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Abstract

QCD, the theory of strong interactions between quarks and gluons, describes accurately the
physics of a single hadron, the color-singlet bound state of quarks and gluons. It should also
describe the residual, van der Waals-like interactions between hadrons, i.e. nuclear physics. To
study nuclear physics from first principles, that is from QCD, present day non-perturbative
approaches are effective theories and Lattice QCD. The latter relies on the probabilistic in-
terpretation of the measure that characterizes the QCD partition function. In the presence of
a finite density of nucleons (baryons) or, equivalently, at finite baryon chemical potential the
positivity of the measure is lost and the minus-sign problem arises. To study systems contain-
ing only a few baryons already requires an immense computational effort and the approach is
essentially reserved to only a few large collaborations worldwide.

The strong coupling limit considered in the larger part of this thesis neglects the gauge part
of the Lattice QCD action as the inverse bare gauge coupling is set to zero. While in principle
this implies “infinite coarseness” of the lattice and the presence of large lattice artifacts, it
allows us to bypass the conventional numerical approach as its advantage is threefold: Firstly
in our model gauge fields can be integrated out exactly. A good part of the sign fluctuations
of the path integral measure at finite chemical potential is exactly taken into account rather
than probabilistically. The minus-sign problem is thus milder in the resulting model. Secondly,
integration over the gauge fields immediately results in a formulation of the system in color-
singlet degrees of freedom - the mesons and baryons. This makes the interpretation of the
results more transparent. Thirdly, with these degrees of freedom the model can be formulated
as a loop gas. Recent algorithmic developments like the worm algorithm allow to sample such
a system with high efficiency.

The main part of the thesis is thus devoted to Lattice QCD at strong coupling with Nf = 1
flavor of staggered quarks. With the help of the worm algorithm and the snake algorithm
we uncover the strong coupling variant of nuclear physics by measuring the nucleon-nucleon
potential precisely. Our potential shows essential features such as a repulsive hard core and a
medium-range attraction. Eventually, by considering the perturbation of the pion gas caused
by the nucleon, we are able to show that the nuclear potential is of Yukawa form at large
distances. Using a similar technique we further study composite objects of nucleons, the nuclei
of our model, and find their mass to fall on top of the curve predicted by the phenomenological
Bethe-Weizsäcker mass formula. In addition, due to the mild sign problem, we can determine
the phase diagram of our model in the whole (µB,T )-plane and determine the location of the
tricritical point predicted by mean-field theory. Giving the quark mass nonzero values, we
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observe that the behavior of the QCD critical point is in agreement with the scaling prediction
of the classical theory. Finally, we extend our study of strong coupling QCD to Nf = 2 flavors.
There, contrary to the one-flavor case where the explicit expression of the partition function
formulated in color singlet degrees of freedom was long known, these preparatory steps have
to be carried out. We explicitly map the partition function for gauge group U(N = 2, 3) to
that of a dimer model in a way easily generalizable to higher Nf . Doing so, we uncover a sign
problem which we are however able to tame by practical methods. This opens the way to the
study of nuclear physics in the presence of up and down quarks.
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Zusammenfassung

Die Theorie der starken Wechselwirkung zwischen Quarks und Gluonen, Quantenchromody-
namik (QCD), beschreibt die Physik der Hadronen, also der farblosen Bindungszustände von
Quarks und Gluonen. Die Theorie sollte aber auch die daraus resultierende, Van-der-Waals-
ähnliche Wechselwirkung zwischen den Hadronen beschreiben, also auch die Kernwechselwir-
kung. Modern Ansätze um Kernphysik mit der ihr zugrundeliegenden Theorie (QCD) zu behan-
deln, sind sogenannte Effektive Theorien und Gitter-QCD. Letztere beruht auf der Interpreta-
tion des Maßes der Zustandssumme als Wahrscheinlichkeitsmaß. Bei endlicher Baryonendichte
oder endlichem chemischen Potential ist dieses Maß aber nicht mehr positiv semi-definit und
man spricht vom Vorzeichenproblem. Um Systeme mit nur wenigen Baryonen zu untersuchen,
benötigt man einen immensen Rechenaufwand, so daß dieser Zugang eigentlich nur den großen
Kollaborationen weltweit vorbehalten ist.

Im Grenzwert unendlicher Eichkopplung, wie in dieser Arbeit betrachtet, kann man jedoch den
Eichanteil der Wirkung, welche im Wahrscheinlichkeitsmaß auftritt, vernachlässigen. Obwohl
dies grundsätzlich eine unkontrollierbare Approximation darstellt, da es eine Diskretisierung
mit unendlicher Gitterkonstanten impliziert, so erlaubt es uns doch den herkömmlichen nume-
rischen Weg zu verlassen und folgende Vorteile zu nutzen: Erstens können im Limes unendlicher
Eichkopplung die Eichfelder exakt ausintegriert werden. Ein guter Teil der Fluktuationen des
Maßes der Zustandssumme bei endlichem chemischen Potential ist damit exakt berücksichtigt
worden und nicht nur probabilistisch. Das Vorzeichenproblem des daraus entstehenden Modells
ist daher schwächer. Zweitens kann die Theorie durch die Integration über Eichfelder in den
farblosen, hadronischen Freiheitsgraden — den Mesonen und Baryonen — formuliert werden.
Drittens wird das Modell in dieser Formulierung zu einem “loop-gas”-Modell, welches z.B. mit
dem “worm”-Algorithmus effizient simuliert werden kann.

Der Hauptteil dieser Arbeit beschäftigt sich also mit Gitter-QCD bei unendlicher Eichkopplung,
speziell für den Fall nur eines Flavors (Nf = 1) von elementaren Kogut-Susskind-Fermionen.
Mit Hilfe des worm-Algorithmus und des “snake”-Algorithmus untersuchen wir die daraus
resultierende Kernphysik und bestimmen insbesondere das Zweikörperpotential. In der Tat
besitzt dieses Potential wichtige Charakteristika wie z.B. eine starke Repulsion für kleine
Abstände und einen attraktiven Anteil bei mittleren Distanzen. Betrachtet man schließlich
die Störung der bosonischen Freiheitsgrade durch ein statisches Baryon, so kann man zeigen,
daß das Potential die Form eines Yukawa-Potentials für große Distanzen besitzt.
Mit den genannten Algorithmen lassen sich aber auch aus Baryonen zusammengesetzte Objekte
(Kerne) untersuchen. Die Masse dieser Kerne wird in der Tat durch die semi-phänomenologische
Bethe-Weizsäcker-Formel beschrieben.
Darüber hinaus untersuchen wir das Phasendiagramm unseres Modells für endliche Tempera-
tur und Dichten im chiralen Limes, d.h. für masselose Quarks. Insbesondere finden wir einen
trikritischen Punkt, welcher bereits von der Molekularfeld-Theorie vorhergesagt wurde. Im Fal-
le massiver Quarks untersuchen wir das Verhalten des dann auftretenden kritischen Punktes
und finden, daß es in der Nähe des trikritischen Punktes durch die klassische Landau-Theorie
beschrieben wird.
Schließlich wenden wir uns der Erweiterung des Modells zu Nf = 2 Quark-Flavors zu. Wir
schreiben hierzu die Gitter QCD-Zustandssumme als Zustandssumme eines “dimer”-Modells.
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Jedoch finden wir selbst für eine rein bosonische Theorie (Eichgruppe U(N = 2, 3)) ein Vor-
zeichenproblem, welches sich aber durch praktische Methoden wenn nicht lösen, so doch gut
kontrollieren läßt. Diese Schritte schaffen die Voraussetzung, nun auch die resultierende Kern-
physik für Nf = 2 Flavors, d.h. mit “up” - und “down”-Quarks zu untersuchen.
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1 Motivation and outline

Quantum Chromodynamics (QCD), the theory of the strong force, describes the interactions
between quarks and gluons. At low temperature QCD predicts confinement, i.e. quarks and
gluons can only occur in bound states (baryons, mesons, glueballs) whose color charge is zero,
see Fig.1.1(a). On the other hand, baryons such as protons and neutrons as well as compound
objects of baryons, the nuclei, interact. This nuclear interaction is a residual interaction re-
sulting from the strong force between hadronic composites. Nuclear physics should therefore
be described by QCD if we neglect the effects due to weak and electromagnetic interactions.
Considering now the statistical properties of an ensemble of quarks and gluons with the tem-
perature T and quark density ρ (or equivalently the baryonic chemical potential µ) Fig.1.1(b)
shows the current conjectured phase diagram of QCD. The for this work relevant features are:
At low temperature there exists a hadronic phase (of confined quarks and gluons). Nuclear
matter exists at very low temperature and high chemical potential of order of the proton mass
mp ≈ 1 GeV. The confined phase is connected by a crossover to a deconfined phase where
quarks and gluons form a plasma (QGP). This crossover region is the “shadow”1 of an approx-
imate symmetry restoration and may turn into an actual transition of first or second order at
higher chemical potential.
Coming to the theoretical approaches to solve QCD, the situation is as follows: QCD cannot

1Numerical results support the existence of two nearly coincident crossover phenomena: one corresponds to
the deconfinement transition, the other restores what would be a chiral symmetry in the limit of massless
quarks.

(a) (b)

Figure 1.1: (a) Sketch of a baryon and a meson, bound states of three and two quarks,
respectively. (b) The conjectured QCD phase diagram featuring a hadronic, QGP and color
superconducting phase as well as a deconfinement transition of first order ending in the QCD
critical endpoint. The picture has been taken from [1].

1
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Figure 1.2: The QCD phase diagram [2] as obtained by various lattice methods, all restricted
to µ/T ≤ 1. Also shown is the severity of the sign problem encoded in the average sign 〈sign〉
which approaches zero when going to the right.

be solved with perturbative methods for a wide range in temperature and chemical potential
(in particular at low T and µ) because its coupling constant is large. One therefore has to
revert to non-perturbative methods.
On the numerical side, Lattice QCD discretizes space-time and uses Monte-Carlo methods to
evaluate the QCD functional integral. At zero chemical potential this approach is successful
in that it predicts for example the above mentioned finite temperature crossover to the decon-
fined phase [3, 4] and can also obtain the zero temperature spectrum of the theory [5]. But the
QCD functional is a functional of bosons (gluons) and fermions (quarks). Mathematically, the
latter are integrated over, yielding a contribution to the path integral measure that can take
complex, i.e. not real-positive, values at non-zero chemical potential. Monte-Carlo methods
relying on the probabilistic interpretation of this measure fail. This sign problem when dealing
with fermionic systems is ubiquitous, also appearing for example in the fermionic Hubbard
model of condensed matter physics.
For the QCD phase diagram a summary of different approaches of Lattice QCD to determine
the critical line of the finite temperature, finite chemical potential transition is shown in Fig.1.2,
taken from [2]. Avoiding direct numerical simulations at µ > 0 because of the sign problem,
alternative techniques were used: The fermionic measure turns out to be real for imaginary µ,
thus allowing for Monte-Carlo simulations. The results on the critical line can be fitted with
an ansatz which is continued to µ2 > 0. Alternatively, one can use the fact that a statistical
ensemble at µ = 0 (i.e. in the absence of the sign problem) contains information about the
sector ρ > 0 which is made visible by reweighting its statistical weight. Note however that
these various attempts are all restricted to small physical volumes and to the region µ/T . 1
due to the sign problem.
In view of the non-perturbative character of QCD and the failure of Monte-Carlo methods for
full Lattice QCD at finite density, the possible alternatives are effective models. For the phase
diagram these are models with four-fermi interaction [6] like the NJL-model or random matrix
models, see [7, 8] for an overview.

Here we instead consider a “toy” model of QCD: Lattice QCD in the limit of infinite bare gauge
coupling as first studied numerically by Karsch & Mütter [9]. There are numerous reasons to
pursue a study of this model. Firstly, Karsch et al. showed that the sign problem at finite
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chemical potential is not an obstacle any more in this parameter regime and high densities of
nuclear matter could be reached with what are now table-top computing resources.
Secondly, even though the model is obtained as unphysical limit of the full Lattice QCD
Lagrangian, the main non-perturbative properties of QCD, confinement and chiral symmetry
breaking, are preserved. We can therefore gain qualitative insight into the QCD phase diagram.
Thirdly, the model has been a theoretical playground for 30 years now, starting with mean-field
approaches [10] continuing up to now [11]. The approximate theoretical predictions should be
checked against numerical methods using exact algorithms.
Furthermore, it is possible, in the future, to systematically approach a relevant parameter
regime (albeit with yet unknown computer effort) by means of inclusion of corrections to
strong coupling action.
Finally, apart from the above motivation, the strong coupling limit turned out also to be
physically interesting, as Karsch et al. found that the model has a strong first order phase
transition at low temperature and finite chemical potential, separating a phase of dilute hadrons
from that of dense nuclear matter. Interestingly, this transition appeared at a value of µB
considerably smaller than the measured baryon mass mB in lattice units, µB,c < mB. Using
mean-field theory the finite density transition was investigated earlier [12] with similar results,
but it was only realized later [13,14] that this apparent mismatch must be due to a strong
nuclear attraction in this model.2 This fact essentially triggered the investigation leading to this
thesis as strong coupling QCD promised to be an excellent laboratory of nuclear interactions
which seemed to be considerably enhanced in this limit.

The outline of this work is the following: in Ch.2 we give the necessary concepts and introduce
QCD, its symmetries and formulation on the lattice. On the side of statistical mechanics we
discuss tricriticality and introduce the worm algorithm for classical statistical spin models.
Ch.3 is devoted to a study of the q = 3 Potts model. Not only is the model important due to
its Z3 symmetry, shared with SU(3)-Yang-Mills on the lattice, but we also practice the finite
size scaling, which is the essential tool to study pseudo-phase transitions in a finite volume. It
also serves to familiarize ourselves with the worm algorithm.
Ch.4 contains the main part of the thesis: The nuclear physics content of Lattice QCD at
strong coupling. After introduction of the formalism at infinite gauge coupling and a summary
of mean-field predictions, we present results on the nucleon-nucleon potential and the masses
of nuclei at strong coupling. We conclude the chapter by investigating the origin of nuclear
interactions in this model.
In Ch.5 the phase diagram at strong coupling will be presented. Of particular interest are the
tricritical point predicted by mean-field theory in the chiral limit, and the critical endpoint for
nonzero quark mass.
Finally, Ch.6 concerns the extension of the model to Nf > 1. The formalism to map the
partition function to a dimer model for more than one quark flavor is presented and a resulting
sign problem discussed. We conclude the thesis with an outlook on future directions in Ch.7.

2Contrary to nature where the transition is expected at µB,c ≈ mB due to the large difference in the scale of
the baryon mass of O(1) GeV and nuclear binding energies which add up to only a few MeVs.
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2 Introduction

According to the standard model of particle physics (see Fig.2.1(a)) three out of the four fun-
damental interactions1 — the weak, the electromagnetic and the strong interaction — arise
from the exchange of gauge bosons between fermionic matter fields. The fermionic sector con-
tains the six leptons e−, νe, µ−, νµ, τ−, ντ and their antiparticles which do not take part in the
strong interactions but feel the electro-weak force mediated by the W± and Z0 bosons on the
weak side and the photon on the electromagnetic side. Fermions that do feel the strong force
mediated by the gluons Ga (a = 1, . . . , 8) are the Nf = 6 quarks denoted by u, d, s, c, b, t which
themselves form bound states subject to the strong interactions (hadrons).
As an example of some gauge boson mediated process involving many of the elementary par-
ticles of the standard model, Fig.2.1(b) shows a diagram corresponding to beta decay of a
neutron n to a proton p, an electron e and its antineutrino ν̄e. This process involves the
W−-boson.

In quantum field theory, the strength of the interaction is expressed by coupling constants or

1A formulation of gravity as quantum field theory has yet to be found.

(a) (b)

Figure 2.1: (a) The particle content of the Standard Model. Three generations of quarks and
leptons, respectively, make up matter. Fundamental force carriers are the gauge bosons. The
origin of the elementary particle masses is only effectively understood by means of spontaneous
symmetry breaking involving the Higgs boson, the search for which is currently ongoing at the
Large Hadron Collider. The table was taken from [15]. (b) Beta decay n → p + e− + ν̄e as
an example of a process mediated by a (weak) gauge boson involving many of the elementary
particles of (a). The diagram figure was taken from [16].

5
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Figure 2.2: (a) A simple hypercubic lattice with fermionic matter fields ψx, ψ̄x defined on
lattice sites and gauge bosons Uµ(x) located on the links connecting these sites. (b) Overview
of possible choices of discrete fermions currently used: We use the staggered formalism, offer-
ing a compromise between the computational cost, symmetry properties and the number of
(unwanted) doubler degrees of freedom.

charges e, gw, gs of the elementary particles with respect to the interaction. These “constants”
depend however on the distance or energy scale µ of the interaction. For instance, while
the coupling constant of Quantum Electrodynamics (QED) is measured at the scale of the

electron mass me ≈ 0.5 MeV using the Josephson effect to give α(me) = e2

4π ≈ 1
137 , when

“run up” to the scale of the W±, mW ≈ 80 GeV, it is α(mW ) ≈ 1
128 . Thus, it increases at

shorter distances but still remains small, s.t. QED can be treated by perturbative methods
which rely on the expansion of physical quantities in terms of α(µ). In contrast, for Quantum
Chromodynamics (QCD), the theory underlying strong interactions, perturbative methods fail
at relevant distances: When the strong coupling αs, measured at the scale of the Z0-boson
mass mZ ≈ 90 GeV to give αs(mZ) ≈ 0.12, is run “down” to the scale of µ = O(100) MeV,
it becomes “strong”, αs & 1. In natural units (~ = c = 1) this mass scale defines an
(inverse) length scale since 1

fm ≈ 197.5 MeV. The property of QCD we just described is called
“infrared slavery” and implies that any perturbative calculations in αs at the scale of the size
of a baryon (1 fm) must fail. Taken in the other direction, i.e. going to smaller distance (≪ 1
fm), the QCD coupling vanishes logarithmically and leads to “asymptotically free” quarks and
gluons. Because perturbative methods fail when applied to the low energy regime of QCD,
non-perturbative (numerical) approaches have to be used.
Lattice field theory discretizes space-time and replaces the continuum theory by a theory
defined on a regular, in most cases hypercubic, lattice of the appropriate dimension. The
(fermionic) matter fields are now defined on lattice sites, ψ(x) → ψx, see Fig.2.2(a). Gauge
bosons carry an additional Lorentz index and are defined on the links of length a connecting
neighboring sites, Aµ → Uµ(x) = exp (iaAµ(x)). This follows the prescription first chosen
by K.Wilson [17] to discretize gauge theory: While the continuous Poincaré symmetry of the
continuum is reduced to a discrete translational and rotational symmetry on the lattice, the
gauge symmetry and thus the gauge principle is preserved. However, while the discretization
of bosons is essentially straight forward, defining fermions on the lattice is accompanied by the
doubling problem (see Sect.2.2.2.1): A naive discretization of fermions does not lead to the
correct continuum theory one started with but rather describes additional, “double” degrees
of freedom. The Nielsen-Ninomiya theorem sets up systematic constraints on the fermionic
action and symmetries it possesses, eventually leading to the currently available choices of
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fermions listed in Fig.2.2(b), see [18] for an overview. While the formulation using Wilson
fermions completely removes doubling by adding a term to the action that corresponds to a
lattice Laplacian, it explicitly breaks chiral symmetry which is only recovered in the continuum
after a fine-tuning of the bare quark mass. As an example of Ginsparg-Wilson fermions we
mention domain wall fermions that instead use the Wilson-Dirac operator in five dimensions
and let the mass term be a particular function of the fifth dimension. This formulation removes
the doubler degrees of freedom as it is the case with Wilson fermions. In addition it obeys a
discrete (lattice) version of chiral symmetry that turns into the continuum version as a → 0.
In this work we chose the staggered formulation of fermions which is numerically the simplest
to study and simulate at the cost of leaving four of the sixteen doubler fermions of the four-
dimensional theory using the naive discretization.
Before we turn to a more thorough description of Lattice QCD, we shortly introduce QCD
in the language of field theory in the next section. As it will be necessary for numerical
computations, this is done in the Euclidean formulation, i.e. with imaginary time t = −iτ .

2.1 QCD Lagrangian, symmetries

The QCD Lagrangian in Euclidean time is given by

LE =
1

2
tr(FµνFµν) +

∑

α

ψ̄α(γµ[∂µ + igAµ] +mα)ψα (2.1)

where summation over a repeated index is implied and we defined the following quantities:

Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ] Non-Abelian field strength for gauge group G = SU(N).

Fµν = F aµνt
a ta are the hermitian, traceless generators of SU(N).

Aµ = Aaµt
a Aaµ represents the (gauge) gluon field.

ψαi , m
α Quark field of bare mass mα.

a = 1, . . . , N2 − 1 Adjoint color index.

i = 1, . . . , N Fundamental color index.

α = 1, . . . , Nf Flavor index.

µ = 0, . . . , d Euclidean space-time index in d+ 1-dimensions.

g Bare gauge coupling.

γµ Euclidean Dirac γ matrices fulfilling {γµ, γν} = 2δµ,ν , γ
†
µ = γµ.

For QCD the numbers of colors is N = 3. The generators ta, spanning the Lie-Algebra of
SU(3) with [ta, tb] = ifabctc and structure constants fabc, are then taken to be ta = λa/2,
where λa are the Gell-Mann matrices normalized s.t. tr(λaλb) = 2δa,b (see for example [19]).
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We have Nf = 6 quark flavors in nature. The lightest (termed “up” (u),“down” (d) and
“strange” (s)) have masses mu = 1.5− 4 MeV, md = 4− 8 MeV and ms = 80− 130 MeV and
dominate the dynamics of QCD. In the absence of the quarks, Eq.(2.1) represents a Yang-Mills
theory of self-interacting gluons Aaµ, invariant under local gauge transformations

Aµ(x) → Ω(x)Aµ(x)Ω
−1(x)− i

g
Ω(x)∂µΩ

−1(x) (2.2)

with Ω(x) ∈ SU(3). The quark fields transform according to

ψα(x) → Ω(x)ψα(x), ψ̄(x)α → ψ̄(x)αΩ−1(x) . (2.3)

Apart from this local symmetry, for mα = 0 the Lagrangian Eq.(2.1) is invariant under trans-
formations

Ψ → eiθ
a
V t

a+iγ5θaAt
a
Ψ, Ψ̄ → Ψ̄e−iθ

a
V t

a+iγ5θaAt
a
, (2.4)

where we denoted by Ψ the vector in flavor space with (Ψ)α = ψα, γ5 = γ0γ1γ2γ3 and ta are
the generators of SU(Nf ). The massless Lagrangian further has a UV (1)× UA(1) symmetry

UV (1) : Ψ̄ → Ψ̄e−iθV , Ψ → eiθV Ψ, (2.5)

UA(1) : Ψ̄ → Ψ̄eiγ5θA , Ψ → eiγ5θAΨ . (2.6)

In the quantized theory the UA(1) symmetry Eq.(2.6) is explicitly broken by Instantons in the
continuum (the so called “axial anomaly” see for example [20]). To see that the full symmetry
group is actually U(Nf )×U(Nf ), we define ψ

α = ψαL+ψ
α
R where ψαR/L = 1

2(1±γ5)ψα =: PR/Lψ
α

are the right and left handed quark fields, respectively. Thanks to the properties of γ5,
2 PR

and PL are projectors with properties P 2
R/L = PR/L, PR + PL = 1, PLPR = PRPL = 0. ψαR/L

have right and left handed chirality, γ5ψ
α
R/L = ±ψαR/L, respectively. Further we rewrite the

two sets of generators ta, γ5t
a of Eq.(2.4) as two commuting sets of generators taR, t

a
L

taR =
1

2
(1 + γ5)t

a, taL =
1

2
(1− γ5)t

a . (2.7)

The massive Lagrangian Eq.(2.1) in this basis becomes

LE =
1

2
tr(FµνFµν) +

∑

α

ψ̄αRγµ(∂µ + igAµ)ψ
α
R + ψ̄αLγµ(∂µ + igAµ)ψ

α
L +mα(ψ̄αRψ

α
L + ψ̄αLψ

α
R)

(2.8)

and in the chiral limit is seen to have a U(Nf )×U(Nf ) = SUL(Nf )×SUR(Nf )×UV (1)×UA(1)
symmetry with the transformations given by Eqs.(2.5,2.6) and

SUL(Nf ) : Ψ̄L → Ψ̄Le
−itaLθaL , ΨL → eit

a
Lθ

a
LΨL, (2.9)

SUR(Nf ) : Ψ̄R → Ψ̄Re
−itaRθaR , ΨR → eit

a
Rθ

a
RΨR. (2.10)

Note that the transformation given in Eq.(2.4) can be written as eiθ
a
V t

a+iγ5θaAt
a
= eiγ5θ

′a
A t

a
eiθ

′a
V t

a

with parameters θ′aA , θ
′a
V which depend on θbA, θ

b
V . In this notation U(Nf )× U(Nf ) can loosely

2γ†
5 = γ5, γ

2
5 = 1, {γ5, γµ} = 0.
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Uµ(y)y

Pµν

U†
µ

(x + ν)

Uν(x + µ)

Uµ(x)

U†
ν (x)

x

Figure 2.3: Plaquette Pµν and fundamental link Uµ̂(x).

be rewritten as U(Nf )× U(Nf ) =“SUA(Nf )”×SUV (Nf )× UA(1) × UV (1) where “SUA(Nf )”
now does not denote a group but the right coset space SUL(Nf ) × SUR(Nf )/SUV (Nf ) with
generators γ5t

a and SUV (Nf ) = SUL=R(Nf ) is a subgroup generated by the ta. For mα > 0
the symmetry group SUL(Nf )×SUR(Nf ) is explicitely broken down to this subgroup because
of the noninvariant term Ψ̄Ψ = Ψ̄RΨL + Ψ̄LΨR which couples to the quark mass in Eq.(2.8).
In the chiral limit, this breaking happens spontaneously and the expectation value 〈Ψ̄Ψ〉, the
chiral condensate, represents an order parameter signaling this break down as it transforms
nontrivially under “SUA(Nf )” chiral transformations. In the chirally symmetric phase it must
hence be zero but can take a non-vanishing value in the broken phase, representing a contri-
bution to the constituent quark mass.

In the above discussion we have already anticipated the expectation value of observables. For-
mally we define the generating functional Z for systems with the Lagrangian LE in Euclidean
time by

Z =

∫

DΨ̄DΨDAe− 1
~

∫

d4xLE(A,Ψ̄,Ψ) , (2.11)

from which expectation values of observables Ô are obtained,

〈Ô〉 = 1

Z

∫

DΨ̄DΨDA O e−
1
~

∫

d4xLE(Aµ,Ψ̄,Ψ) . (2.12)

Perturbatively the theory with “partition function” Z is not properly defined without fixing a
gauge and a subsequent regularization (see e.g. [20]). As we will see in the next section, on the
lattice a momentum cut-off 1/a with the lattice spacing a is introduced and the theory is thus
regularized without any need for gauge-fixing. In fact, the lattice is the only known regulator
that is non-perturbative and gauge-covariant.

2.2 QCD on the lattice

2.2.1 Discretizing the gauge action

Throughout this thesis we work with the discretized version of the QCD-Lagrangian Eq.(2.1).
The discretization is formally presented in two separate steps: This section will shortly intro-
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duce how the Yang-Mills part of the QCD action is formulated on a lattice where we take the
gauge group to be G = SU(N). Sect.2.2.2 then treats the fermionic part.

In the following we will refer to the “lattice” as the discrete set of points x(t, i, j, k) = (te0 +
ie1 + je2 + ke3)a, with a being the lattice constant and eµ(aeµ = µ̂) the unit-vector in
the µth direction of Euclidean space-time. t, i, j, k take integer values, t, i, j, k = 1, . . . , L
and we choose periodic boundary conditions for the corresponding finite space-time volume.
To obtain a discretized expression for SYM =

∫
d4x1

2tr(FµνFµν) that is invariant under the
discretized form of the gauge transformations, Eq.(2.2), we introduce the discrete version of
parallel transport. The parallel transporter that connects neighboring lattice sites is referred
to as link Uµ̂ ∈ G and has the form

Uµ̂(x) = P exp

(

ig

∫ x+aµ̂

x
Aνdx

ν

)

a→0−→ exp
(
igaAµ(x) +O(a2)

)
. (2.13)

Under a gauge transformation, Eq.(2.2), Uµ̂ transforms according to Uµ̂(x) → U ′
µ̂(x) =

Ω(x)Uµ̂(x)Ω
−1(x + µ̂) and we can now construct parallel transport along different paths γ

on the lattice out of these elementary links. The smallest, closed Wilson line, the 1× 1-Wilson
loop Pµν (see Figure 2.3) is given by

Pµν = Uµ̂(x)Uν̂(x+ µ̂)U †
µ̂(x+ ν̂)U †

ν̂ (x)
a→0−→ exp

(
iga2Fµν +O(a3)

)
(2.14)

where eAeB = eA+B+ 1
2
[A,B]+··· and Fµν(x) = ∂µAν − ∂νAµ + ig[Aν , Aµ] with Aµ(x + ν̂) =

Aµ(x) + a∂νAµ(x) + O(a2) were used. Eq.(2.14) serves as a definition for the lattice field
strength Fµν , ususally referred to as plaquette. In the limit of small lattice spacing a we can
expand Eq.(2.14) to O(a4) and see that

trPµν
a→0
= N − 1

2
g2a4(Fµν)

2 +O(a5) ,

where terms linear in the generators vanish due to their zero trace. The following sum is the
simplest choice of a lattice action (the Wilson action [17]) reproducing the Yang-Mills action
in the continuum limit a→ 0:

S[U ] := β
∑

x,µ<ν

[

1− 1

2N
tr
(

Pµν + P †
µν

)]

=
β

2

∑

x,µν

[

1− 1

N
Re trPµν

]

a→0−→ βg2

4N

∫

M
d4x tr (FµνF

µν) ,

(2.15)

taking into account both orientiations of Pµν (Figure 2.3) to ensure hermiticity of S[U ]. The
free parameter β of the lattice theory thus has to satisfy β = 2N/g2. The partition function
can be defined by

Z =

∫

G
DU e−S[U ] , (2.16)

where the measure DU , with DU =
∏

x,µ
dUx,µ, involves the Haar measure dU of the gauge group.

It is normalized s.t.
∫

G dU = 1 and enjoys invariance under left and right multiplication with
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elements of the group

∫

G
dUf(U) =

∫

G
dUf(V U) =

∫

G
dUf(UW ), ∀ V,W ∈ G . (2.17)

An expectation value of an observable Ô(U) is given by

〈Ô〉 = 1

Z

∫

G
DU O(U)e−S[U ] . (2.18)

where the invariance Eq.(2.17) ensures that it is non-vanishing only for gauge invariant expres-
sions O(U).

2.2.2 Fermions on the lattice

2.2.2.1 The Doubling problem

Special care has to be taken when discretizing fermions. We consider for example a free theory
with one flavor,

SF,free =

∫

d4x ψ̄(x)(γµ∂µ +m)ψ(x) =

∫

d4x ψ̄(x)(D +m)ψ(x) ,

with Dirac operator D. Replacing the derivative by a central difference on the lattice leads to

SF,free, lat = a4
∑

x







3∑

µ=0

ψ̄xγµ
ψx+µ̂ − ψx−µ̂

2a
+mψ̄xψx






. (2.19)

Here, ψy, ψ̄y are anti-commuting (Grassmann) variables, ψyψ̄y = −ψ̄yψy.
If we look at the free fermion propagator ∆F (x, y) obtained by going to momentum space in
Eq.(2.19), taking the inverse of the discrete Dirac operator and transforming back, then

∆F (x, y) =

∫ π/a

−π/a
d4p

−iγµp̂µ +m
∑

µ p̂
2
µ +m2

ei(x−y) , (2.20)

where p̂µ = 1
a sin (pµa) and pµ ∈ [−π/a, π/a] varies in the first Brillouin zone (BZ). In the con-

tinuum a relativistic particle has dispersion relation E(p) =
√

p2 +m2. On the lattice, setting
p0 = iE, the integrand in Eq.(2.20) has poles at sinh2 (Ea) = a2m2 +

∑3
i=1 sin

2 (pia). Taking

the limit a→ 0, for small momenta pi we indeed find E =
√

m2 + p2, i.e. a particle state with
the correct dispersion relation. But for a→ 0 the integral Eq.(2.20) also receives contributions
from momenta at the corners of the BZ at pi ≈ ±π/a, where Eδ =

√

m2 +
∑

i(pi − δiπ/a)2,
with δi = 0, 1. Together with the choice p0 = iE + δ0π/a, we recover 2d+1 = 16 degenerate
particle states, i.e. the action Eq.(2.19) describes a theory of 16 degenerate Dirac particles,
instead of one, which is referred to as “doubling” problem.
In the next section we will encounter an alternative formulation of discrete fermions. It follows
from the Nielsen-Ninomiya theorem [21] that any formulation of fermions on the lattice with
discretized Dirac operator Dxy cannot satisfy simultaneously the following conditions:
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• Locality: The contribution to the sum
∑

yDxyψy from terms at y = z decays exponen-
tially with the distance |x− z|. Practically it means that, given x, D only couples terms
via Dxy for y in the neighborhood of x, shrinking to δ(x) as a→ 0.

• Chiral symmetry: {γ5,D} = 0.

• The formulation is doubler free.

• In momentum space D(p) behaves like D(p) = iγµpµ for small p.

Staggered fermions, described in the next section, reduce the number of doublers from 16 to
4 in d+ 1 = 4 dimensions and have a reduced chiral symmetry. They will be used throughout
this thesis.

2.2.2.2 Staggered fermions

Starting from the naive discretization Eq.(2.19), the change of variables

ψ(x) = T (x)χ̂(x), ψ̄(x) = χ̂(x)T †(x) (2.21)

with unitary matrices T is made, s.t.

