
P
o
S
(
C
o
r
f
u
2
0
1
2
)
0
9
4

Discrete symmetries in semi-realistic orientifold
compactifications

P. Anastasopoulos∗

Technische Univ. Wien Inst. für Theoretische Physik, A-1040 Vienna, Austria
E-mail: pascal@hep.itp.tuwien.ac.at

M. Cvetič
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1. Introduction

The Minimal Supersymmetric Standard Model (MSSM) provides solutions to some open is-
sues of the Standard Model (SM), such as the hierarchy problem, exhibiting a natural dark matter
candidate (i.e. the lightest supersymmetric particle, LSP) as well as gauge coupling unification.
On the other hand, it exhibits some severe phenomenological problems, allowing renormalizable
R-parity breaking operators consistent with supersymmetry and gauge invariance of the superpo-
tential that do lead to a disastrous effects like high proton decay rate.

More precisely, the renormalizable MSSM gauge invariant superpotential terms are

WMSSM = YU QLURHu +YD QLDRHd +YL LERHd +µ HuHd

+λ1URDRDR +λ2 QLLDR +λ3 LLER +α LHu , (1.1)

where the terms in the first line are the Yukawa couplings giving mass to quarks and leptons after
electroweak symmetry breaking as well as the µ-term. The second line contains terms, so called
R-parity violating terms, that do not conserve baryon and lepton number. They can lead to rapid
proton decay, rendering the LSP unstable and thus eliminating the possibility of any SUSY particle
being the dark matter candidate. Moreover, SM gauge invariance allows also for the dimension 5
proton decay operators

QLQLQLL URURDRER , (1.2)

which if not suppressed lead to a disastrous high proton decay rate.
In order to avoid these phenomenologically dangerous terms, there should be a mechanism

within the MSSM that removes them. This role is usually played by discrete symmetries. For
example, R-parity or proton triality B3 remove all or some of the terms in the second line of (1.1).
On the other hand proton hexality P6, a discrete Z6 symmetry, forbids the R-violating terms and
the dangerous dimension 5 operators.

Even if such symmetries solve these problems, their fundamental origin is unknown. Since
global discrete symmetries are expected to be violated in consistent theories that includes quantum
gravity [1–5]. An exception to that rule are discrete symmetries that have gauge origin aka discrete
gauge symmetries. For instance abelian discrete symmetries ZN are remnants of continuous U(1)
symmetries that are broken by scalars with charge N under the respective U(1) acquiring vev’s.
However, the presence of a discrete symmetry seems fine-tuned unless there is a dynamical reason
for the scalar field with charge N to acquire an appropriate vev. This possibility has been explored
in several works in the past [6–9] and embedded in the context of heterotic string model building
[10, 11].

Recently, in [12, 13] the authors explore the possibility of an even more fundamental/stringy
origin of these discrete gauge symmetries as remnants of abelian gauge symmetries living on D-
branes. Here we present the results of work [14] where we study the presence of discrete gauge
symmetries in a class of promising MSSM D-brane quivers. After establishing the constraints on
the transformation behaviour of the chiral matter for the presence of discrete gauge symmetries we
perform a systematic search for discrete gauge symmetries within a class of local semi-realistic
D-brane configurations.
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QL UR DR L ER NR Hu Hd

A 0 0 −1 −1 0 1 0 1
L 0 0 0 −1 1 1 0 0
R 0 −1 1 0 1 −1 1 −1

Qdiscrete 0 −m m−n −n− p m+ p n+ p−m m −m+n

Table 1: The family independent generators and the charges of the discrete ZN gauge symmetries in the
MSSM.

This proceeding is organised as follows: In section 2 we review the discrete gauge symme-
tries in the MSSM, using four-dimensional discrete anomaly conditions. In section 3 we discuss
the constraints on the transformation behaviour of chiral matter that arise from string consistency
conditions. Moreover, we establish the conditions on the transformation behaviour of the matter
fields for the presence of a discrete gauge symmetry in D-brane compactifications. In section 4
we describe the systematic bottom-up search that we have perform by imposing the constraints for
the presence of a discrete gauge symmetry, studied before, for a class of intriguing local D-brane
configurations that exhibit a (semi-) realistic phenomenology. We present a characteristic example
and the discrete symmetries that can appear as well as their phenomenological implications.

