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CHAPTER 1

INTRODUCTION

The launch of the Large Hadron Collider (LHC) at the ’Conseil Européen pour la Recherche
Nucléaire’ (CERN) in September 2008 marked the beginning of a new era in particle physics.
In the first investigation periods until the beginning of 2013 the LHC accelerated protons to a
center-of-mass energy of 7 TeV and 8 TeV and current upgrades of both the accelerator and the
detectors make proton collisions with a center-of-mass energy of up to 14 TeV possible, thereby
enabling physicists to probe the fundamental laws of nature at yet unreachable energies.
Moreover, the number of recorded collisions will considerably increase during the upcoming
operation periods of the LHC. In this way the LHC and the detectors meet two requirements
for detecting rare processes: the high center-of-mass energy can raise the probability for these
processes to occur and a high number of recorded events helps to make statistically significant
observations. Furthermore, the high energy released in the proton collisions allows for the
production of new, heavy particles as long as they are in the kinematic reach. All this enabled
the two particle detectors ATLAS and CMS to discover a new particle with a mass of about
125 GeV at the LHC in July 2012 [1, 2], which constitutes a landmark of particle physics.
The generally accepted theoretical concept of describing interactions of elementary particles
in physics is called Standard Model. Within this theory the masses of the particles are
generated through the Higgs mechanism. This procedure predicts a new, scalar particle, the
Higgs boson, which had not been observed before the launch of the LHC. After its discovery
then, refined measurements of the properties of the particle showed that it is compatible
with the Higgs boson predicted by the Higgs mechanism in the Standard Model [3–5]. In
consequence Franc̨ois Englert and Peter Higgs were awarded the Nobel Prize in Physics 2013
for their theoretical work on the Higgs mechanism [6].
Now all free parameters of the model are determined by experiments making the Standard
Model a conclusive framework for the description of fundamental interactions of elementary
particles. But nevertheless, there are open questions in particle physics which cannot be
addressed within the Standard Model. To name but a few: a fundamental force experienced in
everyday life, gravity, is not described in the Standard Model and the astronomical observation
of Dark Matter cannot be explained by it.
For this reason physicists investigate theories beyond the Standard Model. At present, various
approaches undergo intense studies, each of them being able to answer one or few open
questions. A promising idea in this context is Supersymmetry. It takes up the concept of
describing elementary particles and their interactions of the Standard Model, but adds a
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2 1. Introduction

symmetry relating particles with half integer spin (fermions) to particles with integer spin
(bosons). As a result the particle spectrum is enriched by new, supersymmetric partners of
Standard Model particles which, in the case of soft Supersymmetry breaking, can be heavier
than their Standard Model equivalents. In order to interpret experimental results precise
predictions for both the production and decay processes of these particles are required.

This thesis focuses on the calculation of the decay width at next-to-leading order of an up-type
squark into the lightest neutralino and a charm- or an up-quark within the framework of the
Minimal Supersymmetric Extension of the Standard Model with flavor violation. The up-type
squark and the lightest neutralino are two of the superpartners predicted by Supersymmetry
and in our case the lightest neutralino is a candidate for Dark Matter. In Chapter 2, first,
essentials of the Standard Model including the particle spectrum, interactions and the Higgs
mechanism will be explained, followed by a short introduction to Supersymmetry, the model
and the decay process studied in this work. The calculation of the decay width comprising
the leading order process, virtual one-loop corrections and real corrections is part of Chapter
3. In particular, details on dimensional regularization, the renormalization of the Lagrangian
and the cancellation of divergences occurring in loop-corrected amplitudes are given. Chapter
4 contains information on the implementation of the calculation in a computer program and a
description of the procedure of deriving valid predictions of the chosen model. Experimental
constraints taken into account are presented there as well. Finally, results of the calculation
and their implications on the experimental search for the up-type squark considered in this
thesis are discussed in Chapter 5, followed by a conclusion and an outlook in Chapter 6.
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CHAPTER 2

BASICS OF THE STANDARD MODEL AND SUPERSYMMETRY

2.1. The Standard Model
The Standard Model (SM) has been highly developed over the past few decades and it suc-
cessfully describes a variety of phenomena observed in particle physics. Although it is well
understood in many respects and has been tested at highest precision it is a popular field of
research as, for example, driving the theoretical predictions of the SM to higher precision can
reveal deviations to results obtained by experiments. Moreover, the processes within the SM
act as background to New Physics and a detailed study of the Higgs mechanism remains to
be done. The Minimal Supersymmetric Extension of the SM (MSSM) described in Section
2.2.2 is explicitly based on the SM. For that reason, some major aspects shall be stated in
the next sections, following [7–10].

2.1.1. Particles and Interactions in the Standard Model

The SM is a Quantum Field Theory (QFT) with all elementary matter particles being rep-
resented by fermion fields with spin one-half. The free field theory can be formulated in
terms of a Lagrangian, which yields the correct equations of motion for the fields by using
the Euler-Lagrange-Equations. Interactions are introduced to the free theory by requiring
local gauge invariance of the Lagrangian with respect to corresponding symmetry groups. In
that way the SM covers three fundamental interactions: the strong interaction by invariance
under the symmetry group SU(3)C , the weak interaction by invariance under SU(2)L and the
electromagnetic interaction by the U(1)Y gauge invariance. The complete symmetry group
of the SM is then given by

SU(3)C × SU(2)L × U(1)Y , (2.1)

where the index C stands for color, L denotes left, since only left-handed particles participate
in the weak interaction, and Y represents hypercharge. From the Lagrangian Feynman rules
can be derived for computing transition amplitudes. However, not all matter fields take part in
all interactions and they differ in the quantum numbers, i.e. Noether charges corresponding to
the symmetry groups. The quantum number for the SU(3)C is called color, for the SU(2)L it
is the weak isospin, and for the U(1)Y it is called hypercharge. This allows for a classification
of the fermion fields: there are two basic classes, one comprising the leptons, the other
comprising the quarks. Leptons only undergo the electromagnetic and the weak interaction
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4 2. Basics of the Standard Model and Supersymmetry

whereas quarks undergo all three interactions. Schematically, the particles of the SM can be
arranged as νe

e−L

 ,

νµ
µ−L

 ,

ντ
τ−L

 , e−R , µ−R , τ−R , (2.2)

uL
dL

 ,

cL
sL

 ,

tL
bL

 , uR , dR , cR , sR , tR , bR . (2.3)

The leptons are shown in Eq. (2.2) with e denoting the electron, µ for the muon and τ for the
tau. The left-handed particles, with index L, are part of SU(2)L doublets together with part-
ners with opposite third component of the isospin, called neutrinos, whereas the right-handed
particles, denoted by the index R, carry isospin zero and are SU(2)L singlets. According to
the Goldhaber experiment, right handed neutrinos do not exist [11]. The only difference
between the electron, the muon and the tau is their mass. These three representatives of one
and the same gauge multiplet are called generations. Taking the absolute value of the electric
charge of the electron as unit, the electron, muon and tau carry an electric charge of −1, the
neutrinos are uncharged and assumed to be massless.
A similar picture holds for the quarks as shown in Eq. (2.3). Here, u represents the up-quark,
d the down-quark, s the strange-, c the charm-, b the bottom-, and t the top-quark. These six
types of quarks are called flavors. Again, the left-handed particles form isospin doublets and
the right-handed particles are SU(2) singlets and the only difference between the doublets is
the mass of the particles. The up-, charm- and top-quarks are called up-type quarks and carry
an electric charge of +2/3 and the down-, strange- and bottom-quarks are called down-type
quarks with the charge −1/3. All quarks are triplets in color space. For all particles shown
in Eqs. (2.2) and (2.3) there are anti-particles with the same mass but opposite charge.
A major achievement in order to establish the SM was the successful unification of the
electromagnetic and the weak interaction by Glashow, Salam and Weinberg [7–9]. In the
SU(2)L × U(1)Y -invariant Lagrangian the gauge field W3 corresponding to the third gener-
ator of the SU(2)L and the gauge field B for the U(1)Y can be mixed to give two physical
fields, one is then identified with the photon, the other one is called Z boson. The rotation
angle to accomplish that is called Weinberg angle θW . This is the reason, why the Noether
charge for the U(1)Y is not directly the electric charge, but is called hypercharge Y . The
connection between the third component of the isospin I3, the hypercharge Y and the electric
charge Q is given by the Gell-Mann-Nishijima formula [12–14]

Q = I3 + Y

2 . (2.4)

The two gauge fields corresponding to the first and second generator of the SU(2)L can be
combined to form two fields W± with charges Q = ±1. Thus, the interaction particles of the
SM are

γ , Z , W± , g , (2.5)
with g denoting gluons which are the gauge bosons for the SU(3)C .
In anticipation of Section 2.2.3, where the flavor structure of the MSSM will be presented, a
few facts for the SM shall be stated here. All up-type quarks carry the same gauge quantum
numbers. Thus, the interaction eigenstates do not necessarily have to coincide with the
mass eigenstates constituting the physical particles. This is indeed the case for the weak
interaction and the rotation in generation space from mass to interaction eigenstates is given
by the unitary matrix UuL,R . The same holds for the down-type quarks with a unitary matrix
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2.1. The Standard Model 5

UdL,R . In an interaction of an up-type quark and a down-type quark with a W boson there
will be a product of two such rotation matrices which is defined as the Cabbibo-Kobayashi-
Maskawa (CKM) matrix [15, 16]

VCKM = UuL†UdL . (2.6)

This means that the coupling of up-type and down-type quarks of different generations is
possible due to the distinct rotations of up- and down-type quarks. By contrast, it is not
possible for the interactions with the photon and the Z boson: the interaction of quarks with
the photon or Z boson is diagonal in generation space. This means, that at tree-level flavor
changing neutral currents (FCNCs) are impossible in the SM. Also note, that in the SM mass
eigenstates coincide with flavor eigenstates.

2.1.2. The Higgs Mechanism in the Standard Model

The discovery of massive W and Z bosons confronted the concept of local gauge invariance
described in the previous section with a problem. The gauge fields introduced to make the
Lagrangian invariant under a local gauge transformation have to be massless since a mass
term for the gauge fields in the Lagrangian is not gauge invariant. A method to overcome
this problem is the Higgs mechanism [17–21]. The clue is that in the Lagrangian the whole
symmetry is maintained but it is broken by the ground state. This concept is called sponta-
neous symmetry breaking (SSB) [22].
In detail, a complex spin zero particle field Φ is introduced as an SU(2)L doublet with the
Lagrangian

LHiggs = (∂µΦ)(∂µΦ)† − V (Φ) (2.7)

and the potential
V (Φ) = µ2ΦΦ† + λ(ΦΦ†)2 . (2.8)

In order to have a potential V bounded from below, λ must be greater than zero. Replacing
the pure derivative ∂µ by a covariant one the Lagrangian of Eq. (2.7) becomes gauge invariant.
To determine the ground state of the scalar field Φ which is the state with the lowest energy,
the potential V has to be minimized. The two results are

Φ†Φ =
{

0 ; µ2 > 0
−µ2

2λ ; µ2 < 0 .
(2.9)

The first solution for the ground state does not break any symmetry and is rejected. But in
the case of µ2 < 0 the scalar field has a non-vanishing vacuum expectation value (vev) v

|Φ| =

√
−µ2

2λ := v√
2
. (2.10)

The SU(2)L doublet has hypercharge Y = +1. The upper component of the doublet will
contain a Higgs field with charge Q = +1 while the lower component is uncharged. Hence,
to have an uncharged vacuum the vev is assigned to the lower component. After SSB the
expansion of the Higgs field around the ground state yields

Φ = 1√
2

 0
v +H(x)

 . (2.11)
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6 2. Basics of the Standard Model and Supersymmetry

It is this ground state which breaks the SU(2)L symmetry and according to the Goldstone
theorem [22] this leads to N2 − 1 = 3 spare degrees of freedom. However, inserting the
Higgs field of Eq. (2.11) into the Lagrangian of Eq. (2.7), with covariant instead of pure
derivatives, illustrates that these degrees of freedom are absorbed by the gauge bosons to
acquire a mass. The remaining field H(x) is the Higgs field. Its mass and self-couplings
result from the potential V in Eq. (2.8). Also the fermion masses for each generation are
generated by interactions of the Higgs field with the fermions in the Lagrangian [19]

Lf = −yqd
Q̄LΦqd,R − yquQ̄Liσ2Φ∗qu,R − ylL̄LΦlR , (2.12)

where QL and LL are the left-handed fermion doublets for quarks and leptons, respectively,
and qu,R, qd,R, lR the corresponding right-handed fermion singlets. The coupling strengths
of the fermions to the Higgs field are given by the Yukawa couplings yqu,qd,l. The resulting
masses are

m2
W = g2v2

4 , (2.13)

m2
Z = (g2 + g′2)v2

4 , (2.14)

mf = yfv√
2
, (2.15)

with the SU(2)L and U(1)Y gauge couplings g and g′, respectively. Due to the Higgs mech-
anism couplings of the Higgs boson to the SM particles are proportional to the respective
masses of the particles: combining Eqs. (2.11), (2.12) and (2.15) shows that the coupling of
the Higgs field to the fermions gf is given by

gf =
√

2mf

v
. (2.16)

A similar relation holds for the gauge boson masses, cf. Eqs. (2.13) and (2.14). Therefore
methods to probe the Higgs mechanism in the SM are

1. Find a scalar particle. Test its spin and parity quantum numbers and compare them to
the SM prediction for the Higgs boson JP = 0+.

2. Verify that couplings of fermions and gauge bosons to this particle are proportional to
their mass.

3. Measure the self-couplings of the Higgs boson. This allows to reconstruct the Higgs
potential, which with its typical minimax form is responsible for the non-vanishing vev.

While a new particle with couplings compatible with the SM predictions has been found
by the ATLAS and CMS experiments at the LHC [1, 2, 23], its quantum numbers are not
determined uniquely, yet, and the self couplings remain to be investigated.

2.2. Supersymmetry
Although many predictions of the SM are compatible with the results of experiments there
are reasons to study theories beyond the SM, such as Supersymmetry (SUSY). In Section
2.2.1 a motivation and brief introduction to the idea of Supersymmetry will be given, followed
by a general description of the MSSM. In Section 2.2.3 the general flavor structure of the
MSSM and assumptions used in this thesis will be explained and at the end, in Section 2.2.4,
superpartners of the top-quark predicted by SUSY will be introduced as well as the process
considered in this thesis.
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2.2. Supersymmetry 7

2.2.1. Motivation and Principles

There are both experimental and theoretical reasons to investigate theories beyond the SM
and in particular SUSY. An obvious reason is, that the SM only covers three fundamental
forces, but does not include gravity. At energies around the TeV scale which are in the reach
of current particle accelerators, gravity is not as important as the other interactions due to
the small value of the gravity constant GN . But in order to describe physics at energies up
to the Planck scale MPl ∝ 1019 GeV a consistent description of all four forces is needed.
Supersymmetric theories take a step in this direction [24–26].
In the search of grand unified theories (GUTs) it is also desirable to have the gauge coupling
constants unify at a high energy scale. The dependence of the gauge coupling constants on
the energy is described by renormalization group equations (RGEs) [27]. In the SM they
show that the three couplings do not meet at a single point. However, in SUSY the RGEs are
modified and the unification becomes possible [28–30]. In Section 2.1.2 the Higgs mechanism
in the SM was explained. However, in the SM the Higgs potential V of Eq. (2.8) is added ad
hoc and not generated by underlying dynamics. The condition µ2 < 0 in Eq. (2.9) is crucial
to enable SSB. In supersymmetric models this can be achieved through RGE running [31, 32].
Moreover, the Higgs propagator acquires loop corrections containing quadratic divergences.
The larger the energy scale where New Physics enters, the more tuned the theory has to be
to keep the Higgs mass at its measured value of mh,phys ≈ 125 GeV. By introducing a new
symmetry the fine-tuning can be avoided, for example in Supersymmetry the superpartners
of the SM particles cancel the quadratic divergences.
Measuring the cosmic microwave background with a lensing technique, the Planck space
telescope measured invisible mass centers [33]. An idea is, that these mass centers could
consist of weakly interacting massive particles (WIMPs). They must be weakly interacting
since no experiment could report direct evidence for such a particle, yet. But as they are
observed by gravitational effects, the particles must have a mass. Similar measurements have
been performed by the WMAP experiment [34]. In the SM there are no possible particles for
this phenomenon called Dark Matter (DM), while in SUSY there can be promising candidates.

Precision measurements of SM observables prove that local gauge invariance is a striking
concept in explaining the interactions of elementary particles. Provided that SUSY is a
space-time symmetry and not a gauge symmetry, it is an elegant way to extend the SM and
still maintain all gauge interactions unchanged.
In detail, the Lorentz algebra is extended to the Poincaré Superalgebra by introducing new
generators for the SUSY transformation Qa (a = 1...4). These generators Qa transform as
a Dirac spinor under Lorentz transformation, leading to non-trivial commutation relations
with the Lorentz generators. The complete Poincaré Superalgebra is given by [35]

[Pµ, P ν ] = 0 , (2.17a)
[Pµ,Mρσ] = i(gµρP σ − gµσP ρ) , (2.17b)

[Mµν ,Mρσ] = −i(gµνMρσ − gµσMνρ − gνρMµσ + gνσMµρ) , (2.17c)
[Pµ, Qa] = 0 , (2.17d)

[Mµν , Qa] = −Σµν
abQb , (2.17e)

{Qa, Q̄b} = 2γµabP
µ , (2.17f)

7



8 2. Basics of the Standard Model and Supersymmetry

where Pµ and Mµν are the generators of the Lorentz group and

Σµν =

σµν 0
0 σ̄µν

 , (2.18)

σ̄µν = i

4(σµσ̄ν − σν σ̄µ) , (2.19)

σµ = (1, σk) , (2.20)
σ̄µ = (1,−σk) , (2.21)

with the Pauli matrices σk (k = 1, 2, 3). The Coleman-Mandula-Theorem [36] in combination
with the Haag-Łopuszański-Sohnius Theorem [37] prove that this is the largest continuous
space-time symmetry for S-matrix elements consistent with QFT. Dirac spinors are bispinors
in the (1

2 , 0) ⊕ (0, 1
2) representation of the Lorentz group and can be decomposed into two

left- and right-handed Weyl spinors in the (1
2 , 0) and (0, 1

2) representation, respectively. This
is also possible for the SUSY generators Qa. From the non-trivial commutation relation of
the SUSY generator with the Lorentz generators in Eq. (2.17e) it can be shown that acting
with the SUSY generators on a state changes the spin of this state by one half. At the same
time, due to Eq. (2.17d), the mass of the corresponding particle remains unchanged. Next,
from Eq. (2.17f) it can be derived that subsequent application of the same SUSY generator
gives zero [38]. In that way, the SUSY generators generate multiplets of states having the
same mass and the same gauge quantum numbers, but a different spin. These multiplets
are called supermultiplets and in each of them the number of fermionic and bosonic degrees
of freedom coincides. Among the members of the supermultiplets it is possible to identify
the SM matter fields and others, which are the superpartners of the SM fields. The symbols
for the superpartners are the same as for the SM particles, but with a tilde on top. The
partners for the SM fermions and are denoted by the SM name with a preceding ’s’. So the
superpartner of a quark q is called a squark q̃, the partner of a tau τ is called stau τ̃ , etc.
The superpartners of the gauge bosons are called gauginos and the ones for the Higgs fields
are named higgsinos.
An on-shell Dirac fermion has four degrees of freedom, therefore two complex scalar fields
are needed as superpartners. These two complex scalar fields are assigned as superpartners
for the left- and right-handed components of the Dirac fermion. Thus, the superpartners of
the fermion f are then called f̃L, f̃R. Note that the lower indices L,R do not mark a chiral
property of the sfermions themselves as they are scalar fields, but only indicate which SM
fermion component they correspond to.
Contrary to the SM, two Higgs doublets are needed to give mass to up- and down-type
fermions as iσ2Φ∗ transforms as a right chiral field which is not allowed in a SUSY-invariant
Lagrangian [39, 40]. Thus, two Higgs doublets are introduced, one with hypercharge Y = −1

H1 =

h0∗
1

h−1

 , (2.22)

which gives mass to down-type fermions by acquiring a vev v1 for h0
1 and another one with

hypercharge Y = +1

H2 =

h+
2

h0
2

 (2.23)

to give mass to up-type fermions with a vev v2 for h0
2. The ratio of the two vevs is defined as

tan β = v2
v1

. (2.24)

8



2.2. Supersymmetry 9

By imposing SUSY-invariance superpartners for the Higgs fields are introduced. Through
EWSB three degrees of freedom are taken over by the gauge bosons to acquire a mass leaving
five degrees of freedom open which form five Higgs bosons: two CP -even neutral Higgs bosons
h0, H0 which are mixtures of the real components of the two neutral Higgs fields with the
mixing parametrized by the angle α, one CP -odd neutral Higgs boson A0 with mass mA

resulting from the imaginary parts of the neutral Higgs fields and two charged Higgs bosons
H± coming from the charged components of the Higgs fields.
In the decoupling limit [41] which is reached for mA � mZ the lightest CP -even neutral
Higgs boson h0 has couplings similar to Higgs boson of the SM. Therefore the Higgs boson
already discovered could also be a SUSY Higgs boson.