T †(x)γµT (x+ µ̂) = ηµ̂(x) with ηµ̂(x) ∈ C. (2.22)

A constraint is given by the condition ηµ̂(x)ην̂(x+ µ̂)η†µ̂(x+ ν̂)η†ν̂(x) = −1. A possible choice

is T (x) = γx00 γx11 γx22 γx33 , which yields ηµ̂(x) = (−1)
∑

ν<µ xν . The action then reads

SF,free, lat = a4
∑

x







3∑

µ=0

ηµ̂(x)





3∑

j=0

ˆ̄χx,j
χ̂x+µ̂,j − χ̂x−µ̂,j

2a



+m
∑

j

ˆ̄χx,jχ̂x,j ,






(2.23)

and now describes 4 independent sets of fields ˆ̄χx,j, χ̄x,j. By taking only one component ˆ̄χx, χ̄x
per site x, the number of doublers is reduced from 16 to 4. Alternatively, one may interpret the
index j as a staggered flavor index α, α = 1, . . . , Nf , since now the mass in Eq.(2.23) can be
chosen independently for each j. The free staggered action now reads (defining dimensionless
fields by χ = a3/2χ̂)

SF,free, stag =
∑

x

Nf∑

α=1







3∑

µ=0

ηµ̂(x)

(

χ̄αx
χαx+µ̂ − χαx−µ̂

a

)

+ amαχ̄αxχ
α
x ,






(2.24)

and really describes a theory of 4Nf flavors due to the presence of doublers. In Lattice QCD
each variable χαx , χ̄

α
x is an N -component object, (χαx)a, a = 1, . . . , N , representing the color

degree of freedom. To account for a local, i.e. gauge invariance of the action Eq.(2.24) under
transformations

χαx → Ω(x)χαx , χ̄αx → χ̄αxΩ
−1(x), (2.25)
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we have to replace the finite difference scheme of the lattice derivative by the covariant deriva-
tive on the lattice. The modified expression of the action Eq.(2.24) given by

SF,stag =
∑

x

Nf∑

α=1







3∑

µ=0

ηµ̂(x)
(

χ̄αxUµ̂(x)χ
α
x+µ̂ − χ̄αx+µ̂U

†
µ̂(x)χ

α
x

)

+ 2amαχ̄αxχ
α
x






, (2.26)

is gauge invariant as the links U transform according to Uµ̂(x) → Ω(x)Uµ̂(x)Ω
−1(x+ µ̂) under

gauge transformations Eq.(2.25). Expanding the links to Uµ̂(x) = 1 + igAµ(x)a + O(a2), we
indeed see that for a → 0 the lattice finite difference in Eq.(2.26) reduces to Dµ = ∂µ + igAµ
which is the covariant derivative in the continuum.
As it stands, the action Eq.(2.26) has a global U(Nf ) × U(Nf ) = SUL(Nf ) × SUR(Nf ) ×
UV (1)× UA′(1) symmetry for mα = 0 ∀α,

χαxe → V αβeiθA′+iθV χβxe χ̄αxe → χ̄βxee
iθA′−iθV W †,βα

χαxo →Wαβe−iθA′+iθV χβxo χ̄αxo → χ̄βxoe
−iθA′−iθV V †,βα (2.27)

with matrices V,W ∈ SU(Nf ) and an even-odd decomposition of our hypercubic lattice in

sites xe, xo defined via parity ǫ(xe) = 1, ǫ(xo) = −1 where ǫ(x) = (−1)
∑

µ xµ . As the notation
suggests SUL(Nf )×SUR(Nf ) is the chiral symmetry of the lattice action. In the case Nf = 1
the above symmetry reduces to UA′(1) × UV (1) which in the limit a → 0 is enhanced to a
SUL(4)×SUR(4)×UV (1) symmetry due to the symmetry between the 4 doublers or “tastes”.
The “axial” symmetry UA′(1) is thus a subgroup of the SUL(4) × SUR(4) chiral group and is
not related to the anomalous, axial UA(1) broken explicitly by the appearance of instantons in
the continuum. It is the remnant chiral symmetry of staggered fermions on the lattice.
For mα = m > 0 the symmetry under transformations Eq.(2.27) is reduced to SU(Nf ) ×
UV (1), i.e. taking V = W in Eq.(2.27) and we thus have a flavor symmetry and a symmetry
corresponding to fermion number conservation (see below).
If we consider the free case again, Eq.(2.24), with Nf = 1 we can recover an action describing
4 tastes (flavors with degenerate mass) of Dirac spinors by dividing the lattice in hypercubic
blocks with coordinate y, s.t. a site x is can be written x = 2y + δ, where the 4-vector δ has
components δi = 0, 1 and labels the corners of the hypercube. Defining (see e.g. [22])

ψâby =
1

8

∑

δ

T (δ)âbχ2y+δ, ψ̄âby =
1

8

∑

δ

(

T †(δ)
)âb

χ̄2y+δ , (2.28)

with matrices T âb(δ) = (γδ00 γ
δ1
1 γ

δ2
2 γ

δ3
3 )âb which we already used in Eq.(2.22), we recover not only

the spinor index (here taken as the second index b) but also make visible the taste-multiplicity
with the taste index â. This will become important once we want to assign quantum numbers
to correlation functions involving the staggered quark fields χ̄, χ, see Sect.4.1.3.2. The taste
symmetry of the free action and the interacting theory with gauge fields is broken at nonzero
lattice spacing a.

The Lattice QCD partition function is now given by

Z =

∫

DUDχDχ̄e−SY M−SF , (2.29)

where SYM , SF are defined in Eq.(2.15) and (2.26), respectively. The fermion path integral
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measure DχDχ̄ =
∏

x,α,i dχ
α
x,idχ̄

α
x,i relies on the definition of the Grassmann integration which

we will use extensively: For Grassmann numbers ξ, ξ̄, we define

∫

dξ ξ = 1,

∫

dξ̄ ξ̄ = 1,

∫

dξdξ̄ ξ̄ξ = 1 . (2.30)

The partition function Eq.(2.29) is the starting point to derive an alternative representation
at infinite gauge coupling β = 6/g2 = 0, called the “strong coupling” limit. For a > 0 the
taste and spin rotational symmetries of the continuum action are broken to discrete shifts and
rotations on the lattice. The breaking of the taste symmetry leads to mass splitting of taste
multiplets. In the strong coupling limit this splitting is maximal, having little in common with
the continuum theory of four degenerate quarks tastes. When working in the χ, χ̄-basis which
is a set of variables without spinor index but with the correct anticommutation relation we
therefore adopt the point of view of studying the physics of one flavor of spinless quarks on a
hypercubic lattice.

2.2.3 Finite temperature and chemical potential

An Euclidean field theory at finite temperature T is obtained by compactifying the Euclidean
time direction (0̂-direction), where the physical temperature T is identified with the inverse
extent in time, i.e. t ∈ [0, 1/T ]. Compactness in time means that we have to impose boundary
conditions (bc) in time for the fields Aµ (or U) and ψ (χ). If we denote by Z(T ) the partition
function of a system at finite temperature T with fields φ, then

Z(T ) =

∫

Dφe−
∫ 1/T
0 dx0

∫

d3xLE(φ,∂φ)

∣
∣
∣
∣

(2.31)

where | denotes a set of suitable bc on the field. We want to motivate why φ(~x, t+ 1
T ) = cφ(~x, t)

with c = 1 for bosons and c = −1 for fermions, respectively, by alluding to quantum statistical
mechanics and write Z(T )

Z(T ) = Tr(e−Ĥ/T ) :=
∫

dϕ 〈ϕ| e−Ĥ/T |ϕ〉 . (2.32)

The 2-pt function G( ~x1, t1, ~x2, t2) = 〈T φ̂(~x1, t1)φ̂(~x2, t2)〉 is then given by

G(~x1, t1, ~x2, t2) =
1

Z
Tr
(

e−Ĥ/TT φ̂(~x1, t1)φ̂(~x2, t2)
)

, (2.33)

with time-ordering T defined by (c = 1 bosons, c = −1 fermions)

T φ̂(~x1, t1)φ̂(~x2, t2) := φ̂(~x1, t1)φ̂(~x2, t2)θ(t1 − t2) + cφ̂(~x2, t2)φ̂(~x1, t1)θ(t2 − t1) .
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Taking t1 = t > t2 = 0 we obtain

G(~x1, t, ~x2, 0) =
1

Z
Tr
(

e−Ĥ/T T φ̂(~x1, t)φ̂(~x2, 0)
)

=
1

Z
Tr
(

e−Ĥ/T φ̂(~x1, t)φ̂(~x2, 0)
)

=
1

Z
Tr
(

φ̂(~x2, 0)e
−Ĥ/T φ̂(~x1, t)

)

=
1

Z
Tr
(

e−Ĥ/T e+Ĥ/T φ̂(~x2, 0)e
−Ĥ/T φ̂(~x1, t)

)

=
1

Z
Tr
(

e−Ĥ/T φ̂(~x2, 1/T )φ̂(~x1, t)
)

= c
1

Z
Tr
(

e−Ĥ/T T φ̂(~x1, t)φ̂(~x2, 1/T )
)

= cG(~x1, t, ~x2, 1/T ) , (2.34)

which implies φ(~x, t+ 1
T ) = cφ(~x, t) for the fields in Eq.(2.31).

On the lattice we proceed in the same way and compactify the 0̂-direction with extent Nta
(Nt ≪ L), defining the temperature by T = 1/Nta. Finally the boundary conditions Uµ̂(~x, t+
Nt) = Uµ̂(~x, t), χ(~x, t+Nt) = −χ(~x, t) are imposed.

To introduce a quark chemical potential µ on the lattice we first observe that the global UV (1)
symmetry Eq.(2.5) in the continuum leads to a conserved current jVµ = ψ̄γµψ by Noether’s
theorem. The conserved charge under this symmetry, n =

∫

V d3x ψ̄γ0ψ, corresponds to quark
number. As in statistical mechanics where the particle number is controlled via the chemical
potential, µ should couple to the quark number in the Lagrangian Eq.(2.1) via a term µψ̄γ0ψ
which can be achieved by letting ∂0 → ∂0 + µ. Hence we obtain

L =
1

2
tr(FµνFµν) + ψ̄(γν [∂ν + igAν + µδν,0] +m)ψ , (2.35)

and we see that the chemical potential is introduced as the imaginary part of 0.th component
of the gauge potential. On the lattice we proceed in an analogous way. Remembering that
the gauge potential was introduced by inserting the links Uµ(x) in the finite difference, see

Eq.(2.26), the replacement U0̂(x) → eaµ
α
U0̂(x), U

†
0̂
(x) → e−aµ

α
U †
0̂
(x) leads to the expression

SF,stag=
∑

x

Nf∑

α=1

{
d∑

ν=0

ην̂(x)
(

χ̄αxe
aµαδν,0Uν̂(x)χ

α
x+ν̂ − χ̄αx+ν̂e

−aµαδν,0U †
ν̂(x)χ

α
x

)

+ 2amαχ̄αxχ
α
x

}

(2.36)

where the discrete difference term reduces to (∂ν + igAν + µδν,0) in the limit a → 0, as seen
by an expansion to O(a2).

With the lattice action Eq.(2.36) we have the necessary tool to investigate strong coupling
QCD as done in Ch.4. We now turn to some topics in statistical mechanics.

2.3 Some concepts in statistical mechanics

In the previous sections we used the terms “partition function” and “generating functional”
alternately to denote the expression

Z =

∫

DUDχDχ̄ e−SY M−SF , (2.37)

thereby exploiting the analogy between statistical mechanics and Euclidean quantum field
theory on a lattice (see for example[22]). The lattice actions SYM and SF defined in Eqs.(2.15)
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Figure 2.4: Schematic phase diagram of a metamagnet.

and (2.36), respectively, contain the parameters β = 6/g2, aT = 1
Nt

, aµ and the bare quark
mass amq which determine the state of the system described by Eq.(2.37). As a particular
example in Chs.4 and 5 we will consider the case Nf = 1, β = 0. Then for mq = 0, the remnant
chiral symmetry Eq.(2.27) will be broken spontaneously for low temperature T and chemical
potential µ with order parameter 〈χ̄χ〉. As one of the parameters (say aµ) is varied smoothly,
this state might change abruptly, a phase transition leading to a chirally symmetric state occurs.
Generally, one possibility a phase transition may happen is through the coexistence of two or
more competing phases with different macroscopic properties (such as the value of the order
parameter in each phase) at the transition point, implying a finite (possibly large) correlation
length in the fluctuations of microscopic observables. Slightly away from the transition the
system is in a unique phase whose properties are that of one of the coexisting phases. The
transition is therefore discontinuous (or first order). Tuning another thermodynamic parameter
(for example temperature), the macroscopic distinction between the competing phases along
the transition line can become weaker, the correlation length grows and finally diverges. The
competing phases become a unique, critical phase and the system undergoes a continuous
transition at a critical point. As the correlation length diverges, the microscopic properties of
the system (such as the details of the interaction in the action) become less relevant and global
properties, for example the symmetries and dimension of the system characterize its behavior,
the model falls into a universality class. For the particular case of three coexistent phases
at the first order transition, the critical point is named tricritical point. The next section
will give an example of a system exhibiting tricriticality and shortly summarizes the analytic
predictions on the shape of the transition line in the vicinity of this point.

2.3.1 Tricriticality

2.3.1.1 General remarks

An example for a system with tricritical behavior is a metamagnet such as Fe2Cl which is a
particular type of antiferromagnet. Like all antiferromagnets it exhibits as a function of tem-
perature a continuous phase transition at Néel temperature TN , separating a high-temperature
paramagnetic phase from a low-temperature phase of antiferromagnetic order of the atomic
spins. As shown in the phase diagram Fig.2.4 turning on a magnetic field H, the Néel point
becomes a Néel line Lλ of critical points which — for a metamagnet — turns into a first order
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transition at (T,H) = (Tt,Ht). If the metamagnet has a strong uniaxial anisotropy (i.e. an
“easy” axis of magnetization) a simplified model is given by the Ising model on a cubic lattice
which is partitioned into two sublattices A,B which interact antiferromagnetically. One such
partition would be the natural bipartition of the hypercubic lattice, s.t. a site of A has only
neighbors which are elements of B. The Hamiltonian is given by

H = −
∑

ij

Jijsisj −H
∑

i

si −H†(
∑

i ∈ A

si −
∑

i ∈ B

si) , (2.38)

with Ising spins si = ±1 and

Jij =







J1 > 0, if i, j are nearest neighbors (n.n) on the same sublattice A or B

J2 < 0, if i, j are n.n. but i ∈ A and j ∈ B and vice versa

0, else

. (2.39)

The magnetic fields H,H† are the non-ordering uniform field and the staggered field, respec-
tively. H couples to the magnetization M =

∑

i si and thus respects the symmetry between
the two sublattices A,B, whereas the conjugate variable to H† (which explicitly breaks this
symmetry) is the staggered magnetization M † =

∑

i ∈ A si −
∑

i ∈ B si. For H† = 0 it is the
order parameter distinguishing the paramagnetic (M † = 0) from the antiferromagnetic phase
(M † 6= 0). The area S0 in the plane H† = 0 of Fig.2.4 corresponds to the surface of coexistence
of the “vacua” M † ≷ 0 which are reached in the limit H† → 0±, respectively. This two-phase
coexistence turns into a three-phase coexistence (M † ≷ 0 and M † = 0) at high magnetic field
H on the line of first order transitions Lτ . The three-phase coexistence ends at the tricritical
point (Tt,H

† = 0,Ht) when the three phases turn into one phase. The terminology is hence
chosen in analogy to a critical point which marks the endpoint of a two-phase coexistence such
as the liquid-gas transition line of water or the transition to nuclear matter in strong coupling
QCD at nonzero bare quark mass. For H† 6= 0 the phases M † ≷ 0 at low temperature and
low magnetic field H are inequivalent. Increasing H a first order transition traces out the
coexistence surfaces S+, S− of the phases M † > 0,M † < 0 with the phase of low staggered
magnetization M † ≈ 0, respectively. This coexistence ends on the wing-lines L± of critical
endpoints which terminate at the tricritical point (TCP). In the following we will be interested
in the scaling predictions for L± close to tricriticality.

2.3.1.2 Scaling predictions in the vicinity of the tricritical point

The scaling analysis starts by choosing an appropriate set of variables in the vicinity of the
TCP. In the case of the antiferromagnet we define the scaling variables

t =
T − Tt
Tt

, h = H −Ht − at, h† = H† (2.40)

where a = dH
dT

∣
∣
Tt

is the slope of the lambda line Lλ (see Fig.2.4) at the tricritical temperature
Tt. If Z is the partition function of the system and G = −T logZ its free energy, a scaling
hypothesis for G in the neighborhood of the TCP can be formulated. In our case it reads[23,24]

G = G(t, h†, h) ∼ |t|2−αG±(h†/|t|φ1 , h/|t|φ) (2.41)
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asymptotically close to the tricritical point for t ≷ 0, respectively. Here α, φ, φ1 are tricritical
exponents and G denotes the scaling function. Classical (Landau) theory makes predictions for
the exponents and we point to the next section for a motivation why for d = 3 these exponents
are expected to be correct.
The scaling hypothesis Eq.(2.41) now constrains the shape of the wing-lines L± drawn in
Fig.2.4 by the following argument: By definition G has a singularity at any point on L±. If
this point is given by (t, h†±(t), h±(t)) close to the TCP, then Eq.(2.41) implies that G has the

same singularity at a point (λt, λφ1h†±(t), λ
φh±(t)), λ ∈ R, provided we are still in the scaling

region. But this means that λφh±(t) = h±(tλ) and λφ1h†±(t) = h†±(tλ). Choosing λ = |t|−1

and taking into account the symmetry of the lines L± yields (t < 0 on the wing lines)

h±(t) ∼ |t|φ, h†±(t) ∼ ±|t|φ1 . (2.42)

The geometry of the wing-lines close to the TCP is thus largely constrained once the critical
exponents are known. A TCP is predicted in the phase diagram of strong coupling QCD in the
chiral limit (see Sect.5.1.1), where the quark mass mq plays the role of the symmetry breaking
(ordering) field h†. The scaling predictions Eq.(2.42) in the tricritical region will determine
the “movement” of the QCD critical endpoint as mq is increased, see Sect.5.3.

2.3.1.3 Ginzburg criterion & upper critical dimension

α β γ ν η

critical 0 1
2 1 1

2 0

tricritical 1
2

1
4 1 1

2 0

Table 2.1: Critical and tricritical exponents of the classical theory.

Classical (Landau) theory relies on the expansion of the underlying thermodynamic potential
in powers of the order parameter ψ of the system. If G is the free energy of the last section
and F (t,m†, h) = G(t, h†, h) + h†m† its Legendre transform, then the potential is given by
Φ(ψ; t, h) = F (t, ψ, h) in the absence of the external field h†. In this notation Φ is a func-
tional of ψ(h, t) and is minimized by ψ(h, t) = m†(h, t). In the presence of the external field
Φ(ψ; t, h†, h) = F (t, ψ, h) − h†ψ is expanded near a critical point,

Φ(ψ; t, h†, h) = Φreg − h†ψ + rψ2/2 + uψ4/4! + ψ6/6! (2.43)

where the spatial dependence ψ(x) is typically neglected. Subsequently it is assumed that the
coefficients u, r depend analytically on the scaling variables t, h. A condition for the validity of
these assumptions is given by the Ginzburg-criterion [23]: If we consider a subvolume Ω = ξd

of our d-dimensional metamagnet to be correlated, fluctuations ∆ =
∫

Ω dx(ψ(x) −m†) of the
order parameter ψ(x) around its mean value m† in this volume are negligible if

〈∆2〉 =
∫

Ω
dx

∫

Ω
dy〈(ψ(x) −m†)(ψ(y) −m†)〉 ≪ m†2ξ2d . (2.44)
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But the expression in the middle is the correlation function G(~r = x − y) ∼ e−r/ξ/rd−2+η .
With

∫

Ω dx
∫

Ω dy G(x, y) = Cξd+2−η, the above inequality thus becomes ξ−(d−2+η)m†−2 ≪ C ′

or

|t|ν(d−2+η)−2β ≪ C̃ (2.45)

if the scaling laws m† ∼ |t|β and ξ ∼ |t|−ν are used. In the limit t → 0, for the inequality
Eq.(2.45) to hold, we obtain the lower bound

d∗ =

{

3, tricritical point

4, critical point
, (2.46)

when the exponents obtained from the classical theory (Tab.2.1) are used. d = 3 thus cor-
responds to the upper critical dimension for tricriticality, above which the classical theory
is assumed to be correct. When studying strong coupling QCD in 3+1 dimensions at finite
temperature (Ch.5) we will therefore exploit this criterion and use classical exponents in the
phase diagram region where tricritical scaling is expected. At the upper critical dimension log-
arithmic corrections to scaling are expected [23] which are however numerically hard to detect.
We further note that for d < d∗ Eq.(2.45) specifies a region, namely when the parameter |t|
becomes small, where mean-field scaling must fail.

2.3.2 The worm algorithm for classical spin models

Before we turn to an actual investigation of a classical spin model exhibiting tricritical behavior
using the example of the q = 3-state Potts model in Ch.3, this section addresses the practical
question of how the model can be studied efficiently using a worm algorithm [25]. We start by
stating the Potts partition function Z,

Z =
∑

{s}
eK

∑

〈ij〉 δsi,sj , (2.47)

where the Potts spins si ∈ {1, . . . , q} are located on a d-dimensional hypercubic lattice and
K = βJ includes the inverse temperature β = 1/T and the Potts coupling J > 0. More
details about the Potts model and its phase diagram will be given in Sect.3.2. Standard Monte
Carlo algorithms to sample the partition function Eq.(2.47) written in the Potts spin degrees
of freedom, si, are cluster algorithms [26,27]. The worm algorithm [25], on the other hand,
relies on the reformulation of the partition function in terms of link-variables nb, see below.
As we will take advantage of the worm algorithm in Lattice QCD at strong coupling, Chs.4
- 6, a demonstration of the change of variables and the subsequent application of the worm
algorithm seems useful.

2.3.2.1 Rewriting the partition function

We start by noting that the properties of the system Eq.(2.47) remain unchanged under a
shift of the energy E = −J∑〈ij〉(δsi,sj) → −J∑〈ij〉(δsi,sj − 1), as a (K-dependent) factor will
drop out when calculating expectation values. In the following equalities between partition
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functions will be understood as possibly containing such constants. Therefore we write

Z =
∑

{s}
eK

∑

〈ij〉(δsi,sj−1) =
∑

{s}
e
K/3

∑

〈ij〉

[

ei(φi−φj )+e−i(φi−φj)−2
]

=
∑

{s}

∏

〈ij〉
e
K/3

[

ei(φi−φj )+e−i(φi−φj)
]

,

where φk = 2πsk/3. Using e
K/3

[

ei(φi−φj)+e−i(φi−φj)
]

= A
(
1 +B/2

[
ei(φi−φj) + e−i(φi−φj)

])
with

A = 1
3

(

e
2
3
K + 2e−

1
3
K
)

and B = 2
(
eK−1
eK+2

)

we obtain

Z =
∑

{s}

∏

〈ij〉
A
(

1 +B/2
[

ei(φi−φj) + e−i(φi−φj)
])

=
∑

{s}

∏

〈ij〉
A
(
1 +B/2

[
ψiψ

∗
j + ψ∗

i ψj
])

with ψk = eiφk

=
∑

{s}

∏

b=〈ij〉

∑

(nb,mb)

W(nb,mb)[ψiψ
∗
j ]
nb [ψ∗

i ψj ]
mb . (2.48)

In the last line the sum over link configurations of the link b includes the configurations
(nb,mb) ∈ {(0, 0), (1, 0), (0, 1)} and the configuration weight W(nb,mb) is defined as

W(nb,mb) =

{

A, if (nb,mb) = (0, 0)

AB/2, if (nb,mb) = (0, 1) or (1, 0),
. (2.49)

Now the terms in Eq.(2.48) are reordered:

Z =
∑

{nb,mb}

(
∏

b

W(nb,mb)

)
N∏

i=1

3∑

si=1

[ψi]

d∑

ν=1

(ni,ν̂ + ni,−ν̂)

︸ ︷︷ ︸
pi [ψ∗

i ]

d∑

ν=1

(mi,ν̂ +mi,−ν̂)

︸ ︷︷ ︸
qi

Z =
∑

{nb,mb}

(
∏

b

W(nb,mb)

)
N∏

i=1

3∑

si=1

[ψi]
pi [ψ∗

i ]
qi , (2.50)

where qi, pi are the numbers of incoming and outgoing currents at site i, respectively. The
crucial step is now to see that

3∑

si=1

[ψi]
pi [ψ∗

i ]
qi = 1 + ei2π/3(pi−qi) + ei4π/3(pi−qi) =

{

3, if pi = qi mod 3

0, else
, (2.51)
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x

x
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(nb,mb) = (0, 1)

(nb,mb) = (1, 0)

x + ν̂

x + ν̂

x

x + ν̂

⇐
⇒

⇐
⇒

⇐
⇒

W(0,1) = AB/2

W(1,0) = AB/2

W(0,0) = A

ψ ψ∗

ψψ∗

Figure 2.5: Elementary link update for the link b = (x, µ̂) with states (nb,mb) =
(0, 0), (1, 0), (0, 1).

i.e. for configurations {nb,mb} contributing to the partition function at each site i current
conservation modulo 3 has to be fulfilled,

∑

µ

(ni,µ̂ + ni,−µ̂)

︸ ︷︷ ︸

pi

=
∑

µ

(mi,µ̂ +mi,−µ̂)

︸ ︷︷ ︸

qi

mod 3 . (2.52)

The final expression for Z thus reads

Z =
∑

{nb,mb},CP

(
∏

b

W(nb,mb)

)

=
∑

{nb,mb},CP
WZ , (2.53)

where the label CP (“closed paths”) indicates that in configurations contributing to Z with
weight WZ the “paths” made out of links form closed (mod 3) intersecting loops.

If we return to Eq.(2.48), we see that for the 2-pt function G(k, l),

G(k, l) =
1

Z

∑

{s}
ψ∗
kψl

∏

b=〈ij〉

∑

(nb,mb)

W(nb,mb)[ψiψ∗j ]nb [ψ∗
i ψj ]

mb (2.54)

this derivation remains unchanged, except that at the sites k, l, Eq.(2.52) now is changed to
pk = qk + 1 mod 3 and pl + 1 = ql mod 3, respectively. We therefore have

G(k, l) =
1

Z

∑

{nb,mb},CPkl

(
∏

b

W(nb,mb)

)

=
1

Z

∑

{nb,mb},CPkl

WG(k,l). (2.55)
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Figure 2.6: Sequence of worm updates starting with a CP-configuration (upper left). After
the two “charges” ψSψ

∗
S are placed at site x1, a sequence of shifts of ψ∗

S introduces incoming
and outgoing currents at the involved sites until the path closes at x1 and source and sink are
removed.

2.3.2.2 The worm algorithm

Instead of sampling the partition function Z with weightsW(nb,mb), the worm algorithm samples
the correlation function G as described in the following.

The degrees of freedom are now the link variables (nb,mb). Each link b = (i, ν̂) can be in one
of the three states (0, 0), (0, 1), (1, 0). From Eq.(2.48) we see that these correspond to terms
(ψxψ

∗
x+ν̂)

0, ψxψ
∗
x+ν̂ , ψ

∗
xψx+ν̂ in the expansion of Z. In Fig.(2.5) we display the three states

along with their weight W(nb,mb). An elementary link update among them can be done using a
Metropolis acceptance[25]. It is however clear that such update — when carried out on a single
link — will violate the constraint Eq.(2.52) for configurations of Z but not that of G(x, x+ ν̂).
In Fig.2.6 we display an update sequence starting with a closed-path configuration (upper left
configuration). In the second step we introduce a pair of charges ψSψ

∗
S at site x1, chosen

randomly. This step is carried out with probability 1 as it does not change the configuration
weight in the case of the Potts model (contrary to e.g. the XY model or |φ|4 theory, see [25]).
In the next step the charge ψ∗

S is moved in a direction chosen at random and an outgoing
current is created. This step marks the transition from a configuration contributing to Z
to a configuration of G(x1, x2) as it violates the constraint Eq.(2.52) at x1, x2. The step is
accepted with Metropolis probability WG(x1,x2)/WG(x1,x1) = B/2. During the next move (from
the upper right to the lower right configuration) a pair ψψ∗ is created at x2 and ψ∗

S is shifted
in the new, randomly chosen direction. The resulting link configuration of the chosen link
b = (x2, x3 − x2) would be (2, 0). From Fig.(2.5) we see that such a configuration formally
does not exist. Indeed using the identity (ψ∗)2 = ψ for the complex spins of the q = 3 Potts
model, this configuration actually corresponds to the one displayed in the middle of the lower
row of Fig.2.6. The step is accepted with probability WG(x1,x3)/WG(x1,x2) = 1 and at site
x2 the constraint Eq.(2.52) is fulfilled again, the charges ψS ,ψ

∗
S being now located at x1, x3,

respectively. The update proceeds until ψ∗
S reaches ψ at site x1 and the path closes.
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The estimator for the 2-pt function G(~r = l − k) is given by

G(~r) =

∑

{nb,mb},CP (ij)WG(i,j)δ(~r − (j − i))
∑

{nb,mb},CP WZ
=

∑

K,CP (ij) δ(~r − (j − i))
∑

KCP

. (2.56)

The numerator of the right hand side sums over all Monte-Carlo configurations K with sources
located at sites i and j, contributing only if ~r = j − i and the denominator is given by the
number of path closures. We will encounter similar estimators in strong coupling QCD, Ch.4,
where often a direct measurement, i.e. a measurement of an expectation value taken with
respect to configurations of Z, is not possible without expensive extrapolations in a parameter
such as the quark mass mq.
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3 Tricriticality in the q = 3 Potts model for
d = 2 + 1

Throughout this work finite size scaling (FSS) will be the essential tool to locate a phase
transition and to determine its order. In Chs.4 and 5 we will encounter strong first order and
continuous (second order and tricritical) phase transitions predicted in the phase diagram of
strong coupling Lattice QCD. Here, we practice FSS for the case of a classical spin model
— the Potts model — by addressing the interesting question of a change in the order of the
phase transition from discontinuous to continuous when tuning the finite extent of a compact
dimension of a d-dimensional system.

3.1 Introduction

Quite generally, we consider a system that exhibits a phase transition in d and d−1 dimensions.
We are interested in the situation where the order of the transition is different in these two
cases. If we compactify one dimension of the d-dimensional system choosing the extent Nt in
the compact direction to be finite, we can study the evolution of the order with Nt. If our
system is a lattice gauge theory model (LGT) and the boundary conditions are properly set
for its degrees of freedom, then the inverse extent plays the role of temperature, aT = 1/Nt,
see Sect.2.2. As an example we take U(1) LGT in d = 4 dimensions,

SU(1)LGT = −β
∑

x,µ<ν

cos θµν(x), β =
1

e2
, (3.1)

where θµν(x) = arg [Uµ̂(x)Uν(x+ µ̂)U †
µ(x+ ν̂)U †

ν (x)] is the “plaquette” angle and Uµ(x) ∈ U(1).
It undergoes a first order transition in β, separating the strong-coupling confining phase where
planar Wilson loops WC ,

WC = Re(
∏

ℓ ∈ C

Uℓ) (3.2)

show an area law, 〈WC〉 ∼ e−c area(C), from the Coulomb phase where 〈WC〉 ∼ e−c
′∂C . At

finite temperature, i.e. in d = 3 + 1 with one compact dimension of finite extent aNt = 1/T ,
the model has a phase transition as a function of β, between the confining phase and a weak
coupling phase. In the latter, the global U(1) symmetry

P~x :=

Nt−1∏

t=0

U0̂(t, ~x) → eiφP~x (3.3)
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of the Polyakov loop P~x is spontaneously broken and only spatial Wilson loops show an area
law, while Wilson loops extending in time direction obey a perimeter law [28] . For Nt = 1 the
partition function with action defined in Eq.(3.1) factorizes into ZU(1)LGT,d=3 ·ZXY,d=3 where
the latter has a 2nd order phase transition at a finite value of β, whereas U(1) LGT is confining
for all values of the gauge coupling β in d = 3 dimensions. The change in the order of the
phase transition with varying Nt has been studied in [28,29].
In this chapter we study instead a classical spin system and take as a representative the q-
states Potts model in d = 2, 3. Section 3.2 will introduce our expectations before we turn to
the numerical work in Section 3.3.

3.2 The Potts model

The q-state Potts model [30] is a classical spin-model with Hamiltonian

−βH = K
∑

〈ij〉
δsisj , K = βJ (3.4)

and Potts spins si ∈ {1, . . . , q}. Here we consider the ferromagnetic case (J > 0, setting
J = 1) on a simple cubic lattice in d = 2 and 3 dimensions, respectively. The simple Potts
model as defined in (3.4) represents one generalization of the Ising model (q = 2), and ex-
hibits a phase transition between an ordered (low temperature, Zq symmetry broken) phase
and a symmetric high temperature phase. For d = 2, the location of the critical point is
known to be Kc = log (1 +

√
q), where the phase transition is continuous (second order) for

q ≤ 4 and first order for q > 4 [31,32]. In general, renormalization group arguments [33] show
that in d dimensions the q-state Potts model has a continuous phase transition for q ≤ qc(d)
(qc(2) = 4, qc(3) < 3). Thus, a change of the order of the phase transitions for dimensionally
reduced systems, as advertised for the case of U(1)-LGT in the introduction, can be examined
in the q = 3, 4 Potts models in d = 2 and 3 dimensions.
For q = 4, d = 2 the Potts model shows large logarithmic corrections (additive and multiplica-
tive) to finite size scaling (FSS) [34], which complicate the disentanglement of (weak) first and
second order signals. Therefore, we consider q = 3.

3.2.1 Conjectured behavior

In Figure 3.1(a) we sketch the conjectured phase diagram for a Nt × L2, L→ ∞ lattice (with
periodic boundary conditions) in the plane of parameters K and 1/Nt. For Nt = 1 the system
is two-dimensional as our degrees of freedom are located on the sites x and the extra-coupling
in ±t-direction will only contribute a constant shift in energy. Thus the system will be at
criticality for Kc(Nt = 1) = Kc,d=2 = log (1 +

√
3) ≈ 1.00505 and the phase transition will be

of second order. Taking on the other hand Nt = L,L → ∞ we will obtain the d = 3 model
with a weak first order transition at Kc,d=3 = 0.550565(10) [35]. For systems having Nt > 1
fixed, and L→ ∞, the phase boundary will be continued into the (1/Nt,K) plane, separating
the disordered phase on the left from the ordered phase on the right. We speculate about the
order of the transition for Nt > 1: Starting from d = 2 the system could, for fixed Nt, exhibit
a second order phase transition until we reach some N∗

t beyond which the phase transition is
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Figure 3.1: (a) Expected phase diagram for q = 3. (b) Exponents of the d = 2, q = 3 critical
and tricritical Potts universality class [32].

of first order. We note that along the first order line of our conjecture, (q + 1) phases coexist
(q equivalent ordered phases and one disordered phase). The point (N∗

t ,Kc(N
∗
t )) where this

4-phase coexistence ends should then be termed “multicritical” point. However, traditionally
the notion “tricritical” point (TCP) from 3-phase coexistence (see Sect.2.3) is kept in use and
we point to Sect.3.2.2 for more details.
In fact, there was an attempt to study this scenario [36] using renormalization group methods.
There, results for N∗

t were dependent on the renormalization group procedure and yielded
the range 25 < N∗

t < 213. While this window is rather large at least the lower bound meets
our expectations: The d = 3 phase transition is weakly first order with correlation lengths in
the ordered and disordered phase ξo/a ≈ ξd/a ≈ 10 [35]. Thus, it is expected that systems
with Nt ≫ ξ will behave three-dimensionally and cross over to two-dimensional behavior when
Nt ∼ O(ξ) = O(10). It is this scenario that we find the most natural and we probed the system
at finite thickness Nt for such behavior in the following.

3.2.2 Tricriticality

As argued in the scenario above, for Nt = N∗
t and K = Kc(Nt) we expect a multicritical point.

Tri - or multicritical behavior of d = 2 Potts models occurs for example for the dilute Potts
model or Potts lattice gas (PLG) [23,33] which introduces vacancies through an additional site



28 Tricriticality in the q = 3 Potts model for d = 2+ 1

variable ti ∈ {0, 1} for the vacant (occupied) site i,

−βHPLG = K
∑

〈ij〉
titjδsisj −∆

∑

i

ti . (3.5)

In the extended parameter space of q, K and the vacancy chemical potential ∆, the d =
2, q ≤ 4 transition can be driven to first order by increasing the vacancy concentration.
Thus for a particular parameter set (q ≤ 4,Kt(q),∆t(q)) the PLG will exhibit multicritical
behavior which, strictly speaking, only for q = 2 corresponds to a TCP. Traditionally, the
literature [23,32,33] does not make a distinction here and the term “tricritical” is used to
denote the change from first to second order behavior. The exponents of this d = 2, q = 3
“tricritical” universality class are given in Tab.3.1(b). In our case we want to drive the model
(3.4) first order by increasing its thickness, i.e. by “dimensional crossover”. As the correlation
length ξ diverges, ξ/a≫ Nt, our system will be effectively two-dimensional at or near the TCP
and we expect it to be in the same universality class as the two-dimensional PLG.

3.3 Numerical Experiments

Using standard techniques such as the Wolff single cluster algorithm [27] and the worm algo-
rithm [25], we simulated the Potts model (3.4) for successive system sizes L2×Nt, L = 2n, n =
6, . . . , 9 and Nt = 2, . . . , 22 with periodic b.c. in all directions.