2. Discrete gauge symmetries in the MSSM from a field theory perspective

In this section, we review all family independent (non-R) discrete gauge symmetries of MSSM
[6]. that satisfy the four-dimensional discrete gauge anomaly constraints, i.e. the mixed and gravi-
tational anomalies

ASU(3)SU(3)ZN , ASU(2)SU(2)ZN , AGGZN . (2.1)

as well as allow for the Yukawa couplings

QLHdDR QLHuUR LHdER . (2.2)

Already shown in [7, 8] any family independent discrete gauge symmetry ZN of the MSSM with
generator gN can be expressed in terms of products of powers of three mutually commuting gener-
ators AN , LN and RN , i.e.

gN = An
N×Lp

N×Rm
N , m,n, p = 0,1, ...N−1 . (2.3)

In table 1 we provide the charges of all chiral matter of MSSM under these three generators.
Solving (2.1, 2.2) one finds a finite class of solutions that contains of only Z2, Z3, Z6, Z9

and Z18 symmetries [6]. We present the results of all possible family independent discrete gauge
symmetries of the MSSM in table 2. A similar analysis can be carried out for the MSSM with three
additional right-handed neutrinos accompanied with a Dirac mass term. In that case one finds that
all Z2, Z3, Z6 discrete gauge symmetries can be realized, however beyond those no further discrete
gauge symmetry that can satisfy the discrete gauge anomaly conditions.

For a given discrete gauge symmetry, and for a specific choice of the parameters m, n and p
we can easily evaluate the discrete charges for each MSSM field and concequently which terms are
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N n p m Discrete gauge symmetries

2 0 0 1 R2

3
0 0 1 R3

0 1 (0,1,2) L3, L3R3, L3R2
3

6
0 0 1 R6

0 2 (1,3,5) L2
6R6, L2

6R3
6, L2

6R5
6

9 3 1 (2,5,8) A3
9L9R2

9, A3
9L9R5

9, A3
9L9R8

9

18 6 2 (1,7,13) A6
18L2

18R18, A6
18L2

18R7
18, A6

18L2
18R13

18

Table 2: All fundamental discrete gauge symmetries in the MSSM satisfying the anomaly cancellation
conditions [6]. Here one allows for heavy fermions with fractional charges.

coupling R2 L3R3 R3 L3 L3R2
3 L2

6R5
6 R6 L2

6R3
6 L2

6R6 Z9 & Z18

HuHd X X X X X X X X X

LHu X

LLER X

QLLDR X

URDRDR X

QLQLQLL X X X

URURDRER X X X

LHuLHu X X X

NRNR X X X

Table 3: Allowed superpotential terms for the respective discrete gauge symmetries [6].

excluded from the superpotential 1.1. The results are given in table 3. The Z2 symmetry R2 is the
usual matter parity [15] while L3R3 is Baryon triality [7]. Proton hexality, basically the product of
matter parity and Baryon triality, is given by L2

6R5
6 and forbids all R-parity violating terms as well

as the dangerous dimension 5 proton decay operators while still allowing for a µ-term HuHd and
the Weinberg operator LHuLHu.

The above discussion on the allowed couplings for the respective discrete gauge symmetry
applies specifically to the MSSM. Allowing for additional singlets, such as right-handed neutrinos,
which do not acquire any vev does not change the analysis. However, the presence of right-handed
neutrinos accompanied with a Dirac neutrino mass term raises the issue of the generation of small
neutrino masses. A particular intriguing mechanism is the see-saw mechanism that requires large
Majorana mass terms for the right-handed neutrinos. In the last line of table 3 we display which of
the discrete symmetries permits for a Majorana mass term and thus allows the generation of small
neutrino masses via the see-saw mechanism.

Finally, there exist two additional classes of discrete gauge symmetries, namely non-abelian
discrete gauge symmetries and discrete R-symmetries. As recently pointed out the latter may play
a special role in GUT theories, realised as a ZR

4 symmetry that forbids all R-parity violating terms
as well as dimension 5 proton decay operators [16–18]. On the other hand non-abelian discrete
gauge symmetries are often times invoked explaining various observations in flavour physics (see
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Representation Multiplicity

a #( a) =
1
2 (πa ◦π ′a−πa ◦πO6)

a #( a) =
1
2 (πa ◦π ′a +πa ◦πO6)

( a, b) #( a, b) = πa ◦πb

( a, b) #( a, b) = πa ◦π ′b

Table 4: Chiral spectrum of intersection D-branes.

e.g. [19]). In this work we perform a systematic bottom-up D-brane analysis which ignores any
specifics of the internal geometry. However non-abelian discrete gauge symmetries as well as
discrete R-symmetries do rely on the details of the compactification manifold. Thus here we focus
only on the subset of abelian discrete gauge symmetries.

