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1 Introduction

Mirror symmetry has been the subject of intense research over many years and its study

remains rewarding. Whereas the early works focused on the closed string sector and the

Calabi-Yau (CY) geometry, the interest has shifted to the interpretation of mirror symme-

try as a duality of D-brane categories and the associated open string sector [1]. One object

of particular interest is the disc partition function F0,1 for an A brane on a compact CY
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3-fold, which depends on the Kähler type deformations of the brane geometry and is an

important datum for the definition of the category of A branes. If a modulus is classically

unobstructed, the large volume expansion of the disc partition function captures an inter-

esting enumerative problem of “counting” holomorphic discs that end on the A brane. In a

certain parametrization motivated by physics, the coefficients of this instanton expansion

in the A model are predicted to be the integral Ooguri-Vafa invariants [2].

One of the virtues of mirror symmetry, first demonstrated for the sphere partition

function in [3] and for the disc partition functions in [4], is the ability to compute the

instanton expansion of the A model partition function in the mirror B model. The disc

partition function relates on the B model side to the holomorphic Chern-Simons functional

on the CY Z∗ [5]

S(Z∗, A) =

∫

Z∗

tr

(

1

2
A ∧ dA +

1

3
A ∧ A ∧ A

)

∧ Ω. (1.1)

In the physical string theory S represents a space-time superpotential obstructing

some of the moduli of the brane geometry and the instanton expansion of the A model

is, under certain conditions, the non-perturbative superpotential generated by space-time

instantons [6, 2]. While the action of mirror symmetry on the moduli space and the

computation of superpotentials is well understood for non-compact brane geometries,1 the

physically interesting case of branes on compact CY 3-folds has been elusive. Starting

with [8], superpotentials for a class of involution branes without open string moduli have

been studied in [9–13]. The definition of the Lagrangian A brane geometry as the fixed

point of an involution has various limitations: It allows to study only discrete brane moduli

compatible with the involution and the instanton invariants computed by the superpotential

are not generic disc invariants, but rather the number of real rational curves fixed by the

involution [14].

The present lack of a systematic description of the geometric deformation space in the

compact case is a serious obstacle to the general study of open string mirror symmetry

on compact manifolds, in particular the computation of superpotentials and mirror maps

for more general deformations including open string moduli. For the closed string case

without branes, a powerful approach to study mirror symmetry is given in terms of gauged

linear sigma models and toric geometry [15, 16], in particular if combined with Batyrev’s

construction of dual manifolds via toric polyhedra [17].2 A similar description of open

string mirror symmetry has been given for non-compact branes in [19, 20], starting from

the definition of toric branes of ref. [4]. A first important step to generalize these concepts

to the compact case has been made in [13] by applying the N = 1 special geometry defined

in [20] to involution branes.

The class of toric branes defined in [4] (see also [21]) is much larger then the class

of involution branes and allows for relatively generic deformations. The purpose of this

note is to describe a toric geometry approach to open string mirror symmetry for toric

branes on compact manifolds. Specifically we consider mirror pairs (Z,L) and (Z∗, E),

1See e.g. [7] for a summary.
2We refer to [18] for background material and references.

– 2 –



J
H
E
P
0
9
(
2
0
0
9
)
1
2
6

where Z and Z∗ is a mirror pair of compact CY 3-folds described as hypersurfaces in toric

varieties, and L and E is a mirror pair of branes on these manifolds with a simple toric

description.3 For these toric brane geometries we derive in section 2 a canonical system of

differential equations that determines the open/closed string mirror maps and the partition

functions for spheres and discs at any point in the moduli space. The B model geometry

for this Picard-Fuchs system relates to a certain gauged linear sigma model, which may be

associated with an “enhanced” toric polyhedron ∆♭. A dual pair of enhanced polyhedra

(∆♭,∆
⋆
♭ ) encodes the mirror pair of compact CY manifolds (Z,Z∗) and the mirror pair

(L,E) of A and B branes on it, extending in some sense Batyrev’s [17] correspondence

between toric polyhedra and CY manifolds to the open string sector. In section 3 we apply

this method to study some compact toric brane geometries with obstructed and classically

unobstructed moduli. The phase structure of the linear sigma model can be used to define

and study large volume phases of the brane geometry, where the superpotential has an

instanton expansion in the classically unobstructed moduli. We compute the mirror maps

and the superpotentials and find agreement with the integrality predictions of [2, 8] for

both closed and open string deformations. A more complete treatment and derivations of

some of the formula presented below are deferred to an upcoming paper [22].

2 Toric brane geometries and differential equations

2.1 Toric hypersurfaces and branes

Our starting point will be a mirror pair of compact CY 3-folds (Z,Z∗) defined as hypersur-

faces in toric varieties (W,W ∗). By the correspondence of ref. [17], one may associate to the

pair of manifolds (Z,Z∗) a pair of integral polyhedra (∆,∆∗) in a four-dimensional integral

lattice Λ4 and its dual Λ∗
4. The k integral points νi(∆) of the polyhedron ∆ correspond

to homogeneous coordinates xi on the toric ambient space W and satisfy M = h1,1(Z)

linear relations4
∑

i

lai νi = 0, a = 1, . . . ,M .

The integral entries of the vectors la for fixed a define the weights lai of the coordinates xi

under the C∗ action

xi → (λa)
lai xi, λa ∈ C∗ ,

generalizing the idea of a weighted projective space. Equivalently, the lai are the U(1)a
charges of the fields in the gauged linear sigma model (GLSM) associated with the toric

variety [15]. The toric variety W is defined as Ck divided by the (C∗)M action and deleting

a certain exceptional subset Ξ of degenerate orbits, W ≃ (Ck − Ξ)/(C∗)M .

In the context of CY hypersurfaces, W will be the total space of the anti-canonical

bundle over a toric variety with positive first Chern class. The compact manifold Z ⊂ W

is defined by introducing a superpotential WZ = x0 p(xi) in the GLSM, where x0 is the

3In the following, L will denote the A brane wrapped on a Lagrangian submanifold and E the holomorphic

bundle corresponding to a B brane.
4For simplicity we neglect points on faces of codimension one of ∆ and assume that h1,1(W ) = h1,1(Z).
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coordinate on the fiber and p(xi) a polynomial in the xi>0 of degrees −la0 . At large Kähler

volumes, the critical locus is at x0 = p(xi) = 0 and defines the compact CY as the

hypersurface Z : p(xi) = 0 [15]. To be concrete, we will later study A branes on the

following examples of CY hypersurfaces:

X
(1,1,1,1,1)
5

x0 x1 x2 x3 x4 x5

(l1) = (−5 1 1 1 1 1 )

X
(1,1,1,6,9)
18

x0 x1 x2 x3 x4 x5 x6

(l1) = (−6 3 2 1 0 0 0 )

(l2) = ( 0 0 0 −3 1 1 1 )

X
(1,1,1,3,3)
9

x0 x1 x2 x3 x4 x5 x6

(l1) = (−3 1 1 1 0 0 0 )

(l2) = ( 0 0 0 −3 1 1 1 )

(2.1)

As indicated by the notation, this is the familiar quintic in projective space P4 =

WP4
1,1,1,1,1 in the first case and a degree 18 (9) hypersurface in a blow up of a weighted

projective space WP4
1,1,1,6,9 (WP4

1,1,1,3,3) in the other two cases.5

On these toric manifolds we consider a certain class of mirror pairs of branes, defined

in [4] by another set of N charge vectors l̂a for the fields xi.
6 The Lagrangian submanifold

wrapped by the A brane L is described in terms of the vectors l̂a by the equations

∑

i

l̂ai |xi|2 = ca,
∑

i

vi
bθ

i = 0,
∑

i

l̂ai v
i
b = 0 , (2.2)

where a, b = M + 1, . . . ,M +N . The N real constants ca parametrize the brane position

and the integral vectors vi
b may be defined as a linearly independent basis of solutions to

the last equation. As in [4] we restrict to special Lagrangians which requires that the extra

charges add up to zero as well,
∑

i l̂
a
i = 0.