2.2.2. The Minimal Supersymmetric Extension of the Standard Model

In the MSSM all new SUSY particles have a SM equivalent and the Higgs sector contains
only the two required Higgs doublets. So the particles of the MSSM are

1. All SM particles.

2. Superpartners for left- and right-chiral components f̃L, f̃R of the SM fermions f .

3. Superpartners for the gauge fields B̃, W̃i(i = 1, 2, 3), g̃j(j = 1...8).

4. Two Higgs doublets H1 and H2 with superpartners H̃1, H̃2.

Just as in the SM states with the same charge, color and spin can mix. In particular, the
superpartners of the gauge fields B̃ and W̃3 mix with the two neutral Higgsinos h̃0

1 and h̃0
2

forming four neutral, weakly interacting fermions called neutralinos χ̃0
l , l = 1...4, which are

ordered in mass with l = 1 being the lightest one. Additionally, the superpartners of the W
bosons W̃± mix with the superpartners of the charged Higgs bosons to build two charginos
χ̃±1,2. The EWSB through the Higgs mechanism shall be maintained in SUSY as it allows to
have both local gauge invariance and massive gauge bosons [42–44]. Then also the fermion
masses are given by the Yukawa coupling terms as in the SM. In SUSY, this additionally
holds for the superpartners of the SM fields and it is possible to express the three Yukawa
terms by superfields Ê, L̂ for (s)leptons and Q̂, Û and D̂ for (s)quarks and Ĥ1 and Ĥ2 for
the Higgs fields, combining both SM fields and their superpartners. The gauge group of the
SM as stated in Eq. (2.1) is taken over by the MSSM and the behavior of the fields under
gauge transformations and the hypercharges are

L̂ : (1, 1,−1) , ¯̂
E : (1, 1, 2) ,

Q̂ :
(

3, 2, 1
3

)
,

¯̂
U :

(
3̄, 1,−4

3

)
,

¯̂
D :

(
3̄, 1, 2

3

)
,

Ĥ1 : (1, 2,−1) , Ĥ2 : (1, 2, 1) ,

(2.25)

where the first two numbers stand for the transformation behavior under SU(3)C and the
SU(2)L transformations: 1 denotes a singlet, 2 a doublet and 3 a triplet. The third number
is the hypercharge Y . The Yukawa terms together with another term connecting the two
Higgs doublets specify the superpotential of the MSSM

WMSSM = yuij
¯̂
UiQ̂j · Ĥ2 + ydij

¯̂
DiQ̂j · Ĥ1 + yeij

¯̂
EiL̂j · Ĥ1 − µĤ1 · Ĥ2 , (2.26)

where the ’·’ stands for the SU(2)L-invariant coupling of the left-handed SU(2)L doublets
with the Higgs doublets, yfij are generic Yukawa coupling matrices and i, j = 1, 2, 3 are

9



10 2. Basics of the Standard Model and Supersymmetry

generation indices. The Higgsino parameter µ is a new, free parameter of the theory.
At this point it is worth mentioning, that within conserved SUSY the MSSM contains only
one new parameter µ with respect to the SM, as all new particles have the same mass and
gauge quantum numbers as their SM equivalents. There are other terms respecting SUSY
invariance, gauge invariance and renormalizability which could be added to the Lagrangian.
However, these terms would violate lepton or baryon number conservation. As there is no
experimental evidence for such processes, yet, either the corresponding couplings must be
very small or there is a mechanism excluding these terms. Such a mechanism is given by
requiring the conservation of R-parity [43] defined by

R := (−1)3B+L+2s , (2.27)

where B,L are baryon and lepton numbers and s is the spin of the particle. We have

R = +1 for SM particles , (2.28)
R = −1 for SUSY particles . (2.29)

The conservation of R-parity has important phenomenological consequences:

1. The lightest supersymmetric particle (LSP) is stable.

2. Starting with SM particles, SUSY particles can only be produced in pairs.

3. The final states of decays of SUSY particles always contain an odd number of SUSY
particles.

The first point is the reason why the LSP can be a good candidate for DM, provided that it
is only weakly interacting and neutral. Thereby, SUSY models with conserved R-parity can
provide candidates for DM.
Up to now, the Lagrangian was taken to be SUSY invariant which led to superpartners with
the same mass as the corresponding SM particles. None of the SUSY particles have been
observed so far and current experiments derive lower bounds for their masses. This is one
reason, why SUSY must be broken. A theoretical argument that SUSY must be broken
comes from the Higgs sector. In Section 2.1.2 it was explained that the scalar potential V of
Eq. (2.8) with the second case of Eq. (2.9) is vital for SSB. It turns out, that within conserved
SUSY it is not possible to form a potential with non-vanishing expectation values for the two
neutral Higgs fields. Therefore SUSY breaking terms in the Lagrangian relevant for the Higgs
potential must be generated by a SUSY breaking mechanism [32].
Possible breaking mechanisms are for example gravity mediated SUSY breaking (mSUGRA)
or gauge mediated SUSY breaking (GMSB), more information on these can be found for
example in Ref. [38]. In this work, a rather general approach will be pursued: all terms
explicitly breaking SUSY, but maintaining renormalizability and gauge invariance will be
added to the Lagrangian, as long as they do not introduce new quadratic divergences. These
terms are called soft SUSY breaking terms and parametrize the lack of knowledge of the
SUSY breaking mechanism in a general way [40]. They are given by bilinear terms for the
superpartners of the gauge fields

Lbilinear, gauginos = −1
2

(
M1B̃B̃ +M2

3∑
i=1

W̃iW̃i +M3

8∑
i=1

g̃ig̃i

)
, (2.30)

10



2.2. Supersymmetry 11

with Mi, i = 1, 2, 3 as soft SUSY breaking masses for the gauginos and bilinear terms for the
sfermions

Lbilinear, sfermions =−m2
Q̃,ij

Q̃∗L,iQ̃L,j −m2
Ũ ,ij

Ũ∗R,iŨR,j −m2
D̃,ij

D̃∗R,iD̃R,j (2.31)

−m2
L̃,ij

L̃∗L,iL̃L,j −m2
Ẽ,ij

Ẽ∗R,iẼR,j , (2.32)

where m2
Q̃
,m2

Ũ
,m2

D̃
,m2

L̃
and m2

Ẽ
are soft SUSY breaking mass matrices in generation space

and the tilde indicates that only the scalar component of the fields is taken. Additionally,
there are bilinear terms for the Higgs fields

Lbilinear, Higgs = −m2
H1 |H1|2 −m2

H2 |H2|2 −m2
A sin β cosβ(H1 ·H2 + h.c.) , (2.33)

where the soft SUSY breaking masses for the Higgs fields are deonted by m2
H1

and m2
H2

.
Furthermore, trilinear terms coupling the sfermions to the Higgs fields are added

Ltrilinear = −(TE)ijH1 · L̃iẼ∗j − (TD)ijH1 · Q̃iD̃∗j − (TU )ijH2 · Q̃iŨ∗j + h.c. , (2.34)

where Tij = yijAij for each i, j = 1, 2, 3 separately with the Yukawa matrices yij and the
trilinear coupling matrices Aij . All soft SUSY breaking parameters are new, free parameters
entering the theory. It is then convenient to reduce the parameter space by only keeping
parameters of phenomenological importance. The basic assumptions of the model called
phenomenological MSSM (pMSSM) [45] which is used in this thesis are

• general MSSM with real parameters and R-parity conservation,

• Minimal Flavor Violation, soft SUSY breaking masses and trilinear couplings are diag-
onal in flavor space,

• soft SUSY-breaking masses for the first and the second generation of sfermions coincide,

• trilinear couplings for the first and the second generation can be neglected.

The concept of Minimal Flavor Violation will be explained in Section 2.2.3. As only flavor
diagonal entries are present in the mass matrices and trilinear couplings, the generation can
explicitly be indicated. These assumptions lead to a reduction of the parameter space to 19
free parameters given by

mL̃1
= mL̃2

, mL̃3
,

mẼ1
= mẼ2

, mẼ3

(2.35)

for the sleptons,

mQ̃1
= mQ̃2

, mQ̃3
,

mŨ1
= mŨ2

, mŨ3
,

mD̃1
= mD̃2

, mD̃3

(2.36)

for the squarks,
M1, M2, M3 (2.37)

for the gauginos,
At, Ab, Aτ (2.38)

as trilinear couplings for particles of the third generation and

µ, mA, tan β (2.39)

from the Higgs sector.

11



12 2. Basics of the Standard Model and Supersymmetry

2.2.3. Flavor Structure of the MSSM

Above, the mixing of the superpartners of the gauge bosons and Higgs fields was explained,
but also the sfermions can mix. Here, the focus is on the up-type squarks, similar results
hold for down-type squarks and sleptons as well.
As explained, having superpartners for left- and right-handed components of the quarks is
only a matter of choice. The squarks are spin zero particles and therefore the gauge properties
of q̃L and q̃R are identical and the mass eigenstates do not necessarily coincide with this basis.
Here, the notation of Ref. [38] is adopted. To describe a general mixing of up-type squarks
q̃ a six component vector containing left- and right-handed squarks of all generations can be
defined as

q̃ =



q̃1L

q̃2L

q̃3L

q̃1R

q̃2R

q̃3R


. (2.40)

The mass term in the Lagrangian then reads [38]

L = −q̃†M2
q̃ q̃ , (2.41)

with the mass matrixM2
q̃ consisting of four 3× 3 blocks

M2
q̃ =

M2
q̃LL M2

q̃LR

M2
q̃RL M2

q̃RR

 . (2.42)

The 3× 3 blocks are given by

M2
q̃LL = m2

Q̃
+M2

Z(Iq3 −Qq sin2 θW ) cos 2β 13×3 + mqm†q , (2.43)

M2
q̃LR = −mq(Aq + µ cotβ) , (2.44)

M2
q̃RL = −(Aq + µ cotβ)m†q , (2.45)

M2
q̃RR = m2

Ũ
+QqM

2
Z cos 2β sin2 θW 13×3 + m†qmq . (2.46)

Here, m2
Q̃,Ũ

are the soft SUSY breaking mass matrices, Iq3 and Qq are third component of
the isospin and charge of the quark q, mq is the quark mass matrix, Aq the trilinear coupling
matrix for the quark-type q and MZ , θW , µ and β as defined before. The matrix M2

q̃ is
diagonalized by a 6 × 6 unitary matrix W̃ , which rotates the squark states q̃ to their mass
eigenstates q̃m

q̃m = W̃ q̃ . (2.47)

This matrix accounts for both L,R-mixing which is induced byM2
q̃LR andM2

q̃RL and flavor
mixing generated by flavor off-diagonal elements.
Now suppose an interaction of a squark, with a quark and a neutralino. In this interaction
isospin is conserved so the quark must have the same isospin as the squark. Recall the end
of Section 2.1.1 where it was explained, that FCNCs are not possible at tree-level in the
SM. Rotations of quarks and squarks are in principle independent of each other. Thus, the
product of the quark and squark rotation matrices is in general not diagonal in generation

12



2.2. Supersymmetry 13

space and as a consequence, FCNCs are possible at tree-level. However, the magnitude of
FCNCs is strongly constrained by precision experiments in flavor physics.
To fulfill these constraints, two possibilities will be explained here. The first one is to just
set the off-diagonal elements in generation space to zero. Additionally, the mixing of left-
and right-handed components is only considered for the third generation of sfermions. This
is motivated by the L,R-mixing elementsM2

q̃LR andM2
q̃RL being proportional to the mass

of the corresponding SM fermion. Hence, the mixing in the first and the second generation is
negligible in comparison to the third generation. Another idea to constrain the flavor changing
elements in the rotation matrix W̃ is to demand, that the rotation in generation space for
the squarks shall be the same as for the quarks. The rotation matrix can be factorized by
W̃L,R = WL,RU

qL,R , where U qL,R is the quark rotation matrix and the remaining rotation
W only contains the L,R-mixing. Then the case of the SM is recovered and FCNCs are
forbidden at tree-level. However, due to differences in the RGEs of quarks and squarks this
property cannot be maintained at all energy scales. Thus, a scale has to be chosen where this
condition is fulfilled, at other scales the rotation matrix W will still contain generation off-
diagonal elements generated by RGE running. Nevertheless, these elements are sufficiently
small to be compatible with the experimental limits. Details and further assumptions of this
concept called Minimal Flavor Violation (MFV) can be found in References [46–50]. The
situation for quarks and squarks at the MFV scale can be summarized as

qintL
UuL−−−→ qflavL = qmass

L , (2.48)

q̃intL
UuL−−−→ q̃flavL

WL−−→ q̃mass
L , (2.49)

where qintL and q̃intL denote interaction eigenstates. In the basis q̃flavL , also called Super-CKM-
basis, the squarks are flavor-diagonal. A framework for the general flavor structure is given
by the SUSY Les Houches Accord 2 [51] which will be used for the implementation in Chapter
4.
In this work the general flavor structure mixing all up- and down-type squarks and sleptons
is used and the flavor off-diagonal elements in the rotation matrices induced by the CKM
matrix are generated by RGE running.

2.2.4. Light Up-Type Squarks

Let us first assume that the squark mass matrix only contains flavor diagonal elements. As
already stated, the off-diagonal elements in the squark mass matrix (Eqs. (2.44) and (2.45))
mixing left- and right-handed states are proportional to the mass of the corresponding SM
particle. Since the top quark is the heaviest particle of the SM, the mass splitting of the two
corresponding stop mass eigenstates can be large, leading to a light stop. Together with a
slightly lighter neutralino, it is possible to reproduce the correct relic density, cf. Sec. 4.3.2.
Light stops are consistent with the measurements of b→ sγ (Sec. 4.3.3) and the measurements
of the Higgs mass and lower limits for the masses of SUSY particles (Sec. 4.3.1 and Sec. 4.3.4).
Moreover, the stops can be light enough to be produced at the LHC. Therefore it is necessary
to calculate possible decays of the stops to analyze relevant search channels.
In this context, an important quantity is the mass difference between the stop and the lightest
neutralino which are taken to be NLSP and LSP, respectively, since it determines which decay
channels are kinematically forbidden or allowed. In this work the parameter region where the
mass difference of the light superpartner of the top quark t̃1 and the lightest neutralino χ̃0

1

∆m = mt̃1 −mχ̃0
1

(2.50)

13



14 2. Basics of the Standard Model and Supersymmetry

is smaller than the W mass is considered. In this region the flavor diagonal decay into top
quark and neutralino is forbidden as well as the three-body decay into a bottom quark, a W
boson and a neutralino. Then, a possible decay mode is the FCNC two-body decay

t̃1 → cχ̃0
1 , (2.51)

where the charm-quark could also be replaced by an up-quark. Without FCNCs at tree-
level, this decay is loop induced by electroweak interactions [52, 53]. In this work, however,
according to the previous section a general flavor structure is used enabling this process at
tree-level. Due to the strong coupling constant being the largest one, loop corrections with
respect to αs can be important.
In the general case the squark mass eigenstates are no flavor eigenstates any more. Hence, the
NLSP is not a light stop, but simply the lightest up-type squark, denoted by ũ1. Nevertheless,
as flavor off-diagonal elements in the mixing matrices are small, the ũ1 will be stop-like. From
now on, the formal notation ũs , s = 1...6 is chosen for the up-type squark mass eigenstates.

Of course also the experiments are searching for SUSY particles and in particular for light
squarks. No squark has been observed so far which is why only upper limits on the cross
sections or lower limits on the masses of the particles can be derived. Currently, the strongest
limits on the mass of the light stop in our parameter region are reported by ATLAS. In Figure
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Figure 2.1: Limits in the (mt̃1 , mχ̃0
1
)-plane measured by ATLAS.

2.1 a summary plot of the searches for stops by ATLAS and CDF, published in [54–58], is
shown, combining the search in different mass regions and decay channels. As explained
above, the mass difference ∆m of Eq. (2.50) is important for the phenomenology of the decay.
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2.2. Supersymmetry 15

The dashed lines in the summary plot correspond to three values of the mass difference: the
right one indicates ∆m = mt, the dashed line in the middle corresponds to ∆m = mW +mb

and the left one corresponds to ∆m = mc. Obviously, the mass limits for the stop drastically
drop once the mass difference is lower than the top quark mass mt. As in this work the region
of ∆m < mW is studied the relevant region in the plot is located between the left and the
mid-line. Thus, stop masses down to mt̃1 ≈ 200 GeV, depending on the neutralino mass, are
not excluded, yet. The limits reported on the stops are taken over as limits for the ũ1 and
explicit cuts employed in this thesis are given in Section 4.3. In the experimental analysis
for the parameter region of ∆m ∈ [mc,mW + mb] the branching ratio of the stop decaying
into a charm quark and a neutralino is assumed to be one. However, another possible process
competing with the two-body decay is the four-body decay of the ũ1 into a neutralino and
three SM fermions. The fermions can be both up-type and down-type quarks and leptons
excluding the top-quark. This process has already been calculated without flavor changing
elements in the squark mixing matrix [59], but to account for the flavor structure used here,
the four-body decay has been recalculated by other members of our research group [60].
Furthermore, in this calculation the masses of the b-quark and the τ have been taken into
account in the final states. Combining the calculations of both the two- and the four-body
decay the branching ratios shall be calculated and compared to the assumed value of 1 in the
experimental analysis.
The CMS collaboration also published exclusion limits for the t̃1 pair-production [61, 62], but
so far no limits are available for ∆m < mW . The current limits of CMS can be found in
Appendix A.
With this motivation in mind, in this thesis the decay width of the lightest up-type squark
ũ1 decaying into a charm- or an up-quark and a neutralino will be calculated at next-to-
leading order with respect to the strong interaction. The parameter space of the pMSSM will
be scanned and confronted with existing experimental bounds and results for the parameter
points passing the constraints will be presented.
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CHAPTER 3

CALCULATION OF THE DECAY WIDTH

For unstable particles the probability to decay is the same at all times. Thus, assuming a
probe of N(t) identical, unstable particles, the decay is governed by the differential equation

dN(t)
dt = −ΓN(t) , (3.1)

where t represents time and Γ is the probability per time of each particle to decay. The
solution of this differential equation is directly obtained for example by separation of variables
and reads

N(t) = N0e
−Γt , (3.2)

with N0 as the number of particles at the time t = 0. In case of n possible decays with
probabilities Γi into final states fi Eq. (3.1) turns into

dN(t)
dt =

n∑
i=1

(−ΓiN(t)) = −
(

n∑
i=1

Γi
)
N(t) , (3.3)

and the solution changes to
N(t) = N0e

−(∑n

i=1 Γi)t . (3.4)

Hence, it is possible to define a total probability per time to decay into any of the final states
fi as

Γtot =
n∑
i=1

Γi . (3.5)

The resonance curve of unstable states with respect to the energy is given by a Breit-Wigner
distribution. The quantity Γtot is the full width at half maximum of the Breit-Wigner distri-
bution corresponding to the decay of the unstable particle. Therefore in particle physics Γtot
is called total decay width and the Γi for each final state fi are called partial decay widths.
If the probe of particles is large enough to be statistically valid, the fraction with which each
final state fi contributes to the total result is given by

BRi = Γi
Γtot

. (3.6)

17



18 3. Calculation of the Decay Width

These fractions BRi are called branching ratios (BR) and are of great importance in particle
physics as the signal rates in different search channels are proportional to them. Thereby the
branching ratios are essential to give precise predictions for signal rates and to confront these
with experimental data.
In the context of time-dependent perturbation theory the partial decay width of an initial
particle i into a generic final state f is found to be

Γ(i→ f) = 1
2mi

∫
|Mif |2dLIPS , (3.7)

where mi is the mass of the initial particle i, |Mif |2 is the squared, spin-averaged transition
amplitude for the particle i decaying into the final state f and the integral is over the Lorentz
invariant phase space, denoted by dLIPS.

3.1. The Decay Width at Next-to-Leading Order
In order to improve theoretical predictions for the branching ratios, the decay widths they are
composed of are calculated in higher orders of perturbation theory. This work concentrates on
the next-to-leading order (NLO) with respect to the strong interaction. This means that only
one-loop corrections proportional to the strong coupling constant αs are taken into account.
In the relevant diagrams ultraviolet (UV) and infrared (IR) divergences can occur. However,
the physical parameters measured by experiments are finite. The running coupling constant
αs is decreasing with increasing energy and the mass of the squark which is considered in
this work is sufficiently high to allow for a perturbative treatment of the strong interaction.
Therefore perturbation theory is applicable and the divergences must disappear.
How the divergences are canceled is a matter of choice. In this work the UV divergences
will be canceled by introduction of counterterms (see Section 3.2), which is possible since the
MSSM is a renormalizable theory. The IR divergences cancel among the virtual and real NLO
contributions (Section 3.3), as guaranteed by the Kinoshita-Lee-Nauenberg theorem [63, 64].
The first step in order to render the physical parameters finite is to regularize the integrand
of the phase space integral, namely the transition amplitude, and the integral itself.