3.3.1 Observables and results

3.3.1.1 Collapse of probability distributions

We want to distinguish a weak first order from a second order and a tricritical transition.
At continuous phase transitions like the latter two we can make a finite-size scaling ansatz
for observables in a finite volume. In particular the specific heat cV = V (〈e2〉 − 〈e〉2) or
magnetic susceptibility χm = V (〈|m|2〉 − 〈|m|〉2) will depend on the ratio L/ξ and behave
as cV ∼ Lα/ν c̃(tL1/ν) and χm ∼ Lγ/νχ̃(tL1/ν), respectively, where e = 1/V

∑

〈ij〉 δsi,sj , m =

1/V
∑

k exp (i2π/3sk) and |t| = |K−Kc
Kc

| ∼ ξ−1/ν . Instead of the magnetization density m as
defined above, we consider the components of magnetization vi, that is the fraction of spins in
state qi = 1, 2, 3. In the disordered phase we will have 〈vi〉 ≈ 1/q = 1/3 as each spin fluctuates
independently. In the ordered phase, the distribution P (vi) will be strongly peaked at small
values close to zero and near 1. If we approximate P (v) by PL→∞ = 1

q ((q − 1)δ(0) + δ(1))

in the disordered phase or at the transition in case of coexistence by PL→∞ = 1
q+1((q −

1)δ(0) + δ(1/q) + δ(1)), we see that 〈vi〉 = 1/q remains valid. To locate the tricritical point
our method is the following: Coming from large values of Nt we determine the distributions
PNt,L(e), PNt,L(v) for various L≫ Nt for systems of size L2×Nt tuned to their (pseudo)critical
Kc(Nt) (see below). At a continuous transition the scaling assumption

PNt,L(o) = LyP ∗
Nt
(Lyo, ξ/L) = LyP̃Nt(xo, t ·L1/ν) (3.6)
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Figure 3.2: Distributions PNt,L(xe) with xe = (e − 〈e〉) ·L1−αt/2νt and tricritical exponents
αt, νt. An approximate collapse is obtained only for Nt = 18.

with an appropriate critical exponent y for the observable o and the reduced temperature
t = T/Tc − 1 lies at the heart of Binder’s [37,38] scaling analysis. In the last step we used
ξ ∼ |t|−ν and defined xo = Ly(o− 〈o〉) as well as the universal scaling function P ∗

Nt
, P̃Nt . Note

that for distributions P,P ∗, P̃ of unit norm, Eq.(3.6) implies universal variance of the latter
two

∫

dxm x
2
mP̃ (xm, t ·L1/ν) = L2yLγ/ν−dχ̃m(t ·L1/ν) , (3.7)

for 2y = d − γ/ν and our choice of o = |m| with the magnetization density m. Thus, us-
ing Eq.(3.6) at a continuous transition we can obtain the universal distribution function P̃ .
Conversely, by rescaling the argument o = e, v of the distribution PNt,L(e), PNt,L(v) to

xe = (e− 〈e〉)L1−αc,t/(2νc,t) and xv = (v − 〈v〉)L1−γc,t/(2νc,t) , (3.8)

where γc,t, αc,t, νc,t are the exponents of the critical and tricritical q = 3, d = 2 Potts universality
class (see Tab.3.1(b)), PNt,L(xe) and PNt,L(xv) should collapse to a universal scaling curve if
the transition is second order or the system is at its tricritical point, respectively. In Fig.3.2 we
display the attempted collapse of PNt,L(xe) for Nt = 22, 20−18 using tricritical exponents. For
Nt > 18 the distributions develop two δ-peaks as L → ∞ while for Nt = 18 an approximate
collapse can be achieved, indicating that the system is at or close to the tricritical point. This
becomes even much clearer when using v instead of e: In Fig.3.3 we display the same series of
figures showing that for Nt = 18, the curves P18,L(xv) fall approximately on top of each other
using tricritical exponents while for Nt ≤ 17 critical scaling can be observed, see Fig.3.4.
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Figure 3.3: Rescaled distributions PNt,L(xv) for Nt = 20− 18 using tricritical exponents γt, νt.
A satisfying collapse is visible for Nt = 18 (right) indicating that the systems is at its TCP.

We note that there are several definitions of Kc(Nt) in a finite volume, all equivalent in infinite
volume. For the case of the distribution PNt,L(e) and a first order transition, a convenient
definition is the ratio-of-weights [35], which requires that the areas below the curve PNt,L(e)
left and right of the minimum e0, are in proportion 1 : 3 at criticality. We employed this
definition of Kc(Nt) for PNt,L(xe) within errorbars and reweighted to Kc. In the case of
PNt,L(xv) we tried to adjust the areas below the three peaks to the ratio 2 : 1 : 1, taking the
respective minima to be the interval boundaries.

3.3.1.2 Interface tension

A first order phase transition is characterized by the coexistence of the ordered phases with the
disordered phase. Quite generally, the probability distribution of an extensive variable such as
the energy E with value Eo in the q ordered phases and Ed in the disordered phase, is given
by the ansatz

P (E) = qPo(E) + Pd(E) + Pm(E) , (3.9)

where Po/d = c1,o/de
−βfo/d(T )V e−(E−Eo/d)

2/c2
2,c/d and fo/d(β) denotes the free energy of the

respective phases. The probability of the mixed phase, i.e. in the presence of two interfaces of
area A separating the portion of the volume Vo in an ordered state from the disordered volume
Vd, can approximated by

Pm(E) = cme
−β(foVo+fdVd)e−2βσA , (3.10)
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where E = EoVo + EdVd and σ is the surface tension. In a finite volume, in the vicinity of
the pseudocritical β, P (E) will have maxima Pmax,o and Pmax,d at Eo/d and a minimum in the
coexistence region described by Pm at Emin = αoEo + αdEd. If we define

βσL = − ln
Pmin

(Pmax,o)αo(Pmax,d)αd
/(2A) (3.11)

then σ = limL→∞ σL. In our case of a volume L2 × Nt, interfaces with area L2 in the plane
perpendicular to the t-direction are exponentially suppressed in L compared to interfaces
forming in the (t, xi)-plane (xi = x, y) with area LNt. If we reweight the distributions PNt,L(E)
in K such that the peaks Pmax,o/d in the ordered and disordered phase are of equal height,
then Eq.(3.11) becomes

βσNt,L = − ln (Pmin,Nt,L(E)/Pmax,Nt,L(E))/(2NtL) (3.12)

as αo + αd = 1. For a first order behavior in a L2 × Nt volume, σNt,L will be related to the
infinite volume (L→ ∞) interface tension σNt by σNt,L = σNt − c

LNt
, c > 0 [39]. In Fig.3.5 we

show a2βσNt,L as a function of 1/L for Nt = 16−20, 22. Our data show a linear relation, having
a slope opposite in sign to the prediction. Clearly, finite volume corrections are of different
origin at this cross over from second order to first order behavior but qualitatively similar
to [40]. We therefore extrapolate linearly and obtain for Nt = 19, a2βσNt=19 = (4 ± 1) · 10−5

which is an order of magnitude smaller than a2βσd=3 = 8.15(10) · 10−4 [35]. Nt ≤ 18 gives an
estimate consistent with zero, indicating that for Nt ≤ 18 the system has a continuous phase
transition without coexisting domains.

3.3.1.3 Correlation function

In ref. [25] an alternative representation of the Potts partition function suitable for the worm
algorithm was presented. After a change of variables from the Potts spins si = 1, ..., 3 to
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oriented bond occupation numbers nb,mb = 0, 1, (b = (x, µ)) the partition function reads

Z =
∑

{nb,mb},CP

∏

b

W(nb,mb), with W(nb,mb) =

{

A, if (nb,mb) = (0, 0)

AB/2, if (nb,mb) = (0, 1) or (1, 0),
(3.13)

where A = 1
3

(

e
2
3
K + 2e−

1
3
K
)

and B = 2
(
eK−1
eK+2

)

. nb,mb represent the numbers of incoming

and outgoing currents on bond b = (x, µ), respectively. At each site i the constraint

∑

µ

ni,µ + ni,−µ

︸ ︷︷ ︸

pi

=
∑

µ

mi,µ +mi,−µ

︸ ︷︷ ︸

qi

mod 3, (3.14)

has to be satisfied which we denote by CP(closed paths) in Eq.(3.13). For the two-point
function G(i, j) = 〈sisj〉 this constraint is modified at the sites i and j to pi = qi + 1 mod 3
and pj = qj − 1 mod 3, and one obtains [25] G(i, j) = 1

Z

∑

{nb,mb},CPij

∏

bW(nb,mb). G(i, j)

and d
dKG(i, j) can be measured efficiently during the worm update, say at Potts coupling K0.

Thus we can determine the two-point function in a narrow range in K with a single run at K0

via G(i, j)K = G(i, j)K0 +
d
dKG(i, j)K0(K −K0) +O((K −K0)

2).

At a continuous phase transition in infinite volume G(~r = ~ri− ~rj) ∼ 1
rη+d−2 with the exponent

η of the critical or tricritical Potts universality class. In a finite volume this behavior will
be modified according to G(~r) ∼ 1

Lη f(r/L) by a renormalization group argument, with a
universal scaling function f(r/L). We further note, that if the correlation length ξ/a diverges,
an L2 × Nt system will be dimensionally reduced to d = 2. Using the worm algorithm, we
therefore determined GNt,L(~r) and

d
dKGNt,L(~r) for systems at or close to their pseudo critical

Kc(Nt), averaging over the t−direction. In Fig.3.6 we display the so obtained GNt,L(r2D) ·Lη
for Nt = 18 as a function of r2D/L and L = 32, 64, 128. Using the tricritical (right) exponent
ηt, the curves fall on top of each other, but fail to collapse when critical scaling is assumed
(left).



Tricriticality in the q = 3 Potts model for d = 2+ 1 33

10
−2

10
−1

10
0

1

1.2

1.4

1.6

1.8

2

2.2

G
(r

) 
⋅ L

η

r/L

 

 

10
−2

10
−1

10
0

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

r/L

 

 

G
(r

) 
⋅ L

η t

L = 32
L = 64
L = 128

Figure 3.6: Nt = 18: Failing collapse G(r) ·Lη (left), collapse G(r) ·Lηt (right)

3.4 Conclusion

Choosing as criteria the scaling of probability distributions and correlation functions at crit-
icality as well as the interface tension, our data support that the system has a first order
transition for Nt > 18, while being second order for Nt < 18. At Nt = 18 the transition is
most likely either second or first order as tricriticality corresponds to fine-tuning in Nt which
is a discrete variable in our setup. Further, tricritical scaling in the vicinity of the TCP implies
that the exponents depend on the directions taken towards the transition point. A better
strategy would therefore require to introduce anisotropic couplings Kt,Ks for the time-like
and space-like directions, respectively to approach the tricritical point from directions other
than Nt = n = const, n ∈ N in the (K, 1/Nt)-plane.
Our result confirms the naive expectation that the tricritical behavior occurs when N∗

t ∼
ξ1st order and has to be contrasted with that of an old renormalization group study [36] which
found N∗

t > 32, a result that strongly depended on the details of the RG transformation.
The significance of our result is ambivalent: In the case of a LGT at finite temperature, one
is commonly interested in taking the continuum limit a → 0 while keeping the temperature
T = 1/(aNt) fixed, tuning the inverse bare coupling β appropriately. A change in the order
of the transition with increasing Nt would then be considered as a lattice artifact as one is
eventually interested in the Nt → ∞ limit for fixed T . On the other hand, in the context of
classical statistical models, our finding is interesting on its own: Cross over from first to second
order behavior is usually associated with a tunable parameter such as a symmetry breaking
field or chemical potential. Here we add to this list the cross over due to finite thickness, which
breaks a geometric symmetry.
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4 Nuclear physics from Lattice QCD at strong
coupling

In Ch.1 we pointed out that the ultimate goal of studying Lattice QCD at finite density is
severely hindered by the sign problem. Here we consider Lattice QCD at strong coupling,
starting from the original work of Rossi & Wolff [41] where the partition function of Lattice
QCD at infinite gauge coupling was mapped onto that of a dimer system. This rewriting
of the partition function is the essential ingredient of their approach and will be presented
in detail. Karsch & Mütter [9] developed an efficient algorithm to study the resulting model
and could in particular solve the fermionic sign problem present even for zero quark chemical
potential in this formulation. In [42] however it was realized that the algorithm suffered from
ergodicity problems. In the following chapter we show, based on the work of[43], how the worm
algorithm can be applied to this model. Having overcome the practical (algorithmic) questions
we turn to the physics and find two central features of Lattice QCD at strong coupling: Firstly,
the theory has its own (strong coupling) variant of nuclear physics which will be part of this
chapter. Secondly, the sign problem arising at finite baryon density remains mild and enables
us to study the phase diagram of the model in Ch.5. The results presented are based on a
publication with Ph. de Forcrand [44].

4.1 Partition function, worm formulation, cross checks

4.1.1 Partition function

We start by restating the lattice QCD partition function Eq.(2.29)

Z(µ, T,mq) =

∫

DχDχ̄DU eSF , (4.1)

now in the limit of infinite bare gauge coupling β = 0 with one flavor of staggered fermions1,

SF =
∑

x







∑

µ=0,d

ηµ̂(x)
(

χ̄xUµ̂(x)χx+µ̂ − χ̄x+µ̂U
†
µ̂(x)χx

)

+ 2amqχ̄xχx






. (4.2)

We take Uµ̂(x) ∈ SU(N) and suppress color indices. The system is defined on an Ld × Nt

lattice with anti-periodic boundary conditions (bc) in direction 0̂ and periodic bc elsewhere. In

1The staggered quark fields appearing in Eq.(2.29) have been rescaled with χ, χ̄ → i
√
2χ, i

√
2χ̄, thus canceling

the factor 1
2
conventionally appearing in the action and introducing an additional minus-sign which cancels

the minus-sign in front of the action. As a consequence the mass term is multiplied by 2. This convention
is advantageous in the context of the one-link integral Eq.(4.6).
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the presence of a quark chemical potential µ and an asymmetry γ which in the weak coupling
limit fulfills γ = a/at, the links U±0̂(x) receive an additional factor γ exp (±atµ). Further, we
recall (see Sect.2.2.2.2) that for amq = 0, the action (4.2) satisfies a UA(1) symmetry

χ̄x → χ̄xe
iǫ(x)θA , χx → eiǫ(x)θAχx, ǫ(x) = (−1)

∑

µ xµ , (4.3)

in addition to the usual UV (1) symmetry

χ̄x → χ̄xe
−iθB , χx → eiθBχx , (4.4)

which corresponds to baryon number conversation. Because β = 0, the link integration
∫
DU =

∫ ∏

x,µ dUµ̂(x) in Eq.(4.1) factorizes

Z =

∫
∏

x

(

dχxdχ̄xe
2amq χ̄xχx

∏

µ

[

dUµ̂(x) e
ηµ̂(x)

(

χ̄xUµ̂(x)χx+µ̂−χ̄x+µ̂U
†
µ̂(x)χx

)])

=:

∫
∏

x

(

dχxdχ̄xe
2amq χ̄xχx

∏

µ

z(x, µ)

)

. (4.5)

In the second step we defined the one-link integral z(x, µ) which is of the form

z(x, µ) =

∫

G
dg etr(gm

†+mg†) , (4.6)

where G denotes the gauge group with elements g. Taking y = x+ µ̂, we set (m)ij = χx,iχ̄y,j
and (m†)kl = −χy,kχ̄x,l with explicit color indices i, j, k, l.
Integrals of the type (4.6) are known for various gauge groups [45–48] in the sense that these
references give closed expressions for z(x, y) in terms of group invariants. In the present case
of one flavor of staggered fermions with gauge group U(N) or SU(N) one obtains (see Sect.8.1
for details)

z(x, y) =
N∑

k=0

{
(N − k)!

N !k!
((ηµ̂(x)γ

δ0,µ)2χ̄xχxχ̄yχy)
k

}

+

+
κ

N !

(
(ρ(x, y)χ̄xχy)

N + (−1)N (ρ(y, x)χ̄yχx)
N
)

=
N∑

k=0

{
(N − k)!

N !k!
((ηµ̂(x)γ

δ0,µ)2M(x)M(y))k
}

+

+κ
(
ρ(x, y)N B̄(x)B(y) + (−1)Nρ(y, x)N B̄(y)B(x)

)
,

(4.7)

where

κ =

{

1, SU(N)

0, U(N)
and ρ(x, y) = η(y−x)(x)

{

γ exp (±atµ), (y − x)0 = ±1

1, otherwise
.
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�B(x)B(y)�B(y)B(x)(M(x)M(y))
k

. . .

x

y

x

y y

xk

(a)

x

nx

M(x)
nx

(b)

Figure 4.1: (a) Mesonic and baryonic links as defined in Eq.(4.7). (b) Graphical notation for a
monomer term.

Here we denote by

M(z) = χ̄zχz and B(z) =
1

N !
εi1...iNχz,i1 ...χz,iN (4.8)

the bosonic (“mesonic”) and fermionic (“baryonic”, κ = 1) color-singlet states, respectively, of
the underlying gauge group.2 As it will be useful for the following discussion we introduce a
pictorial representation of the new degrees of freedom in Fig.4.1(a).

We now turn to the remaining Grassmann intregral of Eq.(4.5). The integration is done per
site x and relies on the relation

∫
∏

a

[dχa,xdχ̄a,x] e
2amq χ̄xχx(χ̄xχx)

k =
N !

nx!
(2amq)

nx , nx = N − k (4.9)

which is obtained by using the definition of the Berezin-integral
∫
dξdξ̄ ξ̄ξ = 1 for Grassmann

numbers ξ̄, ξ. The integration rule (4.9) is applied to evaluate the integral Eq.(4.5), where
z(x, µ) is given by (4.7). There, when taking the product over x and µ a constraint arises in
order to have non-vanishing contribution to the partition function: At every site x, all degrees
of freedom χ̄x,i, χx,i have to be ”paired”. This can happen

• in form of a meson hopping from site x to a neighboring site y, forming a non-oriented
link (dimer) (M(x)M(y))k , see Fig.4.1(a). This defines the link-occupation number k ≡
kµ̂ ∈ {0, . . . , N}, µ̂ = y − x.

• in form of baryon hopping (κ = 1) from x to y to form an oriented baryonic link B̄(y)B(x)
(B̄(x)B(y)), Fig. 4.1(a). In this case, as a baryon B(x) employs all of the χx,i (i =
1, ..., N) the site x must be paired with another site z with a pair of the form B̄(x)B(z).
This way one recognizes that baryons must form self-avoiding, oriented loops (ℓ) to yield
a non-vanishing contribution to (4.5). As a loop ℓ enters a site x from an incoming
direction, say µ̂ and leaves the site in an outgoing direction ν̂ 6= µ̂, we can assign to each

2Note that B(z) as defined in Eq.(4.8) transforms under gauge transformations Ω ∈ G according to B(z) =
1
N!

εi1...iNχz,i1 ...χz,iN → 1
N!

εi1...iNΩi1,j1χz,j1 ...ΩiN ,jNχz,jN = 1
N!

εi1...iNχz,i1 ...χz,iN detΩ. Baryons B are
therefore not gauge invariant if Ω ∈ U(N) and we have to set κ = 0 for G = U(N) in Eq.(4.7).
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site the baryonic link variable bρ̂(x) ∈ {−1, 0, 1}, ρ̂ = ±0̂, . . . ,±d̂ to obtain the constraint

∑

ρ̂=±0̂,...,±d̂

bρ̂(x) = 0 , (4.10)

where bρ̂(x) = −1, 0, 1 stand for an incoming, non-occupied and outgoing baryonic link,
respectively. Although the partition function Z in Eq.(4.12) below depends on the bary-
onic degrees of freedom in terms of loops ℓ, the link variables bρ̂ will be particularly useful
for the formulation of the loop update in Sect.4.1.2.

• at the site x itself, thus forming monomer terms M(x)nx , nx ∈ {0, . . . , N} which we
depict in Fig.4.1(b), where

nx +
∑

µ̂=±0̂,...,±d̂

kµ̂ = N . (4.11)

In the following we specialize to the case SU(3). The final expression after integration can
now be given as a sum over configurations {k, n, ℓ} with non-vanishing contribution,

Z =
∑

{k,n,ℓ}

∏

b=(x,µ̂)

(3− kb)!

3!kb!
γ2kbδ0̂,µ̂

∏

x

3!

nx!
(2amq)

nx
∏

ℓ

w(ℓ) , (4.12)

where the first term is obtained from meson hopping, the second term is the contribution from
monomers and the third term accounts for baryonic world lines (loops ℓ) with weight w(ℓ). If
a baryon loop ℓ has N0̂ links in (positive and negative) 0̂-direction and winding number rℓ in
this direction, it is given by

w(ℓ) =
1

∏

x∈ℓ 3!
σ(ℓ)γ3N0̂ exp (3Ntrℓatµ) (4.13)

with a geometry dependent sign σ(ℓ) = (−1)r+N−(ℓ)+1
∏

b=(x,µ̂)∈ℓ ηµ̂(x). Here N−(ℓ) is the
number of links in all negative directions. Important parameters entering Z in Eq.(4.12) are
the bare quark mass amq, the chemical potential atµ, the asymmetry γ and the number of
lattice sites in 0̂-direction, Nt. This concludes the reformulation of the partition function Z.
We now comment on important features of the model defined by (4.12).

4.1.1.1 Configuration space

In Fig.4.2(a) we draw a 4× 4 sample configuration. We distinguish two types of self-avoiding
loops: Baryonic (dashed) loops with a natural orientation can be either trivially closed as in the
middle of the figure or wind around the lattice in any direction. Loops winding in 0̂-direction
contribute to the baryon number (discussed in Sect.4.1.1.3) and can thus be associated with
propagating (anti)-baryons. Another type of loop consists of sequences of alternating kb = 1, 2
dimers. These Polymer loops always have positive weight unlike the baryons.
If a site x is not traversed by a baryonic loop, the constraint (4.11) has to be fulfilled. For a
neighboring pair of sites x and y this can be achieved in a number of ways, e.g. by a kb = 3
dimer or a pair of monomers at either site combined with a 2-dimer in between, see Fig.4.2(a).
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(a) (b) (c)

Figure 4.2: (a) 4× 4 Example configuration. The transparent plaquettes imply periodic con-
tinuation in 0̂-direction. (b) Three typical baryonic loops with σ(ℓ) = +1. To this class belongs
the straight line on the right, corresponding to a static baryon. (c) A sample of baryonic loops
with σ(ℓ) = −1. The rightmost loop, winding twice in 0̂-direction represents an exchange in
the spatial position of two baryons thus carrying a minus-sign as compared to two parallel,
static world lines.

4.1.1.2 Sign σ(ℓ)

The sign σ(ℓ), given below Eq.(4.13), is associated with the (composite) fermionic degrees of
freedom. The model thus has a minus-sign problem which seems to be present even at zero
quark chemical potential µ = 0. Karsch and Mütter [9] however showed that at least at µ = 0
the minus sign can be removed completely by a change of variables (see Sect.8.2). In Fig.4.2(b)
and 4.2(c) we display samples of loops with σ = +1,−1, respectively. Note that the static
baryon (straight, vertical line) has σ = +1. We will be concerned with the severity of the sign
problem for finite µ in Sect.5.2.3 where we give also a more detailed account of the effectiveness
of Karsch’s trick.

4.1.1.3 Observables

With the partition function Z, (4.12), we can now define important observables and their
corresponding expressions in terms of the new degrees of freedom.

• The chiral condensate 〈ψ̄ψ〉 is given by

a3〈ψ̄ψ〉 = 1

VsNt

∂

∂(2amq)
logZ =

1

2amqVsNt
〈
∑

x

nx〉 =:
1

2amq
〈nM〉 . (4.14)

The last term defines the monomer density nM = NM/V with total number of monomers
NM .
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x y

⇐⇒

x y

C C

Figure 4.3: Example of a MDP-update: A pair of monomers on neighboring sites x, y is replaced
by a dimer, thus turning the configuration C into a configuration C ′ and vice versa.

• The baryon density ρB is given by

a3ρB =
1

VsNt

∂

∂(3atµ)
logZ =

1

Vs
〈
∑

ℓ

rℓ〉 . (4.15)

rℓ already occurred in Eq.(4.13) and denotes the winding number in t-direction of the
baryon loop ℓ. Due to the self-avoiding nature of baryon loops, |aρB | cannot exceed 1,
i.e. 1 baryon or antibaryon per spatial site.

• To obtain an expression for the energy density ǫ, defined by

a3ǫ = − 1

Vs

∂

∂β
logZ

∣
∣
∣
∣
atµ

= − 1

VsNt

∂

∂at
logZ

∣
∣
∣
∣
atµ

= − 1

VsNta

∂

∂γ
logZ

∣
∣
∣
∣
atµ

∂γ

∂h(γ)
(4.16)

one needs to know the function f(γ) = 1/h(γ) relating the spatial and temporal lattice
spacings a, at via f(γ) = a

at
at strong coupling. While in the weak coupling regime

f(γ) = γ [49], this relation does not hold for g → ∞ and indeed mean-field theory [13]
finds that a

at
= γ2 in the limit of large γ on the T = 0 and µ = 0 axis. We are thus left

with the expression

a4ǫ = − 1

VsNt

1

γ

∂γ

∂h(γ)
〈2NDt + 3NBt〉 , (4.17)

where NDt =
∑

x k0̂(x) and NBt =
∑

x |b0̂(x)| are the total number of dimer-and
(anti)baryonic links in 0̂-direction, respectively.

4.1.2 The worm algorithm in strong coupling QCD

The partition function (4.12) was first systematically studied for small systems and amq > 0
in [9]. The degrees of freedom involved, namely monomers, dimers and polymers gave rise
to the name MDP-formalism. In view of the constraint Eq.(4.11), the algorithmic strategy
consists of a local update using Metropolis dynamics:

4.1.2.1 MDP-update

The update relies on the fact that every configuration which contributes to the partition
function Z has to fulfill the constraint (4.11). In Fig.4.3 we depict two configurations C,C ′

of neighboring sites x and y. The local update replaces, with probability P (C ′|C), a pair of
adjacent monomers by a dimer, which has to be balanced by the reverse step with probability
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P (C|C ′). Probabilities for either replacement have to fulfill a balance equation which we choose
to be detailed balance,

P (C ′|C)W (C) = P (C|C ′)W (C ′) , (4.18)

with the configuration weight W (C). If we define P (C ′|C) = PaccPprop, then one solu-
tion for the acceptance probability Pacc is given by the Metropolis acceptance Pacc(C

′|C) =

min
{

1,
W (C′)Pprop(C|C′)
W (C)Pprop(C′|C)

}

, where Pprop is the probability to propose such an update. In our

specific example Fig.4.3, to go from C to C ′, we see that the ratio W (C ′)/W (C) ∼ 1
(2amq)2

.

The efficiency of this algorithm thus depends on the quark mass amq which is not surpris-
ing, given the fact that each monomer contributes with a weight ∼ 2amq. In the absence of
monomers (amq = 0) this algorithm is not applicable and in the limits of very light and very
heavy quarks (see [42]) the local update will produce very little change in configuration C due
to a low acceptance ratio.

4.1.2.2 Worm, preliminary remarks

In ref. [43], the authors studied various aspects of U(3) lattice gauge theory, i.e. in the absence
of baryons. Being aware of the shortcomings of the local monomer update in the chiral limit,
they developed a worm-type algorithm, the directed path algorithm (dpa), itself being an
adaptation of the directed loop algorithm put forth in [50]. The dpa is essentially a worm
algorithm [25,51] with the special feature of the exclusion of backtracking during the worm
update. In the following, we show its applicability and usefulness for SU(3) LGT at strong
coupling.
Use of the worm algorithm (WA) has already been made in the case of a classical spin model
in Ch.3 (see also Sect.2.3.2). There, the first step consisted of a high-temperature expansion
(steps leading to Eq.(2.48)) which resulted in a change of variables from Potts spins ϕx to link
occupation numbers (nµ̂(x),mµ̂(x)), which had to fulfill the constraint

∑

µ̂=±0̂,...,±d̂

nµ̂(x) =




∑

µ̂

mµ̂(x)



 mod 3 . (4.19)

It is interesting to note that for QCD at strong coupling these preparatory steps have already
been carried out, starting in Eq.(4.5). In this context the expansion Eq.(4.7) is the analogue
of a high temperature expansion. The change of variables (χ̄(x), χ(x)) → (kµ̂(x), n(x), bµ̂(x))
is accompanied by the constraint (4.11), together with the closed loop constraint satisfied by
baryons.

We now take our model in the chiral limit, amq = 0, and consider the two-point function

G(y, z) = 〈χ̄χyχ̄χz〉 =
1

Z

∫
∏

x

(dχxdχ̄x) χ̄χyχ̄χz
∏

x,µ

z(x, µ) . (4.20)

We see that the derivation which led to (4.12) with the constraint (4.11) now has to be only
slightly modified and take into account the sources My andMz which will represent monomers
at y and z. In the chiral limit, i.e. in the absence of monomers, configurations which contribute
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to the monomer-two-point function will have to satisfy the constraint
∑

µ̂ kµ̂+ δx,y+ δx,z = N .
Thus, contrary to configurations which contribute to the partition function Z, configurations
of G will contain two monomers at y and z which do not carry a weight 2amq. For amq >
0, if we insist on the distinction between monomers and sources, the constraint will read
∑

µ̂ kµ̂ + nx + δx,y + δx,z = N .
Further, for amq = 0, under a symmetry transformation Eq.(4.3), G(y, z) transforms according
to

G(y, z) = 〈χ̄χyχ̄χz〉 → ei2θA(ǫ(y)+ǫ(z))〈χ̄χyχ̄χz〉 , (4.21)

so that G(y, z) can be non-zero only if y, z are lattice sites of opposite parity, ǫ(y) = −ǫ(z).
For amq > 0, this symmetry is broken explicitly and the lattice will be populated by a finite
density of monomers. The role of the quark mass is thus comparable to a magnetic field h
breaking the Z3 symmetry of the Potts model, discussed in Ch.3.

Taking these preliminary remarks into account, we now turn to the practical question of the
realization of the worm update. Our model contains both mesonic and baryonic degrees of
freedom (dof). The former are present in terms of intersecting loops, possibly terminating
in source variables, the monomers, for amq > 0. Baryons form self-avoiding loops without
monomer-terms. The WA thus has to update two different kinds of loop gases, including the
presence of sources. This can be generalized starting from [43,52] as follows.

4.1.2.3 Worm, mesonic part

This part of the worm algorithm updates the mesonic dof only. Hence, it cannot change the
sign σ(C) = σ({n, k, b}) of a configuration. Since our lattice is bipartite, we can choose to
decompose the set of sites into active and passive sites xp/a, respectively, and rewrite the
partition function Z given by Eq.(4.12) into the form

Z =
∑

{n,k,b}

∏

xa

Wa(xa)
∏

xp

Wp(xp)σ({n, k, b}) , (4.22)

where

Wa(x) =
∏

ν̂=±0̂,...,±d̂

(
(N − kν̂)!

N !kν̂ !
exp (3bν̂(δν̂,0̂ + δν̂,−0̂)atµ)

)
N !

nx!
(2ma)nx (4.23)

Wp(x) =
∏

ν̂=±0̂

(

γ2kν̂+3|bν̂ |
) N !

nx!
(2ma)nx . (4.24)

Here we made use of the baryonic link variables bν̂(x), satisfying the constraint Eq.(4.10). We
represent the state of an active or passive site x by the tuple of parameters (nx, kµ̂, bµ̂, µ̂ =

±0̂, . . . ,±d̂). In the following we describe the update and show in Sect.8.4.2 that it satisfies
detailed balance.

1. We start by choosing with uniform probability a site x that is not member of a baryon
loop. The active set of sites is defined as the set that contains all sites with parity ǫ(x).
We should begin by placing a worm head and tail in terms of two monomers at x. Due
to the constraint (4.11) this could only happen if we separate head and tail immediately
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by erasing a dimer in direction ν̂, with kν̂ 6= 0, and increase the number of monomers
nx → nx + 1, nx+ν̂ → nx+ν̂ + 1. Note that in the chiral limit, this represents going from
the set of Z-configurations to configurations that contribute to the two-point function G,
Eq.(4.20). Practically however, we introduce only one monomer at x and erase a dimer
in direction µ̂ with probability Pµ̂

Pµ̂ =
kµ̂
N
. (4.25)

We have split the operation (nx → nx + 1, kµ̂(x) → kµ̂(x) − 1, ny → ny + 1, k−µ̂(y) →
k−µ̂(y)−1) in two parts, postponing the change at y = x+ µ̂ to the next step. Note that
we explicitly distinguish the link occupation numbers kµ̂(x) and k−µ̂(x+ µ̂), allowing for
kµ̂(x) 6= k−µ̂(x+ µ̂) if the link connecting x and x+ µ̂ is updated.
The remaining option at x, to leave the site without any change, is chosen with probability

Px =
nx
N
. (4.26)

2. The site y is a passive site. The update will change the state of the site by choosing a
direction ρ̂ and letting (k−µ̂(y) → k−µ̂(y) − 1, kρ̂(y) → kρ̂(y) + 1). All directions ρ̂ are

weighted with Wρ̂ = γ2δρ̂,±0̂ if the site y+ ρ̂ is not a member of a baryon loop, otherwise
with Wρ̂ = 0 and the step is carried out using a heat-bath probability

Pρ̂ =
Wρ̂

WD(y)
, WD(y) =

∑

ν̂

Wν̂ . (4.27)

3. The site z = y + ρ̂ is an active site. In the chiral limit, only the starting site x (by
definition an active site) carries a monomer, the worm tail. An active site gives thus the
possibility to close the path by erasing a monomer. If we choose this step with a directed
path probability Pz, then

Pz =
nz

N − k−ρ̂
, (4.28)

where k−ρ̂ is the dimer number of the incoming direction. We then change the site state
of site z by (nz → nz − 1, k−ρ̂ → k−ρ̂ + 1) which ends the worm update. The remaining
choice is to continue the path by choosing an outgoing direction µ̂ 6= −ρ̂ with directed
path probability

Pµ =
kµ̂

N − k−ρ̂
. (4.29)

This last step excludes backtracking by omitting steps in direction −ρ̂. After letting
(k−ρ̂ → k−ρ̂ + 1, kµ̂ → kµ̂ − 1), the update continues with step 2.

The mesonic worm update satisfies (detailed) balance as shown in Sect.8.4.2. Let us note that
backtracking in step 2 cannot be avoided as the site y might be surrounded by baryonic sites.
Likewise, in step 1, the site x might be already occupied by N monomers, thus preventing the
creation of an additional one.
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4.1.2.4 Worm, baryonic part

The purpose of this part of the algorithm is twofold: It completes the above by updating the
baryonic loops, i.e. it changes the shape and size of a baryon loop. On the other hand, in
order to achieve ergodicity, we should be able to convert mesonic into baryonic dof and vice
versa. The update realizes the latter by the ability to turn triple dimers into pairs of baryonic
sites along with the reverse.

1. We choose with uniform probability a site x which can be either a site connected to a
triple dimer or is traversed by a baryonic loop. Again we consider the partition into active
(defined by x) and passive sites with weights given by Eqs.(4.23) and (4.24), respectively.
If x is a baryonic site, then bµ̂ = ±1 for exactly one pair of links. We symbolically place
a baryonic source at x (this way conserving the constraint at x) and choose the direction
µ̂ whose link will be updated to be that with bµ̂ = −1. We set bµ̂ = 0 and move to
the neighboring site y = x+ µ̂. If instead the site x has a link with occupation number
kµ̂ = 3, then we set kµ̂ = 0 and bµ̂ = 1.