Applying mirror symmetry as in [23, 17], the mirror manifold Z∗ is defined in the toric

variety W ∗ by the equations

p(Z∗) =
∑

i

yi,
∏

i

y
lai
i = za , a = 1, . . . ,M. (2.3)

The parameters za are the complex moduli of the hypersurface Z∗ and classically

related to the complexified Kähler moduli ta of Z by za = e2πita . The precise relation

za = za(tb) is called the mirror map and is generically complicated. In the open string

sector, the mirror transformation of [23] maps the A brane (2.2) to a B brane E defined

by the holomorphic equations [4]

Ba(E) :
∏

i

y
l̂ai
i − ẑa = 0, ẑa = ǫae

−ca , a = M + 1, . . . ,M +N. (2.4)

5The deleted set is Ξ = {xi = 0,∀i > 0} for P
4 and Ξ = {{x1 = x2 = x3 = 0} ∪ {x4 = x5 = x6 = 0}} in

the other two cases. The toric polyhedra will be given in section 3.
6A hat will be sometimes used to distinguish objects from the open string sector.
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The (possibly obstructed) complex open string moduli ẑa arise from the combination

of the phases ǫa dual to the gauge field background on the A brane and the parame-

ters ca in (2.2) [24].

The class of toric branes defined above is quite general and describes many interesting

cases, in particular involution branes with an obstructed modulus as well as branes with

classically unobstructed moduli. It is instructive to consider the quintic X
(1,1,1,1,1)
5 , which

will be one of the manifolds studied in section 3. The manifold Z for the A model is defined

by a generic degree 5 polynomial in P4, while the mirror manifold Z∗ is given in terms of

eq. (2.3) by the superpotential and relation7

p(Z∗) =

5
∑

i=0

aiyi = 0, y1y2y3y4y5 = y5
0. (2.5)

A change of coordinates yi = x5
i , i = 1, . . . , 5 and a rescaling leads to the more familiar

form in P4

p(Z∗) =

5
∑

i=1

x5
i − ψ x1x2x3x4x5 = 0, ψ−5 = −a1a2a3a4a5

a5
0

≡ z1 . (2.6)

The above definition of toric branes has an interesting overlap with more recent studies

of B branes via matrix factorizations.8 Consider the charge vectors

x0 x1 x2 x3 x4 x5

l1 = -5 1 1 1 1 1

l̂2 = 0 1 -1 0 0 0

l̂3 = 0 0 0 1 -1 0

(2.7)

For the special values ca = 0 the equation (2.2) for the Lagrangian submanifold can

be rewritten as

x1 = x̄2, x3 = x̄4, x5 = x̄5 .

The above equation describes an involution brane on the quintic defined as the fixed set of

the Z2 action (x1, x2, x3, x4, x5) → (x̄2, x̄1, x̄4, x̄3, x̄5). The equation for the mirror B-brane

follows from (2.4):

y1 = ẑ2 y2, y3 = ẑ3 y4, or x5
1 = ẑ2 x

5
2, x5

3 = ẑ3 x
5
4 . (2.8)

A naive match of the moduli of the A and B model together with a choice of phase

leads to ẑ2 = ẑ3 = −1 and the above equations become

x5
1 + x5

2 = 0, x5
3 + x5

4 = 0, (x2
5 − ψ1/2x1x3) (x2

5 + ψ1/2x1x3)x5 = 0 . (2.9)

These equations define a set of holomorphic 2-cycles in Z∗ which may be wrapped by

the D5 brane mirror to the A brane on the Lagrangian subset defined by (2.2).

7The coefficients ai are homogeneous coordinates on the space of complex structure and related to the

za in (2.3) by an rescaling of the variables yi.
8See refs. [25] for a summary.
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Eq. (2.9) should be compared to the results of refs. [8, 9], where the 2-cycle wrapped

by the B brane mirror to an involution brane has been determined in a much more involved

way along the lines of [26], by proposing a matrix factorization and computing the second

algebraic Chern class of the associated complex. The result agrees with the above result

from a simple application of mirror symmetry for toric branes. A conclusive match of the

toric brane defined by (2.4) and the matrix factorization brane studied in [8, 9] will given in

section 3, where we compute the superpotential from the toric family and find agreement

near a specific critical locus.

There are ambiguities in the above match between the A and the B model that need

to be resolved by a careful study of boundary conditions. e.g. in (2.9), the last equation is

the superpotential intersected with the two hypersurfaces (2.8), but one may permute the

meaning of the three equations. The parametrization

x0 x1 x2 x3 x4 x5

l1 = -5 1 1 1 1 1

l̂2 = 1 0 0 0 0 -1

l̂3 = 0 1 -1 0 0 0

(2.10)

leads to the same equations (2.9) for the special values ẑ2 = ψ, ẑ3 = −1 of the (new) moduli.

An important aspect in resolving these ambiguities is provided by the mirror map za(tb) on

the open/closed moduli space, as it determines where a specific (family of) point(s) in the

A moduli attaches in the moduli space of the B model and vice versa. In the above example

we have simply used the classical version of the open string mirror maps |ẑa| = e−ca to

find agreement with the result from matrix factorizations. More seriously we will compute

the exact mirror map – which may in principle deviate substantially from the classical

expression – to determine the B brane configuration. Since some of the deformations will

be fixed at the critical points of the superpotential it is in fact more natural to start with

the computation of the B model superpotentials and to find its critical points. Computing

the mirror map near these points determines a correlated set of points in the A model

parameter space, which may or may not allow for a nice classical A brane interpretation.

2.2 N = 1 special geometry of the open/closed deformation space

We proceed by discussing a general structure of the open/closed deformation space that

will be central to the following approach to mirror symmetry for the toric branes defined

above. In [20, 13] it was shown, that the open/closed string deformation space for B-type

D5-branes wrapping 2-cycles C in Z∗ can be studied from the variation of mixed Hodge

structure on a deformation family of relative cohomology groups H3(Z∗,H) of Z∗, where

H is a subset that captures the deformations of C.9 In the simplest case, H is a single

9Physically, H may be interpreted as a D7-brane which contains the D5 brane world-volume [22].
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hypersurface and the action of the closed and open string variations is schematically

F 3H3(Z∗)
δz

//

δẑ

''N

N

N

N

N

N

N

N

N

N

N

F 2H3(Z∗)
δz

//

δẑ

''N

N

N

N

N

N

N

N

N

N

N

F 1H3(Z∗)
δz

//

δẑ

''N

N

N

N

N

N

N

N

N

N

N

F 0H3(Z∗)

δẑ

��

F 2H2(H)
δz ,δẑ

// F 1H2(H)
δz ,δẑ

// F 0H2(H)

(2.11)

Here F k is the Hodge filtration and δz and δẑ denote the closed and open string

variations, respectively. For more details on this structure we refer to refs. [20, 13] (see

also [27, 28]). The variations δ can be identified with the flat Gauss-Manin connection

∇, which captures the variation of mixed Hodge structure on the bundle with fibers the

relative cohomology groups. The mathematical background is described in refs. [29–31].

The flatness of the Gauss-Manin connection leads to a non-trivial ”N = 1 special

geometry” of the combined open/closed field space, that governs the open/closed chiral

ring of the topological string theory [20]. This geometric structure leads to a Picard-Fuchs

system of differential equations satisfied by the relative period integrals

LaΠΣ = 0, ΠΣ(z, ẑ) =

∫

γΣ

Ω, γΣ ∈ H3(Z
∗,H) . (2.12)

Here {La} is a system of linear differential operators, z(ẑ) stands collectively for the

closed (open) string parameters and the holomorphic 3-form Ω and its period integrals are

defined in relative cohomology. The relative periods ΠΣ(z, ẑ) determine the mirror map and

the combined open/closed string superpotential, which can be written in a unified way as

WN=1(z, ẑ) = Wclosed(z) + Wopen(z, ẑ) =
∑

γΣ∈H3(Z∗,H)

NΣΠΣ(z, ẑ) . (2.13)

Here Wclosed(z) is the closed string superpotential proportional to the periods over

cycles γΣ ∈ H3(Z∗) and Wopen(z, ẑ) the brane superpotential proportional to periods over

chains γΣ with non-empty boundary ∂γΣ. The coefficients NΣ are the corresponding “flux”

and brane numbers.10

In the following we implement this general structure for the class of toric branes on

compact manifolds defined in section 2.1. In the present context, the deformations of C

are controlled by eq. (2.4) and the relative cohomology problem is naturally defined by

the hypersurfaces Ba(E) in the B model. In [20] this identification was used to set up the

appropriate problem of mixed Hodge structure for branes in non-compact CY manifolds

and to compute the Picard-Fuchs system of the N = 1 special geometry. This approach

was extended to the compact case in [13] by relating H to the algebraic Chern class c2(E)

of a B brane as obtained from a matrix factorization. As observed in section 2, these two

definitions of H are closely related and it is straightforward to check that they coincide in

10To obtain the physical superpotential, an appropriate choice of reference brane has to be made for the

chain integrals, since a relative period more precisely computes the brane tension of a domain wall [32, 33, 4].