3.1.1. Dimensional Regularization

The task of the regularization is to make the evaluation of the integral (3.7) possible and
thereby to isolate the divergences. In this work, we will apply dimensional regularization
[65, 66]. Basically the dimension d of the space time is changed from d = 4 to

d = 4− 2ε , (3.8)

with ε > 0, so that in the limit ε → 0 we recover the four-dimensional space time and
the divergences in the transition amplitudes will appear as poles in ε. Consequently, four-
dimensional integrals over momenta appearing in the phase space or in loops turn into d-
dimensional integrals as maybe ∫ d4p

(2π)4 → µ4−d
∫ ddp

(2π)d . (3.9)

The new parameter µ is an arbitrary parameter with the dimension of mass to keep the mass
dimension of the integral at the same value as in the case of d = 4. The metric tensor gµν
becomes d-dimensional, leading to

gµµ = d . (3.10)
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3.1. The Decay Width at Next-to-Leading Order 19

The Dirac gamma-matrices still satisfy

{γµ, γν} = 2gµν , (3.11)

but all consequences resulting from the modified metric (3.10) have to be taken into account,
e.g.

γµγµ = d1d , (3.12)
where 1d is the d × d unit matrix. The generalization of γ5 := iγ0γ1γ2γ3 (d = 4) to d 6= 4
dimensions is non-trivial. Useful relations in d dimensions also involving γ5 can be found in
Appendix B or, for example, in [67].

3.1.2. Phase Spaces

In this work a decay into two particles is considered at NLO. Hence, for the tree-level part and
the virtual corrections a two-particle phase space is needed, whereas for the real corrections
with an additional gluon in the final state a three-particle phase space is required. They are
now derived in d dimensions to make dimensional regularization applicable.

3.1.2.1. Two-Particle Phase Space

The general two-particle phase space in d dimensions denoted by dΦ2 is

dΦ2 = dd−1p1
(2π)d−12p0

1

dd−1p2
(2π)d−12p0

2
(2π)dδ(d)(p− p1 − p2) , (3.13)

where p is the four-momentum of the decaying particle and p1 and p2 are the four-momenta
of the final state particles, respectively. Keeping in mind that the integral is over the whole
momentum space for both p1 and p2, the first step to simplify the expression is to use
the δ-function to eliminate one integration. As a matter of choice the evaluation of the p2
integration leads to

dΦ2 = dd−1p1
(2π)d−2

1
4p0

1p
0
2
δ(p0 − p0

1 − p0
2)
∣∣∣
~p2=~p−~p1

. (3.14)

Introducing spherical coordinates in d dimensions results in

dΦ2 = dΩd−1|~p1|d−2d|~p1|
(2π)d−24p0

1p
0
2

δ(p0 − p0
1 − p0

2)
∣∣∣
~p2=~p−~p1

, (3.15)

where dΩd−1 is the solid angle element in d − 1 dimensions. In order to evaluate the |~p1|
integration with the remaining δ-function it is convenient to choose the rest frame of the
decaying particle with four-momentum p. Hence,

p0 = mq̃ , ~p = 0 , ~p1 = −~p2 , |~p1| = |~p2| =: x , (3.16)

with mq̃ being the mass of the decaying particle. As the argument of the δ-function is a
function of the integration variable the relation

δ(f(x)) = 1
|f ′(x0)|δ(x− x0) (3.17)

has to be used with x0 denoting the root of f(x). According to Eq. (3.15) the argument of
the δ-function in terms of x is

f(x) = mq̃ −
√
x2 +m2

1 −
√
x2 +m2

2 . (3.18)
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20 3. Calculation of the Decay Width

Therefore
f ′(x) = −xmq̃

p0
1p

0
2

and x0 = 1
2mq̃

√
(m2

q̃ −m2
1 +m2

2)2 − 4m2
q̃m

2
2 , (3.19)

where m1 and m2 are the masses of the final state particles. The second solution for the root
of f(x) is given by −x0 which is not compatible with the definition of x in Eq. (3.16) and is
therefore discarded. Combining everything the phase space then reads

dΦ2 = dΩd−1
(2π)d−2

xd−3dx
4mq̃

δ(x− x0) (3.20a)

= dΩd−1
(2π)d−2

1
4mq̃

(
1

2mq̃

√
(m2

q̃ −m2
1 +m2

2)2 − 4m2
q̃m

2
2

)d−3

. (3.20b)

For the special case of m1 = 0 the expression reduces to

dΦ2 = dΩd−1
(2π)d−2

1
4mq̃

(
mq̃

2 (1− r2)
)d−3

, (3.21)

with r2 = m2
2/m

2
q̃ . The solid angle integrations can be performed by

∫
dΩd = 2π d

2

Γ(d2)
, with Γ(z) =

∫ ∞
0

e−ttz−1dt . (3.22)

In d = 4 dimensions and with
∫
dΩ3 = 4π it is

dΦ2 = 1
8π (1− r2) . (3.23)

3.1.2.2. Three-Particle Phase Space

The strategy for calculating the three-particle phase space is essentially the same as for the
two-particle phase space. However, as there are three particles in the final state instead of
two, more integrations have to be considered. The three-particle phase space dΦ3 is

dΦ3 = dd−1p1
(2π)d−12p0

1

dd−1p2
(2π)d−12p0

2

dd−1p3
(2π)d−12p0

3
(2π)dδ(d)(p− p1 − p2 − p3) , (3.24)

where p is the four-momentum of the decaying particle and pi, i = 1...3 are the four-momenta
of the decay products, respectively. To clarify that the third particle with momentum p3 will
be a gluon it is convenient to set p3 = k. Using the δ-function for the p2 integration yields

dΦ3 = 1
8
dd−1p1
(2π)d−1

dd−1k

(2π)d−2
1

p0
1p

0
2k

0 δ(p
0 − p0

1 − p0
2 − k0)

∣∣∣
~p2=~p−~p1−~k

. (3.25)

Note, that p2 is fixed completely thereby since p0
2 =

√
(~p− ~p1 − ~k)2 +m2

2. In the rest frame
of the decaying particle two directions are left, namely ~p1 and ~k. Choosing ~p1 as reference
axis, the solid angle integration for p1 can be kept as a whole whereas the integration for k
will be split up in an angle θ between ~p1 and ~k and the remaining solid angle, leading to

dd−1p1 = dΩd−1|~p1|d−2d|~p1| , (3.26)

dd−1k = dΩd−2|~k|d−2d|~k| sind−3 θdθ . (3.27)

20



3.1. The Decay Width at Next-to-Leading Order 21

By changing the integration variable in Eq. (3.27) from θ to cos θ, dcosθ = sin θdθ the three-
particle phase space turns into

dΦ3 = 1
8

dΩd−1
(2π)d−1 |~p1|d−2d|~p1|

dΩd−2
(2π)d−2 |~k|

d−2d|~k| sind−4 θd cos θ

· 1
p0

1p
0
2k

0 δ(p
0 − p0

1 − p0
2 − k0)

∣∣∣
~p2=~p−~p1−~k

.

(3.28)

Now the last δ-function can be used to determine the integration over cos θ. In the rest frame
of the decaying particle and by setting the gluon on-shell the δ-function in Eq. (3.28) is

δ

(√
|~p1|2 +m2

1 +
√
|~p1|2 + |~k|2 +m2

2 + 2|~p1||~k| cos θ + k0 −mq̃

)
, (3.29)

where m1 and m2 are the masses of the two massive decay products and mq̃ is the mass of the
decaying particle. Applying relation (3.17) with f being the argument of the delta function
(3.29) and x being cos θ, one has

δ(f(x)) = p0
2

|~p1||~k|
δ(cos θ − cos θ0) ; f(cos θ0) = 0 . (3.30)

The last step is to insert this result into Eq. (3.28) and to apply the replacements

d|~p1| =
p0

1
|~p1|

dp0
1 , d|~k| = k0

|~k|
dk0 (3.31)

and

|~p1| =
(
p02

1 −m2
1

) 1
2 , (3.32)

|~k| = k0 , since the gluon is on-shell , (3.33)

sind−4 θ =
(
1− cos2 θ

) d−4
2 . (3.34)

Finally, the result is

dΦ3 = 1
8

dΩd−1
(2π)d−1

dΩd−2
(2π)d−2dp

0
1dk0d cos θ

·
[(
p02

1 −m2
1

)
k02(1− cos2 θ)

] d−4
2 δ(cos θ − cos θ0) ,

(3.35)

with the condition
f(cos θ0) = 0 . (3.36)

In the case of m1 = 0 it is

dΦ3 = 1
8

dΩd−1
(2π)d−1

dΩd−2
(2π)d−2dp

0
1dk0d cos θ

[
p02

1 k
02(1− cos2 θ)

] d−4
2 δ(cos θ − cos θ0) . (3.37)

3.1.3. Factorization of the dΦ2+1 Phase Space

The decay width at NLO can be written as

Γtot = Γtree + ΓNLO (3.38a)

=
∫
ItreedΦ2 +

∫
IvirtdΦ2 +

∫
IrealdΦ2+1 , (3.38b)
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22 3. Calculation of the Decay Width

where the Itree, Ivirt and Ireal denote the integrands of the phase space integrals of the tree-
level, the virtual and the real partial decay widths. After eliminating the UV divergences
through renormalization, each of the latter two integrals is divergent due to the IR divergences.
However, in the sum of the two these divergences cancel due to the KLN theorem, and the
limit ε→ 0 can then safely be taken.
In equation (3.38b) the partial width resulting from the NLO corrections is split into two
separate integrals since the phase spaces are different for the virtual and real contributions.
However, the notation of the three-particle phase space as dΦ2+1 already suggests that a
two-particle phase space is contained therein. That this is indeed the case will be shown now
for the general case of an n+m phase space dΦn+m.
The universal n+m-particle phase space in d dimensions is given by

dΦn+m =
(
n+m∏
i=1

ddpi
(2π)d

)
(2π)dδ(d)

(
p−

n+m∑
i=1

pi

)
, (3.39)

denoting the four-momentum of the decaying particle by p and the four-momenta of the decay
products by pi , i = 1...n+m. We define a new four-momentum q by

q :=
n+m∑
i=n

pi (3.40)

in order to insert a factor of 1 in Eq. (3.39) in three steps: replace the corresponding momenta
by q, multiply by a delta function covering the definition (3.40) and finally integrate over q.
Thus, the phase space reads

dΦn+m = (2π)dδ(d)
(
p−

n−1∑
i=1

pi − q
)

(2π)dδ(d)

q − n+m∑
j=n

pj

 ddq
(2π)d

n+m∏
i=1

ddpi
(2π)d . (3.41)

Due to the independent integration bounds the order of integration can be exchanged arbi-
trarily. One explicit reformulation is

dΦn+m = (2π)dδ(d)

q − n+m∑
j=n

pj

 n+m∏
j=n

ddpj
(2π)d︸ ︷︷ ︸

=:dΦadd

· (2π)dδ(d)
(
p−

n−1∑
i=1

pi − q
)

ddq
(2π)d

n−1∏
i=1

ddpi
(2π)d︸ ︷︷ ︸

=dΦn

,

(3.42)
which allows us to separate an n particle phase space dΦn with a hypothetical nth particle
with four-momentum q and keep the remaining additional integrations denoted by dΦadd.
This result is also known as phase space recursion formula. Now Eq. (3.38b) turns into

Γ =
∫ (

Itree + Ivirt +
∫
IrealdΦadd

)
dΦ2 , (3.43)

revealing that the divergences must now cancel in the integrand in parenthesis. As the
integrand is then regular the overall two-particle phase space integration can be performed in
d = 4 dimensions. In this work initial state radiation (ISR) and final state radiation (FSR)
of one gluon will be calculated, so the consequence of Eq. (3.42) for n = 2 and m = 1 is that
the additional phase space dΦadd contains six integrations, four of them covered by the delta
function. Thus, in dimensional regularization, the two remaining integrations must reveal the
divergences as poles in ε.
This fact is explicitly used in Section 3.3.2 in the calculation of ISR and FSR.
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3.2. Renormalization 23

As a small annex one might think that the limit ε→ 0 in the overall two-particle phase space
integration can only be taken at the very end. Indeed for d = 4 − 2ε in the limit ε → 0 the
phase space (3.21) results in an expansion series in ε. Taking the limit at the very end, all
terms of O(ε) drop out since the integrand is just a finite number. Factorizing the two-particle
phase space and directly taking the limit ε → 0 draws a different picture: once the terms
of O(ε) or O(ε2) are multiplied with terms of opposite order in ε which are present in the
integrand in dimensional regularization, finite terms are left over. However, the poles in ε in
the virtual and real corrections cancel and so must the additional terms as well.
Therefore it is arbitrary when the limit ε→ 0 is taken for the outer two-particle phase space
and it is possible to directly use Eq. (3.23).

3.2. Renormalization
In this section the tree-level process and the vertex corrections to the decays ũ1 → (c, u)χ̃0

1
will be presented. As already mentioned in Section 3.1 the vertex corrections contain UV
and IR divergences. The UV divergences will be canceled by renormalization as described in
Section 3.2.2 which requires the calculation of self-energies of the outer legs in addition to
the vertex corrections. The calculation of the self-energies will be presented in Section 3.2.3.
The removal of the IR divergences by the real corrections is subject to Section 3.3.

3.2.1. Lagrangian and Vertex Corrections

The interaction of an up-type squark ũs with an up-type quark ui and a neutralino χ̃0
l is in

general governed by two terms of the Lagrangian [38]

Lūũχ̃0 = ūiG
R
islũsPRχ̃0

l + ūiG
L
islũsPLχ̃0

l + h.c. . (3.44)

The index i = 1, 2, 3 denotes the generation of the quark, s = 1, . . . , 6 numbers the mass
eigenstates of the squarks and l = 1, . . . , 4 the mass eigenstates of the neutralinos and PR
and PL are the left- and right-chiral projectors

PL = 1− γ5
2 , PR = 1 + γ5

2 . (3.45)

Obviously, the generic structures of the left- and right-handed parts match, so in the following
only the left-handed part is considered, the right-handed part is obtained analogously and
the h.c., which stands for hermitian conjugated, will be omitted.
Replacing the couplingGLisl explicitly, the left-handed part of the Lagrangian in the interaction
basis is given by

Lūũχ̃0,L = −ū(0)
i geui

Rlũ
(0)
iRPLχ̃

0
l − ū

(0)
i

gZl4m
†(0)
ij√

2mW sβ
ũ

(0)
jLPLχ̃

0
l , (3.46)

where the upper index ’(0)’ stands for unrenormalized fields and m†(0)
ij is the hermitian con-

jugate of the unrenormalized quark mass matrix. In the interaction basis, only the three
squark states corresponding to the correct chirality with respect to the interaction with the
quark are used. Thus, the index s is not present in the above equation, but it is replaced by
the indices i, j = 1, 2, 3 with an additional subscript L,R to indicate which of the six squark
states are denoted by i and j. For better legibility it is convenient to define

QL1il := −geui
Rl = g

√
2QuitWZl1 and QL2l := − gZl4√

2mW sβ
, (3.47)
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24 3. Calculation of the Decay Width

ũs
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ũt

ũs
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g

ui

Figure 3.1: Tree-level diagram and vertex corrections in QCD/SQCD.

and for the right-handed term in the Lagrangian (not given here explicitly)

QR1il := −geui
Ll = −g

√
2[Zl1tW (Qui − I3

ui
) + Zl2I

3
ui

] and QR2l := − gZl4√
2mW sβ

. (3.48)

Here, g is the weak coupling constant, Z is the neutralino mixing matrix, mW is theW boson
mass, sβ = sin β, tW = tan θW with θW being the Weinberg angle and Qui and I3

ui
are the

electric charge and the third component of the isospin of the quark, respectively. Then the
Lagrangian (3.46) becomes

Lūũχ̃0,L = QL1ilū
(0)
i ũ

(0)
iRPLχ̃

0
l︸ ︷︷ ︸

L1

+QL2lū
(0)
i m

†(0)
ij ũ

(0)
jLPLχ̃

0
l︸ ︷︷ ︸

L2

. (3.49)

In the following, the first term in Eq. (3.49) will be called L1 and the second term will be
denoted by L2. Note, that the couplings in Eqs. (3.47) and (3.48) are proportional to the
weak coupling constant g, indicating that the tree-level process is mediated by the electroweak
interaction. The QCD and SUSY-QCD one-loop corrections to the tree-level FCNC decay are
expected to be important due to the large strong coupling constant and shall be calculated
in the following. They are composed of the virtual and real corrections. In this section, the
virtual corrections will be described. The Feynman diagrams for the tree-level process and
the vertex corrections are depicted in Figure 3.1. The QCD and SQCD loops are mediated by
a gluon and a gluino, respectively. The generation and mass eigenstate indices of the particles
are chosen such that it can be read off at which vertices flavor changing is possible. In the
QCD diagram, for example, the only flavor changing vertex is the squark-quark-neutralino
vertex which is already present at tree-level. As mentioned before, the Lagrangian (3.49) has
to be renormalized by introduction of appropriate counterterms. Due to the fact that only
corrections proportional to the strong coupling constant are considered, all divergences must
be proportional to the strong coupling constant as well. This allows to reduce the number
of parameters in the Lagrangian which have to be renormalized. In detail, the couplings
in Eqs. (3.47) and (3.48) do not have to be renormalized as they are weak couplings. The
neutralino field χ̃0

l does not need to be renormalized either, since the one-loop neutralino
self-energies do not contain non-vanishing diagrams proportional to αs (cf. Section 3.2.3).
Also the neutralino mixing matrix Z needs not to be renormalized. This is already implied
in the Lagrangian (3.49) where the upper index ’(0)’ is only present at the quark fields, the
squark fields and the quark mass matrix.
To account for physical observables we rotate the fields from interaction eigenstates to mass
eigenstates before introducing the renormalization constants. This is done by rotation with
unitary matrices for the quark and the squark fields. In the case of quarks the mass eigenstates
are also flavor eigenstates. This does not hold for the squarks due to the mixing of left- and
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3.2. Renormalization 25

right-handed components within one flavor. At first, here the Super-CKM basis is chosen
for the squark fields. Recapitulating Section 2.2.3, in this basis the left- and right-handed
components of the squark field are rotated by the same unitary matrices UuL,R which rotate
the quark fields from interaction to mass and thereby to flavor eigenstates. The benefit of
this basis becomes apparent in models with MFV: at the scale µMFV both quarks and squarks
are flavor diagonal after rotation with the quark mixing matrices UuL,R . This means that
at µMFV also the squark mass matrix is flavor diagonal. While the quarks are then already
in their mass eigenstates, the squarks still have to be rotated with another matrix W to
their mass eigenstates to account for the possible left-right mixing. If general flavor mixing is
considered instead of MFV, the squark mass matrix can be flavor mixed in the Super-CKM
basis.
The rotation of the fields can be incorporated in Eq. (3.49) by inserting unit matrices in
terms of UU † and WW † leaving the Lagrangian invariant. From Eqs. (2.40) and (2.47) it
follows, that the contributions of the left- and right-handed components of the squarks to the
mass eigenstates are proportional to the first and second three columns of W , respectively.
Since ūPL = u†PRγ0 the projector PL projects out the right-handed component of the quark
field. Thus, the quark rotation matrix UuR together with components of W rotating the
right-handed squarks are used to rotate the fields to their mass eigenstates in L1. For L2 the
components of W for the left-handed squarks and the quark rotation matrix UuL are used for
the squark. From now on the indices i, j, k, l, n, o, r will run from 1 to 3 whereas the indices
s, t, v run from 1 to 6. Then, L1 and L2 are given by

L1 = QL1il ū
(0)
i U

uR†(0)
ij︸ ︷︷ ︸

=ūm(0)
j

U
uR(0)
jk U

uR†(0)
kl︸ ︷︷ ︸

=δjl

W
†(0)
l+3,sW

(0)
s,n+3U

uR(0)
no ũ

(0)
oR︸ ︷︷ ︸

=ũm(0)
s

PLχ̃0
l (3.50)

= QL1ilū
m(0)
i W

†(0)
i+3,sũ

m(0)
s PLχ̃0

l (3.51)

L2 = QL2l ū
(0)
i U

uR†(0)
ij︸ ︷︷ ︸

=ūm(0)
j

U
uR(0)
jk m

†(0)
kl U

uL†(0)
ln W †(0)

ns W (0)
so U

uL(0)
or ũ

(0)
rL︸ ︷︷ ︸

=ũm(0)
s

PLχ̃0
l (3.52)

= QL2lū
m(0)
i U

uR(0)
ij m

†(0)
jk U

uL†(0)
kl W

†(0)
ls ũm(0)

s PLχ̃0
l . (3.53)