2. The site y is a passive site. The update changes the state of the site by choosing an outgo-
ing direction ρ̂. Possible directions are weighted withWρ̂ = γ3δρ̂,±0̂ exp (3atµ(δρ̂,+0̂ − δρ̂,−0̂))
if the site y + ρ̂ is a member of a baryon loop or is touched by a triple dimer, otherwise
with Wρ̂ = 0 and the step is carried out using a heat-bath probability

Pρ̂ =
Wρ̂

∑

ν̂Wν̂
. (4.30)

We let (b−µ̂ → b−µ̂ − 1, k−µ̂ = 0, bρ̂ → bρ̂ + 1) and if bρ̂ = 0, then kρ̂ = 3.

3. For the active site z = y + ρ̂ there are three possible choices:

• If the site contains a baryonic source, introduced in a first step, then the update
ends with probability Pz = 1 given by the directed path probabilities. We let
b−ρ̂ → b−ρ̂ − 1 and if b−ρ̂ = 0, then k−ρ̂ = 3.

• If the site is touched by a triple dimer in direction µ̂, then we change its state with
probability Pµ̂ = 1 according to (b−ρ̂ → b−ρ̂ − 1, bµ̂ = 1, kµ̂ = 0) and continue with
step 2.

• If the site is traversed by a baryon loop s.t. there is a direction µ̂ with bµ̂ = −1, then
we change its state with probability Pµ̂ = 1 according to (b−ρ̂ → b−ρ̂ − 1, bµ̂ = 0)
and continue with step 2.

The proof of detailed balance for the baryonic worm is very similar to that of the mesonic
worm in Sect.8.4.2 and will hence be omitted. We point to [43,52] for additional details.
As the baryonic worm changes the number and shape of baryonic loops the sign σ(C) of a
configuration changes. Practically, we determine the sign of a configuration once the baryonic
worm has closed. Mesonic and baryonic worm updates are performed independently, not
necessarily with equal frequency.
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4.1.2.5 Worm estimators

It is possible to define worm estimators for relevant observables of our model. Starting from a
closed path configuration, i.e. a configuration satisfying the constraint in Eq.(4.11), we intro-
duce head and tail of a mesonic worm and carry out mesonic worm update steps. Let O(ψ̄ψ)
and O(G(x1, x2)) be observables continuously accumulated during the worm update, s.t.

〈ψ̄ψ〉 = 2amqN
O(ψ̄ψ)

KCP
(4.31)

G(x1, x2) = N
O(G(x1, x2))

KCP
, (4.32)

where KCP is the number of mesonic worm updates, taking into account the sign σ(C) = ±1
of the configuration updated by the mesonic worm. As the mesonic worm does not touch any
baryonic site this sign is not changed throughout the update. In practice KCP will be the
difference of the number of closed paths on configurations with positive sign and negative sign.
As usual N = 3 denotes the number of colors and amq is the bare quark mass. In Sect.8.4.3.1
we show that during each update of a passive site, say x, O(ψ̄ψ) has to be updated according
to

O(ψ̄ψ) → O(ψ̄ψ) +
VD
V

σ(C)

WD(x)
, (4.33)

where WD(x) was defined in step (2) of the mesonic worm, VD denotes the total number of
dimer sites (i.e. sites that are not traversed by a baryonic loop) and V is the total number
of sites. σ(C) = ±1 is the sign of the current configuration (or equivalently the configuration
from which the worm started).
O(G(x1, x2)) can be accumulated similarly (see Sect.8.4.3.2): During a mesonic worm update
with head at the passive site x and tail at the active site y, we update O(G(x1, x2)) ∀ x1, x2 ∈ V
by the prescription

O(G(x1, x2)) → O(G(x1, x2)) + VD
σ(C)

WD(x)
(δx,x1δy,x2 + nx2δx,x1) . (4.34)

In the chiral limit nx2 = 0 ∀ x2 ∈ V except x2 = y and the last term in Eq.(4.34) vanishes.
To see the importance of Eq.(4.34) we note that we can measure the chiral susceptibility χσ,
defined by

χσ =
1

V

∂2

∂(2amq)2
logZ =

1

(2amq)2L3Nt

(
〈N2

M 〉 − 〈NM 〉2 − 〈NM 〉
)
, (4.35)

even in the chiral limit, i.e. in the absence of partition function configurations with nonzero
NM , by using the alternative definition

χσ =
1

V

∑

x1,x2

G(x1, x2) . (4.36)

This relation will be of particular importance for the investigation of the phase diagram in the
chiral limit, see Sect.5.2.
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Figure 4.4: Comparing exact (solid and dashed lines) and numerical results (symbols) on a
2× 2 system for the baryon density (ρB), the energy density (ǫ), the chiral condensate (〈ψ̄ψ〉)
and its susceptibility (χC) using different parameter sets.

4.1.3 Consistency checks

There are limiting cases of the model in which the correctness of our formulation and its
implementation can be cross-checked. A simple and basic check can be carried out on a
2 × 2 lattice where an exact enumeration of all configurations contributing to Z is possible.
Moreover, one conventional algorithmic approach to lattice QCD is given by the Hybrid Monte
Carlo (HMC) algorithm. Simulations at β = 0, aµ = 0 are here easy to perform and results on
observables such as 〈ψ̄ψ〉 or decays of correlation functions represent a non-trivial reference to
compare with.

4.1.3.1 Exact enumeration

The partition function (4.12) is of polynomial form in amq with even powers due to the invari-
ance under mq → −mq. Every site can be occupied by a maximum of nmax = 3 monomers,
Z has therefore degree 3V = 12, V = Ld × Nt = 2 × 2. It is convenient to employ the form
of (4.12) as used by Karsch and Mütter [9] in which baryonic and mesonic loops are combined
into polymers (see Sect.8.2)

Z =
∑

C

W (C) =
∑

C={k,n,ℓ}
γ2ND0̂(2amq)

NM
1

3

ND1
+ND2 ∏

x

w(x)
∏

ℓ

w(ℓ) , (4.37)

where ND0̂ =
∑

x k0̂(x), NM =
∑

x nx and NDi =
∑

x

∑d
µ=0 δi,kµ̂(x). In this formulation the

loop weights are given by w(ℓ) = 1+γn0̂(ℓ)σ(ℓ) cosh (3rℓatµNt) with n0̂(ℓ) = 3N0̂(ℓ)−2ND0̂(ℓ).
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N0̂(ℓ) and ND0̂(ℓ) are the number of steps and the number of dimers, respectively, in ±0̂-
directions. The site weights w(x) are tabulated in [9].
To further simplify the calculation of the partition function, we considered two distinct cases
for the parameters amq, γ and arbitrary atµ: First we enumerate all possible configurations
with amq ≥ 0, γ = 1. We weight each configuration C according to W (C) given in (4.37) and
thus find

Z(atµ, amq) =
980

9
+ 16 cosh (6atµ) + 4 cosh2 (6atµ) +

[
9760

3
+ 160 cosh (6atµ)

]

(amq)
2 +

+ [21248 + 384 cosh (6atµ)] (amq)
4 + [50944 + 256 cosh (6atµ)] (amq)

6 + (4.38)

+ 53248(amq)
8 + 24576(amq)

10 + 4096(amq)
12 ,

from which most observables defined in Sect.4.1.1 can be obtained. Further, from the config-
urations labelled above our expression for Z = Z(atµ, γ 6= 1, amq = 0) reads

Z(atµ, γ, amq = 0) = 4 +
400

9
(γ4 + γ8) + 16

(

1 + cosh (6atµ) +
1

4
cosh2 (6atµ)

)

γ12 , (4.39)

It allows us to verify our implementation for γ 6= 1. In Fig.4.4 we display the baryon density ρB ,
the energy density ǫ, the chiral condensate 〈ψ̄ψ〉 (amq 6= 0) and the chiral susceptibility χC as a
function of atµ for amq = 0, γ = 1 (top, left), amq = 0.1, γ = 1 (top,right) and amq = 0, γ = 0.5
(bottom, left), amq = 0, γ = 1.5 (bottom, right), showing complete agreement between exact
results and Monte-Carlo estimators which we checked to high precision.

4.1.3.2 Meson spectrum

The spectrum of low-lying hadronic bound states represents a more thorough check of correct-
ness when comparing the worm approach of strong coupling QCD with the standard algorithmic
technique of HMC. We saw in Sect.2.2.2.2 that n distinct staggered fermion fields χ̄ix, χ

i
x in

d = 3 + 1, describe 4n spinor fields ψ̄αbiy , ψαbiy in the continuum, a → 0, with spinor index
α = 0, . . . , 3, taste index b = 1, . . . , 4 and flavor index i = 1, . . . , n. We defined in particular

ψαby =
1

8

∑

δ̂

Ωαbδ χ2y+δ with Ωδ = γδ00 γ
δ1
1 γ

δ2
2 γ

δ3
3 . (4.40)

The 4-vector δ has components 0 or 1 and labels the corners of the hypercube with origin at
2y. Thus, to specify the quantum numbers of a mesonic observable ODT (y) we need a Dirac
kernel ΓD for which we have sixteen different choices such as γµ, γµγ5 etc. Additionally, for
staggered fermions, the taste kernel ΓT , which we choose in the same basis of γ-matrices, gives
another sixteen possibilities,

ODT (y) = ψ̄βb(y)ΓβαD Γ∗ba
T ψαa(y) =

1

16

∑

δ,δ′

χ̄2y+δχ2y+δ′g
DT
δ,δ′ , (4.41)

with gDTδ,δ′ = Tr(Ω†
δΓDΩδ′Γ

†
T )/4. If we take a vector meson as example then ΓD = γi. If we

choose ΓT = γ∗i , then g
ii
δδ′ = −(−1)

∑

ν δ
′
ν (−1)δ

′
iδδ,δ′ . It is true in general that for ΓD = (ΓT )

∗

gDTδ,δ′ ∼ δδ,δ′ . The sum over δ in Eq.(4.41) still straddles two different time slices with δ0 = 0, 1
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Figure 4.5: Comparison of results on the spectrum using HMC (squares) and the worm for-
mulation (stars). Plotted are mπ, mρ/2 and 〈ψ̄ψ〉/3 as a function of amq. The Monte-Carlo
data show excellent agreement for the two approaches and are well described by mean-field
theory [53,54], see Sect.4.2.1.

which will be impractical if we want to measure the decay of correlations 〈O†
DTODT 〉 in time

direction. To restrict the sum to one time slice we can replace the Dirac - taste - kernel ΓD⊗ΓT
by

ΓD ⊗ ΓT ± ΓDγ0γ5 ⊗ (ΓTγ0γ5)
∗, (4.42)

then, for ΓD = Γ∗
T , Eq.(4.41) will be modified according to gDTδ → gDTδ (1 ± (−1)δ0) and the

contribution of δ0 = 0 or δ0 = 1 drops out depending on the sign chosen in Eq.(4.42). Coming
back to ΓD = Γ∗

T = γi, we can now compute the correlator with zero spatial momentum to

C(t) =
∑

~y

∑

δ,δ0=0

∑

δ′,δ′0=0

〈χ̄δχδχ̄2y+δ′χ2y+δ′〉(−1)δ+δ
′+δi+δ

′
i (4.43)

∼
∑

~x

〈χ̄0χ0χ̄~x,tχ~x,t〉(−1)xj+xk j = i+ 1, k = i+ 2, cyclic . (4.44)

The coordinate x = (~x, t) runs over all sites of the original lattice with even t. For arbitrary
t, we obtain a phase (−1)x0+xj+xk in Eq.(4.44). Since the quantum numbers are determined
by the Dirac-taste-kernel (4.42) with ΓD = Γ∗

T = γi, the decay of C(t) will be governed by
the vector particle with taste assignment γi and its parity partner - an axial vector particle
- with taste assignment γjγk. If we denote by gD05T05

δ = Tr(Ω†
δΓDγ0γ5Ωδ′(ΓT γ0γ5)

†)/4 then
gD05T05
δ = gDTδ (−1)δ0 and we see that the contributions will be of the form

C(t) ∼ exp (−mt) + (−1)t exp (−m′t) , (4.45)
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with mass assignment m = mAV , m
′ = mV if the phase is chosen as in Eq.(4.44) for all t. For

a general Dirac-taste-kernel (ΓD = Γ∗
T ) with

C(t) =
∑

~x

〈χ̄0χ0χ̄~x,tχ~x,t〉gDx , (4.46)

we list the sign gDx and the corresponding continuum states in Tab.4.1. We note that the
correlation function appearing in (4.46) is the monomer-monomer correlation G(x, y) which
can be determined for amq ≥ 0 by means of the worm estimator given by Eq.(4.32). For
periodic boundary condition Eq.(4.45) has to be replaced by

C(t) = A {exp (−amt) + exp (−am(Nt − t))}+ (−1)tB
{
exp (−am′t) + exp (−am′(Nt − t))

}
.

(4.47)

Of particular interest for us are the phases gDx = (−1)x+y+z and gDx = (−1)xj+xk , j 6= k
which yield a pion correlator (γ5 ⊗ γ∗5) and rho correlator (γi ⊗ γ∗i ), respectively, in the (−1)t-
channel of Eq.(4.47). These are the two lightest mesons. In Fig.4.6 we show C(t) and the
corresponding fit for amq = 0.025, 0.05, 0.1 and ΓD ⊗ Γ∗

T = γ5 ⊗ γ∗5 , i.e. a pion channel on a
the L3 × Nt = 83 × 16 lattice. The masses mπ thus obtained are given in Fig.4.5 along with
the mass of the vector channel which we call mρ and the chiral condensate ψ̄ψ as a function
of quark mass amq. These data have to be compared with those obtained by the standard
approach (HMC) [55] plotted in the same figure. The two sets of data show good agreement
and are well described by the mean-field results (continuous lines) described in the following
section.

gDx (−1)t

(−1)xi γiγ5 ⊗ (γiγ5)
∗ γiγ0 ⊗ (γiγ0)

∗

(−1)xj+xk γjγk ⊗ (γjγk)
∗ γi ⊗ γ∗i

(−1)x+y+z γ0 ⊗ γ∗0 γ5 ⊗ (γ5)
∗

1 1⊗ 1 γ0γ5 ⊗ (γ0γ5)
∗

Table 4.1: The sign gDx defined in Eq.(4.46). The second and third column assign quantum
numbers with kernel (ΓD⊗ΓT ,ΓD = Γ∗

T ) to the states with masses m,m′ of (Eq.4.45), respec-
tively.

4.2 Mean field results, symmetries, earlier results, µc puzzle

4.2.1 Mean-field results

4.2.1.1 T = 0, µ = 0

We know of three different approaches to obtain results in a mean-field approximation[10,53,56]
at zero temperature and zero chemical potential (T = 0, µ = 0). In [10,57] external sources
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Figure 4.6: Absolute value of the zero spatial momentum transform C(t) (see Eq.(4.46)) of the
pion correlator for various quark masses on a 83 × 16-lattice. The continuous lines correspond
to the fitting ansatz given in Eq.(4.47). The masses mπ thus extracted are plotted against mq

in Fig.4.5.

J(x), η̄(x), η(x) for the fieldsM(x), B(x), B̄(x), respectively, are introduced in the action which
is then treated in an 1/N expansion resulting in an effective action. Refs. [56, 58] follow a
different approach by first carrying out the Grassmann integration in Eq.(4.1). The resulting
expression for Z is then given as a series in 1/mq. In the limit N → ∞ (the bare gauge coupling
g being infinite) this corresponds to summing closed quark-antiquark paths of zero enclosed
area (tree graphs). In this limit, the summation leads to exact expressions for expectation
values such as 〈χ̄χ〉.
The most popular approach [53,54], which we now want to motivate, is an expansion in 1/d
(where d is the space-time dimension) and a subsequent Hubbard-Statonovich transformation.
Taking as a starting point the partition function of Lattice QCD with staggered fermions at
strong coupling, Eq.(4.1), we rewrite it in the familiar form

Z =

∫
∏

x

(dχxdχ̄x) e
2amq

∑

x χ̄xχx+
∑

x,ν log z(x,ν) (4.48)

where an expansion for z(x, ν) was given in Eq.(4.7) from which w(x, ν) := log z(x, ν) fol-
lows [46] with

w(x, ν) =

3∑

n=1

ãn(M(x)M(x + ν̂))n + κην̂(x)
3(B̄(x)B(x+ ν̂)− B̄(x+ ν̂)B(x)) (4.49)

=: ã1M(x)M(x + ν̂) + Fκ(x, x+ ν̂) (4.50)

and coefficients ã1 = 1/3, ã2 = 1/36, ã3 = −5/108. If we now consider the sum
∑

x,ν w(x, ν) in
Eq.(4.48) to be finite in the limit of large d and take into account that summing over directions
results in a factor of d because of isotropy, then the staggered quark fields scale as χ, χ̄ ∼ d−1/4

since the term in w(x, ν) that contains the least quark fields is ∼ M(x)M(x + ν̂). It follows
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that baryonic terms B̄(x)B(x+ ν̂) should scale as d−3/2 and are therefore suppressed by 1/
√
d

whereas summing over the terms (M(x)M(x + ν))2, (M(x)M(x + ν̂))3 only contributes to
order 1/d and 1/d2, respectively. These subleading terms serve to define Fκ in Eq.(4.50),
where κ = 0, 1 for gauge group U(N), SU(N), respectively.
We continue by rewriting Eq.(4.48) using the expansion for w(x, µ) (Mx =M(x))

Z =

∫
∏

x

(dχxdχ̄x) e
2amq

∑

xMx+
∑

x,yMxVxyMy/2+O(1/
√
d)

=

∫
∏

x

(dχxdχ̄xdσx) e
−

∑

x,y σxV
−1
xy σy/2+

∑

x(σx+2amq)Mx+O(1/
√
d) . (4.51)

where Vxy = 1/3
∑

µ(δx+ν̂,y + δx−ν̂,y) and we have introduced the field σ(x) by a gaussian
integral (dropping constant factors) to linearize the leading term MxVxyMy. Considering
the gauge group U(3) for simplicity (κ = 0 in Eq.(4.49)), it follows that F0(x, x + ν̂) ≡
F0(M(x)M(x + ν̂)) is of order O(1/d) and can be entirely rewritten as a derivative term

Z =

∫
∏

x

(dχxdχ̄xdσx) e
−

∑

x,y σxV
−1
xy σy/2e

∑

x,ν F ( ∂
∂σx

∂
∂σx+ν̂

)
e
∑

x(σx+2amq)Mx

=

∫
∏

x

(dσx) e
−

∑

x,y σxV
−1
xy σy/2e

∑

x,ν F ( ∂
∂σx

∂
∂σx+ν̂

)
e3

∑

x log (σx+2amq)

=:

∫
∏

x

(dσx) e
−Seff . (4.52)

In the second step the Grassmann-integration has been carried out and the resulting expression
in the exponential defines an action Seff . Eq.(4.52) is then subject to two nested expansions:
The loop expansion around the classical minimum σcl of Seff is done order by order3 in 1/d be-
cause of the more complicated terms contained in F ( ∂

∂σx
∂

∂σx+ν̂
). The free energy f = − 1

V N logZ

can then be expressed as a series in 1/d [53, 54]. It allows to obtain results for the chiral con-
densate 〈ψ̄ψ〉, the correlation function 〈M(x)M(0)〉 and - in general for SU(N) in the presence
of source terms B̄(x)JB(x), J̄B(x)B(x) in Eq.(4.48) - for the correlation function 〈B̄(x)B(0)〉.
As in Eq.(4.46) the poles of the zero spatial momentum projected correlation functions define
meson masses mM and baryon masses mB , respectively. We state the results to lowest order
in 1/d [53]:

a3

N
〈ψ̄ψ〉 ≈

√

2

d
(λ̄− 2m̄)

cosh amM = d(λ̄2 − 1) + 2j + 1, j = 0, ..., d − 1

sinh amB =
1

2
λ̄N (2d)N/2 , (4.53)

with λ̄ = m̄+
√
m̄2 + 1 and m̄ =

amq√
2d
. For d = 4, j = 0, ..., 3 andN = 3, amM (j) is traditionally

assigned to be mass of the pion (π), the vector (ρ), the pseudo-vector (a1) and the scalar
(a0/f0) particle, respectively. If we follow the later adopted, more systematic classification
(see for example [59,60] or [61]) we should call the particles corresponding to these states the
π(5), ρ(i), ρ(0i) and π(05) where we gave the taste assignment in parenthesis, e.g. π(05) is the

3The parameter d appears in the calculation by explicitly rescaling the fields χ̄,χ as described above.
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pion with taste kernel ΓT = γ0γ5. For amq ≪
√
2d this results in

a3〈ψ̄ψ〉 ≈ 2.12 − 0.75amq (4.54)

(amπ(5))
2 ≈ 5.66amq (4.55)

amρ(i) ≈ 1.76 + amq (4.56)

amB ≈ 3.12 + 1.06amq (4.57)

In [54] the authors included leading order corrections in the 1/d expansion for 〈ψ̄ψ〉,mπ(5) and
mB and obtain

a3〈ψ̄ψ〉 ≈ N

√

2

d
(1− 1

4d
+ m̄(−1 +

1

d
)) = 1.99 − 0.56amq (4.58)

(amπ(5))
2 ≈ 2

√
2damq(1−

3

4d
) = 4.6amq (4.59)

sinh amB =
1

2
λ̄N (2d)N/2

[

1− N

4d
+

(

1 +
1

4d

)
Nm√
2d

]

→ amB ≈ 2.93 + 1.99amq (4.60)

Relations (4.56), (4.58) and (4.59) are shown in Fig.4.5 as a function of quark mass mq.
The same figure displays data obtained by Monte-Carlo with the worm algorithm and HMC,
respectively, which show excellent mutual consistency, and good agreement with mean-field
predictions. The three sets of data are also listed in Tab.4.2.
It is important to note that mean-field theory predicts a non-zero expectation value for 〈ψ̄ψ〉,
Eq.(4.58) for T = 0, µ = 0,mq = 0 which means that the chiral symmetry Eq.(4.3) is spon-
taneously broken. This symmetry can and will be restored at high temperature and non-zero
chemical potential.

4.2.1.2 µ > 0

With the mean-field results for T = 0, µ = 0 above in mind, in particular the relation (4.60)
for the baryon mass mB, we turn to the behavior of f = − 1

NV logZ for finite quark chemical
potential µ. This and the ultimate goal of the determination of the whole phase diagram in
the (T, µ)-plane has been the subject of numerous mean-field studies [12–14,62–66].
The 1/d expansion for finite chemical potential µ follows the line that leads to Eq.(4.51)
with the important difference that link integration is done for spatial links Ui(x) only and thus
corresponds to an expansion in 1

d−1 . In the mean-field approximation, the field σ(x) is replaced
by a constant σ(x) = σ and the remaining Grassmann- and U0̂ link-integration can be done
exactly [66], giving for T = 0

feff(σ, µB) =
N(d− 1)

4
σ2 −max{aµB, NE(σ)}, E(σ) = asinh(

d− 1

2
σ) , (4.61)

where we set µB = Nµ. This function has local minima at σ = 0 and σ0 = ±
√

2
√

1+(d−1)2−2

(d−1)2

with feff(0, µB) = −µB and feff(σ0, µB) = NE(σ0) − N(d−1)
4 σ20 . Specializing to N = 3, d = 4,

then for aµB = aµB,c = 3E(σ0) − 9
4σ

2
0 the system changes its state from σ = σ0 to σ = 0,

this corresponds to a first order phase transition with order parameter σ. From the mean-field
treatment for the auxiliary field σ(x) = σ it follows that σ = − 1

a〈ψ̄ψ〉. The phase transition
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Figure 4.7: feff as a function of σ for aµB = 0.5, aµB,c, 2.5.

then corresponds to a transition from the chirally broken phase at low µB < µB,c to the chirally
restored phase at high µB. The baryon density ρB = − ∂

∂aµB
feff takes values

ρB =

{

0, for µB < µB,c

1, for µB > µB,c
,

in particular the high density, chirally restored phase shows saturation of baryons.
At T = 0 the transition thus separates a phase of a dilute gas of hadrons (mesons) from
the high-density baryonic phase at high µB . For non-interacting baryons (see Sect.5.1.1) the
transition should occur at µB,c = mB , i.e. the cost in free energy to place a baryon into the
dilute bath of mesons is given by its mass. Here instead we find

aµB,c = 3E(σ0)−
9

4
σ20 ≈ amB − 9

4
σ20 = 1.63, (4.62)

where 3E(σ0) ≈ 2.73 ≈ amB and σ0 ≈ 0.7. The sizable relative difference

∆/mB =
mB − µB,c

mB
≈ 0.4 (4.63)

must then be due to a strong nuclear attraction as already pointed out in [13].
However, the comparison Eq.(4.63) is based on µB,c, E(σ0), obtained in a mean-field approx-
imation using an effective action which itself is the result of a 1

d−1 expansion of the original

action, taking only leading contributions into account and neglecting terms of order O( 1√
d−1

)

for d = 3 + 1.4 These approximate predictions should be carefully compared with results of
Monte-Carlo simulations.

4Contrary to that, the results for the spectrum at T = µ = 0, Eqs.(4.58)-(4.60), were obtained discarding
terms of order O(1/d).
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Figure 4.8: (a) The masses mB ,mρ and mπ obtained by mean-field theory, Sect.4.2.1, HMC

and the snake algorithm described below. (b) − log (Z
(Nt−2n)
ℓ|||

/Z
(Nt−2n−2)
ℓ|||

)/2 as a function of

t = Nt − 2n + 1, obtained on a 83 × 16 lattice for µ = mq = 0. We extract amB from the
approximate plateau, neglecting the effects stemming from the beginning and ending of the
world line which correspond to finite-size effects and become negligible as T → 0.

4.2.2 Determination of the baryon mass mB by Monte Carlo

When we introduced the worm formulation for strong coupling QCD in Sect.4.1.1 we gave a
pictorial representation of the (new) hadronic degrees of freedom (dof) in Fig.4.1. Due to the
Grassmann property, baryon world lines form self-avoiding loops which may carry a minus sign
due to their fermionic character, see Fig.4.2. In particular, a static baryon is represented by a
non-trivial closed loop in 0̂-direction such as the loop ℓ in Fig.4.9. This loop is built of links
B̄(x′)B(x) representing a baryon “hopping” by annihilation and creation of a baryon at site
x = (~x, t) and x′ = (~x, t+ 1), respectively. At low temperature T = 1

Nta
and for µB = 0, the

probability for this baryon hopping is given by pB̄(x′)B(x) ∼ exp (−amB) such that we recover
for the whole loop ℓ displayed in Fig.4.9

pℓ ∼ exp (−amBNt) = exp (−mB/T ) = exp (−∆F/T ) (4.64)

where ∆F is the difference in free energy between those configurations contributing to Z that
contain one baryon (world line) at ~x and the vacuum configurations with ρB = 0. Rewriting
this as a ratio of partition functions then

exp (−∆F/T ) =
Zℓ
Z0

, (4.65)

and we obtain Zℓ/Z0 ∼ O(10−21) for an Nt = 16 lattice and assuming the mean-field result
mB ≈ 3. Thus, extracting the baryon mass mB directly as a ratio of partition functions via
Eq.(4.65) seems impossible.
We note however, that for µ = 0 the static baryon loop ℓ carries a total weight wtot(ℓ) =
w(ℓ)

∏

x∈ℓ 3! = +1 which we observe from the expressions (4.12),(4.13) for Z and w(ℓ), respec-



Nuclear physics from Lattice QCD at strong coupling 55

x

x

x

x

B̄(x )B(x)
x

x

x

x

M(x )3M(x)3

Figure 4.9: Example of a static baryon loop ℓ (left) with weight wtot(ℓ) = 1 for Nt = 4. On the
right, the loop ℓ has been replaced by a sequence of triple dimers ℓ||| which also carries weight
wtot(ℓ|||) = 1.

tively. From the same expression it follows, that a sequence of triple dimers ℓ||| at site ~x as
sketched in Fig.4.9 carries a weight wtot(ℓ|||) = 1 as well. Thus, replacing the baryon loop ℓ
by a loop ℓ||| does not change the configurational weight, i.e. Zℓ = Zℓ||| . The advantage of
such replacement becomes clear if we rewrite Eq.(4.65) in factorized form as used in the snake
algorithm [67],

Zℓ
Z0

=
Zℓ|||
Z0

=
Zℓ|||

Z
(Nt−2)
ℓ|||

Z
(Nt−2)
ℓ|||

Z
(Nt−4)
ℓ|||

· · ·
Z

(2)
ℓ|||

Z0
, (4.66)

and we define the Z
(Nt−2n)
ℓ|||

to be partition functions with configurations that contain a sequence

of triple dimers at site ~x of length (Nt − 2n), starting at x = (~x, 0). Note that a similar
factorization for the baryon loop ℓ would lead us from configurations that contribute to Z to
those contributing to the baryon 2-pt function GB . No such complication arises in the case of

ℓ||| and each factor Z
(Nt−2n)
ℓ|||

/Z
(Nt−2n−2)
ℓ|||

appearing in Eq.(4.66) should be of order O(10−3).

4.2.2.1 Practical implementation

We express the ratio Z
(Nt−2n)
ℓ|||

/Z
(Nt−2n−2)
ℓ|||

as an expectation value with respect to the denom-

inator. In order to measure the ratio we exclude the volume corresponding to the sequence

ℓ
(Nt−2n−2)
||| at site ~x or equivalently we impose the sequence ℓ

(Nt−2n−2)
||| of triple dimers to be

frozen during the Monte Carlo run. Such a frozen dimer sequence can and will be extended dur-
ing a simulation by another, dynamic sequence as sketched in Fig.4.10. Measuring the triple-

dimer occupation rate of the subsequent link thus yields Z
(Nt−2n)
ℓ|||

/Z
(Nt−2n−2)
ℓ|||

= exp (−2amB).

In Fig.4.8(b) we plot − log (Z
(Nt−2n)
ℓ|||

/Z
(Nt−2n−2)
ℓ|||

)/2 as a function of t = Nt− 2n+1, obtained

on a 83 × 16 lattice for µ = mq = 0. Up to deviations corresponding to the starting and
ending of the world line we extract amB = 2.88(1) from the plateau values. Repeating this
for quark masses amq = 0.025, 0.05, 0.1, we can compare our values with those obtained from
HMC at β = 0 [55] and mean-field theory [54], displayed in Fig.4.8(a), confirming the validity
of our approach. The numerical data are listed in Tab.4.2 along with the results on the meson
spectrum and 〈ψ̄ψ〉.
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Figure 4.10: Example of a pair of configurations that contribute to the sector Z
(4)
ℓ|||

(left) and

Z
(6)
ℓ|||

(right), respectively: The frozen sequence of triple dimers ℓ
(4)
||| starting at (~x, t = 0) on

the left has been extended to ℓ
(6)
||| when going from left to right. The relative occurrence

of configurations of either sector serves to calculate the factor Z
(6)
ℓ|||
/Z

(4)
ℓ|||

in the factorization

Eq.(4.66).

4.2.3 Qualitative understanding of the baryon mass mB

At T = 0 we can equate the internal energy E and the free energy F , defined as Legendre
transform of the former, F = E − TS. Thus, our findings for mB = ∆F should be consistent
with the increase in internal energy ∆E of the system after adding the static baryon to the
dilute gas of mesons. However, at strong coupling the definition of energy,

a4ǫ = − 1

L3Nt

1

γ

∂γ

∂h(γ)
〈2NDt + 3NBt〉 (4.67)

relies on the knowledge of the functional behavior 1/h(γ) = f(γ) = a
at
, where f(γ) → γ2 for

γ ≫ 1 [13,68]. Our measurement of amB above was carried out for γ = 1 and can thus not
be easily compared to ∆E. Strictly speaking a continuum extrapolation of amB(γ), γ → ∞,
while keeping γ2/Nt = const is required to carry out a meaningful comparison.
Still, we can qualitatively understand the origin of the baryon mass by noting from Eq.(4.67)
that a4ǫ ∼ 〈2k0̂+3|b0̂|〉, where k0̂, |b0̂| represent the dimer and baryon link occupation number
in 0̂-direction, respectively.5 Note that, in the absence of baryons and for γ = 1, amq = 0,
the average occupation number 〈kµ〉 = N/(2d) = 3/8 as we have N links per site x that will

5We thus see that ǫ is proportional to the number (density) of quarks and antiquarks propagating in Euclidean
time direction.
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amq snake/worm HMC [55] mean-field

amB 0 2.88(1) — 2.930, Eq.(4.60)

0.025 2.92(3) 2.831(10) 2.980

0.05 2.95(3) 2.863(5) 3.030

0.1 2.99(1) 2.931(3) 3.129

amρ 0 1.752(6) — 1.760, Eq.(4.56)

0.025 1.78(1) 1.779(1) 1.785

0.05 1.794(2) 1.774(4) 1.810

0.1 1.837(1) 1.831(2) 1.860

amπ 0 0.016 (finite volume) — 0, Eq.(4.59)

0.025 0.3368(2) 0.3379(1) 0.3390

0.05 0.4778(3) 0.4784(1) 0.4794

0.1 0.6773(6) 0.6780(1) 0.6780

a3〈ψ̄ψ〉 0 0 (finite volume) — 1.990, Eq.(4.58)

0.025 1.95174(3) 1.9520(6) 1.9747

0.05 1.94133(1) 1.9413(3) 1.9606

0.1 1.91723(1) 1.9172(2) 1.9325

Table 4.2: Comparison of results for the mass of the baryon (amB), the rho particle (amρ) and
the pion (amπ) as well as the chiral condensate a3〈ψ̄ψ〉 at the listed quark masses using the
snake and worm algorithm, HMC and mean-field results (Sect.4.2.1). Monte-Carlo simulations
were done on a 83 × 16 lattice.

be isotropically distributed over the 2d directions, provided we have an isotropic four-volume
V = L4. This estimate turns out to be correct to high precision even when baryons are included
because the smallest baryon loop (a loop around a plaquette) has probability ∼ e−4amB ≈ e−12.
Going back to SU(N) and relation (4.67) we see that a static baryon world line contributes
∼ 3Nt in lattice units to the internal energy. But placing a static baryon at site x will have
a twofold effect: We increase the internal energy at the site but we will also distort the link-
occupation numbers of the neighboring sites as we excluded the site x from the surrounding
meson bath. This simple geometric effect is demonstrated for d = 2+1 in Fig.4.11(a). For the
nearest neighbors of a site x traversed by the baryon loop, this site is no longer available for
a pairing M(x)M(x+ ν̂), therefore at distance R/a = 1, link occupation numbers kµ̂, µ̂ 6= −ν̂
will show an increase, away from 〈kµ̂〉 = 〈 3

2d 〉, leading to an increase in internal energy at sites

x + î. Points of distance R/a =
√
2 to the baryonic site x will contribute a decreased energy

density, as their link-occupation number kî in the spatial directions î pointing to the nearest
neighbors of the baryon will be increased, leaving less occupation probability for remaining
directions. This distortion thus propagates to large spatial distances and describes the effect
of a static baryon loop on the meson-vacuum which we will examine more closely in Sect.4.3.3.
In Fig.4.11(b) we show the difference a4δǫ := 〈2k0̂+3|b0̂|〉−3/4 as a function of spatial distance
R/a to a static baryon at the origin, obtained on a 164 lattice for amq = 0 and γ = 1. Note
that while the simple sketch in Fig.4.11(a) explains the fluctuations in the sign of δǫ, we have
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Figure 4.11: (a) Example configurations for d = 2 + 1: On the left we show a vacuum con-
figuration (purely mesonic links). On the right we added a static baryon loop. The sites it
traverses can no longer be touched by pionic links (crossed). This increases the link occupation
number in 0̂ direction at the nearest neighbors. (b) δǫ(R) = 〈2k0̂ + 3|b0̂|〉 − 3/4 as obtained
from a 164 lattice for amq = 0 and γ = 1.