This should be kept in mind in the following discussion where we simply refer to “the superpotential”.

– 7 –
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concrete examples; in particular the hypersurfaces defined in [13] fit into the definition of

H via (2.4) in [20].11

2.3 GLSM and enhanced toric polyhedra

To make full use of the machinery of toric geometry we start with defining a GLSM for the

CY/brane geometry. The GLSM puts the CY geometry and the brane geometry on equal

footing and allows to study the phases of the combined system by standard methods of

toric geometry . The GLSM thus provides valuable information on the global structure of

the combined open/closed deformation space which will be important for identifying and

investigating the various phases of the brane geometry, in particular large volume phases.

We will use the concept of toric polyhedra to define the GLSM for the mirror pairs of

toric brane geometries. This approach has the advantage of giving a canonical construction

of the B model mirror to a certain A brane geometry and provides a short-cut to derive

the generalized hypergeometric system for the relative periods given in eq.(2.18) below. As

discussed above, Batyrev’s correspondence describes a mirror pair of toric hypersurfaces

(Z,Z∗) by a pair of dual polyhedra (∆,∆⋆). What we are proposing here is that there is a

similar correspondence between “enhanced polyhedra” (∆♭(Z,L),∆⋆
♭ (Z

∗, E)) and the pair

(Z,Z∗) of mirror manifolds together with the pair of mirror branes (L,E) as defined before.

The enhanced polyhedron ∆♭(Z,L) has the following simple structure: The points

νi(Z) of ∆(Z) defining the manifold Z are a subset of the points of ∆♭(Z,L) that lie on

a hypersurface H in a five-dimensional lattice Λ5. We choose an ordering of the points

µi ∈ ∆♭(Z,L) and coordinates on Λ5 such that the points in H are given by

(µi) = (νi, 0), i = 1, . . . , k ,

where k is the number of points of ∆(Z). The brane geometry is described by k′ extra

points ρi with (ρi)5 < 0, where k′ is related to the number n̂ of (obstructed) moduli of the

brane by k′ = n̂+ 1. Thus ∆♭(Z,L) is defined as the convex hull of the points

∆♭(Z,L) = conv
(

{µi(∆(Z))} ∪ {ρi(L)}
)

, {µi(∆(Z))} ⊂ ∆♭(Z,L) ∩H , (2.14)

For simplicity we assume that the polyhedron ∆⋆
♭ can be naively defined as the dual of ∆♭

in the sense of [17].

To make contact between the definition of the toric branes in section 2 and the extra

points ρi, consider the linear dependences between the points of ∆♭(Z,L)
∑

i

lai (∆♭)µi = 0 . (2.15)

These relations may be split into two sets in an obvious way. There are h1,1(Z)

relations, say

(la(∆♭)) = (la(∆), 0k′

), a = 1, . . . , h1,1(Z) ,

11As was stressed in section 3.6 of [9], the chain integrals, which define the normal functions associated

with the superpotential, do not depend on the details of the infinite complexes constructed in [26]. Our

results suggest that the relevant information for the superpotential is captured by the linear sigma model

defined below.
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which involve only the first k points and reflect the original relations la(∆) between the

points νi(Z) of ∆(Z); they correspond to Kähler classes of the manifold Z. The remaining

relations la(∆♭), a > h1,1(Z) involve also the extra points ρi. To describe a brane as defined

by the charge vectors l̂a(L) we choose the points ρi such that the remaining relations are

of the form

(la(∆♭)) = (l̂a(L), . . .), a > h1,1(Z) .

The above prescription for the construction of the enhanced polyhedron ∆♭(Z,L) from

the polyhedron ∆(Z) for a given manifold Z and the definition (2.2) of the A brane L in

section 2 is well-defined if we require a minimal extension by k′ = n̂+ 1 points.

2.4 Differential equations on the moduli space

The combined open/closed string deformation space of the brane geometries (Z,L) or

(Z∗, E) can now be studied by standard methods of toric geometry. Let12 {lai } denote a

specific choice of basis for the generators of the relations (2.15) in the GLSM and ai the

coefficients of the hypersurface equation p =
∑

i aiyi of the mirror B model. From the

homogeneous coordinates ai on the complex moduli space one may define local coordinates

associated with the choice of a basis {lai } by13

za = (−)l
a
0

∏

i

a
lai
i , a = 1, . . . ,M +N. (2.16)

Our main tool will be a system of linear differential equations of the form

LaΠ(zb) = 0, (2.17)

whose solutions are the relative periods (2.12). The relative periods determine not only

the genus zero partition functions but also the mirror map za(tb) between the flat coor-

dinates ta and the algebraic moduli za for the open/closed string deformation space [20].

There are two ways to derive the system of differential operators {La}: Either as the

canonical generalized hypergeometric GKZ system associated with the enhanced polyhe-

dron ∆♭(Z,L) [35, 17]. Or as the system of differential equations capturing the variation

of mixed Hodge structure on the relative cohomology group H3(Z∗,H) as in refs. [20, 13].

Here we use the short-cut of toric polyhedra and define the Picard-Fuchs system as the

canonical GKZ system associated with ∆♭.
14 The derivation of the Picard-Fuchs system

from the variation of mixed Hodge structure on the relative cohomology group, which is

similar to that in [20], will be given in [22]; the coincidence of the two definitions is non-

trivial and reflects a string duality [36, 22]. By the results of [35, 17], the generalized

hypergeometric system associated to (∆♭,∆
⋆
♭ ) leads to the following differential operators

12The underscore on la(∆♭) will be dropped again to simplify notation.
13The sign is a priori convention but receives a meaning if the classical limit of the mirror map is fixed

as in [34].
14We are tacitly assuming that the GKZ system {La} is already a complete Picard-Fuchs system, which

is possibly only true after a slight modification of the GKZ system.
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for a = 1, . . . ,M +N :

La =

la
0

∏

k=1

(θa0
− k)

∏

lai >0

lai −1
∏

k=0

(θai
− k) − (−1)l

a
0 za

−la
0

∏

k=1

(θa0
− k)

∏

lai <0

−lai −1
∏

k=0

(θai
− k) (2.18)

Here θx denotes a logarithmic derivative θx = x ∂
∂x and the derivatives of the homogeneous

coordinates ai on the complex structure moduli and the local coordinates (2.16) are related

by θai
=

∑

a l
a
i θza . The products are defined to run over non-negative k only so that the

derivatives θa0
appear only in one of the two terms for given a. The solutions of the Picard-

Fuchs system in eq. (2.18) have a nice expansion around za = 0; expansions around other

points in the moduli space can be obtained from a change of variables.

Eqs. (2.17), (2.18) represent the homogeneous Picard-Fuchs system for the brane ge-

ometry (Z∗, E). These homogeneous Picard-Fuchs equations give rise to inhomogeneous

Picard-Fuchs equations by splitting the operators La in a piece La,bulk that depends only

on the moduli z of the manifold Z∗ and essentially represent the Picard-Fuchs system

of the CY geometry and a part La,open that governs the dependence on the open string

deformations ẑ. Upon evaluation at a critical point w.r.t. the open string deformations,

δẑW = 0, the split leads to an inhomogeneous term fa(z), if Π is a chain that depends

non-trivially on the brane deformations ẑ.

La,bulkΠ(z, ẑ) = −La,openΠ(z, ẑ)
δẑW=0−→ La,bulkΠ(z) = fa(z) . (2.19)

For the case of the quintic, the inhomogeneous term fa(z) has been computed by a careful

application of the Dwork-Griffiths reduction method for the chain integrals in [9] and it is

straightforward to check that this term agrees with the inhomogeneous term on the r.h.s

of (2.19), see eq.(3.11) below.