The upper index m indicates that the fields are in their mass eigenstates. In Eqs. (3.51) and
(3.53) the lower indices L,R for the squark fields are not needed any more as the correct
components are implicitly selected by the rotation matrix W in front.
At this stage the bare fields and mixing matrices are replaced by the renormalized ones and
the corresponding counterterms. Since in loop corrections the flavor of quarks and squarks
can change, also their renormalization constants need to contain flavor off-diagonal elements.
Consequently, the renormalization constants of the fields are 3 × 3 or 6 × 6 matrices. For
the rotation matrices U and W the renormalization constants are matrices as well. The
renormalization constants of the matrices will be chosen such that renormalized fields are
rotated to mass eigenstates via renormalized matrices in the same manner as unrenormalized
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26 3. Calculation of the Decay Width

fields are rotated with unrenormalized matrices [53, 68, 69]. The replacements are

ū
m(0)
j → ūmi

(
δij + 1

2δZ
†
ij

)
, (3.54)

ũm(0)
s →

(
δsv + 1

2δZ
ũ
sv

)
ũmv , (3.55)

U
uR(0)
ik →

(
δij + δURij

)
UuR
jk , (3.56)

W
†(0)
i+3,v →W †i+3,s

(
δsv + δW †sv

)
, (3.57)

m
†(0)
jk → m†jk + δm†jk , (3.58)

and for the case of W †(0)
ls correspondingly. So the two parts of the renormalized Lagrangian

are

L1 = QL1ilū
m
i

(
δij + 1

2δZ
R†
ij

)
W †j+3,s

(
δst + δW †st

)(
δtv + 1

2δZ
ũ
tv

)
ũmv PLχ̃0

l (3.59)

= QL1ilū
m
i

[
W †i+3,v +W †i+3,sδW

†
sv +W †i+3,s

1
2δZ

ũ
sv + 1

2δZ
R†
ij W

†
j+3,v

]
ũmv PLχ̃0

l (3.60)

and

L2 = QL2lū
m
i

(
δij + 1

2δZ
R†
ij

)(
δjk + δURjk

)
UuR
kl (m†ln + δm†ln)UuL†

no

(
δor + δUL†or

)
·W †rs

(
δst + δW †st

)(
δtv + 1

2δZ
ũ
tv

)
ũmv PLχ̃0

l ,

(3.61)

where the quark renormalization constant δZ acquired an upper index R to indicate that
it is the renormalization constant for the right handed part of the quark field. To simplify
Eq. (3.61) as explained above the renormalized matrix U can be used to diagonalize the
renormalized quark mass matrix mln. In detail, this leads to(

δjk + δURjk

)
UuR
kl (m†ln + δm†ln)UuL†

no

(
δor + δUL†or

)
= δjr(muj + δmuj ) , (3.62)

where on the right-hand side the ’†’ can be omitted since the matrix is diagonal and has real
entries. Thereby the second part of the Lagrangian L2 turns into

L2 = QL2lū
m
i

(
δij + 1

2δZ
R†
ij

)
δjo(muj + δmuj )W †os

(
δsv + δW †sv + 1

2δZ
ũ
sv

)
ũmv PLχ̃0

l (3.63)

= QL2lū
m
i

[
δijmujW

†
jv + δijmujW

†
jsδW

†
sv + δijmujW

†
js

1
2δZ

ũ
sv

+1
2δZ

R†
ij mujW

†
jv + δijδmujW

†
jv

]
ũmv PLχ̃0

l

(3.64)

= QL2lū
m
i

[
miW

†
iv +miW

†
isδW

†
sv +miW

†
is

1
2δZ

ũ
sv

+1
2δZ

R†
ij mjW

†
jv + δmiW

†
iv

]
ũmv PLχ̃0

l ,

(3.65)

where mui is abbreviated by mi. Here the squark rotation matrix from the Super-CKM basis
to the mass eigenstate basis has been renormalized explicitly by Eq. (3.57) resulting in terms
proportional to δW † in Eqs. (3.60) and (3.65). However, in anticipation of the explicit form
of the renormalization constants in terms of self-energies (see Section 3.2.2) it is helpful to
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change the δW † counterterm to a counterterm for the whole rotation matrix from interaction
to mass eigenstates W̃ as defined in Eq. (2.47). As a counterterm for δW † is needed rather
than for δW , we directly define the hermitian adjoint W̃ †(0) of the unrenormalized matrix by

W̃ †(0) := U †(0)W †(0) . (3.66)

This definition must hold for the renormalized matrices as well, leading to

W̃ †(1 + δW̃ †) = U †(1 + δU †)W †(1 + δW †) (3.67)
⇔ δW̃ † = δW † +WδU †W † . (3.68)

As the renormalized quark mixing matrix has to be unitary, the counterterm δU is antiher-
mitian. Then, the following term in L1 gives

W †i+3,sδW
†
sv = W †i+3,s(δW̃ †sv −Ws,j+3δU

R†
jk W

†
k+3,v) (3.69)

= W †i+3,sδW̃
†
sv + δURijW

†
j+3,v (3.70)

and the corresponding term in L2 reads

miW
†
isδW

†
sv = miW

†
is(δW̃ †sv −WsjδU

L†
jkW

†
kv) (3.71)

= miW
†
isδW̃

†
sv +miδU

L
ijW

†
jv , (3.72)

where UuL and UuR have been chosen in accordance to the required rotation in Eqs. (3.60)
and (3.65). Combining Eqs. (3.60) and (3.65) with Eqs. (3.70) and (3.72) the renormalized
parts of the Lagrangian become

L1 = QL1ilū
m
i

[
W †i+3,v +W †i+3,sδW̃

†
sv + δURijW

†
j+3,v +W †i+3,s

1
2δZ

ũ
sv

+1
2δZ

R†
ij W

†
j+3,v

]
ũmv PLχ̃0

l

(3.73)

and

L2 = QL2lū
m
i

[
miW

†
iv +miW

†
isδW̃

†
sv +miδU

L
ijW

†
jv +miW

†
is

1
2δZ

ũ
sv

+1
2δZ

R†
ij mjW

†
jv + δmiW

†
iv

]
ũmv PLχ̃0

l .

(3.74)

In the derivation all terms of higher than linear order in the counterterms were tacitly ne-
glected reflecting that only NLO corrections are calculated. Terms of O(δn), n ≥ 2 correspond
to higher orders in perturbation theory. As explained at the beginning the PR part is obtained
by substituting R↔ L everywhere.

3.2.2. The On-Shell Renormalization Scheme

In the previous section counterterms were introduced which will cancel the UV divergences.
The finite contributions left over are determined by imposing requirements on the renormal-
ized n-point functions. This is called renormalization scheme. Since the renormalization
scheme is a matter of choice it is important to mention which renormalization scheme is used
for the calculation as the result for the physical parameters can depend on the actual choice.
Here, the on-shell (OS) scheme will be used. First, the matrix renormalization constants will
be defined and afterwards all renormalization constants will be substituted by self-energies
using the renormalization conditions of the OS scheme.
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28 3. Calculation of the Decay Width

3.2.2.1. Matrix Renormalization

The renormalized Lagrangians (3.73) and (3.74) contain the following renormalization con-
stants

δW̃sv , δURij , δULij , δZ ũsv , δZRij , δmi . (3.75)

As already mentioned in Section 3.2.1, the field renormalization constants δZRij and δZ ũsv are
matrices to take into account the mixing between different flavors which is possible due to
loop corrections to the propagators. The UV divergent part of the mixing matrix countert-
erms is determined such that it cancels the divergent part of the antihermitian part of the
corresponding wave function renormalization matrix [68, 70, 71]

δUR,Lij = 1
4(δZR,Lij − δZR,L†ij ) , (3.76)

δW̃sv = 1
4(δZ ũsv − δZ ũ†sv ) . (3.77)

Thus, by replacing δUL in Eq. (3.74) another renormalization constant δZL is introduced
for the left-handed part of the quark field. In Section 3.2.2.3 it will be shown that for the
cancellation of artificial divergences occurring in the counterterms in special cases like mi =
mj , this choice of the matrix renormalization constants is crucial [68]. Inserting Eqs. (3.76)
and (3.77) into the two parts of the Lagrangian (3.73) and (3.74) leads to

L1 = QL1ilū
m
i

[
W †i+3,v +W †i+3,s

1
4(δZ ũ†sv + δZ ũsv) + 1

4(δZRij + δZR†ij )W †j+3,v

]
ũmv PLχ̃0

l (3.78)

and

L2 = QL2lū
m
i

[
miW

†
iv + δmiW

†
iv +miW

†
is

1
4(δZ ũ†sv + δZ ũsv)

+
(1

2δZ
R†
ij mj + 1

4mi(δZLij − δZ
L†
ij )
)
W †jv

]
ũmv PLχ̃0

l .

(3.79)

In the following, the renormalization scheme will be specified.

3.2.2.2. Renormalization Constants in the On-Shell Scheme

In the OS scheme the renormalized masses of the particles are required to be equal to their
physical values. This imposes conditions on the renormalized two-point functions ΓSS and
Γff̄ of scalars s and fermions f , namely that they must vanish at the physical masses ms and
mfi

= mi and that the residues of the two-point functions are equal to one. In momentum
space this means (see for example [72, 73])

R̃eΓSSR,st(p)
∣∣∣
p2=m2

s

= 0 , (3.80a)

R̃eΓSSR,st(p)
∣∣∣
p2=m2

t

= 0 , (3.80b)

lim
p2→m2

s

1
p2 −m2

s

R̃eΓSSR,ss(p) = 1 (3.80c)

for the scalar two-point function and

R̃eΓff̄R,ij(p)uj(p)
∣∣∣
p2=m2

j

= 0 , (3.81a)

lim
p2→m2

i

p/+mi

p2 −m2
i

R̃eΓff̄R,ii(p)ui(p) = ui(p) (3.81b)
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3.2. Renormalization 29

for the fermionic one. In addition to the fermion generation indices i and j also scalar indices
s, t for the scalar superpartners of the fermions are introduced in the above equations. The
subscript R stands for renormalized and the R̃e indicates, that the real part is only to be
taken of the loop integrals but not of the mixing matrices. The fermion two-point function
can be decomposed into left- and right-chiral parts and the respective scalar parts, denoted
by the upper indices L,R and SL, SR, respectively [72]

Γff̄R,ij(p) = p/PLΓff̄ ,LR,ij (p2) + p/PRΓff̄ ,RR,ij (p2) + PLΓff̄ ,SLR,ij (p2) + PRΓff̄ ,SRR,ij (p2) , (3.82)

with p denoting the momentum of the corresponding particle. The renormalized two-point
functions on which the conditions (3.80) and (3.81) are applied, consist of the unrenormalized
tree-level terms, the unrenormalized self-energies Σ and the counterterms. In detail they are
given by [72, 73]

ΓSSR,st(p) = (p2 −m2
s)δst + ΣSS

st (p2)

+ 1
2(p2 −m2

s)δZSst + 1
2(p2 −m2

t )δZ
S†
st − δstδm2

s ,
(3.83)

Γff̄ ,LR,ij (p2) = δij + ΣL
ij(p2) + 1

2(δZLij + δZL†ij ) , (3.84)

Γff̄ ,RR,ij (p2) = δij + ΣR
ij(p2) + 1

2(δZRij + δZR†ij ) , (3.85)

Γff̄ ,SLR,ij (p2) = −miδij + ΣSL
ij (p2)− 1

2(miδZ
L
ij +mjδZ

R†
ij )− δijδmi , (3.86)

Γff̄ ,SRR,ij (p2) = −miδij + ΣSR
ij (p2)− 1

2(miδZ
R
ij +mjδZ

L†
ij )− δijδmi , (3.87)

where δij and δst are Kronecker deltas. The left- and right-chiral and scalar parts of the
fermion self-energy are defined by the decomposition of the fermion self-energy in accordance
with [68, 72]

Σf
ij(p) = p/PLΣL

ij(p2) + p/PRΣR
ij(p2) + PLΣSL

ij (p2) + PRΣSR
ij (p2) , (3.88)

with p/ = pµγµ. This is needed to explicitly evaluate the renormalization conditions for the
fermions (3.81) in order to replace the renormalization constants δZR,Lij by self-energies. The
validity of this decomposition follows from the fact that the leading order unrenormalized
two-point function of a fermion in momentum space is Γff̄ = p/−m in combination with the
observation that the Lorentz tensor structure of a vertex function cannot change in any order
of perturbation theory. This is a consequence of the different types of underlying symmetries:
the Lorentz structure corresponds to the space-time symmetry whereas the perturbation
expansion corresponds to a gauge symmetry.
Note that here, in contrast to other definitions of the decomposition [69, 74], no factor of mi

or mj is extracted out of the scalar parts of the self-energies ΣSR
ij ,ΣSL

ij in Eq. (3.88) since
flavor mixing in the quark sector is possible, mediated by a gluino. Thus, it can happen that
there is neither a quark i with mass mi nor a quark j with mass mj in the loop but any other
quark. This will also affect the explicit form of the renormalization constants δZR,L in terms
of the self-energies later on.
Due to hermiticity of the Lagrangian the following relations hold for the fermion self-energy
[68, 72]

ΣL∗
ji (p2) = ΣL

ij(p2) , ΣR∗
ji (p2) = ΣR

ij(p2) , ΣSR
ij (p2) = ΣSL∗

ji (p2) , (3.89)
and the squark self energy has to be hermitian. In view of the last relation of Eq. (3.89) it is
clear that the fermion self-energy is not necessarily symmetric in i and j. As a consequence
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30 3. Calculation of the Decay Width

j i
= Γij

Figure 3.2: Fermion two-point function.

it is important to which side of the two-point function the indices i and j correspond. The
correct definition is depicted in Figure 3.2 in consistency with the Feynman rules used.
Now the OS renormalization conditions (3.80) and (3.81) can be applied on the two-point
functions which finally leads to the explicit form of the renormalization constants in terms of
unrenormalized self-energies [53, 68, 72, 73]

δmi = 1
2R̃e

(
mi(ΣL

ii(m2
i ) + ΣR

ii(m2
i )) + ΣSL

ii (m2
i ) + ΣSR

ii (m2
i )
)
, (3.90)

δm2
s = R̃eΣũ

ss(m2
s) , (3.91)

δZ ũst = 2
m2
s −m2

t

R̃eΣũ
st(m2

t ) , s 6= t , (3.92)

δZ ũss = −R̃e∂Σũ
ss(p2)
∂p2

∣∣∣
p2=m2

s

, (3.93)

δZLij = 2
m2
i −m2

j

R̃e
[
m2
jΣL

ij(m2
j ) +mimjΣR

ij(m2
j )

+miΣSL
ij (m2

j ) +mjΣSR
ij (m2

j )
]
, i 6= j ,

(3.94)

δZRij = 2
m2
i −m2

j

R̃e
[
m2
jΣR

ij(m2
j ) +mimjΣL

ij(m2
j )

+mjΣSL
ij (m2

j ) +miΣSR
ij (m2

j )
]
, i 6= j ,

(3.95)

δZLii = −R̃eΣL
ii(m2

i )−mi
∂

∂p2 R̃e
[
mi(ΣL

ii(p2) + ΣR
ii(p2))

+ΣSL
ii (p2) + ΣSR

ii (p2)
] ∣∣∣
p2=m2

i

,
(3.96)

δZRii = −R̃eΣR
ii(m2

i )−mi
∂

∂p2 R̃e
[
mi(ΣL

ii(p2) + ΣR
ii(p2))

+ΣSL
ii (p2) + ΣSR

ii (p2)
] ∣∣∣
p2=m2

i

.
(3.97)

Here, the upper index S for the self-energy and renormalization constant of the scalar particle
in Eq. (3.83) is replaced by ũ as in this work the scalar particle will be an up-type squark.
This can now be applied to L1 and L2 of (3.78) and (3.79), respectively. From now on the
R̃e will be omitted for easier reading.
Regarding the squark counterterms there is only one linear combination appearing in both
L1 and L2. Using Eqs. (3.92) and (3.93) leads to

1
4
(
δZ ũ†sv + δZ ũsv

)
= −1

2
1

m2
s −m2

v

(
Σũ
sv(m2

s)− Σũ
sv(m2

v)
)
, s 6= v , (3.98)

and for the diagonal terms
1
4
(
δZ ũ†ss + δZ ũss

)
= −1

2
∂Σũ

ss(p2)
∂p2

∣∣∣
p2=m2

s

. (3.99)
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If the squark masses are degenerate Eq. (3.98) turns into the derivative in Eq. (3.99) with
the subscripts ss replaced by sv. This is different for the fermion counterterms, as the quark
masses are very small compared to the squark masses and thereby to the relevant scale of
our process. Therefore the masses of the quarks of the first and the second generation can be
set to zero for simplicity. For mi = mj and in particular mi = mj = 0 the renormalization
constants (3.94) and (3.95) then diverge due to the prefactor

2
m2
i −m2

j

. (3.100)

Note that this is the case for i 6= j. However, these divergences can be removed from
the counterterms by appropriate linear combinations of the renormalization constants δZR,L
[68]. This can be achieved by choosing the renormalization constants for the mixing matrices
exactly as proposed in Section 3.2.2.1.
In detail, there are two different linear combinations of counterterms δZR,L appearing in L1
and L2 (cf. Eqs. (3.78) and (3.79)). To write them in a way where it is possible to discern
that the divergences are in fact removed, two helpful relations are

m2
jΣ(m2

j )−m2
iΣ(m2

i ) = 1
2
[
−(m2

i +m2
j )(Σ(m2

i )− Σ(m2
j ))

− (m2
i −m2

j )(Σ(m2
i ) + Σ(m2

j ))
] (3.101)

and

m2
iΣ(m2

j )−m2
jΣ(m2

i ) = (m2
i −m2

j )(Σ(m2
i ) + Σ(m2

j )) +m2
jΣ(m2

j )−m2
iΣ(m2

i ) , (3.102)

where the generation indices i, j and superscripts R,L, SR, SL have been ignored for the self-
energies. Note that in Eq. (3.102) the last two terms can be replaced using Eq. (3.101). Then
the final results for the linear combinations of the fermion counterterms in the Lagrangians
(3.78) and (3.79) with use of Eqs. (3.94)-(3.97) are given by

1
4(δZRij + δZR†ij ) =1

2
1

m2
i −m2

j

[
−mj(ΣSL

ij (m2
i )− ΣSL

ij (m2
j ))

−mi(ΣSR
ij (m2

i )− ΣSR
ij (m2

j ))
−mimj(ΣL

ij(m2
i )− ΣL

ij(m2
j ))

−1
2(m2

i +m2
j )(ΣR

ij(m2
i )− ΣR

ij(m2
j ))

−1
2(m2

i −m2
j )(ΣR

ij(m2
i ) + ΣR

ij(m2
j ))
]

(3.103)
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32 3. Calculation of the Decay Width

and
1
2δZ

R†
ij mj + 1

4mi(δZLij − δZ
L†
ij ) =1

2
1

m2
i −m2

j

[
(m2

i −m2
j )ΣSL

ij (m2
i )

+(m2
i −m2

j )miΣL
ij(m2

i )
−mimj(ΣSR

ij (m2
i )− ΣSR

ij (m2
j ))

−mim
2
j (ΣL

ij(m2
i )− ΣL

ij(m2
j ))

−m2
imj(ΣR

ij(m2
i )− ΣR

ij(m2
j ))

+(m2
i −m2

j )(ΣSL
ij (m2

i ) + ΣSL
ij (m2

j ))

−1
2(m2

i +m2
j )(ΣSL

ij (m2
i )− ΣSL

ij (m2
j ))

−1
2(m2

i −m2
j )(ΣSL

ij (m2
i ) + ΣSL

ij (m2
j ))
]
,

(3.104)

which hold for i 6= j. For the diagonal counterterms the results are

1
4(δZRii + δZR†ii ) = 1

2
[
−ΣR

ii(m2
i )

−mi
∂

∂p2

(
mi(ΣR

ii(p2) + ΣL
ii(p2)) + ΣSR

ii (p2) + ΣSL
ii (p2)

) ∣∣∣
p2=m2

i

] (3.105)

and
1
2δZ

R†
ii mi + 1

4mi(δZLii − δZ
L†
ii ) = −1

2mi

[
ΣR
ii(m2

i )

+mi
∂

∂p2

(
mi(ΣR

ii(p2) + ΣL
ii(p2)) + ΣSR

ii (p2) + ΣSL
ii (p2)

) ∣∣∣
p2=m2

i

]
.

