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Problems in fermion models on the lattice are discussed.A general
procedure which allows to remove fermion doubling preserving gauge in-
variance in anomaly free chiral models on the lattice is presented. A rep-
resentation of fermion determinant as a path integral of bosonic effective
action is constructed.

PACS numbers: 11.15. Ha

1. Introduction

In this talk I discuss some problems which arise in fermion models on
a lattice. Introduction of the space-time lattice for field theories serves two
main goals. It replaces a field system by a discrete one opening new possibil-
ities for nonperturbative calculations. Secondly, a lattice introduces a natu-
ral cut-off providing ultraviolet regularization. However when dealing with
fermion models one meets difficultues. Fermions are described by anticom-
muting variables which prevents using standard methods of nonperturbative
calculations by computer simulations. Moreover, a naive discretization of
the Dirac action leads to spectrum doubling and therefore it does not pro-
vide a regularization of the original model, but substitutes it by another
one. More sophisticated discretizations [1-6] (for detailed references see [7—
9]) avoid the doubling problem but when applied to chiral models violate
some of the basic physical requirements [10].

In the first part of my talk I willl discuss the problem of spectrum
doubling in chiral fermion models. In the second part a bosonized formula-
tion of fermion models will be given, which allows to avoid the problem of
computation of integrals over Grassmanian variables.
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2. Gauge invariant formulation of anomaly
free chiral models on a lattice

The origin of difficulties with gauge invariant formulation of chiral
fermion models on the lattice is a singular behaviour of the fermion propa-
gators and vertices near the edge of the Brillouin zone p, ~ 7. In partic-
ular in the Wilson model [1] the contribution of this region leads to gauge
noninvariant counterterms. In the SLAC model [2-4] the same region pro-
duces nonlocal counterterms and spurious infrared divergencies [11}. In
other words a lattice is not a good regularization for chiral fermions and to
get an invariant calculational scheme one needs to supress the contribution
of momenta of the order of the cut-off. In fact one meets the same problem
which has to be solved if one wishes to construct an invariant regularization
for the continuum chiral gauge models.

Recently we proposed a manifestly gauge invariant regularization for
continuum anomaly free chiral models [12] (see also [13]). Our procedure
is a generalization of the Pauli-Villars (PV) regularization which allows for
an infinite number of auxilliary PV fields. It has been shown that when
applied to anomaly free chiral models on the lattice this procedure leads to
a gauge invariant continuum theory without fermion doubling both in the
case of Wilson fermions [14] and in the Smit-Swift model [15].However both
these formulations have some drawbacks. It is a lack of the gauge invariance
for a finite lattice spacing in the first case and the necessity to introduce
an additional Yukawa interaction in the second one. It seems that the most
apropriate way to implement this regularization on the lattice is to use
the SLAC discretization. Below I shall present the idea of the generalized
PV regularization and show that using SLAC discretization for anomaly
free chiral gauge models together with the generalized PV regularization
one gets a manifestly gauge invariant model for undoubled lattice fermions
which requires only local gauge invariant counterterms. When applied to
anomaly free chiral Schwinger model it reproduces in the continuum limit
the well known exact solution.

I shall present the general idea using as an example the continuum grand
unified SO(10) model. It is worthwhile to emphasize that the model is not
vector like as we consider the fermions in complex representation. All the
arguments are applicable to the Standard Model or Weinberg-Salam model,
provided the anomalies of quark and lepton sectors are compensated. We
choose here the SO(10) model because all the equations in this case can be
written in a compact form.

The Lagrangian of the SO(10) model can be written as follows

L= “%(F;i{z)z + ii’i'ﬂl(aﬂ - igAifaij)Lbi : (1)
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The matrices o'/ are the SO(10) generators: o'/ = 1/2[I't, I'’], where I
are Hermitian matrices which satisfy the Clifford algebra: [I'?, I'/]4 = 26%.
The chiral SO(10) spinors ¥4+ = 1/2(1+ I'11)%, where Ity = Il ... 10,
describe the 16 dimensional irreducible representation of SO(10) including
quark and lepton fields. We assume also that the spinors ¥4 are lefthanded
P4+ = 1/2(1 £ v5)%+. Index k numerates different generations.

