, the latter are yet to be

obtained. We will return to a discussion of this in Sec. 7.4.

The C’gff (w,r) are computed by first defining the 2d x 2d matrix

i)(mr):( o= (@,n)" | @t ()T ) -

0= (@, 1)T | 9+ (, )T

and then using the standard variation of parameters approach:
R+ 5 0
(@, 7) = [/ dr'd (@, 1) ( o )] , (7.28)
T ng <w7 r ) top d entries

r ~ 0
d,r'l@—l(,[[)’,r./) B d s (729)
Ty,
- Lm0 bottom d entries

where jfm is a column vector of modes of the source S'Z’zyef , where S'il[;g is defined to be
the effective source on the right-hand side of either Eq. (7.20a) or (7.20b), and S is

defined to be the effective source on the right-hand side of either Eq. (7.20c) or (7.20d).

R is a suitably chosen radial position of the outer boundary of the near zone at which

C;;,j(w, r) = [

we match the general solution in the near-zone to a physical solution in the far-zone, and
R_ is a suitably chosen radial position of the inner boundary of the near zone at which
we match the general solution in the near zone to a physical solution in the near-horizon
zone. The elements of jg‘m are in the format of (4.59), and Vigp (bottom) d entries MeANS
the d-vector formed by taking the top (bottom) d elements of the 2d-vector V.

7.3.2 The first-order solution

We begin by considering whether the first-order solution in Chapter 4 remains valid in
the context of our two-timescale expansion. Rather than moving directly to the general
solution (7.26) in the Lorenz gauge, we start by writing the most general, first-order

solution valid in any gauge, as

Vo (0,7) = YY" (0,7) + Gy (@,7), (7.30)
where ¥l (1, 7) is any homogeneous solution in an arbitrary gauge, and @Z;l}};p (w,r) is

the particular Lorenz-gauge solution, obtained in Chapter 4. The superscript “pp” refers
to it being the solution for a point-particle. Now, as mentioned above, unlike in the far

zone, we do not yet have a physical retarded solution to match with near the horizon.
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However, we assume that a complete matching procedure would establish that in some
gauge, the near-zone solution @%m must be regular at the future horizon; the matching
procedure in Chapter 6, extended to gravity, already establishes that it must be regular
at future null infinity. The no-hair theorem tells us that any pure homogeneous solution
(i.e. any vacuum solution) with a discrete Fourier spectrum can only be regular at both
boundaries if it is comprised solely of a mass perturbation, a spin perturbation and terms
that are pure gauge (see pp.875-876 of Ref. [109]). Thus, the globally regular solution

in some gauge has the form

Vi (B, 7) = Voo B E (D, 7) + Gyt (D, 7) + G (,7) + o (7). (7.31)

Now we want to write Eq. (7.31) in the Lorenz gauge. We already know from our
discussion in Chapter 4 that @gp(w,r) is very close to being the only Lorenz-gauge
solution that is globally regular. The only freedom to alter it, while maintaining regu-
larity at the boundaries, comes precisely in the freedom to add an angular-momentum
perturbation 1/;2;2. (In Chapter 4 we eliminated that freedom by specifying that the only
angular momentum in the system was the orbital angular momentum of the particle.)
Crucially, that freedom does not extend to the mass perturbation: it is impossible to
make 1,/3%\14 regular at both boundaries in the Lorenz gauge. We choose it to be regular
at r — oo and sacrifice regularity at the horizon, because we already have a known phys-
ical solution to match to in the far zone, whereas we have not yet obtained a physical
solution to match to in the near-horizon zone. So, we write the Lorenz-gauge solution

as
wl LG( ) d}puregaugeLG( )+¢1pp(w r)+¢6MLG( )+¢5JLG( ,’l“). (732)

where the superscript “LG” denotes that the solution is now in the Lorenz gauge.

If we allow our near-horizon and far-zone solutions to differ from our near-zone
solution by a gauge transformation then we can freely set prure gauge LG o With that,
and dropping the “LG” superscript, we write the Lorenz-gauge solution at first order,

as

D (0, 7) = 2P (W, 7) + PPN (0, 7) + gt (0, 7). (7.33)

In Chapter 4 we only considered the particular solution 1[11”’ and ignored 1/;2% and
1;?;,71. Physically, these additional perturbations arise from the slow change of the large
BH’s mass and angular momentum due to the gravitational-wave fluxes into the horizon.
The content of 12%\{[ bears special note. 1;%\1/[ adds mass to the solution, which we will
denote §MP®"(0). But the slow evolution of the BH mass also draws a contribution
from PP, because in the Lorenz gauge, this solution includes a nonzero mass content

even inside the orbital radius, which is ascribed to the BH. We will denote this mass as



Chapter 7 Computational framework for second-order gravitational self-force 145

SMPEP. Through 6 MEP () being a function of the orbital radius, its evolution with slow
time is entirely determined by Eq. (7.14). §MP**(w) adds to 6 MEP (7y) to ensure that

the total increase in the BH’s mass,
SMpp (0) = SMEP () + 6 MP™ (), (7.34)

satisfies the Einstein equations (7.20d) and (7.23b).

Now let us analyze the exact form of the first-order solution. 1[1;75? was calculated
in Chapter 4. By analogy with Eq. (4.76), we write its mass content 6 MZEP inside the

region 7 < 7o, and its mass content §MEP outside the region r > 7, as

16 (i) (Fo — 3M)

OMZP () o i) r >, (7.35a)
SMZEP () =pé (W) [m - 1] : r < 7o, (7.35b)

where pé () is the energy of the orbit of the small object. As we mentioned above,
they are explicit functions of the orbital radius 7, which is determined by Eq. (7.14).

So, we write them simply as functions of slow-time, as § Mz = 0 M ().

We construct the mass-perturbation term 1;2%

by writing a linear combination of
the four solutions H4, Hp, Hc, and Hp given in (4.42). Imposing asymptotic flatness
eliminates both H4 and Hp. Imposing that the mass is MP" then restricts the solution

to the form ¢He + 2/36MP" Hp, where ¢ = é(w) can be chosen arbitrarily.

We write the total mass content of the complete first-order solution, @}m, as

SM- () =pé& () + Mgy (W), r > 7o, (7.36a)
SM_ (0) =6Mpp (W), r < 7o. (7.36D)

dMpu (w) describes the physical evolution of the BH’s mass with slow time. The fact
that 0 M. (w) is nonzero reflects the fact that the first-order field carries a flux of energy
through the future horizon, causing the mass of the BH to evolve with time as Mpy =

M + 0Mppg. SMppg (w) is determined by the Einstein equation to satisfy

dS My ()

o = Ey (0), (7.37)

where Ey is the flux of energy into the horizon.

The perturbation 1;2;771 is more easily obtained. By linearizing the Kerr metric
with respect to J = Ma in Boyer-Lindquist coordinates, we get an angular-momentum

perturbation in the Lorenz gauge. The result is purely an ¢ = 8 term. Adding a
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homogeneous i = 9 solution to satisfy the regularity condition (4.33), we obtain

- 5Jpert ~
s —0m=0 = — 8\/§ T(w)’ (7.38a)
- ™ 0P (@
2o 1m0 .m0 = — 8\/g T() (7.38D)

The analog of Eq. (7.36) is

dJ(0) = dJpp (), (7.39a)
0Js () = pL(w) + 6 Jpu (). (7.39b)

where p.% (1) is the angular momentum of the orbit, and §Jgy = §JP°', the angular

momentum content of h)7 in Eq. (7.33).

7.3.3 Field equations for the monopole piece of the second-order field

In this section we will write down a simple example of the general equations (7.20), for
the monopole (¢ = m = 0) mode. Solving these will be our focus in Chapter 8. When
we come to compute the monopole mode of the field in Chapter 8, we use @ = ¢ for our

slow time coordinate.

Let us first write the field equations (7.20) with % = £. With this choice, H(r) = 0
and we find that

B[] = = | 1203 + 2550, = 208 Bt (r.8) + Vilr (D)

+ MF Rjn (r, 1), (7.40a)
e 1 o ~ - o ims . .
Byl 1] = = 5m* Qoo ) - %Qoaghwm(r, £) + M b (r, D), (7.40Db)

where lelj has the form described above but with H(r) = 0, and ¢ derivatives instead
of W derivatives. E?em is equal to Ejg, given in (4.26). Hence, Egs. (7.20a) and (7.20b)

are identical to the frequency-domain field equations (4.25).

Now we turn to the monopole (¢ = 0) second-order equations (7.20c) and (7.20d).
The non-vanishing modes of the monopole piece of the field are ¢ = 1,2,3,6. We need
not solve an ordinary differential equation to find fzg,oo, but rather we can obtain it
algebraically using the gauge condition (7.43a), given below. For the i = 1,2,3 modes
we solve the ordinary differential equations (7.20c) and (7.20d). They have the form

) V2 . AM .
Ajoo[ A2 ] = 7 T 52R% — Moo 7] + =5 27 8i20:h ] oh inside T, (7.41a)
AM
Aol R2] = \/J:T 6 Rivo + — 272020 Ry outside I,  (7.41b)
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where all terms depend on r and ¢, and

~ ~ 1 4M - -

Aspo[h] = 02h100 + f (1 - r) Orhi0o — %arh?)OO fh100 + I “Shao,  (7.42a)
> 2(r— M) -

Asoo[ h] =07 hago — {;3 haoo — %hmo, (7.42Db)
~ ~ 1 -

Asgo[h] = 07hsoo — (1 - T) Arhioo — *3 h300 + 2f2 ——h100 — 2h300, (7.42¢)

- , - . 1 -
Agool 1] = 2heoo to 5 (1 - ) <f8rh300 - ih?,oo - 3rh100) + —575 Moo
r r r2f
!/

+ ;f (Taribﬁoo — BGOO) . (7.42d)

As we mentioned above, the i = 6 mode is obtained by solving the gauge conditions
(7.23). For the monopole, the non-trivial conditions at second order are 2°[h?] =
— 2 h'], n = 1,2. Explicitly they read

—fophi To0 + 20, h300 %

<h100 Fh300 — inl%oo) =0, (7.43a)

f -
Forh3n +2 h300 — Ohioo — fOihigy =O0. (7.43b)

Then, h2y, is determined from Eq. (7.43a).

The dependence on # in Eq. (7.41) and in the gauge condition is entirely contained
in two quantities: ro(#) and §M(f). In the i = 1,3,6 equations, only 7y appears. So
we can solve Eq. (7.41) for i~12i:1,376 as functions of r and 7y. Their ¢ evolution is then
determined by Eq. (7.14). We note that by substituting the general first-order solution
(7.33) into the i = 2 wave equation (7.41) and the i = 2 gauge condition (7.43b), the
slow-time derivative of the mass, dM = O0;M appears in both. We can solve those two
equations for the i = 2 field as a function of r and 7y and for M as a function of 7.
The entire evolution of all four fields (i = 1,2,3,6) is then governed by Eq. (7.14).

7.4 Near-horizon expansion

In the region close to the horizon at r = 2M, we could derive boundary conditions at the
horizon, in analogy with how we construct boundary conditions at the far zone, namely
by matching to a known analytical retarded solution in the far zone , as described below
in Sec. 7.5. We have not yet formulated a way to do this. Instead, what we have
done is derived formulas for a set of particular solutions to Egs. (7.41), by writing
an expansion in powers of (r — 2M) and fixing the coefficients by solving Eqs. (7.41)
order by order. The resulting particular solutions act as punctures at the horizon in the

manner explained below in this section.
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In preparation for the computations in Chapter 8, we focus on ¢ = 0. Let hZOO
denote the i,/ = 0,m = 0 mode of the puncture near the horizon. Then in a region
close to the horizon we may write the monopole piece of the retarded field as h%o plus

a residual piece, which we will denote as h;%éq

hioo = hlog + higt' (7.44)

From the form of the second-order Ricci tensor in (2.18), it is comprised of smooth
combinations of the background metric and the perturbations, all of which are smooth
at the horizon (in regular coordinates). With that, we found that we can write any
particular solution as an expansion in powers of r — 2M and In(r — 2M). In this vein,

we substitute the following ansatz into Eqs (7.41):
WLk = plbimelos o pRHos 1L (. _ 9 pr), (7.45)

where B%é{mlog nd h%é{ 8 are power series in 7 —2M. Using this approach the following

results are readily derived:

1
oo = — V2s200(r — 2M) + —=— [2M252R300(2M) + s200 | (r — 2M)?

VoM

1 35200 2 2
b — 2v2B100(2M) + 4V2M 62 RY}(2M ) + /262 R
[ e 0o(2M) 0o (20) 00(2M)
+4\/§52R200(2M)} (r — 2M)3, (7.46a)
Ao — — /25900 (r — 2M), (7.46b)

NG i
R = — V2rsao log(r — 2M) + 2= [2M*62R550(2M) — M2 Bioo (2M)

FAM282 RO, (2M) + 3200} (r — 2M)?, (7.46¢)
600 —\[TSQO() lOg(T — 2M)

1 ~
VoI [8M562R600(2M) — 8MAr62RY, (2M) + 2M3r25 ROy (2M)

+2M? (12M? — 6 M7 + 12) 2R3 (2M ) + 12M? 5200
+ (2M?r? — 8M™*) 2Ry (2M) — TMrs200 + 125200 | - (7.46d)

Here, 62RY,,(2M) and 62R%,(2M) are the values of 62RY,(r) and its first derivative
with respect to r at » = 2M, respectively. Bloo(r) is a C'°° function, related to 52R?00
and 62 Ry, through

62 Rogo = 6% R0 + f?Bioo(r), (7.47)

analogous to Eq. (4.34). sggp is the constant in the formula 62ﬁ800 = s900/7%, which
stems from the property that §2R3,,(r) behaves exactly as 1/r%, as we show in Ap-
pendix G. §2R0,(2M), 6 R%,(2M) and sagp are determined by matching to the numer-

ical data, as we will describe in Chapter 8.
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Equipped with the punctures at the horizon, the divergence in the source term
on the right hand side of Eq. (7.41b) at » = 2M, gets canceled by the action of the
differential operator A;pp defined in (7.42) acting on the puncture at the horizon. Note
that §2RY,, itself is regular at r = 2M, rather the divergence comes from the factor of

1/f in front. We may then solve an effective source equation near the horizon:
Ajoo[ R = Seitd (7.48)

where the effective source is given by

e \/ET D
Sz‘ggH = 752}3?00(7“) -0

AM _ - ~
Although our puncture is not physically motivated, we can justify our use of it at

a particular value of slow time. Because hP# must be a particular solution to the field
equations, altering it can only change our final result for hP# + h®H by a homogeneous
solution. But an £ = 0 homogeneous solution only has mass content and pure gauge,

which we can always absorb into the background mass.

However, this argument will no longer apply to the higher-¢ modes. It will also
no longer be the case once we are doing an evolution, because once the mass is varying
with time, it can no longer be absorbed into the background mass. Therefore, we will

eventually require a thorough matching procedure at the horizon.

7.5 Post-Minkowski expansion

The last remaining region to consider is the far zone. In this section we will construct
a post-Minkowski (PM) solution valid in the far zone, closely following the method
described in Sec. 6.4.2. In order to find the solution at large r, we will restrict the range
of spatial coordinates to points outside of supp(hw), namely r > R.. In this region the
field equations (7.18) reduce to

B [h*] = 26°R,, [h', hY]. (7.51)

We then write g, and EZV in a PM form by expanding in powers of M, using the

following approach.

We expand at fixed Cartesian coordinates (u = t — 7, 2%) and at fixed z#. After
performing the expansion, we adopt background coordinates (t,z?), where t = u + r

(which differs from the Schwarzschild time coordinate by a gauge transformation of
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order M In M). The expansion puts the operators E and §2R in the form

E=0+) M"E", (7.52)
n>1
P’R=>_ M"§’R", (7.53)
n>0

and the metric perturbations in the form

h, =Y MPhP(ta's z). (7.54)
p=>0
Here, all components are in coordinates (¢,z¢), in which 0 = N 9,0, and nt¥ =

diag(—1,1,1,1). In particular, we choose the h' solutions in the far zone such that
as 7 — 00, the leading oscillatory term in A'PT! falls off faster than the leading os-
cillatory term in A'P. Then the “oscillation /r” term in h'Y will be identical to the

“oscillation /r” term in h'. This point is key to the discussion in Appendix G.