(3.106)

3.2.2.3. Limits and Special Cases

The derivative of a function f(x) can be defined by the differential quotient

lim
b→a

f(a)− f(b)
a− b

= ∂f(x)
∂x

∣∣∣
x=a

. (3.107)

The preceding formulation of the linear combinations of the counterterms appearing in the
Lagrangian is chosen such that either the divergent global denominator

1
m2
i −m2

j

(3.108)

is canceled or that the derivative of a self-energy is recovered in the limit mj → mi. In
both cases the divergence for mi = mj is removed. It is now clear that the choice for the
renormalization of the mixing matrix is vital here, since it is exactly this linear combination
of field renormalization constants which leads either to derivatives or to the cancellation of
the denominator. Taking the limit mj → mi leads to

lim
mj→mi

(1
4(δZRij + δZR†ij )

)
=

1
2

[
−ΣR

ij(m2
i )−mi

∂

∂p2

(
mi(ΣR

ij(p2) + ΣL
ij(p2)) + ΣSR

ij (p2) + ΣSL
ij (p2)

) ∣∣∣
p2=m2

i

] (3.109)
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and

lim
mj→mi

(1
2δZ

R†
ij mi + 1

4mi(δZLij − δZ
L†
ij )
)

= ΣSL
ij (m2

i ) + 1
2miΣL

ij(m2
i )

− 1
2m

2
i

∂

∂p2

(
mi(ΣR

ij(p2) + ΣL
ij(p2)) + ΣSR

ij (p2) + ΣSL
ij (p2)

) ∣∣∣
p2=m2

i

.
(3.110)

As a numerical cancellation is impossible due to the divergent prefactor (3.108) the diver-
gence has to be canceled analytically by taking the limit mj → mi and this case has to be
implemented in addition to the case i 6= j. Further it may be convenient to set

|mi −mj | < ε , ε > 0 (3.111)

as condition to switch to the limit mj → mi. In this way possible numerical instabilities due
to the finite precision of data types can be avoided.
In the massless case the expressions (3.109) and (3.110) simplify further to

lim
mi→0

(
lim

mj→mi

(1
4(δZRij + δZR†ij )

))
= −1

2ΣR
ij(0) (3.112)

lim
mi→0

(
lim

mj→mi

(1
2δZ

R†
ij mi + 1

4mi(δZLij − δZ
L†
ij )
))

= ΣSL
ij (0) . (3.113)

Although the limits (3.112) and (3.113) are already covered by Eqs. (3.109) and (3.110)
they are stated here as it can be useful to implement these cases separately for numerical
evaluations of the counterterms since only one self-energy has to be evaluated in comparison
to five or six evaluations, respectively.
Note again that the divergence in the fermion counterterm is not related to the divergences
appearing in Feynman graphs. Motivated by the fact that quarks of different generations
only differ in mass the question arises whether the two cases i = j and mi = mj are the same.
For the first linear combination

1
4(δZRij + δZR†ij ) (3.114)

this is indeed the case. However, for the second one

1
2δZ

R†
ij mi + 1

4mi(δZLij − δZ
L†
ij ) (3.115)

it is not (compare Eqs. (3.105) and (3.106) to Eqs. (3.109) and (3.110)). The difference ensues
from the two distinct renormalization conditions imposed for i = j and i 6= j in Eq. (3.81).
In addition it is not possible to set mi = mj directly in each renormalization constant δZR,L
but only in the linear combinations stated above.

3.2.3. Self-Energies

In Section 3.2.2.2 explicit formulas for the linear combinations of renormalization constants
of the fields were derived. For the quark fields these are given in Eqs. (3.103) to (3.106)
and for the squark fields the formulas are given by (3.98) and (3.99). Additionally, the mass
renormalization constants (3.90) and (3.91) have to be used. As already explained, self-
energies with respect to the strong interaction are required for the cancellation of the UV
divergences.
At one-loop level there are two diagrams contributing to the quark self-energies at O(αs).
One diagram due to the exchange of a gluon and a quark and the other one due to a squark
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Figure 3.3: One-loop contributions to the quark self-energy in QCD and SQCD.
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ũs
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Figure 3.4: One-loop contributions to the squark self-energy in QCD and SQCD.

and gluino loop as depicted in Figure 3.3. While in the first diagram the flavor of the quark
remains unchanged, it can change in the second diagram at the squark-quark-gluino vertices.
For the squarks only the three diagrams shown in Figure 3.4 give non-vanishing contributions.
The diagrams in the first line of Fig. 3.4 are similar to the diagrams for the quark self-energy
shown before, but with quarks and squarks interchanged. This reflects the fact that the gauge
quantum numbers of the SM particles and their superpartners are the same. The gluon and
gluino carry isospin zero. Therefore at the vertices with a gluon or gluino the other two
particles must carry the same isospin. In our case the initial particles are up-type quarks or
squarks respectively, so the particles in the loops must be up-type, too.
As squarks are scalar particles there are interactions possible which are not present for the
corresponding SM particles, leading to new contributions to the squark self-energy. Precisely,
a four sfermion interaction is possible.
The Feynman rules for the different combinations of sfermions at the four sfermion vertex
can be found in [38], for example. Only diagrams with an up-type or down-type squark in the
loop result in αs-contributions. Two different color connections of the squarks at the vertex
are possible for the diagram with a down-type squark in the loop. In one case the particle in
the loop carries the same color as the incoming particle and thereby the same as the outgoing
one and in the other case the color of the incoming particle is directly connected to that of
the outgoing particle and the color of the particle in the loop is arbitrary. Thus, in the sum
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g

Figure 3.5: Diagram for the interaction of two squarks with two gluons.
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Figure 3.6: Possible diagram with a loop in the neutralino leg.

over the colors the latter contribution will acquire a relative factor of three regarding the first
case. This is the reason why then, if the particles are correctly assigned to the legs of the
vertex, the contributions of the two different color connections for a down-type squark in the
loop cancel in the sum over the colors. So in total, only the diagram with an up-type squark
in the loop as shown in Figure 3.4 will contribute to the self-energy of the squark.
Another vertex, which is not present in the Standard Model, is the interaction of two gluons
with two squarks, leading to the diagram shown in Fig. 3.5. The amplitude of this diagram
is proportional to the integral of the gluon propagator over the loop momentum. So in
dimensional regularization we have

M∝
∫

ddk 1
k2 ∝ A0(0) , (3.116)

where A0(0) is the scalar one-point function [75]. But since

A0(0) = 0 , (3.117)

the amplitude is zero. Therefore the amplitude for the diagram in Figure 3.5 vanishes due to
the gluon being massless.
The only diagram with a loop in the neutralino leg leading to an amplitude proportional to
the strong coupling constant αs is shown in Figure 3.6. As the gluino is part of a color octet
whereas the neutralino is a color singlet, the amplitude for the diagram vanishes, however.
This can be understood by inspection of the two vertices in the loop: the squark-quark-gluino
coupling contributes an SU(3)C generator T aαβ with the color indices α and β of the quark
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and the squark in the loop and a denoting the gluino index. By contrast, the squark-quark-
neutralino vertex is color-diagonal which means that the vertex contains a factor δαβ. Thus,
the amplitude is proportional to the trace of the SU(3)C generator. As the T a are traceless,
the amplitude vanishes. Therefore there are no neutralino self-energies which contribute
at O(αs). This is why the neutralino field was not renormalized in the discussion of the
renormalization procedure in Sec. 3.2.1.

3.2.4. Kinematics of the Decay

In this section it will be shown by general considerations that the kinematic structure of the
transition amplitude is independent of the choice of the reference frame.
Using the Feynman rules according to the Lagrangian (3.44) the generic structure of the
transition amplitude for the decay of the squark into a quark and a neutralino reads

M = ūi(p1, λ1)(CRPR + CLPL)ijvj(p2, λ2) , (3.118)

with u and v being the spinors of the quark and the neutralino, respectively, with momenta
p1 and p2 and helicities λ1 and λ2. The couplings are denoted by CL and CR and the indices
i, j = 1, ..., 4 are spinor indices and the Einstein sum convention is employed. The constant
factor resulting from the Feynman rules for the squark is absorbed in CL and CR. Higher-
order corrections modify CL and CR but not the kinematic structure of the decay amplitude
investigated here.
The absolute value of Eq. (3.118) squared is

|M|2 =ūi(p1, λ1)(CRPR + CLPL)ijvj(p2, λ2)
· v†k(p2, λ2)(CRPR + CLPL)†kl (ūl(p1, λ1))† ,

(3.119)

where k and l are two additional spinor indices. In this notation the order of the factors is
arbitrary. Using ū = u†γ0, γ0PR = PLγ0 and γ0γ0 = 1, Eq. (3.119) becomes

|M|2 = ul(p1, λ1)ūi(p1, λ1)(CRPR + CLPL)ijvj(p2, λ2)v̄k(p2, λ2)(C∗RPL + C∗LPR)kl . (3.120)

To derive the unpolarized transition amplitude the sum rules∑
λ

ui(p, λ)ūj(p, λ) = (p/+m)ij (3.121a)∑
λ

vi(p, λ)v̄j(p, λ) = (p/−m)ij , (3.121b)

are used, where m denotes the mass of the particle. Then, the square of the transition
amplitude is∑

λ1,λ2

|M|2 = (p/1 +m1)li(CRPR + CLPL)ij(p/2 −m2)jk(C∗RPL + C∗LPR)kl (3.122)

= Tr {(p/1 +m1)(CRPR + CLPL)(p/2 −m2)(C∗RPL + C∗LPR)} . (3.123)

Using the relations for the Dirac γ matrices (see Appendix B) this results in∑
λ1,λ2

|M|2 = Tr
{
|CR|2

1− γ5
2 p/1p/2 + |CL|2

1 + γ5
2 p/1p/2

−m1m2C
∗
RCL

1− γ5
2 −m1m2C

∗
LCR

1 + γ5
2

} (3.124a)

= 1
2(|CR|2 + |CL|2)Tr {p/1p/2} −

1
2m1m2Tr {1} (C∗RCL + C∗LCR) (3.124b)

= (|CR|2 + |CL|2)[m2
q̃ −m2

1 −m2
2]− 2m1m2(C∗RCL + C∗LCR) . (3.124c)
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In the last step

Tr {p/1p/2} = 4pµ1p2µ (3.125a)

= 2
[
(p1µ + p2µ)2 − p2

1 − p2
2

]
(3.125b)

= 2
[
s−m2

1 −m2
2

]
(3.125c)

was used together with the Mandelstam variable s = m2
q̃ for the decay of a squark q̃ with

mass mq̃. In the special case of the decay ũ1 → (c, u)χ̃0
1 with vanishing charm- or up-quark

mass and r2 = m2
χ̃0

1
/m2

ũ1 with mχ̃0
1
denoting the mass of the neutralino it is

∑
λ1,λ2

|M|2 = (|CR|2 + |CL|2)m2
ũ1(1− r2) . (3.126)

The results (3.124c) and (3.126) show that the squared amplitude consists of the couplings
and constant factors in terms of masses, independently of the reference frame. For the process
ũ1 → (c, u)χ̃0

1 at tree-level this means, that for the calculation of the decay width (3.7) for a
massless charm- or up-quark one only has to replace the integral by Eqs. (3.126) and (3.23)
and insert the couplings (3.47) and (3.48).

3.3. Real Corrections: Gluon Radiation
In this section the real corrections at NLO to the decay ũ1 → (c, u)χ̃0

1 will be calculated. First,
the relevant Feynman diagrams and transition amplitudes are given in Section 3.3.1. Then
in Section 3.3.2, the three-particle phase space and the amplitudes will be reparametrized to
make use of dimensional regularization in order to extract the IR divergences. As explained
above they will cancel with the ones coming from the virtual corrections. The final result is
given in Section 3.3.3.

3.3.1. Feynman Diagrams and Amplitudes

The partial decay width containing the real corrections in Eq. (3.38b) reads

Γreal = 1
2mq̃

∫
|Mreal|2dΦ3 , (3.127)

where mq̃ is the mass of the decaying squark and M is the transition amplitude. As only
NLO corrections with respect to the strong interaction are considered in this thesis there are
only two diagrams contributing to the transition amplitude in Eq. (3.127). Namely, a gluon
can be radiated either from the final state (FSR) or from the initial state (ISR), as depicted in
Figure 3.7. The transition amplitude for FSR will be denoted byM1 and the one for ISR will
be calledM2. The final states of the two diagrams shown in Figure 3.7 are indistinguishable
so that |Mreal|2 is given by

|Mreal|2 = |M1 +M2|2 (3.128a)
= |M1|2 + |M2|2 + 2Re{M1M†2} . (3.128b)

In the following, p is the four-momentum of the decaying squark and p1, λ1, p2, λ2 and k, r are
the four-momenta and polarizations of the quark, the neutralino and the gluon, respectively.
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ũs ũs

ũs

g

g

qi

qi

χ̃0
l χ̃0

l

qi

Figure 3.7: Final state radiation (left) and initial state radiation (right) of a gluon.

Accordingly, the mass of the quark will now be denoted by m1 and the mass of the neutralino
by m2. Applying the Feynman rules the two amplitudes read

iM1 = gsT
aū(p1, λ1)γµεµ∗r (k)(p/1 + k/+m1)

2(p1k)
· [CLPL + CRPR]v(p2, λ2)δ(p− p1 − p2 − k) ,

(3.129)

iM2 = gsT
aū(p1, λ1)[CLPL + CRPR]v(p2, λ2) −1

2(pk)
· εµ∗r (k)(2pµ − kµ)δ(p− p1 − p2 − k) ,

(3.130)

where gs is the strong gauge coupling constant, T a the SU(3)C generator, u and v are the
spinors for the quark and the neutralino and εµ is the polarization vector of the gluon. In
accordance with Section 3.2.4 the coupling of squark, quark and neutralino is written as
[CLPL + CRPR]. Note, that in Eqs. (3.129) and (3.130) momentum conservation at each
vertex is directly used to determine the momentum of the internal particle. Since the gluon
is on-shell only transverse components will take part, so that εµkµ is equal to zero and the
polarization sum for the gluons is given by [10]

∑
r

εµ∗r (k)ενr (k) = −gµν . (3.131)

Squaring Eqs. (3.129) and (3.130) and suppressing the arguments of the spinors and the
polarization vectors leads to

|M1|2 = g2
sCF

4(p1k)2Tr
{
uūγµ(p/1 + k/+m1)[CLPL + CRPR]vv̄

· [C∗LPR + C∗RPL]γ0(p/†1 + k/† +m1)γν†γ0ε
∗
µεν
}
,

(3.132)

|M2|2 = g2
sCF

(pk)2Tr
{
uū[CLPL + CRPR]pµεµ∗ενpνvv̄[C∗LPR + C∗RPL]

}
. (3.133)

Here, the color structure of the amplitudes has already been evaluated using [76]

∑
a

T abcT
a
cd = CF δbd with CF = N2 − 1

2N (3.134)
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for the generators T abc of a group SU(N). Applying the polarization sums (3.121) and (3.131)
and using the relations for the gamma matrices (see Appendix B) we arrive at

|M1|2 = −g
2
sCF

4(p1k)2Tr
{

4(m3
1 +m1(p1k) +m2

1p/1 + (m2
1 − (p1k))k/)

· 1
2
(
p/2(|CL|2 + |CR|2) + p/2γ5(|CL|2 − |CR|2)

−m2(CLC∗R + CRC
∗
L) +m2γ5(CLC∗R − CRC∗L)

)}
,

(3.135)

|M2|2 =
−g2

sCFm
2
q̃

2(pk)2 Tr
{

(p/1 +m1)
(
p/2(|CL|2 + |CR|2) + p/2γ5(|CL|2 − |CR|2)

−m2(CLC∗R + CRC
∗
L) +m2γ5(CLC∗R − CRC∗L)

)}
.

(3.136)

Evaluation of the traces (note, that all terms proportional to γ5 drop out) leads to the final
result

|M1|2 = −2g2
sCF

(p1k)2

[(
m2

1(p1p2) + (p2k)(m2
1 − (p1k))

)
(|CL|2 + |CR|2)

−m2(m3
1 +m1(p1k))(CLC∗R + CRC

∗
L)
]
,

(3.137)

|M2|2 =
−2g2

sCFm
2
q̃

(pk)2

[
(p1p2)(|CL|2 + |CR|2)−m1m2(CLC∗R + CRC

∗
L)
]
. (3.138)

The interference term in Eq. (3.128b) is calculated in analogy to the two terms already
shown. Therefore only important intermediate results are presented here. Using Eqs. (3.129)
and (3.130) we arrive at

M1M†2 = 2g2
sCF ūε/

(p/1 + k/+m1)
2(p1k) [CLPL + CRPR]v

· pµεµ
−1

2(pk) v̄γ0[C∗LPL + C∗RPR]γ0u .

(3.139)

The spin summed mixed term then reads

M1M†2 = g2
sCF

4(pk)(p1k)Tr
{

(p/1 +m1)(2(m2
1 + (p1k) + (p1p2) + (p2k)) +m1k/− k/p/2)

(p/2(|CL|2 + |CR|2) + p/2γ5(|CL|2 − |CR|2)

−m2(CLC∗R + CRC
∗
L) +m2γ5(CLC∗R − CRC∗L))

} (3.140)

and after evaluating the trace the final result is

Re{M1M†2} = g2
sCF

2(pk)(p1k)
[
(|CL|2 + |CR|2)(2m2

1(p2k)− 2m2
2(p1k)

+ 4(p1p2)(m2
1 + (p1k) + (p1p2) + (p2k)))

+ (CLC∗R + CRC
∗
L)(−m1m2(m2

1 + 3(p1k) + (p1p2)− (p2k)))
]
.

(3.141)

3.3.2. Re-Parametrization of the Phase Space and the Amplitudes

In Section 3.1.3 it was shown that the three-particle phase space needed for the real correc-
tions contains a two-particle phase space and remaining integrations which will reveal the
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40 3. Calculation of the Decay Width

IR divergences. The integrals needed for this calculation were already calculated in [77], for
example. In order to use the results derived in that work, the phase space integral and the
amplitudes have to be adopted to the notation employed there.
First of all, the new integration variables are defined by

y = 2(p1k)
m2
q̃(1− r)2 , (3.142)

z = 2(p1p2)
m2
q̃(1− r2) , (3.143)

with
r2 = m2

2
m2
q̃

(3.144)

as before. From Eqs. (3.142) and (3.143) it is possible to derive all other dot products of
four-momenta needed for the amplitudes of Section 3.3.1. They are given by

(p1k) =
m2
q̃

2 (1− r)2y , (3.145a)

(p1p2) =
m2
q̃

2 (1− r2)z , (3.145b)

(p1p) =
m2
q̃

2 (1− r)2y +
m2
q̃

2 (1− r2)z +m2
1 , (3.145c)

(kp) =
m2
q̃

2 (1− r2)(1− z)− m2
1

2 , (3.145d)

(p2k) =
m2
q̃

2 (1− r2)(1− z)−
m2
q̃

2 (1− r)2y − m2
1

2 , (3.145e)

(p2p) =
m2
q̃

2 (1 + r2)−
m2
q̃

2 (1− r)2y − m2
1

2 . (3.145f)

In the following transformation of the integral m1 is set to zero for simplicity as it is the mass
of a quark which is light in comparison to the mass of the decaying squark. The three-particle
phase space has been given in Eq. (3.37) and is here repeated for convenience,

dΦ3 = 1
8

dΩd−1
(2π)d−1

dΩd−2
(2π)d−2dp

0
1dk0d cos θ

[
p02

1 k
02(1− cos2 θ)

]−ε
δ(cos θ − cos θ0) . (3.146)

From Eqs. (3.145) p0
1 and k0 can be extracted in the rest frame of the decaying particle as

(pk) = p0k0 − ~p~k = mq̃k
0 (3.147a)

⇔ k0 = mq̃

2 (1− r2)(1− z) (3.147b)

and

(pp1) = p0p0
1 − ~p~p1 = mq̃p

0
1 (3.148a)

⇔ p0
1 = mq̃

2 (1− r)2y + mq̃

2 (1− r2)z . (3.148b)

Variable transformation of the integrand in Eq. (3.146) leads to

f(p0
1, k

0)dp0
1dk0 = g(y, z)|detJ |dydz , (3.149)
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where J is the Jacobi matrix of the variable transformation (p0
1, k

0) → (y, z) which can be
obtained from the definitions of p0

1 and k0 in Eqs. (3.147) and (3.148). The absolute value of
its determinant is then given by

|detJ | =
m2
q̃

4 (1− r)2(1− r2) , (3.150)

and we obtain
f(p0

1, k
0)dp0

1dk0 = g(y, z)
m2
q̃

4 (1− r)2(1− r2)dydz . (3.151)

The transformed integrand g(y, z) as well as the integration bounds for y and z will be
determined in the following.