(a) (b)

Figure 4.12: (a) Adding a baryon to grow an additional layer of bulk nuclear matter. Each new
baryon binds to 3 baryonic nearest neighbors. (b) Profile of δǫ for two configurations containing
a baryon volume (flat piece) in the middle. When going from left to right the baryonic volume
has grown, say by one site and the distortion of the energy density (oscillatory part) of the
pion cloud has just shifted. The increase in total energy is thus just the difference in energy
of a baryonic site and a vacuum site.

to revert to Monte Carlo to obtain answers on its actual magnitude.
As we have measured δǫ with sufficient accuracy we can estimate ∆E employing as a test the
weak coupling relation h(γ) = 1/γ in Eq.(4.67), giving

a∆E|h(γ)=γ = a4
∑

R

δǫ(R) = 3.05(3)

a value not too far from amB = 2.88(1). Note that with higher accuracy one can use this
approach to determine ∂γ

∂h(γ) in Eq.(4.67).
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4.2.4 Determination of µB,c

We can use the same strategy of extending a triple dimer line little by little into the dilute
gas of hadrons in a modified manner: The T = 0 transition separates the hadronic phase with
baryon density a3ρB = 0 and that of dense nuclear matter with baryon density a3ρB = 1. At
the transition, i.e. for µB = µB,c, in a finite cubic box the two phases will coexist forming an
interface as shown in Fig.4.12(a). We can then determine the free energy necessary to extend
the volume occupied by nuclear matter by one more “slice” of shape L × L × a in our finite
volume L3 ×Nt. Breaking this layer into the L2 elementary contributions, we can add static
baryons one by one as sketched in Fig.4.12(a), “attaching” each to three baryonic nearest
neighbors. Measuring the free energy ∆F of this elementary increment on a 83 × 16 lattice for
mq = 0 by the snake algorithm described above we obtained

a∆F = aµB,c = 1.78(1) , (4.68)

a value roughly consistent with earlier Monte-Carlo [9] extrapolations from small lattices
(aµKarsch

B,c = 1.89(6)) and not too far from the mean-field prediction [66], aµmf
B,c = 1.63.

While this agreement seems satisfying and will be supported by findings for the nucleon-nucleon
potential VNN , Sect.4.3.1, the reasoning of the previous section applies: In order to compare
∆F = µB,c with the increase in energy ∆E after the insertion of the additional baryon,
we should study both quantities in the time continuum limit γ → ∞, γ2/Nt = const. In
Fig.4.12(b) we have drawn two profiles of the energy density δǫ for configurations in d = 1+1:
For a baryonic volume in the middle the energy density is constant and oscillates to the left
and right of the interface. As the baryonic volume is increased by adding an additional baryon
to it we go from the left to the right configuration. We see that the distortion (oscillatory
part) has just been translated, the net effect being the replacement of an undistorted site at
large distance from the interface by a site occupied by one baryon. Even though this example
takes place in d = 1 + 1 this effect carries over to d = 3 + 1. We should therefore expect

aµB,c ≈ a∆E =
1

γ

∂γ

∂h(γ)

(
3− 〈2k0̂ + 3|b0̂|〉

)
. (4.69)

4.3 Nuclear Physics at strong coupling

In view of the numerical values for aµB,c = 1.78(1) and amB = 2.88(1) obtained with the
snake algorithm for γ = 1, we are left with the puzzle why µB,c 6= mB? As pointed out
in the context of mean-field theory [13] and below Eq.(4.63), the mismatch must be due to a
strong attractive interaction between baryons. We now study this interaction by measuring the
nuclear potential, i.e. the change of energy caused by the introduction of two static nucleons
at zero temperature.

4.3.1 The nucleon-nucleon potential VNN at strong coupling

We can use the snake algorithm to determine the potential VNN (R) in a manner similar to
Sects.4.2.2 and 4.2.4 by measuring the cost in free energy of adding a baryonic world line at
distance R from a baryon at the origin as sketched in Fig.4.13(a). In Fig.4.13(b) we plot VNN



60 Nuclear physics from Lattice QCD at strong coupling

R

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

R / a

aV
N

N
(R

)

 

 
aV

NN
, am = 0.1

aV
NN

, am = 0

(b)

Figure 4.13: (a) Extending a static baryonic world line at distance R from another static
baryon at the origin. As with the mass amB and the chemical potential µB,c, the free energy
∆F necessary for the extension (red) can be measured with the snake algorithm. (b) The nuclear
potential VNN (R) obtained on an 83 × 16 lattice for amq = 0, 0.1 and γ = 1. Apart from the
hardcore repulsion the potential shows a strong nearest-neighbor attraction of VNN (a) ≈ −120
MeV.

obtained on a 83×16 lattice for amq = 0, 0.1 (γ = 1). We comment on the important features:

• In our model baryons form non-intersecting loops which followed from the Grassmann
property of the field χ and the fact that we have only one pair of staggered variables
χa, χ̄a per color a and site x. This results trivially in a hard-core repulsion present in VNN .

• VNN exhibits a strong nearest-neighbor attraction at distance R/a = 1. If we set the scale
using the proton mass, mB = 938 MeV, then VNN (a) ≈ −120 MeV. Using instead the
mass of the Delta baryon, m∆ = 1232 MeV [69], yields VNN (a) ≈ −160 MeV. This large
attraction can again be qualitatively understood by considering a system of two baryons
and the surrounding mesonic sites drawn in Fig.4.14(a). In the middle, Fig.4.14(b),
we have plotted, for amq = 0, 0.1, the change in energy density a4δǫ due to a single
baryon at the origin. On a hypercubic lattice in d = 3 + 1 a single, static baryon will
be surrounded by 6 mesonic, nearest-neighbor sites, each with increased energy density
δǫ(R = a). Placing two baryons next to each other, this number is reduced from 12 to 10.
Contrary to that, at distance R/a =

√
2, the two baryons lead to an increase larger than

δǫ(R = a) at the white sites in Fig.4.14(c), thus resulting in a net repulsion. Like the
baryon mass amB in our model, VNN has its origin in a steric effect and it is therefore
clear that its shape depends on the particular choice of lattice discretization.
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Figure 4.14: (a) The upper part of the figure shows generically the steric effect: Two single
baryons (orange cubes), each surrounded by 6 mesonic sites (grey metallic), can “bind” (lower
part) to reduce the number of mesonic sites with increased energy density δǫ. (b) The change
in energy density a4δǫ = 〈2k0̂(R)+3|b0̂|(R)〉B=1−〈2k0̂+3|b0̂|〉vac as function of distance from a
baryon at the origin. Also shown is the change δψ̄ψ = 〈ψ̄ψ(R)〉B=1−〈ψ̄ψ〉vac in the condensate
density for amq = 0.1. (c) The steric effect leading to a net repulsion of baryons at distance
R/a =

√
2. The white cubes (sites) represent mesonic sites with increased energy density

> 〈2k0̂ + 3|b0̂|〉vac + a4δǫ(a).

• The quantitative change of VNN and δǫ with the introduction of a non-zero quark mass
mq supports this simple argument: For amq > 0, the staggered UA(1)-symmetry Eq.(4.3)
is broken explicitly, allowing for a non-zero density of monomers nM with 1

2amq
〈nM 〉 =

〈ψ̄ψ〉, at low temperature T and baryon chemical potential µB. The formation of a chiral
condensate density through a monomer at site y, lowers the energy density at this site
from the amq = 0 - value ǫvac,amq=0 ∼ 3/4 to e.g. ǫvac,amq=0.1 ∼ 0.7 at amq = 0.1, up
to the same proportionality constant. Placing a static baryon loop at the origin will still
distort the energy density of the surrounding mesonic sites. Besides this effect already
encountered in the chiral limit, also the condensate density ψ̄ψ(x) will be distorted. The
change δψ̄ψ(R) = 〈ψ̄ψ(R)〉B=1−〈ψ̄ψ〉vac takes a similar oscillating shape as δǫ(R), which
itself is smaller in magnitude than at amq = 0 (see Fig.4.14(b)) due to the additional
contribution in form of δψ̄ψ. As a consequence, for amq > 0 the nearest-neighbor
attraction present in VNN (Fig.4.13(b)) decreases when compared to the amq = 0 -
value.

• We reconsider the geometry displayed in Fig.4.12(a), leading to an estimate of µB,c for
amq = 0: Each baryon added to the dense phase binds to 3 nearest-neighbors. This
reduces the cost in free energy to

a∆Fbulk ≈ amB + 3aVNN (a) ≈ 1.7, (4.70)

which is roughly consistent with µB,c, indicating that additional interactions are small.
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(a) (b) (c)

Figure 4.15: (a) Generic sketch of a single slice of nuclear matter in the dilute phase. Each
baryon binds to 2 baryonic nearest neighbors instead of 3 in the bulk, Fig.4.12(a), leading to a
surface tension of σ = |VNN (a)|/2a2. (b) Example of a nucleus in our 1-flavor strong coupling
model. Each baryon is nearest neighbor to at least one other baryon, here for the case of a
nucleus with mass number A = 4. (c) Sketch of a deuteron.

• From a similar geometry, now consisting of a single layer of baryons (see Fig.4.15(a)) we
can estimate the surface tension of nuclear matter in our model as follows: When building
a first slice of nuclear matter in the dilute phase, each baryon added, binds to 2 baryonic
nearest-neighbors, resulting in an increase in free energy ∆Fsurf ≈ amB + 2VNN (a).
Thus, when increasing the area of the interface in Fig.4.15(a) by 2a2 we have to invest a
surplus of |VNN (a)| compared to ∆Fbulk (Eq.(4.70)) where we added a baryon to a bulk
of nuclear matter. This corresponds to a surface tension

σ ≈ |VNN (a)|/2a2 ≈ 150− 400 MeV/fm2 . (4.71)

This large surface tension will determine the stability of the nuclei of our model, to be
studied in the next section.

4.3.2 Nuclear matter at strong coupling

Our measurement of the nuclear potential VNN , in particular the determination of the nearest-
neighbor attraction VNN (a), paves the way for another fruitful application of the snake algo-
rithm: We can determine the masses of particular geometries consisting of several, say A static
baryons, each nearest neighbor to another, see Fig.4.15(b) as an example. These “bound” ob-
jects of A baryons represent the nuclei of our model. For the important case of the “deuteron”
(A = 2) in Fig.4.15(c), we see that

m(A = 2) = 2mB + VNN (a) . (4.72)

Adding baryons one by one we can determine the masses of nuclei of mass number A by
successively measuring the change in free energy ∆Fi, i = 1, . . . , A, yielding m(A) =

∑

i∆Fi.
As usual the single change in free energy, ∆Fj , is determined by extending step by step the
world line of the baryon to be added to the nucleus. Starting with A = 3, there will exist several
nuclei of equal mass number A but different geometry, see Fig.4.16(b). These “isomers” will
have different masses m(α)(A = 3) owing to the particular form of the nuclear potential and
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Figure 4.16: (a) The average mass per nucleon, m(A)/A, for A = 1, ..., 12 obtained on a 83×16
lattice at amq = 0. For A = 3, 4 all geometric isomers have been considered, showing increased
stability for the square geometry of A = 4. The solid line shows the parameter-free Bethe-
Weizsäcker Eq.(4.73) with the surface tension σ = |VNN (a)|/2a2. (b) Corresponding nuclear
geometries in order of increasing mass m(A).

ultimately the large interface tension σ.
In Fig.4.16(a) we have plotted m(A)/A for mass numbers A = 1, . . . , 12, studying exhaustively
the masses of shape isomers for A = 3 and 4 only. The corresponding geometries are given on
the right. We now discuss the qualitative features:

4.3.2.1 Semiempirical mass-formula

As shown in Fig.4.16(a) the massesm(A) are approximately described by the Bethe-Weizsäcker
phenomenological formula

m(A)/A = µB,c + (36π)
1
3σa2A− 1

3 , (4.73)

given by the solid line. This can be understood as follows: In the liquid-drop model (see
e.g. [70]) - where the nucleus is the analogue to the liquid droplet and the nucleons play the
role of the molecules within the droplet - the mass m(A) of a nucleon of mass number A can
be decomposed into several terms,

m(A) =
∑

i

fi(A), (4.74)

where f0(A) = mBA. The leading contributions are
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Figure 4.17: (a) Binding energy per nucleon EB/A = mB −m(A)/A as a function of A. For
nuclear matter (A → ∞) we obtain EB/A ≈ 250 MeV, compared to the real-world value of
16 MeV neglecting the Coulomb interaction and taking N = Z. (b) The masses m(A)/A and
their predictions mV (A)/A (black circles) based on Eq.(4.77), including the nucleus of cubic
shape with A = 27 (“Aluminium”).

• The volume term f1: In the real world, the nuclear interaction - approximately repre-
sented by the two-body interaction VNN of our model - is short-range. As a consequence
a nucleon within the nucleus will only “feel” the effect of the nucleons immediately
surrounding it. We have already exploited this fact to explain, in the approximation
of a nearest-neighbor interaction, the value of µB,c in Eq.(4.70). The volume- or bulk-
contribution tom(A) now encodes the assumption that each of the A baryons contributes
mB +∆V , with the baryon mass mB and the interaction with the surrounding baryons
∆V . But this is exactly the reasoning that led to our determination of µB,c as sketched
in Fig.(4.12(a)). We thus find for our model

f0(A) + f1(A) = (mB +∆V )A =
A→∞

µB,cA . (4.75)

Real nuclei can be approximately treated as homogeneously charged spheres of radius
R, obeying R = r0A

1/3 with r0 ≈ 1 fm [70] showing the volume dependence of the terms
Eq.(4.75). Note that as our model is defined on a hypercubic lattice, the volume V of a
nucleus is given by V = Aa3.

• The surface term f2: The bulk contribution Eq.(4.75) neglects the fact that nuclei at the
surface contribute less binding energy, leading to a positive contribution to m(A). The
effect is quantified by the surface tension of nuclear matter. In a first approximation we
treat the nuclei of our model as spherical, thus equating Aa3 = V = 4

3πR
3. f2(A) will

therefore be given by

f2(A) = σ × surface area = σ4πR2 = (36π)
1
3σa2A

2
3 , (4.76)

where a2σ = |VNN (a)|/2 from the discussion leading to Eq.(4.71). Note that in the
real world f2,real world(A) = a2A

2/3 with a2 ≈ 18 MeV [70]. Setting f2,real world =
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4πσreal worldR
2, where the radius R of the nucleus with mass number A is given by

R = r0A
1/3 and taking the empirical value r0 ≈ 1 fm[70] we find σreal world ≈ 1 MeV/fm2

compared to σ ≈ 200 MeV/fm2 in our model.

Other terms present in the original mass formula Eq.(4.73) have their origin in the Coulomb-
interaction and the asymmetry in the number of protons Z and neutrons N of the nucleus.
Both effects are absent in our one-flavor model.

4.3.2.2 Binding energy

In Fig.4.17(a) we plot the binding energy per nucleon EB(A)/A = mB −m(A)/A. The crude-
ness of our model becomes apparent if we compare the binding energy of the deuteron of our
model (EB ≈ 120 MeV) with the real-world value of EB,2H ≈ 2 MeV. A further important ob-
servable is the binding energy per nucleon in the limit A→ ∞, i.e. the binding energy of nuclear
matter which we compare with the empirical value in the absence of Coulomb interaction and
for N = Z: We find limA→∞EB,model/A ≈ 250 MeV compared to limA→∞EB,real−world/A ≈ 16
MeV[70]. Realistic theories are able to model the nucleon-nucleon interaction via a (repulsive)
ω-meson exchange at short distances and a long-range (attractive) σ-meson exchange[70], lead-
ing to delicate cancellations which render the nucleon-nucleon interaction rather weak. In our
model the strong attraction was heuristically explained by a steric effect in Sect.4.3.1, giving
no direct evidence for a meson-exchange interaction. Yet, in Sect.4.3.3 this picture will receive
corrections when we investigate the distortion of the energy density, δǫ(R) (“the pion cloud”),
in more detail.

4.3.2.3 Stability of particular geometries

The masses m(A)/A displayed in Fig.4.16(a) show increased stability at values A = 4, 8, 12.
The larger binding energy EB (see Fig.4.17(a)) for the square (A = 4), cubic (A = 8) and
parallelepipedic (A = 12) shape has its origin in the large interface tension, favoring spherical
or cubic geometries. With the potential VNN , Fig.4.13(b) at hand we can try to describe the
mass m(A) by decomposing the free energy ∆Fj necessary to add the jth baryon to the nucleus
with mass number A, j = 1, . . . , A according to

∆Fj,V ≈ mB + cnn,jVNN (a) + cnnn,jVNN (
√
2a) , (4.77)

where cnn,j and cnnn,j are the number of nearest and next-to-nearest baryonic neighbors,
respectively, and neglecting small large-distance interactions. In Fig.4.17(b) we have plotted
the nuclear masses mV (A)/A =

∑

j ∆Fj,V /A thus obtained, extending this approximation to
the cubic geometry with A = 27.

4.3.3 The size of a nucleon

In Sect.4.3.1 we have given a heuristic argument for the origin of the nuclear potential VNN : A
steric effect leading to the distortion of the energy density ǫ around a static baryon away from
its vacuum value. Thus, while the baryons B(x) in our model are point-like, the disturbance
of the surrounding mesonic sites caused by a static, baryonic world-line has a macroscopic size
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Figure 4.18: (a) (−1)
∑3

i=1 xi+1δǫ, obtained for amq = 0, 0.1 on a 164 - lattice, as a function
of spatial distance R from the baryon at the origin. (b) The same data, now including the fit
described above Eq.(4.80). For the upper plot (amq = 0) we obtain m = 2.05(4), for the lower
(amq = 0.1) m = 2.09(1).

which we now want to study.
We have measured the distortion of the energy density δǫ to high precision for amq = 0, 0.1 on a

164 lattice, putting a static baryon at the origin. In Fig.4.18(a) we show (−1)
∑3

i=1 xi+1δǫ(R) on
a semi-logarithmic scale. Clearly the profile of this “meson cloud” is governed - up to effects
stemming from the lattice discretization - by an exponential decay, δǫ ∼ exp (−R/r0(mq)),
where r0(mq) shows a weak quark mass dependence.
To demonstrate that the observable a4δǫ(R) = 〈2k0̂(R)+3|b0̂(R)|〉−3/4, which is the difference
in link occupation of an ensemble with a baryon at distance R and the vacuum, corresponds
to measuring link-link correlation in the presence of a source, we give a simple example in
quantum mechanics in euclidean time τ : If we denote by Ô, |0〉,|φs〉, an observable, the ground
state and some prepared state (containing the source in our case), respectively, then

〈0| Ô(τ) |φs〉
〈0|φs〉

=
∑

n

〈0| Ô(τ) |n〉 〈n|φs〉
〈0|φs〉

=
∑

n

〈0| eHτ Ôe−Hτ |n〉 〈n|φs〉
〈0|φs〉

=
∑

n

〈0| eE0τ Ôe−Enτ |n〉 〈n|φs〉
〈0|φs〉

≈ 〈0|Ô|0〉+ 〈0|Ô|1〉 〈1|φs〉
〈0|φs〉

e−(E1−E0)τ (4.78)

for sufficiently large τ , where we labelled the basis of energy eigenstates |n〉 in order of increasing
eigenvalue. The last statement holds, provided the overlap 〈1|φs〉 6= 0. In the case of our model
in d = 3 + 1, the static baryon acts as a source which, due to its translation invariance in 0̂-
direction, will have have overlap with states of lattice momentum p0 = 0. We note that in
the continuum the propagator of a free boson with momentum p0 = 0 gives rise to a profile of
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Yukawa form

∫
d3k

(2π)3
ei
~k~r

k2 +m2
=

e−mr

4πr
(4.79)

in position space. Our data support the e−mr

r behavior up to effects of the lattice discretization
— after all our lattice is coarse and the rotational symmetry is broken. To establish the lattice
equivalent of Eq.(4.79), we should use the discrete boson propagator in position space to
describe our data. Writing G(i− j)lat = c · (D−1)ij , where

Dij =
1

2
(−∆ij + (am)2δij), ∆ij =

∑

µ

δi−µ,j − 2δij + δi+µ,j (4.80)

we fit (−1)x+y+zδǫ(~R) to the functional form G(~R = j − i)lat leaving c and m (and possibly
an additive constant) as fitting parameters. In Fig.4.18(b) we display the corresponding fit
for amq = 0 (upper part) and amq = 0.1 (lower part): The data are extremely well described
even at short distance where higher excited states might contribute in Eq.(4.78) and the fit
yields masses am = 2.05(4) and am = 2.09(1), respectively. To relate these masses to the
meson masses obtained in Sect.4.1.3 and [55], we have to recall that there the spectrum was
extracted from the decay of the zero spatial momentum transform of the correlation function,
C(t). Taking as an example the free boson propagator in momentum space, G(p)lat, at zero
spatial momentum ~p = 0, then (see Sect.8.3.1)

C(t) =

∫ π/a

−π/a

dp0
2π

eip0t

4 sin2 (ap02 ) + a2m2
=

e−Mt

2 sinh aM
, (4.81)

where M and m are related by aM = acosh(1 + a2m2/2). Plugging in the masses am =
2.05, 2.09 of the above fit for quark masses amq = 0, 0.1, respectively, we obtain aM = 1.80(3)
and aM = 1.83(1) which corresponds to the ρ-mass [55], see also Tab.4.2. The size of the pion-
cloud of the static nucleon, understood as the distortion of the surrounding mesonic “bath”,
thus has a profile of Yukawa form with mass mρ, i.e.

|δǫ(R)| ∼ e−mρR

R
. (4.82)

To motivate the appearance of mρ rather than the mass of the pion, we recall that the baryonic
world line can be viewed as a sequence of triple monomers at sites (t, ~x = 0), t = 0 . . . , Nt − 1.
This source is static in time and excites states with momentum p0 = 0. The particle masses can
be obtained from the poles of the propagator G(p) in the 16 Brillouin subzones. In particular
in mean-field theory to leading order in the 1/d-expansion and in the chiral limit [53],

G−1(p) ∼ 1

d

d−1∑

i=0

cos api + 1 (4.83)

with ap = aP +Pδ, −π/2a ≤ Pi ≤ π/2a, −π/2a ≤ pi ≤ 3π/2a. The vector δ with components
δi = 0, 1 labels the d2 = 16 Brillouin subzones in which P varies. Choosing P T = (iM, 0, 0, 0),
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Figure 4.19: (a) The energy profile |δǫ| of two baryons at distance R. The two pion-clouds
overlap causing no disturbance to leading approximation, except at the location of the two
baryons. (b) VNN (R) and −2δǫ(R) at amq = 0.1, showing good agreement at distances R > 1,
confirming the relation Eq.(4.86).

the equation

cosh (aM) cos (πδ0) = −
(
d−1∑

i=1

cos (πδi) + d

)

(4.84)

has mean-field solutions for apT = π(1, 1, 1, 1) (aM (0) = 0), apT = π(1, 0, 1, 1) (aM (1) = 1.76),
apT = π(1, 0, 0, 1) (aM (2) = 2.29) and apT = π(1, 0, 0, 0) (aM (3) = 2.63) + permutation in
the last three entries. The M (0) corresponds to the pion, the Goldstone boson of the chiral
symmetry Eq.(4.3) and has nonzero momentum in all components. M (1),M (2) and M (3) are
traditionally assigned to be the masses of the vector (ρ), pseudo-vector (a1) and scalar particle
(a0/f0), respectively.

6 Regarding the Yukawa form of |δǫ(R)|, the pion is thus ruled out as it
requires momentum π/a in all components and cannot be excited by our source. The ρ has
momentum pi = 0 in one component. If we would have chosen a spatial direction in Eq.(4.84),
this momentum component could be chosen to be p0, as in our case. The vector meson is the
second lightest particle in the spectrum and should thus govern the long-distance behavior of
the meson cloud.

We can also relate the potential VNN (R) to δǫ(R) by considering a baryon sitting at the origin
and its surrounding pion cloud. Adding a second baryon at site x with distance R from the
origin, at long distance the two distortions δǫ of either baryon will just be superimposed up
to second order effects O(δǫ2) in the perturbation δǫ. However, at the site x and the origin,
each baryon annihilates the effect of the pion cloud of the other, as schematically depicted in

6A more systematic classification of staggered mesons [59,60] at strong coupling shows that the latter two are
actually taste partners of the ρ and π, respectively, see the comment below Eq.(4.53).
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Fig.4.19(a). That is, the cost to add the baryon at site x, should then be

a∆E = c



3− (3/4 + a4δǫ(R)) +
∑

x′ 6=x,0
a4δǫ(x′ − x)



 = amB − 2ca4δǫ(R). (4.85)

where the constant factor c has its origin in the definition of energy, Eq.(4.17). From the
definition of VNN (R), ∆E = mB + VNN (R), we conclude that

VNN (R) −→
R≫1

−2cδǫ(R) ∼ (−1)x+y+z
e−mρR

R
. (4.86)

Fig.4.19(b) confirms this expectation where we show VNN (R) and −2δǫ(R) for amq = 0.1. In
nuclear physics, a potential of the form Eq.(4.86) is obtained from meson exchange [70]. In
our one-flavor model, we have no meson exchange: The Pauli principle forbids the baryonic
and mesonic world lines to intersect. We thus conclude this section with the original result
that a Yukawa potential, Eq.(4.86), can be obtained from simple excluded-volume (steric)
considerations, without the need for actual meson exchange.

4.4 Summary and Conclusions

In this chapter we have introduced the strong coupling formulation of Lattice QCD, carrying
on the pioneering work of refs. [9, 41]. Using as an algorithmic approach the worm formula-
tion [25] of our model [43], we compare our implementation with conventional Monte-Carlo
techniques [55] finding exact agreement where this comparison is possible. We also find good
agreement with existing results of mean-field theory [10,53].
A further algorithmic technique, the snake algorithm, allows us to verify an important mis-
match, so far only clearly exhibited within a mean-field treatment: The zero-temperature
phase transition at finite baryon chemical potential, separating the hadronic from the chirally
restored phase of dense nuclear matter, occurs at a chemical potential µB,c which is approx-
imately 30% below its naive threshold - the baryon mass mB - indicating a strong nuclear
attraction.
We measure the nuclear potential directly, using the snake algorithm, and find a strong nucle-
onic nearest-neighbor attraction of ≈ 120 MeV, thus explaining why µB,c < mB.
The potential has its origin in a steric effect: A nucleon traveling through the meson vacuum
distorts the vacuum in a way leading to an increase in energy density. Two static nucleons
can minimize this increase by forming a nearest-neighbor pair, while baryons at e.g. distance
R =

√
2a repel each other as it is energetically less favorable.

The steric effect also serves to explain the large interface tension σ ≈ 200 MeV/fm2 of nuclear
matter in our model. This led us to measure the masses of compound objects of A nearest-
neighbor nucleons - the nuclei with mass number A of our model. In particular, we find that
the average mass per nucleon m(A)/A behaves as predicted by the liquid-drop model of nuclear
physics, showing increased stability for nuclear geometries of spherical or cubic shape, owing
to the large interface tension of our model.
To this point we had not considered the physical side of the steric effect: The distortion of the
mesonic vacuum by a static nucleon, the mesonic “cloud”, lends the otherwise pointlike nucleon
a macroscopic extent. Interestingly, we find its profile, δǫ(R), to be of Yukawa form, governed
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by the mass mρ of the ρ - meson in our model. This can be understood when interpreting the
world line of a static nucleon as a t-invariant source exciting states with momentum p0 = 0.
Eventually, we relate δǫ(R) and the potential VNN (R), showing that also the latter is of form
e−mρR/R even though direct meson exchange is absent in our model.
What is the relevance of this study? We have unravelled the strong coupling variant of nuclear
physics in this chapter. And although it remains speculative up to which extent the steric effect
described above also has consequences in real nuclear interactions, it is doubtless important to
know the nuclear physics content of a model so extensively studied in the context of the QCD
phase diagram, starting in the early 80’s [10,12], continuing up to now with statements about
a quarkyonic phase [71].



5 Phase diagram of Lattice QCD at strong
coupling

The sign problem of the strong coupling theory is mild, presumably by virtue of the exact
integration over the gauge fields occurring in the partition function. Further, the efficiency of
the worm algorithm does not degrade as the quark mass mq is taken to zero. We can thus turn
to the physically interesting question of the phase diagram at finite temperature T and quark
chemical potential µ in the chiral limit, comparing our results to mean-field predictions. The
material presented is based on publications with Ph. de Forcrand [72,73].

5.1 Introduction, early work, expectations

5.1.1 Symmetries and expected phases, connection to real QCD

As we saw in the previous chapter, the low temperature transition in our model separates
the phase of broken chiral symmetry, Eq.(4.3), at low µ from the chirally symmetric phase of
dense nuclear matter. In the absence of interactions between the nucleons the naive threshold
µc = mB/Nc (see Sect.4.2.1) can be understood from the example of free, massive, charged
fermions with Gibbs potential G = E − µN with particle number N and total energy E.
At low temperature, states i with one or more fermions carry energy Ei/Ni = mB and the
potential will shift from its minimum N = 0 to N > 0 as soon as µ > µc = mini{Ei/Ni}.
Then fermions will occupy all states in momentum space within the Fermi sphere of radius
pF =

√

µ2 −m2, resulting in a particle density ρ = N/V =
∫

VF
d3p np ∼ p3F = (µ2 −m2)3/2,

where np ≈ 1 ∀ p ≤ pF is the occupation number for the state of momentum ~p. Thus, this
example not only motivates the threshold value µc but also demonstrates that already in the

µ

T

EP

SCM

Figure 5.1: Phase diagram of 2-flavor QCD in and off the chiral limit: The first order nuclear
transition (solid line) terminates in a critical end pointM . The deconfinement, chiral symmetry
restoring transition (dashed lines) changes from first order (low temperature) to second order
at the tricritical point (P ). For mu/d > 0 the second order line turns into a crossover, leaving
a first order line with critical endpoint E. The figure was taken from [7].

71
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free case the density ρ(µ) shows a singularity at µc, its derivative becoming infinite.

In the presence of an attractive interaction, at the zero temperature transition, the system
changes its state from ρB = 0 to the state of minimal energy per nucleon E/N = mB/N −
EB/N , i.e. maximal binding energy EB/N . In the absence of electromagnetic and isospin
contributions as in our model, this is the state with a3ρB = 1 following Eq.(4.73) and the
discussion succeeding it.

It is instructive to compare our model to what is expected to be the phase diagram of QCD
with two massless flavors [8, 74], Fig.5.1. In the absence of electromagnetic interaction, at the
T = 0 transition, the density ρN will jump from 0 to ρN,0 ≈ 0.16/fm3 which is a state contain-
ing a macroscopic volume of nuclear matter of density ρN,0. In complete analogy to our model,
this is expected to happen at µ0 = mN − a1, where mN = 938 MeV and the binding energy of
nuclear matter a1 ≈ 16 MeV[70]. At strong coupling this transition coincides with the restora-
tion of chiral symmetry. In the limit mq → 0+, the chiral condensate 〈ψ̄ψ〉, represented by
the monomers of our model, see Eq.(4.14) drops to zero across the transition: The monomers
are displaced by baryons. However, while QCD exhibits an additional deconfinement, chi-
ral restoration transition at larger chemical potential, in our model quarks are confined into
hadrons in the whole (µ, T )-plane. As shown in Fig.5.1, the QCD-chiral transition line (dashed
line) must separate the two phases for nonzero T and µ in the chiral limit, possibly turning
into a second order transition at a tricritical point (P). We now turn to mean-field predictions
for the (µ, T )-phase diagram of strong coupling QCD in the chiral limit.

5.1.2 Existing mean-field and Monte-Carlo results

5.1.2.1 Mean-field results on isotropic lattices (γ = 1)

In Sect.4.2.1 we had already quoted results of mean-field calculations [12–14,62–66] for the
phase diagram, focusing on the T = 0 transition at µB,c. Extending this summary for the full
(µB , T ) - plane, we show in Fig.5.2(a) the phase diagram obtained to leading order in a 1

d−1 -
expansion (d = 4) in the mean-field approximation [66] which has the following features:

• In the chiral limit, with intact symmetry Eq.(4.3), the chirally broken phase at low T
and µB, is separated from the symmetric phase by a second order phase transition at
µB = 0, whose location is given by

aTc =
(d− 1)(N + 1)(N + 2)

6(N + 3)
(5.1)

for gauge group SU(N), in particular aTc = 5/3 for our model. The effect of baryons in
this approximation can be estimated by looking at the same results, taking gauge group
U(N) with aTc,U(N) =

(d−1)(N+2)
6 [13], yielding aTc,U(3) = 5/2, i.e. baryons decrease the

transition temperature by a factor 2/3.

• The transition line extends into the µB > 0 region and changes into a first order transition
at a tricritical point, (aµB,t, aTt) ≈ (1.73, 0.87), see Fig.5.2. The positive slope of the first
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Figure 5.2: (a) Phase diagram of strong coupling QCD as obtained by mean-field theory in
the 1/(d− 1) expansion. The solid line denotes the first order transition turning second order
(dashed line) in the chiral limit amq = 0 at the tricritical point (TCP). Also shown is the
trajectory (dotted line) of the critical endpoint (CEP) in the massive case, whose movement
with changing amq is obtained from a mean-field ansatz, see Sects.5.3 and 2.3. (b) Enlarged
version of the tricritical region. The positive slope dT/dµ of the first order line close to the
TCP can be motivated using relation Eq.(5.2). The figures are taken from [66], changing the
labels to a compatible form.

order line just below the TCP can be understood using the Clausius-Clapeyron relation

dT

dµ
= −∆ρB

∆s
, (5.2)

where ∆ρ and ∆s are the discontinuities of the baryon density and of the entropy per
volume s, respectively. We know that ∆ρB > 0, as ∂ρ

∂µ diverges to positive infinity.
Further, the author finds ∆s < 0 and motivates the result by assuming the entropy
S to be given only by the mixing entropy Sm = N1 log (N/N1) + N2 log (N/N2) of a
two-component system on a lattice with N sites. Taking N = N1 + N2 where N1

denotes the number of baryonic sites and N2 the number of empty sites, for our model,
this results in s = −ρB log ρB − (1 − ρB) log (1− ρB). In the mean-field approximation
one finds 1 > ρB,+ > ρB,− > 1/2 in the vicinity of the TCP which then leads to
∆s = sρB,+

− sρB,−
< 0. With ∆ρB > 0, ∆s < 0, mean-field theory thus finds dT

dµ > 0
and a reentrant phase diagram, Fig.5.2(b).

• For amq > 0 the symmetry Eq.(4.3) is explicitly broken. The phase of dilute hadrons
can thus be analytically connected to the dense phase. As a consequence, the µ = 0,
finite temperature transition present in the chiral limit turns into a crossover for nonzero
quark mass and the T = 0 transition is found to terminate in a critical endpoint (CEP).
For larger quark masses, µB,c is shifted to larger values of µ which explains the right-shift
of the CEP with increasing amq, starting at the TCP for amq = 0. Remarkably, a quark
mass as small as amq = 0.001 lowers the value of TE by 5%. As we will see in Sect.5.3,



74 Phase diagram of Lattice QCD at strong coupling

the analytical form of the critical line (µE(mq), TE(mq)) in the vicinity of the chiral TCP
can be obtained from a mean-field ansatz.