3. Discrete symmetries in D-brane compactifications

D-brane model building provides an intriguing framework for semi-realistic model building.
In those constructions the Standard Model lives on some stacks of branes1. Gauge fields are strings
with both ends on the same stack and the chiral matter lives at the intersections. Here, we will
focus on Type IIA constructions with intersecting D6 branes which wrap three-cycles πx in the
internal manifold. Each stack gives rise to an U(N) = SU(N)×U(1) gauge theory. All irreducible
anomalies are cancelled via the tad pole cancellation, which ensures consistency and stability of
the configuration:

∑
x

Nx
(
πx +π

′
x
)
= 4πO6 . (3.1)

The sum runs over all D-brane stacks x in the given global setup and π ′x denotes the orientifold
image cycle of πx while πO6 denotes the orientifold cycle. We introduce a basis of three-cycles {αk}
and {βk} that are even and odd under the orientifold action, respectively, with k = 1, ...,h21 + 1.
The choice of basis is such that αk ·βl = δkl and αk ·αl = βk ·βl = 0. Then a three-cycle πx and its
orientifold image π ′x wrapped by a D-brane stack and its image D-brane stack, respectively, can be
expanded in terms of this basis

πx = ∑
k
(mk

xαk +nk
xβk) π

′
x = ∑

k
(mk

xαk−nk
xβk) , (3.2)

where mk
x and nk

x are integer and are usually referred to as wrapping numbers.
Multiplying 3.1 with the three-cycle πathat is wrapped by the D-brane stack a, using table 4

one obtains after a few some manipulations [38–40]

∑
x 6=a

Nx

(
#( a, x)+#( a, x)

)
+(Na−4)#( a)+(Na +4)#( a) = 0 , (3.3)

1For recent reviews on D-brane model building, see [20–23]. The first local bottom-up constructions were discussed
in [24–26]. For original work on globally consistent non-supersymmetric intersecting D-branes, see [27–30], and for
chiral globally consistent supersymmetric ones, see [31, 32]. For supersymmetric MSSM realizations, see [33–35], and
for supersymmetric constructions within type II RCFT’s, see [36, 37].
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which is a constraint for each D-brane stack a of the D-brane setup. Due to the absence of antisym-
metric representations for abelian gauge symmetries for a U(1) stack, for a single D-brane stack,
the constraint takes the form

∑
x 6=a

Nx

(
#( a, x)+#( a, x)

)
+5#( a) = 0 mod3 . (3.4)

Usually, the abelian part of the groups living on the branes are anomalous and gets a mass via
the Stückelberg mechanism cancelling all the mixed anomalies [41–49]. However for the realiza-
tion of the MSSM, it is required that at least one linear combination

U(1) = ∑
x

qxU(1)x , (3.5)

of these abelian factors originating from each stack of branes remains anomaly free (and massless)
and does play the role of the hypercharge. The masslessness condition reads [25]:

1
2 ∑

x
qxNx(πx−π

′
x) = 0 . (3.6)

which after analogous manipulations as performed above turns into a constraint on the transforma-
tion behaviour of the chiral matter fields that reads

1
2 ∑

x 6=a
qx Nx#( a, x)−

1
2 ∑

x 6=a
qx Nx#( a, x) =

qaNa

2(4−Na)

(
∑
x 6=a

Nx

(
#( a, x)+#( a, x)

)
+8#( a)

)
(3.7)

where we have substituted the antisymmetrics that appear by using the tadpole condition 3.3.
The equations (3.1) and (3.6) are conditions on the three-cycles the D6-branes wrap, and im-

ply the transformation behaviour of the four-dimensional chiral matter under the D-brane gauge
symmetries. More specifically, the chiral matter fields cannot be distributed arbitrarily at the in-
tersections of stacks of D-branes, but they have to obey the above conditions. Let us mention
that the constraints (3.3), (3.4) and (3.7) are only necessary constraints but not sufficient. So any
global D-brane construction has to satisfy those constraints, however a local D-brane configuration
satisfying (3.3), (3.4) and (3.7) may not have a global realization.

