

Abstract—Grid Computing capabilities are increasingly needed

for scientific research. Groups such as Globus and the Particle
Physics Data Grid are developing tools to meet these needs. An
additional challenge is the evaluation and fine-tuning of these
applications, as well as support for long term monitoring,
performance analysis, and troubleshooting. In September 2001,
SLAC started the development of a toolkit for studying the
available bandwidth as measured by various network sensing
tools and comparing that with the bandwidth achievable by
various bulk data transfer applications. This study has provided
experience in the challenges of deploying and using the sensor
tools and transfer applications, as well as information for fine
tuning the applications and analyzing their performance. The
results presented in this paper include the deployment challenges,
techniques for optimizing the duration of measurements, the
impacts of throughput on CPU utilization, optimizing windows
and parallel streams, the impact on other users, comparisons of
various throughput measurement techniques, patterns of
throughput behaviors, forecasting, and comparisons of active and
passive measurements. We finish up with possible avenues for
future development.

Index Terms— application steering, available vs. achievable
bandwidth, measurement infrastructure, high performance bulk
throughput, international networks, network measurements,
passive vs. active measurement, quality of service.

I. INTRODUCTION

The strategies being adopted to analyze and store the
unprecedented volumes of data being gathered by current and
future High Energy and Nuclear Physics (HENP) experiments
include the coordinated deployment of Grid technologies such
as those being developed for the Particle Physics Data Grid
(PPDG) [1] and the Grid Physics Network (GriPhyN) [2]. It is
anticipated that these technologies will be deployed at
hundreds of institutes. These institutes will be able to search

Manuscript submitted February 10, 2003. This work was supported in part
by the Director, Office of Science, Office of Advanced Scientific Computing
Research, Mathematical, Information, and Computational Sciences Division
under the U.S. Department of Energy. The SLAC work is under Contract No.
DE-AC03-76SF00515.

Les Cottrell, Connie Logg, and I-Heng Mei are with the Stanford Linear
Accelerator Center, 2575 Sand Hill Road, Menlo Park, CA 94025. (emails:
cottrell@slac.stanford.edu, cal@slac.stanford.edu, imei@cs.stanford.edu)

out and analyze information from an interconnected worldwide
grid of tens of thousands of computers and storage devices.
This in turn will require the ability to sustain, over long
periods, the transfer of large amounts of data between
collaborating sites, with relatively high throughput.

The purpose of the Internet End-to-end Performance
Monitoring – Bandwidth (IEPM-BW) project [3] is to develop
a lightweight infrastructure, based on standard open
technologies, to make passive and active end-to-end
application and network performance measurements and
predictions. The measurements and results are targeted at high
performance network links, such as those used worldwide by
Grid applications and other academic and research (A&R)
applications. Typically these are deployed over high
performance networks such as ESnet, Internet2 and other A&R
networks in the developed world. It may be regarded as
complementary to the lighter-weight PingER [4] infrastructure
in that it is not as extensive, it is more network-intrusive, and
is aimed more at high performance links.

The monitoring toolkit and results are expected to be
valuable for:
• Providing planning information to applications, grid and

network planners by:
o Providing an understanding of the achievable

performance in today’s network and application (file
copy & ftp) throughput.

o Providing historical information on growth and changes
in performance.

o Providing predictions of throughput to applications so
they can make decisions on how and where to send and
receive data.

• Providing troubleshooting information to network
administrators and users by:

o Indicating when there are incremental or sudden
changes, the magnitude of the changes, and providing
alerts.

o By comparing achievable throughput with known
component performances and the performance of other
paths with common links, thereby helping to pin-point
whether a performance issue is in the host, network,
firewall, application, or at some sub-component such as
a disk.

Experiences and Results from a New High
Performance Network and Application

Monitoring Toolkit

R. Les. Cottrell, Connie Logg, and I-Heng Mei

Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, California 94025

SLAC-PUB-9641
April 2003

Presented at Passive and Active Monitoring Workshop (PAM 2003), 4/6/2003-4/8/2003, San Diego, CA, USA

• Providing network and applications developers with a
better understanding of how networks and applications
work together by:

o Providing validation/correlation of how network
performance relates to metrics such as delays and loss
performance (e.g. bandwidth estimators).

o Assisting users in selecting the optimum network
parameters (e.g. windows, streams), host and
application (e.g. compression) configuration options.

o Providing a public domain network performance
database, together with analyses, and web-accessible
reports and raw data. This data and information can be
used for further research, for predictions and for
application steering.

o Providing information on the challenges of establishing
and maintaining the secure transfer of large amounts of
data over long periods of time

• Providing a base on which to test, compare and validate
TCP stacks, configurations, various bandwidth
measurement techniques and tools, determine their
robustness, regions of applicability, resource
consumption, and accuracy, and make recommendations
to developers and users.

There are several projects that are currently making
continuous active (i.e. injecting probes) Internet End-to-end
Performance Measurements. A fairly complete comparison
made in July 1999 can be found in reference [5]. Several
projects provide public (without subscription or some form of
membership requirement) access to the data and reports. The
AMP [6], PingER, and skitter/skping [7] projects perform ping
and traceroute measurements but no bandwidth estimation or
throughput measurements. Surveyor [8] and RIPE [9] make
one-way delay, loss, inter-packet Delay Variability (IPDV),
and traceroute measurements. RIPE also includes bandwidth
and routing information but the results are only available by
subscription. NIMI [10] is an infrastructure for making on
demand measurements and does not have continuous
measurements and reports. The European SCAMPI project
[11] is developing a scaleable monitoring platform for the
Internet, but there do not appear to be any Internet monitoring
results published on a regular basis yet. The Network Weather
Service (NWS) [12] makes round trip measurements and
bandwidth estimates (single stream only). The NWS also has
sophisticated prediction mechanisms. Unlike the infrastructure
being described here, the NWS currently does not provide file
copy/transfer application measurements. The Work Package 7
of the European Data Grid [13] have developed an
infrastructure for making ping (using PingER), TCP
throughput and UDP measurements between seven European
sites; but currently they make no file copy/transfer
measurements.

The current toolkit/infrastructure differs from most others
since it makes measurements of applications as well as
network performance. Other differences include:
• It does not require dedicated hosts for the target hosts and

can therefore run close to the real applications of interest.

• It is cheap, simple and quick to extend.
• It makes the measurements in a hierarchical fashion, as

opposed to full mesh measurements. Thus it mimics the
organization of many collaborations.

• It runs under the same operating systems (Linux and
Solaris) used by most Grid applications of interest.