In [28] it has been proposed that the problem of mixed hodge variations on the relative

cohomology groups defined in [20, 13] can be reinterpreted in terms of the deformations

of a certain non Ricci-flat Kähler blow up Ỹ of the B model geometry. It has been

further suggested that it should be possible to obtain a Picard-Fuchs system for the brane

geometry by computing in the manifold Ỹ and restricting the complex structure of Ỹ

in an appropriate way. At the moment the details appear to be unknown and it would

be interesting to relate these ideas to the above results. It would also be interesting to

understand a possible connection to the differential equations and superpotentials derived

from matrix factorizations in [37, 12, 38].

2.5 Phases of the GLSM and structure of the solutions of (2.18)

In the previous definitions we have used a specific choice of basis {lai } to define the local

coordinates (2.16) and the differential operators (2.18). Different choices of coordinates

correspond to different phases of the GLSM [15]. The extreme cases are on the one hand

a large volume phase in all the Kähler parameters, where the GLSM describes a smooth

classical geometry and on the other hand a pure Landau-Ginzburg phase. In between there

are mixed phases, where only some of the moduli are at large volume and other moduli are
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fixed in a stringy regime of small volume. A nice instanton expansion can be expected a

priori only for moduli at large volume.

Representing the GLSM by the toric polyhedron ∆♭, the different phases of the GLSM

may be studied by considering different triangulations of the polyhedron [16, 17]. Without

going into the technical details of this procedure, let us outline the relevance of this phase

structure in the present context. A given B brane configuration corresponds to a critical

point of the superpotential which lies in a certain local patch of the parameter space. To

study the critical points in a given patch and to give a nice local expansion of the superpo-

tential it is necessary to work in the appropriate local coordinates. The different triangula-

tions of ∆♭ define different regimes in the parameter space, where the relative periods ΠΣ

have a certain characteristic behavior depending on whether the brane moduli are at large

or at small volume. To find an interesting instanton expansion we look for triangulations

that correspond to patches where at least some of the moduli are at large volume.

From the interpretation of the system {La} of differential operators as the Picard-

Fuchs system for the relative periods on Z∗ we expect the solutions of the equations (2.17)

to have the following structure:

a) There are 2M +2 solutions Π(z) that represent the periods of Z∗ up to linear combi-

nation and depend only on the complex structure moduli za, a = 1, . . . , h1,1(Z) of Z∗.

b) There are 2N further solutions Π̂(z, ẑ) that do depend on all deformations and de-

fine the mirror map for the open string deformations and the superpotential (more

precisely: brane tensions).

c) 15 For a maximal triangulation corresponding to a large complex structure point cen-

tered at za = 0 ∀a, there will be a series solution ω0(za) = 1 + O(za) and M + N

solutions ωc(za) with a single log behavior that define the open/closed mirror maps

as (c is fixed in the following equation)

tc(za) =
ωc(za)

ω0(za)
=

1

2πi
ln(zc) + Sc(za),

where Sc(za) is a series in the coordinates za.

It follows from a) that the mirror map t(cl)(z) in the closed string sector does not involve

the open string deformations, similarly as has been observed in [4, 39, 20] in the non-

compact case.16 However the open string mirror map t(op)(z, ẑ) depends on both types of

moduli. For explicit computations of the mirror maps at various points in the moduli we

refer to the examples.

The special solution Π = Wopen(z, ẑ) has the further property that its instanton expan-

sion near a large volume/large complex structure point encodes the Ooguri-Vafa invariants

15The following holds for appropriate choices of normalization and the sign in (2.16) that have been

made in (2.18), explaining the special appearance of the entry i = 0 corresponding to the fiber of the

anti-canonical bundle.
16This statement holds at zero string coupling.
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∆(Z) ν0 = ( 0, 0, 0, 0, 0)

ν1 = ( - 1, 0, 0, 0, 0)

ν2 = ( 0, -1, 0, 0, 0)

ν3 = ( 0, 0, -1, 0, 0)

ν4 = ( 0, 0, 0, -1, 0)

ν5 = ( 1, 1, 1, 1, 0)

∆♭(Z,L) = ∆∪ ρ1 = ( -1, 0, 0, 0, -1)

ρ2 = ( 0, 0, 0, 0, -1)

Table 1. Points of the enhanced polyhedron ∆♭ for the geometry (3.1) on X
(1,1,1,1,1)
5 .

of the brane geometry:

Winst(qa) =
∑

β

Gβq
β =

∑

β

∞
∑

k=1

Nβ
qk.β

k2
. (2.20)

Here β is the non-trivial homology class of a disc, β ∈ H2(Z,L), qβ a weight factor

related to its appropriately defined Kähler volume, Gβ the fractional Gromov-Witten type

coefficients in the instanton expansion and Nβ the integral Ooguri-Vafa invariants [2].

Below we study some illustrative examples and find agreement with the above expec-

tations.

3 Applications

In the following we apply the above method to study some examples including involution

branes with obstructed deformations as well as a class of branes with classically unob-

structed moduli.

3.1 Branes on the quintic X
(1,1,1,1,1)
5

3.1.1 Brane geometry

We first study a family of toric branes on the quintic that includes branes that have been

studied before in [8, 9, 13] by different means. We recover these results for special choice

of boundary conditions and study connected configurations. As in section 2. we consider

a one parameter family of A branes defined by the two charge vectors

(l1) = (−5, 1, 1, 1, 1, 1), (l̂2) = (1,−1, 0, 0, 0, 0) . (3.1)

As discussed in section 2.3 we may associate with this brane geometry a five-

dimensional toric polyhedron ∆♭(Z,L) that contains the points of the polyhedron ∆(Z) of

the quintic as a subset on the hypersurface y5 = 0; these points are given in table 1.

Choosing a maximal triangulation of ∆♭(Z,L) determines the following basis of gen-

erators for the relations (2.15)17

l1 = (−4, 0, 1, 1, 1, 1; 1,−1), l2 = (−1, 1, 0, 0, 0, 0;−1, 1) , (3.2)

17The following computations have been performed using parts of existing computer codes [40].
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where the last two entries correspond to the extra points. In the local variables18

z1 = −a2a3a4a5a6

a4
0a7

, z2 = −a1a7

a0a6
, (3.3)

the hypersurface equations for the B brane geometry (Z∗, E) read

p(Z∗) : x5
1 + x5

2 + x5
3 + x5

4 + x5
5 − x1x2x3x4x5 z

− 1

5 = 0,

B(E) : x5
1 + x1x2x3x4x5 z2z

− 1

5 = 0.
(3.4)

Here z = −z1z2 denotes the complex structure modulus of the CY geometry Z∗.

From eq. (3.2) one can immediately proceed and solve the toric Picard-Fuchs sys-

tem (2.18) to derive the mirror maps and the superpotentials and we will do so momen-

tarily. However it is instructive to take a closer look at the geometry of the problem of

mixed Hodge variations on the relative cohomology groups (2.11), which has the follow-

ing intriguing structure. Rewriting the superpotential p(Z∗) in the original variables yi

of the toric ambient space and restricting to the hypersurface B(E) : y1 = y0 in these

variables (cpw. (2.4)) defines the following boundary superpotential WH = p(Z∗)|y1=y0
for

the relative cohomology problem on H = B(E):

WH = (a0 + a1)y0 + a2y2 + a3y3 + a4y4 + a5y5 .

The boundary superpotential WH describes a K3 surface defined as a quartic polynomial

in P3 after the transformation of variables yi = x4
i , i = 1, . . . , 4:

WH = x4
1 + x4

2 + x4
3 + x4

4 + z
−1/4
H x1x2x3x4 . (3.5)

Thus the part of the Hodge variation associated with the lower row in (2.11), which

can be properly defined as a subspace through the weight filtration [20, 13], is the usual

Hodge variation associated with the complex structure of the family of K3 manifolds

defined by WH. The complex structure determined by the (2,0) form ω on the K3 is

parametrized by the modulus

zH =
z1

(1 + z2)4

a6/a7=−1
−−−−−→ a2a3a4a5

(a0 + a1)4
,

which is a special combination of the closed and open string moduli. Since the dependence

of the Hodge variation on the brane modulus z2 localizes on H, the open string mirror

map and the brane tension will be directly related to periods on the K3 surface (3.5)!