To regularize the model we add the analogous Lagrangian for the PV
fields

Lr =L+ itryu(0u — iQAﬁUij)¢r
M, - _
- ‘EEQ/JrCC'DFuI/J,T + (¥r = &,) + hoc.. (2)

Here v, are fermionic PV fields and (¢ — &) denotes similar terms for
bosonic PV fields ¢ [12]. PV fields realize the reducible 32 dimensional
representation of SO(10), Cp is the usual charge conjugation matrix and C'
is the SO(10) conjugation matrix o?}C’ = —Coy;.

The regularized Lagrangian (2) is obviously invariant with respect to
SO(10) gauge transformations. However it includes the interaction of PV
fields of both chiralities 7,7, whereas the original Lagrangian (1) in-
cludes only 4. Let us show that ¥4 and ¢ give identical contributions
to the divergent diagrams. The spinorial loop with n external lines is pro-
portional to Tr[(1 £ I't1)04,j; - . -Cinja]- But

Tr{l’n%jl---vinjn}:(), if n<5. (3)

Therefore, for divergent diagrams (n < 4) the difference between positive
and negative chirality spinors disappear, and % _ spinors simply double the
contribution of ¢4 spinors.

Imposing the PV conditions

E+2) (=D)7¢r, Y ef{-1)"ME =0, (4)

where ¢, are the numbers of the PV fields with the mass M,, one can
supress the leading asymptotics of the integrands in spinorial loops making
the integrals convergent.

But if the number of generations is odd , for example k = 1, Eq. (4)
cannot be satisfied for integer c¢,. One can overcome this difficulty by al-
lowing an infinite number of PV fields. Choosing M, = MR one gets for
example the following expression for the polarization operator

r=-+00
M, ~/d41 > (-7
rT=—0C
Tr[(1 +v5)vu(l + My )7 (I — p+ My)]
(12 + M2 - p)* + MZ] '
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Summation in the integrand can be done explicitely, giving for the lead-
ing Euclidean asymptotic the result

d s
OR? M Rsinh(rRM 1)’
R*=Fi()+PL)+ PF()+ P(D). (6)

Analogous estimates can be given for next to the leading asymptotics
and for other diagrams [12]. One sees that the integrands decrease expo-
nentially providing the dezired supression of momenta of the order of the
cut-off.

This procedure may be transferred in a straightforward way to lattice
models. In particular for Wilson fermions one can use a standard gauge
invariant discretization of the action (2) and add to it the Wilson mass
terms for the original fields ¢4 and the PV fields ¥1,%”. These terms
break explicit gauge invariance, however due to supression of the momenta
~ %‘i in this model the gauge invariance is automatically restored in the
continuum limit [14]. To preserve gauge invariance for finite lattice spacing
one can introduce the Wilson mass terms in a gauge invariant way via
Yukawa interaction with Higgs fields as in the Smit-Swift model [5, 6]. It
was shown that in distinction with the original Smit-Swift model the PV
fields make the effective Yukawa interaction weak and one can develop a
manifestly gauge invariant perturbation expansion for this model [15]. As
we have already mentioned generalized PV regularization is combined most
naturally with the SLAC discretization procedure [16, 17]. In this case the
regularized action looks as follows

Yu
I= > ¢k(2)y,iD, (r-y)Pexp{iga > Auz)}wi(w

kop,x,y Tu=Ty

Yu
+ D O (2)7uiDulz y)Pexr){'iga > A“(z)}w(y)

rp:cy =z,
—_¢r( )CpCIol + Z " (z)vuiDyulz — y)
TRT,Y
Yu M
xPexp{iga Z Au(z)}ér(y)—‘TQD( 2)CpCeT + he. (7)
Fu=Ty