The current work is an outgrowth of the exploratory work
[14] reported at PAM 2002. We have redesigned the
infrastructure to provide for the addition of new probes
(network sensors and applications) for making measurements,
and to allow for the use of the probes in other scheduling
environments. The current SLAC scheduling is provided by
the UNIX cron facility, and measurements are made on a
regularly scheduled basis with the reports being generated
after each run.

In the rest of this paper, we first describe the measurement
methodology. We then describe results from the deployment.
These include: deployment challenges, optimizing the
measurement durations; the impact of high throughput on CPU
utilization; comparisons of file transfer/copy application and a
packet pair dispersion bandwidth estimation tool with iperf
TCP throughputs; the impacts of maximum window size and
number of parallel streams selection; the impacts of high
throughput on other users; forecasting; and a comparison of
active and passive measurements. We conclude with a
summary of the most significant results so far, and finish up
with a discussion of possible future directions.

II. METHODOLOGY & DEPLOYMENT

A. Methodology

The methodology is described here in sufficient detail to
enable an understanding of the results.

There are 2 types of hosts, monitoring and target hosts. The
“monitoring” hosts run the measurement tools (probes), log the
data from their runs, extract, analyze, and report on the
information via the web. The “target” hosts receive the probes
from the monitoring hosts and respond to them. The logs and
data, although they are currently collected on each monitoring
host, could be collected in a network file system. In that case
the monitoring host function could be split into 2 or 3 separate
hosts. One host would make the measurements, another would
perform the analysis, and a third could be the web server.

Each monitoring site works with its collaborators to decide
on the target hosts to probe. Typically, multiple target hosts
are monitored by a monitoring site. For each target host an
account must be provided on it that is accessible, via the
secure shell [15] (“ssh”), from the monitoring host. After
installing the appropriate public key in the account on the
remote host, the target host account is remotely configured and
the target host toolkit is downloaded from the monitoring host.
Information on the target hosts is kept in a target host
configuration database which is accessible to the monitoring
host.

The monitoring host schedules the measurement runs.
Currently they are at regular intervals driven by a Unix cron

table entry. The scheduling interval for each monitoring host is
determined by the monitoring host administrator. The actual
interval chosen depends on the load acceptable on the
monitoring host’s link, and the amount of time it takes to make
a set of measurements to all target hosts. Typically at SLAC,
the interval is about 90 minutes for 40 target hosts. At this
time, for each set of measurements, the monitoring host selects
each target host in turn and runs ping for 10 seconds, does a
traceroute (with one probe per hop) followed by running the
iperf [16] TCP transfer tool, secure file copy using the peer-to-
peer tool bbcp [17] with both memory to memory (bbcpmem
reads from /dev/zero and writes to /dev/null) and disk to disk
(bbcpdisk) copies, followed by the bbftp [18] file transfer
program. Both bbcp and bbftp allow the selection of large
window sizes and multiple parallel streams of data and provide
measurements of the throughputs achieved. At one time
pipechar [19] measurements were also performed, but they
have been discontinued due to the inaccuracy of the results
above 155Mbits/s and the time they take. The lists of probes
done for any given target host can be specifically defined in
the target host configuration file. The output from each probe
is captured, identified with a token, time stamped and written
to a “log” file. For each remote host there is one log file per
probe type per day.

To provide robustness, servers are remotely started and
killed for each measurement. Also each probe command (e.g.
iperf) is started as a separate task, so it can be timed out and
killed in case of problems. Some sanity checks are also done,
e.g. if ping is expected to work (as defined in the remote host
configuration database), but it fails, the other measurements
are not attempted.

Following each measurement, the results are extracted and
converted into space-separated tables that are made available
via the web. The format of the extracted tables is documented
in the first line of each file to enable others to access the data.
The analysis is performed on the extracted data and it
produces web accessible pages containing time series (short
term for the last 28 days, and longer term aggregated) plots,
histograms, scatter plots, statistical and analyzed tables
(accessible over the web in formats suitable for loading into
programs such as Excel), information on the success of the
test, and narrative.

B. Current Deployment

There are currently 10 monitoring hosts running the IEPM-
BW toolkit. They are at: APAN in Japan, the Stanford Linear
Accelerator Center (SLAC) near San Francisco CA., FNAL
near Chicago IL, Georgia Tech, INFN at Milan Italy, Internet
2 (in Michigan), Manchester University in England, NIKHEF
in Amsterdam the Netherlands, University College London
England, and the University of Michigan.

The results in this paper are from the SLAC monitoring
host. The target host sites for the SLAC monitoring host were
chosen from PPDG, HENP and major network monitoring
collaborator sites. These sites include: Argonne National
Laboratory (ANL) in Chicago IL, Brookhaven National

Laboratory (BNL) in Long Island NY, California Institute of
Technology (Caltech) in Pasadena CA, Fermi National
Accelerator Laboratory (FNAL), Thomas Jefferson National
Laboratory (JLab) in Newport News VA, Los Alamos
National Laboratory (LANL) in Los Alamos NM, Lawrence
Berkeley National Laboratory (LBNL) in Berkeley CA,
National Energy Research Scientific Computing Center
(NERSC) in Oakland CA, Oak Ridge National Laboratory
(ORNL) Oak Ridge TN, NASA/GSFC, San Diego
Supercomputing Center (SDSC) in San Diego CA, Rice
University in Houston TX, Stanford University in Palo Alto
CA, Indiana University (IU), University of Florida (UFL) in
Gainesville FL, University of Illinois at Urbana Champaign
(UIUC), the University of Michigan (UMich) in Ann Arbor
MI, University of Wisconsin (UWisc) in Madison WI,
Starlight in Chicago, CERN in Geneva Switzerland, CESnet in
Prague Czech republic, KEK in Tokyo Japan, Rutherford
Laboratory near Oxford England and Daresbury Laboratory
near Liverpool England, IN2P3 in Lyon, France, Tri-
Universities Meson Factory (TRIUMF) in Vancouver Canada,
Internet2 Southern Exchange (SoX) in Atlanta GA,
INFN/Rome and Milan, NIKHEF in Amsterdam, Netherlands,
and of course SLAC. There are currently (January 2003) 40
active destination hosts at about 30 sites in 9 countries.