This observation is very useful in studying details of the critical points and generalizes to

other brane geometries [22].

The differential operators (2.18) in the local variables z1, z2 defined by (3.2) read

L1 =

(

θ4
1 − z1

4
∏

i=1

(4θ1 + θ2 + i)

)

(θ1 − θ2) ,

L2 = (θ2 + z2(4θ1 + θ2 + 1))(θ1 − θ2) . (3.6)

18We equipped z1 with an additional minus sign compared to (2.16) for later convenience.
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The above operators L1 and L2 reveal the relation of the variation of mixed Hodge

structure to the family of K3 manifolds defined in (3.5). Indeed the combination (θ1 − θ2)

is the direction of the open string parameter that localizes on H. The split

La = L̃a(θ1 − θ2) ,

shows that the solutions πσ of the equations L̃aπσ = 0 are just the K3 periods. The

operator L̃2 imposes that the periods depend non-trivially only on the variable zH
19

L̃2

(

(z2 + 1)−1f(zH)
)

= 0 ,

whereas the operator L̃1 reduces to the Picard-Fuchs operator of the K3 surface in the new

variable zH. It follows that the solutions of the K3 system are the first variations of the

relative periods w.r.t. the open string deformation and a critical point δ̂W = 0 corresponds

to a particular solution π of the K3 system that vanishes at that point. The solution that

describes the involution brane is determined by requiring the right transformation property

under the discrete symmetry of the moduli space as in [13].

Further differential operators can be obtained from linear combinations of the basis

vectors la. e.g. the linear combination l = l1 + l2 defines the differential operator

L′
1 = θ2θ

4
1 + z1z2

5
∏

i=1

(4θ1 + θ2 + i) ,

which also annihilates the relative periods.20 The solutions of the complete system of

differential operators have the expected structure described in section 2.5. The mirror

maps can be computed to be

− z1(t1, t2) = q1 + (24 q21 − q1 q2) + (−396 q31 − 640 q21 q2) + · · · ,
z2(t1, t2) = q2 + (−24 q1 q2 + q22) + (972 q21 q2 − 178 q1 q

2
2 + q32) + · · · , (3.7)

with qa = exp(2πi ta). The deformation parameters t1 and t2 are the flat coordinates

near the large complex structure point z1 = z2 = 0 associated with open string defor-

mations [20]. Their physical interpretation is the quantum volume of two homologically

distinct discs as measured by the tension of D4 domain walls on the A model side [4, 39].

The other solutions of the differential operators (2.18) describe the brane tensions (2.13)

of the domain walls in the family. We proceed with a study of various critical points

of the superpotential.

3.1.2 Near the involution brane

To study brane configurations mirror to the involution brane we consider a critical point

of the type (2.9), that is a D5 brane locus

x5
2 + x5

3 = 0, x5
4 + x5

5 = 0, x5
1 − x1x2x3x4x5 z

− 1

5 = 0 .

19The z2 dependent prefactor arises from the normalization of the holomorphic form.
20One can further factorize the above operators to a degree four differential operator which together with

L2 represents a complete Picard-Fuchs system.
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Comparing with (3.4) we search for a superpotential with critical locus near z2 = −1

and arbitrary z1. Let us first look at the large volume phase z1 ∼ 0 of the mirror A

brane, where one expects an instanton expansion with integral coefficients. The local

variables (3.3) are centered at z1 = z2 = 0, not z2 = −1, however. To get a nice expansion

of the superpotential near the locus z2 + 1 = 0 we change variables to

u = z
−1/4
1 (1 + z2), v = z

1/4
1 .

Examining the z2-dependent solution of the GKZ system in these variables, we find the

superpotential

c W(u, v) =
u2

8
+15v2 +

5u3v

48
− 15uv3

2
+

u6

46080
+

35v2u4

384
− 15v4u2

8
+

25025v6

3
+ . . . (3.8)

which has the expected critical locus δ̂W = 0 at u = 0 for all values of v. Here c is a

constant that can not be fixed from the consideration of the differential equations (2.18)

alone.21 At the critical locus u = 0 the above expression yields the critical value Wcrit(z) =

W(u = 0, v = z1/4)

Wcrit(z) = 15
√
z +

25025

3
z3/2 +

52055003

5
z5/2 + . . . . (3.9)

Here the constant has been fixed to c = 1 by comparing (3.9) with the result

of [8] for Wcrit(z).

As alluded to in section 2.5, the differential operators (3.6) have the special property

that the periods of Z∗ are amongst their solutions. One may check that the open string

mirror maps (3.7) conspire such that the mirror map for the remaining modulus z = −z1z2
at the critical point coincides with the closed string mirror map for the quintic. Using the

multi-cover prescription of [2, 8] and expressing (3.9) in terms of the exponentials q(z) =

exp(2πi t(z)) = z + O(z2) one obtains the integral instanton expansion of the A model

Wcrit(z(q))

ω0(q)
= 15

√
q +

2300

3
q3/2 +

2720628

5
q5/2 + . . . ,

=
∑

k odd

(

15

k2
qk/2 +

765

k2
q3k/2 +

544125

k2
q5k/2 + . . .

)

.

To make contact with the inhomogeneous Picard-Fuchs equation of [9], we rewrite the

differential operators above in terms of the bulk modulus z and the open string deformation

z2 and split off the z2 dependent terms as in (2.19). In particular the operator L′
1 leads

to a non-trivial equation of the form θLbulkΠ = −LopenΠ, where

Lbulk = θ4 − 5z

4
∏

i=1

(5θ + i) , Lopen = L′
1 − θLbulk ,

L′
1 = (θ + θ2)θ

4 − z

5
∏

i=1

(5θ + θ2 + i) , (3.10)

21The precise linear combination of the solutions of the Picard-Fuchs system that corresponds to a given

geometric cycle can be determined by an intersection argument and possibly analytic continuation, similarly

as in the closed string case [3]. Such an argument has been made in the present example already in [8],

from which we will borrow the correct value for c.
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and θ = θz. Setting Π = W(u, v) and restricting to the critical locus z2 = −1 one obtains

LbulkWcrit =
15

16

√
z . (3.11)

This identifies the inhomogeneous Picard-Fuchs equation of [8, 9] as the restriction

of (2.18) to the critical locus.

While the result (3.9) had been previously obtained in [8], the above derivation gives

some extra information. Since the definition of the toric branes holds off the involution

locus, the superpotential W(u, v) describes more generally any member of the family of toric

A branes defined by (2.2), not just the involution brane. It describes also the deformation

of the large volume superpotential away from z2 = −1. It is also possible to describe more

general configurations with several deformations [22]. It should also be noted that the use

of the closed string mirror map in [8] was strictly speaking an assumption, as the closed

string mirror map measures the quantum volume of fundamental sphere instantons, not the

quantum tension of D4 domain walls wrapping discs, which is the appropriate coordinate

for the integral expansion of [2]. It is neither obvious nor true in general that this D4

tension agrees with half the sphere volume of the fundamental string, in particular off the

involution locus. In the present case it is not hard to justify this choice and to check it from

the computation of the mirror map, but more generally there will be corrections to the D4

quantum volume that are not determined by the closed string mirror map, see eq. (3.7)

and the examples below.

Small volume in the A model: 1/z1 ∼ 0. Another interesting point in the moduli

space is the Landau-Ginzburg point of the B model. This case has been studied previously

in [13], so we will be very brief. The only non-trivial thing left to check is that the system

of differential equations obtained in [13] from Dwork-Griffiths reduction is equivalent to the

toric GKZ system (2.18) transformed to the local variables near the LG point. Choosing

local variables

x1 =
a0

(a2a3a4a5)1/4

(−a7

a6

)1/4

, x2 =
a1

(a2a3a4a5)1/4

(−a7

a6

)5/4

,

one obtains by a transformation of variables the differential operators

L1 =

(

x4
1(θ1 + θ2)

4 − 44
4

∏

i=1

(θ1 − i)

)

(θ1 + 5θ2) ,

L2 = (x2(θ1 − 1) − x1θ2) (θ1 + 5θ2) ,

L′
1 = x5

1(θ1 + θ2)
4θ2 − 44x2

5
∏

i=1

(θ1 − i) , (3.12)

where θi denotes the logarithmic derivatives θxi
. The above operators agree with

eqs. (5.14)–(5.16) of [13] up to a change of variables. The superpotential is

W = −x
2
1

2
− x2x1

6
− x6

1

11520
− x2x

5
1

3840
− x2

2x
4
1

2688
− x3

2x
3
1

3456
− x4

2x
2
1

8448
− x5

2x1

49920
+ . . . ,
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which has its critical locus at x2 = −x1, which corresponds to u = 0 in these coordinates.