With these expansions, the field equations become a sequence of equations, one at

each order in M. The leading-order equations read

Oh,;) =0, (7.55)
72,0 _ 2 O 1,0 1,0
OnZy) = 26°R), [0, hMY). (7.56)

The retarded solution to Eq. (7.55) can be written as

- -1 F

hyi = 42( ﬁ,) ar L;“), (7.57a)
2>0 )

1, (=D, Gir(u)

by =4 0= (7.57b)
>0

S10 (—1)" Hijr(u)

hil=4)" a0 (7.57¢)
>0

where r = \/d;;x'z) and u = ¢t —r, and the STF multipole moments Fr,, G;1,, and H;jr,
are to be determined by matching to the near-zone solution. The notation used here is

the same notation employed in Sec. 6.4.2.

The retarded solution to Eq. (7.56) can be written, in the same way that we wrote
Eq. (6.77), as

higy = RES + By, (7.58)

where the homogeneous solution B}/f;m has a form identical to Eq. (7.57), and the par-
ticular solution is
Rt = FPO g (P Suw), (7.59)

ret
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with S,,, = 262R,,, being the source term on the right-hand side of (7.51).

To determine boundary conditions for our near-zone expansion we need only exam-
ine the part of the solution sourced by the most slowly falling piece of the source term,
(52R2w on the right-hand side of Eq. (7.56), as described in Chapter 6. We may write
the source by isolating the leading-order piece that falls off as 1/72 plus terms that fall
off faster than that, in the form

2 50 Sy (u,n') 3
20°R,,, = 2 +O0(1/r°). (7.60)
In the same style of notation as Sec. 6.4.2, we define j,, to be the finite part of the
retarded integral of the slowest decaying piece of the source against the Green’s function,

Jur = FPO (rP 2 s,) = g (r s ). (7.61)

ret

Our original field variable ﬁzy can then be written as

ﬁfw = juw +O(Inr/r). (7.62)

7.5.1 Calculation of the monopole piece of j,,

Now we turn to deriving an expression for the monopole (¢ = 0) piece of j,,. In
Chapter 6 it was shown that for a scalar field, only the monopole (¢ = 0) mode of (the
analog of) Eq. (7.61) is required for matching. We will carry this result over to the 4D
second-order field, and use the matching procedure for the monopole mode to determine
Juv- To begin, we write the components of j,,, as an expansion in terms of irreducible

symmetric trace-free pieces, analogous to Egs. (2.38), as

Jit = Z Afak, (7.63a)
>0

Jta = ZBE—HA L+Z[ 1 Lkt + DY, AP 1] 7 (7.63b)
>0 >1

Jab = ab Z K Pk + ZEEJFQ b + Z |:FL 1{a Ab E + GCd(aﬁb)cL_lGAgtl—l

>0 £>0 >1
+ IO AGE A e I a2 (7.63¢)
>2

We will use the notation ¢ for the superscript on the coefficients, for example in the
term A pl, ¢ = ¢, and for the term BHIA L ¢ =/¢+1, and so on. We may write
analogous ST I expansions for the components s,,,. We will refer to the coefficients in

that expansion as flé, Bfg, and so on. Let 5% be an element of the set {Aé, E%, e }

and §f; be an element of the set {flg ,BE Y } From the analysis in Chapter 6, the
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quasistationary pieces of the retarded solutions are given by

B F[34] if0=0,
ip = 3 _ (7.64)

S if £ >0

W+ ’

where in analogy with Egs. (6.65) and (6.85),
F[§](w) = §(w) Inr — §(0) + k[$](w) (7.65)

and
k[3](w) = —3(w) m2_ /0 dz (i — 2) In 2. (7.66)

] 1z (7.67)

We may extract the ¢ = 0 scalar, spherical harmonic of any of these components by
integrating them against Y[y, over the unit two-sphere. Then, we find that the scalar

spherical-harmonic monopole of the components is

GO0 —o /7 A, (7.68a)

§% —o. /7B, (7.68b)
. 2 A

30 =2/7 <K0 + 3E2> : (7.68c¢)

0 —2,/7 <K0 ; ) (7.68d)

where j00 = ¢ dQj,, Y5, and j° = § dQjY;, where j is the trace. We find a similar
set of relations for s%, 3?79 , 99 and s% in terms of AO B1 K 0 and E2 where 52?, is

defined analogously to ju By analogy with the above discussion, the scalar harmonic

monopole of s, is

%0 —2/m A", (7.69a)

$% =2 /7B, (7.69b)
2 2 2

s =2/ <K0 + 3E2> , (7.69¢)

0 _9/x <f(0 - ;E2> . (7.69d)



Chapter 7 Computational framework for second-order gravitational self-force 153

Combining Eqgs. (7.67)—(7.69), we obtain relationships between the monopole pieces

of the j,, and s,, as

Jip = sg Inr — sf + k [s%] (7.70a)
Jir = —%8?79 : (7.70b)
GO0 — % (820 + 25" Inr — 3522 g 04 k: [s200 4+ 25%] (7.70c)
3% = % (82 + 25" Inr — E (5520 + 13500) + gk‘ (829 4+ 25%] . (7.70d)

Using the relations

00 00 00 00
Si = 5100 + 5300, Sgr = 5200,  Spp = 5100 — S300, S = S600, (7.71)

with a similar set of expressions for {j;, ji’, jry> 7%} in terms of {100, 7200, 300, 600}

we derive that

2 1
J100 = 35100 Inr — g0+ 2k, (7.72a)
. 1
J200 = 55100, (7.72Db)
. . 1 1
7300 = J600 = 55100 Inr + Tg 5100 + K, (7.72c)
where
1 € 1 &0 ~ 2 ~ ~ ~
K= —= <1 + In 7) s100 — = | dZS100(a— 2)Inz. (7.73)
3 2 3 /o

In Appendix G we derive a physically informative expression for s1g9. The j;o0 are used

to define a puncture at infinity, as in the previous chapter.

7.5.2 Punctures at infinity

The punctures at infinity are constructed using the analogous method for the scalar

case, outlined in Sec. 6.4.1. The expressions for the monopole modes are

hioy = V2rjioo(r) + (8\[) M 300 log(r) + S\EM(H@OO — 36k), (7.74a)
hoy = V2rjaoo(r), (7.74b)
hos = V2riso0(r), (7.74c)
héoy = V2rjs00(r) + 2V'2M s00, (7.74d)

where the factor of v/2r arises from the factor a; /7 in Eq. (4.14), where the j;00 and &
were derived in Eqgs. (7.72) and (7.73), respectively. sogg is the proportionality constant
in 62 Rogo[ ht, h'] = s200/7%. Its value may be extracted from the numerical data for
62 Rogo[ b, h'], which is discussed in Sec. 8.4.
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The punctures in (7.74) include terms one order higher in 1/r than those derived in
(7.72). Those extra terms were derived following an approach similar to the one we used
near the horizon, by inserting an expansion of the form hioo = v/2rji00(r) + A; log(r)+ B;,
with A; and B; independent of r. The terms in addition to j;op ensure that subleading
terms (terms that decay slower than 1/7?) also cancel in Eq. (7.51). Our puncture can be
altered by adding an asymptotically flat homogeneous solution. However, changing the
puncture by such a solution merely moves terms between the puncture and the residual
field, leaving the total field unaltered.

To summarise, in this chapter we have constructed boundary conditions at the
horizon in Eqgs. (7.46), and at infinity in Eqs. (7.74). In the next chapter, we are going
to use these boundary conditions to solve equations (7.41), for the monopole mode of

the second-order field.



Chapter 8

Results for the monopole mode of
the second-order field

In this chapter we describe our calculation of the monopole piece of the second-order
field, and present our results. In Sec. 8.1 we give an overview of the puncture scheme
used in the calculation. Next, in Sec. 8.2 we go into detail about how we implement
the puncture scheme to solve the second-order field equations. In Sec. 8.3, we move
on to explain how the modes of the second-order source are computed. This follows
from the technique described in Chapter 5 for computing the modes of the source in the
toy model. We extend that technique to the computation of the second-order source in
gravity. In Sec. 8.4, we present our numerical results for the source, and compare our
findings with analytical predictions derived in Appendix G. In Sec. 8.5 we give formulas
for the punctures at the particle. In Sec. 8.6 we describe how we compute the effective
source. Putting all this together, we calculate the monopole piece of the second-order

field, and present our results in Sec. 8.7.

8.1 Overview of the calculation

Our goal is to compute the monopole mode of the second-order field, for an orbit of radius
79. We remind the reader that 7y is the leading-order contribution to the orbital radius
in the context of the two-timescale expansion of the worldline. The field equations are
comprised of equations at fixed slow time, ¢, and equations that describe the evolution
of the system with . We will only concentrate on the equations at some fixed ¢ =
in this chapter. At this fixed time, we make several simplifications. As mentioned in
Chapter 7, we choose € (f) = 0. We also choose MPe (i) = §J°"({y) = 0, such that
the first-order solution 72’5}771 described in Sec. 7.3.2 reduces to the solution 1/;;53) obtained
in Chapter 4. But note that we do not have the freedom to set slow-time derivatives of

these quantities to zero.

155
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I

<

R L PP LT
_______-___--.“.---_______

<3)

2M T T T

Figure 8.1: The worldtube boundaries in the second-order puncture scheme. I'y is the
region r € (2M,rm), where rg is chosen to be suitably close to the horizon in a way which we
will describe below. I'p is the worldtube centered on the particle at 7o, as 7 € (r—,r4). I's
refers to the asymptotic region r € (1o, 00).

We also emphasize that in our expressions (7.74) for the punctures near infinity,
we set kK = 0. We have the freedom to do this, since picking a particular value for &
is equivalent to adding a homogeneous solution. Because the only invariant content in
a homogeneous solution is mass, we can absorb it into the background mass M. The
reason for setting it to zero is because it introduces a In(e) into our solution, hence, we
would no longer be calculating the coefficient of €?; our results would depend on the

specific value of the mass ratio.

We now want to generalise Eqgs. (7.41) to a set of equations that include punc-
tures at the horizon and at infinity. With this in mind we define the following regions
'y, I'_I'p,I'y,I's , as illustrated in Fig. 8.1. In I'f; we use the puncture at the horizon,
iLEVH given in Eqs. (7.46), in I'p we use the puncture at the particle, ﬁﬁf given below
in Eq. (8.28), and in I'ss we use the puncture at infinity, ﬁﬁl‘}o given in Eqgs. (7.74). We
remind the reader that h,, refers to the trace reverse of the field written in two-timescale

coordinates, in the manner described in Chapter 7.

We may define residual fields in these regions, analogous to (3.4), as

W =12, — e, (8.1a)
Bﬁf = fsz — Bff, (8.1b)
BEVOO = Biy - BEVOO (8.1c)

The non-punctured regions are I'_, where r € (rg,r_), and I'y, where r € (14, 7).

Proceeding as we did at first order, we write each of the fields h2,, hPH pPP

j22 7 1722 pv o
hﬁﬁo, hEJH ) hZ}VP, hfﬁo as a decomposition into modes analogous to Eq. (7.5). We will
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s T : 72 PPH PP 7} TRH 7RP
use the notation e, for the harmonic modes of hy,,, and hzzm, hzzm, hzzgf, Ry s Mg

ﬁﬁ;’f for the modes of fLEVH , iLLDVP , BZZ/OO , iLZfVH , BﬁVP, ﬁﬁ,ﬁ’o , respectively. 52R2V[h1, hl] is
decomposed in an analogous way, as given in Eq. (7.6). The exact form of the modes

521%?&% will be discussed in Sec. 8.3.

The non-vanishing modes of the monopole (¢ = 0) piece of the field are i = 1,2, 3, 6.
Unlike at first order, the i = 2, £ = m = 0 effective source is non-zero and the inhomo-
geneous solutions are not trivially zero. So, we need to obtain solutions for this mode at
second order. The i = 2 equations (7.41) and (7.43b) differ from the others in that they
contain slow-time derivatives of the first-order field; Adam Pound has separately solved
these equations for ¢ = 2 analytically. Given that the ¢ = 2 mode is not coupled to the
i =1, 3,6 modes, we will neglect the i = 2 equation in this work and focus only on the
i = 1,3,6 modes. For these modes, the effective-source equations (7.41), generalised to

include punctures at the horizon and at infinity, are given explicitly by
) 7T Rs1 __ qeffs PO
Njoo[ R ] = S50°(r) inside T, (8.2)

where s € {H, —, P, +, o0},

V2r o = -
S0 (r) = TfszR?oo — Aigo[ K7, (8.3)
and the Ajop] fL] are defined in Eqs. (7.42). We note that h¥* = 0 in the non-punctured
regions, I'y. Just like at first order, we can solve the gauge constraint given in Eq. (7.43a)

for hgoo, and we need not solve the i = 6 equation (8.2).

8.2 The worldtube method for punctures at the particle

and at the boundaries

In this section we will outline the worldtube method for solving the puncture-scheme
equations (8.2), which is an extension of the worldtube method used in Sec. 4.5, to
include punctures at the horizon and at infinity. The worldtube method for solving
the second-order equations was developed in collaboration with Adam Pound, but its

implementation in the later sections of this chapter was entirely my work.

Let ¢(r) be a column vector comprised of £ = m = 0 modes of the retarded field,

given by

. B1oo(r)
P(r) = (Egoo(r)> . (8.4)

We define
PR (r) = 9(r) — 9Po(r), (8.5)
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where s € {H, —, P, +,00}. ¥R* is defined by

il’Rs

wRS(r) = (fz;g)(r)) (8.6)

300(7)

for s € {H,—,P,+,00}, ¥7* is defined by

w?’s(r) = (ﬁ%%(ﬂ) (87)

EEEB(T)

for s € {H,P, 0}, and 7+ = I~ = (0,0, O)T. We define the column vector

T () = <S§§f(r)> . (8.8)

500 ()

While this discussion focuses on the monopole modes, we can apply it to generic
¢ > 0 modes, by using the format of Eq. (4.59) for column vectors instead of Eqgs. (8.4)-
(8.8). d(= 2) shall denote the number of elements in each vector. Keeping d symbolic is
convenient for the next part of the discussion and allows us to easily generalise to ¢ > 0

modes, for which d is different.

Then, analogous to Egs. (4.62) and (4.63), we may write Egs. (8.2) as

dip®
dr

+ Ays = J* inside T, (8.9)

S
where 9° = <aw¢s> is a column vector with 2d elements, A is a 2d x 2d matrix and the
T

R 04
source term J* = <

Jeﬁs> has 2d elements. The general solution in each region is

b= b ( / é—lderJraS), (8.10)

where & = (12}[1} 1&[2‘1]) is a 2d x 2d matrix of independent homogeneous solutions

zﬂ K = Ik , a® is an r-independent d-vector to be determined by jump conditions
(%] Dby

at the boundaries of I'y in the manner described below, and rs € {2M,rg,r—, 14,7}
is the left boundary of the domain of 12)5.

The jump conditions are

TH “ “ “ R
afl —a= = —/ L Hdr — o 1pPH (1), (8.11a)
2M
aF —a = / L dr — WP (r), (8.11b)
TH
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T+ R R “ R
a’ —at = —/ L dr — 77 (1), (8.11c)
a® —at = / d1T®dr — 7P (1), (8.11d)
Tt

and the regularity conditions are

o = (af?,... dff0,...,007, (8.12a)

o0
a>™ = —/ O LJ®dr +(0,...,0,a5°,...,a5°)T. (8.12D)
Too

We first solve for a
of Egs. (8.11d) and (8.11a) and substituting the difference of Egs. (8.11c) and (8.11b).
This yields

co—H — (—a{l, ceey —af, al®,... ,aflo)T by taking the difference

GOO_H :/ q)—ljdr + (I)_llﬂPH(TH) _ q)—ll//}'PP(T,_)
2M

+ PP (ry) — TP (1), (8.13)

where in the first integral on the right-hand side, going from r = 2M to r — oo, J=Js
when r € T'y. Substituting this result back into Egs. (8.11a) and (8.11d), we find

=k T B 0P ) — B T ) + 0 6P )
o = ri - ) A , (8.14)
/ Oy Jdr + @0 T (ryr)
2M

oo
— / O on Jdr + @ 7 (roo)
a+ = T4+ . T+ . R . 9 (815)
|l T 0 5P ) - 0 P )+ @ 07 ()
where <i>t0p and é)bot, as defined in Sec. 4.5, are the top and bottom d rows of the matrix

&(r). Finally, substitution of ™ into Eq. (8.11b) gives us

- / Do) Tdr + Oy )7 (rog) — b 7 (1)
QP = r_ R N . . (816)
| @ T+ 4 5P () = 030 07 )

Given homogeneous solutions, we may compute the residual fields using Eq. (8.10).
But we still need a strategy for computing the modes of the source. We will address this

in the next section.
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8.3 Computation of the source

In this section we will outline how to calculate the mode coefficients 6°RY, [h', h'].

ilm

8.3.1 Summary of the computation strategy

To compute the modes 52]%?67”[%1, Rt ], we apply an analogous strategy to the one used

to calculate the toy-model source, as explained in Chapter 5. We write the first-order
retarded field as the sum of the puncture plus the residual field, as h! = 'R+ 117, The

steps involved in the calculation are as follows:

1. We begin with two ingredients:

(a) numerically computed tensor-harmonic modes lefm of the first-order retarded
field in the unrotated coordinates (t,7,604),

(b) a 4D expression for the puncture B}]j in the rotated coordinates (t,r, ).