Fig. 1 shows the logical routes between SLAC and its
remote site participants in December 2002. The boxes with
bold outlines are monitoring sites in their own right. The labels
in italics in the boxes indicate the host has a 100Mbit/s
connection. Other hosts have Gbits/s connections. The box
shading indicates the participant type. Diagonal lines are for
PPDG/GriPhyN/HENP collaborators, hashed shading
indicates the site is a network measurement collaborator, and
the un-shaded boxes are for European Data Grid collaborators.
The clouds are for Internet Service providers (ISPs). The grey
lettering in the clouds indicates the “GigaPoP” (e.g. ATL
means Atlanta). The numbers by the sites indicate the average
measured throughput from August 24 through October 26,
2002. For the measurements reported SLAC had OC12
(622Mbps) connections to ESnet and Internet2. Wide-area
network connectivity between these sites is almost entirely
managed by the Energy Sciences Network (ESnet) and the
Internet2 networks. In this paper, Internet2 is considered to be
the Abilene backbone network, and the regional connector
networks such as the California Research and Education
Network (CalREN).

Figure 1: Routes and iperf TCP Mbits/s from SLAC to the
remote sites.

III. RESULTS

A. Deployment Challenges

 The deployment challenges can be classified in 3 categories:
network, “security”, and operational challenges
1. Networks are dynamic entities. Some applications require

the reverse lookup of host names which can suddenly start
to fail. Routes change over the course of time, sometimes
failing and sometimes reconfiguring in a manner that
provides for significantly lower throughput. The
installation of rate limiting can result in greatly lowered
throughput. These in turn can cause tests that run in a
defined period of time (see operational challenges) to
suddenly start timing out and/or failing.

2. Security mechanisms present another challenge. Ports
suddenly become blocked. Target nodes are occasionally
upgraded, rebuilt and/or reconfigured resulting in the loss
of ssh keys, a change in the speed of the network interface
used, and/or a change in the allowable buffer and window
sizes. Note that the use of ssh does not scale well. Every
target node must be individually set up to allow for
communication from any monitoring host which is going
to probe it.

3. Operational challenges result from instances of network
and security challenges and under provisioning of the
target hosts. Each and every probe must have a time out
mechanism. Not all applications terminate gracefully
when there is a network related problem. Sometimes the
processes just hang around on the target and/or
monitoring hosts, filling up process space, filling the
network with data that is not being delivered, or chewing
CPU. In cases where the ssh keys are no longer valid, the
target host will sit for a long period of time before timing
out on the password prompt. Tests can fail because the
target host does not have enough disk space to store the
data being transferred. Handling these challenges involves

writing code that terminates the processes that are hanging
around after a test, and removing any target test data files.
Note that this code itself must be timedout out!

B. Measurement Duration

To evaluate the effect of the duration of the individual
measurements on the throughput measured, we selected
durations of 2, 5, 10, 20, 40, 80, 160, 250 and 320s, and
window sizes of 256, 512, 1024, 2048 and 4096kbytes. For
each of the above possible pairs we made a single stream
measurement of the iperf TCP throughput from SLAC to the
target host. We repeated this multiple times (17-20) to
estimate the magnitude of the variation. We used a single
stream since multiple streams are in general more agile to
adjusting to network conditions such as loss, and are thus
expected to require less time to reach a stable throughput rate.
Fig. 2 shows the iperf median TCP throughput measured from
SLAC to Caltech (40 ms. Round Trip Time (RTT)) for various
window sizes. The points are the medians of each set of
measurements, and the error bars are determined from the Inter
Quartile Ranges (IQRs). It is seen that, in some cases, though
the medians continue to rise for durations of over 10 seconds
(by about 10% going from 10 to 20 seconds) to within the
accuracy of the measurements this is a small effect. Similar
results are found for other paths such as SLAC to IN2P3 (RTT
177 ms and maximum throughputs of over 300 Mbits/s). Since
we are interested in the performance for long duration
transfers, we took the minimum duration that was
representative of a long duration transfer. So for most of our
measurements we settled on a duration of 10 seconds.

Figure 2: Iperf TCP throughput by measurement duration
from SLAC to Caltech, Aug 23 2001

As one moves to larger RTT bandwidth products, slow start
takes longer (e.g. for a single stream from about 1s for a
100ms RTT 100 Mbits/s link to about 5s for a 200ms RTT and
1Gbit/s link). Thus more time (to get 90% of the throughput
outside slow start one needs about 10 * the slow start time)
will be needed for the throughput to reach a stable value and
for the data transferred during slow start to be a small fraction

(say < 10%) of the total data transferred. Such a long probe of
50 or more seconds would not be net friendly. We are
therefore investigating using Web100 [20] to look at how
many bytes have been transferred over the last second, once
the initial TCP slow start is over, and use this as an estimate of
the stable throughput. We will report on the effectiveness of
this in a future paper.

C. Impact on CPU Utilization

Fig. 3 shows the behavior of the ratio of measurement host
MHz / iperf TCP throughput as a function of the speed (MHz)
of the source. The utilization was obtained using the Unix
"time" command and is the sum of the "system" and "user"
times. The points are the medians for each complete set of
measurements made with the various window sizes and
streams. The error bars are the Inter Quartile Range for each
complete set.

Figure 3: Ratio of measurement host MHz utilization to
Mbits/s transferred

It is seen that there is a lot of variability in the observed
values. More measurements would be needed to determine
whether one OS is superior to another in terms of minimizing
MHz/Mbps. The averages of the median values of MHZ/Mbps
are: all 24 hosts = 0.89+-0.48 (13 Linux hosts = 1.05+-0..58,
11 Solaris hosts = 0.68+-0.27). The information on the MHz
necessary to support high throughputs is important to enable
selection of the monitoring host hardware.

D. Windows & Streams

To determine the optimum window size and number of
parallel streams for each site, we first configured the hosts to
use the maximum buffer and window sizes recommended in
[21]. Then we used iperf to send TCP bulk data for 10 seconds
from SLAC to an iperf server at the remote host. For each site
we used window sizes from 8kbytes to 4Mbytes, and for each
window size we used different numbers of parallel data
streams from 1 up to 120 to comprise each transfer. The
sequences of window sizes and number of parallel streams
were deliberately chosen so they did not monotonically

increase or decrease. Simultaneous with the data transfer, we
also sent ten 100 byte pings separated by 1 second, each with a
20 second timeout. Following each transfer, we also sent 10
more pings with no iperf transfer. The idea of the two sets of
pings was to evaluate the RTT with and without competing
iperf TCP transfers. We then plotted the throughput versus
streams for each of the window sizes. See Fig. 4 for a typical
example in this case from SLAC to ANL.