In terms of the closed string variable x = −x1x
−1/5
2 at the Landau Ginzburg point, the

expansion at the critical locus reads

Wcrit = −x
5/2

3
− x15/2

135135
− x25/2

1301375075
+ . . . ,

which satisfies a similar equation as (3.11)

LbulkWcrit =
15

16
x5/2 ,

where Lbulk = 5−4x5θ4
x − 5

∏4
i=1(θx − i) .

3.2 Branes on X
(1,1,1,6,9)
18

As a second example we study branes on the two moduli CY Z = X
(1,1,1,6,9)
18 . Z is an

elliptic fibration over P2 with the elliptic fiber and the base parametrized by the coor-

dinates x1, x2, x3 and x4, x5, x6 in (2.1), respectively. In the decompactification limit of

large fiber, the compact CY approximates the non-compact CY O(−3)P2 with coordinates

x3, x4, x5, x6. This limit is interesting, as it makes contact to the previous studies of branes

on O(−3)P2 in [39, 19].

3.2.1 Brane geometry

We consider a family of A branes parametrized by the relations

|x4|2 − |x3|2 = c1, l̂ = (0, 0, 0,−1, 1, 0, 0) . (3.13)

This defines a family of D7-branes in the mirror parametrized by one complex modulus.

To make contact with the non-compact branes we may add a second constraint |x5|2 −
|x3|2 = 0 that selects a particular solution of the Picard-Fuchs system.22 The brane

geometry on the B model side is defined by the two equations

p(Z∗) =
∑

aiyi = a0x1x2x3x4x5 + a1x
2
1 + a2x

3
2 + a3(x3x4x5)

6 + a4x
18
3 + a5x

18
4 + a6x

18
5 ,

B(E) : y3 = y4 or (x3x4x5)
6 = x18

3 . (3.14)

As in the previous case one observes that the complex deformations of the brane

geometry are related to the periods of a K3 surface defined by

WH = a0x
′
1x

′
2x

′
3x

′
4 + a1x

′
1
2
+ a2x

′
2
3
+ (a3 + a4)(x

′
3x

′
4)

6 + a5x
′
3
12

+ a6x
′
4
12
.

The GLSM for the above brane geometry corresponds to the enhanced polyhedron given

in table 2.

Choosing a triangulation of ∆♭ that represents a large complex structure phase yields

the following basis of the linear relations (2.15) between the points of ∆♭:

l1 = (−6, 3, 2, 1, 0, 0, 0, 0, 0),

22Since the constant in this equation must be zero to get a non-zero superpotential [4], there is no new

modulus.
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∆(Z) ν0 = ( 0, 0, 0, 0, 0)

ν1 = ( 0, 0, 0, -1, 0)

ν2 = ( 0, 0, -1, 0, 0)

ν3 = ( 0, 0, 2, 3, 0)

ν4 = ( -1, 0, 2, 3, 0)

ν5 = ( 0, -1, 2, 3, 0)

ν6 = ( 1, 1, 2, 3, 0)

∆♭(Z,E) = ∆∪ ρ1 = ( 0, 0, 2, 3, -1)

ρ2 = ( -1, 0, 2, 3, -1)

Table 2. Points of the enhanced polyhedron ∆♭ for the geometry (3.13) on X18.

l2 = (0, 0, 0,−2, 0, 1, 1,−1, 1),

l3 = (0, 0, 0,−1, 1, 0, 0, 1,−1). (3.15)

The last two charge vectors define a GLSM for the “inner phase” of the brane in the

non-compact CY described in [19]. The differential operators (2.18) for the relative periods

are given by

L1 = θ1(θ1 − 2θ2 − θ3) − 12z1(6θ1 + 5)(6θ1 + 1),

L2 = θ2
2(θ2 − θ3) + z2(θ1 − 2θ2 − θ3)(θ1 − 2θ2 − 1 − θ3)(θ2 − θ3),

L3 = −θ3(θ2 − θ3) − z3(θ1 − 2θ2 − θ3)(θ2 − θ3). (3.16)

3.2.2 Large volume brane

The elliptic fiber compactifies the non-compact fiber direction x3 of the non-compact CY

O(−3)P2 . In the limit of large elliptic fiber we therefore expect to find a deformation of the

brane studied in [39, 19]. Large volume corresponds to za = 0 in the coordinates defined

by eqs. (3.15), (2.16).

The mirror maps and the superpotential can be computed from (2.18). Expressing the

superpotential in the flat coordinates ta defines the Ooguri-Vafa invariants Nβ in (2.20).

The homology class β can be labelled by three integers (k, l,m) that determine the Kähler

volume kt1 + lt2 + mt3 of a curve in this class. Here t1 is the volume of the elliptic

fiber and t2, t3 are the (D4-)volumes of two homologically distinct discs in the brane

geometry. The Kähler class of the section, which measures the volume of the fundamental

sphere in P2, is t2 + t3.

For the discs that do not wrap the elliptic fiber we obtain for β = (0, l,m) the

invariants given in table 3.

The above result agrees with the results of [39, 19] for the disc invariants in the “inner

phase” of the non-compact CY O(−3)P2 . This result can be explained heuristically as

follows. The holomorphic discs ending on the non-compact A brane in O(−3)P2 lie within

the zero section of O(−3)P2 . Similarly discs with k = 0 in X18 are holomorphic curves

that must map to the section x3 = 0 of the elliptic fibration. The moduli space of maps

into the sections of the non-compact and compact manifolds, respectively, does not see
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H
H

H
H

H
H

l

m
0 1 2 3 4 5 6

0 * 1 0 0 0 0 0

1 1 * -1 -1 -1 -1 -1

2 -1 -2 * 5 7 9 12

3 1 4 12 * -40 -61 -93

4 -2 -10 -32 -104 * 399 648

5 5 28 102 326 1085 * -4524

6 -13 -84 -344 -1160 -3708 -12660 *

7 35 264 1200 4360 14274 45722 159208

8 -100 -858 -4304 -16854 -57760 -185988 -598088

9 300 2860 15730 66222 239404 793502 2530946

10 -925 -9724 -58208 -262834 -1004386 -3460940 -11231776

Table 3. Invariants N0,l,m for the geometry (3.15).

H
H

H
H

H
H

l

m
0 1 2 3 4 5

0 * 252 0 0 0 0

1 -240 * 300 300 300 300

2 240 780 * -2280 -3180 -4380

3 -480 -2040 -6600 * 24900 39120

4 1200 6300 22080 74400 * -315480

5 -3360 -21000 -82200 -276360 -957600 *

6 10080 73080 319200 1134000 3765000 13300560

7 -31680 -261360 -1265040 -4818240 -16380840 -54173880

Table 4. Invariants N1,l,m for the geometry (3.15).

H
H

H
H

H
H

l

m
0 1 2 3 4

0 * 5130 -18504 0 0

1 -141444 * -73170 -62910 -62910

2 -28200 -108180 * 544140 778560

3 85320 403560 1557000 * -7639920

4 -285360 -1647540 -6485460 -24088680 *

5 1000440 6815160 29214540 106001100 392435460

6 -3606000 -28271880 -133294440 -505417320 -1773714840

Table 5. Invariants N2,l,m for the geometry (3.15).

the compactification in the fiber, explaining the agreement. The agreement of the two

computations can be viewed as a statement of local mirror symmetry in the open string

setup. For world-sheets that wrap the fiber we obtain the invariants given in tables 4 and 5.
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It would be interesting to confirm some of these numbers by an independent

computation.

3.2.3 Deformation of the non-compact involution brane

In [10] an involution brane in the local model O(−3)P2 has been studied. Similarly as in

the previous case one expects to find a deformation of this brane by embedding it in the

compact manifold and taking the limit of large elliptic fiber, z1 = 0. In order to recover

the involution brane of the local geometry we study the critical points near z3 = 1 in the

local coordinates

z̃1 = z1(−z2)1/2, u = (−z2)−1/2(1 − z3) , v = (−z2)1/2 .