For a given numerical accuracy target, the higher the order of the puncture, the

fewer modes ililgm are required; correspondingly, the more modes of ﬁbm are com-

puted, the lower the necessary order of the puncture. We use a puncture that is

quadratic in order of distance from the particle.

. Using the coupling formula, given schematically below in Eq. (8.23) and explicitly

in [94], we compute the modes 6?RY, [h', h']. They are computed over the entire
numerical domain except in the worldtube region I'p around the particle (as defined
in Sec. 8.2), choosing I'p such that it contains all points at which the sums in the

coupling formula fail to numerically converge.

. In the region I'p, we compute the tensor-harmonic modes H}EZ, in the rotated

1P

system and then use Wigner D matrices to obtain the modes ﬁiﬁm in the unrotated

system, as described in Appendix C. From the result, we compute the modes
hiIR — Bl-lﬁm — E%Z;n of the residual field.

ilm

Using the coupling formula we compute the modes 52R?£m[ﬁl7),}~1173],
62RY, R, AP and 62RY, [R'R h'R] in I'p.

im
Following the treatment of time derivatives in Appendix E, we express

52R2V[E1P,B17)] in the rotated coordinates (¢,r, aA/). In I'p, we compute the

1P

modes 52]:?,?&71[13173, h'P] in the same manner that we computed hiém'

. We sum the results 02RY, [P AP + 62R, [h'P h'R] 4+ 52RY, [A'R A'P] +

62RY, [h'R, h1R] to obtain the complete §2RY, in the region I'p. Combined with

ilm

the result from step 2, this provides (52]??67” everywhere in the numerical domain.
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8.3.2 The mode-coupling formula

In this section we give a brief description of the mode-coupling formula for the modes of
62R,,[ k', h!] and its derivation. Full details can be found in a forthcoming paper [77].
The derivation and the end result are analogous to that of the coupling formula (5.31)

for the toy-model source, described in Chapter 5.

Our starting point is the explicit formula for 6°R ,,[h', k'], given in Eq. (2.18).

Because we will use the coupling formula to calculate the pieces 2Ry, [h'™, A7 | and
82 R, h'R h1] of the second-order Ricci tensor, it will be useful to re-state the formula

for 52Ruv in the form

1 _
2 1(4) 11(B)1 _ 1(A) pr 1(B) (B
62 Ry, [0, 0P| = SV 77 (29,2 — Vo hi)
1 1(A) p1 1(B 1 71, 1(A 1(B 1 T11(A 1(B
+ 4 Vah Wery, B 5V Wi Py h B — 5V hi APy B LD

ToAor B B B
— 5t (2vpv(uhV§T) — Y,V AP — v, v, hl >) . (8.17)
After expressing h}w in terms of B}W, we substitute the expansion (7.5). In terms of the
trace-reversed field, the first term that appears in Eq. (8.17) is 52R[:J[B1(A), RYB)] =
Vpﬁl(A) pTV(Mﬁigf). Substituting the multiscale expansion yields

SRS RPN = 3" 44,440,
i141ma
i90omo
1 . - . ,
v (>< VR ) sy

where 1 <i4; <10, 0 < /¢; < oo, —¢; < m; < {; for the summation limits. Let us write

the left-hand side as the mode sum
™ 7 ilm 1 —im
SR [ RIE) ] = N yiitm g2 R [ pB) | emimen (8.19)
wm

with the modes given by

S2RLY) [RMA) 1B :g / dippei™er / / df sin 0
7T

52 [1][h1(A) hl B) ] Y*zém n PL UVT) (820)

where k; is defined in Eq. (4.18). By substituting Eq. (8.18) into Eq. (8.20), we find
that

52}?&%}”%1( ) AP | = 2‘ / dep e’m‘pp/ /dHSmG Z azlglamng"ﬁgmn Tyt
T

itlimy
i9lomo
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i1f1ma o iglama

Vi <1Y“’”1‘1m1 R e‘“”“”‘”) X V(, (1 Y b e‘im?é"”)- (8.21)
T r

Applying the same strategy to the remaining terms in Eq. (2.18), we obtain ex-

pressions similar to Eq. (8.21). The result can be written, in schematic form, as

2 50 A) 71(B) Z i( A)  71UB)
d Rif [h 1(4) h (B) l’blérlnﬂ’n ( Zl(flml’hig(fzm2>
iolomo
11€1m151
1902Mo SS9
2w g
/ dcp/ dOsin® Y, . Yiim, sy Ytoms, (8.22)
0 0

where Y» are spin-weighted spherical harmonics. The summation limits for the 4, ¢, m
are the same as in Eq. (8.18), s ranges from —2 to 2 and s;, s2 range between —4 and

. . . Z
4. We may substitute the formula (5.28) for the integral in (8.22), with C;7\% .
given by Eq. (5.29). Then we may write Eq. (8.22) as

A) 1 i0 T1(A 71(B i
62R1Zm[hl( )7 hl(B)] = Z %lefnllml (hi1(€1)m1’ hig(fz)rm) C’d?;fflslfﬂnzsz' (8'23)
itlimysy tefema
i9f2moS9

Eq. (8.23) gives the form of the mode-coupling formula for the modes of
52]:22”[%1(&7;11(3)]7 in terms of modes of A'4) and A'(B). We will use this method
to compute the modes 02RY, [A'R AP, 62RY, [A'P h'R] and 62RY, [A'R, AR ]. But
this method will not work for the modes of 52171’%”1[}317), hiP |, for reasons explained in

Chapter 5. Rather we compute this piece as explained in the coming subsection.

8.3.3 Calculation of the divergent piece of the source

The modes 6%RY, [h'7,h'7] are computed by directly integrating 52R2V[517),51P],

against the tensor harmonics over the two-sphere, as

62RY, |

5 2w T B B _ )
w7 h'P] = /0 da /0 dpsin B 62 R, [ BT, B1P) Yl et (8.24)

1P
huw

ing order pieces are given in Egs. (C.13), into Eq. (8.17). The a-integral may be

Here, 62R2V[B1P,l~117)] is calculated by inserting the expressions for whose lead-
evaluated analytically and the S-integral numerically, using an analogous approach
to the one described in Chapter 5. This part of the computation has been per-
formed in collaboration with Barry Wardell. We calculate 52R?€m[ﬁlp,ﬁlp] in unro-
tated coordinates from 52R?£m,[l~zlp, h'P] in rotated coordinates as 52]%?(7”[}1173, h'P] =
>t Demms (7,5, %) (52R?€m [P h'P), where the Dy, are Wigner-D matrices.
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By,

—1.53854115804011041721520436365 x 105
—R}

3.16104669037757890492912338232
—10.4725537977717966242607872118
18.4561479788650437683372729225

R

Ri

—1.15390586853008281291140327274 x 10~°
7.69270579020055378014191632685 x 1076
—4.80794111887534547731398726356 x 10~°
15.8951030477012764663413690869
—101.194324286140172830528172199
281.453610014203604805516079068
—529.893514220868496522598434240
789.411581933436082181287929416
—3.76837738717146741862507042242
0.517507257215248483994685102516
28.2745219170346828718720644247
—89.2706023395906100859065190889
172.065492328370112318225437775

=W N = Ok W NN R O WD R O W N~ O

Table 8.1: Table of values for coefficients in the the near-horizon expansion of §°R%, given
in Eq. (8.25). The coefficients were computed from data for the modes of the first-order field,
hien, sourced by a quasicircular orbit of radius 7o = 6M.

8.4 Numerical results for the second-order source

In this section we present our results from a numerical computation of the modes
52R?00[h1,h1], using the strategy described in the previous section. Although we do
not solve the ¢ = 2 equations, we include the computation of the source as it has a
distinct analytical behaviour, given by Eq. (G.3); comparing to that prediction provides
a strong check of our numerics. For all numerical calculations in this chapter, we use
data for the modes of the first-order field, with 79 = 6M, on a grid of r-values from
Tin = (24 107")M up to rou, = 10*M.

In the region r (2 + 10*5) M, numerical errors in our first-order fields lead to
numerical errors in 62R%,[h', h'] that accumulate as we approach the horizon. The
net result is that the modes, 52R?00[h1, h'] blow up in the region r < (2 + 10*5) M
as we approach the horizon. We found two methods to overcome this, that both work
and give the same result. The first strategy is to replace the numerical computation
with a near-horizon expansion for 52}??00%1, h'], provided by Adam Pound. This is
obtained by substituting for the modes of the first-order field in the coupling formula,
the asymptotic solutions given in Eqgs. (4.56) and (4.58). This leads to the near-horizon
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expansion for the second-order Ricci tensor:

o

PRk = N B (r - 2M)F, (8.25)
k=

[e=]

where the B,i are r-independent coefficients. They depend on the coefficients b?C from
Egs. (4.56) and (4.58), which we have already computed to obtain boundary conditions
for the first-order solutions, as we explained in Chapter 4. We found that for ky.x > 4
our results did not change beyond the 16th significant figure, so, we set kpax = 4. Our

results for the values of the coefficients in (8.25) are given above in Table 8.1.

The second method is to generate data for the first-order modes themselves, to an
accuracy beyond machine precision. To do so, instead of using the GSL ODE solver
as reported in Sec. 4.6.1, we employ the Boost ODE solver [110] that allows us to go
to arbitrary precision. Because the latter method is computationally very expensive,
we wanted to apply it to as few modes as possible. We found that it sufficed to use
the Boost ODE solver for ¢ < 6 and then revert back to the GSL ODE solver for the
£ > 6 modes. But owing to the computational burden of this method, we used the

near-horizon expansion of the second-order Ricci tensor to resolve the issue.

Fig. 8.2 shows that 62R{,,[ h', h!] behaves like 1/72 with increasing r, in agreement
with the prediction of Eq. (G.4). 62}?(1)00[ h', h'] is dominated by behaviour proportional
to f2 as r decreases, but approaches a constant value near the horizon. Fig. 8.2 also shows
that 62}?800[ h', h'] is proportional to 1/r? for the entire range of r values, which agrees
with the analytical prediction in Eq. (G.3). Fig. 8.2 shows that both the 62R9y[h', h']
and 62RYy[ k', h' | behave like 1/r* at large . This is consistent with but much stronger
than the prediction (G.5). In the data for 62 R;oo displayed in Fig. 8.2 and used in all of
the computations described in this chapter, we used the near-horizon expansion in the
region r < 2.1M and the coupling formula everywhere else. We found agreement of at
least 16 significant figures, i.e. up to all digits available at machine precision between
the data from the coupling formula and data from the near-horizon expansion, as can
be seen from the smooth transition in the plots in Fig. 8.2 at » = 2.1M. We observe
that 62R,, passes through zero at a certain value = 7. between 2.001M and 2.01M,
in the region where the near-horizon expansion is applied. We calculated r. by finding
the real roots of the polynomial in (8.25). The relevant root is the one that is real and
greater than 2M, yielding r. = 2.00221M.

We observe from Fig. 8.2 that §2R{,, and 2Ry, tend to the same constant ap-
proaching the horizon, which is consistent with the condition for regularity given in
Eq. (7.47). We also note that they tend to the same magnitude at » — oo. This is to
be expected, because, at large r, 62R3, and —3?RYy, are both equal to the energy flux

at null infinity (up to a numerical factor over r2). Since 52R800 is proportional to the
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Figure 8.2: Monopole modes of the second-order Ricci tensor, where all plots are shown on
a log-log scale. The ¢ = 1 mode tends to a constant near the horizon and behaves as 1/7“2 at
large r. Elsewhere it behaves as f2. The i = 2 mode behaves as 1/r? across the entire domain;
this is shown most starkly in the inset inside the upper plot. Both the i = 3 and ¢ = 6 modes
behave like 1/ r* at large 7. All features of the plot are consistent with analytical predictions
in Egs. (G.3)—(G.5).

trace of 62Rgﬁ, then 521?300 ~ 1/r* tells us that the trace of the curvature due to the

small object decays more rapidly than the trace-free part.

Using the definition of the flux of gravitational energy (see Eq. (B.2) in [111]),

. —1
E= —er2ffd§2 (%) 62 Ry,, (8.26)
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Figure 8.3: 62R%[h™", h™"] calculated in two different ways: (1) 2D integral for SS part
and the coupling formula for SR and RR parts (solid line), and (2) the result of a direct
application of the coupling formula (dashed line).
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Figure 8.4: 62Rioo[h”,h" ] calculated via the 2D-integral versus the coupling formula. The
dashed line is data from the coupling formula, and the solid line is data from the 2D-integral.

where for the flux at co, € = 1 and the flux through the horizon, ¢ = —1, we may
derive the following relation between the i = 2 monopole mode and E. From the result
(G.3), we may replace 6°Ry. = s200Y°/(v/2fr?) (plus higher modes, which integrate
to zero). sg90p is a constant that takes different values for r < 7p and r > 7. Then,

straightforwardly evaluating the spherical integral, we determine these two values for
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so00 either side of the particle, such that

E
i 28— < 7,
2Ry = r (8.27)

E
281 > 7o,

We have numerically checked that our numerical result for 62R800 agrees with the for-
mulas (8.27).

In Figs. 8.3 we have plotted the monopole modes 52R?00 [plret plret] =
52RO [ AP WP ]+ 2R [ BRIP4 62 R0 [ AP, IR | 4 62 RY,o [ h'R, AR ], using two
different methods of computation: calculating the most divergent piece at the particle,
52R?00[h17>, h'"] using the mode-coupling formula, and by direct integration against
the tensor harmonics over the 2D sphere as in (8.24), while the remaining three pieces
are computed using the coupling formula. While the two methods agree sufficiently far
away from the particle, closer and closer to the particle the lack of convergence of the
coupling formula becomes worse and worse, except for ¢ = 2. The lack of convergence
of the sum in the coupling formula is isolated to the 52R?00[h17), h'7] piece. For i = 2,
62 RYy0[h'P, h'P] = 0, and therefore there is no issue of non-convergence for this mode

and the two methods agree.

In Figs. 8.4 we have plotted data of the contribution from 52R?00 [R'P, hP], com-
puted using the two different approaches. In these plots we clearly see that the coupling
formula does not converge close to the particle, as opposed to the 2D integral (8.24)

which does, while both methods agree sufficiently far away from the particle.

8.5 Punctures at the particle

The second-order puncture fields at the particle are derived in an analogous way to the
method used to derive the first-order punctures. We start with the covariant expressions
for pieces of the second-order singular field, namely Hﬁls,, BE,P}, 7127} and 71?5,, derived in
Sec. 3.2.7. We write them as coordinate expansions in Schwarzschild coordinates, for
a quasicircular orbit around a Schwarzschild black hole, using the prescription given in
Appendix C. We do this in rotated Schwarzschild coordinates (t,r, &, B) We obtain
the tensor-harmonic modes by integrating the full punctures over & and B, against the

tensor spherical-harmonics, as described in detail in Appendix C.

We use expressions that are O(A\Y) for ﬁf}j, ﬁi’l’} and ﬁfﬁ,, in order to obtain an
effective source that is continuous at the particle (we remind the reader that we use
A(= 1) to count powers of distance from the particle). To understand this, first observe
that since the left-hand side of Eq. (8.2) is obtained by taking two derivatives and two

integrals of the residual field, it has the same degree of smoothness as the 4D residual
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field. Since the effective source modes must also be equal to the left-hand side of Eq.
(8.2), they also have that same degree of smoothness. For hS9 v we use all the available
orders through O(AIn \), because they have a relatively simple form. We then expand

these expressions for all pieces of the puncture in powers of Ar, through O(Ar?).