It is seen that, for small window sizes, the throughput grows
linearly with number of streams. On unsaturated links, we can
use this feature to generate TCP traffic with a known load. As
the window size increases (in this case beyond 64kbytes), the
throughput begins to saturate as the number of streams
increases. Since typical operating system default maximum
window sizes vary from 8kbytes to 64kbytes, it is apparent,
that in cases such as illustrated in Fig. 4, many streams may be
required to achieve optimal throughput. We selected a
windows streams combination that achieved about 80-90% of
the maximum throughput measured, while minimizing the
number of streams. We wished to minimize the number of
streams since each stream consumes resources (memory, a
process, and CPU cycles).

Figure 4: Ten second iperf TCP throughputs from SLAC
to ANL

E. Impact on Others

To investigate the impact of high bulk throughput
measurements on other users, we used iperf to send TCP
traffic from a Sun Ultra 2 running Solaris 5.8 to a similar host
in CERN. Iperf was set to have 1024kbyte windows and 20
parallel streams. We ran iperf in this fashion for 35 minutes
from 12:26 April 25 2002, simultaneously measuring the ping
RTT and loss (we sent a 100 byte ping once a second with a
timeout of 20 seconds). While doing this we also observed the
link utilization. The aggregate measured throughput from
SLAC to CERN was about 120Mbits/s, which was close to the

bottleneck bandwidth at the time. The ping loss was about
0.15%, the minimum ping RTT was 166ms, the average was
295ms and the maximum was 408ms. We followed this up by
measuring the ping RTT and loss for 24 minutes without
generating any iperf traffic starting at 13:02. In this case there
was no packet loss, and the minimum RTT was 166ms, the
average was 167ms and the maximum was 377ms. The effect
on the ping RTT distributions is seen in Fig. 5. The triangles
indicate the RTT with no iperf load, and the squares indicate
the RTT with an iperf load. The bottom axis is the ping RTT.
The lines on the graph represent the Cumulative Distribution
Functions (CDF) and their axis is labeled on the right.

Figure 5: Ping RTTs with and without simultaneous iperf
load. The triangles indicate the RTT with no iperf load,
and the squares indicate the RTT with an iperf load. The
bottom axis is the ping RTT. The lines represent the CDFs.

It is seen that the unloaded RTT is sharply clustered
between 166 and 170 ms (the CDF indicates that over 95% of
the measured RTTs are in this range), while the loaded RTT
distribution is fairly flat for over 150msec above the minimum
RTT. We are looking for ways to alleviate this effect. Some
possibilities include using the QBone Scavenger Service
(QBSS) [22], self rate limiting the application (i.e. enable the
application to restrict its throughput), providing a feedback
loop for the application by using Web100 to measure the RTT
and/or retransmissions and using these values to adjust the
application’s offered throughput.

Another way of looking at the impact is to look at the
Web100 TCP information such as the smoothed RTT, re-
transmissions or congestion events to understand the effect of
the high throughputs. The points in Fig. 6 are the smoothed
RTTs measured between SLAC and ANL for the iperf TCP
throughputs shown in Fig. 4. It can be seen that there is little
effect on the ping RTT until the throughput exceeds over 300
Mbits/s. Above 330Mbits/s (~73% of the maximum
throughput observed) the smoothed RTT can increase
dramatically by over 250%. Further work is in progress to

understand how this information may be used to steer
applications.

Figure 6: Web100 smoothed RTT vs. iperf TCP
throughput from SLAC to ANL, Mar 31 2002.

F. Comparing Throughputs from Measurement Probes

We compared the iperf throughput with the minimum
available predicted by pipechar. An example is shown in Fig.
7. Since iperf is using TCP while pipechar uses packet trains,
one might expect the agreement not to be excellent. In general
the agreement is particularly poor for 6 hosts with throughputs
above 100Mbits/s. About 50% of the hosts have reasonable
agreement. Given these difficulties for high speed paths, and
the time taken for pipechar to complete a measurement, we
currently do not run pipechar as part of the standard suite of
sensors.

At higher bandwidths (> 100Mbits/s), the packet dispersion
method requires increased accuracy (better than tens of
microseconds) of the measurement clock. Packet dispersion
techniques using host timings will probably also suffer badly if
the network interface card (NIC) coalesces interrupts inbound
or does buffering and fragmentation outbound. We also looked
at using other variable packet size techniques such as pathchar
[23], pchar [24], and pathrate [25] but they all took too long
(minutes to hours) to make an estimate. Investigations with
early versions of pathload [26} also indicated that it gave poor
agreement with iperf TCP for rates above 150 Mbits/s.

Figure 7: Pipechar estimates vs. iperf TCP throughput

To determine the relative performance of a file copy
application without having to account for effects such as disk
performance, file system, caching etc., we compared iperf TCP
throughput versus bbcpmem throughput. An example of a
scatter plot for iperf TCP vs. bbcpmem measurements, made
for 28 days starting October 11, 2002, between SLAC and
about 30 remote hosts, is shown in Fig. 8.

Figure 8: Bbcp memory to memory vs. iperf TCP
throughput.

It is seen that the correlation is very variable (the square of
the correlation coefficient is R2 ~ 0.5). In some cases
bbcpmem performs as well or even better than iperf, however
in general it does not perform as well. The line shows a linear
regression fit with the parameters y=0.53x. It is reasonable to
expect the bbcp throughput to be less than that of iperf since
iperf simply measures TCP throughput while bbcp is a secure
copy program built on top of TCP. Bbcp also synchronizes the
streams, so a slow down on one stream (e.g. due to congestion
or packet loss) will cause others to slow down, whereas for

iperf the streams are asynchronous. If the cause of the losses is
not due to congestion and thus does not affect all streams, then
the bbcp synchronization strategy will be disadvantageous.
The points in a given cluster observed in Fig. 8, are usually
associated with a given host. In fact, for many of the hosts, the
correlation for that host is quite weak since the measurements
all cluster around small ranges. Looking at the iperf frequency
histogram (see Fig. 9), we also observe vertical lines just
under 45Mbps, 100Mbps and 150Mbps where the constraint is
probably network capacity related (i.e. T3, Fast Ethernet and
OC3).

Figure 9: Iperf TCP throughput frequency histogram.

Disk to disk performance of bbftp and bbcpdisk is still
under investigation [27]. The performance depends critically
on caching, the file-system (e.g. local disk vs. NFS), when the
file is committed, and the file size. Ideally we wish to measure
the performance for a large file (Gbytes), since this is closer to
the large data replication HENP applications we have in mind.
However, transferring such files can take considerable time,
can be very intrusive on the network, and disk space may not
be available at the remote host to save the file. Reference [27]
indicates that one can utilize a relatively small file (64Mbytes),
committing the portion of the file remaining in the disk cache
to the disk at the end of the copy, to obtain similar results for a
much larger file (2Gbytes). We are therefore modifying the
toolkit to use the “commit at end” strategy, and will report on
the results at a later time.