3.3.2.1. Integration Bounds

The integration bounds for y and z can be derived using the properties of the dot products
of Section 3.3.2. In addition, the following properties of r2 = m2

2/m
2
q̃ are implicitly used:

mq̃ > 0 and 0 ≤ m2
2 < m2

q̃ (3.152a)
⇒ r2 ∈ [0, 1) and r ∈ [0, 1) (3.152b)
⇒ 1− r > 0 and 1− r2 > 0 . (3.152c)

Bounds for the z-Integration

The upper bound in the rest frame of the decaying particle is found to be

(kp) = p0k0 − ~p~k = p0k0 ≥ 0 (3.153a)

⇔
m2
q̃

2 (1− r2)(1− z) ≥ 0 (3.153b)

⇔ 1− z ≥ 0 (3.153c)
⇔ z ≤ 1 . (3.153d)

For the lower bound, we first show that

(p1p2) = p0
1p

0
2 −

√
p02

1 −m2
1

√
p02

2 −m2
2 cosϕ ≥ 0 (3.154)

with ϕ denoting the angle between the momenta ~p1 and ~p2. Consider

1. Case cosϕ > 0:
Since p02

i −m2
i ≤ p02

i , i = 1, 2 holds

(p1p2) ≥ p0
1p

0
2(1− cosϕ) ≥ p0

1p
0
2(1− 1) = 0 . (3.155)

2. Case cosϕ < 0:
It is (p1p2) = p0

1p
0
2 +

√
p02

1 −m2
1

√
p02

2 −m2
2| cosϕ| .

Since p02
i = m2

i + |~pi|2 ≥ m2
i it is

√
p02
i −m2

i ≥ 0 for i = 1, 2 and thus (p1p2) ≥ 0.

Now Eq. (3.145b) can be applied to get the lower bound for z by

(p1p2) ≥ 0 (3.156a)

⇔
m2
q̃

2 (1− r2)z ≥ 0 (3.156b)

⇔ z ≥ 0 . (3.156c)
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42 3. Calculation of the Decay Width

So the result is
z ∈ [0, 1] . (3.157)

Bounds for the y-Integration

The lower bound is directly obtained from (3.145a). Recall, that θ is the angle between ~p1
and ~k. Then, since cos θ ≤ 1 holds

(p1k) = p0
1k

0(1− cos θ) ≥ 0 (3.158a)

⇔
m2
q̃

2 (1− r)2y ≥ 0 (3.158b)

⇔ y ≥ 0 . (3.158c)

For the upper bound denoted by ŷ consider again (3.145a) but with cos θ = −1:

m2
q̃

2 (1− r)2ŷ = 2p0
1k

0
∣∣∣
y=ŷ

(3.159a)

⇔ (1− r)2ŷ = (1− r)2ŷ(1− r2)(1− z) + (1− r2)2z(1− z) (3.159b)
⇔ ŷ(1− (1− r2)(1− z)) = (1 + r)2z(1− z) (3.159c)

⇔ ŷ = (1 + r)2z(1− z)
z + r2(1− z) , (3.159d)

where k0 and p0
1 were replaced by Eqs. (3.147b) and (3.148b), respectively. We therefore have

y ∈ [0, ŷ] with ŷ = (1 + r)2z(1− z)
z + r2(1− z) . (3.160)

Note that the upper bound for y depends on z so that the order of integration is not arbitrary
any more.

3.3.2.2. Transformation of the Integrand

The integrand consists of the three-particle phase space of Eq. (3.146) and the amplitudes
squared of Section 3.3.1.

Phase Space

Comparison of Eq. (3.149) with Eq. (3.146) yields

f(p0
1, k

0) =
[
p02

1 k
02(1− cos2 θ)

]−ε
. (3.161)

For the case of m1 = 0 with (p1k) = p0
1k

0(1− cos θ) we have

(p0
1k

0)2 = (p1k)2

(1− cos θ)2 . (3.162)

Inserting this into Eq. (3.161) and replacing the dot product using Eq. (3.145a) leads to

g(y, z) =
[
m4
q̃

4 (1− r)4y2 1 + cos θ
1− cos θ

]−ε
. (3.163)
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3.3. Real Corrections: Gluon Radiation 43

The remaining step is to determine cos θ0 in terms of y and z since carrying out the cos θ
integration returns a factor (1 + cos θ0)/(1− cos θ0) in the integrand. Starting with the initial
condition

p0
1 +

√
(~p− ~p1 − ~k)2 +m2

2 + k0 −mq̃ = 0 , (3.164)

the extraction of cos θ0 is straight forward. By introducing r and the dot products of
Eqs. (3.145) the result is

cos θ0 =
m2
q̃(1− r2)− 2(pp1)− 2(pk) + 2p0

1k
0

2p0
1k

0 , (3.165)

and therefore the factor in the integrand becomes

1 + cos θ0
1− cos θ0

=
4p0

1k
0 +m2

q̃(1− r2)− 2((pp1) + (pk))
−m2

q̃(1− r2) + 2((pp1) + (pk)) . (3.166)

Using dot products of Eqs. (3.145) again, yields

2((pp1) + (pk)) = 2m2
q̃ − 2(pp2) (3.167a)

= m2
q̃(1− r2) +m2

q̃(1− r)2y (3.167b)

and Eq. (3.166) simplifies to

1 + cos θ0
1− cos θ0

=
4p0

1k
0 −m2

q̃(1− r)2y

m2
q̃(1− r)2y

. (3.168)

By further replacing p0
1 and k0 through Eqs. (3.147) and (3.148) we get

1 + cos θ0
1− cos θ0

= y−1
[
(1 + r)2z(1− z)− y(z + r2(1− z))

]
(3.169a)

= y−1(ŷ − y)(z + r2(1− z)) (3.169b)

with ŷ from Eq. (3.160). The result for the term in the integrand coming from the phase
space is then given by

g(y, z) =
[
m4
q̃

4 (1− r)4y2
]−ε [

y−1(ŷ − y)(z + r2(1− z))
]−ε

. (3.170)

Now everything can be put together and the three-particle phase space in d = 4− 2ε dimen-
sions using Eq. (3.37) reads

dΦ3 = 1− r2

32(2π)4
dΩd−1

Γ(1− ε)(m2
q̃)1−2ε(1− r)2−4ε(4π)3ε

·
1∫

0

ŷ∫
0

y−ε(ŷ − y)−ε(z + r2(1− z))−εdydz .
(3.171)

The corresponding result for the two-particle phase space as derived in Section 3.1.2.1 is

dΦ2 = dΩd−1
8(2π)2

1
(m2

q̃)ε
(1− r2)1−2ε(4π)2ε (3.172)
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and therefore

dΦ3 =dΦ2
1

4(2π)2 (4π)ε(m2
q̃)1−ε(1− r)2 1

Γ(1− ε)

(1 + r

1− r

)2ε

·
1∫

0

ŷ∫
0

y−ε(ŷ − y)−ε(z + r2(1− z))−εdydz .
(3.173)

The factorization shown for the general case in Section 3.1.3 is demonstrated here explicitly
by Eq. (3.173). Both Eq. (3.171) and (3.173) are in agreement with Ref. [77].

Amplitudes

The amplitudes have been given in terms of dot products of four-momenta in Section 3.3.1.
The latter are now replaced using Eqs. (3.145) and the amplitudes are then written such
that the integrals given in Table I of Ref. [77] can be identified directly. Setting m1 = 0 and
defining

C := 2g2
sCF (|CL|2 + |CR|2) , (3.174)

the amplitudes become

|M1|2 = C

[ −1
(1− r)2

(
1− r

)2
+ 1 + r

1− r

(1
y

)
− 1 + r

1− r

(
z

y

)]
, (3.175)

|M2|2 = C
2(1 + r)2

1− r2

[( 1
(1 + r)2(1− z)

)
+ 1

2

( −2
(1 + r)2(1− z)2

)]
, (3.176)

and

2Re{M1M†2} = C
1 + r

1− r

[
−2
(1
y

)
+
( 2

(1− z)y

)
− 2r2

( 1
(1 + r)2(1− z)

)]
. (3.177)

3.3.3. Divergences and Finite Terms

To complete the calculation of the partial decay width resulting from FSR and ISR in
Eq. (3.127) the integrals over y and z have to be evaluated. The remaining two-particle
phase space in Eq. (3.173) only contributes a factor

dΦ2 = 1
8π (1− r2) , (3.178)

as shown in Section 3.1.2.1. It is not necessary to keep the two-particle phase space in
d = 4 − 2ε dimensions due to the arguments given at the end of Section 3.1.3. The same
factor for the phase space also applies for the decay width at tree-level and for the virtual
corrections in Eq. (3.38b).
Using the results for the integrals given in Ref. [77], the singular terms coming from the
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amplitudes in Eqs. (3.175) to (3.177) appear as poles in ε

|M1|2
∣∣∣
yz

= C
1 + r

1− r

[
− 1

2ε −
5
4 −

1
2(1− r2) −

r4

2(1− r2)2 ln r2 + ln(1− r2)
]
, (3.179)

|M2|2
∣∣∣
yz

= C
1 + r

1− r

[
1
ε

+ 4− 2r2

1− r2 + 2r4

(1− r2)2 ln r2 − 2 ln(1− r2)
]
, (3.180)

2Re{M1M†2}
∣∣∣
yz

= C
1 + r

1− r

[
1
ε2

+ 2
ε

(1− ln(1− r2)) + 6− 5π2

6

− 2r2

1− r2 − 4 ln(1− r2) + 2 ln2(1− r2)

− 2r2

(1− r2)2 ln r2 + 2Li2(1− r2)
]
.

(3.181)

The sum of all contributions then reads

|Mreal|2
∣∣∣
yz

= C
1 + r

1− r

[
1
ε2

+ 1
ε

(5
2 − 2 ln(1− r2)

)
+ 35

4 −
5π2

6

− 1
2(1− r2) − 5 ln(1− r2) + 2 ln2(1− r2)

+r2(3r2 − 4)
2(1− r2)2 ln r2 + 2Li2(1− r2)

]
.

(3.182)

In terms of Eq. (3.43) now the total decay width with renormalized quantities in the ampli-
tudes can be written as

Γ = 1
2mq̃

∫ (
|Mtree|2 + |Mvirt|2 + |Mreal|2

∣∣∣
yz

)
dΦ2 (3.183)

and the IR divergences will cancel in the integrand. This is not checked analytically here
since the virtual corrections which contain the counterpart to the IR divergences of the real
corrections are not calculated by hand. However, a numerical check was performed with the
use of Eq. (3.182) proving that all divergences are canceled in Eq. (3.183). Terms of O(ε0)
are the finite contributions to the decay width coming from ISR and FSR.

3.4. Four-Body Decay
As explained in Section 2.2.4, once the mass difference between the lightest up-type squark
and the neutralino becomes small and in particular smaller than the mass of the W boson,
the four-body decay of the squark is a competing process to the flavor changing two-body
decay into a charm- or an up-quark and a neutralino. The calculation of the decay width for
the four-body decay is not part of this work, but was performed by other members of our
research group. Here, only some basic facts shall be mentioned.
There are many different diagrams contributing to the four-body decay of the squark. Ex-
emplarily, two Feynman diagrams are shown in Figure 3.8. The left one shows the decay
with an internal top-quark and a W boson. Thus, there is no suppression due to FCNC cou-
plings at the squark-quark-neutralino vertex. Then the off-shell top decays via its dominant
decay mode into a bottom-quark and an off-shell W boson which subsequently decays into a
fermion-anti-fermion pair. The final state is hence given by χ̃0

1bf f̄
′. The fermion-anti-fermion
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ũ1
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f̄ ′

ũ1
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1

W+ f

f̄ ′

Figure 3.8: Examples for contributions to the four-body decay.

pair ff̄ ′ consists of leptons in about a third, and of quarks in about two third of the cases,
corresponding to the branching ratios of the leptonic and hadronic decay modes of the W
boson.
The same final state can be reached in the diagram on the right of Figure 3.8, where the in-
ternal particles are a chargino χ̃+

1 and a W boson. Also other diagrams are possible involving
charged Higgs bosons, squarks and gluinos. However, all internal particles in these diagrams
are heavier than the top-quark and the W boson. Additionally, in the amplitude for the left
diagram the first two vertex factors are proportional to the dominant elements of the squark
rotation matrix and the CKM matrix. Thus, the diagram on the left is expected to give the
largest contribution to the four-body decay.
This has been confirmed by explicit calculation. Results and consequences for the detection
of the lightest up-type squark ũ1 are presented in Chapter 5.
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CHAPTER 4

IMPLEMENTATION AND CONSTRAINTS

This chapter aims at describing the implementation of the calculation shown in Chapter 3
and on the procedure of deriving the numerical results. This includes the calculation itself,
the generation of the particle spectrum (see Section 4.2) and the check whether all constraints
coming from experiments are satisfied (Section 4.3).

4.1. Implementation of the Calculation
In Chapter 3 all components needed for the analytical expression for the decay width were
derived. For the numerical calculation of the decay width, basically Eq. (3.183) needs to
be implemented. The two-particle phase space in d = 4 dimensions is given by Eq. (3.178)
and the transition amplitude resulting from the real corrections is given by Eq. (3.182). The
tree-level part and the virtual contributions are given in Eq. (3.126), where the couplings CL
and CR are given by the expressions within the brackets in Eqs. (3.78) and (3.79) with the
renormalization constants replaced by the formulas given in Section 3.2.2.2.
All these formulas have been implemented in a Fortran program. The analytic formulas for the
real corrections have been derived by hand, as well as the renormalization procedure and the
counterterms. The transition amplitudes for the leading order, the vertex corrections and the
self-energies have been generated using FeynArts [78] and FormCalc [79] and the resulting
formulas have been exported to a Fortran code which has then been implemented in the
Fortran program. To check that the divergences are canceled, the UV divergent parts of the
amplitudes have been extracted using built-in functions of FormCalc and it has been verified
that the UV divergent parts of the counterterms and the vertex corrections cancel. For the IR
divergences the option, provided by LoopTools [79], to isolate the contributions proportional
to ε−1 or ε−2 in the loop integrals, together with the implementation of the divergent parts
in Eq. (3.182) has been used to check the cancellation of the IR divergences numerically.
The Fortran program features the SUSY Les Houches Accord 2 (SLHA2) [51], which means
that all parameters like masses, couplings and mixing angles have to be provided in the
SLHA2 format. The calculation and the program have been checked against an independent
calculation and implementation by another member of our research group [60].
One feature concerning the implementation of the real corrections shall be highlighted here.
The transition amplitude for the real contributions in Eq. (3.182) contains a term proportional
to a dilogarithm, which cannot be decomposed into ordinary logarithms any further. As no
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48 4. Implementation and Constraints

built-in function for the dilogarithm is available in Fortran, an own implementation of the
expansions series [80]

Li2(z) =
∞∑
k=1

zk

k2 ; |z| < 1 (4.1)

has been used. In the case of Eq. (3.182) the argument z is given by 1 − r2. Recalling that
r2 = m2

2/m
2
q̃ and m2 < mq̃ the condition |z| < 1 is fulfilled for m2 6= 0.

4.2. Spectrum Generator
In order to calculate the particle spectrum, the couplings and the mixing matrices, a spectrum
generator is used. The spectrum generator itself requires inputs, containing information about
the physical model which shall be used, input parameters of the Standard Model (SM) and
inputs related to the model of interest. In this work SPheno [81, 82] is used for this purpose.
Both input and output of the spectrum generator are in the SLHA format.
As explained in Sections 2.2.2 and 2.2.3, the MSSM with a general flavor structure is used
here. Therefore the SLHA2 [51] format is chosen for both the input and output files. The
model used in this work and the model specific parameters have been explained in Section
2.2.2. For convenience they are stated here again,

mL̃1
= mL̃2

, mL̃3
, (4.2)

mẼ1
= mẼ2

, mẼ3
, (4.3)

mQ̃1
= mQ̃2

, mQ̃3
, (4.4)

mŨ1
= mŨ2

, mŨ3
, (4.5)

mD̃1
= mD̃2

, mD̃3
, (4.6)

M1, M2, M3 (4.7)

are the flavor-diagonal soft SUSY breaking masses,

µ, mA, tan β (4.8)

are the higgsino mass parameter, the pseudoscalar mass and the ratio of the two vevs of the
two Higgs doublets and

At , Ab , Aτ (4.9)

are the trilinear couplings for the particles of the third generation. Other inputs are the SM
parameters

GF , α
MS
s (MZ), mZ,pole, m

MS
b (mb), mt,pole, mτ,pole, VCKM , (4.10)

where GF is the Fermi constant, mZ,pole the pole mass of the Z-boson, αMS
s (MZ) the strong

coupling constant in the MS scheme at the scale MZ , mMS
b (mb) the running mass of the

b-quark in the MS scheme at the scale mb, mt,pole and mτ,pole the pole masses of the top-
quark and the τ -lepton and VCKM is the CKM-matrix. Both input and output parameters
of the spectrum are evaluated at the scale Q = 300 GeV. The spectrum generator reads in
the input values and determines via RGE running the particle spectrum, the couplings and
mixing matrices iteratively and provides the resulting spectrum at the desired scale Q. More
information can be found in Refs. [81, 82].
Some general features concerning the relevant parameters for the decay ũ1 → (c, u)χ̃0

1 can be
understood by neglecting the general flavor structure and thus assuming the lightest up-type
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squark to be the lightest stop t̃1. The masses of the stop mass eigenstates t̃1 and t̃2 are given
by (see [59], for example)

m2
t̃1,2

= 1
2(m2

Ũ3
+m2

Q̃3
) + 1

4m
2
Z cos 2β +m2

t

∓
{[1

2(m2
Q̃3
−m2

Ũ3
) +m2

Z cos 2β
(1

4 −
2
3 sin2 θW

)]2
+m2

t (µ cotβ −At)2
} 1

2

.

(4.11)

In the case of general mixing the strongest influence comes from mŨ3
, mQ̃3

, At and tan β,
although the other soft SUSY-breaking parameters also play a role. In particular for the
mixing matrices, all soft SUSY-breaking masses are relevant. The neutralino mass matrix
reads [38]

Mneut =


M1 0 −MZcβsW MZsβsW

0 M2 MZcβcW −MZsβcW

−MZcβsW MZcβcW 0 −µ
MZsβsW −MZsβcW −µ 0

 , (4.12)

where the upper two rows correspond to the bino and wino states and the lower two rows
to the higgsino states. Thus, the mixing of gauginos and higgsinos is given by the upper
right and lower left 2 × 2 matrices and is of O(MZ). Assuming that M1,M2, |µ| � MZ the
masses of the four neutralinos are dominated by M1, M2 and |µ|. In order to understand
which parameters are important for a light neutralino, also the chargino masses have to be
considered. They are given by [38]

Mχ̃±2,1
= 1

2
[
|M2

2 |+ |µ2|+ 2M2
W ±

{
(|M2

2 | − |µ2|)2

+ 4M4
W cos2 2β + 4M2

W (|M2
2 |+ |µ2|+ 2Re(M2µ) sin 2β)

} 1
2
]
.

(4.13)

From Eq. (4.13) it can be inferred that if either M2 or |µ| is much smaller than the other
one, respectively, the mass of the light chargino Mχ̃±1

is dominated by the lighter parameter
of M2 and |µ|. Thus, if the light neutralino is obtained by taking low values for M2 or
|µ|, also at least one chargino has a small mass. In order to see to what extent this is
possible the lower limits for chargino masses have to be considered [83]. A light neutralino
can always be obtained for a small value of M1, which already implies that presumably the
lightest neutralino will be bino-like. A way to enlarge the higgsino component of the lightest
neutralino is given by tan β which governs the mixing of gauginos and higgsinos.
The leading terms for the mass squared of the lightest CP -even Higgs boson h0 with mA �
mZ are [84–86]

m2
h0 = m2

Z cos2 2β + 3g2m4
t

8π2m2
W

[
log

(
m2
S

m2
t

)
+X2

t

(
1− X2

t

12

)]
+ . . . , (4.14)

where yt and mt are the Yukawa coupling and the mass of the top-quark, m2
S = mt̃1mt̃2 and

Xt = (At + µ cotβ)/mS . As can be inferred from Eq. (4.14), the Higgs boson mass can be
raised to the measured value of ∼ 125 GeV through large stop masses and/or large mixing.
The impact of these parameters on the masses of the particles and thereby on the decay
widths and branching ratios will be studied in Chapter 5.
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50 4. Implementation and Constraints

4.3. Experimental Constraints

No SUSY particle has been observed so far. Nevertheless, exclusion limits for these particles
have been deduced from their non-observation. In the numerical analysis these limits are taken
into account. In addition it is checked whether the spectrum used is compatible with the LHC
Higgs data, with the measured relic density and with the limits on the strengths of flavor
changing neutral currents. In Section 4.3.1 the constraints coming from the Higgs discovery
will be presented, followed by the constraints from the Dark Matter measurement in Section
4.3.2. Afterwards the effects on flavor observables at low energy will be checked (Section
4.3.3) and finally the current mass exclusion limits for SUSY particles will be discussed.