We give results here for the monopole (¢ = 0, m = 0) modes of the punctures. They

have the form

higo = higo + hios + higs + higo- (8.28)
We have derived explicit formulas for hiﬁ, hi’;‘, hiZ, through order O(\?), as expansions

in powers of Ar up to quadratic order. Similarly, we have derived an explicit formula
for ﬁfj through O(A1n \) as an expansion in powers of Ar up to quadratic order. These
expressions are too long to include in this thesis, so we only state the result through

O(log (Ar)):

~ 3M — 79 (19M — 67
SS 0 0
= 1 A A 2
100 2M—7:0 ( 4ﬁ > 0g(| r‘) +O( 7’), (8 93‘)
RSS) = (8.29b)

s 3M — 7o [ 41M — 147
300 = VoM — 7 \4y/m(3M — 7o)

héoo = \/@ ( 1 flifM 67:0) )log(|Ar)+O(Ar) (8.29d)

PSR E(K)
100 = 373/273 (3M — 7o)

(30 — 274hif + 12MQoFRLE — 6Q07R + 12003 70h

> log(|Ar|) + O(Ar), (8.29¢)

—20M% 2RI L 11 MFSRIR — 273 hIR - 6 MRS — 3M TR

—6M2h% + 3MTohly) + O(Ar, |Ar), (8.30a)
SR _ 2hi* (6M2 — TM7 + 275) B (K) N 2180 (7o — 2M)2E (K)
200 373/27(7o — 3M) 3/270(7 — 3M)
+ 2B (K) ! +O(Ar, |AF)), (8.30b)

371’3/27’0(3M - ())
SR _ 2fohy RQ0E (K)  hiR(3M — 27)E (K)
300 = 7T3/2(r0 —3M) ' 3m3/272(7g — 3M)
hog(3M —270)E (K)  #hif(3M — 270)E (K)
3m3/272(7g — 3M)  3w3/2(2M — i) (Fo — 3M)
hIR(Fq — 2M) (27 — 3M)E (K)
3m3/27 (79 — 3M)
o _ Fohi ) (3M — 210 (K) 27, E ()
3m3/2 (6M? — 5M7g +73)  w/2(3M — 7o)

O(Ar, |Ar])), (8.300)
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heV(3M —270)E(K)  hEW (3M — 270) E (K)

3m3/272(3M — 7o) 3m3/272(3M — 7o)

KB (30 — 270)(2M — 70)E (K)
- o(Ar,|A 8.30d
37T3/27:0(3M_f0) + ( T7| TD)? ( )

where F is the elliptic function of the first kind and K = 7/ (7o — 2M) and Oy =
V/M/73. We also obtain

2 (6r (—4M? — 3M7o + 275) E (K))

70z _
thO - 7.(.3/2,,:(2)(;0 _ 3M) + O(AT‘, |AT|)7 (8313)
h$50 =0, (8.31b)
" 2 (6r (—4M? — 3M7o + 275) E (K))
oz 0
h3t0 = 3272 (7 — 3M) + O(Ar,|Ar|), (8.31c)
- 20rE (K) - -
higo = AM? — 272 4+ 3M
600 = 57570 (30 — 7o) B — 7o) \ 7o + 3M7o)
+ aror B (K) (16M3 + 4M%5, + 273 — 9M72)
m3/272(2M — 7)2(3M — 7o) 00 0
+ O(Ar, | Ar)). (8.31d)
where ~3(~ M)
_( rolro =3 1r
=(-00" 2 \F 32
or <3M(f0 - 2M)> ’ (8.32)

with F'" being the r-component of the self-force at first order. 71%0 in Eqgs.(8.31) relates
to the two-timescale expansion by the fact that Jr is the first-order correction, 71, to
the orbital radius, as we have already seen in Eq. (7.17). We have ignored terms that
include 7o, which would otherwise appear in the two-timescale expansion of the i = 2

punctures. Finally

jom _ AE (K)
100 353/2/3 (3M — 7

—15MPF3 byt — 12MPF3hy 30 + 3TMPFgh)yY — 12M>Fohl)

E {360 Foh))t — 60MPigh) S + 12M3h %

¥
HI2MFGh{ — 10Migh) b + 3BMghLY + 6 Mighi 0 — 275hi)
Fighl + 7267 MP7g — 6067 M%7 + 120r M 73} + O(Ar, |Arl), (8.33a)

8(2M — 70)E (K)

7ém __ 1R 1R N 1 1R 0 1R
W8 =S rsraaAL — ) (3Mhtr — 2r0hR + 6MQhLE — 3907«0%)
+ O(Ar, |Ar]), (8.33b)
- AE (K
h3g6 = W) (36M*Foh)yt — 60MPFEh Y + 12MPhJ1E — 15M>7 byt

300 7 373/273 (3M — 7)?
—12MP73h 300 + BTMPFg R — 12MPFoh Y + 12M byt — 10MFghl}
+3MFGhLY + 6MFghin Qo — 270 hitt + FHhY
+720r M>Fo — 605r M>75 + 126r M73) + O(Ar, |Ar]), (8.33¢c)
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<5 _ATohi (3M? — 6M7o + 273) E (K)
600 3m3/2(7g — 3M)2(7g — 2M)
4 (6M2h}E (K) — 2igh )3 E (K) + 3Mioh S E (K))
33272 (3M — 7g)2

_ 8foh S (5M —270)E (K) | 8hiRE (K)

m3/2(3M — 7g)? 3m3/272

ARIR(2M —F)E(K)  166rME (K)
- - O(Ar, |Ar|). 8.33d
3m3/27, 73/270(3M — 7g) +O(Ar, [Ar) ( )

Barry Wardell provided these formulas for all of the ¢ = 0 modes of the punctures
at the particle. Independently, I derived expressions for hisg%l for generic i¢m through
O(A), and successfully checked my formulas for the £ = 0 modes with the formulas of
Wardell. Hence, in my computation I use my formulas iLiSORO through O(\). iLiS(% requires
data for the 4D components of the first-order regular-field, and its first derivatives and
second derivatives, for which I used data that I myself computed using the methodology
detailed in Chapter 4. For the remaining pieces, BZ-SOSO, E%o and izfg.& I use the formulas

of Wardell.

8.6 The effective source

Now that we have derived formulas for the puncture fields, we may calculate the effective
source, S%fo defined in Eq. (8.3). We will refer to the piece ﬂrf_152ﬁ?00 as the raw
source. We computed ngfo using our data for 52R900, which was presented in Sec. 8.4.
We computed Ao hPs ] in the punctured regions using the same numerical parameters
used for 52R?00, for a quasicircular orbit of radius 7o = 6M, on the same grid of r-values
from i, = (2 4+ 1077)M up to rows = 10*M that was used to compute 52ﬁ?00. For the
boundaries of the regions I'y, we set rgy = 2.1M, r4+ = 79 £ 2M and ro = 100M. The
punctures at the particle require data for the components hgé on the particle, and data
for the first-order self-force. We used our own data for these quantities for 7o = 6M,

obtained using the computation methods described in Chapter 4.

We are confronted by difficulties in the region r $ 2.01M, where we need to
subtract two large numbers to compute the effective source, requiring access to a number
of significant figures beyond machine precision. To overcome this, in this region we use
long double variables to compute the effective source, as part of our C++ code used to

carry out the full computation of the monopole second-order field, described in Sec. 8.7.1.

Figs. 8.5-8.10 display numerical results for Sﬁ% for the whole range of r values,
and for the region I'p, magnified for clarity. Our results show that in the non-punctured
regions, I'y, the effective source agrees with the raw source. In the region close to the

particle, I'p, the raw source diverges at the particle (r = 7y), whereas the effective source
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does not diverge there. We also observe that as we approach the particle, Azoo[ hPY ]
and the raw source coincide, because the dominant behaviour in the raw source comes
hPP}

from Ajoo| close to the particle.

8.7 The second-order monopole field

8.7.1 Computational algorithm

We compute the ¢ = 1,3,/ = 0,m = 0 modes of the second-order field, using the
worldtube method outlined in Sec. 8.2, for a quasicircular orbit of radius 7o = 6 M, using
a grid of r-values from r;, = (2 + 10_7)]\/[ up to rous = 10*M, and setting rg = 2.1M,
ry = 7o £ 2M and roo = 100M. We found that our results are insensitive to the
location of the boundaries between regions. To implement this strategy we required
two ingredients: homogeneous solutions and data for the effective source. The effective
source was computed as described in Sec. 8.6. For the i = 1,3 monopole, homogeneous

solutions, we used the basis of solutions given analytically in Eqgs. (4.42).

We used a straightforward C++ code to carry out the full computation. Our

algorithm follows these steps:

e Input the analytical formulas for the homogeneous solutions, and compute <i>(r)

on a grid of r values.

e Compute the effective source J*(r) on a grid of r values, using the method de-
scribed in Sec. 8.6.

e Calculate the integrand ®~'(r).J*(r) everywhere on the grid, using a standard

LU-decomposition routine to invert ®(r).

e Evaluate the integrals fr:» dr'®=1(+")J5(r") at all points r along the grid, using
Simpson’s rule. We found that to obtain results which no longer changed beyond
the 16th significant figure, in the region I'f; we required the grid spacing to be no
larger than 10~% close to rj,, which can become gradually larger as we approach
1, approaching 1073, but even close to 7z the grid spacing cannot be larger than

1073, In the regions I'p and I's, we required a grid spacing no larger than 1073,

e Calculate the constants a® from Eqs. (8.13) and (8.16). At this stage we perform
a self-consistency check on our code, making sure that the a® satisfy the jump

conditions (8.11) and regularity conditions (8.12).

e Finally, we compute the i = 1, 3 residual fields, BZ%O, and their r derivatives, using
Eq. (8.10).
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Figure 8.5: Comparison of the i = 1 raw source with the i = 1 effective source. Both axes
are log scaled. As we approach the horizon the raw source diverges like 1/f but the effective
source falls off as f2. The region I'p is shown in Fig 8.6. In I's, the raw source decays like
1/r and the effective source falls off as 1/r2. In the non-punctured regions, I'y, the effective
source and the raw source agree.
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Figure 8.6: Comparison of the i = 1 raw source with the i = 1 effective source, in the region
I'p. The vertical axis is log scaled. The raw source and Ajgo] hPP] agree close to the particle
and diverge at the particle. S does not diverge there.



Chapter 8 Results for the monopole mode of the second-order field 173

10"

108

10*

10Y

107*

108

10712 ‘ ‘ ‘ ‘ ‘
1077 107 107 107* 107* 1072 ry Ty re  10° 104

r—2M

Figure 8.7: Comparison of the i = 3 raw source with the i = 3 effective source. Both axes
are log scaled. As we approach the horizon the raw source diverges like 1/f but the effective
source falls off as f. The region I'p is shown in Fig 8.8. In I's both the raw source and the
effective source fall off as 1/7%. In the non-punctured regions, I'+, the effective source and the
raw source agree.
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Figure 8.8: Comparison of the i = 3 raw source with the i = 3 effective source, in the region
I'p. The vertical axis is log scaled. The raw source and Azgo[ h”F ] agree close to the particle
and diverge at the particle. S5&, does not diverge there.
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Figure 8.9: Comparison of the i = 6 raw source with the i = 6 effective source. Both axes
are log scaled. As we approach the horizon the raw source diverges like 1/f but the effective
source falls off as f. The region I'p is shown in Fig 8.10. In I'sx both the raw source and the
effective source fall off as 1/7%. In the non-punctured regions, I'+, the effective source and the
raw source agree.
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e We calculate the retarded fields,
punctured regions 'y, for s = (H, P, 00).
gauge condition (7.43a), we may compute 7@600.

tracting the puncture in the punctured regions. But we note that unlike h

7 ret
hiOO

ret

will not automatically satisfy the gauge condition.

8.7.2 Numerical results

By substituting }NLiOO

] ro | this work Warburton rel. diff.
thO("'m) 6 0 0
R2R(ro) | 6 | —1.2776905081034842 | —1.31223 3 x 1072
hw (rous) | 6 —2.2896611175870656 —2.36304 3 x 1072
hgoo(rm) 6 —4.6266797468335925 —4.62267 <1073
hsoo(r ) 6 6.190042979233179 6.1308 <1072
h30 (rout) | 6 —2.2890768331107143 —2.36247 3 x 1072
hﬁoo(rm) 6 —35.871083609313445
hﬁoo(r ) 6 0.5319088368041207
h600(7’0ut) 6 0.0005317661529034012 | 0.0005320145402265553 | 5 x 10~
h100(7“ ) 8 0 0
hwo(r ) 8 —1.8174057692884025 —1.87312 3x1072
hmo(rout) 8 —1.2758926343764194 —1.36183 6 x 1072
h300(rm 8 —3.4796240776963505 —3.38134 2 x 1072
hgoo('f' ) 8 5.37093884874699 5.31596 1072
hgoo(rout) 8 —1.2744918717716103 —1.36044 6 x 1072
hﬁoo(rm 8 —51.08133309932423
hﬁoo(r ) 8 1.297003784933751
hGOO(rout) 8 0.000830180386799384 0.0008312334095705864 | 1.2 x 1073
K2R (rw) | 10 | 0 0
B3R (ro) | 10 | —2.199972780725526 —2.21554 7% 1073
hmo(rout) 10 | —0.9388565339196675 —0.962272 2 x 1072
B3R (rm) | 10 | —2.7815250036479293 | —2.6301 5x 1072
hgoo(r ) 10 | 5.048353178504122 5.06855 4x%x1073
h300(rout) 10 | —0.9370583887302292 —0.960462 2 x 1072
R2R (rm) | 10 | —74.07264254530617
R2R(ro) | 10 | 1.7920187427192475
hGOO(Tout) 10 | 0.000993626756134347 0.001002267487052677 <1072

by adding h’zOO to the residual field in the
i = 1,3 into the
Then, we calculate ﬁé%o by sub-

h600

Table 8.2: Data for the second-order, monopole piece of the residual field. The absolute
error in the data from this work is between 107> to 107° for all quantities.

In Table 8.2 we show data for hf,(r) (i =

for quasicircular orbits for a variety of radii. We stress that these results are still only

1,3,6) , at points 7 = 7in, 70, Tout,

provisional. We compare our results to results for the same quantities obtained in parallel
by Warburton, using the same worldtube method described in this work. Blank spaces
in the table correspond to quantities that I have not compared with Warburton. We

believe that the difference in the numerical data between this work and Warburton can
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be explained by the fact that we have used more grid points than Warburton to evaluate

the numerical integrals required for calculating the residual field modes.

Our results for ng}g? EZ%O and their derivatives are plotted in Figs. 8.11-8.16. In
all of the plots we see that ngg and BZ%O agree in the non-punctured regions. In all
cases hich diverges as rInr, whereas hZ%O either tends to a constant or falls off to zero as
r — 00. We remind the reader that in the sum over frequency-domain tensor-harmonic
modes (4.24), there is a factor of 1/r outside, so the monopole contribution to the full

residual field falls off at least as fast as 1/r at large r.

The results in this section represent a milestone in self-force research: they are the

first direct computation of a mode of the second-order field.
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Figure 8.1~1: RiSt and hlY, on a log log scale. As we approach the horizon RSt falls off like
, whereas hT5, falls off faster, as f2. hi%y diverges like rInr but AT, tends to a constant as
00 oo d ges 1k 00
r — oo. In the non-punctured regions, I'+, ki and hly, agree.

102 = | . |
R arh71200 ””” f : : E : :
....... arﬁrelt()o —_—— lnr : . \_-.-:_‘: :
r? ey il ‘\\"/’%\ {-L/ T
|t ) . ?( . SO R EE L
2 L T £ T
10 ~ ,’-"";-‘ 7 | | | |
~0‘ ,' 3 3 3 3 \\
106 | : o N\
103 : SR ; \l( N
: : \\;/
10! ; | w
10720 e T
103 w [
T o Y
107 1 - |
10—6 104 102 TH r_T Too 104
r—2M

ret

Figure 8.12: O, hiSh and~6‘T;L71%O on a log log scale. As we approach the horizon O, hi%h tends
to a constant whereas 9,hly, falls off as f2. 8,.h%% diverges like Inr but OhTy, approaches
zero as  — 0. In the non-punctured regions, 'y, 9,232 and 8,hT%, agree.



178 Chapter 8 Results for the monopole mode of the second-order field

10%
- h7§00
....... hr%tOO
) —  rlnr
10
10° 102
e ceemecennnannne]
10° '
1072
1072
104
r_
—4
10 106

Figure 8.13: high and @%0 on a log log scale. As we approach the horizon R5t and b,
both tend to a constant. higy diverges like rInr but h% tends to a constant as r — co. In
the non-punctured regions, ', h5%, and kL, agree.
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Figure 8.14: 6T~I~L§%t0 and 8,h% on a log log scale. As we approach the horizon O, hi% blows
up as 1/f but 8,h%5, tends to a constant. arhg%t()~diverges like In7 but Oh%5 falls off like 1/72
as r — oco0. In the non-punctured regions, I's, 9,h5% and 8,h%, agree.
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Figure 8.15: high and f}%%o on a log log scale. As we approach the horizon Rt and hi,
both tend to a constant. hg‘ﬁfo diverges like 7Inr but h&, approaches zero as 7 — oco. In the
non-punctured regions, I'+, h5y and hl, agree.