G. Forecasting

To enable use of the measurements for guiding applications,
we looked at how to forecast the throughput from existing
measurements. We developed a very simple prototype that,
given a time, provides the average and standard deviation of
the previous few measurements. Five was selected as a
reasonable compromise between enabling a reasonable
calculation of the variation, reasonable smoothing over the last
few hours, and the need to reasonably closely track the most
recent results. An example comparing the actual vs. forecasted
values for the SLAC to Caltech path is seen in Fig. 10. Besides
being useful to assist applications, forecasting may also be
useful to decide how often to make active measurements. For
example, if the measurements are very consistent, then we may

Figure 11: Time-series plots of iperf and bbftp throughputs from iGrid2002 to CERN, and also the ping average RTTs.

not need to make a measurement as frequently as otherwise.
We also calculated the average error for the above type of
measurements as:
 error=average(abs(forecast-observed)/observed)
The average errors between the forecasted and observed
values are shown in Table 1 for measurements, averaged over
the previous 5 observations, for 31 remote hosts for measured
between June 23 and July 4, 2002.

Table 1: Average error between the forecasted and
observed measurements.

33
hosts

iperf
TCP

bbcp
mem

bbcp
disk

bbftp pipechar

error 10% 17% 15% 16% 3%
Stdev 8% 15% 13% 12% 3%

It can be seen that, even with this simple forecasting

method, reasonable agreement is achieved (better than 17% in
most cases) for 90 minutes after the last measurement. We also
tried using Exponentially Weighted Moving Averages
(EWMA), i.e. the current average avgi is given by:

avg i = (1 – w) * yi + w * avg i-1
We found that for the data in Table 1, using w = 0.7, the
average errors differed by less than 2%, or well within the
standard deviations. Fig. 10 also shows the EWMA
predictions.

H. Patterns of Throughput Behavior

The achievable iperf TCP throughputs (see the numbers in Fig.
1) varied by more than a factor of 10 from site to site. By
design, hosts with 1000GE NICs had higher speed connections
(typically 622Mbits/s) to the Internet and, as expected, higher
performance was observed. By using large windows and
multiple streams we were able to measure throughputs of
several hundreds of Mbits/s across both transcontinental and
transoceanic links.

Figure 10: Forecasting iperf TCP throughputs: observed
(+), moving average of last 5 observed point (triangles with
error bars) and EMWA predictions (x).

Viewing our time series plots of the throughputs, we

observe two major types of behavior that may overlap at times.
1. Sudden step changes in throughput, as can be seen in

Fig. 11 around September 19. These are usually
associated with a network change, e.g. a new route, or
a link upgrade. They may also be associated with a
remote host change, e.g. a new CPU or a change in the
Network Interface Card (NIC) used.

2. Oscillations in the throughput on a daily basis, e.g.
high throughput at night or weekends when there is
lower utilization and congestion, and higher
performance at other periods. We refer to the daily
changes as diurnal variations.

If the time series are fairly flat (e.g. there are only small
diurnal changes) then sudden changes in throughput show up
as multimodal peaks in histograms of the throughput. They
also show up in the moving averages with large relative
standard deviations for the set of points close to the change.
 About 25% of the probes to target hosts exhibit large
diurnal variations (such variations can, for example, be
observed in Fig. 12). For such hosts we use a simple fit to:

f(x) = abs(a) * sin(x + b) + c

where x = time of day (in radians, i.e. start of day = 0, end of
day = 2 * pi). We use as the least-squares fit starting values, c
= average throughput, a = standard deviation of throughput,
and b = pi/2. This fit enables an easy characterization of the
diurnal variability. The fitting can be further simplified, by
noting that b (the phase angle) should stay fairly constant for a
given site (if there is a diurnal variation then the
busy/congested periods are likely to be the same from
weekday to weekday). Fig 12 shows a least squares fit to iperf
TCP data measured from SLAC to Caltech from October 11 to
November 8, 2002, where the x axis is the time of day of the
measurement, and the weekday measurements have been
separated from the weekend measurements. Also shown are
the curves (dashed lines) from simply using the starting values
for a and c, and leaving b at the value found in the fit. It can be
seen that we can do almost as good with the simple fit, and not
have to resort to least square fitting techniques. The difference
in the fitted value and initial estimate can be expressed as diff
= abs((fit-initial)/fit) and yields median values (for 39 remote
hosts) of < 2% for a and 6% for b. Since a and c are simple to
estimate from the data, and b should stay roughly constant for
a given site, this proves to be a simple method for quantifying
the diurnal nature of the data.

We have found that we can roughly quantify the
“diurnalness” of the data for a given node by looking at the
error on the fit parameter b (δb). In essence, δb determines
how the diurnal nature of the data is clearly defined to allow b
to be well determined. Values of δb of < 0.2 appear to indicate
candidates for paths with large diurnal variations. We identify
these large diurnal variations by eyeball by looking at a plot
such as shown in Fig. 12. For Fig. 12 the values of δb are 0.04
(weekday) and 0.1 (weekend).

As expected, there is usually different and less diurnal
variation for weekend data. We are looking at ways to fold the
diurnal variations into the predictions, for example by
predicting the value at some time, from the value at the same
time a week ago. Though this may be less accurate than a
prediction from more recent data, it may be of value if there is
no recent data.

Figure 12: Iperf TCP diurnal variations

I. Passive and Active Measurements

To validate whether the sensors were reporting the correct
throughputs, we read the Netflow records [28] from a Cisco
6506 containing an MSFC module for routing. The Cisco 6506
is located at the SLAC network border and is connected to the
outside world by 1 Gbits/s links, one to ESnet, the other to
Stanford University and thence to CalREN. The methodology
of collecting the Netflow records is described in [29]. A
Netflow record includes the source and destination IP address
and port 4-tuple (source IP, destination IP, source port,
destination port), the protocol, the number of packets and
bytes, the start and end times and active time for each
flow/stream. The flows were sorted by source and destination
IP address and start time. Flows with the same source and
destination address that start within a few (currently we use 5
seconds, but are experimenting with better ways to associate
the flows) seconds of one another are assumed to belong to a
given application process. In some cases we could use the port
number to further refine this selection. Thus we could
aggregate the throughput for the application instance as the
sum of the bytes for all streams divided by the sum of the
active times for all streams divided by the number of streams.
Typically we see about 10-20K applications per day
transferring greater than one Mbyte of data between 100 to
300 different pairs of hosts.