3.1 Discrete Gauge Symmetries

For a discrete gauge symmetry ZN arising from a linear combination

ZN = ∑
x

kxU(1)x (3.8)

to survive in the low energy effective field theory it has to satisfy:

1
2 ∑

x
kxNx(πx−π

′
x) = 0 mod N . (3.9)

6
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which represents a separate constraint for each D-brane stack a. Note that due to the non-integer
prefactor 1

2 in equation 3.9 the kx do lie in the interval (0,2N−1). After few manipulations and by
using the tadpole condition (3.3) to eliminate the antisymmetrics, it becomes:

1
2 ∑

x 6=a
kx Nx#( a, x)−

1
2 ∑

x 6=a
kx Nx#( a, x) (3.10)

− kaNa

2(4−Na)

(
∑
x 6=a

Nx

(
#( a, x)+#( a, x)

)
+8#( a)

)
= 0 mod N .

One has to be slightly careful in using the tadpole constraint (3.1) to replace the antisymmetrics
due to the fact that generically the prefactor is non-integer, in particular, in this case where the left
hand side is not 0 but rather 0 mod N. One can compensate that by enlarging the interval for
the kx or by requiring an additional constraint arising from multiplying the homology class of the
orientifold plane with the discrete symmetry constraint (3.8) 2. This additional constraint reads

∑
a

kaNa

(
#( a)−#( a)

)
= 0 mod N , (3.11)

which after replacing the antisymmetrics in order not to have to distinguish between non-abelian
and abelian D-brane stacks takes the form

∑
a

kaNa

4−Na

(
∑
x 6=a

Nx

(
#( a, x)+#( a, x)

)
+2Na#( a)

)
= 0 mod N . (3.12)

Let us mention that the constraints (3.10) and (3.12) do imply the vanishing of the various discrete
gauge anomalies, such as ASU(N)SU(N)ZN or AGGZN . However, analogously to the abelian gauge
symmetry these string theory constraints are more severe than just four-dimensional discrete gauge
anomaly cancellation. Finally, again the constraints (3.10) and (3.12) do provide only necessary
conditions, but not sufficient ones.

4. Systematic bottom-up search

In the work [14], we performed a systematic bottom-up D-brane analysis among promising
semi-realistic local D-brane configurations found in [39, 50, 51]3 in which the Standard Modelis
realized on 4 stacks of D-branes. Those promising quivers satisfy the consistency conditions (3.3),
(3.4) and (3.7) as well as several phenomenological criteria. Among those rank that the desired
Yukawa couplings giving masses to the fermions are realized perturbatively or non-perturbatively
(where D-instantons play a very important role [68–71]) and R-parity violating terms as well as
dangerous dimension 5 proton decay operators do not share the same quantum numbers as the
desired Yukawa couplings.

2Note that for the abelian gauge symmetry such an additional constraint is not necessary, since one can use the
tadpole constraint to replace the homology class of the orientfold plane by all the three-cycles wrapped by the D-brane
stacks.

3For recent analogous work on semi-realistic bottom-up searches, see [40, 52–67].

7



P
o
S
(
C
o
r
f
u
2
0
1
2
)
0
9
4

Discrete symmetries in orientifolds P. Anastasopoulos

Here we will study those local D-brane configurations with respect to discrete symmetries. We
will analyse what quivers do satisfy the constraints to exhibit discrete symmetries and investigate
their implications on the superpotential couplings.

Let us lay out the details of the search: For a chosen N we check whether a given linear
combination of U(1)’s in terms of the vector (ka,kb,kc,kd), with the kx’s being integers, does
satisfy the constraints (3.10) and (3.12). Due to the prefactor 1

2 in eq. (3.10) we let the kx run from
0 to 2N−1.

Via a hypercharge shift we can find to any given solution (ka,kb,kc,kd) an additional equivalent
solutions by adding the hypercharge. Thus (ka+mya,kb+myb,kc+myc,kd +myd) is also a solution
to the constraints (3.10) and (3.12) where m is an integer and the yx denote the integer hypercharge
embedding coefficients. In order to avoid overcounting we fix the discrete charge of QL for one
family to be 0 by choosing ka = kb

4. Thus we run only over three free integer parameter, namely
ka, kc and kd .

Additionally, we demand that the discrete symmetries allow for the quark and lepton Yukawa
couplings in the superpotential, whose presence is crucial for the generation of low energy fermion
masses. It turns out that this requirement is very stringent and rules out various discrete symmetries
which otherwise satisfy the discrete top-down constraints (3.10) and (3.12).