4.3.1. Higgs

As explained in Section 2.2.2, in the MSSM there are five Higgs bosons and it is possible that
one of them has properties similar to the SM Higgs boson such that the discovered Higgs
boson could also be a SUSY Higgs boson. This means that the Higgs sector of the SUSY
spectrum must be compatible with the measurement of one SM-like Higgs boson and the
non-observation of the remaining four Higgs particles.
The compatibility with the experimental Higgs data is checked with the programs HiggsBounds
and HiggsSignals [87–89]. HiggsBounds takes as inputs the effective couplings of the consid-
ered model normalized to the SM values, the masses and the widths of the Higgs bosons and
checks their compatibility with the non-observation of the SUSY Higgs bosons. The result is
the information, whether the spectrum is excluded at 95% CL with respect to measurements
at Tevatron and LHC or not. HiggsSignals, on the other hand, which takes the same input,
validates the compatibility of the Higgs sector of the spectrum with the data from the obser-
vation of a Higgs boson. Here, the result is given as a p-value. To be consistent, in this work
a p-value of at least 0.05 is demanded for a positive result, corresponding to a non-exclusion
at 95% CL.
In order to perform these checks, the effective couplings and the widths which serve as inputs
for the above programs have to be calculated. To this end, the program HDECAY [90] is used
here in a modified version both for the SUSY Higgs bosons and for the SM Higgs particle.
The original version of HDECAY features the SLHA1 format, where only left- and right-mixing
in the squark and slepton sector is taken into account. In this work, also the mixing of dif-
ferent generations is considered, and therefore the spectrum is given in the SLHA2 format.
In order to avoid rewriting the program to account for the SLHA2, a transformation of the
SLHA2 format to the SLHA1 format is used. More precisely, the 2 × 2 matrices mixing the
left- and right-handed states of the third generation sfermions have to be extracted from the
6× 6 matrix mixing both the left- and right-handed components and the flavors. Moreover,
the dominating flavors of all sfermions have to be identified among the mass- ordered states
f̃s, s = 1 . . . 6.
To retrieve the 2× 2 matrices for the mixing of the left- and right-handed components of the
third generation sfermions, consider the definitions of the mixing matrices of the SLHA1 [91]

f̃1

f̃2

 =

F11 F12

F21 F22

f̃L
f̃R

 , (4.15)
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and of the SLHA2 [51]

f̃1

f̃2

f̃3

f̃4

f̃5

f̃6


=



F11 . . . . . . . . . . . . F16
... . . . ...
... . . . ...
... . . . ...
... . . . ...
F61 . . . . . . . . . . . . F66





f̃1L

f̃2L

f̃3L

f̃1R

f̃2R

f̃3R


, (4.16)

where f̃ stands for either up-type squarks or down-type squarks or sleptons. Here, the focus
is on squarks. It is possible to identify the dominating flavors of the mass ordered states by
inspection of the matrix. The main contribution to the mass ordered states on the left-hand
side comes from one single flavor as usually the flavor off-diagonal elements are small, in
order to account for the restrictions due to flavor observables. Thus, it is possible to search
for the column with the largest element in each row of the 6 × 6 matrix in Eq. (4.16) and
determine the flavor origin of the mass state f̃s according to the flavor ordered states on the
right-hand side. The third generation sfermion mixing matrices for the SLHA1 format are
then determined by the third and sixth element of the rows, where the largest contribution
comes from either the third or the sixth element. Due to mass ordered states and flavor
mixing, the rows where this is the case, can change. Hence, a scan over all rows is necessary.
Note, that the order in mass of the identified states is already correct by scanning from row
one to row six as both in the SLHA1 and the SLHA2, the states on the left-hand side are
mass ordered.
The absolute value of the determinant of the extracted 2 × 2 matrix can serve as a check
whether the correct elements are extracted and whether the assumption that flavor-changing
effects are small, is reasonable. If the flavor off-diagonal elements are small, the absolute
value of the determinant of the 2× 2 matrices will be close to one. Not affecting the mixing
angle, the sign of the determinant is unimportant. If the absolute value of the determinant
significantly deviates from one, either the wrong elements are taken from the 6 × 6 matrix,
or flavor-changing effects are important. An additional check is provided by ensuring that
exactly two states are found with the largest contribution coming from a particular third
generation sfermion.
In the SLHA1 format the squark states are flavor ordered, whereas in the SLHA2 format
they are mass ordered. Therefore the squark masses given in the SLHA2 spectrum have to
be assigned to a certain flavor to account for the SLHA1 format. In order to achieve this, the
mass of the mass eigenstate is associated with the flavor and left- or right-handed component
according to the position of the largest element in the 6× 6 matrix of Eq. (4.16). This means
that the reordering scheme is again based on the 6× 6 mixing matrices and the assumption
that the largest element in each row determines the flavor origin. For the correct mapping of
the masses, see Tables 4.1 and 4.2. A possible procedure for the reordering is

1. Find the largest contribution for each row in the 6× 6 matrices.

2. Determine the flavor and left/right origin of the mass state according to the right-hand
side of Eq. (4.16).

3. Determine the position where the mass of this state is stored according to the SLHA-
numbering (Table 4.1).

4. Relocate this mass to the position corresponding to the appropriate flavor and left/right
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state found in step 2 using Table 4.2.

Mass Ordered States
SLHA2 numbering mass state matrix row position in array

1000001 d̃1 1 6
1000003 d̃2 2 10
1000005 d̃3 3 14
2000001 d̃4 4 7
2000003 d̃5 5 11
2000005 d̃6 6 15
1000002 ũ1 1 8
1000004 ũ2 2 12
1000006 ũ3 3 16
2000002 ũ4 4 9
2000004 ũ5 5 13
2000006 ũ6 6 17

Table 4.1: Table with the SLHA2 numbering for the reordering scheme from SLHA2 to SLHA1.

As an example, consider the SLHA particle identification number 1000002. According to
Table 4.1 the mass assigned to this number corresponds to the mass of the ũ1 in the SLHA2
format. If now the spectrum is interpreted in the SLHA1 format, the mass is associated with
the left-handed up-squark (Table 4.1), regardless of the contribution of the up-flavor to the
mass eigenstate ũ1. In this thesis, the largest contribution to the ũ1 comes from the top-
squarks so the mass of the ũ1 should rather be assigned to the lightest stop with the particle
number 1000006 in the SLHA1 format (see Table 4.2). The reordering scheme proposed above
provides a general method for the correct mapping.
Note, that the masses now assigned to the flavor states are not exact but only approximate.
The smaller the mixing, the better the approximation. The assumption that the mixing of
different generations has negligible effects on the result, has to be checked in the individual
case. For the cases considered in this thesis, typically, the absolute values of the determinants
of the extracted 2× 2 matrices were in the range of 0.995 to 1. For the determination of the
Higgs decays, the described transformation is needed in the calculation of Higgs decays into
gauge bosons and fermions. In these decays and the involved couplings, no flavor changing
occurs at leading order. Moreover, the flavor off-diagonal elements of the matrix in Eq. (4.16)
are small. Thus, the impact on the results is expected to be negligible.

4.3.2. Dark Matter

One of the motivations to investigate theories beyond the Standard Model is the observation of
Dark Matter (DM). By accurate measurements of the cosmic microwave background (CMB)
it is possible to draw conclusions regarding the density of DM in space. These measurements
were performed by the space telescopes Planck and WMAP. Planck reported a cold dark
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Flavor Ordered States
SLHA1 numbering flavor state position in array

1000001 d̃L 6
2000001 d̃R 7
1000002 ũL 8
2000002 ũR 9
1000003 s̃L 10
2000003 s̃R 11
1000004 c̃L 12
2000004 c̃R 13
1000005 b̃1 14
2000005 b̃2 15
1000006 t̃1 16
2000006 t̃2 17

Table 4.2: Table with the SLHA1 numbering for the reordering scheme from SLHA2 to SLHA1.

matter density of [33]

Ωch
2 = 0.1199± 0.0027 . (4.17)

As explained in Section 2.2.2 the lightest SUSY particle can be a candidate for DM. In this
work the lightest neutralino is taken to be the LSP. The density for neutralino DM can be
calculated and compared to the Planck measurement, which is done here with the program
SuperIso Relic [92, 93]. Reading in the SUSY spectrum in terms of an SLHA file the
program calculates the relic density. More details can be found in Refs. [92, 93]. We impose
a constraint of

Ωch
2 < 0.12 , (4.18)

on the relic density resulting from neutralinos, which is compatible with the Planck mea-
surement. By imposing only an upper bound, the neutralinos are not assumed to be the
only source contributing to the measured relic density. However, the neutralino relic density
should not exceed the measured limit.
It turns out that the parameter space for a light bino-like neutralino as LSP which satisfies
the constraint in Eq. (4.18) is quite limited. This changes, if the mass of at least one neutral
Higgs boson is about twice as heavy as the neutralino. In that case the resonant production
of the Higgs boson is possible by the annihilation of two neutralinos and the Higgs boson can
further decay into SM particles as shown in Figure 4.1. Candidates for such Higgs bosons
could be the heavier CP -even Higgs boson H0 or the pseudoscalar Higgs boson A0. In addi-
tion to the decay into massive fermions denoted by f and f̄ in Figure 4.1 both Higgs particles
could also decay into other massive particles. As in the final state there are less LSPs than
in the initial state, this process can lower the relic density.
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χ̃0
l

χ̃0
k

A0, H0

f

f̄

Figure 4.1: Annihilation of two neutralinos into SM particles with intermediate Higgs bosons.

4.3.3. Low Energy Flavor Observables

Loop-mediated decays can be affected by new particles running in the loops. In particular, in
models where FCNCs are possible at tree-level the new particles can have significant impact
on rare decays of mesons. Many of these rare decays have been measured precisely and
therefore the experimental results can rule out points or regions in the parameter space of
the model, where the predictions for the corresponding decays are not compatible with the
measured values. In this thesis, the predictions for these rare decays are calculated with
SuperIso [94, 95]. The program gives out the needed branching ratios. The experimental
values for the branching ratios used to check for compatibility are

BR(B0
s → µ+µ−) = (2.9+0.7

−0.7)× 10−9 [96] , (4.19)
BR(B0 → µ+µ−) < 8.1× 10−10 [97] , (4.20)
BR(B− → τ−ν̄τ ) = (0.96+0.35

−0.35)× 10−4 [98] , (4.21)
BR(B+ → τ+ντ ) = (1.83+0.77

−0.73)× 10−4 [99] , (4.22)
BR(B → Xsγ) = (3.21+0.52

−0.52)× 10−4 [100] , (4.23)

where the errors are upper and lower one sigma bounds. A parameter point is ruled out if at
least one BR deviates more than two standard deviations from the values given in Eqs. (4.19)
to (4.23).
Supersymmetric particles can also alter the anomalous magnetic moment of the muon. The
measured value is

gµ − 2
2 = (11659209+6

−6)× 10−10 [86] . (4.24)

The SUSY contribution to the anomalous magnetic moment is demanded to be smaller than
the experimental error given in Eq. (4.24). That way, the contribution is small enough that it
is not possible to exclude the parameter point by this measurement. The SUSY contribution
to the anomalous magnetic moment is also calculated with SuperIso.

4.3.4. Mass Exclusion Bounds

With the experimental exclusion limits on the sparticle masses it is possible to exclude regions
of the parameter space of the specific model.
We demand the mass of the light CP-even Higgs boson to be

mh0 = 125.5+3.0
−3.0GeV . (4.25)
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This limit is compatible with the measured mass of the Higgs boson discovered by ATLAS and
CMS [1, 2]. The large allowed interval for the Higgs boson mass accounts for the uncertainties
of the spectrum generator [101]. In Section 4.3.1 the program HiggsSignals was used to check
the compatibility of the Higgs sector of the scenario with the experimental data. The result
of the check with HiggsSignals complies with the cut on the mass in Eq. (4.25) in most
cases. Nevertheless, both tests are conducted as the latter is a pure cut on the mass of the
Higgs boson while in HiggsSignals also its width and effective couplings are used.
Other lower bounds on the masses of the SUSY particles, which are employed in this thesis,
are

mg̃ > 1.45 TeV [102] , (4.26)
mχ̃0

1
> 200 GeV [57] , (4.27)

mũ1 > 245 GeV [57] , (4.28)

The limits for the lightest up-type squark and the neutralino in Eqs. (4.27) and (4.28) in com-
bination ensure that the current experimental exclusion bound given in Ref. [57] is respected
in any case. The parameter space is further constrained by requiring that

(mũ1 −mχ̃0
1
) ∈ [5, 75] GeV . (4.29)

Also the exclusion bounds derived in the references of Eqs. (4.26) to (4.28) are given at 95%
CL. Thus, the constraints shown in the sections above altogether assure that the scenarios
used for the numerical analysis in the next chapter are not excluded at at least 95% CL with
respect to the observables which are considered.

As explained in Section 3.4 the four-body decay of the ũ1 is a competing process to the two-
body decay into a quark and the lightest neutralino. The four-body decay and the two-body
decay were both implemented in the program SUSY-HIT [103] by another member of our
research group. Since both decay modes are important and have to be calculated, SUSY-HIT
has been used to derive the numerical results presented in the next Chapter instead of the
own stand-alone program only covering the two-body decay. It has been checked that the
results for the two-body decay in both implementations are consistent. As both the spectrum
generator and HDECAY are launched separately, only SDECAY [104] has been invoked within
SUSY-HIT in order to calculate the decay widths for the two decay modes explained before.

Little changes had to be made in all programs listed in the above sections in order to link
them.
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CHAPTER 5

RESULTS

As already stated in Chapter 3, the two- and the four-body decay of the lightest up-type
squark ũ1 are competing processes in the parameter region where the mass difference of the
ũ1 and the χ̃0

1 is smaller than the W mass. Therefore in this section results for both the
calculation of the FCNC two-body decay shown in Chapter 3 and the calculation of the four-
body decay which was performed by other members of our research group [60] will be shown.
Starting with a random scan over parameters which are relevant for these processes in Section
5.1, properties of both decay modes will be discussed, followed by an analysis of the impact
of symmetries of the soft SUSY breaking parameters (Sec. 5.2).

5.1. Random Scan
In Section 4.2 it was briefly derived which input parameters of the model dominantly affect
the two- and four-body decays. Consequently a random scan over the parameters

mQ̃3
, mŨ3

, At , M1 , mA and tan β (5.1)

was performed. The scan ranges for these parameters are

mQ̃3
∈ [1000, 1500] GeV , (5.2)

mŨ3
∈ [300, 600] GeV , (5.3)

At ∈ [1000, 2000] GeV , (5.4)
M1 ∈ [220, 500] GeV , (5.5)
mA ∈ [400, 1000] GeV , (5.6)

tan β ∈ [1, 15] . (5.7)

All other parameters are fixed to

M2 = 650 GeV ,

M3 = 1530 GeV ,

µ = 900 GeV ,

(5.8)
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and
Aq = Al = 0 , (5.9)

with q = u, d, c, s, b and l = e, µ, τ . The soft SUSY breaking masses for the sleptons are
chosen to be

mL̃,Ẽ = 1000 GeV , (5.10)

and the ones for the squarks are set to

mQ̃i
= mŨi

= 1500 GeV , i = 1, 2 (5.11)

and
mD̃ = 1500 GeV . (5.12)

The SM parameters were set to

GF = 1.16637 · 10−5 , (5.13)

αMS
s (MZ) = 0.1184 , (5.14)
mZ,pole = 91.1876 GeV , (5.15)

mMS
b (mb) = 4.25 GeV , (5.16)
mt,pole = 173.3 GeV , (5.17)
mτ,pole = 1.777 GeV , (5.18)

and
λ = 0.2257 , A = 0.814 , ρ̄ = 0.135 , η̄ = 0.349 (5.19)

for the CKM matrix in the Wolfenstein parametrization, as given by the Particle Data Group
[105]. Moreover, the masses of the first and second generation of quarks and leptons are set
to zero. Note that mŨ3

is chosen to be small to get a light up-type squark and not mQ̃3
since

a low mQ̃3
would also lead to a rather light down-type squark. At the beginning of Section

2.2.4 it was emphasized that the mass difference of ũ1 and χ̃0
1

∆m = mũ1 −mχ̃0
1

(5.20)

is an important quantity for the phenomenology of the decay of the ũ1 which is why the
results will be presented with respect to this mass difference ∆m. To avoid threshold effects
when the difference is close to the charm-quark mass or the W boson mass, the results are
restricted to a range of

∆m ∈ [5, 75] GeV , (5.21)

and all parameter points shown in the following plots pass all constraints explained in Section
4.3. First, we will focus on the two-body decay ũ1 → (c, u)χ̃0

1. The scatter plot in Fig. 5.1
shows the partial decay width of the two-body decay with ∆m on the horizontal axis, taking
into account both the up- and the charm-quark final state. There is a considerable spreading
of the results for a fixed mass difference of the ũ1 and the χ̃0

1 over up to six orders of magnitude.
For example at ∆m ≈ 5 GeV the decay width attains values reaching from about 10−14 GeV
to 10−8 GeV. The ũ1 is dominantly composed of stop flavor states (Sec. 2.2.4 and 4.2), so
that the two-body decay into a charm- or an up-quark is mediated by the flavor off-diagonal
elements in the mixing matrix for the squarks. These elements can vary over several orders
of magnitude, depending on the choice of the input parameters of the model. Hence, it is
possible that different combinations of input parameters yield the same mass difference of
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Figure 5.1: Partial decay width of the two-body decay ũ1 → (c, u)χ̃0
1 for the scan over the parameter

range of Eqs. (5.2) to (5.7).

the ũ1 and the χ̃0
1, but result in considerably different mixing matrix elements. This is the

reason for the large spreading in Fig. 5.1.
In Ref. [106] it was already shown that if the mass difference of the LSP and the NLSP is
sufficiently small, the relic density is low enough to be compatible with experimental data.
However, if the mass difference is too high, the relic density becomes too high as well. The
points in Fig. 5.1 fulfill the upper bound on the relic density also for larger mass differences,
because in this case the described resonant annihilation of two neutralinos into the heavier
CP -even Higgs boson or the pseudoscalar Higgs boson reduces the relic density to values
compatible with the measured value. This can take place if

2mχ̃0
1
≈ mH0,A0 . (5.22)

In the region with ∆m . 40 GeV the density of possible parameter points is much higher
than for ∆m & 40 GeV. In the scan over the parameter space mA andM1 were varied. These
parameters influence the masses of the the two Higgs bosons and the neutralino in Eq. (5.22).
Thus the condition (5.22) is only fulfilled by accident and it becomes clear that in the range
of the mass difference where the resonant annihilation is necessary to acquire the correct relic
density, less scenarios satisfy all constraints.
In order to investigate the relative strength of the decay into the up-quark compared to the
decay into the charm-quark, the ratio of the partial decay widths Ruc is calculated as

Ruc =
Γuχ̃0

1

Γcχ̃0
1

, (5.23)

with Γuχ̃0
1
and Γcχ̃0

1
being the partial decay widths of the decays into up- and charm-quark,

respectively. The result is depicted in Figure 5.2(a) and shows that the contribution of the
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(a) Ratio Ruc as defined in Eq. (5.23).
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Figure 5.2: Results for the two-body-decay.

decay into the up-quark amounts to less than one percent in comparison to the decay into
the charm-quark. Furthermore, the ratio remains constant for all parameter points and the
complete range of the mass difference. This can be understood, knowing that the amplitudes
of the two decays only differ by the corresponding element of the squark mixing matrix. As the
flavor off-diagonal elements are generated through RGE running involving loop processes with
CKM matrix elements, the ratio Ruc can be estimated by the relative size of the respective
CKM matrix elements [53] ∣∣∣∣VubVcb

∣∣∣∣2 ≈ 0.0075 , (5.24)

being in good agreement with the results in Figure 5.2(a). Although the absolute values of
the two flavor off-diagonal mixing matrix elements involved in the two decay widths can vary
over a wide range, cf. Fig. 5.1, their relative strength remains constant.
Next, the impact of the NLO corrections presented in Chapter 3 on the decay width is
analyzed. A measure for the contribution of the NLO corrections is given by the K-factor
defined as

K = ΓNLO
ΓLO

, (5.25)

where ΓNLO is the NLO SUSY-QCD decay width and ΓLO denotes the LO decay width. The
K-factor for all parameter points of the random scan is shown in Figure 5.2(b). The NLO
corrections become more important for lower values of the mass difference between the ũ1
and the χ̃0

1 and roughly amount to 5 to 25 %.