We then compare the passive Netflow throughputs,
calculated as above, with the throughputs recorded by the
associated active application (probe) by means of time series,
scatter plots, calculating err = (passive-active)/passive and the
correlation coefficient R. An example of a time series is shown
in Fig. 13. Fig. 13 shows the time series of active and passive
throughput measurements for iperf from SLAC to Caltech for
28 days starting April 1, 2002. For this case the err = 2% and
R=0.99 and the agreement is seen to be excellent.

Figure 13: Example of time series of active and passive
throughputs from SLAC to Caltech, Mar-Apr 2002

The overall agreements, for the 28 days starting April 1,
2002, are shown in Table 2 below. The ranges are the 25
percentile and 75 percentiles. On average the throughput for
each probe to each host was measured 279 times in that
period. We excluded remote host-sensor combinations where
there were fewer than 50 measurements. It is seen that in
general the correlations are strong. The err ranges indicate that
there is not an overall systematic difference between the active
and passive measurements. For a given remote host-sensor the
active measurements can be systematically greater (i.e. the err
is negative) than the passive measurements and vice versa for
another remote host-sensor. On average the bbftp active sensor
reported throughputs 25% lower than observed by the passive
measurement. The next section describes a series of
experiments used to determine the causes of low correlation
and large err. In general the sign of the err would track for the
bbcp and iperf measurements for a given host (i.e. if the iperf
err was negative for a given host then the bbcp err would also
be negative). The strongest correlations are for iperf followed
by bbcpdisk. The bbftp correlations are generally much
weaker. Typically the agreement is poorer for probes to target
hosts with lower throughputs, and the disagreement for low
throughput usually coincides with a negative err.

Table 2: Errs and correlation coefficients (R) between
active and passive measurements for throughput sensors
for about 25 remote hosts seen from SLAC in April 2002

Metric iperf
TCP

bbcp
mem

bbcp
disk

bbftp Over
all

err
median

0% -3.9% -5.0% 25% 2.0%

err
range

-4.5%,
2.0%

-7.5%,
5%

-14.5%,
2.5%

21.5%,
37.5%

-7%,
12%

R
median

0.99 0.86 0.94 0.68 0.94

R range 0.98,
0.99

0.8,
0.98

0.82,
0.98

0.39,
0.89

0.73.
0.99

Remote
hosts

27 24 23 23

In general, there is excellent correlation between the active
and passive iperf and bbcp measurements, and the errs are <
5% for the majority of remote hosts. This agreement is
important since it encourages us to include passive
measurements into the throughput measurement database.
Thus we now have an important extra (roughly 100-300 pairs
per day) source of throughput measurements for pairs of hosts
matching real use patterns, but which do not add any extra
load to the network.

J. Explaining Low Correlation

We conducted another series of experiments in order to
explain the cases where we saw low correlation and high err
between active and passive throughputs [38]. We used
Web100 data to calculate throughput in order to validate both
passive and active measurements and determine where the
discrepancies lie. We created correlation tables for comparing
passive, active, and Web100 throughputs (while Web100 is
technically “passive”, we refer to its measurements as Web100
throughputs rather than passive to avoid confusion with our
convention of referring to Netflow throughputs as passive).
These tables differ from the previous active-passive
comparisons in that we consider three alternative formulas to
calculate passive and Web100 throughputs: 1) Sum of the
bytes/time for each stream, 2) Sum of all bytes in all streams
divided by average stream time, and 3) Sum of all bytes in all
streams divided by maximum stream time. We will refer to
these as methods 1, 2, and 3. Previously, we exclusively used
method 2 in our passive throughput calculations.

Passive and Web100 throughputs are very highly correlated.
The average correlation over all tests was 0.96 and the error
was less than 0.03 for all tests. This is expected, as passive and
Web100 throughputs both are calculated from “passive” data,
only differing in where they get flow information. Web100
exposes TCP variables in the monitoring machine’s OS, while
Netflow data is retrieved from the Cisco 6506 switch.
However, there were still cases where the correlation was low.
Examining the stream-by-stream records, it was determined
that one possible cause of the low correlation is Netflow
occasionally reporting exaggerated stream elapsed times. For
example, during a 15 second bbcpmem test run, Web100
properly indicated an elapsed time of approximately 15
seconds for each flow. However, Netflow records indicated
that one of the flows was open for over 700 seconds. We refer
to these flows as long flows. Long flows dramatically decrease
the passive throughput calculation for a given day, thus
decreasing the overall correlation between passive and
Web100 throughputs. We can see the effect of long flows in
Table 3. The table only contains entries for bbcpmem and
bbcpdisk because long flows seem to occur during bbcp tests
at a much higher rate than iperf and bbftp. Determining what
causes certain tests to be more susceptible to long flows will
require further investigation.

Table 3: Effect of long flows on R and err for bbcp

Web100 vs. Passive measurements
bbcpmem bbcpdisk Freq. of

Long flow R avg |err| avg R avg |err| avg
< 1% 0.963 0.023 0.975 0.036
>= 1% 0.856 0.125 0.859 0.054

Active vs. Passive measurements
bbcpmem bbcpdisk Freq. of

Long flow R avg |err| avg R avg |err| avg
< 1% 0.923 0.054 0.916 0.079
>= 1% 0.793 0.112 0.842 0.103

Active and Web100 throughputs were generally highly

correlated with low error. However, for the bbftp test runs, the
error averaged an astounding -0.48 and the average correlation
was also slightly lower than the other tests(0.87). The high
error is not too surprising, considering the way that bbftp
actively calculates its throughput. Bbftp considers the elapsed
time be the duration of the entire transfer, which includes a
connection setup phase where certain bbftp parameters are set
up and communicated between the two nodes. This phase may
last up to a few seconds, which is significant considering the
entire data transfer may last only 10 or 20 seconds. Our
passive and Web100 calculations ignore these connection-
setup streams. However, bbftp does not ignore this time, thus
its active throughputs are significantly lower than our passive
and Web100 measurements. Bbcp and iperf active calculations
do not include the initial handshaking, so this problem does
not affect those tests. However, there were still cases where
correlation was low for bbcp and iperf. One possible cause is
lingering sockets. During some transfers, especially ones with
a large number of streams, we noticed that socket connections
may linger around for a few seconds before the OS can
properly close them, even though the application already
considers the connection closed. This will cause the active
elapsed time to be less than the Web100 (or Netflow) elapsed
time, which results in a lower throughput. The exact amount of
lingering time most likely varies between different runs, thus
adversely affecting the correlation. Further investigation
should be performed to determine exactly how often this effect
is observed and how much the lingering time varies.