Finally, we often find solutions for discrete gauge symmetries of higher degree due to the 1
2

in (3.10) and (3.12), such as Z12, which eventually after determining the matter field charges turn
out to be of lower degree from a pure MSSM point of view, since all matter charges have a com-
mon divisor. We take this into account when identifying the discrete symmetries but nevertheless
display the linear combinations describing the discrete gauge symmetries in the D-brane language.
Therefore, it frequently happens that Z6 symmetries contain coefficients that are higher than 12.

In [14] we investigated all of the promising four-stack quivers found in a systematic bottom-up
search performed in [39, 50, 51]. Here we will present only the analysis for a specific hypercharge
embedding. We will encounter two examples where the allowed discrete gauge symmetries forbid
R-parity violating terms as well as the dangerous dimension 5 proton decay operators.

4.1 An example: Hypercharge U(1)Y =−1
3U(1)a− 1

2U(1)b +U(1)d

We focus in a class of models where the hyper charge embedding is given by the U(1)Y =

−1
3U(1)a− 1

2U(1)b+U(1)d . In these models, we have the the MSSM particles plus three neutrinos
where the spectra are displayed in table 5.

#
QL DR UR L ER NR Hu Hd

( a, b) ( a, c) ( a, d) a ( b, c) ( c, d) b c c ( b, d) ( b, c) ( b, d)

1 3 3 3 0 3 1 2 0 3 1 1 0
2 3 3 3 0 3 1 2 3 0 1 1 0
3 3 3 0 3 3 0 3 0 3 1 0 1
4 3 3 0 3 3 0 3 3 0 1 0 1

Table 5: MSSM + 3 NR spectrum for setups with U(1)Y =− 1
3U(1)a− 1

2U(1)b +U(1)d .

4In our displayed local D-brane configurations at least one of the left-handed quarks transforms as ( a, b) under
the D-brane gauge symmetry U(3)a×U(2)b.
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• The solution # 1: satisfies all constraints for matter parity, Baryon triality and hence also for
Proton hexality. Matter parity R2 and Baryon triality L3R3 are given by

R2 =U(1)a +U(1)b +U(1)c +5U(1)d (4.1)

L3R3 =U(1)a +U(1)b +3U(1)c +U(1)d . (4.2)

Proton hexality takes the form

L2
6R5

6 =U(1)a +U(1)b +9U(1)c +13U(1)d (4.3)

and does prevent the presence of R-parity violating couplings as well as the presence of
dangerous dimension 5 proton decay operators, and at the same time allows for a µ-term as
well as a Weinberg operator.

• The solution # 2: exhibits a massless U(1) of the form

Uadd(1) =U(1)a +U(1)b +U(1)c−3U(1)d (4.4)

which does not forbid any desired Yukawa couplings. The B-L symmetry is a linear combi-
nation of Uadd(1) and the hypercharge that takes the form U(1)B−L = 2U(1)Y + 1

2Uadd(1).
As before any discrete subgroup satisfies the constraints for the discrete symmetry (3.10) and
(3.12). For instance the Z2 subgroup of Uadd can be interpreted as matter parity. Moreover,
one finds all four different discrete Z3 symmetries found in the MSSM using the pure field
theoretical ansatz. They are given by the following linear combinations

L3R2
3 = 2U(1)c +4U(1)d (4.5)

L3 =U(1)a +U(1)b +5U(1)c +5U(1)d (4.6)

R3 =U(1)a +U(1)b +U(1)c +3U(1)d (4.7)

L3R3 =U(1)a +U(1)b +3U(1)c +U(1)d , (4.8)

where R3 originates from Uadd(1). Only Baryon triality L3R3 allows for the presence of a
Weinberg operator. Thus in presence of the other discrete symmetries it is challenging to find
a mechanism to generate neutrino masses. Finally, the setup also satisfies the constraints to
exhibit all of the Z6 symmetries, i.e.