Here D, is the SLAC derivative
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Other notations are as above. This action is manifestly gauge invariant and
does not produce fermion doubling, but the interaction is nonlocal. For
example the three point vertex looks as follows

Pu(p) — Pulg)

= M B\ 9
9Yu K“(k) Oij ( )
with |
N expliak, — 1
Kyu(k)= p[—m"—. (10)
Here P, is the sawtooth function
2w T
Pu(p) = pu —2m—; — < pu < (2m +1)_. (11)

If p < Z but ¢ > Z the interaction vertex becomes ~ A#(k) which in the

absence of PV ﬁelds results in the appearance of the nonlocal divergent
terms [11]. When the PV fields are introduced the contribution of the
region p ~ a~! is supressed and nonlocal divergencies do not appear. We
shall illustrate it again by the vacuum polarization diagrams generated by
the vertex (9). The typical terms look as follows

I

+ d‘*l
H,(w)r= K Ky/ Trloi;(1 £ 1'11)ok)

xTﬂu+797APU%+NHMAPU+P%+&ﬁH

[Pu(l) = Pu(l+ p[P.(L+ p) = P(1)]
[P2(l) + ME|[P?(I+p)+ M2]

(12)

The contribution of the original fermion is given by H,f,,(o)(Mr =0). Con-
tribution of the bosonic fields differs by sign. By the same reasons as above
¢ and ;7 give the same contributions. As we have already seen the
masses M, and the coefficients ¢, can be choosen in such a way to supress
the asymptotics of the integrand for p, ~ 7. (In the case of odd number
of generations an infinite number of PV fields is needed). Therefore, the
integral over the region 7 — [p| < |l] < T can be done vanishing in the limit

a - 0. In the remaining integral over || < T — |p|

Pu(l) = Pu(l+p) ~pp- - (13)
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The nonlocal factors K, are compensated and in the continuum limit one
gets a manifestly gauge invariant expression which requires only local coun-
terterms. The diagrams with three and four lines are analyzed in the same
way as a polarization operator. In the continuum limit they reduce to the
usual gauge invariant expressions and no nonlocal counterterms appear.

These arguments can be generalized to arbitrary diagrams [16]. The
analogous construction for the anomaly free chiral Shwinger model repro-
duces correctly the exact solution [16, 17].

3. Bosonization of fermion determinants

Now we discuss the problem of bosonized description of fermion models.
The discusion will be restricted to the case of vectorial interaction. We shall
not deal explicitely with the problem of spectrum doubling. All the reason-
ings are automatically transferred to the models improved for example by
adding the Wilson term. The problem of bosonization of fermionic theories
in dimensions D > 2 was studied by several authors (see e.g. [18-22], but
no quite satisfactory solution was known.

Recently Lusher [23] proposed the algorithm for the approximate inver-
sion of the QCD fermion determinant replacing it by an infinite series of
bosonic determinants. In this talk I will describe an alternative approach
which allows to write the exact expression for the fermion determinant as
a path integral of the exponent of a local bosonic action [24]. In my ap-
proach a four dimensional fermionic system is replaced by a five dimensional
constrained bosonic one.

Having in mind application to QCD I consider the interaction of fermions
with Yang-Mills field. First of all we present the determinant of the Dirac
operator as the determinant of the Hermitean operator by using the identity

det(D 4+ m) = det[ys(D +m)], D=7,D,. (14)
In Eq. (14) D, is the lattice covariant derivative

Dyt(a) = AU (@) + ) ~ Uule)il — a]. (15)

U, is a lattice gauge field. We consider a finite lattice with periodic bound-
ary conditions. To provide the positivity of the determinant we consider
the case of two degenerate fermion flavours interacting vectorialy with the

Yang-Mills field.
It is convinient to present the fermion determinant in the following form

det[ys(D + m)]* = / exp {a“ > o) (D? - m%(w)} dpdp.  (16)
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We shall prove that the integral over fermionic fields ¢ can be replaced
by an integral of a five dimensional lattice bosonic action. The spatial
components z are defined as above. The fifth component ¢ to be defined on
the one dimensional lattice of the length L with the lattice spacing b:

L=2Nb, -N<n<N. (17)
We choose b in such a way that b << a and in the continuum limit
ONb? =Lb—0. (18)
We are going to prove the following equality

/ exp{a‘* > d(z)(D? - m2)w(:c)}dzz?d¢
:A_.};l)r,rl}—»ofe’(p{a% Z E[ w1l ¢;(I)¢n($)

~N+1 =

+¢7 () (D? ~ m2)¢n(x)~—\j-f(¢;(w)x(w) + x*(x)sﬁn(x))]}d¢:d¢ndx*dx.

(19)

Here ¢, (z) and x(z) are bosonic fields which carry the same spinorial and
colour indices as the fields ¥(z). The fields ¢,(z) satisfy free boundary
conditions t.e.

¢n=0, n<-N, n>N. (20)

Note that the lattice derivative with respect to the fifth coordinate ¢ is
choosen in the form of a triangular matrix.As we shall see it provides the
triviality of the determinant which arises after integration over fields ¢. This
is a crucial mgredlent of our constructlon

The operator —D? + m? is Hermitean and can be diagonalized by a
unitary transformation. As it does not depend on t this transformation
will make the exponent in the r.h.s. of Eq. (19) diagonal with respect to
all variables except for t. After this transformation the r.h.s. of Eq. (19)
acquires the form

I=_lim I(\b),
A—0,b—0

I(/\,b):/exp{b Z zlr n+1 * _ *QBa¢n

n=—N+4+1 «

\/f(o*ax“ + Xn %)] }d¢;§d¢ndx*dx; PN =0. (21)
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Index o refers now to the eigenstates of the operator —D? + m?2, B, being
the corresponding eigenvalues. Obviously B, > 0.

The integral (21) is convergent as the real part of the action in the
exponent is positive. It is easy to see by rewriting the action in terms of
Fourier components:

5% (k) [~ A (e — 167! + B9 (k)

W
Il
N
]~
\.&124
Vomndhann
B

(e=iknbgro by @ 4 giknby o g (py)y }dk : (22)

The real part is

ReS = ¥ (k)[-A(coskb — 1)b~ + B*]4° (k)dk . (23)

N
¥~
|
Gﬂﬂ\o—ﬁ

As A < 0 and B* > 0, ReS > 0.
Performing in the Eq. (21) the integration over ¢,, one gets

a n.m=~N-+1

N
18 =deic™) | e""{iﬁ‘l > x*“(C‘*);lnx“} i,
(24)

where C, (k) is the kernel of the quadratic form in the Eq. (21). In the
coordinate space Cy is a triangular matrix with the diagonal elements

~ (A + Bgab). (25)

Therefore

det(C) = exp {Z In{A + Bab)zN} . (26)

Separating the constant term one gets

det(C) = exp {QNbA‘l > Ba+ O(Lb)}

= exp{A"1L Tr[-D? + m?]+ O(Lb)} . (27)
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Using the explicit form of the operator D one can easily verify that Tr[—ﬁ2+
m?] is a nonessential constant. It follows also from the fact that the trace
of a local operator is local. It has to be gauge invariant and a polynomial of
the second order in the fields A,. The only possible solution is a constant.
So we can include det(C™!) into normalization constant.

To get an explicit form of the remaining terms it is sufficient to find
the stationary point of the exponent in the Eq. (21). The corresponding
classical equations look as follows

—MBESG 1 — $b T 4 B 4 LTI =0 n# N,
(9% = 9267 + B9 +iL7Ix* =0; n#-N+1, (28)
—rbTIN = RO BY —LmEyre =0,
6% N1b TN+ 6%y B+l =0 (29)

for small b Eqs (28) may be approximated by the differential equations
_}\at¢*a + Ba¢*a + ZL—%X*(] — 0,
ADpd® + B¢ +iL"Ey™ =0, (30)

whereas Eqs (29) play the role of boundary conditions:

s (2)=0 ¢(- %) =o0. (31)