Active and passive throughputs were generally highly
correlated with low errors, with occasional exceptions. Many
of these exceptions are likely caused by long flows. The effect
of long flows can be seen in Table 3. Bbftp had a large error (-
0.42), just as in the active/Web100 comparison. This error is
again due to the way bbftp measures elapsed time. This brings
up another important factor to keep in mind when viewing
active versus passive throughputs – we must consider the way
the application calculates its active throughput in order to
understand the correlation between active and passive
throughputs. In Tables 4 and 5, which show the distribution of

R and err across three different throughput formulas, we can
clearly see that only method 3 gives high correlation and low
error for bbftp. This is because only method 3 approximates
the method that bbftp uses to calculate throughput. Method 1
gives slightly better agreement than method 2 or 3 for Iperf,
since Iperf essentially uses method 1 to calculate its active
throughput. Method 1 also gives the best agreement for bbcp.
This makes sense, since long flows affect methods 2 and 3
much more than method 1. Methods 2 and 3 sum the total data
and divide by average stream time and maximum stream time,
respectively. Clearly, even one long flow will have a
significant effect on the average/max stream time and thus the
method 2/3 throughput as well. On the other hand, method 1
sums the individual throughputs for each stream. If relatively
few streams suffer from long flow, the overall sum is not
affected too much. This allows method 1 to lessen the effect of
long flows.

Table 4: Distribution of R (active vs. passive)

 x-axis (R) ranges from 0 to 1 in intervals of 0.1
 y-axis (% of samples in the interval) ranges from 0 to 100.

 Method 1 Method 2 Method 3
iperf

bbcpmem

bbcpdisk

bbftp

Table 5: Distribution of | err | (active vs. passive)

 x-axis (err) ranges from 0 to 1 in intervals of 0.1
 y-axis (% of samples in the interval) ranges from 0 to 100.

 Method 1 Method 2 Method 3
iperf

bbcpmem

bbcpdisk

bbftp

IV. CONCLUSIONS

Preliminary results from IEPM-BW so far indicate:
• Using a hierarchical infrastructure, where each monitoring

host selects the target hosts to probe (as opposed to a full
mesh measurement infrastructure), lends itself very well to
the requirements of HENP where there a few major sites
providing access to large amounts of data, and each major
site often collaborates with a different set of remote sites.

• Using standard operating systems (Linux and Solaris) for
the monitoring and remote hosts enabled us to easily take
advantage of new sensors and applications that in some
case have not been ported to other operating systems.

• We have found the ssh infrastructure, that enables
automatically installing software and dynamically start/kill
servers at remote sites, to be valuable for making one time
measurements, in particular for validating new
measurement tools. However scaling it to a large number
of nodes in a grid layout may not be practical.

• Not having a dedicated centrally managed standard
monitoring host at each site has drawbacks in terms of
having to support multiple configurations. This has
required the development of remote installation tools and
an extensive database to parameterize the remote host.
The advantage, however, is that the procurement,
installation, administration, control, security etc. of the
remote host is left to the remote site. This in turn enables
us to add a new remote host in a matter of hours from
being given the account and password. Occasionally this
leads to incompatibilities with IEPM-BW; however, in
almost all cases this has not been a problem so far.

• Reasonable estimates of throughput can be made in our
case with 10-second iperf measurements. This is much
shorter than it typically takes many bandwidth estimators,
such as pipechar, to make an estimate. However, as the
bandwidth RTT product continues to increase, either
longer measurements will be needed or new methods need
to be developed.

• Roughly speaking, about 1 MHz of CPU cycles provide 1
Mbits/s throughput on today’s CPUs and OSs.

• Throughputs can vary by an order of magnitude with time
of day or day of week etc.

• The bbcp file copy rates from memory to memory are
typically (25 to 75 percentile) in the range of 58% to 96%
of the iperf TCP throughputs.

• Disk to disk file copy rates are typically 90% of the
memory to memory rates for rates below 60Mbits/s,
Above 40-60Mbits/s performance can vary depending on
disk/file system performance, caching etc. Un-cached disk
performance for the remote hosts we were measuring to
appears to top out at between 4 and 8Mbytes/s in most
cases.

• When running high throughput applications, the RTT for
other users can be noticeably increased.

• We are able to predict performance 90 minutes into the
future with less than 20% error.

• Passive Netflow measurements agree to within 5% with
active measurements for most target hosts. Poor
agreement can occur due to long flows or as a result of
using a passive throughput formula that is inconsistent
with the way a test program calculates its active
throughput.

• The toolkit has also been effectively used for high
throughput demonstrations [30]. Currently the aggregate
(i.e. the throughput if all the measurements were made
simultaneously) iperf throughput from SLAC to its remote
hosts is about 4.5Gbits/s.

We plan to port the monitoring host toolkit to more sites.
Initially, to preserve flexibility, each monitoring site is saving
its own data, and performs its own extraction/analysis and
reporting. We are working on making the data available via
more standard publish/subscribe methods. As we increase the
number of monitoring sites we will also need to pursue ways to
provide probe timing control [31] to ensure the measurements
do not collide with one another.

We are working on evaluating other probes (sensors and
applications) including pathrate, pathload, GridFTP [32],
INCITE [33], and UDPmon [34], and hope to select a new
recommended set of base measurement sensors. As part of this
we will simplify the way in which new probes are added and
their data analyzed and added to the reports. We also intend to
replicate the measurements from a second host at SLAC using
various experimental TCP stacks [35], [36], [37]. This will
enable us to compare the performance of the stacks on a wide
variety of paths.

We will look at more sophisticated methods to make the
forecasts, as well as how to insert our data into their
infrastructure. We hope the forecast study will also help to
optimize the frequency of measurements. In addition we are
integrating Web100 into the measurements that, besides
providing detailed information from TCP, may also help in
optimizing the duration of measurements. The analysis of the
active measurements vs. the passive measurements of users’
applications is just beginning and further understanding of
discrepancies is needed. Further work could involve looking at
the effects and applicability of compression, application rate
limiting, and providing tools to assist in making applications
such as bbcp network aware.