L2
6R6 = 3U(1)a +3U(1)b +19U(1)c +23U(1)d (4.9)

L2
6R3

6 =U(1)a +U(1)b +17U(1)c +5U(1)d (4.10)

L2
6R5

6 =U(1)a +U(1)b +9U(1)c +13U(1)d (4.11)

R6 =U(1)a +U(1)b +U(1)c +21U(1)d , (4.12)

where R6 originates from Uadd(1). In contrast to the solution # 1 here the proton hexality
may be realized as a subgroup of a larger symmetry, namely a combination of the abelian
gauge symmetry Uadd(1) and the discrete symmetry L3R3. In a concrete realization of this
setup the B∧F couplings may break the Uadd(1) down to matter parity R2 and thus only
Proton hexality survives in the low energy limit. In case a larger symmetry survives the

9
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B∧F couplings one needs a dynamical mechanism for the larger symmetry to break down
to Proton hexality since otherwise the generation of a Weinberg operator and µ-term is not
allowed.

• The solution # 3: may exhibit an additional Uadd(1) = U(1)d which potentially remains
massless, i.e. it satisfies the constraints (3.7). However, the presence of such an abelian gauge
symmetry would spoil the model, since it would forbid various desired Yukawa couplings.
Even worse there exists no discrete subgroup of the abelian gauge symmetry Uadd(1) that
would allow the desired Yukawa couplings. Thus in a concrete realization it must be absent.
The local D-brane configuration however does allow for a discrete Z2 that allows all desired
Yukawa couplings, the matter parity R2, given by

R2 =U(1)a +U(1)b +U(1)c +U(1)d (4.13)

which forbids all R-parity violating couplings.

• The solution # 4: may exhibit two additional U(1)’s given by

Uadd
1 (1) =U(1)b−2U(1)c and Uadd

2 (1) =U(1)d , (4.14)

where the latter cannot survive as a gauge symmtery since it would forbid all desired Yukawa
couplings. On the other hand the abelian gauge symmetry Uadd

1 (1) does allow all superpo-
tential terms. The B-L symmetry is given by UB−L(1) = 1

2UY (1)− 1
4Uadd

1 (1) in terms of the
hypercharge and the additional Uadd

1 (1). One finds for this configuration that the discrete
subgroup of the two abelian gauge symmetries U(1)Y and Uadd

1 (1) do give rise to matter par-
ity R2, to the Z3 symmetry R3 and to the Z6 symmetry R6 These discrete gauge symmetries
are realized as the following linear combinations

R2 =U(1)a +U(1)b +U(1)c +U(1)d (4.15)

R3 =U(1)a +U(1)b +U(1)c (4.16)

R6 =U(1)a +U(1)b +U(1)c +9U(1)d . (4.17)

While R2 forbids all R-parity violating couplings in this local D-brane configuration the
absence of dimension 5 proton decay operators is rather accidental and does not originate
from a discrete gauge symmetry.

4.2 Summary of the results

In [14] we performed an analogous bottom-up search for all hypercharge embeddings. Below
we present the findings of that systematic search:

• The first thing to note is that we do not find in any of the semi-realistic D-brane configurations
family dependent discrete gauge symmetries that allow for the desired Yukawa couplings
QLHuUR, QLHdDR and LHdER. This is somewhat not expected since specifically the leptons
in those D-brane configurations do arise from different intersections of D-brane stacks, and
thus transform differently under the anomalous U(1) factors. However, after determining the
discrete charge of matter fields in different families we realise that they do have the same
charges, even though their D-brane origin is significantly different. On the other hand, this
allows us to compare the field theoretic prediction of CITE with our string theory results.

10
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Disctere symmetries Number of models

None 10
R2 8
L3R3 8
R2, R3, R6 3
R2, L3R3, L2

6R5
6 1

R2, L3R3, R3, L3, L3R2
3, L2

6R5
6, R6, L2

6R3
6, L2

6R6 4

Table 6: Summary of the results. Ten models do not allow for any discrete gauge symmetry. The rest allow
for some symmetries which are displayed on the left colon.

• In disagreement with the field theoretic result [6], we do not find any discrete Z9 and Z18

symmetries for the local MSSM D-brane configurations. This is due to the more constraining
conditions for the appearance of discrete symmetries in D-brane compactifications.