5.1.2.2 Mean-field results for an anisotropy γ 6= 1

We turn to mean-field calculations that make use of the staggered action Eq.(4.2) in the chiral
limit with anisotropy γ 6= 1,

SF =
∑

x




∑

µ=1,d

ηµ̂(x)
(

χ̄xUµ̂(x)χx+µ̂ − χ̄x+µ̂U
†
µ̂(x)χx

)

+ γ
(

eatµχ̄xU0̂(x)χx+0̂ − e−atµχ̄x+0̂U
†
0̂
(x)χx

)



 ,

This is of particular importance for the Monte-Carlo approach which is limited to integer Nt

and varies the temperature continuously via T = 1/Ntat = f(γ)/Nta. where f(γ) = a/at. As
pointed out in Sect.4.1.1, at infinite gauge coupling the weak coupling result a/at = γ [49] must
not necessarily hold. We note that the partition function Z of our model, given in Eq.(4.12),
is a function of γ2, Z = Z(γ2). Using the 1

d -expansion in the mean-field approximation for
γ 6= 1, refs. [13, 68] determine the critical anisotropy of the finite T , µ = 0 transition to be

γ2c = Nt
(d− 1)(N + 1)(N + 2)

6(N + 3)
(5.3)

for fixed Nt and gauge group SU(N). A sensible, i.e. Nt-independent, definition of the critical

temperature is thus given by aTc =
γ2c
Nt

. This implies f(γ) = γ2 for µ = 0, up to corrections
of higher order in 1/d. Taking Nt → ∞ (zero temperature limit), the transition at finite µ is
found [14] to occur at

atµc = arcsinh(
σ0
γ
)− σ20

d− 1
=

3

4

1

γ2
+O(

1

γ6
) (5.4)

with σ0 = 1/
√
2
(√

γ4 + (d− 1)2 − γ2
)1/2

. Including 1/d corrections, the next to leading

order in γ becomes O(1/γ4). This implies γ2atµc = γ2aµc/f(γ) ≈ 3/4 = const for γ ≫ 1 and
thus f(γ) ≈ γ2 in agreement with the finite temperature result.
Finally, we remark that the particular value aµc = 3/4 can also be obtained from the simple
considerations at γ = 1 leading to Eq.(4.69)

3aµc = aµB,c ≈ a∆E =
(
3− 〈2k0̂ + 3|b0̂|〉

)
≈ 3− 3/4, (5.5)

however the last equation assumed the weak coupling relation f(γ) = γ in the definition of
energy, Eq.(4.17).
To summarize, mean-field theory finds to lowest order in 1/ds (d = ds + 1) at µ = 0 that
f(γ) = γ2, with f(γ) = a/at, represents the correct anisotropy relation whereas at T = 0, µ > 0
this relation is a good approximation for γ ≫ 1 to leading and next-to-leading order in 1/d.
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Figure 5.3: (a) Comparison of the baryon density ρB as a function of µ obtained by Karsch
& Mütter [9] (black, dashed line) and Azcoiti et al. [42] (blue triangles) on a 44 lattice at
amq = 0.1. Thermalizing at low density leads to a phase transition to dense nuclear matter
at aµ ≈ 0.69, compared to aµ ≈ 0.58 for thermalization at high density. The red curve
results from reweighting, Eq.(5.9), where h||(E), shown in (b) for aµ = 0.64, 0.65, was obtained
with the Wang-Landau algorithm [75]. Note that with Eq.(5.8) we extract a surface tension
σL=4 ≈ 200 MeV/fm2, indicating a strong first order transition.

5.1.2.3 Previous Monte-Carlo results for T ≈ 0 and their improvement

On the side of Monte-Carlo methods, the early, pioneering work of Karsch and Mütter [9]
focused on the T ≈ 0 transition. Equipped with the local MDP-update algorithm, described in
Sect.4.1.2, the authors found for non-zero quark mass amq = 0.1 a strong first order transition
at aµ = 0.69(2) indicated by the jump in the baryon density ρB as motivated in Sect.5.1.1.
These elementary results were however questioned as Azcoiti et al.[42] found that the algorithm
suffered from ergodicity problems even for lattices as small as V = 44. This can be understood
considering the MDP-update presented in Sect.4.1.2.1: An algorithm which relies solely on
monomer-dimer replacements has average acceptance ∼ min (amq, 1/amq). In Fig.5.3(a) we
display their results (blue triangles) for ρB at amq = 0.1. The two sets of data were obtained by
simulations thermalized starting with an initial configuration containing a low (high) density
of baryons, respectively. Also shown is ρB as obtained in [9] (black dashed line), presumably
starting from low density and therefore indicating a transition at the upper limit, aµ ≈ 0.69,
of the metastability region in µ.
More accurate results on µc for small systems can be obtained with the help of the now standard
Wang-Landau algorithm [75]. If we take as an example a classical spin model with partition
function

Z =
∑

ν

exp (−Eν/T ) =
∑

E

ρ(E) exp (−E/T ) =
∑

E

exp (−F (E)/T ) , (5.6)

and density of states ρ(E), then the Monte-Carlo result for the energy histogram hMC(E)
should fulfill hMC(E) ∼ exp (−F (E)/T ) for an ergodic algorithm. To ensure ergodicity we
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can employ entropic sampling: Instead of the weight exp (−E/T ) above, we choose a Monte
Carlo probability ∼ exp (−E/T ) exp (F (E)/T ) = exp (−S) = 1/ρ(E) which trivially yields a
flat, i.e. uniform histogram hMC(E). To obtain exp (F (E)/T ) ∼ 1/h(E), a priori unknown in
detail, Wang and Landau[75] proposed an iterative scheme: Start with a uniform h(E) = 1 and
update h(E) after each Monte Carlo step connecting states with energy E and E′ according
to h(E′) → h(E′) + ∆h. Noting that we use a sampling probability ∼ exp−(E/T )/h(E), this
choice forces the algorithm to continuously explore unvisited states in the energy landscape.
The modification factor ∆h will be dynamically adjusted (decreased) during the simulation to
ensure convergence.
Adaptation of this method to strong coupling QCD is straightforward: Ignoring the sign, our
partition function reads

Z|| =
∑

{k}
|wk| =

∑

{k}
|wk|

h||(O(k))

h||(O(k))
(5.7)

where h||(O) =
∑

{k′} |w(k′)|δ(O(k′) − O) and O is a convenient observable such as the en-
ergy E or baryon number B. We take advantage of the algorithms of Sect.4.1.2, using now
|w(k)|/h||(O(k)) as Monte Carlo weight for the worm as well as for the local update algorithm
and modify h||(O(k)) after each worm move. In Fig.5.3(b) we show the resulting histogram
h||(O) for O = ǫ1, obtained on a 44 lattice at amq = 0.1 and aµ = 0.64, 0.65. We comment on
the important features:

• Both histograms are normalized s.t. maxǫh||(ǫ) = 1. From aµ = 0.64, where the peaks
in the dilute and dense phase are approximately of equal magnitude, we can extract an
estimator for the surface tension of nuclear matter according to

a2σL/T = − log (hmin/hmax)/2L
2 ≈ 1 , (5.8)

which is based on the derivation leading to Eq.3.11 of Sect.3.3.1.2. With aT = 1/4 we
can extract σL=4 ≈ 200 MeV/fm2, in rough agreement with the result in Sect.4.3.1 for
amq = 0 and aT = 1/16.

• Having obtained h||(E) to sufficient accuracy should permit us to simulate at the given
parameter set amq = 0.1, aµ = 0.64 with fixed measure |wk(µ,mq)|/h||(E(k)) to obtain
a uniformly distributed hMC(E). Expectation values for observables O such as ρB , ψ̄ψ
can then be extracted for a range of parameters by reweighting

〈O〉µ′ =
∑

j Ojsign(j)h||(Ej)wj(µ
′)/wj(µ)

∑

k sign(k)h||(Ek)wk(µ
′)/wk(µ)

. (5.9)

We compare our results for O = ρB given by the red curve in Fig.5.3(a) to those ob-
tained in [9, 42] (blue triangles), finding aµc = 0.635 which seems plausible in view of the
metastability region 0.58 < aµ < 0.69.

1Strictly speaking, we use O = 2NDt + 3NBt, where NDt, NBt are the total number of dimer-links and
(anti)-baryonic links in 0̂-dir, respectively.



Phase diagram of Lattice QCD at strong coupling 77

5.1.2.4 Previous Monte-Carlo results for µ = 0

Using an improved version of the simple local update algorithm, Karsch et al. [76] investigated
the nature of the finite temperature transition. Due to algorithmic limitations this had to
happen at non-zero quark mass amq > 0 and results were extracted by extrapolation to the
chiral limit. Still, the authors were able to identify a second order phase transition in the O(2)-
universality class, in accordance with Sect.5.1.1. Fixing the temporal extent of their lattice to
Nt = 4 and varying the anisotropy γ, the location of the transition is given by

2.35 < γc < 2.4 . (5.10)

In the following we will verify this result explicitly in the chiral limit.

5.2 Results in the chiral limit, amq = 0

In order to vary the temperature continuously we introduce an anisotropy γ between the spatial
and temporal lattice spacing. Sect.5.1.2 suggests to use

f(γ) = γ2 = a/at . (5.11)

We remark again that these results where obtained in an expansion in 1/(ds) (ds = 3), using
a mean-field approximation. This should be verified using exact, non-perturbative methods
(i.e. Monte-Carlo). Here, we take Eq.(5.11) as working assumption for the whole (µ, T )-plane,
using lattices with Nt = 4 sites in the 0̂-direction. In particular, this implies that

aT = γ2/Nt and atµ = aµ/γ2 . (5.12)

For the finite temperature transition at µ = 0, we extend the study to Nt = 2, 6.

Class γ α ν

d = 3, O(2) [77] 1.3177(5) −0.0146(8) 0.67155(27)

d = 3, Z2 [78] 1.237(4) 0.108(5) 0.631(2)

d ≥ 3 tricritical (mean-field) [79] 1 0 1
2

Table 5.1: Critical exponents of the d = 3, O(2), Z2 universality classes as well as tricritical
exponents given by mean-field theory (with upper tricritical dimension d = 3). Note that the
combination γ/ν of the upper two is hard to distinguish in practice.

5.2.1 Observables

In a finite volume, the symmetry Eq.(4.3), present for amq = 0, cannot break spontaneously.
As a consequence, the order parameter 〈ψ̄ψ〉 = 0 ∀ µ, T . Fortunately, the chiral susceptibility,

χσ = 1
V

∂2

∂m2 logZ = 〈∑x ψ̄ψxψ̄ψ0〉 is accessible by an improved estimator, Eq.(4.32), which we
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measure during the worm update.
The divergence of susceptibilities at a phase transition in infinite volume will turn into a
rounded peak in a finite system with linear extent L. In particular

χσ,L = Lγ/ν χ̂(tL1/ν) = Lγ/ν(a0 +O(tL1/ν)) , (5.13)

where t = 1 − T/Tc or t = 1 − µ/µc is a reduced parameter for transitions in T and µ,
respectively. In our case χσ,L will be a monotonic function owing to the vanishing order
parameter. Our model has the U(1) symmetry Eq.(4.3). At a continuous phase transition the
correlation length ξ diverges, rendering the system with compactified 0̂-direction effectively
three dimensional. The model should thus be in the d = 3, O(2) universality class where we
give the for us relevant exponents in Tab.5.1. In principle, the relation Eq.(5.13) allows us to
verify these exponents by means of a fit in Tc(µc), γ, ν varying T (µ) or L. In practice, O(2)-and
Z2-critical exponents are numerically close for d = 3 and a clear distinction remains difficult
even for lattices as large as L = 128 [80]. We therefore take the O(2)-universality of our model
as an established fact and concentrate on the determination of the critical parameter Tc(µc).
In view of the mean-field results on the phase diagram (Fig.5.2), we should expect the relation
Eq.(5.13) to hold in the vicinity of the tricritical point (TCP) with tricritical exponents γt, νt.
As shown in Sect.2.3 the upper critical dimension for tricritical behavior is expected to be
d = 3 [23]. Our model describes a lattice field theory in d = 3 + 1 dimensions at finite
temperature, the exponents γt, νt should thus be the mean-field tricritical exponents listed in
Tab.5.1.
Accepting the above statements as our working hypothesis, the relation (5.13) will be helpful
as it implies that

• at the critical parameter Tc(µc) of a continuous phase transition, i.e. at t = 0, the rescaled
susceptibility χσ,L/L

γ/ν = a0 ∀ L, leading to a crossing when plotted as a function of T ,
see Fig.5.4(a) and the next Section.

• having an estimate for Tc(µc), χσ,L/L
γ/ν should collapse to a universal scaling function

χ̂(tL1/ν) when plotted as a function of tL1/ν .

Both statements hold, provided the appropriate critical exponents are used.
For a first order transition, the susceptibility of the order parameter diverges with exponents[81]
γ = α = 1, ν = 1/d. In our case, χσ will not be peaked but rather behave monotonically
decreasing for increasing T or µ beyond the transition value. We cannot expect a behavior as
indicated in Eq.(5.13) as there is no universality argument at a first order transition. Chiral
perturbation theory [82] however predicts

χσ,L =
1

2
Σ2(T )L3(1 +O(1/L)) , (5.14)

with the infinite volume condensate Σ = limmq→0 limL→∞〈ψ̄ψ〉. In particular, this implies that
χσ,L/L

3 should be roughly volume independent for T < Tc. Due to the sign problem we are
restricted to rather small lattices L ≤ 16. Still, we make use of formula (5.14) in the following
context.
First order phase transitions exhibit phase coexistence: At the transition point (say at Tc) the
system contains connected domains of broken and unbroken symmetry. Borgs and Kotecky[83]
found that the partition function of a system with volume Ld that contains q + 1 coexisting
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Figure 5.4: (a) The susceptibility χσ,L/L
γ/ν obtained at mq = µ = 0 for systems of size

L3 ×Nt with Nt = 4. Using d = 3, O(2) critical exponents, see Tab.5.1, the crossing indicates
aTc = 1.402(1) (see Eq.(5.13)). (b) Collapsing χσ,L/L

γ/ν with t = T/Tc(Nt) − 1 for Nt = 4.
Using Nt = 2, 6-lattices we obtain aTc = 1.319(2), 1.417(2), respectively. The inset shows a
linear extrapolation to Nt → ∞ according to aT (Nt) = c/Nt + aTc,extra (red, solid line) which
yields aTc,extra = 1.48(1), while extrapolating according aT (Nt) = c/N2

t +aTc,extra (blue curve)
gives Tc,extra = 1.430(2). Both extrapolations are plotted against 1/N2

t .

phases (q ordered and one disordered) can be approximated by

Z ∼ exp (−f (d)(T )Ld/T ) + q exp (−f (o)(T )Ld/T ) , (5.15)

with smooth functions f (o)/(d)(T ), obeying f (o)(T ) = f(T ) and f (d)(T ) = f(T ) for T ≤ Tc, T ≥
Tc, respectively, f(T ) being the free energy density of the system. In the vicinity of the tran-
sition the “metastable free energies” of the ordered and disordered phase f (o)/(d) are given by
f (o)/(d) ≈ f0+f

(o)/(d),′(T−Tc) such that Z ∼ exp (−Ldf (d)(T )/T )
(
1 + q exp (−Ld∆f ′(T − Tc)/T )

)

with ∆f ′ = f (o),′ − f (d),′. The (integer) parameter q is the relative weight of the ordered and
disordered phases at the coexistence and has to be replaced by c ∈ R in our case of a continuous
broken symmetry. For observables such as χσ, Eq.(5.15) leads to

χσ,L/L
3 =

a/L3 + b exp (−L3∆f ′(T − Tc)/T )

1 + c exp (−L3∆f ′(T − Tc)/T )
, (5.16)

where we assumed χσ,L ∼ L3 in the ordered phase up to corrections in 1/L and in the ap-
proximation of weak temperature dependence, whereas χσ,L was taken to be regular in the
disordered (chirally symmetric) phase, i.e. χσ,L = a/(1 + c) at the transition.
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5.2.2 Results

5.2.2.1 µ = 0

Taking T = γ2/Nta we show in Fig.5.4 results for the chiral susceptibility χσ,L obtained on
systems of size L3 ×Nt for Nt = 4. In Fig.5.4(a) χσ,L/L

γ/ν is given as a function of aT , where
γ, ν are the d = 3, O(2) critical exponents. The volumes of linear extent L = 4, . . . , 24 cross at
aT = aTc(Nt = 4) = 1.402(1).
Performing similar runs for Nt = 2, 6 we find aTc = 1.319(2), 1.417(2), respectively. In fact,
values extracted for Tc(Nt) will be subject to finite discretization effects: Given Tc for Nt =
2, 4, 6 we can at least make a qualitative statement by extrapolating to Nt = ∞. The inset in
Fig.5.4(b) shows two extrapolations assuming aTc(Nt) = c/Nt+const and c/N2

t +const2. The
fits suggest that the error due to finite spacing in 0̂-direction is of order 1/N2

t , yielding

aTNt→∞
c = 1.430(2) (5.17)

which can be compared to the mean-field result aTc,mf = 5/3.3 To estimate the effect of
baryons in a finite temperature mean-field treatment we quote the Monte-Carlo result for

U(3) [80] for aT
U(3)
c ≈ 1.87 (Nt = 4), compared to aT

U(3)
c,mf = 5/2. Note, that the relatively

larger difference between Monte-Carlo and mean-field theory is counterintuitive, as the 1/ds
expansion to lowest order in ds should yield results more accurate for a theory without baryons
which, for SU(3), are only suppressed by 1/

√
ds.

In summary, in physical units we obtain Tc ∼ 500 MeV. To develop a feeling for the order of
magnitude we revert to full lattice QCD with Nf = 2 + 1, i.e. two light and one heavy quark
flavor, at the physical masses. There 150 MeV < Tc < 175 MeV [3] and Tc ≈ 190 MeV [4],
respectively, depending on the lattice action, observables and number of time slices.

5.2.2.2 Full phase diagram

Continuing our study to µ > 0, the system exhibits a sign problem as pointed out in Sect.4.1.1,
which however turns out to be mild for a wide range of the parameters aT, aµ, s.t. systems of
size up to 163 × 4 are accessible with primitive computing resources and strategies. We point
to Sect.5.2.3 for a more thorough statement.
For µ > 0 we can thus follow the critical line Tc(µ), monitoring the collapse of χσ,L using
the appropriate critical exponents. We find that the transition along this line remains 2nd
order up to γ2atµ = aµ = 0.6, where in Fig.5.5(a) χσ,L/L

γ/ν is plotted as function of t ·L1/ν ,
using O(2)-critical exponent. With a slight increase to aµ = 0.64 in Fig.5.5(b) a change to
tricritical behavior becomes visible: The rescaled chiral susceptibility collapses nicely on a
single curve when using critical exponents (Fig.5.5(b), upper part) but does more so using
tricritical exponents (lower part). No such collapse is possible when increasing the chemical
potential slightly to aµ = 0.66, as can be seen in Fig.5.6(a). Instead, the system shows 1st

2A full quadratic fit trivially gives an exact description of the data. Doing so we find that the linear term is
consistent with zero within errors, supporting a relation ∼ 1/N2

t + const.
3Note that using the weak coupling relation γ = a/at our measurements would correspond to T

f(γ)=γ
c (Nt) ≈

0.81, 0.59, 0.49 for Nt = 2, 4, 6, respectively. A linear extrapolation in 1/Nt yields here aTc = 0.34(1), whereas
a extrapolation aT = c/N2

t + const only yields a poor description of the data as the missing linear term in
1/Nt is dominant. Taking the weak coupling relation thus implies poor convergence when increasing Nt.
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Figure 5.5: (a) Collapse of χσ,L/L
γ/ν at γ2atµ = aµ = 0.6 using O(2) critical exponents for

various lattice sizes. The inset shows that the transition happens at aTc(aµ = 0.6) ≈ 1.02. (b)
Trying the same for aµ = 0.64 does yield a slightly better collapse for the available volumes
when using mean-field tricritical exponents γt, νt (lower part) instead of d = 3, O(2) (upper
part) critical exponents, which indicates tricritical behavior.
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Figure 5.6: (a) Failing collapse of χσ,L/L
γt/νt at aµ = 0.66 (upper part) using tricriti-

cal exponents. Instead, rescaling to χσ,L/L
3 the data becomes volume independent below

the transition (lower part). The solid lines are fits according to the Borgs-Kotecky ansatz,
Eq.(5.16). (b) Distribution P (ρ) for aµ ≈ 0.66, slightly reweighted in T and µ to equal
peak height in the dilute and in the dense phase. Extracting an interface tension yields
a2σL/T = − log (Pmin)/2L

2 = 10−3. We are thus already in the first order region.

order behavior:

• The probability distribution P (ρ) shown in Fig.5.6(b) exhibits a double peak whose
locations in the dense, chirally symmetric phase remain fixed with increasing L. Moreover
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Figure 5.7: (a) Phase diagram as obtained on a Nt = 4 lattice with one exception: The lowest
temperature point is the outcome of the snake-algorithm on Nt = 16 lattice with γ = 1.
Throughout this section the choice a/at = γ2 has been adopted. Using this convention the
phase diagram shows the reentrance region predicted by mean-field theory, Eq.(5.2), and brings
the Monte Carlo and mean-field estimate on TCP in rough agreement. (b) This agreement
vanishes when changing the x-axis to atµ = aµ/γ as displayed. The reentrance region is gone,
now the shape of the transition line is closer to what is expected in chiral 2-flavor QCD, Fig.5.1
and closer to the mean-field phase diagram of strong coupling Lattice QCD given in [13]. A
careful extrapolation at → 0, Nt → ∞ is needed for a final determination of the phase diagram.

the estimator of the surface tension σ, given by a2σL/T = − log (Pmin/Pmax)/2L
2, yields

a2σL/T = const ≈ 10−3 for the available sizes L = 8, 12, 16, indicating a nonzero surface
tension σ = limL→∞ σL, characteristic for a 1st order transition (c.f. Sect.3.3.1.2).

• For T < Tc(aµ = 0.66), χσ,L/L
3 remains volume independent (see lower part of Fig.5.6(a))

as suggested by Eq.(5.14) and an application of the Borgs-Kotecky ansatz, Eq.(5.15),
shows that the data of lattice sizes L = 12, 16 are well described by Eq.(5.16), a fit
yielding χ2

red = 0.7, 1.35, respectively.

From the available data we thus conservatively conclude for the location of the TCP

(aµt, aTt) = (0.64+0.02
−0.04, 0.94(7)) , (5.18)

which we can compare to the mean-field prediction (aµt,mf , aTt,mf ) = (0.577, 0.866)[66] finding
good agreement on which we comment below.
We conclude this subsection by giving the complete phase diagram in Fig.5.7(a) obtained for
Nt = 4. Two more low-T measurements have been included to the transition line separating
the chirally broken (orange) from the chirally symmetric, dense phase (grey): The location
aµc ≈ 0.6 of the transition aT = 1/16 with γ = 1 is known from our treatment of the
T ≈ 0-theory with the snake algorithm (c.f. Sect.4.2.4). For aT = 1/4 (also γ = 1) we state
aµc(aT = 0.25) = 0.57(2) which was estimated from the discontinuity of the baryon density ρ,
obtained by applying the Wang-Landau algorithm (c.f. Sect.5.1.2) in the chiral limit on a 44

lattice.
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The phase diagram given in Fig.5.7(a) in particular shows the reentrance region, predicted by
mean-field theory (Fig.5.2) with the important difference that the slope dT/dµ of the critical
line changes sign deep in the first order region, contrary to Fig.5.2(b) and the argumentation
below Eq.(5.2). Indeed, keeping Nt = 4 fixed implies that at increases as T is decreases.
Thus, the corrections arising in the limit at → 0 are expected to be larger at low temperature.
We emphasize that the phase diagram crucially depends on the choice of f(γ) = a/at. We
consistently used f(γ) = γ2 throughout our study - a choice suggested by mean-field theory
which we found justified at least for µ = 0. For Monte-Carlo simulations of the partition
function Eq.(4.12), we note that such choice assigns the physically sensible weight

w(ℓ) ∼ exp (±a3µNt/γ
2) = exp (±3µ/T ) (5.19)

to the (anti)baryonic world lines in Eq.(4.13). Using instead w(ℓ) ∼ exp (±a3µNt/γ) but
keeping T = γ2/Nt leads to the phase diagram sketched in Fig.5.7(b) where the reentrant
shape has vanished, along with the agreement between Monte-Carlo and mean-field results on
aµTCP.
A future study can resolve this issue by performing a more systematic at → 0, Nt → ∞
extrapolation which we only started for Tc(µ = 0). The sign problem is absent here, so
simulations on large spatial volumes of linear extent L≫ 24 are feasible. For the given values
Nt = 2, 4, 6 we observed the trend of a slight increase in the critical value aTc. If this trends
persists when performing the same extrapolation at finite µ, then the effect of the discretization
is to shrink the chirally broken region. A similar extrapolation can be carried out for T → 0.
There the snake algorithm should allow one to find µc for γ 6= 1, thus providing us with a
Monte-Carlo estimate for f(γ) at T = 0.
However, for µ > 0, T > 0, the limit Nt → ∞ is more involved because of the sign problem
which we want to discuss now.

5.2.3 Sign problem

The feasibility of our study not only relied on overcoming algorithmic problems present in [42]
which are essentially resolved with the worm algorithm, but also on controlling the severity of
the sign problem. The latter can be quantified by the “average sign”

〈sign〉 = Z

Z||
= exp (−∆fVs

T
) = exp (−a

4∆fL3Nt

γ2
) ≈

∑

K sign(K)

NMC
, (5.20)

where the Monte-Carlo average over a sample of length NMC is given in the last step. The
ratio Z/Z|| of partition functions Z,Z|| with the weights wk and |wk|, respectively, has been
rewritten using the difference in free energy density a∆f = −γ2 log (Z/Z||)/NtVs, where ∆f ≡
∆f(T, µ,mq) measures the severity of the sign problem. Taking Eq.(5.20) as the correct scaling
assumption in L, we show a4∆f as a function of aµ in Fig.5.8 for T = Tt, amq = 0 using systems
of size L3 × 4, L = 4, 8, 12:

• At the tricritical point a4∆f ≈ 5 · 10−4 (see Fig.5.8(b)) compared to a4∆fHMC ≈ a4(mB−
3
2mπ)ρB = O(1) obtained in the conventional approach of HMC and reweighting from
isospin chemical potential (see [2] for a review) where we used amB ≈ 3, amπ(amq =
0) = 0 and ρB(Tt, µt) ≈ 0.5. It shows the mildness of the sign problem in our approach to
strong coupling QCD. A possible reason lies in the exact integration over the gauge fields,
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Figure 5.8: The difference in free energy a4∆f , Eq.(5.20), as a function of aµ at T = Tt
(amq = 0) and two different approaches: Sampling the partition function Z, Eq.(4.12) (solid
lines), and using the resummation proposed by Karsch and Mütter [9], see Sect.8.4.1 (dashed
lines, labelled “K&M”). As visible a4∆f is almost volume independent and reaches 5 · 10−4 at
the transition which we compare to a4∆fHMC = O(1) using the conventional approach of HMC.
Thus the sign problem is mild in our approach, and further benefits from the resummation
are only small. (b) a4∆f now as a function of (aµ)2, showing that ∆f ∼ µ2 for small aµ as
expected (see text). Note that the resummation (“K&M”) resolves the sign problem at aµ = 0
while ∆f(0, Tt, amq = 0) 6= 0 for the naive approach.

carried out in Eq.(4.6) which conventionally is performed stochastically. This small value
of ∆f yields an average sign 〈sign〉 ≈ 0.1 on a 163 ×Nt lattice at (µ, T ) = (µt, Tt).

• Comparing our approach (solid line) based on the sampling of the partition function Z||
with weights defined in Eq.(4.12) with the approach (dashed line) based on the resum-
mation of weights [9] (see also Sect.8.4.1), we see that the latter resolves the sign problem
at µ = 0 rendering it however only slightly milder for µ > 0.

• Further we note that, as evident from Fig.5.8(b) ∆f ∼ µ2 for small chemical potential.
That ∆f must be an even function of µ follows from the fact that under the change
µ → −µ baryons and anti-baryons only exchange their role in our one-flavor theory,
leaving 〈sign〉 and thus ∆f unchanged. For small aµ, away from any transition, we can
thus write ∆f =

∑

n cn(T,mq)µ
2n, keeping only the µ2 term.

• For a particular value of (aµ, aT ) we can increase Nt and γ, keeping Nt
γ2

= 1
T fixed.

The relation 〈sign〉 ∼ exp (− const L3Nt/γ
2) ( Eq.(5.20)) then implies that we can in

principle take the continuum limit (Nt, γ → ∞) in 0̂-direction while only being limited
by the spatial volume Vs. A more precise study of the phase diagram, especially in view
of the open question to accurately determine f(γ) = a/at, seems therefore feasible.
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Figure 5.9: Schematic phase diagram of strong coupling QCD, in analogy to the metamagnet,
Fig.2.4. Note that the T and µ-axes have been swapped. On the surface S0 the two phases
〈ψ̄ψ〉 ≷ 0 of the limits mq → 0± coexist. This extends to a three-phase coexistence at the triple
line Lτ , ending in a tricritical point (TCP) where the transition turns second order (dashed
line). For mq 6= 0, the “wing”-lines L± of critical end points (CEP) depart tangentially from
the chiral TCP, bounding the surface S± of dilute/dense phase coexistence.

5.3 Results for mq > 0

5.3.0.1 Observables and strategy

Away from the chiral limit, the symmetry Eq.(4.3) is broken explicitly. We recapitulate the
findings of mean-field theory (see Fig.5.2(a)) which proved to be accurate in the chiral limit:
For mq > 0 the second order line collapses to a critical endpoint (CEP) of the low temperature,
first order line, leaving a crossover “trace” at high temperature and for µ ≥ 0.
With the help of Monte-Carlo it has been numerically verified [76] that the finite temperature
transition is indeed a crossover for amq > 0: The chiral susceptibility

χσ,L =
1

L3Nt

∂2

∂(2mq)2
logZ =

1

(2amq)2L3Nt

(
〈N2

M 〉 − 〈NM 〉2 − 〈NM 〉
)

(5.21)

remains flat in the vicinity of γc, and a peak only develops in the limit mq → 0. On the other
hand, we know that for T ≈ 0 (actually aT = 1/4) and amq = 0.1 the system undergoes
a strong first order transition (strictly speaking only in infinite volume of course) from the
hadronic to the dense phase, see Sect.5.1.2, in particular Fig.5.3. We thus conclude the mean-
field scenario to be likely, i.e. the first order line must terminate in a critical end-point (CEP).
There are reasons to expect d = 3, Z2 (Ising) universality for this point: The phase diagram
of our model in the chiral limit, Fig.5.7, resembles in some core features the expected phase
diagram of continuum QCD with two massless flavors [6–8], see Fig.5.1. In particular, in
a mean-field treatment of an effective model of 2-flavor QCD ref. [6] finds, for mq > 0, a
divergent correlation length only in a scalar channel. The corresponding effective Lagrangian
is therefore that of the linear sigma model which exhibits Z2-symmetry. We note that besides
the apparent similarities of the two phase diagrams, the transition line (dashed lines connected
by tricritical point P and solid 1st order line ending in the QCD critical point E) in Fig.5.1
is to the deconfined phase. The solid line terminating in the point M represents the nuclear
“liquid-gas” transition, to the right of this line nuclei are forming, in analogy with the transition
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of our model. The endpoint of a generic liquid-gas transition is in the universality class of the
d = 3 Ising model.
To locate the point of criticality in the phase diagram for mq > 0 we will make use of the
standard scaling, Eq.(5.13), of χσ,L with d = 3, Ising critical exponents, Tab.5.1. In particular
in a finite volume the peak χσ,L,max at the pseudo transition should fulfill

logχσ,L,max =
γ

ν
logL+ c . (5.22)

Further, by noting that χσ = 1
V 〈(ψ̄ψ−〈ψ̄ψ〉)2〉, we see that the properly normalized distribution

function of the chiral condensate, P (x〈ψ̄ψ〉) where x〈ψ̄ψ〉 = (ψ̄ψ− 〈ψ̄ψ〉) ·L− γ/ν+d
2 , should yield

the universal distribution function at the CEP for any L (see also Sect.3.3.1.1). However,
within our model 〈ψ̄ψ〉 = 〈NM 〉/(2amq) from which Eq.(5.21) followed. Thus the monomer
susceptibility χM is given by χM = 〈(NM − 〈NM 〉)2〉/V 6= χσ. At the CEP, the divergent
behavior of the monomer and baryon number susceptibility will be dominated by the larger of
the two exponents, the energy (α) or magnetic exponent (γ). From γ/α > 10 (Ising, d = 3[78])
we conclude χM,L ∼ Lγ/ν χ̃M(t ·L1/ν) which implies that the distribution P (xM ) normalized

to unit norm where xM = (NM −〈NM 〉) ·L− γ/ν+d
2 should give the universal scaling function of

the Ising magnetization at criticality.

5.3.0.2 Scaling in the vicinity of the TCP

Once we have located prospective CEPs for a range of quark masses, the following picture
(Fig.5.9) may arise, in close analogy to the metamagnet of Sect.2.3: The area S0 in the chiral
plane represents the coexistence surface of phases 〈ψ̄ψ〉 ≷ 0 for mq → 0±, i.e. depending
of the approach of the chiral limit in infinite volume. At the chiral first order line Lτ , the
broken phases coexist with the chirally symmetric phase. The line thus represents a three-
phase coexistence ending in a tricritical point. In the presence of an ordering (i.e. symmetry
breaking) field mq ≷ 0, the low temperature transitions trace out coexistence surfaces S±
bounded by the CEPs which form the “wing” lines L± of d = 3, Ising universality. In the
vicinity of the TCP, these lines can be parametrized by t = T/Tt − 1 and are given by

L± :







aµ(t)

amq(t)

t







=







bµ|t|φ − ct+ aµt

±bm|t|φ1
t






, (5.23)

with the mean-field exponents φ1 = 5
2 , φ = 2 [23] and c = −∂µ(T )

∂T

∣
∣
∣
Tt

is the negative slope of

Lτ at T = Tt.
We should test if our results on the CEPs are consistent with the prediction Eq.(5.23) in which
case we can use the above relation to obtain an estimate for (aµt, aTt).



Phase diagram of Lattice QCD at strong coupling 87

−0.15 −0.1 −0.05 0 0.05 0.1 0.15
0

1

2

3

4

5

6

7

(n
M

−〈 n
M

〉)⋅L(d
s
−γ/ν)/2

P
(n

M
)

 

 

L = 8
10
12
14

am
q
 = 0.03

(a)

2 2.2 2.4 2.6 2.8 3
3.5

4

4.5

5

5.5

6

log(L)

lo
g(

χ σ,
 m

ax
)

 

 

Fit γ/ν log(L) + c, c = −0.05(2)

(b)

−0.15 −0.1 −0.05 0 0.05 0.1 0.15
0

1

2

3

4

5

6

7

(n
M

−〈n
M

〉)⋅L(d
s
−γ/ν)/2

P
(n

M
)

 

 

L = 8
10
12
14

am
q
 = 0.04

(c)

Figure 5.10: (a) Collapse of the distribution P (xM ), xM = (NM − 〈NM 〉) ·L− γ/ν+d
2 , signaling

a CEP in the d = 3, Ising universality class for amq = 0.03. (b) Peak of the susceptibility
χσ,L as a function of L for T = TE and mq = 0.03. The solid line corresponds to a fit of
Eq.(5.22), where we fix γ/ν = 1.237/0.631 (the d = 3, Ising value), showing that this criterion
is consistent with the collapse of P (xM ). (c) P (xM ) for amq = 0.04. The thus obtained CEP’s
are listed in Tab.5.2.

amq aµE aTE

0 0.64+0.02
−0.04 0.94(7)

0.005 0.69(1) 0.79(1)

0.01 0.70(2) 0.77(3)

0.03 0.74(1) 0.74(1)

0.04 0.76(1) 0.73(1)

0.1 0.86(1) 0.69(1)

Table 5.2: Critical end points located with the help of the collapse of P (xM ) using d = 3, Z2

exponents, with the exception of the (chiral) TCP (first line) where χσ,L was used. The error
for the former was estimated conservatively by varying the reweighting paramters (µ, T ) until
the universal scaling disappeared visibly.