104 ‘ — ‘
K .. 3“‘\ 3 3 3
102 ."‘.“ O e R j“'}\"\ E : :
100 ' 3 |
102 |
104 -
104 _ 102 Y
....... f;;r%too 100 gw‘"""ij;v’—'—ij':#**’
106 1 02
***** nr |
1 0 —4 |
—_— 1/7r?2 r_ o
108 ‘
106 104 1072 ry
r—2M

Figure 8.16: 6T~l~zf3%t0 and 8,h&y on a log log scale. As we approach the horizon 0, his, blows
up as 1/f but 8,hk5, tends to a constant. arhg%t()~diverges like In7 but Oh% falls off like 1/72
as r — oo. In the non-punctured regions, I'x, 9,h5% and 8,hl, agree.






Chapter 9

Summary and conclusion

9.1 Summary of results

The research of this thesis was motivated by the goal of modeling GWs from binary
inspirals. We have discussed different types of binaries, including comparable-mass
inspirals, IMRIs and EMRIs. In this work we have focused exclusively on EMRIs,
comprised of a small compact object orbiting a MBH. They have a long inspiral time,
generating many tens of thousands of GW cycles as the small object orbits very close
to the MBH. As such, EMRIs trace out a detailed map of the curved spacetime around
the MBH, and this information is encoded in the emitted GWs. The GWs also encode
information about the orbital dynamics. For example, EMRI orbits can be eccentric,
inclined and rapidly precessing. As such, EMRISs offer a rich set of relativistic phenomena

to study, which can be extracted from GW signals.

We have described a number of models available for modeling binary inspirals,
including NR, EOB and PN theory. But for EMRIs, PN theory is inaccurate because the
system is highly relativistic, and NR cannot accommodate the two very different length
scales and large number of orbits in the inspiral. The only model able to accurately
model EMRISs is the gravitational self-force model. That is the main motive to calculate
the gravitational self-force. The first-order gravitational self-force has been computed,
but prior to our research, second-order results were yet to be obtained, and without
including the effect of the second-order gravitational self-force we cannot accurately

model an EMRI over the inspiral time.

We have discussed different approaches that have been used to calculate the first-
order gravitational self-force, including the mode-sum approach, the worldline convolu-
tion approach and the puncture-scheme approach. But at second-order, the worldline
convolution and mode-sum approaches cannot be implemented, for reasons that were

described in the introduction. The only viable method for a computation at second

181
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order is the puncture scheme approach. Hence the central goal of this thesis: to develop
a new puncture scheme that can be applied at second order and used to calculate the

second-order gravitational self-force.

The essential analytical ingredients needed to compute the second-order self-force

S
pv

motion for the small object’s center of mass in terms of a certain effective field hf},,.

are (i) a local expression for the small object’s self-field A}, and (ii) an equation of
Both of these results were available to us in the beginning of this project, as reviewed in
detail in Chapter 2. There we discussed how to derive formulas for the first- and second-
order fields of the small object using the methods of matched asymptotic expansions
developed in [39,40]. In that context we found that the fields can be written locally as
hy, = hiﬁ+h5§ (n = 1,2), where the self-fields 25" encapsulate local information about
the object’s multipole structure, and the effective fields A" are vacuum perturbations
that are determined by global boundary conditions imposed on hj;,. There are different
ways of defining this singular-regular split, but in this work we have used the Pound
choice [44], as described in Sec. 2.4.

hlSW and h}} are defined locally in a neighbourhood outside the object. A puncture

v
scheme proceeds by analytically continuing these fields into the region where the object
would lie in the full, physical spacetime. The analytically continued self-field h,sw diverges
at a worldline v that represents the motion of the center of mass of the small object in

the background spacetime. It is hence referred to as the singular field. In contrast, the

R
[15%

With our convention for the singular-regular split, the effective metric g, + h}}u isa C*

analytically continued field h;, is smooth at 7, and is referred to as the regular field.
solution to the vacuum Einstein equation, and -~ is a geodesic in that vacuum metric
through second order. Splitting the field in this way, we can replace the field equations
with effective source equations. The divergent source has now been replaced with an

effective source, which does not diverge at the particle.

P
o

sion of the singular field, in powers of spatial distance from the worldline, at a specified

More concretely, we define a puncture, A’ ,, which is a truncation of a local expan-

order. We then define a residual field, hﬁy = hiy — hﬁy, and we construct an effective
source for it by moving all terms including the puncture to the right-hand side of the
field equations. In this manner, terms involving the puncture get subtracted from the
raw source and the divergence at the particle cancels. We are left with an effective source
equation, which we may solve for the residual field numerically, using retarded boundary
conditions. Then, the self-force may be computed from the equation of motion (2.69),

17

by replacing hl}} with hf,/.

We have derived formulas for the first- and second-order puncture fields, as co-
variant expansions of the first- and second-order singular fields in an arbitrary vacuum
background. These are given in Eqs. (3.59)-(3.67). For a practical numerical implemen-

tation of a puncture scheme, all we need to do is to write the punctures in a specified
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coordinate system, and then expand in coordinate distances from the worldline, as in
Eqgs. (3.70) and (3.71).

As a first test of our puncture scheme, we implemented it to solve the first-order
equations for the case of quasicircular orbits in Schwarzschild. We devised a worldtube
strategy, in which we solved the effective source equation for the residual field inside a
worldtube centered on the worldline, and outside the worldtube we solved the vacuum
equations for the retarded field directly. This method can be used to solve the full
non-linear equations in 3+1 dimensions, but we approached the problem by decompos-
ing the puncture and the field equations into tensor spherical-harmonic and frequency
modes. We have performed numerous checks of our results. For individual modes of the
perturbation, we have obtained agreement with results of Warburton up to a relative
difference of between 107 and 1077, as shown in Fig. 4.4. Our results for the first-
order self-force, shown in Table. 4.2, agree with previously published data in [93] up to

a relative difference smaller than 10~7.

After successfully testing our puncture scheme at first order, we progressed to
applying it at second order. We encountered two hurdles. Firstly, we found that closer
and closer to the particle an arbitrarily large number of modes of the first-order field are
needed to calculate a single mode of the Ricci tensor. Rather than facing the problem
head-on in gravity, we used a flat-space scalar toy model, whose second-order source
was designed to have the same problematic properties as its full counterpart in gravity.
Fig. 5.1 illustrates the problem with the example of the monopole mode of the toy-model
source Sy (d)ret, gbret); near the particle the sum shows no signs of numerical convergence
with /ax. In Chapter 5 we sought a way of circumventing the bad convergence of the
mode sum near the particle using an analytical approximation for the singular field.
The essential idea was to compute the modes of the most singular piece of the source
by direct integration of the full 4D expression against the scalar spherical-harmonics,
instead of using the coupling formula (5.31), where the non-convergence arises. This
strategy was applied in some region around r = rg; outside that region, we simply used
the retarded modes in Eq. (5.31) without difficulty. Later, in Chapter 8, we applied
the lessons learned from the toy-model source to the second-order Ricci tensor. Our
results are displayed in Figs 8.3 and 8.4. This attests to the veracity of our data for the

first-order modes and the correctness of our method.

The second problem is that the large-r behaviour of the source prevents the retarded
integral from converging. The problem at large r can be divided into two separate
issues, which are associated with two separate pieces of the second-order source. The
first exhibits secular growth at large r. The second piece falls off too slowly, such that
its retarded-integral against the Green’s function leads to an infrared divergence. The
cause of both of these problems is that we assume the trajectory of the small body can
be approximated to be a circular orbit in a Schwarzschild background spacetime. The

issue of secular growth is resolved by applying a two-timescale expansion to the field.



184 Chapter 9 Summary and conclusion

The infrared divergence is resolved by truncating the retarded integral at some value of
r, adding a homogeneous field times a constant to account for the piece of the solution
removed by truncating the retarded integral, and determining the constant by matching

to a known solution. This was discussed in Chapter 6.

In Chapter 7 we have applied the two-timescale method to the field equations
in gravity, using the formalism developed in the toy-model in Chapter 6. We derived
boundary conditions at the horizon and at infinity, as well as deriving a two-timescale ex-
pansion of the second-order field equations. We note that while our boundary conditions
at the horizon are a particular solution to the field equations, they are not physically
motivated. However, we have argued that we nevertheless obtain a physical solution for

£ =0, at a fixed value of slow time.

Finally, we have implemented our puncture scheme at second-order for calculating
the monopole piece of the second-order field. We have computed the second-order Ricci
tensor based on our data for the first-order field, and we found that it behaves according
to analytical predictions. This reinforces the accuracy of our first-order data and the
correctness of the coupling formula itself. We have constructed a second-order puncture
scheme that caters for including punctures at the horizon and at infinity, developed
in Chapter 7, and punctures at the particle, developed in collaboration with Wardell.
Using these punctures we have constructed an effective source, which is precisely as
smooth as we would predict from the order of our puncture. It falls off at the horizon,
and at infinity, exactly as we would predict from the form of the punctures we use in
those regions. We have successfully applied our puncture scheme to directly compute
the monopole (i = 1,3,6) modes of the second-order field. Our results are displayed
in Figs. 8.11-8.16. This stands as the first direct computation of a second-order metric

perturbation.

In summary, we have constructed a puncture scheme that can be applied at second
order, successfully tested it at first order, and implemented it as the first direct compu-
tation of a mode of the second-order field. We can use the same strategy to compute
the £ > 0 modes of the second-order field, using the second-order puncture scheme set
out in Chapter 8. Such results will provide all the numerical ingredients for computing

the second-order self-force.

9.2 Outlook

In Chapter 8 we focused on obtaining the second-order metric perturbation, an intrinsi-
cally gauge-dependent quantity. Going forward, our first goal will be to extract physical
quantities from the perturbation. In principle, we already have the necessary ingredients

to compute one such quantity: the binding energy of the system. The specific binding
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energy may be defined as

Mgopai — o — M
Ebinding = Bondi Z//J* BH, (91)

where Mpongi is the total Bondi mass of the system, Mpg is the central BH’s mass,
and v = uMpn/(n + Mpp) is the reduced mass of the binary. Through first order,
Mpp is simply M +edMpp, as given by Eq. (7.34). Similarly, the Bondi mass is simply
M + e(6Mpy + pé), as described in Eq. (7.36a). The binding energy at first order is
then simply the kinetic energy of the small mass, eu(& — 1).

At second order, the binding energy measures the energy stored in the field, and its
computation becomes more delicate. The second-order contribution to the Bondi mass
can be read off of the asymptotic form of the second-order ¢ = 0 field, but it must be
measured at null infinity, not in the near zone; hence, we require a careful application
of the matching procedure described in Chapter 7 to determine how the Bondi mass of
the full physical field relates to our numerically computed residual field hﬁf at r — oo.
We must also decide upon a measure of the slowly evolving BH’s mass. A useful choice

is to identify it with the irreducible mass M, defined as

g
Mirr = \/ 1271_:7 (92)

where o4y is the surface area of the apparent horizon that surrounds the BH. Again,
the contribution to Eq. (9.2) from the second-order field requires only the ¢ = 0 mode.
However, we must consider whether our ad hoc boundary conditions at the horizon
allows a meaningful measurement of mass. A different choice of puncture at the horizon
would correspond to a different choice of particular solution, altering our results by the
addition of a homogeneous solution. At first glance, it appears that this should not alter
the binding energy: a homogeneous solution would add the same mass to Mpong; as
to My, leaving Epinging in Eq. (9.1) unchanged. However, this demands more careful
analysis because our puncture is singular at the horizon, with an unclear contribution to
Eq. (9.2). We are currently undertaking a comparison of preliminary results for Ebinding

with a prediction from the first law of binary mechanics [23].

The puncture scheme that we developed in this thesis can, in principle, be applied to
generic orbits in any vacuum spacetime. Aside from quasicircular orbits in Schwarzschild
that we focused on, the next simplest scenario would be eccentric orbits in Schwarzschild.
But unlike circular orbits which only have one frequency for each ¢m mode, eccentric
orbits requires summing over a range of discrete Fourier modes to compute a single £, m
mode of the field. In this approach we would encounter an already well known problem
that the sum over frequency modes does not converge well near the particle. This is
an example of a general problem of trying to reconstruct a non-smooth function using
Fourier modes, known as the Gibbs phenomenon. A method for resolving this problem

that allows one to compute the first-order self-force from eccentric source orbits, is the
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method of extended homogeneous solutions [112], explained as follows. Analogous to
the homogeneous solutions we found for circular source orbits, for eccentric orbits one
finds two sets of homogeneous solutions that are regular at the horizon and at r — oo,
and valid for r» < ryi, and 7 > rpax respectively, where ryi, and rpax are the minimum
and maximum values of the radial coordinate along an eccentric orbit. One extends
the domain of these solutions from a vacuum region to the entire region » > 2M, to
include the non-vacuum region where the particle lies. Then, instead of computing ¢
modes of the self-force by summing ¢mw modes of the inhomogeneous self-field, one
computes it using ¢mw modes of the extended homogeneous field. This method avoids
the lack of convergent summation over frequency modes. While this method works well
at first order, at second order difficulties still arise because the second-order source is
not localised like it is at first order, rather it has support everywhere. So, the extended
homogeneous solutions method will not apply at second order and it is not immediately
obvious how to overcome the lack of convergent summation over Fourier modes at second

order.

Restricting ourselves to quasicircular orbits but generalizing to Kerr spacetime,
our frequency domain approach cannot be directly applied because the wave equations
do not separate into ordinary differential equations at each ¢m mode like they do in
Schwarzschild. However, the puncture scheme itself does not require us to do any kind
of mode decomposition, so we could in principle apply it to the full 341D field equations.
For this we would need to construct punctures from our covariant expressions constructed
in Chapter 3, in a Kerr background. Alternatively, we can decompose the equations into
241D equations at each m-mode. This type of decomposition was already performed by
Barack and Dolan in Schwarzchild [63], and in Kerr, although the latter has not yet been
published. If we wanted to solve the equations in the frequency domain we would have
to develop a suitable extension of the metric reconstruction formalism in [52, 113, 114]

to second order, which is not an easy task.

However, instead of generalizing to eccentric orbits or a Kerr background, our more
immediate goal for the future is to compute the higher, £ > 0 modes of the second-order
field for quasicircular orbits in Schwarzschild. We have already calculated analytical
expressions for the tensor-harmonic-modes of the punctures at the particle for generic
i,4,m. We have also written a code capable of computing the higher modes of the
second-order field, using the same worldtube strategy developed in Sec. 8.2. At first
sight, based on our data of the higher modes of the second-order Ricci tensor, it seems
that we will need punctures at the horizon. These are yet to be constructed. Once
we have derived these, we will be in a position to compute the higher modes of the
second-order field, which will allow us to calculate the dissipative piece of the second-
order self-force. This will enable us to compute the evolution of the orbit of the small
object in the inspiral. This would be the first instance of a computation of the orbital

evolution in a binary inspiral, taking into account second-order effects. As we argued
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in the introduction, an accurate model of the evolution can only be done by including
second-order effects. Even more, we would be able to accurately model GWs from such
an orbital evolution with second-order results. Moreover access to all the modes of the
field will afford us the ability to calculate a range of gauge-invariant quantities, including
the second-order contribution to the Detweiler redshift, and higher multipole moments,
e.g. the quadrupole moment of the system. We will also be able to calculate a number of
quantities relevant to the orbital dynamics, such as the ISCO shift, pericenter advance

and spin precession.

Further afield, besides the obvious relevance of second-order gravitational self-force
results to EMRIs, second-order results will be useful for improving models of other two-
body systems, possibly pushing into the IMRI regime. Second-order gravitational self-
force data will enable us to fix higher-order terms in PN theory and the EOB model,

which describe binary systems of arbitrary mass ratios.