ACKNOWLEDGMENT

We would like to acknowledge the help of Manish
Bhargava, Jerrod Williams of SLAC, and Fabrizio Coccetti of
INFN/Trieste in developing display and analysis code. Warren
Matthews provided much assistance in installing Web100 and
configuring the measurement hosts. We are indebted to
Andrew Hanushevsky of SLAC for providing guidance and
adding features to bbcp to improve its measurement
capabilities. Jin Guojun of LBNL provided assistance in
understanding the pipechar results and providing new versions

to test. We also owe a large debt of gratitude to all the contacts
at the remote sites who helped us to get accounts and put up
with our questions. Finally we would like to acknowledge
many useful discussions with Matt Mathis of PSC, Brian
Tierney of LBNL, Tom Dunigan of ORNL, and Rich Wolski
of UCSB.

REFERENCES
[1] Particle Physics data Grid: http/www.ppdg.org/.

[2] GriPhyN Project: http://www.griphyn.org/

[3] Internet End-to-end Performance Monitoring - Bandwidth to the
World (IEPM-BW) project http://www-iepm.slac.stanford.edu/bw

[4] W. Matthews and R. L. Cottrell, “The PingER Project: Active Internet
Performance Monitoring for the HENP Community”, IEEE
Communications Magazine Vol 38 No. 5 pp130-136, May 2000i

[5] R. L. Cottrell, "Comparison of some Internet Active End-to-end
Performance Measurement projects",
http://www.slac.stanford.edu/comp/net/wan-mon/iepm-cf.html

[6] A. J. McGregor and H. W. Braun, “Balancing cost and utility in active
monitoring: The AMP example.,” INET 2000, July 2000.

[7] Skitter/skping
http://www.caida.org/tools/measurement/skitter/skping/index.xml

[8] "Introduction to the Surveyor Project", http://www.advanced.org/csg-
ippm/

[9] “RIPE NCC Test Traffic Measurements”, http://www.ripe.net/ttm/

[10] V. Paxson, A. Adams, M. Mathis, "Experiences with NIMI", Passive
and Active Measurements workshop 2000.

[11] “SCAMPI Overview”, http://www.ist-scampi.org/overview.html

[12] R. Wolski, "Dynamically Forecasting Network Performance to
Support Dynamic Scheduling Using the Network Weather Service" in
6th High-Performance Distributed Computing, Aug 1997.

[13] "WP7 Networking", http://www.gridpp.ac.uk/wp7/index.html

[14] “Passive and Active Monitoring on a High Performance Research
Network”. W. Matthews, R. L. Cottrell, D. Salomoni. SLAC-PUB-
8776, Feb 2001. 6pp. Passive and Active Monitoring (PAM) 2001,
Amsterdam, April 22 - 24.

[15] D. J. Barrett and R. Silverman, “SSH, The Secure Shell: The
Definitive Guide”, O’Reilly & Associates, 2002.

[16] Iperf: http://dast.nlanr.net/projects/Iperf/

[17] A. Hanushevsky, A. Trunov, R. L. Cottrell, “Peer-to-peer Computing
for Secure High Performance Data Copying” Computing In High
Energy Physics 2001, pp 444-447., Biejing 2001. Paper can be found
at: http://www.slac.stanford.edu/~abh/CHEP2001/7-018.pdf

[18] Bbftp: http://doc.in2p3.fr/bbftp/

[19] Pipechar: http://www-didc.lbl.gov/pipechar/

[20] “The Web100 Project, facilitating Effective and transparent network
Use”, http://www.web100.org/.

[21] "TCP Tuning Guide for Distributed Application on Wide Area
Networks", http://www-didc.lbl.gov/tcp-wan.html

[22] “Qbone Scavenger Service”, http://qbone.internet2.edu/qbss/

[23] V. Jaconson, “Pathchar”, ftp://ftp.ee.lbl.gov/pathchar/

[24] B. A. Mah, “Pchar”,
http://www.employees.org/~bmah/Software/pchar/

[25] C. Dovrolis, P. Ramanathan, D. Moore, “What do Packet Dispersion
Techniques measure?”, Proceedings of the 2001 Infocom, Anchorage
AK. April 2001.

[26] M. Jain and C. Dovrolis, “Pathload: a measurement tool for end-to-
end available bandwidth”, PAM 2002, Passive and Active
Measurement Workshop,pp 14-25, Fort Collins Colorado March
2002.

[27] A. Tirumala, R. L. Cottrell. C. Logg, “Disk Throughputs”, http://www-
iepm.slac.stanford.edu/bw/disk_res.html

[28] Cisco IOS Netflow,
http://www.cisco.com/warp/public/732/Tech/netflow/

[29] C. Logg and R. L. Cottrell, “Passive Performance Monitoring and
Traffic Characteristics on the SLAC Internet Border”, Proceedings of
Computing in High Energy Physics 2001 (CHEP01), Science Press,
Beijing, New York.

[30] "SC2001 Bandwidth Challenge Proposal: Bandwidth to the World",
http://www-iepm.slac.stanford.edu/monitoring/bulk/sc2001/;
“iGrid2002: Bandwidth from the Low-lands”, http://www-
iepm.slac.stanford.edu/monitoring/bulk/igrid2002/; “SC2002:
Bandwidth to the World”, http://www-
iepm.slac.stanford.edu/monitoring/bulk/sc2002/

[31] B. Gaidioz, R. Wolski and B. Tourancheau, "Synchronizing Network
Probes to avoid Measurement Intrusiveness in the Network Weather
Service", http://www.cs.ucsb.edu/~rich/publications/nws-period.pdf

[32] “GridFTP: Universal Data Transfer for the Grid”, White paper.
http://www.globus.org/datagrid/

[33] “INCITE: Edge-based Traffic Processing and Service Inference for
High-Performance Networks”, http://www-ece.rice.edu/INCITE/

[34] Richard Hughes-Jones, “Some Tools used for Testing Network
Behavior:” http://ww.hep.man.ac.uk/~rich/net

[35] S. Floyd, "HighSpeed TCP for Large Congestion Windows", Internet
draft draft-floyd-tcp-highspeed-01.txt, work in progress, 2002.
http://www.icir.org/floyd/hstcp.html

[36] S. Low, "Duality model of TCP/AQM + Stabilized Vegas",
http://netlab.caltech.edu/FAST/meetings/2002july/fast020702.ppt

[37] “The Net100 Project”, http://www.net100.org/

[38] I. Mei, C. Logg, R. L. Cottrell, “Correlation of Web100, Active, and
Passive Throughput Calculations”,
http://www.slac.stanford.edu/comp/net/bandwidth-tests/web100/