The solution of these equations is

P*o(t) = _\_/_E%;X*a (1 - exp{B“A”1 (t - —]2‘—) }) ,
¢ (t) = —\/fiBa X°* (1 - exp{—B“A_l (t + g) }) . (32)

Substituting these solutions to the Eq. (21) we get in the limit b — 0

L
L _
. XX B L *
_ _ _ Z (==Y Yar Lay*a
l}TOI(A,b) /eXP{ /Ea, Bz |1 "'Xp{ A( 2)} }X X
L )
A
-/ exp{_za XHBY) TN - gap[texp{=BATL]] } e

(33)
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In the limit A — 0 this equation reduces to

— H — ov " e 1o ay—1, o *o [
I—A_}(l]r’rg_wl(z\,b)—ew{ gx (B%)™ ' x }dx dx

= det(—D? + m?). (34)

The equality (19) is proven. Therefore we showed that a four dimensional
fermion determinant can be written as a path integral of the exponent of a
five dimensional local bosonic action. In the same way one can present a two
dimensional fermion determinant as a path integral for three-dimensional
bosonic theory. In the case of lattice models this procedure leads to a well
defined bosonic path integral. No numerical simulations in this approach
have been tried so far and it would be very important to see how the method
works in practical calculations.

I am grateful to the Organizers of the Second Polish-German Simpo-
sium, and in particular to Prof.R.Raczka for hospitality. This researsh
was supported in part by Russian Basic Research Fund under grant 94-
01-00300a.

REFERENCES

(1] K.G. Wilson, Phys. Rev. D10, 2445 (1974); in New Phenomena in Subnuclear
Physics, A.Zichichi ed., Plenum N.Y. 1977.

] S.D. Drell, M. Weinstein, S. Yankielovitz, Phys. Rev. D14, 487, 1627 (1976).

] Y. Aharonov, A. Casher, L. Susskind, Phys. Rev. D5, 1988 (1972).

] L. Susskind, Phys. Rev. D16, 3031 (1977).

] J. Smit, Nucl. Phys. B175, 307 (1980).

| P.D.V. Swift, Phys. Lett. B145, 256 (1984).

1 J. Smit, Nuel. Phys. B (Proc. Suppl.)17, 3 (1990).

] M.F.L. Golterman, Nucl. Phys. (Proc. Suppl.) B20, 528 (1991).

] D.N. Petcher, Nucl. Phys. B (Proc.Suppl.) 30, 50 (1993).

] H.B. Nielsen, M. Ninomiya, Nucl. Phys. B 105, 219 (1981).

] L.H. Karsten, J. Smit, Nucl. Phys. B144, 536 (1978); L.H. Karsten, J. Smit,

Phys. Lett. B85, 100 (1979).

S.A. Frolov, A A. Slavnov, Phys. Lett. B309, 344 (1993).

R. Narayanan, H. Neuberger, Phys. Lett. B302, 62 {1993).

S.A. Frolov, A.A. Slavnov, Nucl. Phys. B411, 647 (1994).

A.A. Slavnov, Phys. Lett. B319, 231 (1993).

A.A. Slavnov, Phys. Lett. B348, 553 (1995).

A.A. Slavnov, Nucl. Phys. B (Proc.Suppl.) 42, 166 (1995).

G.W. Semenoff, Phys. Rev. Lett. 61, 817 (1988).



Fermions on the Lattice 2635

| M. Lusher, Nucl. Phys. B326, 557 (1989).

| E.C. Marino, Phys.Lett. B263, 63 (1991).

] L. Huerta, F. Zanelli, Phys. Rev. Lett. 71, 3622 (1993).

] C.P. Burgess, C.A. Lutken, F. Quevedo, Phys. Lett. B336, 18 (1994).
] M. Lusher Nucl. Phys. B418, 637 (1994).

]

Lett. B, in print.