Appendix A

The first-order and second-order

metric perturbations

In this appendix we give the formulas for the first- and second-order fields, whose deriva-

tion was outlined in Chapter 2. ha 3 and hiﬁ split into a singular and a regular piece as

has = hop + hog (A.la)
hlgs = hop+ hes (A.1b)

The full expressions for the singular field components take the form [1,46]

2 ) 5 3
htstl = TM +3uan' +pur [4aaaa + <35ab + 4aaab> ﬁab]

9 87 7 3 1
217 a b e a, b b 9 - ~abc
+ ur [5aaa apn’ + 208aba n’ + (128abc+ 2gbcaa 8%%%) 7 }
+0(r?), (A.2a)

htsa1 = ur [;Bbceacdﬁg — 2%]
+ pr? { <37Ol3bd€acdab — ;%Bbdsacdab + ZBadebcdab> n¢
+ (abaa - %&b + 2aaab> n® — %Sb%abc + gBCdaaciabﬁbdi
- stbcdga;mdi] +0(r%), (A.2D)
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38 4 .. 3 R
+ pur [4aaab — ggab + gg(a”b)c + <4acad - Scd> 5abn0d]

11 2 1
+ pr? [ <5gabac - 6aa(1bac> n’ — ﬁgc(aacflc + Egcdac5abnd

58 31 68 . . 1o\ .
+ (15€c(aab) - j1758(1bc - gB(agb)cd - 45abac> n
2 .

2. .
cd d c\ » cd 1
+ g (g(a - E(aa ) b)ed + §B Ec(anb)di

+ (55diac _ D gedi _ 5acadai> 6abﬁcdi] +00). (A.2)
6 12 8

The O(1/7) term in Egs. (A.2) is the Newtonian-like field of the small body. The higher-

order terms in Eq. (A.2) are generalisations of the “Newtonian” field to include the

acceleration of the small body’s worldline and tidal forces due to the external spacetime

of the black hole. The first-order regular-field components, in terms of the coefficients

in the STF expansion (2.38), are given by [46]

hgl = AL 4 rﬁgl’l)ni , (A.3a)
pRL = L0 (B(Ll)na + Ui 4 €aijf7(1’1)jnj) ; (A.3b)
iyt = S KO 4 1,
+r <5abf(i(1’1)ni + ﬁg;l)ni + €ij(afé)1’1)jni + Fg’l)nw) . (A.3¢)
h% is a vacuum solution of the first-order wave equation E,g[hR!] = 0, finite and

C™ everywhere, including on the worldline. The regular field is unknown analytically.
It can be calculated by solving the first-order field equation numerically with retarded

boundary conditions. This is explained in more detail in Chapter 4.

The second-order singular field splits into the sum of four pieces [1,46] as
hog = bS5 + hig + hdE + hi%s. (A4)
The first piece,

212 10u2a;nt 7 29
hgts S ,UQT’O (5ab + aaab) nab

2 T 3 3
+4p2aqga®Inr + O(rinr), (A.5a)

ss_ 2oL, b 100 g4 2.
hpy = pr Sty = ?B Eacdy” | — 8 aq Inr + O(rlnr), (A.5Db)

hSS = — g Np) — — A 0gpNe + —a gy
ab 372 372 5 (a’tb) abllc abe

8p*0ay  TpPhap |y [31 37 14
r 5 3
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R T 10 4 N
+ MQTO [ (45,3((1 — aca(a) nbf — §acacnab + <3acad - 35cd> 5ab”6d

7 56 .
+ <550d — wacad) nade}

1
42 <f§acac(5ab — £€ab — iaaab) Inr+ O(rlnr), (A.5¢)

is a solution to E,z[h%] = 202R,s [AS!, hS!] away from the worldline, i.e. 7 # 0. The

second piece,

th ~ab

pipt = b OO 000 (A.6)
th ~ b

PSR = _Hp VM r’””a +0("), (A.6b)

BSR = £ [2hBL ()5 — aphf (1A = (WL ()67 + B (3)) s | +O(),  (A.6c)

is a solution to E,g[hSR] = 202R,p [R5, hRL] + 202 R, [RR, hSL], away from the
worldline (r # 0). In Egs. (A.6), h®!(y) denotes the first-order regular field evaluated
on the worldline . The third piece,

i = 577:“ +0(r7), (A.7a)
hig" = 5?“ +0(r7), (A.7D)
hip = 5”;“b +0(r"), (A.7c)
is a solution to the homogeneous wave equation E,g[h°™] =0 at r # 0. In a domain

that includes r = 0 it is a solution to the sourced equation
Eog[h™] = —4mdmep(t)63 (7). (A.8)

The components dm,g are constrained by the gauge condition (2.26) at order O(1/r) to
be

Omy = —2uhf‘;1 (v) — géabhaRbl(’y) , (A.9a)
4
OMmyq = —4p0zq — ?Iuhgl ("Y) ) (A9b)
2 . 2
Smap = W3 () + L0 hE () + 0k (). (A.9¢)

The final piece, hi‘zﬁ, is given by

208 zan
iz = ZEZA L o), (A.10a)

r2

he% = O(r), (A.10b)
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52ncs,
3y = 20 1 o), (A.10¢)

hgfﬁ is a solution to the homogeneous wave equation E,g[ h9%] = 0 off r = 0. In a domain
including » = 0 it is a solution to the wave equation with a source equivalent to that

created by the displacement of a point mass,

Eo5[h% | = 87 18,302°0,6% (). A1l
B B



Appendix B

Fermi-Walker coordinates

We begin with a description of Fermi-Walker coordinates and associated notation, rel-
evant to the discussion in Chapter 3. Let ~ refer to a generic time-like worldline, as
depicted in Fig. B.1 and coordinates on « shall be denoted as  with a bar on top. We
assume that x lies within a normal convex neighbourhood of x. The spacelike geodesic
B links the points « and Z, where 3 intercepts « orthogonally at Z. The tangent vector
on 3 is —o®. We will refer to ordinary coordinates off v as x without a bar. Indices of
tensor quantities evaluated on ~ shall be denoted by Greek letters with a bar on top,
e.g. u® and those evaluated off v shall be denoted by Greek letters, without a bar. Let
u® be the four-velocity on v and let 7 refer to proper time on . We will use 3 to refer
to the unique, spacelike geodesic that connects the points x and Z, and intersects v at
Z orthogonally, as shown in Fig. B.1. The spatial geodesic distance between x and z
is given by 20(z, ), where o(x,Z) is the Synge world-function [46]. Note that in this

construction ugoc® = 0.

We begin by constructing the tetrad
i) = {u@). i@ | (B.)

and the dual-tetrad

on +, such that

Japeney = mw gUEREG =", (B.4)
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Figure B.1: The point & on the generic timelike worldline v, whose tangent
vector is u®. Proper time on ~ is 7. The spacelike geodesic 3 links the points
x and T, where [ intercepts 7 orthogonally at Z, and r = /20(x,Z) is the
spatial geodesic distance between z and Z, where o(x,Z) is the Synge world-
function [46]. The tangent vector along ( is —o®. Fermi-Walker coordinates
(t,z%) are constructed at the point x, such that ¢ = 7, the proper time on v at z,
and 2% = —e%0%, where (u®, ) is the tetrad which is orthogonal Fermi-Walker
transported along +, according to (B.7).

and the completeness relations,
S

9a3 = Ca é% N g

The tetrad € is said to be Fermi-Walker transported along ~ if [46]

= agegu& - uﬁ-eﬁaa (B.6)

holds true, where a® = Du®/dr is the four-acceleration of v. Eq. (B.6) guarantees that
D(uge)/dr = 0, such that if uzed = 0 at some point Zg on v, ug and €& will remain
orthogonal everywhere on «. Hence, for us and e orthogonal, they are Fermi-Walker
transported along v as )

Deg

dr

where a, = aze$ are the spatial components of ¥’s acceleration.

= aqu®, (B.7)

Fermi-Walker coordinates (¢, z%) are constructed from a tetrad (u%, e%) established

along 7, which are Fermi-Walker transported according to (B.7). At each instant 7 of
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proper time, spatial geodesics are sent out orthogonally from the point Z = z(7) on vy (see
Fig. B.1). These geodesics generate a spatial hypersurface 37, and on that hypersurface

coordinates x® are defined as
¢ = —eio”. (B.8)

Each of the hypersurfaces is labelled with time ¢ = 7, defining the coordinates (¢, z%) at
each point in the convex normal neighbourhood of +. As such, the time coordinate t at

x is equal to the proper time 7 on 7 at the point z, where [ intersects vy (orthogonally).

Using the definition of the Synge world-function, we may define the spatial unit

vector n® as

xa
¢ = B.9
nr=" (B9)
r =120, (B.10)
where we use the notation
g=o(z,x) (B.11)

to refer to the world-function o(z, Z).

Consider what happens when the field point shifts from x to z 4+ dx. Since the
field point x and the source point Z are inextricably linked through £, this will induce a
corresponding variation in the source point, from & to £ + 0. This can be expressed as
0% = u®d7, where §7, the proper time difference on v between the points z and = + 67,

is equal to ¢ in Fermi-Walker coordinates.

From Eq. (B.8), the relationship between dx and 0% is

2% — 2%+ 62% = —&%(Z + 62)0® (z + 0z, T + 67)

a
= —e4(2)0% (2, 7) — uPVzeldto” — eaoSoulst — etofor’.  (B.12)

Equating the coefficients of dx yields

0z = —a®ugo®St — éxo uPst — exo oz, (B.13)

Q1
™IQ

ot is determined by imposing that (3.16) should hold true even after varying z, such
that

=0. (B.14)
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After rearranging terms, we find

5t = Boggu®dz” =— (U&BU&UB + odad> : (B.15)

where in the last step, a® = u%ug was used. Substituting Eq. (B.15) into Eq. (B.13)
yields

Sx% = —é2 (Ug‘ + Bagugagﬁu'?> oxP. (B.16)

Egs. (B.15) and (B.16) give the one-forms dt and dz®, in terms of Fermi-Walker coor-

dinates.

Now let us proceed to derive expressions for dt and dx® in covariant form. We will

make use of the following expressions [46] for the parallel propagator,
95 (2, 7) = &(x)eq (z) = u®()E(x) + €5 (7)e5(2), (B.17)

the near-coincidence expansions,

0aB = 9a3 — %R&ﬁgﬂaﬁaf’ — %V;YR@[LBDUWU[”Jﬁ + O(’I“4), (B.18)
Oap = —g <9av + éR&ﬂBDgﬁgﬂ + ]EVXRQHBVUS‘U“UV> +O(r"), (B.19)

and the definitions
Ropor = Rpru®u®, Ragiy = Rapgoéhey, ay=éas, Ve=eéVs. (B.20)

Inserting Egs. (B.18) and (B.19) into Eq. (B.15) returns

-1
1 1
B = (1 + gROGObxaxb + EVCROGObx%be + abxb>

1 2
by — §R0a0b$a$b — (apa®)® + gacROaObxawbwc

1
— EVCROaObxaaszc + O(zh). (B.21)

=1—ayz’+ (apz

Now, making use of the near-coincidence expansion (B.19), we find that
a,mua‘ =(1- 1R()aobnl:a:lﬁb — iVCRoQObm“xbacc &%
6 12 g

1 1
- <6R0bac.7}bxc + deRobacxbe:cd) é%. (B.22)
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Substituting this and (B.21) into (B.15), and using the covariant form ¢, = J,t, leads
to the result

1 5
to = <1 —apz’ + (abxb)2 - §R0a0bx“$b - (abxb)3 + gaCROGObxaxbxc
1
— 6VCR0aobLEaIbQZC> ég — (RObac (1 — adxd) 2Pzt
1

+ 2VdRobaCa;bxcxd> g (B.23)

From the definition of the parallel propagator (B.17), the near-coincidence expan-
sions (B.18) and (B.19), and the result of Eq. (B.22), we find

bic bic

_ 1 1 .
—€505 = (52“ + BR“ bzt + EVdR“ J:bxca:d> €5

1 1 -
+ <6R“boca:bxc + deR“bocxbxcmd) eg, (B.24)

and

- 5 - 1 1 1
—Bé‘éagag*’yuﬁzﬂ = <3Rab00xb:z:c + EVdR“bocmbxca:d - SadR“bocxbxcxd> é%. (B.25)
Now substituting Egs. (B.24) and (B.25) into Eq. (B.16), and using the covariant form

2% = 0px®, yields

1

1
7 = (zRabocxbxc + 5

1
VdRabOCa:b:ccxd — 3adRabOC:1;b:ccxd> v
1 1
+ <5l()1 + éRacbd.TCfUd + mveRadexC$d$e> ég, (B26)

The formulas in (B.23) and (B.26) are needed in Chapter 3, where we write covariant

expressions for the puncture field.

In order to derive expressions for the metric in Fermi-Walker coordinates, the
formulas (B.23) and (B.26) need to be inverted to find expressions for €0 and 2. Write
to and 22 in the format t, = A& + B,é% and x% = C% + D¢e®. This implies that
€0 = A7l (to — B,éd) and &, = (D¢ — A71C*By) "1 (z2 — A71C%,). A and B, are easily

read off Eq. (B.23). Inverting them yields the result
~0 b 1 a,.b 1 a,b, .c 1 b, .c..d
€y = | 1+ apz” + §R0a0bx z’ + gaCROGObx x4+ évdRObacx " )ty

1 1
+ 6 (Robacscba:c + 2VdR0baca:bxcxd> o + O(r4). (B.27)
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Likewise, C* and D} are easily read off Eq. (B.26). The Dj are inverted using the
expansion (D#)~! = (67 + A%)~L =62 — AL + APAS — APASAZ + ... Overall we find
1 1
el = <5Z — éRbcada?Ca:d - mveRbcadxcxda:e> e

1 . 1 . 1 .
— [ =RY, 272" + —apRb 2l aFat + SV R ket ) b, + O(r?). B.28

Now substituting Egs. (B.27) and (B.28) into the completeness relations (B.5), we

derive the metric components in Fermi-Walker coordinates as

4 1
g = —1 — 22’ — (apa®) — Egprab — gacgabxaxbmc - ggamciﬂal'bl'c +0(r"), (B.29a)
2 , 1 , 1 ,
Gta = —gﬁaci f,xbxc - geaciadl?éxbxcxd - Zsacilgé‘d:ﬁbxcxd + O(r4), (B.29Db)
1 | 1 ) 1 )
Gab = Oab — g%b&‘sz%] - ggabTQ - ggail'zl'b — ggbixlxa
1 1 1 -
— ééabgab|cx“a:b:cc - éé’ab‘cxaxbwc — ggab”xaxbxl +O(r). (B.29¢)

where the notation| refers to covariant differentiation with respect to spatial coordinates,
as in Eq. (3.17). For example Eupe = Roaople = Roaog; ﬂege’g ef. The inverse-metric

components are

g = =1+ 2ap2® — 3(apa®) + Eprzb + O(r?), (B.30a)
2 .
[ —geacingbe +0(r3), (B.30b)
1 co. 1 1. . 1 .
g% =5 4 géab&jx’xj + §€“b7"2 - gé'mxixb - gé’b’xma +0(r®). (B.30c)

The Christoffel symbols are readily derived from the metric and inverse-metric

components. We find the non-vanishing components to be

It = a2’ + O(r?), (B.31a)

It = ap — apaiz’ + Epiz’ + O(r?), (B.31b)

I% = a® + aPaa’ + E¥%; + O(r?), (B.31c)

) = 20uE T + 2 Eap — 262;&))2-9:" - gw(aé}% +0(r?), (B.31d)
3 3 3 3

rt, = —éabingxi - %saingxi +0(r?), (B.31e)

g = B’ + O(r?). (B.31f)

This completes our overview of Fermi-Walker coordinates.
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First-order puncture fields and

their harmonic decomposition.

In this appendix we explain how we derive the non-vanishing components of the first-
order puncture field, in Schwarzschild coordinates for a circular orbit in a Schwarzschild
background spacetime. After obtaining these expressions, we derive the frequency-
domain, tensor-harmonic modes. Wardell was the first to derive these formulas for
the modes [74], but I independently derived formulas for them and successfully checked

my own results with those of Wardell.

We will explain how to write our covariant expression (3.60) for the first-order
singular field for a circular orbit in Schwarzschild, using the leading order term as an
example. The same method may be applied to all remaining terms. The leading-order

piece comes out of the first term in (3.60),
sif) _ 2K o w
bt = ~ 9n 9 (grrwr + 2uprugy) (C.1)
where u*’ is the four velocity of . We remind the reader of the relations in Egs. (3.30)
and (3.31): s2 =r> +20 and r = auxu“,, where o = o(z,2’) is the Synge world function.
We recall from the discussion in Chapter 3 that x denotes the coordinates of a generic

point off v and 2’ denotes coordinates of some point on ~.