5.3.1 Results

We first have to establish criticality for a number of quark masses amq. Due to the sign problem
(Sect.5.2.3) we are practically limited to L3 × Nt-lattices with L ≤ 16 and work with Nt = 4
throughout this section. Employing as our main criterion the collapse of distributions PL(xM ),
we approached for fixed quark mass amq > 0 in parameter space (aµ, aT ) the prospective
CEP for L = 8, 10, ..., 16 following the first order line. We found it natural to reweight the
distributions PL(xM ) to equal peak height (a criterion suitable for a first order transition
in the presence of a Z2 symmetry), where one peak is located in the dilute (monomer rich)
phase, the other in the dense (monomer depleted) phase. We then varied the parameters
(aµL, aTL) slightly to optimize the collapse within error bands for various L. The resulting
scaling functions are shown in Fig.5.10 for amq = 0.03(a) and 0.04(c). The resulting critical
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coordinates for several masses are given in Tab.5.2.
To ascertain that this criterion to locate the CEP is consistent with others, also in view of
the possible difference in scaling of χσ and χM for amq > 0, we investigated the scaling
of the peak χσ,L,max for amq = 0.03 in the vicinity of the parameters (aµE, aTE) given in
Tab.5.2. Reweighting to T = TE , fixed, we determined the maximum of the chiral susceptibility
as a function of µ, by standard reweighting techniques. In Fig.5.10(b) we plot log χσ,L,max

versus logL for L = 8, ..., 16 along with a fit using Eq.(5.22), fixing γ/ν = 1.967, i.e. Ising
critical exponents in d = 3 [78]. We obtained c = −0.04(1) with χ2

red = 1.2 and the fitting
law seems in good agreement with the data; leaving instead γ/ν as a free parameter yields
γ/ν = 1.92(1), c = 0.08(2) which however are largely correlated (cov = 0.97) and we cannot
trust the fit. We thus believe that the values given in Tab.5.2 are acceptable estimates of
(aµE , TE)(mq), given the small volume with L ≤ 16 and the coarse resolution with Nt = 4.
The more interesting and perhaps more relevant question is about the consistency of these
estimates with the mean-field scaling for lines L± in the vicinity of the TCP(see the previous
subsection and Sect.2.3).
The system of equations (5.23) suggests to fit TE(mq) and to extract an estimator for Tt. In
Fig.5.11(a) (upper part) we show aTE as a function of amq. As the scaling

T (mq) = Tc − bmm
2/5
q (5.24)

is expected to hold in the vicinity of the (chiral) TCP we have checked if a fit is stable under
exclusion of points of larger quark mass. Fitting the full set of points, we obtain aTt =
0.83(1), bm = 0.36(5) (χ2

red ≈ 1). Excluding amq = 0.1 gives the estimate aTt = 0.85(1), bm =
0.45(5) (χ2

red ≈ 0.5), which remains stable under further exclusion. In view of the estimate
on aTt, Eq.(5.18), and the already established first order transition for aT = 0.845(3) (see
Fig.5.6), we take the fit-estimate aTt = 0.85(1) as more likely.
Using this estimate we fit (µE , TE) of Tab.5.2 to the relation µ(t), Eq.(5.23) and obtain

bµ = 2.9(7), c = 0.37(13), aµt = 0.648(6), (5.25)

with an acceptable χ2
red. The resulting curve is shown in the lower part of Fig.5.11(a). In

particular, despite its large fitting error, at least the sign of c = −∂µ(T )
∂T

∣
∣
∣
Tt
> 0 is determined

correctly. It should be noted that this sign is opposite compared to that obtained by mean-
field calculations, c.f. Fig.5.2. Comparing our estimate on TCP, Eq.(5.18) with those obtained
by the fit, (0.648(6), 0.85(1)), we see that the results are roughly consistent.4 We thus take
the scaling of the wing lines L±, Eq.(5.23), as a tenable scenario for our model whose phase
diagram, now complemented by the CEPs for mq > 0 (Tab.5.2) and the corresponding fit
Eq.(5.23), is given in Fig.5.11(b).

5.4 Summary and Conclusions

Our findings for the phase diagram of strong coupling QCD in and off the chiral limit es-
sentially support mean-field predictions as for the order of the transition along the transition

4Which comes only partially as a surprise given that we included the tricritical coordinates Eq.(5.18) in both
fits. However, excluding them as well as the point amq = 0.1 yields only fitting results with correlated fitting
parameters with little predictive power.
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Figure 5.11: (a) Upper part: TE(mq) as listed in Tab.5.2. The two lines correspond to fits of
Eq.(5.24) with (dashed line) and without (solid) the estimate at amq = 0.1. The fit remained
stable under exclusion of further points amq < 0.1. We thus extract Tt = 0.85(1). Lower part:
TE as a function of µE. The solid line shows the fit to Eq.(5.23), using the above estimate on
Tt, excluding amq = 0.1. We observe consistency and extract aµt = 0.65(1). (b) The full phase
diagram with choice a/at = γ2, now complemented by the CEPs and the corresponding fit as
it is visible in the lower part of (a).

line. For mq > 0 the results are consistent with scaling predictions of Landau-Ginzburg theory
(see Sect.2.3.1.2). We remark that in our study the geometry of the transition lines, including
the location of the tricritical point, depend crucially on the choice of a/at = f(γ), where the
parameter γ allowed us to vary the temperature continuously via f(γ)/Nt = aT . The choice
f(γ) = γ2 (another suggestion of mean-field theory) for the entire (µ, T )-plane brought our
results in qualitative and quantitative (TCP) agreement with mean-field predictions. In par-
ticular the slope dT

dµ is positive on part of the first order line in contrast to expectations in
QCD in the chiral limit, Fig.5.1.
The weakness of the sign problem of strong coupling QCD facilitated our study: Both, the
Karsch-Mütter resummation (Sect.8.4.1) and the naive sampling of the partition function
Eq.(4.12) allow for systems sizes of 163 × 4. Further, a study of the phase diagram, tak-
ing the continuum limit in the 0̂-direction (Nt → ∞), seems feasible and particularly desirable
in view of the yet unknown relation a/at = f(γ) .
Remarkably, thanks to the mild sign problem and the simple form of the partition function
Eq.(4.12) and its degrees of freedom, Fig.4.1, the study was carried out using table-top com-
puting resources which has to be contrasted with full Lattice QCD where major computing
resources are involved. But: The listed advantages and achievements come of course at the
high price of being really a crude approximation whose continuum limit cannot be taken.
Are there still open questions for the phase diagram at strong coupling? For zero and interme-
diate chemical potential it was found for the two-color theory at strong coupling [52] that its
(bosonic) baryons form a superfluid whose condensate drops to zero as saturation is reached
at high chemical potential. With our present investigation of the phase diagram of our model
we have not excluded the possibility that baryons form a fermionic superfluid.
A further unaddressed question consists of the limit of large quark masses in our model which
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however cannot be studied with the present algorithm.



6 Strong coupling Lattice QCD with Nf = 2

flavors

Can the strong coupling theory be as “easily” studied for a number of staggered quark flavors
Nf > 1? Taking Nf = 2 and gauge group U(1), i.e. QED at strong coupling, in [84] the authors
were able to study the physics of pions. In the following we will investigate how this can be
generalized to a non-Abelian gauge group.

6.1 Motivation

We now consider the strong coupling partition function Z(mu,md) =
∫
DχDχ̄DU eSF with the

staggered action

SF =
∑

x







∑

µ=0,d

ηµ̂(x)
(

χ̄αxUµ̂(x)χ
α
x+µ̂ − χ̄αx+µ̂U

†
µ̂(x)χ

α
x

)

+ 2amαχ̄
α
xχ

α
x






, (6.1)

where the summation over the flavor index α = 1, 21 is implicit and Uµ̂ ∈ U(N) or SU(N). We
recall that in addition to the U(1)V symmetry Eq.(4.4), this action has the global symmetry
SUL(2) × SUR(2) × UA(1) in the chiral limit, mα

q = 0,

χαxe → V αβeiθAχβxe χ̄αxe → χ̄βxee
iθAW †,βα

χαxo →Wαβe−iθAχβxo χ̄αxo → χ̄βxoe
−iθAV †,βα (6.2)

with matrices V,W ∈ SU(2) and an even-odd decomposition of our hypercubic lattice in sites
xe, xo defined via parity ǫ(xe) = 1, ǫ(xo) = −1 where ǫ(x) = (−1)

∑

µ xµ . For nonzero quark
mass mu = md 6= 0, this symmetry is reduced to SU(2)L=R × UV (1), i.e. taking W = V in
Eq.(6.2).
If we consider this model in the context of our earlier study of strong coupling Lattice QCD in
Ch.4, it clearly means an improvement as the symmetry Eq.(6.2) is the symmetry of QCD with
two massless (light) flavors. We are ultimately interested in extending our study of nuclear
physics of strong coupling lattice QCD which will now be the physics of nucleons composed
of u and d-quarks — far more realistic than the one-flavor model. Further, tuning the masses
mu, md independently, as possible using the algorithms applicable at strong coupling QCD,
we naturally expect differences in the phase diagram of the two models. Introduction of a
baryon chemical potential, µB/3 = µu = µd will of course lead to a sign problem like in the
one-flavor case. If it remains mild — which is not excluded, thanks to the explicit integration
of the gauge fields at strong coupling — we can continue our investigation of the phase diagram

1We take the staggered quark with flavor label α = 1, 2 to be “up” (u) and “down” (d) - quark, respectively.
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in the extended parameter space (T,mu,md, µB , µI) where µI = µu − µd denotes the isospin
chemical potential. Moreover, the crucial ingredient at strong coupling is the map of the
partition function with action given in Eq.(6.1) onto the partition function of a dimer model.
For the case of Nf = 2 it is carried out explicitly in the next section and can be readily
generalized to Nf > 2, leaving thus the possibility to carry the analogy to QCD even further.

6.2 Partition function for gauge group G and Nf flavors

We recall from Sect.4.1.1 that the link integration factorizes at strong coupling. We can thus
write

Z =

∫
∏

x

(

dχxdχ̄xe
2amγ χ̄

γ
xχ

γ
x
∏

µ

[

dUµ̂(x) e
ηµ̂(x)

(

χ̄α
xUµ̂(x)χ

α
x+µ̂−χ̄

β
x+µ̂U

†
µ̂(x)χ

β
x

)])

=:

∫
∏

x

(

dχxdχ̄xe
mγ χ̄

γ
xχ

γ
x
∏

µ

z(x, µ)

)

, (6.3)

where the flavor indices α, β, γ are summed over. The one-link integral z(x, µ) is given again
in the general form

z(x, µ) =

∫

G
dg etr(gm

†+mg†) , (6.4)

with g ∈ G (G = U(N) or SU(N)) and matrices

(m)ij = χαx,iχ̄
α
y,j and (m†)kl = −χβy,kχ̄

β
x,l, (6.5)

where y = x + µ̂ and the indices i, j and k, l are color indices. Note that m and m† are
independent matrices as the fields χx and χ̄x are independent variables in an Euclidean theory.2

In Sect.8.1 we show that z(x, y) can be expanded in group invariants of the gauge group G. In
particular one finds

z(x, y) =
∑

k1,...,kN

αk1...kN (det[mm
†])k1(tr[mm†])k2 · · · (tr[(mm†)N−1])kN (U(N))

z(x, y) =
∑

k1,...,kN+1

αk1...kN+1
(det[m])k1(det[m†])k2(tr[mm†])k3 · · · (tr[(mm†)N−1])kN+1 (SU(N)).

(6.6)

Here “tr” and “det” denotes the trace and determinant in color space as both, m and m† are
matrices in color space. The expansion will terminate at finite order due to the Grassmann
nature of χ, χ̄. We can now write tr[mm†] = Tr[MxMy] with

(Mz)αβ = χ̄αχβ(z) (6.7)

2Further we have neglected the staggered phases ηµ̂(x) in the above definition. For the mesonic theory without
isospin chemical potential as it is the case here, this is without importance. In general we can always recover
the phases by letting χ̄α

x → ηµ̂(x)χ̄
α
x and χα

x → ηµ̂(x)χ
α
x and counting the number of occurrences of a field

χα
x or χ̄α

x in the strong coupling dof (Mx)αβ, (Bz)αβγ and (B̄z)αβγ .
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and the trace “Tr” in flavor space. In general it holds that

tr[(mm†)i] = (−1)i+1Tr[(MxMy)
i]. (6.8)

The matrix elements (Mz)αβ are the generalization ofMz = χ̄zχz encountered in the one-flavor
case, see Eq.(4.8). In particular, for Nf = 1, Tr[(MxMy)

i] = (MxMy)
i. Then the expansion

Eq.(6.6) simplifies and with the arguments presented in Sect.8.1 we find the by now familiar
result

zNf=1(x, y) =

N∑

k=0

(N − k)!

N !k!
(MxMy)

k + κ
(
(−1)N B̄yBx + B̄xBy

)
, (6.9)

with the fields defined in Eq.(4.8) and κ = 0, 1 for G = U(N), SU(N), respectively.
For Nf > 1 this simplification no longer exists and the coefficients αk1...kN and αk1...kN+1

of the
expansion Eq.(6.6) have to be obtained differently. For simplicity we consider now the gauge
group G = U(3), i.e. a theory without baryons, and restrict the discussion to Nf = 2.

6.2.1 G = U(3)

6.2.1.1 Link Integration

In [45] the authors obtain the one-link integral z(x, µ) in closed form for N ≤ 3 by using
an explicit parametrization of the Haar measure dg appearing in Eq.(6.4). In particular for
G = U(3), defining the invariants

X = tr[mm†], (6.10)

Y =
1

2

{

(tr[mm†])2 − tr[(mm†)2]
}

, (6.11)

Z̃ = det(mm†), (6.12)

they find

z(x, µ) = 2
∞∑

j,k,l=0

(j + 2k + 4l + 2)!

[(j + 2k + 3l + 2)!]2
XjY kZ̃ l

(k + 2l + 1)! j! k! (l!)2
. (6.13)

The quantities X,Y, Z̃ defined above are the only independent variables for G = U(3). Due to
the Cayley-Hamilton theorem, Eq.(8.3), all other non-trivial invariants, i.e. tr[(mm†)i], i > 2,
can be expressed in terms of X,Y, Z̃ .
If we follow the same steps as for the one-flavor model, then we should express the invariants
X,Y, Z̃ in terms of traces of flavor matrices Mx,My, whose elements (Mz)αβ are (see Eq.(6.7))

a) gauge invariant, contrary to the elements (mm†)ij of the expansion above.

b) local, where we recall that mij ,m
†
ij each involved staggered fields at both, x and y, where

y = x+ µ̂, see Eq.(6.5).
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Figure 6.1: (a) Graphical definition for the four states in Eq.(6.18). (b) The link states α and
β.

Doing so we obtain by using the definitions Eq.(6.10) - (6.12), the relation Eq.(6.8) and the
Cayley-Hamilton-theorem Eq.(8.3)

X = Tr[MxMy], (6.14)

Y =
1

2

(
X2 +Tr[(MxMy)

2]
)
, (6.15)

Z̃ = XY +
1

3

(
Tr[(MxMy)

3]−X3
)
. (6.16)

Once z(x, y) is expanded in (Mx)αβ , (My)αβ via Eq.(6.13), we can deduce the highest non-
vanishing power in the expansion. For convenience, we choose the convention χ1(x) = u(x), χ̄1(x) =
ū(x), χ2(x) = d(x), χ̄2(x) = d̄(x). Then, for gauge group U(3) this will be a term (ūu)3(x)(d̄d)3(x)
(and respectively for y) due to the Grassmann property of the variables u, ū, d and d̄.
In fact we can simply carry out the expansion Eq.(6.13) order by order in the variables
(Mz)αβ ∈ {ūuz, d̄dz, ūdz, d̄uz}, z = x, y by noting that

• X contributes to order O(χ̄αχβxχ̄γχδy)

• Y contributes to order O((χ̄αχβxχ̄γχδy)
2)

• Z̃ contributes to order O((χ̄αχβxχ̄γχδy)
3)

as can be seen from Eqs.(6.14)-(6.16). For example to first non-trivial order we obtain from
Eq.(6.13)

z(x, y) = 1 +
1

3
X + . . . (6.17)

where

X = Tr[MxMy] = ūu(x)uu(y) + d̄d(x)d̄d(y) + ūd(x)d̄u(y) + d̄u(x)ūd(y) (6.18)

=: a+ b+ c+ d . (6.19)

In analogy to the one-flavor case we can define a graphical notation. Labeling the four link
states of Eq.(6.18) by a - d as indicated in Eq.(6.19), the notation is given in Fig.6.1(a). The
factor 1

3 appearing Eq.(6.17) is the link weight. Contrary to the one-flavor model where a
closed expression for the link weights could be given in terms of the occupation number of a
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dimer link kµ̂ (the factor (N−k)!
N !k! appearing in Eq.(6.9)), for Nf = 2 we will obtain the numerical

coefficients appearing at every order. In practice, the coefficients can be easily tabulated. It is
instructive to look at terms of O(X2) in the expansion of z(x, y). We see from Eq.(6.13) and
the above remarks that the contributing terms will be ∼ X2 and ∼ Y . To order O(X2)

z(x, y) = 1 +
1

3
X +

1

24
(X2 + Y ) +O(X3) . (6.20)

Using Eqs.(6.14) and (6.15) we obtain

1

24
(X2 + Y ) =

a2

12
+
ab

8
+
b2

12
+
ac

6
+
bc

6
+
c2

12
+
ad

6
+
bd

6
+
cd

8
+
d2

12
+
α

24
+
β

24
, (6.21)

where we defined the additional link states

α :=
3∑

i,j,k,l=1

ūi,xdi,xd̄j,xuj,xūk,yuk,yd̄l,ydl,y = ūdxd̄uxūuy d̄dy and β := ūuxd̄dxūdy d̄uy , (6.22)

giving a graphical shorthand in Fig.6.1(b). From Eq.(6.21) it follows for example that a link
doubly occupied by a has weight 1

12 while a link in state ab contributes 1
8 . The link states

α and β will be of interest when we come to the final form of the partition function Z, after
taking the remain Grassmann integral Eq.(6.3).
All other link states, i.e. those of higher power in the fields ūuz,d̄dz, d̄uz, ūdz for z = x, y,
will turn out to be products of powers of a, b, c, d, α and β. The remaining work is therefore
to give the complete expansion of z(x, y) in terms of these variables. Due to the Grassmann
nature of the variables u, ū, d and d̄, for higher power in X,Y, Z̃ an increased number of terms
vanishes. As we had found above, the highest non-vanishing term contributing to z(x, y) is of
order O(X6). We defer the corresponding derivation to the Appendix (Sect.(8.2.1)) and now
turn to the remaining Grassmann integration of Eq.(6.3).

6.2.1.2 Grassmann integration and minus sign

The (final) Grassmann integration in Eq.(6.3) is done per site x and will create constraints
analogous to the constraint given in Eq.(4.11) for the theory at Nf = 1. For every site x the
integral will be of the form

I =

∫
∏

a

[
duadūaddadd̄a

]
e2amuūue2amd d̄d(ūu)ku(d̄d)kd(ūd)kπ− (d̄u)kπ+ , (6.23)

where the index a = 1, . . . , N denotes color (N = 3) and ku, kd, kπ+ , kπ− = 0, . . . , N are the
link occupation numbers of the 2-flavor theory.
To evaluate I let us take kπ+ = kπ− = 0 and the chiral limit mu = md = 0 for the moment.
I then has only non-vanishing contribution for ku = kd = N due to the rules of Grassmann
integration defined in Eq.(2.30). In this case I = (N !)2 as (ūu)N = N !

∏

a ūaua (respectively
for (d̄d)N ). Taking mu > 0, md > 0 we see that if ku or kd < N terms from the expansion of
the exponential e2muūu or e2mdd̄d to order N − ku, N − kd, respectively, are needed to have a
non-vanishing contribution. Letting kπ+ or kπ− > 0, we see that kπ+ = kπ− is needed to have
non-vanishing contribution as the terms ūu and d̄d appearing in front involve only powers in
color and anti-color of one flavor each. We can therefore replace kπ− = kπ+ by kπ±/2. Carrying
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out the explicit computation we find for N = 2, 3 (i.e. gauge group U(2) and U(3))

I = (−1)kπ±p(kπ±)
N !

nu!

N !

nd!
(2mu)

nu(2md)
nd , (6.24)

p(kπ±) =

{

1, kπ± = 0 or kπ± = N
1
N , otherwise

,

where nu = N − ku− kπ± , nd = N − kd− kπ± will represent the number of u and d monomers
at site x. The combinatorial factor p(kπ±) has its origin in the number of possibilities to pair
1, ..., N − 1 ūa and da quarks (and vice versa) with each other rather than with a (anti-)color
of the same flavor.
The factor (−1)kπ± comes from the number of permutations done to get the integrand into the
form ∼

∫ ∏

a

[
duadūaddadd̄a

]
(ūu)N (d̄d)N = (N !)2. For most of the configurations that does

not have to worry us: As kπ− = kπ+ we have current conservation at each site. Practically it
means that the links with link states involving c,d (see Eq.(6.19)), will be members of closed
loops: Each term (ūdxd̄ux) will be matched by the same contribution at neighboring sites as a
loop involves an even number of sites. We call these loops charged pion loops, in analogy with
the U(1)-study [84]. The weight of such loops is positive. In Fig.(6.2(a)) we show a typical
configuration exhibiting pairs of negative weights at sites x1, . . . , x4.
However, besides the link states c and d, we had encountered α-links (and β-links), defined in
Eq.(6.22) with shorthand shown in Fig.6.1(b). These link states will contribute minus signs
in I as the term (ūdxd̄ux) (and (ūdy d̄uy)), which is present for a site x (y) touched by a
link with a state involving odd powers of α, comes unmatched by an equivalent pair at the
neighboring site y (and v.v. x). In Fig.(6.2(b)) we show a configuration with negative weight.
This configuration has been obtained by replacing the charged pion loop traversing x2 and x3
(actually a double link cd) in Fig.(6.2(a)) by a link with state β. It follows that our 2-flavor
model has a minus-sign problem for N > 1.3

We summarize the constraints imposed by the Grassmann integral Eq.(6.24) at the site x

kπ− = kπ+ = kπ±/2, (6.25)

nu + ku + kπ± = N, (6.26)

nd + kd + kπ± = N, (6.27)

where nu and nd represent the number of u-monomers and d-monomers at site x, in analogy
with the one-flavor case.

Let us now consider a link l = (x, µ). Associated with each link l is a weight wl(s(l)) which
we define (in words) as the factor in the expansion of z(l) occurring in front of the term
corresponding to the link state s(l). For example wl(s(l) = “b”) = 1/3 or wl(s(l) = “a3”) =
1/36 which we read off Eqs.(8.23) and (8.27), respectively. Further, a site x carries weight
ws(x) = I(x), where I(x) is the value of the corresponding Grassmann integral I at x. We

3For N = 1 we note that the link states α and β, Eq.(6.22), can be trivially rewritten as a state ab or cd
with negative weight. The total link weight of the states ab and cd, as taken from the U(1) equivalent of
Eq.(6.21) turns out to be positive. In fact, for the non-Abelian groups we try a similar strategy by adding
link weights, see below.
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Figure 6.2: (a) A configuration involving sites x1-x4 with periodic bc (upwards and to the
right). The charged pion loop traversing x1 and x4 creates negative weights at these sites (see
Eq.(6.24)), whose signs cancel each other. The same holds for the loop traversing x2, x3 (in
this case a double link cd). (b) The double link (charged pion loop) connecting x2 and x3 has
been replaced by a β-link. Now the site x2 has a positive weight, while all other sites have
negative weights.

now give the partition function Z in closed form:

Z =
∏

{s(l),nu,nd}

∏

l=(x,µ)

wl(s(l))
∏

x

ws(x) . (6.28)

6.2.2 Taming the sign problem

Before we try to address the sign problem, let us simplify the discussion by considering the
gauge group U(2) instead of U(3). With the help of [45] we can carry out the link integration in
a completely analogous way to Sect.6.2.1.1. We therefore defer this discussion to the Appendix
(Sect.(8.2.2)) where we also define the corresponding link weights wl(s(l)). In particular, we
find states α,β, defined as in Eq.(6.22) with implicit sum over colors a = 1, 2. The partition
function Z is then formally given by Eq.(6.28), with site weights ws(x) = I(x) (Eq.(6.24) with
N = 2). In particular it has the same sign problem as demonstrated by the configurations
displayed in Fig.6.3.

We start by considering the link states contributing to order O(X2) (see Sect.8.2.2). There
we have

1

12
X2 +

1

6
Y =

a2

4
+
ab

3
+
b2

4
+
ac

2
+
bc

2
+
c2

4
+
ad

2
+
bd

2
+
cd

3
+
d2

4
+
α

6
+
β

6
, (6.29)

where X and Y are U(2)-invariants defined below Eq.(8.31). We can now take the link states
ab, cd, α, β and show

1

6
(ab+ cd+ α+ β) =

1

6
(ūx,1d̄x,2 − ūx,2d̄x,1)(ux,1dx,2 − ux,2dx,1) ·

· (ūy,1d̄y,2 − ūy,2d̄y,1)(uy,1dy,2 − uy,2dy,1)

=:
1

6
D̄DxD̄Dy, (6.30)
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Figure 6.3: The same configurations as displayed in Fig.6.2 now adapted to G = U(2). In
particular we again obtain a positive weight for the configuration shown in (a), while the
configuration (b) still carries a minus sign.

where we may think of D̄Dz as an antidiquark-diquark-pair at z which can exist even in U(2).
We note that in this way link states containing α or β are completely removed.
Taking the Grassmann integral I(z) in Eq.(6.24) and the definition of D̄Dz we can show that the
weight ws(z) of a site z containing a ūuz d̄dzD̄Dz is ws(z) = (N !)2/2 = 2 (N = 2). As it turns
out, the weight of a site containing ūdz d̄uzD̄Dz or D̄DzD̄Dz is also positive. Nevertheless,
we still have a sign problem: Taking for example the configuration Fig.(6.4(a)) which has a
positive weight, we replace the double link ab connecting x2 and x3 by a pair D̄Dx2D̄Dx3 .
Doing so, the sign of the weight ws(x2) is changed and the resulting configuration has negative
weight.
The solution is now to combine the link states ab and cd with D̄D. Starting again from
Eq.(6.29) which now reads (omitting its l.h.s.)

a2

4
+
ab

6
+
b2

4
+
ac

2
+
bc

2
+
c2

4
+
ad

2
+
bd

2
+
cd

6
+
d2

4
+
D̄DxD̄Dy

6
, (6.31)

we write ab = λab+ (1− λ)ab and define

1

12
AB :=

1

12
(2λab+ D̄DxD̄Dy),

1

12
CD :=

1

12
(2λcd + D̄DxD̄Dy) (6.32)

with 0 < λ < 1 some positive number to be chosen s.t. the sign is absent/minimal. The new
link states AB, CD are symbolically defined in Fig.6.4(c). The link states ab, cd still exist,
now with weight 1−λ

6 . Clearly, such a replacement is non-local as it will affect the site weights
of x, y touched by AB (CD), this will complicate the update which is a practical question.
Since it is non-local the proof of absence of the sign-problem is difficult. Setting for example
λ = 1/2, on a 2×2 lattice it is essentially only the configuration displayed on the left of Fig.6.5
which has negative weight (and of course configurations obtained by rotating, reflecting this
configuration, given some axis). In the figure we have also given the corresponding sum of
configurations which is implied by the configuration on the left due to the definition of the link
states AB and CD (Eq.(6.32)). Practically, choosing λ > 0.7 we found the sign problem to be
absent.4

4Actually one can show that the configuration displayed in Fig.6.5 has positive weight for λ > 1
4
(1 +

√
3) =

0.683....
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x1 x2

x3x4

(a)

x1 x2

x3x4

DD

DD

(b) (c)

Figure 6.4: (a) A configuration with positive weight. (b) Replacing the double link ab connecting
x2 and x3 by a pair D̄Dx2D̄Dx3 changes the sign at x2. (c) Graphical representation of the
link state AB (left) and CD (right), defined in Eq.(6.32).

= + + +

DD DD

DD

DD

DD

DD

DD DD

Figure 6.5: The configuration on the left is given as the sum of configurations on the right
by using the definition of the link states AB and CD, defined in Eq.(6.32). Note that in this
graphical sum we have omitted the site labels x1, . . . , x4 as well as factors involving λ.

6.3 Conclusions

In this chapter we have rewritten the partition function of Lattice QCD at strong coupling
with Nf = 2 flavors of staggered quarks to obtain the partition function of a dimer model
amenable to the worm algorithm. Using the expansion of the one-link integral in terms of
group invariants [45], we found that even a mesonic theory (obtained by taking the gauge
group U(N)) exhibits a sign problem in this formulation. Although we showed ways to tame
the sign problem by practical methods for the simple case of U(2), one may ask if it is not
completely removed from the formulation by a change of basis. Choosing for example the
“physical” variables σ = 1√

2
(ūu+ d̄d), π0 = 1√

2
(ūu− d̄d), π+ = d̄u and π− = ūd this does not

seem to be the case.
In the above discussion we have completely ignored the fermionic content of the original theory
(G = SU(3)). Including baryons into the formulation will lead to another, physical sign
problem at finite quark chemical potential which even persists at µ = 0 where it is only solved
by an explicit resummation of configurations as in the one-flavor case [9].



100



7 Outlook

Like in any study, there remain questions and extensions unaddressed in this thesis. They can
be grouped into the more “fundamental” changes to the original theory with Nf = 1 flavor
and questions that represent a perhaps natural continuation or deepening of the work done so
far. In the following we list these points worth pursuing by starting with the latter:

• The perhaps simplest extension of our study of the phase diagram for Nf = 1 consists of
the obvious possibility to take the continuum limit in the 0̂-direction: The limit γ → ∞,
Nt → ∞, keeping aT = f(γ)/Nt fixed, not only means a gain in accuracy in terms of 1/Nt

corrections to the phase diagram but in this particular limit taking f(γ) = γ2 becomes
a good approximation according to mean-field theory for aµ ≥ 0. The sign problem as
quantified by the average sign, 〈sign〉 = c exp (−∆f(T )VsNt/γ

2), depends only on the
physical volume and will thus remain mild, making a perhaps more elaborate study of
the tricritical point in the chiral limit or the critical endpoint for nonzero quark mass
possible. We also note that in this limit at = a/γ2 = 0 and continuous time Monte-Carlo
algorithms as presented in [85] are applicable.

• In the context of the phase diagram we have not studied the behavior of gluonic observ-
ables such as the Polyakov loop P , P (~x) = Tr

∏

t (U0̂(~x, t)). In the present formulation
expectation values of observables depending on the gauge links Uµ̂(x) involve the explicit
solution of the group integrals and the reformulation of the observable in terms of link
variables kµ̂, bµ̂. We point to [86] for the calculation of 〈P 〉 in the case of gauge group
SU(2).

• Another path to pursue is the introduction of an imaginary chemical potential µ = ±i|µ|.
As can be seen most clearly in the original formulation of Karsch & Mütter [9], see
Sect.8.4.1, the weight w(ℓ) of a baryonic loop ℓ then becomes

w(ℓ) = 1 + σ(ℓ) cos (±3|µ|/T ) ≥ 0

with σ(ℓ) = ±1 and the sign problem is absent. For full Lattice QCD, i.e. at nonzero
β = 6/g2, this approach has given valuable insight e.g. in the phase diagram by analytic
continuation to real µ. In the context of strong coupling QCD analytic continuation can
be tested against our real-µ results thanks to the mild sign problem.

We now turn to the more fundamental changes to the model studied in the larger part of
this thesis. The first important point left unfinished is the extension to Nf > 1 staggered
quark flavors. In Ch.6 we have given the framework to map the strong coupling QCD partition
function for Nf = 2 onto that of a dimer model which in turn is amenable to algorithmic
approaches s.a. the worm algorithm. The following subjects are here of interest:

• Already in the presence of only Nf = 2 flavors, the nuclear physics will be the physics
of four different baryons (termed ∆++, p, n and ∆−) and their respective antiparticles.
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MxMx+ĵMx+k̂Mx+k̂+ĵ

x + k̂ x + ĵ + k̂

x x + ĵx

x + k̂ x + ĵ + k̂

x + ĵ

1/g2 = =

Figure 7.1: O(β) corrections: The term MxMx+ĵMx+k̂Mx+k̂+ĵ in the middle, drawn in the

conventional notation on the right as two single dimers between sites x, x+ ĵ and sites x+ k̂,
x + ĵ + k̂, respectively, represents a plaquette term (left) with weight w ∼ 1/g2 when O(β)
corrections are included in the action. In the drawing on the left quarks and antiquarks are
drawn as solid and empty circles, respectively. There are of course other, mesonic and baryonic,
contributions to O(1/g2) in the action. Part of the figure was taken from [87].

Clearly, the nucleon-nucleon potential, VNN , will have interesting characteristics. While
it is clear that for example Vpn, Vpp, Vnn will all exhibit a hard core, one easily sees that
V∆++∆−(R = 0) remains finite just by considering the degrees of freedom involved per
site (∆++ = u1u2u3, ∆

− = d1d2d3).

• In view of the phase diagram of the one-flavor theory, we will have a much richer phase
structure in the extended parameter space (T,mu,md, µu, µd) where the quark masses
mu 6= md can be chosen independently. If the sign problem remains mild for µB > 0 we
can explore the dense phase and study the condensation of pions for µI > mπ at finite
baryon density and perhaps kaon condensation when a third quark flavor is included.

A further direction not all followed in this thesis is the inclusion of O(β)-corrections to the
strong coupling action,

Z =

∫

DχDχ̄
∫

DUeSF

(

1− β
∑

x,µ<ν

1− 1

2N
tr
[

Pµν(x) + P †
µν(x)

]
)

.

It is clear that formulating the theory with the O(β) term present will not only involve the
link variable kµ̂, bµ̂ as degree of freedom in the resulting model but also the plaquette: Taking
for example the mesonic sector to leading order in 1/d, then a configuration drawn in Fig.7.1
will be of order 1/g2, as the staggered quark and antiquark can now be thought of moving
independently as schematically expressed by the arrows. There are of course other, mesonic
and baryonic, terms contributing with 1/g2 in the action. The resulting theory will have a sign
problem for finite chemical potential. However, since gauge fields are integrated out exactly as
in the g = ∞ case we expect this approach to be fruitful. In any case this theory has only been
studied in a mean-field approximation [54,87] - of course in a 1/d expansion and inclusion of
this O(β) term offers the possibility of taking a first step towards the continuum limit, a→ 0.
It thus certainly is a natural next step in our study.
Finally, an interesting question is: how general are the properties of our model? It is for
example quite plausible that a large class of systems of hard spheres — probably the simplest
model with the steric effect — shows a Yukawa-like potential and a transition to a crystalline
phase. On the other hand, the phenomenological central potential between two nucleons also
exhibits a hard core repulsion and has Yukawa-shape at long distance. It is therefore not
excluded that nuclear matter belongs to this class of systems.



8 Appendix

8.1 One-link integral, Nf = 1

This section gives a derivation of the one-link integral

z(x, y) =

∫

G
dg etr(gm

†+mg†) , (8.1)

where G denotes the gauge group (U(N) or SU(N)) with elements g. Comparing the one-link
integral occurring in the staggered partition function Eq.(4.5) with Nf staggered flavors, we

see that it is of the form given in Eq.(8.1) with matrices (m)ij = χαx,iχ̄
α
y,j, (m

†)kl = −χβy,kχ̄
β
x,l in

color space where i, j = 1, ..., N , α, β = 1, ..., Nf and x = y + µ̂. It instructive to first consider
the case of arbitrary Nf ≥ 1 and then specify to the case Nf = 1.
From the invariance of z(x, y) under gauge transformations

χx →Wχx, χ̄x → χ̄xW
†, χy → V χy, χ̄y → χ̄yV

† V,W ∈ U(N) or SU(N) (8.2)

we see that it is not a function of 2 · 2 ·Nc ·Nf Grassmann variables but of the gauge invariant
expressions in Tab.8.1. For any invertible N ×N matrix A, tr[Ak] for k ≥ N can be expressed

U(N) SU(N)

tr[mm†] tr[mm†]
...