In the following, results for the four-body decay ũ1 → χ̃0
1diff̄

′ are shown. Here, di , i = 1, 2, 3
denotes a down-type quark and the fermion-anti-fermion pair ff̄ ′ stands for either a quark-
anti-quark pair or a charged lepton with the corresponding neutrino. In Figure 5.3 the partial
decay widths of both the two- and the four-body decay are presented, taking into account all
final states for each of the two decay modes. The results for the four-body decay exhibit a
fundamentally different behavior than the ones for the two-body decay: While the results for
the two-body decay are distributed over a wide region all points for the four-body decay are
concentrated on a small band, implying that the four-body decay essentially depends on the
mass difference. This is only possible, if it only weakly depends on the strength of the flavor
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Figure 5.3: Partial decay widths.

off-diagonal elements in the squark mixing matrix, since the results for the two-body decay
have shown that they vary over several orders of magnitude. Consequently, the Feynman
diagrams where only the dominant elements of the mixing matrices are involved must give
the largest contribution to the decay width. An example for such a diagram is given in Figure
3.8 (left). At the first vertex the squark mixing matrix element between the ũ1 and the top
flavor is picked, which is the largest one as the ũ1 is mostly a stop. The second vertex involves
the element Vtb of the CKM-matrix, again being the dominant one. The intermediate top
quark could also be replaced by a charm- or an up-quark since the ũ1 is not a flavor eigenstate.
But if these diagrams gave a considerable contribution, a spreading of the partial decay width
of the four-body decay would be expected, similar to the case of the two-body decay.
With the two-body and four-body decay widths the total decay width of the ũ1 can be
calculated by

Γtot = Γ2-body + Γ4-body . (5.26)
The total decay width is shown in Fig. 5.4(a) and dominated by the two-body decay width
which is in most cases at least two orders of magnitude larger than the four-body decay
width (see Fig. 5.3). Supposing a distance of 50 µm is sufficient to detect a particle decay as
displaced vertex [107] the life-time τ of the particle must be

τ &
50 µm
c

= 1.67 · 10−13 s , (5.27)

assuming that the speed of the particle is approximately given by c ≈ 3 · 108 m/s [86]. In
terms of the decay law (3.2) the life-time of a particle is defined as the time when the number
of particles in the probe has decreased to N0e

−1. The decay width is related to the lifetime
through

Γ = ~
τ
. (5.28)
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(a) Total decay width of the ũ1.
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Figure 5.4: The ũ1 total decay width (left) and two- and four-body decay branching ratios (right).

With ~ ≈ 6.582 · 10−25 GeVs [86] the threshold for observing a displaced vertex is

Γdisp . 3.95 · 10−12 GeV . (5.29)

If the resolution of the detector is higher than assumed in Eq. (5.27) the upper bound for
a displaced vertex will increase accordingly. Applying this to the total decay width reveals
that for most of the scenarios in this scan it is not possible to detect the decay of the ũ1 as
displaced vertex. The only exceptions are a few points at the lower end of the mass difference.

Taking a travel distance of d = 1 · 10−15 m for a color charged particle to hadronize [108] the
upper bound for hadronization is found to be

Γhad . 0.20 GeV . (5.30)

Thus the ũ1 will hadronize in all scenarios found in the random scan. Naturally, the question
arises if the hadronization will influence the decay of the ũ1 and thereby its signature. This
problem is known in flavor physics and a heavy-mass expansion can be used to calculate
inclusive decay rates of hadrons which contain a heavy and a light quark [109]. Then the
dominant contribution is given by the perturbative calculation at parton level and long-
distance bound state effects are suppressed by inverse powers of the mass of the heavy parton.
In Ref. [109] this expansion is used to calculate decays of B mesons. As the mass of the ũ1
is much higher than the mass of the b quark, the heavy-mass expansion can be expected to
hold here as well, resulting in the fact that the hadronization will not have a strong impact
on the decay of the ũ1.
The branching ratios depicted in Fig. 5.4(b) illustrate once again that the two-body decay
is dominant for most of the parameter points. In these cases, the assumption made for the
experimental analysis that the branching ratio into a charm-quark and the neutralino in the
parameter region ∆m < mW is one, can be confirmed (see Sec. 2.2.4 and Ref. [57]). However,
inferring from Figure 5.4(b) our calculations also show that there are parameter points where
the assumption does not hold any more and the four-body decay dominates. The analysis of
these points is subject to the next section.
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Figure 5.5: Parameter points of the random scan in the (mũ1 ,mχ̃0
1
)-plane. The color code indicates

the value of the branching ratio of the two-body decay. All final states of each of the two decay modes
are included.

Figure 5.5 displays all scenarios of the random scan in the (mũ1 ,mχ̃0
1
)-plane and the color

is determined according to the branching ratio of the two-body decay: red corresponds to a
large branching ratio and blue to a small branching ratio. While so far all results have been
presented with respect to the mass difference of the ũ1 and the χ̃0

1, here the values of the two
masses are shown on the horizontal and vertical axis, respectively. The upper skewed line
corresponds to ∆m = 0 and the lower one to ∆m = mW , so that the region studied in this
thesis is located in between. It is apparent that there are scenarios which are not excluded
by the constraints applied and described in Section 4.3 over a wide range of the masses of the
two particles. It is not possible to recognize a substantial difference of the coloring and the
distribution of the points for low and high values of masses. This confirms that the effects
described above depend on the mass difference and not on the absolute values themselves.
The allowed masses are bounded from below by the constraints described in Chapter 4, the
upper limits, on the other hand, reflect the limited scan range of the parameters in Eqs. (5.2)
to (5.7).
As there are parameter points all over the mass range of the lightest up-type squark and the
neutralino which are passing the constraints applied, and the branching ratio of the decay
into a charm-quark and the neutralino is close to one in many cases, the search for the ũ1 in
this decay channel should be continued.

5.2. Random Scan with a U(3)×U(2)×U(3) Symmetry
In the random scan of the previous section some scenarios were found where the four-body
decay has a branching ratio close to one and the two-body decay is negligible. As this is the
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opposite of the assumption made for the experimental analysis [57], now the conditions which
have to be fulfilled to make the four-body decay important will be investigated.
It was already stated that the two-body decay strongly depends on the size of the flavor off-
diagonal elements in the squark mixing matrix. By contrast, the four-body decay is nearly
independent of these elements. Hence, reducing the size of the flavor mixing elements in
the mixing matrix will change the relative strength of the two decay modes in favor of the
four-body decay. As explained in Section 2.2.3 the flavor off-diagonal elements in the squark
mixing matrix are generated via RGE running. With respect to the gauge quantum the three
generations of quarks and squarks are identical. If in addition all particles had the same mass
the RGEs would be the same for all generations and the mixing of different generations would
remain fixed at all scales. However, in reality the masses of quarks of different generations are
not equal resulting in distinct RGEs for each generation and thereby the generation mixing
can vary depending on the energy scale. In this sense in SUSY models of course the soft
SUSY breaking masses of the squarks are important for the mixing of different generations.
For example in the concept of MFV, usually universal soft SUSY breaking masses are chosen
for all generations, resulting in a

U(3)Q̃ × U(3)Ũ × U(3)D̃ (5.31)

symmetry, with U(3)Q̃ standing for the symmetry of the soft SUSY breaking masses for the
left-handed isospin doublets and U(3)Ũ and U(3)D̃ for the ones of the up- and down-type
right-handed isospin singlets [110]. These flavor symmetries provide a method to reduce the
mixing of different generations. Inspecting Eqs. (5.2), (5.3), (5.11) and (5.12) shows that
the full symmetry of Eq. (5.31) is not respected in the random scan of the previous section.
Thus, a possibility to diminish the flavor mixing is to extend the symmetries of the soft SUSY
breaking masses.
Here, this is done in a new, modified random scan. In detail, all input parameters of the
model agree with the ones of the random scan in the previous section, with the exception of
mQ̃i

, i = 1, 2, 3. In the random scan above, mQ̃1
and mQ̃2

were fixed and only mQ̃3
was

varied in the scan. A closer look on the scenarios of the previous random scan where the
four-body decay has a rather large branching ratio reveals, that in these cases the soft SUSY
breaking mass mQ̃3

is approximately the same as mQ̃1
and mQ̃2

. Inspired by this observation,
now all three soft SUSY breaking masses will be modified at the same time with

mQ̃1
= mQ̃2

= mQ̃3
. (5.32)

As a consequence the flavor symmetry of the soft SUSY breaking parameters is enhanced to

U(2)Q̃ × U(2)Ũ × U(3)D̃ −→ U(3)Q̃ × U(2)Ũ × U(3)D̃ . (5.33)

The same analysis as in the previous section is performed, skipping the separate consideration
of the results for the two-body decay since here the focus is on the four-body decay.
The partial decay widths of the two- and four-body decay for the modified random scan
are displayed in Figure 5.6. Here, the partial decay width of the two-body decay is much
smaller compared to the random scan of Section 5.1, whereas the four-body decay width
remains nearly unchanged. This means that extending the symmetry of the left-handed
soft SUSY breaking masses significantly reduced the size of the flavor off-diagonal elements
of the squark mixing matrix. That the size of the four-body decay is basically the same,
again confirms the observation made in Section 5.1 that flavor-changing elements do not
have a large impact on this decay mode. The major difference with respect to the results
obtained in Section 5.1 is, that now already at a mass difference of ∆m ≈ 20 GeV the partial
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Figure 5.6: Two-body (red) and four-body (blue) partial decay widths in the modified random scan
with a larger symmetry group for the soft SUSY breaking masses (Eq. (5.33)).

decay width of the four-body decay is higher than the one of the two-body decay, without
exception. Furthermore, the spreading of the two-body decay is reduced to about two orders
of magnitude. As in the previous section the lower density of possible parameter points for
mass differences ∆m & 40 GeV arises from the fact that a Higgs boson must have a mass
of around two times the neutralino mass by accident in order to fulfill the constraint for the
relic density.
Thus, the total decay width of the ũ1 depicted in Figure 5.7(a) is governed by the four-body
decay over a wide range of the mass difference of the ũ1 and the lightest neutralino. As
before, the ũ1 will hadronize before decaying. However, according to the bound of Eq. (5.29)
now displaced vertices are possible if the mass difference is lower than about 25 GeV.
From the partial and the total decay widths, the branching ratios of the two modes are
calculated and shown in Figure 5.7(b), taking into account all final states for each of the
two decay modes. Clearly, the four-body decay dominates for mass differences of ∆m &
15 GeV. Comparing this to Fig. 5.4(b) demonstrates that the phenomenology of the decay
has completely changed. Only for very low mass differences of NLSP and LSP the two-
body decay is still important which can be understood from the fact that the phase space is
then very limited and the internal, off-shell particles in the four-body decay lead to further
suppression.
As now the four-body decay is the dominant decay mode of the ũ1 it is natural to analyze
the strength of different final states as proposed in Section 3.4. In Figure 5.8 the branching
ratios of four selected final states which give the largest contribution to the four-body decay
are presented. The sum of the branching ratios of the ũ1 into the lightest neutralino, a
bottom-quark and a quark-anti-quark pair qq̄′ where q = u, d, s, c, is marked in red, and the
branching ratios into the neutralino, a bottom-quark and a lepton with the corresponding
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(a) Total decay width of the ũ1.
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Figure 5.7: Total decay width (left) and branching ratios (right) in the modified random scan with
a U(3)Q̃ × U(2)Ũ × U(3)D̃ symmetry for the soft SUSY breaking masses.
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1bēνe)
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Figure 5.8: Branching ratios of the four-body decay into the four most important final states.
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neutrino l̄νl , l = e, µ, τ are colored green, yellow and blue, respectively. First, we focus on
low ∆m. From ∆m ≈ 10 GeV the branching ratios for all final states rise, as was already
seen in Fig. 5.7(b). Neglecting the masses of the leptons, due to lepton universality the same
growth of the branching ratios for all three lepton final states is expected. For the electron
and the muon this is confirmed as the points of these two final states lie on top of each other,
so only the yellow points are visible in Figure 5.8. As stated in Section 2.2.4 the mass of
the τ -lepton is taken into account. This causes the branching ratio of the τ final state to
increase more slowly than the other two branching ratios, but the same values are reached
once the mass difference is high enough so that the mass of the τ has only negligible effects
on the phase space. For ∆m & 35 GeV the branching ratios approach constant values of
about 0.66 for the sum of the final states with a quark-anti-quark pair and of about 0.11 for
each of the lepton final states. These are about the same branching ratios of leptonic and
hadronic decays which would be expected for the decay of a W boson. In combination with
the b quark this forms a top-quark decay signature. Thus, if the four-body decay is dominant,
the process signature of the ũ1 decay looks like the one of a top-quark decay with missing
transverse energy caused by the neutralino leaving the detector. The detailed analysis of the
four-body decay shows, that the diagram with an intermediate top-quark and a W boson
(left diagram of Fig. 3.8) gives the largest contribution to these final states [60]. However, a
difficulty for the reconstruction of the event, i.e. the determination of the origin of the decay
products, is that it will not be possible to reconstruct the W boson or the top-quark directly
by forming the invariant mass of the decay products as neither the top-quark nor the W
boson are on-shell.
The region ∆m ∈ [15, 30] GeV may offer another interesting signature: combining the results
from Figure 5.7(a) and 5.7(b) reveals, that here the lifetime of the ũ1 is long enough to
have a displaced vertex from the ũ1 decay and that the four-body decay can already be the
dominant decay mode. In this case there can be two separate displaced vertices, one from the
ũ1 decay and one from the b-quark in the final state. Again, for better detector resolutions
than assumed in Eq. (5.27) this region is extended.
To conclude, in Figure 5.9 the scenarios found in the random scan with the soft SUSY
breaking masses obeying a U(3)Q̃×U(2)Ũ ×U(3)D̃ symmetry are plotted in the (mũ1 ,mχ̃0

1
)-

plane. Again, the ũ1 mass is indicated on the horizontal axis, the χ̃0
1 mass on the vertical

axis, and the value of the branching ratio of the sum of the two-body decays ũ1 → (u, c)χ̃0
1

is shown by the color code. The results from the previous section hold here as well. Possible
parameter points are located all over the studied range of the masses of the two particles
and the phenomenology essentially depends on the mass difference, not on the absolute mass
values. The difference to the result of the previous random scan in Fig. 5.5 is as obvious as in
Figures 5.6 to 5.8. The two-body decay is only important for a narrow band corresponding
to mass differences of ∆m ∈ [0, 20] GeV, otherwise the four-body decay is dominant.
The results presented in this Section show that in contrast to the case of the first random scan
in the previous section it is also possible that the four-body decay is the dominant decay mode
of the ũ1 over a wide range of the mass difference ∆m. Then, the assumption of a branching
ratio equal to one for the two-body decay into a charm-quark and the lightest neutralino in
Ref. [57] does not hold any more. For that reason we emphasize that a complementary search
for the ũ1 should be conducted in the four-body decay channel.
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Figure 5.9: Parameter points of the modified random scan in the (mũ1 ,mχ̃0
1
)-plane. The color code

indicates the value of the branching ratio of the two-body decay, including both the up-quark and the
charm-quark final state.
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CHAPTER 6

CONCLUSION AND FUTURE PROSPECTS

In this thesis the FCNC two-body decay of the lightest up-type squark ũ1 into a charm- or
an up-quark and the lightest neutralino χ̃0

1 has been calculated in the MSSM using a general
flavor structure. In this model the FCNC decay is possible at tree-level and the dominant
NLO corrections result from the strong interaction. In Chapter 3 the decay width of the ũ1
has been calculated, for the first time including SUSY-QCD NLO corrections. In order to
cancel the UV divergences occurring in the loop diagrams the Lagrangian was renormalized
in the on-shell scheme. The remaining IR divergences are cancelled by the corresponding
divergences in the real corrections. The implementation of these calculations in a stand-alone
Fortran program has been checked against an independent calculation and implementation
by another member of our research group [60]. The competing four-body decay of the ũ1
into the neutralino, a down-type quark and two additional SM fermions has been calculated
by other members as well [60], taking into account the general flavor structure explained
in Section 2.2.3 and the masses of the third generation fermions in the final state. For
the numerical analysis a scan was performed in the MSSM parameter space. Only those
points were retained, that are compatible with the Higgs data, the DM measurement, the
flavor observables and the current exclusion limits for SUSY particles (Chapter 4). For valid
parameter points results were presented for the two-body and the four-body decay in the
parameter region where the mass difference of the ũ1 and the neutralino is ∆m ∈ [5, 75] GeV,
since in this regime these decays are important.
The results in Chapter 5 demonstrate that the two-body decay strongly depends on the size
of the flavor-changing elements in the squark mixing matrix whereas the four-body decay is
nearly independent of them. Depending on the mass difference of the ũ1 and the neutralino,
the NLO corrections for the two-body decay amount to 5 to 25%. It has been shown that the
size of the flavor off-diagonal elements in the squark mixing matrix is affected by assumptions
on the soft SUSY breaking masses. If the flavor changing elements are rather large, the two-
body decay with a charm-quark and the neutralino in the final state is dominant. By contrast,
if the elements are rather small, the four-body decay is dominant and the final state is given
by χ̃0

1bqq̄
′ with q = u, d, s, c in about two third of the cases and by χ̃0

1bl̄νl with l = e, µ, τ
in about one third of the cases, affecting the experimental analysis exclusively based on the
two-body decay into a charm quark and the lightest neutralino [57].
As long as the results are compatible with experimental data, there is no preferred range of
the flavor off-diagonal elements from the theoretical point of view. It is therefore important
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to search for the ũ1 in both the two-body and the four-body decay channel, since depending
on the size of the mixing elements either the former or the latter decay can have a branching
ratio close to one over a wide range of the mass difference between the ũ1 and the χ̃0

1.
In order to further narrow down the viable parameter space, we currently investigate the
possibility to add more flavor observables to the analysis. In detail, the contributions to
Kaon or B meson mixing due to SUSY particles in loops can impose more constraints on
the parameter space of the MSSM. These observables are expected to favor small flavor off-
diagonal elements in the squark mixing matrix, which will then cause an enhancement of the
four-body decay in comparison to the two-body decay.

The search for SUSY particles and in particular squarks is an ongoing task for the current
experiments. As explained in Section 2.2.4 at present the only search for up-type squarks
in the parameter region where the mass difference of the lightest up-type squark and the
lightest neutralino is smaller than the mass of the W boson, focuses on the FCNC two-body
decay. The calculation and the results presented in this thesis show, that the assumption
of a branching ratio of one for the two-body decay made in the experimental analysis is not
necessarily true and that the competing four-body decay can be dominant instead. In this
thesis, results on the decay width of the ũ1 and possible signatures of the relevant decay
modes have been presented for both cases.
With this work we hope to provide the experiments with more precise information for their
analysis and we further encourage the search for light up-type squarks, not only in the two-
body but also in the four-body decay final states, to take another step to find supersymmetry!
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CHAPTER 7

APPENDIX

A. CMS Limits on Stop Pair-Production
The current summary plot based on [61, 62] for all exclusion limits on stop pair production
published by the CMS collaboration is shown in Figure A.1. The stop mass is plotted on
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the horizontal and the neutralino mass on the vertical axis, respectively. Here, the left blue
dashed line corresponds to ∆m = mW and the right blue dashed line indicates ∆m = mt.
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72 7. Appendix

Hence, no exclusion limits are available yet for ∆m < mW .

B. Dirac Gamma-Matrices
This is a collection of relations for Dirac matrices in the notation adopted from [111]. The
γ-matrices are defined as

γ0 = β , γi = βαi with i = 1, 2, 3 , (7.1)

where β and αi are hermitian and satisfy

α2
i = β2 = 1 , {αi, β} = 0 , {αi, αj} = 2δij . (7.2)

This implies that
γ†0 = γ0 and γ†i = −γi (7.3)

and one can show that the γ-matrices obey the Clifford Algebra

{γµ, γν} = 2gµν (7.4)

and similarly
{γµ† , γν†} = 2gµν . (7.5)

In four dimensions γ5 is defined as

γ5 = iγ0γ1γ2γ3 , (7.6)
{γµ, γ5} = 0 , (7.7)

γ2
5 = 14 . (7.8)

Then, the following relations hold in four dimensions:

γ0(γµ)†γ0 = γµ , (7.9)
γ0(γ5)†γ0 = −γ5 , (7.10)

γ0(γµγν)†γ0 = γνγµ , (7.11)
γ0(γ5γµ)†γ0 = γµ(−γ5) = γ5γµ , (7.12)

γ0(a/b/ . . . c/)†γ0 = c/ . . . b/a/ . (7.13)

In order to simplify traces it is often convenient to use

γµa/ = −a/γµ + 2aµ , (7.14)
a/b/ = −b/a/+ 2a · b 14 , (7.15)

γµγµ = 4 14 , (7.16)
γµa/b/γµ = 4a · b 14 , (7.17)
Tr{a/b/} = 4a · b , (7.18)

Tr{a/1a/2 . . . a/2n+1} = 0 , (7.19)
Tr{γ5γµ} = 0 , (7.20)

Tr{γ5γµγν} = 0 , (7.21)
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with n ∈ N by exploiting the anticommutator relations above. Some special cases are

{γ0, γν} = g0
µ{γµ

†
, γν

†} (7.22)
= g0

µ · 2gµν (7.23)
= 2g0ν , (7.24)

γ0p/ = −p/γ0 + 2p0 . (7.25)

In d 6= 4 dimensions the following relations hold (taken from [67])

{γµ, γν} = 2gµν , (7.26)
γµγµ = d1d , (7.27)

γµγνγµ = (2− d)γν , (7.28)

and

{γ5, γµ} = 0 , for µ = 0, 1, 2, 3 , (7.29)
[γ5, γµ] = 0 , otherwise , (7.30)

(γ5)2 = 1d , (7.31)
(γ5)† = γ5 . (7.32)
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