From the coordinate expansions in Eq. (3.68) for o, we find that

< ! / / ]‘/2
s = [A2p2 N A AT At A+ O(A4)} , (C.2)
with Az”' =2 — 2", Ay = Griw 1 (2') /4 from [88], and
/ / 2 ’ / 1/2
p= {(gM/V/Ax“ u” ) + g Azt Ax” } . (C.3)
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By inserting Eq. (C.2) and the coordinate expansion (3.69) into (C.1), we find that the

leading-order piece of the first-order singular field is

2
hf’ul/LO = )\i; (v + 2upu) . (C.4)

It was pointed out in [115] that the most efficient way to decompose the field into
tensor-harmonic modes is to write the components in rotated coordinates (¢,r, @, B),
where the particle is momentarily located at the north pole. The advantage is that a
large number of modes vanish in these coordinates. After calculating the modes in this
frame, we rotate back to our original coordinates, (t,7,6, ), where the particle lies on
the equator (f = 7/2). Note that we used these coordinates in Chapter 5. But here,
unlike in Chapter 5, we add tildes to the angular coordinates to distinguish them from

Greek letters, in order not to confuse them with spacetime indices.

We follow the formalism in [88] to write p in terms of rotated coordinates. We

introduce Riemann normal coordinates on the two-sphere, centered on the particle at

2’ as
. [« > (AN
wy, = 2s8in <2> cos 3, wg = 2sin <2> sin 3, (C.5)
where & and j3 are rotated angular coordinates given by
sin f cos p =cos &, (C.6a)
sin @ sin ¢ = sin @ cos 3, (C.6b)
cos § = sin dsin §. (C.6¢)

In Riemann-normal coordinates the Schwarzschild metric takes the form

dr? 16 — wik 16 — w?k
dl’2:—fdt2+L—|—7’2 w de—‘rTQ w dw2
f k ! k 2
2 2

k
+ 2r2%jldw1dw2, (C.7)

with f =1—2M/r, k1 = 8 — w} — w? and ky = 16 — 4w? — 4w3.

Using the relations & = —u; and £ = u, from Egs. (4.3), and the components
of the metric (C.7), and labeling coordinates on the worldline in the rotated frame as
<7’0, to, o, ,30), we find that [88]

p° ! (rg&6% — f0.L%) Ar? + (L% +15) Awi — 28 <17'*0Ar + ZAuq) At

réfé fo

+ Jfo.zfoAmwl + (6% = fo) A + 1 Aws. (C.8)
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Now we let v be an exactly circular orbit with fixed radius rg. Accordingly, we
set the specific energy to be that for a circular orbit, &, given in (4.9), and the specific
angular momentum to be that of a circular orbit, %, given in (4.8). If we let At = 0,
then

PP = ;Aﬁ + (L5 +1d) Aw? + rjAws, (C.9)
0

where Ar = 7—rq is the radial distance from the particle. But Aw? = 2 (1 — cos &) cos? 3

and Awj = 2 (1 — cos &) sin” 3, so we may write p as

22 (rg —2M) \'? 12
=————7= 1- 1
p ( — Y X (6% + cos@) ", (C.10)

where the quantities x and J are defined as

o _ (ro— 3M)Ar?
"= 2ro(ro — 2M)x ’ (C.11)
. Msinz,g’

We may write the components of the leading-order piece of the puncture from
Eq. (C.4), by substituting the expressions for the non-vanishing components of the four
velocity given in Eqgs. (4.10). All higher order terms in the puncture can be found in a

similar way, and we find that, schematically, the puncture can be written as in Eq. (3.70).

Let us denote the O(A™) piece of the (trace-reversed) puncture as }_1,7;,,1 ™. We find
that the non-vanishing components of the O(A~1) and O(\°) terms are

pip-1_ AR R I s
piPmt = 2 piP—1 _ 1 SToRTAE
tt P " o (ro — 20M) cos 3,
T 1 47’3/C2Q ~ _ 1 4M7’2IC2 B
pT = S O 2 sinGisin B ppetZ L AMRRT  as s
5 " p(ro—2an) MNP W oy (OB
T — 14M2/C2 ~ ~ _ . 14M2]C2'2~-2~
R = —*% sin & sin 3 cos 3, pip—1 _ LMo Sm oz;m ﬁ’
af p(ro —2M) BB p (ro — 2M)
where ( "
ro — 2M
K= C.14
7'0(7“0 — 3M)’ ( )
and

ppo_ L 2 2Ar [rg — TMro + 10M? — 2M (rg — 4M) sin? B] (C150)
prg(ro—3M) X
141"(2)QICQSindcosﬁ~
o (ro —2M) ’
3 — 3Mro +2M? — 2M? sin® 3
(ro —2M) x

hy 0 = (C.15b)

iLlP’O _ 1 2AT TDQ
fa p (ro —3M)

] cos 3, (C.15¢)
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- 1 2Ar70Q |12 — 3Mro 4+ 2M? — 2M?sin? 3 ~
1P,0 0 0 L.
htB = (ro — 330) 0 (ro—200) x sin & sin 3, (C.15d)
- 14Mr simo?coszﬂ~
1P0 _ 0
hrd _; (TO — 3M) ; (0158)
. 2 ~ > . 3
FIPO _ }4Mmsm acosﬁsm/é” (C.150)
B P (T’() - 3M)
_ 12Ar Mry |3rg—7M — 2M?%sin? 3 -
[ — 2 C.15
W plm-sM) | o—2x | (C-1%8)
12Ar Mg |3rg—7M —2M?sin® 3| . _ . 5 =
h(l)j;o =~ T —30D) [ (o~ 200) x sin & sin 3 cos 3, (C.15h)
1 2Ar M rq 31”0—7M—2MQSinQﬁ~ 9. .9 .
nn0 = 2 asin® B. C.15
S Tpl-sM) | (o-zyy oS (1

We have derived formulas through O(\?), but the higher order terms are too long

to be included in this work, so we omit them.

Now we want to decompose the full 4D expressions into frequency-domain, tensor
harmonic modes. We will use the notation i¢m’ for the modes of quantities defined
in terms of coordinates (t,r, @, 3), and 7¢m for modes of quantities defined in terms of
(t,r,0,¢p). This choice of notation reflects the fact that the rotation, which takes us
from (t,r, &, ﬂN) to (t,r,0,¢) coordinates, induces a transformation between the corre-
sponding m-modes. They have different m-mode numbers while the i/ mode numbers

are unaffected by the rotation.

We want to expand the components in the basis of tensor spherical-harmonics in

the frequency-domain, as

Z Z Zywm _Zm/chzém( ) (0.16)

=0 m'=—£ i=1
The coefficients are given by
2w pm L, ~ .y
Rl (1) = / ds | dasina hw,n‘”n”” Y (&, B, r)et™ (C.17)
0 0

At the pole, we find that only the m’ = 0 fori =1,3,6, m' = £1 for i = 4,8 and m’ = 42
for ¢ = 7,10 spherical-harmonics (4.15) are non-zero. As such, (C.16) simplifies to

Wb (6 =0,8) = iZhwe, (C.18)

(=0 =1
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where

_ 20+ 1\'? 1 o r o =
O e G R ALY (©199)
_ 20+ 1\ Y2 1 _

P t ST T St P

= 64670, h C.19b
h,uz/,% ( A7 ) \/§ (5,u v + o 1/) 240(7’), ( )
20+1\% 1 _

P _ t st —2¢r s\ 2P

huV,Sf = ( an > E (6#’61’ — f 6)“51/) h3£0(7"), (ClQC)
e (AN (840% + 050L) [e7PRE, 1 (1) — PRE ()] (C190)

uv, 40 167 \& u v wv 44,—1 40,41 )

20+ 1\YV2rpt e .

P & & i P 18P

huu,BZ = ( 167 ) \/i (5361/ + 5,u61t/> |:6 Bh5£7—1(r) —¢€ BhSZ,—l—l(T)} ) (Clge)
- 20+ 1 1/2 2 - 2 3\ -

P — aso 2 ~ P

hw6e = ( gy > \ﬁ ((SM(SV + sin 0«55(55) he oo (1), (C.19f)
7 20 +1\"? asa | —2iB7 BT

hﬁl/,ﬁ = ( 167 ) T25,u51/ |:6 2 5h?€,—2(r) + 62 ﬁh?@,—i& (T)] ) (Clgg)
7 20+ 1\ r & | s& —if7P B P

Rl s z< oo > ﬁ(a;;aﬁauég) [e ﬁhge,,l(r)+eﬂh8g7+1(r)}, (C.19h)
_ 20+ I\V2ppt e . -

P . T S& asr BT P iBTP

5y —z< — ) 75 (085 +576) |7 RE o1 () + 7R, 0 ()] (C19)
7 2041\ asa [ —2iB7 iB7 .
Wowoe == (Zet ) 2803 [0 ) - M )] (Ca9)

The coefficients are given by

_ 1 - _
WEo(r) =Ne § AR + )P, (C.208)
W(r) =Ne 4R PP, (200
_ 1 - _

R0 (r) =N dﬂﬁhﬁ —hl)FY, (C.20¢)

- :|:\/§Né iB
hfe +1(7) _]é dQe™’

(04 1) (20 + 1) sina t3sin? &

o ((+1)2PL — 2P} ., P}
hg(( U ‘+1>iz’h7’ o ] (C.20d)

2pl 2 pl 1
—p FV2N, % Qo8 | 7P L+ Py =P | 5p B
_ Fvele P +rP.—L | (C.20

h5021(r) ré(+1) dhre " (204 1)sina "Fsin?a |’ ( °)

_ N, _ _

hiyo(r) :fTiZ 7{ ds (hgd + csc? o?hgé> P, (C.20f)
_ 1 ,

P - - —21
h?f:l:2(/r> _\/§T2A1/2 %dge ¥

{3e2i90 csc @y, ? [(cos 20 + 3)(hEs — hg,é) + SingB cos 64]
A0 (g 1\1/2 1/2y,—1 ~ (3P _ 7P TP
1€ (0 — 1)V (0 +2) Y, [cosoz (hm hﬁﬂ> n 2mm]

tsind (ﬁg’d - BEB) (£ +2)1/? AI/QYf} : (C.20g)
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nF =TV § dQeT P | hE + [y p—_ .20h

se(7) =gy f e ta( 20+ 1)sin’a sng | (20

nF =tV dQeT P | hE. + Py p—_- 2
ven(r) =gy p e m( 20+ 1)sina vema|  (C20

_\@Nz}{ 5

FL,{DOK +9 (7‘) = W dQ€_2iﬂ CSC (v
{66%31/[2 [—i Cos &(BZ;B - ng) + cos? dﬁgé + BEB}

+sin & [hgé sinay/(€+1) (0 +2)Y)
+2ie™ /(0= 1) (£ +2)Y; ! (EQZ’B + 2i cos aﬁgﬁ - Bgé) ] } , (C.205)

where ¢ dQ = fOQWdB Jodasina, Ny = [(2¢+1) J4m)/? P = P"(cos @) are the asso-
ciated Legendre polynomials, Y, = Y™ (&, 5) are the scalar spherical-harmonics and
A={U—-1L+1)(£+2).

We evaluate the integrals over & analytically, using the following useful results:

T P} 22 1/2+¢
/0 dasma(52+1_608&) —1+2£A(6) , (C.21a)
0 i APl |
/ déisin & sin &P, __ 24/20 (£ 4 1)! (5)1/2“
0 (0241 —cosa) (L—1)1(20+3)(20+1)(20—-1)
[—3 — 2+ (2—1)A (5)2} , (C.21b)
T sin?apP? 2v/2 (£ 4 2)! —3/2
/0 A0S O e T cond) 321+ 1) )

{ [A (6)? + 1} [A (0)2(20—1) — 20 — 3}
402 + 40 — 3
2 [A (6)2(20 - 3) — 20 — 5}
(42 —40—3) (20— 1)
200 +1) [A (6)2(20+1) — 20 — 5] A(5)? }
- (C.21c)

(20 + 3) (402 4+ 12¢ + 5)

where A (5) = 1+ 62 — |5] (2 + 62) /.

We are then left with expressions that depend on the azimuthal angle BN and Ar.
The most efficient way to evaluate the integral over B is to expand in powers of Ar.

This yields an expression in powers of sin B, COS.B~ and x. We re-write powers of sinﬁ~
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and cos 3, as

_ n/2 N _ n/2
sin" § = (’”OMM - X]> . cos™ B = <1 _ % - X]) L (C.22)

In this approach, we straightforwardly evaluate the integral over B using the general

2 1 M
/ dﬁxn = 27T2F1 (n, = 1 ) 5 (023)
0

formula
27 g —2M
where 9 F] is the hypergeometric function.
We end up with expressions for the i#m’ modes, in the rotated frame. We rotate

back to unrotated-coordinates, (t,7,6,¢), where the particle is located on the equator,

Rl (1) = Y Dy (0.70/2,/2) Wl (). (C.24)

where Dy, s are the Wigner D-symbols.

Using this strategy we obtain analytical expressions for the modes of the puncture
BP

. (r), through order Ar?. The expressions themselves are too long to quote here in

full. Instead we give them through order O(Ar?). We have the full expressions through
order O(Ar?) stored in a Mathematica file.

7 2\/%(7“0 —2M)*?E (_L)
WY 4m =De,—m o (O, g, g) = 3;\43]\4
Hrem =0, (C.25b)
2/2(ro — 2M)E (12
) 1§20+ 1)(ro — 3M)
Wy = [De,m,1 (7r, oL E) + Dy yn1 (W, f, f)

2°2
M
[MK (ro—QM)

+0(r), (C.25a)

3
o 3

W5 om =Dt —m.0 (0, o ) +O0(r), (C.25¢)

\)

3

8 2M (rg — 2M)
V20 + 1Mr \| mro(ro — 3M)

\V)

ISy
+ 2(rg — 2M) <K <m_MW> B (ro—MZM>> } + 0@, (C.25d)
hE g =O(r), (C.25¢)

8\/%“0\/7“0 3 (K (%) B (%
r2\/(20 + 1)(ro — 3M)

_ 4 (V/2ro)
hp = D m ,E7z D m,— 7E7E
Tém [ 4im2 (7r 2 2)+ tm. 2(” 2 2> 3v20 + 1Mr2\/m(ro — 2M)(ro — 3M)

)) +0(r), (C.25¢f)
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[12(2£+ 22K (72

) M
S DT T2 (BIME — 40Mro +8r5) K <m - 2M>

— 8(2ro — 5M)(ro — 2M)E (m—Msz) ] +0(r), (C.25g)

_ i ™ T
on =Dt (5:5) + Dencs (= 535)

(8i) 2M (o — 2M)
V20 + 1M\ 7ro(

ro — 3M)
[(2@«0 _3M)K (TO . M) —(rg— 2M)E (m ng))
_ W} +0(r), (C.25h)
Wy pm =0(7), (C.250)
- T T 4 (\/2ir
Poem = |Dem.2 (”’ 2’ 5) + Dem,—2 <7T’ 2’ §> ] 3v/20 + 1M 12 \/Sr(ro —O)QM)(rO —3M)

12026+ DMK () M
[_ 50— 1)0(0+1)(0 +2) +16(r9 — 2M)(ro — 3M)K <>

rog — 2M
—8(2rg —5M)(rg —2M)E <7"0—M[2]\/[> ] +O(r), (C.25j)

where FE is the elliptic function of the first kind and K is the elliptic function of the
second kind.



Appendix D

Field equations

The explicit formulas for the coupling terms M%’s in the frequency-domain field equa-

tions (4.25) are (see Appendix A of [62]), using the shortform notation h; = hjgn,

iy = M fofy AMY o o
Mljh]‘ 2 8Th3 + 27‘2 1-— T (hl — hs — fhg)
f? 6M\ -
52 (1= =) e (D.1a)
A_ Mf _ - M - 2o
MQth = ?8rh2 + ﬁZwmhl + ﬁ (h2 — h4) s (le)
- f o[- _ AMN - _
M3ih; =53 hi — hs — 1-— (hs + he) | (D.1c)

o M, - - _ _ 1 f-
Mh; = = (iwmhs — iwmha + Opha = Ophs) — S € (£+1) 772h<2)
Mf

= [

3hg + 2hs — hy + £ (€ + 1) he] , (D.1d)

WA (A VR PR

;<1 3M) (€(€+1)h6—h7)], (D.1¢)
MRy = L [hl by <1 - ‘*fﬂ”) (hs + hﬁ)] , (D.16)
M, = _% (Fer + M) | (D.1g)
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M AMf

8

M ]hj = ﬁ (Zwth — iwmhg 4 Orhg — ath) - Zﬁ (3h8 + 2hg — th) ’ (Dlh)
0ir [ IM \ - f 3MY\ - .

M]hj—ﬂ<1—274> h9_277“2 <1_r h1o, (D.1i)

M7 = ——— (hyg + Ahg) (D.1j)

where A = (¢ — 1)(¢ + 2).