After transforming the Picard-Fuchs system to these variables, the solution corresponding

to the superpotential has the following expansion

cW = −v − 35v3

9
+

1

2
uv2 +

200

3
z̃1v

2 − u2v

8
− 12320z̃2

1v − 60uz̃1v + . . . , (3.17)

where c is a constant that will be fixed again by comparing the critical value with the

results of [10]. In the decompactification limit z̃1 = 0, the critical point of the superpotential

is at u = 0, where we obtain the following expansion

cW|crit = −√
z2 −

35

9
z
3/2
2 − 1001

25
z
5/2
2 + . . . , (3.18)

The restricted superpotential satisfies the differential equation

LbulkW|crit = −
√
z2

8c
,

with Lbulk the Picard-Fuchs operator of the local geometry O(−3)P2 . The above expres-

sions at the critical point agree with the ones given in [10] for c = 1.

As might have been expected, the full superpotential (3.17) shows that the involution

brane of the local model is non-trivially deformed in the compact CY manifold for z1 6= 0.

It is not obvious that the modified multi-cover description of [8], which is adapted to real

curves and differs from the original proposal of [2], can be generalized to obtain integral

invariants for the deformations of the critical point in the z1 direction. One suspects that an

integral expansion in the sense of [8] exists only at critical points with an extra symmetry

and for deformations that respect this symmetry. It will be interesting to study this further.

3.3 Branes on X
(1,1,1,3,3)
9

As a third example we study branes on the two moduli CY Z = X
(1,1,1,3,3)
9 . Z is again

an elliptic fibration over P2 and one can consider a similar compactification of the non-

compact brane in O(−3)P2 . The invariants for this geometry are reported in app. B.

Here we consider a different family of D7-branes which we expect to include a brane

that exists at the Landau Ginzburg point of the two moduli Calabi-Yau. The mirror A

brane is defined by

− |x0|2 + |x1|2 = c1, l̂ = (−1, 1, 0, 0, 0, 0, 0) . (3.19)
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∆(Z) ν0 = ( 0, 0, 0, 0, 0)

ν1 = ( 0, 0, 0, -1, 0)

ν2 = ( 0, 0, -1, 0, 0)

ν3 = ( 0, 0, 1, 1, 0)

ν4 = ( -1, 0, 1, 1, 0)

ν5 = ( 0, -1, 1, 1, 0)

ν6 = ( 1, 1, 1, 1, 0)

∆♭(Z,E) = ∆∪ ρ1 = ( 0, 0, 0, 0, -1)

ρ2 = ( 0, 0, 0,- 1, -1)

Table 6. Points of the enhanced polyhedron ∆♭ for the geometry (3.19).

The polyhedron for the GLSM is given in table 6.

A suitable basis of relations for the charge vectors is

l1 = (−2, 0, 1, 1, 0, 0, 0,−1, 1), l2 = (0, 0, 0,−3, 1, 1, 1, 0, 0),

l3 = (−1, 1, 0, 0, 0, 0, 0, 1,−1) , (3.20)

leading to the differential operators

L1 = θ1(θ1 − 3θ2)(θ1 − θ3) + z1(θ1 − θ3)(2θ1 + 1 + θ3)(2θ1 + 2 + θ3),

L2 = θ3
2 − z2(θ1 − 3θ2)(θ1 − 3θ2 − 1)(θ1 − 3θ2 − 2),

L3 = −θ3(θ1 − θ3) − z3(θ1 − θ3)(2θ1 + 1 + θ3) . (3.21)

The brane geometry on the B model side is defined by the two equations

p(Z∗) =
∑

aiyi = a0x1x2x3x4x5 + a1x
3
1 + a2x

3
2 + a3(x3x4x5)

3 + a4x
9
3 + a5x

9
4 + a6x

9
5,

B(E) : y0 = y1 or x1x2x3x4x5 = x3
1. (3.22)

As in the previous cases, the deformations of the hypersurface B(E) are described by

the periods on a K3 surface.

We are interested in a brane superpotential with critical point at z3 = −1. Choosing

the following local coordinates centered around z3 = −1

u = (−z1)−1/2z
−1/6
2 (z3 + 1) , v = (−z1)1/2z

1/6
2 x2 = z

−1/3
2 ,

we obtain the superpotential

cW = −1

2
ux2 +

1

24
u3 + 210v3 +

3

4
vx2

2 −
3

8
u2vx2 + . . . . (3.23)

This superpotential has a critical point at u = 0 and x2 = 0. At the critical locus we

have v = z1/6, where z denotes the closed string modulus

z = −a
3
1a

3
2a4a5a6

a9
0

.
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The expansion of the superpotential at this critical locus reads

cW|crit = 210
√
z+

53117350

3
z3/2+

18297568296042

5
z5/2 +

7182631458065952702

7
z7/2 + . . . ,

As in the example of section 3.2.3 it is an interesting question to study the instanton

expansion of the above expressions and its possible interpretation in terms of integral BPS

invariants. We leave this for the future.

4 Summary and outlook

As proposed above, the open/closed string deformation space of the toric branes defined

in [4] can be studied by mirror symmetry and toric geometry in a quite efficient way. The

toric definition of the brane geometry in section 2 leads to the canonical Picard-Fuchs

system (2.18), whose solutions determine the mirror maps and the superpotential.

The phase structure of the associated GLSM determines large volume regimes, where

the superpotential has an disc instanton expansion with an interesting mathematical

and physical interpretation.

Since the toric branes cover only a subset within the category of D-branes, e.g. matrix

factorizations on the B model side, it is natural to ask for the precise relation between

these two definitions. It is an interesting question to which extent it is possible to lift the

machinery of toric geometry directly to the matrix factorization and to make contact with

the works [37, 38]. On the positive side one notices that the class of toric branes is already

rather large and not too special, as can be seen from the fact that the above framework

covers all cases where explicit results have been obtained so far.

There are some other obvious questions left open by the above discussion, such as the

geometric and physical interpretation of some of the objects appearing in the definition of

the GLSM and the mirror B geometry, e.g. the appearance of the “enhanced polyhedra”

∆♭(Z,L) and K3 surfaces, which beg for an explanation. A discussion of these issues is

beyond the scope of this paper and will be given elsewhere [22], but here we outline some

of the answers. As the reader may have noticed, the polyhedra (∆♭(Z,L),∆⋆
♭ (Z

∗, E))

define Calabi-Yau fourfolds, which are the hallmark of F-theory compactifications with the

same supersymmetry.23 Another conclusive hint towards F-theory comes from the fact

that we have effectively studied families of 7-branes on the B model side by intersecting a

single equation with the Calabi-Yau hypersurface. In fact the “auxiliary geometry” defined

in section 2.3 should be viewed as a physical 7-brane geometry and this interpretation

suggests that the results of the GLSM determine also the Kähler metric on the open/closed

deformation space.
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A One parameter models

In the following we discuss the toric GKZ systems associated to brane families connected

to the involution brane in one parameter compact models.24 At the critical value of the

superpotential we recover the results of [11, 12].

A.1 Sextic X
(2,1,1,1,1)
6

We consider the charge vectors

l1 = (−4, 0, 1, 1, 1, 1; 2,−2), l2 = (−1, 1, 0, 0, 0, 0;−1, 1) .

A.1.1 Large volume

This region in moduli space is parameterized by local variables

z1 =
a2a3a4a5a

2
6

a4
0a

2
7

, z2 = −a1a7

a0a6
.

We obtain the differential operators

L1 =

(

θ4
1 − z1

4
∏

i=1

(4θ1 + θ2 + i)

)

(2θ1 − θ2) ,

L2 = (θ2 + z2(4θ1 + θ2 + 1))(2θ1 − θ2) ,

L′
1 = θ4

1

1
∏

i=0

(θ2 − i) − z1z
2
2

6
∏

i=1

(4θ1 + θ2 + i) .

Switching to coordinates which are centered around the critical point z2 = −1 of the

superpotential

u = z
−1/4
1 (z2 + 1) , v = z

1/4
1 ,

we obtain the superpotential

cW(u, v) =
u2

24
+ 24v2 +

u3v

24
− 24uv3 +

u6

138240
+
v2u4

24
+

143360v6

3
+ . . . (A.1)

At the critical point u = 0, we can express v in terms of the closed string modulus

z = z1z
2
2 as

v|crit = z1/4 .