• Matter parity R2 is favoured for the hypercharge embeddings U(1)Y = −1
3U(1)a− 1

2U(1)b

and U(1)Y =−1
3U(1)a− 1

2U(1)b +U(1)d which appears for almost all D-brane setups with
these hypercharge embeddings. For the hypercharge embedding U(1)Y =−1

3U(1)a− 1
2U(1)b

there is only one configuration out of 12 that allows for a Z3 and Z6 discrete symmetry. On
the other hand for the hypercharge embedding U(1)Y =−1

3U(1)a− 1
2U(1)b +U(1)d we do

find for each realization a Z3 symmetry, but only in two cases it is Baryon triality. Those
local D-brane configurations also allow for Proton hexality.

For the Madrid embedding U(1)Y = 1
6U(1)a+

1
2U(1)c− 1

2U(1)d almost all realizations have
the potential to exhibit Baryon triality. However, the presence of matter parity is highly
suppressed. Only for two setups we also find matter parity realized. Hence, those quivers
pass the constraints to exhibit Proton hexality.

• Summarizing in table 6 we find only five local D-brane setups that have the potential to
exhibit Proton hexality (out of 40), which is a particular intriguing discrete symmetry since
it forbids all R-parity violating terms as well as all dangerous dimension 5 proton decay
operators. This suggests that the presence of Proton hexality in D-brane compactifications is
rather suppressed.

• Finally, one observes a similar pattern as in the field theoretical approach, namely that the
presence of discrete Z6 symmetries is tied to the presence of Z2 and Z3 symmetries. We find
the same relations as in pure field theory

R2×L3R3 ∼= L2
6R5

6 , R2×R3 ∼= R6 , R2×L3 ∼= L2
6R3

6 , R2×L3R2
3
∼= L2

6R6 . (4.18)

Thus, the presence of R2 along with a discrete Z3 symmetry implies the presence of a Z6

symmetry.

5. Conclusions

In [14], we study the presence of discrete gauge symmetries in D-brane compactifications.
First, we translate the conditions for the presence of a discrete gauge symmetry in D-brane com-
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pactifications laid out in [12] into constraints on the transformation behaviour of the chiral matter
fields. This allows for a bottom-up search, a search that does not require the knowledge of any
features of the compactification manifold, for local D-brane configurations with respect to discrete
gauge symmetries.

Next, we perform a systematic search for discrete gauge symmetries within a class of promis-
ing local D-brane quivers based on four stacks of D-branes. Those local configurations, that are
consistent with the global consistency conditions, were found in [39, 50, 51] and exhibit the exact
MSSM spectrum or the exact MSSM spectrum plus three right-handed neutrinos.

Within this class of intriguing four stack quivers there is no quiver that allows for a family
dependent discrete gauge symmetry. Moreover, none of the local MSSM D-brane configurations
exhibits a discrete Z9 and Z18 gauge symmetry, in contrast to the pure field theoretical approach [6].
Therefore, the string theory constrains on the transformation behaviour of the chiral matter fields for
having a discrete gauge symmetry in D-brane compactifications goes beyond the four-dimensional
discrete gauge anomaly conditions.

All Z2, Z3 and Z6 discrete gauge symmetries found in [6] can be also realized in the local
D-brane configurations. We find that the realization of discrete symmetries depends on the hyper-
charge embedding of the D-brane configuration. For instance while the Madrid embedding favours
Baryon triality it disfavours matter parity. The presence of Proton hexality, i.e. the simultaneous
presence of matter parity and Baryon triality, is rather suppressed and only realized for five of
the intriguing four D-brane-stack quivers. In those quivers the absence of R-parity and disastrous
dimension 5 proton decay operators is not accidental, but can be explained by the presence of a
discrete gauge symmetry.

It would be interesting to extend this analysis to local semi-realistic D-brane configurations
with more than 4 D-brane stacks. Specifically, it would be interesting to see whether one can find
family dependent discrete gauge symmetries in those realizations. Furthermore, another intriguing
avenue is to extend the analysis to the NMSSM [53] and GUT realizations of the MSSM [40] as
well as extending it to local D-brane configurations with additional exotics [54].

Finally, we would like to comment on the limits of the bottom-up approach applied here.
The discrete gauge symmetries considered here purely originate from the anomalous U(1) factors
carried by each D-brane stack. In addition there may be abelian or even non-abelian gauge factors
arising from isometries of the compactification manifold which can lead to abelian and non-abelian
discrete gauge symmetries in the low energy effective action [13]. The consideration of discrete
symmetries originating from isometries, requires the specification of the properties of the compact-
ification and thus goes beyond the scope of this work.
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