Appendix E

Rotations

In Sec. 5.4, we require a 4D representation of S = twam”’aw”’, given only the expres-
sion (5.22) for #'P, an expression written in a coordinate system in which the particle
is instantaneously at the north pole. This is nontrivial because there is no explicit time
dependence in Eq. (5.22),! making it unclear how to evaluate the ¢ derivatives in S.
Here we consider two ways of tackling this problem: via a time-dependent rotation and
via a one-parameter family of rotations. We will refer to the first as the 4D method, the
second as the 2D method. To assist the discussion, we split the unrotated coordinates
into z# = (2¢,04), where 2% = (t,7) and 84 = (6, ¢), thereby splitting the manifold into
the Cartesian product M? x S2, where M? is the z plane and S? is the unit sphere.

In the first approach, we would use a 4D coordinate transformation z# — z# =
(2, a?) given by 2% = 2% and o = o' (04,t), where o’ = (o, 8), such that at each
fixed ¢, the transformation would be a 2D rotation that placed the particle at the north
pole. In this case, all tensors would transform in the usual 4D way, including tensors
tangent M?; the transformation mixes M? with S2. For example, for a dual vector wy

we would have w; — wy = wy + 03w, w, — Wy = wy, and wy — war = Q4% w4, where

. 064
A= E.1
o o’ (E.1)
004
R E.2
AT o (E-2)

In the coordinates z*, the particle would be permanently at the north pole, with four-
velocity u” = u® and v = 0. [Since the coordinates are singular at the particle’s
position at the north pole, u4’ is not strictly well defined. But if we introduce local
Cartesian coordinates z¥ = (roacos B, roasin B), then we can establish ut = 0, allowing
us to freely set u?d’ = 0.] In this method, all components would be expressed in the

primed coordinate system, meaning the only time derivatives appearing in S would

I This fact is specific to circular orbits. For noncircular orbits, even in these rotated coordinates, ¢*7
would depend on time through its dependence on the orbital radius r,(t).
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be dp¢'P. For circular orbits, these derivatives would trivially vanish because ¢'%
contains no explicit dependence on t'; the ¢ dependence would be entirely encoded in

the transformation law’s dependence on 64,

Although the 4D method is practicable, we henceforth adopt the second, 2D
method, for reasons described below. In this approach, instead of a 4D coordinate
transformation, we consider a different 2D rotation at each instant of . We may write
this as af/ = aA/(HA, t). This is superficially the same as the 4D method, but the time
at which the rotation is performed is now a parameter of the rotation rather than a
coordinate, and for each value of the parameter, we have a different coordinate system;
for example, if the rotation is performed at time tp, it induces a coordinate system
(t,r, a,’%/). Because the transformation is restricted to 5’2, tensors tangent to M? trans-
form as scalars and those tangent to S? transform as tensors on S?: for the same dual
vector w,, mentioned above, we now have w, — w, and wq — wy = QAA/wA. Unlike
in the 4D method, where the particle was permanently at the north pole, here it is
only there at the particular instant at which the rotation is performed, with an instan-
taneous four-velocity (u®,u?’) = (u® u®,0) at that time. [As above, this value of u*’
comes from consideration of the locally Cartesian components, which can be established
to be u'’ = (rou®,0).] Time derivatives in this method are evaluated as derivatives with

respect to the parameter t: 9;¢'7 = a4 94 ¢'7, where

Al
Y oo
OéA I

Here Q4 := % = (Q4%)! = QYF'Q4508, and the second equality in Eq. (E.3)

follows from the implicit function theorem.

In our toy model, the above two methods both lead to the result
S = (8,07)2 + (r204F 4 6 P Yo  0pi o (E.4)

However, in gravity the two methods would lead to quite different calculations when
performing decompositions into tensor harmonics. Furthermore, only the 2D method
is immediately applicable to the decomposition strategy of Ref. [74].2 Hence, the 2D

method is preferred here.

All of the above is fairly general. When we specialize to our particular case of

circular orbits with frequency 2, the transformation is given by

0 = arccos(sin asin f3), (E.5)

>To see this, consider 62°G.,[h*",h*"]. In the strategy used in Ref. [74], as in our 2D method
described here, a quantity such as 602Gy is treated as a scalar, that scalar is then written in terms
of the coordinates ozAl7 and it is decomposed into scalar harmonics by integrating against Ylm(aA').
Contrary to this, in the 4D method, the scalar-harmonic decomposition of §2Gy; would be constructed
from the scalar, vector, and tensor-harmonic decompositions of Gy, 82Gy 47, and §2G 4/ g/, using the
transformation 6°Gre = 6°Gyryr + 264 62Gar + &V 6% 6°Garpr.
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¢ = arccos{cos a/ sin[arccos(sin asin 3)]} + Q, (E.6)
which implies (u®, u") = u*(1,0,€,0) and

04 = (0,Q), (E.7)
o = Q(— cos 3, cot asin 3). (E.8)

The final expression for S, used in our computations in Sec. 5.4, is given by Eq. (E.4)
with Eq. (E.8).






Appendix F

Retarded integral of the
leading-order monopole source in

the far-zone

In this appendix we outline the steps of how to evaluate the retarded integral of
Eq. (6.81), for the case £ = 0, which provides the solution for the monopole piece of
the second-order field in the far-zone. The analysis here follows the derivation given in
Ref. [75], which stems from the original work of Blanchet and Damour given in Ref. [103].

For convenience we restate the integral Eq. (6.81) to be evaluated:

FPO ! (rB—’“Sé ’“)ﬁL> = FP/ dz S0t - 2)

ret K(B, k)
. o )\BRH2 (4 Bkt l42
o, [E= e ), (F.1)
where (B k+2)
— oB—k+3 —rt2)
K(B,k) =2 B—h—l(+1) (F.2)

The first step is to introduce a cutoff in the integral at T = T /"1 where T > 0 and
n > 0 are e-independent constants. The motivation for the cutoff is that the contribution
from the range z € [T ,00| is negeligibly small compared to the contribution from the
range z € [r, T], as will be shown below. Before proceeding to show that this is true, we
remind the reader that we are only interested in the slowest falling term in the source,
r*252_2)ﬁL. In light of this we will specialise to the case of k = 2 in the integral of
Eq. (F.1). Since 1/r? is integrable at = 0, for this term in the source the FP operation
is equivalent to taking the limit B — 0.
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Using the expansion P = 1 + Blnz + O(B?) the integrand reduces to

B

(z—=r)¥n(z —r) — (2 +7)In(z + r)]

1 . [(Z_T)B+e;(z+r)3+z]

(F.3)

= KgéL [

where K; = (—1)¢/2(¢!). Using the result [101] that dzrF = 0 for even integers 0 < k <
2¢, Eq. (F.3) simplifies to

FP

~ [(z =r)BH — (2 4 r)BHE rt
K(]13 2) L[( ) e ]:Kfzm+0(1/ze+2)' (F-4)

r

Given that the leading-order behaviour of the first-order fields is 1/r, then from
the coupling formula (6.32) we may deduce that S ~ Qg (R1)2 +0(1/r3) ~ (R1)2 /T3,
where the last step follows from the fact that Q, ~ \/%. From Egs. (6.33)-(6.38),
R' ~ jo(mQyry)/r = jﬁ(m/T;/Q)/r. Noting that jy(z) ~ 2° for large z and that the
dominant term is the £ = 1 term, R' ~ rgl/z/r. Overall, S? ~ 7"174/7’2 + O(1/r3).

Therefore,

:g e (F.5)

Thus, substituting Eqgs. (F.4) and (F.5) into Eq. (F.1), we find that the integral for the

range z € [T, 00] reads

KK 00 7,,@ o) 7,,(
— d = KeotOn+t / dz——s:. F.6
s /TM+l Sy, ¢€ o P (F.6)

For n > 0, this is negligible.

We may now limit our analysis to the integration range z € [r,T] in Eq. (F.1).
Definining
ret

U, = 0] (r‘2S(L_2)ﬁL> : (F.7)

we may rewrite Eq. (F.1) as

z— T)B—M In(z—r)—(z2+ 7“)B+‘/Z In(z+7)
r

K (T .
U, = FPZ/ dz SV (t - 2)d;, {(
B J.
+ o(€%). (F.8)
where “o(€?)” means “goes to zero faster than eP”.

The following relations, given in Appendix A of Ref. [101], allow conversion to

ordinary scalar spherical-harmonics:

Fiik =3 By Yo, (F.9)
m
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STMAE =37 5Py, (F.10)
m

Using Eq. (F.10), for the case £ = 0 we find that Eq. (F.8) reduces to

T _ T
\IJ():YOO/ dZS(()O—Q)(t_Z)ln(Z 7’)_Y00/ dZS(()SQ)(t—Z)ln(Z+T)

A r 2 )i "
+ 0(60)
T 7,:‘
100 [ s 5GPt — 5 — 1) ins) — 2 / ds Sgo ) (t — s +7) In(s)
2?" 0 27" 2r
4 ote), (F.11)

where in the second step, we changed variables to s = z — r in the first integral, and
s = z + r in the second integral. Strictly speaking, the change of variables alters the
upper integration limits to T —r and T+ in the first and second integrals, respectively.
But since 7' is large, this change has a negligible effect, so we ignore it. By writing the

integrand in terms of retarded time u =t — r, we find that Eq. (F.11) becomes

Yoo [T, Toc _
Uy :00/ ds{S[()Om(u—s)—5502)(u—s+2r)}1n8
2r 0
Yoo [ o(-2) 0
+2— ds Sgy 7 (u—s+2r)Ins +o(e). (F.12)
rJo

We remind the reader, as mentioned in the discussion in Sec. 6.4.2, that through
S being a functional of F}, so too S(=2) = 5(=2) [F'l]. We then substitute the multiscale
expansion of F} (u,€), implying 580_2) (t) = 5'(()0_2)(675) + O(e), and similarly, 560_2) (u —
25+ 2r) = 5'882) (i — es + 2er) + O(e). We then expand g(()aQ)(fL — €5 + 2er) around

U — €S+ 2er = u — €S, as

5’852) (U —€es+ 2er) = 5652) (T —es) + 2er5(—2) (@t — es) + O(e?), (F.13)

yielding

T . 2r _
Uy = —Yoo / ds eSSy P (it — es) Ins + ? / ds S\ P (i — es)Ins + o(e?).  (F.14)
0 0

r

After a change of integration variable to § = es, the first integral becomes
T ti_o T/em . 2 ~
/ ds eSSy P (ii — es) In s = / 5SS P (i — §)In s — S2y (i) Ine+o(®).  (F.15)
0 0

With the expansion 5’(()62) (@ —es) = 550_2) (@) 4+ O(e), the second integral evaluates to

2r

5 | ds S$52 (6 — es) Ins = [In(2r) — 1] S5 (@) + O(e). (F.16)
™ Jo
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Collecting the results of Egs. (F.15) and (F.16) and inserting them into Eq. (F.12),

we arrive at the result
_ 2 ~(_ oL
! (7“_25’(()0 2)) - <ln - 1> 5859 () — / 5SS (@ — s +o().  (F.A7)
€ 0

Eq. (F.17) is the main result of this appendix. It is used in Eq. (6.31) to compute W,_.
Note that we have changed the upper integration limit from 7'/ to oo, which has the
effect of adding a o(e”) term. The final result for the retarded integral of the monopole

piece of the source is given by the right hand side of Eq. (F.17).



Appendix G

Asymptotics of the second-order

source

In this Appendix we derive various analytical predictions for the behaviour of the second-
order source, which provide an important check of our numerics in Sec. 8.4. Certain
behaviours of the monopole modes of the source can be determined from the Bianchi
identities, V¥Gaglg] = V*Raplg] = 0, where g = g + h is the full spacetime, g being
the metric of the background and h being the perturbation due to the small body.
Substituting the expansion of the Ricci tensor (2.12), we find analogous identities at

each order. Indeed, at points away from the worldline (where §R,, [h!] = 0),
Ve%Rep = 0. (G.1)

Writing the second-order Ricci tensor as in (7.6), the Bianchi-identities in (G.1) separate
into four separate equations analogous to Egs. (4.29). We note that the mode sum (7.6)
has an extra factor of r in front compared to (4.24), so to construct gauge conditions
for 62 R;4,, analogous to Eqs. (4.29), we replace hyy, with 702 R;,. In this way, we find

that for £ = m = 0, the non-trivial equations are

’I”ar(52R200(7“) + 252R200 =0, (G.Qa)
—T’farfsleoo + TfQ&»(SQRg()O —f (2(52R100 — 2f(52R300 — 2f52R600) =0. (G.Qb)

The unique solution to Eq. (G.2a) is

25 5200
5 R200 — ?, (G3)

where s90g is a constant. We show below that for 62R;gy we have the asymptotic be-
haviour
52R100 ~ 1/1"2 for r > 2M. (G4)

217
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From the Bianchi identity Eq. (G.2b), by inserting the asymptotic behaviour of
Egs. (G.3) and (G.4), we find that

_ 1
82 Reoo falls off least as fast as et (G.5)

We can also express the large-r behaviour of 62 R;q in terms of the flux of energy to
infinity. We are interested in the behaviour of the source at large r, which is comprised
of terms of the schematic form h'9?h! and (0h')2. With this in mind we write the
first-order field in terms of its leading-order piece plus terms that fall off faster than 1/r,
in Cartesian coordinates, as

i
hly = C“(T“”) +O0(1/r?). (G.6)
Similarly we may write the second-order source on the right-hand side of (7.51) by
isolating the leading-order piece that falls off as 1/r2 plus terms that fall off faster than
that, in the form
u,n%)

262 R, [h1, 1) = S (1)

s +O(1/r), (G.7)

where s,,,,(u, n%) are the coefficients of the 1/r? piece of §2R,,, [ k', h']. As we mentioned
in Sec. 7.5, the “oscillation /r” term in h'? in the post-Minkowski expansion in (7.54)
will be identical to the “oscillation /r” term in h'. Because of this, the leading 1/r2
term in the two sources, 62R2V and 52RW, are identical, and we can identify the s,,
in (G.7) with that of Eq. (7.61). We may derive a useful expression for the source by

writing, in Cartesian coordinates,
v = 2 (u, ) + 20M= 0, . (G.8)

The first term, 2, is the nonstationary part of ¢,,, and the mass term is the stationary
part which appears in the result derived in (2.47). Because ¢ > 0 (tensor-harmonic)

stationary modes fall faster than 1/r, the only stationary part of c,, is the mass term.

To simplify the source, we make use of the the Lorenz gauge condition, which reads

1
2 k" = §z‘ku, (G.9)
where z = no‘ﬁzaﬁ, a dot indicates differentiation with respect to u, and k, = —0,u =

(—=1,n4) is the principal outgoing null vector. Note that we neglect derivatives that
act on the n® dependence in z,,, because d;n* ~ 1/r. Integrating this with the initial

condition z,,(—o0) = 0 gives us

1
2k’ = EZku' (G.10)
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Substituting Eq. (G.8) into the formula (2.18) for 262R,,,, in Cartesian coordinates, using
Eq. (G.10), and retaining only terms that fall off as 1/72, we obtain

d
Suy = —II kuky + @<2wj2yy) + 4(5M0:?f/“, + 4(5M0nafz'a( ]{3,/), (G.ll)

I

where n* = %(17 —n®) is the principal ingoing null vector, and the quantity II is defined

as 1
Y iy — i (G.12)

IT is related to the gravitational wave luminosity of h}w according to [106]

II =

N |

d2 Eerav

I = 16 .
" dudQy |,

(G.13)

The subscript 2! in (G.13) refers to the fact that E8™" is the gravitational energy of the
first-order field.

Here we are only interested in the stationary part of Eq. (G.11), since it is the
only part we wish to compare to in Sec. 8.4. It is also the only part associated with the
infrared divergence described in Chapters 6 and 7. The stationary part resides entirely
in the first term. Because it is proportional to k,k,, that term is restricted to the t-r
sector (i.e., i =1,2,3). Its i = 1 and 2 modes have equal magnitude and opposite sign,
and its trace mode (i = 3) vanishes. Using the notation s;s,(r) to denote the frequency-
domain, tensor-harmonic modes of s,,,, and Ily,, to denote the scalar harmonic modes

of II, we may write the only nonvanishing, stationary modes of s,, as
820mw=0 = —S1tmw=0 = V20t oo (G.14)
For quasicircular orbits, the stationary modes are simply the m = 0 modes. Hence,
S200 = —s100 = V2Igp. (G.15)

For the monopole mode,
s200 = —s100 = V/2Ilgp, (G.16)

where, from Eq (G.13), integrating over the unit two-sphere against the £ = 0,m = 0

spherical harmonic, yields
oo = 8v7E, (G.17)

where E, = dE2™ /du is the flux through infinity.
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