We find for the superpotential at the minimum

cWcrit = 24
√
z +

143360

3
z3/2 +

5510529024

25
z5/2 +

334766662483968

245
z7/2 + . . . ,

24See [41] for a discussion of closed string mirror symmetry in these models.
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This expression satisfies the differential equation

LbulkWcrit =
3

2c

√
z ,

where Lbulk = θ4 − 9z
∏4

i=1(6θ + i) denotes the Picard-Fuchs operator of the sextic. The

above agrees with the results of [11] for the choice of constant c = 1.

A.1.2 Small volume

To study the Landau-Ginzburg phase of the B-model we change to the local coordinates

x1 =
a0

(a2a3a4a5)1/4

(−a7

a6

)1/2

, x2 =
a1

(a2a3a4a5)1/4

(−a7

a6

)3/2

.

The differential operators obtained by a transformation of variables are (θi = θxi
)

L1 =

(

x4
1(θ1 + θ2)

4 − 44
4

∏

i=1

(θ1 − i)

)

(θ1 + 3θ2) ,

L2 = (x2(θ1 − 1) − x1θ2)(θ1 + 3θ2) ,

L′
1 = x6

1(θ1 + θ2)
4θ2(θ2 − 1) − 44x2

2

6
∏

i=1

(θ1 − i) .

We obtain the superpotential

W = − 1

12
x2

1 −
1

24
x2x1 −

x6
1

69120
− x2x

5
1

18432
− x2

2x
4
1

11520
− x3

2x
3
1

13824
− x4

2x
2
1

32256
− x5

2x1

184320
+ . . . (A.2)

which has its critical value at x2 = −x1. We can express x1 in terms of the closed string

variable x = −x1x
−1/3
2 of the geometry in the Landau-Ginzburg phase as

x1|crit = −x3/2

which gives the following critical value for the superpotential

Wcrit = −x
3

24
− x9

3870720
− x15

137763225600
− 5x21

16403566461714432
+ . . .

This expression satisfies the equation

LbulkWcrit =
3

2
x3 ,

with Lbulk = 6−4x6θ4 − 9(θ − 1)(θ − 2)(θ − 4)(θ − 5) .

A.2 Octic

We consider the charge vectors

l1 = (−4, 0, 1, 1, 1, 1; 4,−4), l2 = (−1, 1, 0, 0, 0, 0;−1, 1) .
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A.2.1 Large volume

This region in moduli space is parameterized by local variables

z1 =
a2a3a4a5a

4
6

a4
0a

4
7

, z2 = −a1a7

a0a6
.

The differential operators are

L1 =

(

θ4
1 − z1

4
∏

i=1

(4θ1 + θ2 + i)

)

(4θ1 − θ2) ,

L2 = (θ2 + z2(4θ1 + θ2 + 1))(4θ1 − θ2) ,

L′
1 = θ4

1

3
∏

i=0

(θ2 − i) − z1z
4
2

8
∏

i=1

(4θ1 + θ2 + i) .

Switching to u = z
−1/4
1 (z2 + 1) and v = z

1/4
1 , we obtain

W(u, v) =
u2

16
+ 48v2 +

u3v

12
− 96uv3 +

u6

92160
+

5v2u4

48
+ 48v4u2 +

1576960v6

3
+ . . . (A.3)

At u = 0, we can express v in terms of the classical coordinate z = z1z
4
2 as v|crit =

−z1/4 . We find for the superpotential at the minimum

cWcrit = 48
√
z +

1576960

3
z3/2 +

339028738048

25
z5/2 +

23098899711393792

49
z7/2 + . . . ,

which satisfies the differential equation

LbulkWcrit =
3

c

√
z ,

where Lbulk = θ4 − 16z
∏4

i=1(8θ + 2i − 1) denotes the Picard-Fuchs operator of the octic.

Setting c = 1 reproduces the disk invariants of [11, 12].

A.2.2 Small volume

We switch to local coordinates

x1 =
−a0a7

a6(a2a3a4a5)1/4
, x2 =

a1a
2
7

a2
6(a2a3a4a5)1/4

.

The differential operators are (θi = θxi
)

L1 =

(

x4
1(θ1 + θ2)

4 − 44x2
2

4
∏

i=1

(θ1 − i)

)

(θ1 + 2θ2) ,

L2 = (x2(θ1 − 1) − x1θ2)(θ1 + 2θ2) ,

L′
1 = x8

1(θ1 + θ2)
4

3
∏

i=0

(θ2 − i) − 44x2
2

8
∏

i=1

(θ1 − i) .
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k = 0
H

H
H

H
HH

l

m
0 1 2 3 4 5

0 * 3 0 0 0 0

1 3 * -3 -3 -3 -3

2 -3 -6 * 15 21 27

3 3 12 36 * -120 -183

4 -6 -30 -96 -312 * 1197

5 15 84 306 978 3255 *

6 -39 -252 -1032 -3480 -11124 -37980

7 105 792 3600 13080 42822 137166

k = 1 k = 2
H

H
H

H
HH

l

m
0 1 2 3 0 1 2 3

0 * 27 0 0 * 81 -108 0

1 -72 * 90 90 -1269 * -1539 -1377

2 72 234 * -684 -684 -2808 * 13554

3 -144 -612 -1980 * 2268 11232 42336 *

4 360 1890 6624 22320 -7848 -46656 -182916 -671922

5 -1008 -6300 -24660 -82908 27972 194832 835758 3020382

6 3024 21924 95760 340200 -102024 -813456 -3844512 -14554242

7 -9504 -78408 -379512 -1445472 377784 3390336 17598600 70975872

Table 7. Invariants Nk,l,m for the geometry (B.1).

We obtain the superpotential

W = − 1

16
x2

1 −
1

24
x2x1 −

x6
1

92160
− x2x

5
1

21504
− x2

2x
4
1

12288
− x3

2x
3
1

13824
− x4

2x
2
1

30720
− x5

2x1

168960
+ . . . (A.4)

At the critical value x2 = −x1, we have x1|crit = −x2 , where x = −x1x
−1/2
2 . This

gives the following expansion for the superpotential

Wcrit = −x
4

48
− x12

42577920
− x20

8475718451200
− x28

1131846085858295808
+ . . .

which satisfies the equation

LbulkWcrit = 3x4 ,

with

Lbulk = 8−4x8θ4 − 16(θ − 1)(θ − 3)(θ − 5)(θ − 7) .

These results are in agreement with [13], where this phase of the moduli space has been

previously studied.
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l = 0
H

H
H

H
HH

k

m
0 1 2 3 4 5

0 * 54 0 0 0 0

1 -36 * 54 -18 0 0

2 18 -54 * 36 0 0

3 0 0 -54 * 54 0

4 0 0 0 -36 * 54

5 0 0 0 18 -54 *

6 0 0 0 0 0 -54

7 0 0 0 0 0 0

l = 1 l = 2
H

H
H

H
HH

k

m
0 1 2 3 4 0 1 2 3

0 * 0 0 0 0 * 0 0 0

1 72 * -108 36 0 -180 * 270 -90

2 -36 -1728 * 2772 -1026 108 7020 * -11160

3 -1224 17280 -80460 * 243756 -108 -5832 -97686 *

4 5508 -64800 340092 -1075140 * -10944 133488 -588276 2643372

Table 8. Invariants Nk,l,m for the geometry (3.20).

B Invariants for X
1,1,1,3,3

9

The compactification of the local brane in O(−3)P2 is described by the charge vectors

l1 = (−3, 1, 1, 1, 0, 0, 0, 0, 0), l2 = (0, 0, 0,−2, 0, 1, 1,−1, 1), l3 = (0, 0, 0,−1, 1, 0, 0, 1,−1) .

(B.1)

Some invariants for this geometry are given in table 7.

The invariants for k = 0 are three times the invariants in table 3, where the overall

factor comes from the three global sections of the elliptic fibration X9. It appears that the

invariants for k = 1, l 6= 0 are generally 3/10 times the invariants in table 4.

Some invariants for the geometry (3.20) in the large volume phase are given in table 8.

It would be interesting to check some of these predictions by an independent

computation.
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