...

tr[(mm†)k] tr[(mm†)k]

det[mm†] det[m], det[m†]

Table 8.1: Expressions in m,m† that are invariant under the transformation given in (Eq.8.2)

by combinations of tr[Ai], i < N and det[A] due to the Cayley-Hamilton theorem: Given the
characteristic polynomial of A, pc(λ) = det[A − λI], it states that pc(A) = 0, i.e. A satisfies
its own secular equation. The coefficients of pc can be given in closed form. For the important
case of N = 3, it is given by

pc(A) = −A3 + tr[A]A2 − 1

2

(
(tr[A])2 − tr[A2]

)
A+ det[A] = 0 , (8.3)

1
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from which tr[Ak], k ≥ 3 can be obtained. For general N , this leaves N and N +1 independent
expressions for U(N) and SU(N), respectively, in which we can expand z(x, y) to obtain

z(x, y) =
∑

k1,...,kN

αk1...kN (det[mm
†])k1(tr[mm†])k2 · · · (tr[(mm†)N−1])kN (U(N)) (8.4)

z(x, y) =
∑

k1,...,kN+1

αk1...kN+1
(det[m])k1(det[m†])k2(tr[mm†])k3 · · · (tr[(mm†)N−1])kN+1 (SU(N)).

(8.5)

In the following we use tr[mm†] = Tr[MxMy], defining (Mz)αβ = χ̄αχβ(z) where “Tr” denotes
the trace over flavors and the summation of colors has been suppressed. Further one can show
that

tr[(mm†)i] = (−1)i+1Tr[(MxMy)
i]. (8.6)

For the present case of Nf = 1 we trivially have Tr[(MxMy)
i] = (MxMy)

i. Using this and the
relation Eq.(8.6), the expressions given in Eq.(8.5) simplify to

zNf=1(x, y) =
∞∑

k=0

αk(MxMy)
k (U(N)),

zNf=1(x, y) =

∞∑

i,j,k=0

αijk(det[m])i(det[m†])j(MxMy)
k (SU(N)),

(8.7)

where detmm† appearing in the U(N) relation has been expressed in color traces using the
Cayley-Hamilton theorem given in Eq.(8.3) for N = 3. The summations appearing in Eqs.(8.7)
will terminate at a finite power due to the Grassmann nature of χ̄, χ but, before, we note that

det[m] = ǫi1···iNm1i1 ·mNiN =
1

N !
ǫi1···iN ǫj1···jNmj1i1 · · ·mjN iN

=: (−1)NN !B̄yBx

det[m†] = N !B̄xBy (8.8)

where Bz =
1
N !ǫi1···iNχi1 · · ·χiN (z) and B̄z = 1

N !ǫi1···iN χ̄iN · · · χ̄i1(z). From this we see that the
terms det[m], det[m†] appearing in the SU(N) case can only occur as single terms to power
one and as a product det[m] det[m†] (which again in equivalent to a trace), i.e.

zNf=1(x, y) =

N∑

k=0

αk(MxMy)
k + κ

(

α̃(−1)NN !B̄yBx + β̃N !B̄xBy

)

, (8.9)

with κ = 0, 1 for U(N) and SU(N), respectively. To determine α̃, β̃ we compare Eq.(8.9) to
Eq.(8.1) in expanded form,

z(x, y) =
∑

k,l

1

k!l!

∫

SU(N)
dU(χ̄xUχy)

k(−χ̄yU †χx)
l. (8.10)
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Because of the Grassmann property the term ∼ B̄xBy can only be generated by the term
1
N !

∫

SU(N) dU(χ̄xUχy)
N hence we can equate

β̃B̄xByN ! =
1

N !

∫

SU(N)
dU(χ̄xUχy)

N

=
1

N !

∑

i1···iN

∑

j1···jN
χ̄x,i1χy,j1 · · · χ̄x,iNχy,jN

∫

SU(N)
dUUi1j1 · · ·UiN jN

[88]
=

1

N !N !

∑

i1···iN

∑

j1···jN
ǫi1···iN ǫj1···jN χ̄x,i1χy,j1 · · · χ̄x,iNχy,jN

= B̄xBy ,

from which we conclude β̃ = α̃ = 1/N !. Note that in the third line we have explicitly used
the SU(N) integration formulae given in [88]. The αk occurring in Eq.(8.9) can be obtained
by noting the identity

∫

dχxdχ̄x

∫

dUeχ̄χx+χ̄xUχy−χ̄yU†χx = eχ̄χy .

Plugging in the one-link integral expression of Eq.(8.9) yields

∫

dχxdχ̄xe
χ̄χx

N∑

k=0

αk(χ̄χxχ̄χy)
k =

N∑

l=0

αl
N !

(N − l)!
(χ̄χy)

l , (8.11)

from which follows αk = (N−k)!
N !k! by inspection. Thus, for Nf = 1 we are given the closed

expression for the one-link integral

zNf=1(x, y) =

N∑

k=0

(N − k)!

N !k!
(MxMy)

k + κ
(
(−1)N B̄yBx + B̄xBy

)
, (8.12)

for gauge group U(N) (κ = 0) and SU(N) (κ = 1).

8.2 One-link integral, Nf = 2

8.2.1 G = U(3)

In [45] the authors obtain the one-link integral z(x, µ) in closed form for N ≤ 3 by using an
explicit parametrization of the Haar measure dg appearing in Eq.(6.4). For G = U(3) we have
the following invariants:

X = tr[mm†], (8.13)

Y =
1

2

{

(tr[mm†])2 − tr[(mm†)2]
}

, (8.14)

Z̃ = det(mm†). (8.15)
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The expansion Eq.(8.4) then becomes [45]

z(x, µ) = 2
∞∑

j,k,l=0

(j + 2k + 4l + 2)!

[(j + 2k + 3l + 2)!]2
XjY kZ̃ l

(k + 2l + 1)! j! k! (l!)2
. (8.16)

We now express X,Y, Z̃ in terms of Mx,My by using the trace property Eq.(8.6) and the
Cayley-Hamilton theorem Eq.(8.3)

X = Tr[MxMy] (8.17)

Y =
1

2

(
X2 +Tr[(MxMy)

2]
)

(8.18)

Z̃ = XY +
1

3

(
Tr[(MxMy)

3]−X3
)
. (8.19)

We can now expand z(x, y) order by order in (Mz)αβ , z = x, y by noting that

• X contributes to order O(χ̄αχβxχ̄γχδy),

• Y contributes to order O((χ̄αχβxχ̄γχδy)
2),

• Z̃ contributes to order O((χ̄αχβxχ̄γχδy)
3).

To power X0 we trivially have

z(x, µ) = 1 + .... (8.20)

−O(X): Here we obtain

z(x, µ) = 1 +
1

3
X +O(X2). (8.21)

From Eq.(8.17) it follows that

X = Tr(MxMy) = ūu(x)uu(y) + d̄d(x)d̄d(y) + ūd(x)d̄u(y) + d̄u(x)ūd(y) . (8.22)

Again the notation of up (u) and down (d) quarks was used for α = 1, 2, respectively.
We are done to order X. Let us denote the four terms in Eq.(8.22) by a, b, c, d, in this order.
The entire O(X) term in the expression for z(x, µ) then simply reads

1

3
X =

1

3
(a+ b+ c+ d) . (8.23)

Just like the original work of [9] one should also introduce some graphical notation, in the order
O(X) case this is given in Fig.8.1(a).

− O(X2): Here, one has two terms contributing to this order to z(x, y), X2 and Y . The
X2 being just the product of the link states of Fig.8.1(a), we immediately turn to Y =
1
2

{
X2 +Tr[MxMyMxMy]

}
. It is the second term that creates something new. We introduce

the new notation α := ūdxd̄uxūuyd̄dy and β := ūuxd̄dxūdyd̄uy and its graphical representation



Appendix 5

x

y

x

y

x

y

x

y

a b c d

(a)

x

y

x

y

_ `

(b)

Figure 8.1: (a) Graphical definition for the four states in Eq.(8.22). (b) The link-states α and
β.

in Fig.8.1(b). The complete expression to O(X2) including the pre-factor then reads

1

24
(X2 + Y ) =

a2

12
+
ab

8
+
b2

12
+
ac

6
+
bc

6
+
c2

12
+
ad

6
+
bd

6
+
cd

8
+
d2

12
+
α

24
+
β

24
. (8.24)

− O(X3): The contributing terms are X3,XY, Z̃ . X and Y are known from the previous
powers. Using Eq.(8.19) the expression for Z̃ then reads

Z̃ = (a+ b+ c+ d)
(
a2 + b2 + c2 + d2 + 2a(c+ d) + 2b(c+ d) + 2α+ 2β

)
(8.25)

= X(Y − ab− cd+ α+ β) . (8.26)

The total contribution to z(x, y) at O(X3) now sums up to

1

60
(
1

6
X3 +

1

2
XY + Z) =

a3

36
+
a2b

24
+
ab2

24
+
b3

36
+
a2c

12
+
abc

8
+
b2c

12
+
ac2

12
+
bc2

12

+
c3

36
+
a2d

12
+
abd

8
+
b2d

12
+
acd

8
+
bcd

8
+
c2d

24
+
ad2

12
+
bd2

12

+
cd2

24
+
d3

36
+
aα

24
+
bα

24
+
cα

24
+
dα

24
+
aβ

24
+
bβ

24
+
cβ

24
+
dβ

24
(8.27)

which we leave in this uncanceled form to immediately read off the link weight corresponding to
some link state. Having obtained the explicit expression forX,Y, Z̃ , we continue by partitioning
the remaining powers O(X4)-O(X6).

− O(X4): We proceed as announced

1

8640
X4 +

1

1440
X2Y +

1

4320
Y 2 +

7

2160
XZ =

a3b

108
+
ab3

108
+
c3d

108
+
cd3

108
+
a2bc

24
+
a2bd

24
+
ab2c

24

+
ab2d

24
+
a2b2

128
+
c2d2

128
− α2

384
− β2

384
. (8.28)

Here repeated use has been made of the Grassmann properties (a few terms vanish, many are
equivalent). As an example, take the equivalence a3b = 9a2cd, this relation and others have
been used to simplify the expression on the l.h.s. of the above equation resulting in the final
expression Eq.(8.28). Correspondingly, in the final set of link states to occupation number 4
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the state a2cd does not occur any more. This could possibly lead to ergodicity problems for an
update algorithm. Therefore, we symmetrize the final expression Eq.(8.28) between seemingly
important link states and their equivalent partners, ending up with

1

8640
X4 +

1

1440
X2Y +

1

4320
Y 2 +

7

2160
XZ =

a3b

216
+
ab3

216
+
c3d

216
+
cd3

216
+
a2cd

24
+
b2cd

24
+
c2ab

24

+
d2ab

24
+
a2bc

48
+
ac2d

48
+
a2bd

48
+
acd2

48
+
ab2c

48

+
bc2d

48
+
ab2d

48
+
bcd2

48
+
a2b2

128
+
c2d2

128
− α2

384
− β2

384
.

− O(X5): Nothing special happens to this order, so we proceed as before and just state the
final expression

1

302400
X5 +

1

30240
X3Y +

1

30240
XY 2 +

1

3780
X2Z +

1

7560
Y Z =

a3b2 + 9a2bcd+ 9ac2d2

1296

+
a2b3 + 9ab2cd+ 9bc2d2

1296
+

9a2b2c+ 9abc2d+ c3d2

1296
+

9a2b2d+ 9abcd2 + c2d3

1296
. (8.29)

− O(X6): The pre-factors in Eq.(6.13) are lengthy fractions which we denote by dj,k,l and
the last nonzero contribution to z(x, y) then becomes

d6,0,0X
6 + d4,1,0X

4Y + d2,2,0X
2Y 2 + d3,0,1X

3Z + d1,1,1XY Z + d0,3,0Y
3 + d0,0,2Z

2 =

a3b3 + 9a2b2cd+ 9abc2d2 + c3d3

5184
. (8.30)

8.2.2 G = U(2)

For G = U(2) the integral z(x, y) reads [45]

z(x, µ) =

∞∑

i,j=0

XiY j

(i+ 2j + 1)!i!(j!)2
, (8.31)

where X := tr(mm†) and Y = det(mm†). Following the same steps as for U(3) we can
determine z(x, µ) order by order.

− O(X): Only the term ∼ X contributes, hence

1

2
X =

1

2
(a+ b+ c+ d) . (8.32)

− O(X2): The term ∼ Y , with Y = det(mm†) can be treated as for U(3). Note that, since
mm† is a 2 × 2-matrix, we use det(mm†) = 1

2

(
(tr[mm†])2 − tr[(mm†)2]

)
(a result of Cayley-

Hamilton). Further we had already from U(3) (and the same holds here), tr[mm†] = Tr[MxMy]
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and tr[(mm†)2] = −Tr[(MxMy)
2], one writes therefore

det(mm†) =
1

2

(

(tr[mm†])2 − tr[(mm†)2]
)

=
1

2

(
(Tr[MxMy])

2 +Tr[(MxMy)
2]
)
(8.33)

= (Tr[MxMy])
2 − det(MxMy) (8.34)

= X2 − ab− cd+ α+ β. (8.35)

In Eqs.(8.33) and (8.34) the Cayley-Hamilton theorem has been applied.
Computing then 1

12X
2 + 1

6Y yields,

1

12
X2 +

1

6
Y =

a2

4
+
ab

3
+
b2

4
+
ac

2
+
bc

2
+
c2

4
+
ad

2
+
bd

2
+
cd

3
+
d2

4
+
α

6
+
β

6
. (8.36)

− O(X3): To this and the next order we will have again cancellations and equivalent pairs.
We therefore symmetrize between equivalent link states and sum the contributions ∼ X3 ∼ XY
to find

1

144
X3 +

1

24
XY =

a2b

16
+
acd

4
+
ab2

16
+
bcd

4
+
c2d

16
+
abc

4
+
cd2

16
+
abd

4
. (8.37)

− O(X4): The terms that contribute are ∼ X4,∼ X2Y and ∼ Y 2. We find

1

2880
X4 +

1

240
XY +

1

480
Y 2 =

a2b2

48
+

1

12
abcd+

c2d2

48
. (8.38)

8.3 A useful relation

8.3.1 Relating the decay mass M and the continuum pole mass m

We take as an example the free boson propagator G(x)lat on an infinite hypercubic lattice in
d = 4. The “decay” massM is extracted from the exponential decay of C(t) =

∑

~xG(x)lat in t,
C(t) ∼ exp (−Mt). Using the propagator in momentum space G(p)lat = 1/(4

∑

µ sin
2 (apµ/2)+

a2m2), we can relate the masses m and M :

C(t) =

∫ π/a

−π/a

adp0
2π

eip0t

4 sin2 (ap0/2) + a2m2

w=eip0a
=

∮
dw

2πi

wt/a

(2 + a2m2)w − w2 − 1
(8.39)

where the integrand has poles at w1/2 = A ±
√
A2 − 1, A = 2+a2m2

2 . As A ≥ 1 only w2 con-
tributes through its residue to the integral over the circle around the origin in counterclockwise
sense,

C(t) = 2πi lim
w→w2

(w − w2)
i

2π

wt/a

(w − w1)(w − w2)
=

(A−
√
A2 − 1)t/a

2
√
A2 − 1

. (8.40)



8 Appendix

D D

Figure 8.2: Four loops of the same geometry — the baryonic and antibaryonic loops ℓ, ℓ′

(carrying positive weight) and the dimer loops ℓD, ℓ
′
D of unit weight, Eq.(8.44).

If we define cosh (aM) = A = 2+a2m2

2 , we obtain C(t) = e−Mt

2 sinh (aM) . The decay mass M and
the continuum pole mass m are hence related via

aM = acosh

(

1 +
a2m2

2

)

, (8.41)

and become equal in the limit a→ 0.

8.4 Algorithmic details

8.4.1 Resummation in the MDP-algorithm

For simplicity we use an isotropic lattice (γ = 1) and recall that in the partition function Z,

Z =
∑

{k,n,ℓ}

∏

b=(x,µ̂)

(3− kb)!

3!kb!

∏

x

3!

nx!
(2amq)

nx
∏

ℓ

w(ℓ), (8.42)

a baryon loop ℓ contributes with weight w(ℓ),

w(ℓ) =
1

∏

x∈ℓ 3!
σ(ℓ) exp (3Ntrℓaµ), σ(ℓ) = (−1)rℓ+N−(ℓ)+1

∏

b=(x,µ̂)∈ℓ
ηµ̂(x) (8.43)

with the number of links on ℓ in negative direction, N−(ℓ), and its winding number in ±0̂-
direction, rℓ. In particular, due to the geometry dependent sign σ(ℓ), even for zero chemical
potential the model has a sign problem. However, by a simple trick it can be solved for µ = 0
and weakened for µ > 0 [9]: In Fig.8.2 we display next to a baryonic (ℓ) and antibaryonic loop
(ℓ′), two dimer loops (ℓD, ℓ

′
D) of the same shape consisting of a sequence of single and double

dimers. The latter two loops have unit weight, since

w(ℓD) =
∏

b∈ℓD

(N − kb)!

N !kb!

∏

x∈ℓD
N ! = 1. (8.44)
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Writing formally Z =
∑

C = w(C), we can now add to the configurational weight w(C) of
a configuration C containing a dimer loop, say the loop ℓD, one-half of the weight of two
configurations C ′, C ′′ which are identical to C but contain the baryon loop ℓ, ℓ′ respectively,
instead of ℓD,

w(C) +
1

2
(w(C ′) + w(C ′′)) = (2amq)

NM
∏

b/∈ℓD

(N − kb)!

N !kb!

∏

x/∈ℓD

N !

·




∏

b∈ℓD

(N − kb)!

N !kb!

∏

x∈ℓD
N ! +

1

2

∏

x∈ℓ
N ! ·w(ℓ) + 1

2

∏

x∈ℓ′
N ! ·w(ℓ′)





= (2amq)
NM
∏

b

(N − kb)!

N !kb!

∏

x

N !




1 + σ(ℓ) cosh (3rℓµ/T )
︸ ︷︷ ︸

w(ℓP )




 .

We proceed the same way for configurations containing the loop ℓ′D, adding now the remaining
weight 1

2(w(C
′)+w(C ′′) of the configurations C ′ and C ′′. As a configurational weight w(C) fac-

torizes into contributions from each link, site and baryonic or antibaryonic loop, this procedure
holds for any number of dimer and baryon loops per configuration. We have thus eliminated
the purely baryonic and antibaryonic loops from our set of degrees of freedom and defined
a new (polymer) loop type ℓP with weight w(ℓP ), thus obtaining a monomer-dimer-polymer
(MDP) system. As in particular w(ℓP ) = 1 + σ(ℓ) cosh (3rℓµ/T ) ≥ 0 for µ = 0 (ℓ stands
here for a baryonic or antibaryonic loop of the same shape), the sign problem is resolved here.
For µ > 0 we can compare the average sign obtained from simulations using the conventional
formulation Eq.(8.42) and those of MDP-simulations. We point to Sect.5.8 for details.

8.4.2 Proving detailed balance for the mesonic worm

We recall that we could write the partition function Eq.(4.12) as a product of weights of active
and passive sites,

Z =
∑

{n,k,b}

∏

xa

Wa(xa)
∏

xp

Wp(xp)σ({n, k, b}) , (8.45)

where

Wa(x) =
∏

ν̂=±0̂,...,±d̂

(
(N − kν̂)!

N !kν̂ !
exp (3bν̂(δν̂,0̂ + δν̂,−0̂)atµ)

)
N !

nx!
(2ma)nx (8.46)

Wp(x) =
∏

ν̂=±0̂

(

γ2kν̂+3|bν̂ |
) N !

nx!
(2ma)nx . (8.47)

with dimer link occupation number kν̂ = 0, . . . , 3, baryonic link variables bν̂ = ±1, 0 and
monomer number nx = 0, . . . , N .
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8.4.2.1 Passive site update

For simplicity we start the proof with the update step 2 of the mesonic worm defined in
Sect.4.1.2.3 and show that it fulfills detailed balance,

W (C)P (C ′|C) =W (C ′)P (C|C ′) , (8.48)

where W (C) =
∏

xa
Wa(xa)

∏

xp
Wp(xp) is the configurational weight and P (C ′|C) the transi-

tion probability from worm configuration C to C ′. Let y be a passive site, and the incoming
direction be µ̂. We choose an outgoing direction ρ̂ with probability Pµ̂ρ̂, which according to
Eq.(8.48) has to satisfy

∏

κ̂

(γ2)(δ0̂,κ̂+δ0̂,κ̂)kκ̂Pµ̂ρ̂ =
∏

λ̂

(γ2)
(δ

0̂,λ̂
+δ

0̂,λ̂
)k′

λ̂Pρ̂µ̂ . (8.49)

Here Pρ̂µ̂ is the probability of the reverse step. During a passive update the incoming link
occupation number is decreased, kµ̂ → kµ̂ − 1, whereas for the outgoing direction we set
kρ̂ → kρ̂ + 1. In addition to Eq.(8.49), Pµ̂ρ̂ has to satisfy

∑

ν̂

Pµ̂ν̂ = 1 , (8.50)

where the sum
∑

ν̂ extends over all directions ν̂, for which y+ ν̂ is a dimer site (not baryonic).
The choice

Pµ̂ν̂ =
Wµ̂ν̂

W µ̂
D(y)

, W µ̂
D(y) =

∑

κ̂

Wµ̂κ̂ (8.51)

with Wî±0̂ = γ2 = W±0̂±0̂, W±0̂̂i = 1 = Wîĵ (̂i, ĵ = ±1, . . . ,±d) and Wµ̂ν̂ = 0 for a bary-
onic neighboring site y + ν̂ fulfills detailed-balance, Eq.(8.49), and corresponds to a heatbath

probability. In particular W µ̂
D(y) does not depend on the incoming direction, W µ̂

D(y) =WD(y).

8.4.2.2 Active site update

The update of an active site allows for the exclusion of backtracking as we will see below. Let
ν̂ and σ̂ be the incoming and outgoing direction, respectively, on the active site x. An active
update increases the occupation number of the incoming link kν̂ → kν̂ + 1 while decreasing
it on the outgoing link kσ̂ → kσ̂ − 1. If we denote by Pν̂σ̂ the probability to choose this step
(and Pσ̂ν̂ the probability of the reverse step), then with Eq.(8.48) and the weight defined in
Eq.(8.46) we must require

Pν̂σ̂ = Pσ̂ν̂
(N − kσ̂ + 1)kσ̂
(N − kν̂)(kν̂ + 1)

. (8.52)

Taking

Pν̂σ̂ =
kσ̂

N − kν̂
(8.53)
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we see that Eq.(8.52) is satisfied which the corresponding choice of Pσ̂ν̂ =
kν̂+1

N−kσ̂+1 . Additionally
we have to fulfill

∑

σ̂

Pν̂σ̂ + Pν̂x = 1 , (8.54)

where Pν̂x is the probability to leave the lattice at site x by erasing a monomer. Choosing

Pν̂x =
nx

N − kν̂
, (8.55)

we see from the constraint in Eq.(8.54) that this excludes backtracking: The incoming direc-
tion ν̂ and the outgoing direction σ̂ have to be distinct, ν̂ 6= σ̂.

We now turn to the start of a mesonic worm update at an randomly chosen active site z. Let
Pzλ̂ be the probability to create a monomer at z (by letting nz → nz + 1) and to decrease the
link occupation number kλ̂ by one, kλ̂ → kλ̂ − 1. If we denote by Pλ̂z the probability of the
reverse step (i.e. the analog of Pν̂x, defined in Eq.(8.55)), then we have

Pzλ̂ = Pλ̂z
(N − kλ̂ + 1)kλ̂

nx + 1

1

(2amq)VD
. (8.56)

The mass factor 1/(2amq) arises due to the definition of the active site weight in Eq.(8.46). We
explicitly write the factor 1/VD which arises as the site z has been chosen randomly from the set
of all dimer sites of total number VD. Pzλ̂ has to satisfy the constraint

∑

λ̂ Pzλ̂+Pzz = 1, where

Pzz is the probability to leave the site z unchanged and the sum extends over all directions λ̂
with kλ̂ > 0. By setting

Pzλ̂ =
kλ̂
N

and Pzz =
nz
N
, (8.57)

we see that the constraint is fulfilled. Recalling however that we had chosen Pλz =
nz+1

N−k
λ̂
+1 in

Eq.(8.55), now with x = z, nx = nz + 1 and kν̂ = kλ̂ + 1, we see that a factor 1/(NVD2amq)
remains uncanceled in the detailed balance equation (8.56). It is important to note that this
factor arises for both, the beginning and the end, of the update s.t. the sequence of (active
and passive) worm updates which transform a closed path configuration C into a closed path
configuration C ′ indeed satisfies detailed balance (Eq.(8.48)). To see this take for example
a closed path configuration C. Let the sequence of worm updates be a sequence of say 5
consecutive updates around a plaquette (the smallest nontrivial loop), leading to a closed path
configuration C ′. The product W (C)P (C ′|C) can then be written as

W (C)P (C ′|C) =W (C)
∏

i=0,4

P (Ci+1|Ci) , (8.58)

with the definition C0 = C,C5 = C ′. If we take the first step to start from the closed
path configuration C0 and create a monomer at some site z, chosen uniformly from all
dimer sites, to obtain the worm configuration C1 we have by definition W (C0)P (C1|C0) =
W (C1)P (C0|C1) 1

VD2amqN
due to the choice Pzλ̂ in Eq.(8.57). The following sequence of active

and passive updates fulfills detailed balance at each step,W (Ci)P (Ci+1|Ci) =W (Ci+1)P (Ci|Ci+1)
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until the configuration C4 is reached, we then have from Eq.(8.58)

W (C)P (C ′|C) = P (C0|C1)P (C1|C2)P (C2|C3)P (C3|C4)W (C4)P (C5|C4)
1

VDN2amq

= P (C0|C1)P (C1|C2)P (C2|C3)P (C3|C4)W (C5)P (C4|C5)

= W (C ′)P (C|C ′),

where we used W (C5)P (C4|C5) = W (C4)P (C5|C4) 1
VDN2amq

(the worm closes again) to go
from the first to the second line. But the l.h.s. of the first line and r.h.s. of the last line imply
detailed balance, Eq.(8.48).
All of the defined update probabilities (Eqs.(8.51), (8.53), (8.55) and (8.57)) are independent
of the quark mass. The algorithm is in particular applicable in the chiral limit.

8.4.3 Mesonic worm estimators

8.4.3.1 The chiral condensate 〈ψ̄ψ〉

We start the derivation by noting that the chiral condensate 〈ψ̄ψ〉 = 1
2amq

〈NM 〉 (with the

total number of monomers NM ) can be written in the following form (defining m̂ = 2amq for
convenience)

〈ψ̄ψ〉 = 1

V

∂

∂m̂
logZ =

1

V

∑

x

〈χ̄χx〉, (8.59)

with

〈χ̄χx〉 =
1

Z

∑

{k′,n′,b′}x
σ({n′, k′, b′}x)W ({n′, k′, b′}x)m̂n . (8.60)

Here {k′, n′, b′}x denotes a configuration that fulfills the closed path constraint for every site z,
except at x where nx+

∑

µ̂ kµ̂ = N−1. W ({n′, k′, b′}x) is defined as the product over active and
passive site weights, defined in Eq.(8.46) and (8.47), respectively, up to the mass-dependent
weight m̂n which we have taken out explicitly.
The configuration {k, n, b}x is reached during a mesonic worm update at a passive site x. On
the active starting site of the worm a monomer is placed to satisfy the constraint Eq.(4.11).
Continuing the worm update until the path closes, say at active site y (which is not neces-
sarily the starting site for m̂ > 0) by erasing at a monomer at y, we denote the path of the
worm by αxy and its probability by P ({n′, k′, b′}x, αxy). The reverse path α−1

xy (probability
P ({n, k, b}, α−1

xy )) starts from a closed path configuration {n, k, b} by placing a monomer at y
and continues the worm update until the passive site x is reached. The balance equation now
reads

σ({n′, k′, b′}x)W ({n′, k′, b′}x)m̂n′
P ({n′, k′, b′}x, αxy) = σ({n, k, b})VDm̂N

WD(x)
W ({n, k, b})m̂nP ({n, k, b}, α−1

xy ) .

(8.61)

The factor VDm̂N already occurred in Sect.8.56 and has now to be explicitly taken into account.
On the l.h.s. one additional monomer at site y is present (now including the weight m̂), therefore
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we need to include this factor on the right. Further, on the right, the site y was chosen with
probability 1/VD. An additional factor 1/N is due to the choice Eq.(8.57) in the initial step of
the worm. The factor 1/WD(x) (defined in Eq.(8.51)) occurs on the r.h.s. as a passive update
step at x is carried out on the path αxy and therefore included in P ({n′, k′, b′}x, αxy). This
step does not happen on the reverse path α−1

xy (we do not update x once it is reached). We
have also included the sign σ({n′, k′, b′}x) and σ({n, k, b}) on the left and right. As the mesonic
worm does not touch any baryonic site we have σ({n′, k′, b′}x) = σ({n, k, b}).
Now by definition summing over all paths αxy with fixed passive site x and ending at an
arbitrary site y, we must have

∑

αxy
P ({n′, k′, b′}x, αxy) = 1 and therefore

σ({n′, k′, b′}x)W ({n′, k′, b′}x)m̂n′
=
∑

αxy

σ({n, k, b})VDm̂N
WD(x)

W ({n, k, b})m̂nP ({n, k, b}, α−1
xy ) ,

(8.62)

where the configuration {n, k, b} depends on the configuration {n′, k′, b′}x and the chosen path
αxy. Summing now over all configurations {n′, k′, b′}x, i.e. configurations with “defect” at x,
while multiplying with 1/V Z yields

1

V
〈χ̄χx〉 =

1

V Z

∑

{n′,k′,b′}x
σ({n′, k′, b′}x)W ({n′, k′, b′}x)m̂n′

(8.63)

=
1

Z

∑

{n′,k′,b′}x

∑

αxy

σ({n, k, b}) VDNm̂
V WD(x)

W ({n, k, b})m̂nP ({n, k, b}, α−1
xy ) .

But on the r.h.s. we can reorder the terms and sum over all configurations {n, k, b} and paths
α−1
xy with arbitrary active starting point y and fixed passive site x to obtain

1

V
〈χ̄χx〉 =

1

Z

∑

{n,k,b}
σ({n, k, b})m̂NVD

V




∑

α−1
xy

1

WD(x)
P ({n, k, b}, α−1

xy )



W ({n, k, b})m̂n(8.64)

=
1

Z

m̂N

V

∑

α−1
xy

∑

{n,k,b}
σ({n, k, b})VD

1

WD(x)
P ({n, k, b}, α−1

xy )W ({n, k, b})m̂n

︸ ︷︷ ︸
(8.65)

Now take WD(x) = 1 = VD/V and σ({n, k, b}) = 1 for simplicity. The mesonic worm update
generates paths α−1

xy with probability P ({n, k, b}, α−1
xy ) starting from a configuration with weight

W ({n, k, b})m̂n. On the practical side, the underbraced term in Eq.(8.65) becomes the Monte-
Carlo sampling weight. The sum

∑

{n,k,b} thus becomes a histogram I(x, y) of events of having
the mesonic worm head and tail at x and y, respectively during a Monte-Carlo run. The
partition function will receive contributions only when the worm closes. Including now the
factors WD(x), VD and σ({n, k, b}), the “histogram” I(x, y) will be updated at every update
of a passive site, say x1, (let x2 be the start of the worm) according to

I(x, y) = I(x, y) + σ({n, k, b}) VD
WD(x)V

δx1,xδx2,y . (8.66)
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Summing over all paths α−1
xy with arbitrary start y, this then means

1

V
〈χ̄χx〉 = m̂N

∑

y I(x, y)

KCP
. (8.67)

Where KCP is the difference of the number of closed paths on configurations with positive and
negative sign. We obtain for the chiral condensate of Eq.(8.59)

〈ψ̄ψ〉 = m̂N

∑

x,y I(x, y)

KCP
= m̂N

O(ψ̄ψ)

KCP
, (8.68)

where we can define a worm observable O(ψ̄ψ) which is continuously accumulated during the
passive worm update of a site z of a configuration C according to

O(ψ̄ψ) → O(ψ̄ψ) +
σ(C)

WD(z)

VD
V

. (8.69)

8.4.3.2 The 2-pt function G(x1, x2)

An estimator for the 2-pt function G(x, y) is given by

G(x, y) =
∂2

∂m̂x∂m̂y
logZ

∣
∣
∣
∣
m̂x=m̂y=m̂

=
1

m̂2
(〈nxny〉 − 〈nyδx,y〉 − 〈nx〉〈ny〉) (8.70)

where nx/y denotes the number of monomers at the site x(y). Going back to Eq.(8.62) we
can derive a worm estimator for G(x1, x2) by making the masses site dependent. Taking the
derivative with respect to m̂z we obtain

σ({n′, k′, b′}x)n′zW ({n′, k′, b′}x)m̂n′−1 =
∑

αxy

σ({n, k, b}) VDN
WD(x)

δy,zW ({n, k, b})m̂nP ({n, k, b}, α−1
xy )

+
∑

αxy

σ({n, k, b}) VDN
WD(x)

W ({n, k, b})n̂zm̂nP ({n, k, b}, α−1
xy ) .

(8.71)

On the l.h.s. we now have a configuration contributing to the 2-pt function G(x, z) as the
constraint Eq.(4.11) is now violated at x and z due to the cancellation of the factor n′z with
the same factor in 1/n′z! appearing in W ({n′, k′, b′}x). Repeating the same steps that lead to
Eq.(8.65), we thus obtain

G(x, z) =
1

Z

∑

α−1
xy

∑

{n,k,b}
σ({n, k, b}) VDN

WD(x)
δz,yP ({n, k, b}, α−1

xy )W ({n, k, b})m̂n

+
1

Z

∑

α−1
xy

∑

{n,k,b}
σ({n, k, b}) VDN

WD(x)
nzP ({n, k, b}, α−1

xy )W ({n, k, b})m̂n (8.72)

During a Monte-Carlo run this can be interpreted as follows: Suppose we have a closed path
configuration contributing to the partition function Z. Starting a mesonic worm update on a
configuration C at site z̃ (declared active), we accumulate a histogram I(x, z̃) (initialized with
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0 at the start) by letting

I(x, z̃) → I(x, z̃) + σ(C)
VD

WD(x)
(8.73)

every time the worm head visits the passive site x. After the worm closes we can update the
observable O(G(x1, x2)) ∀ x1, x2 by letting

O(G(x1, x2)) → O(G(x1, x2)) + I(x1, x2) . (8.74)

This corresponds to the first term on the r.h.s. of Eq.(8.72) (up to the normalization) and
means that G(x1, x2) will only receive a contribution if x2 = z̃ and x1 was visited during the
update. The second term on the r.h.s. of Eq.(8.72) implies that we get another contribution,

O(G(x1, x2)) → O(G(x1, x2)) + nx2I(x1, z̃) . (8.75)

That is, reaching the passive site x1 during the update (i.e. I(x1, z̃) 6= 0) which we take as
“sink”, all other monomers on the lattice act as sources and should thus contribute to G.
Practically we update the observable O(G(x1, x2)) ∀ x1, x2 at each passive step. If head and
tail are located at x, z̃, respectively, then

O(G(x1, x2)) → O(G(x1, x2)) +
σ(C)VD
WD(x)

(δx,x1δz̃,x2 + nx2δx,x1) . (8.76)

Note that in the chiral limit nx2 = 0 ∀ x2 6= z̃ and nz̃ = 1 by construction. Finally, we obtain
G(x1, x2) by

G(x1, x2) = N
O(G(x1, x2))

KCP
. (8.77)
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