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1 Introduction

How bulk spacetime emerges from the dual gauge theory has been one of the most important

areas of study in quantum gravity. Historically, large-N volume reduction [1] demonstrated

that spacetime can be encoded in matrix degrees of freedom. In this context, it has been

realized that the eigenvalue distribution of the matrices is closely related to the geometry [2–

5]. From the point of view of superstring/M-theory, eigenvalues correspond to the positions

of D-branes and various objects can be constructed simply as bound states of D-branes

and open strings [6, 7]. The large-N volume reduction is then analogous to the emergence

of higher dimensional branes from lower dimensional branes, e.g. D(p + 2)-branes from

D(p)-branes via the Myers effect [8].

Although such approaches have been successful for various purposes, they have not

sufficiently demonstrated how to understand the emergent geometry in holography [9–11]

because it is necessary to understand how dimensions transverse to the branes emerge.

Most of the recent studies concentrate on conformal field theories dual to AdS spaces,

and consider the construction of bulk local operators from non-local operators on the

boundary [12–15]. In this paper, we propose — or rather, revisit — a simple method,
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which is (at least seemingly) different and applicable to more generic theories. In fact, our

strategy is very straightforward: we follow the old interpretation of refs. [6, 7, 16], and we

solve the dynamics of gauge theory from first principles.

In the Matrix Theory proposal [7], gravitational interactions are obtained from the

interactions between D0-branes. Therefore, by looking at the interactions in a specific

system of D0-branes — forming an extended object such as a black hole — together with a

“probe” D0-brane whose position is moved by hand, it is possible to obtain the information

about the geometry as the force acting on this probe. The same idea applies to any gauge

theory which has D-brane origins, and has also played an important role for the discovery

of gauge/gravity duality (see e.g. [17, 18]). In particular, the eigenvalues are expected to be

described by the Dirac-Born-Infeld action [11], from which the spacetime geometry can be

reconstructed. Further studies along this line and related directions include refs. [19–27].1

Moreover, a similar idea has been studied in the context of entanglement entropy [28, 29],

in order to see how the S5 of AdS5 × S5 geometry emerges.

In the past, there have also been attempts [30] to study the “internal” structure in

a system of D0-branes, focusing on a region of parameter space (at high temperatures)

where classical or semi -classical approaches are a good approximation for the dynamics.

Our focus is a regime of temperatures where the gauge theory is strongly coupled, and, even

though the probe brane approach described in this work is intuitively simple, it remains

challenging because of the obvious difficulties in calculating observables non-perturbatively.

In this paper, we employ numerical Monte Carlo methods to overcome this difficulty in the

strongly coupled regime.

This paper is organized as follows. In section 2 we consider the dynamics on the gauge

theory side. Although the quantitative calculation is hard, without relying on numerics, a

qualitative picture of the gauge theory calculation is provided. Physics captured by classical

studies [30] and features added by the new full quantum treatment will be explained. In

section 3 we use numerical Monte Carlo method to confirm this picture. In section 4, we

list possible dual gravity interpretations of the calculation. Note that the parameter region

we numerically studied corresponds to a rather stringy regime on the gravity side, and

hence the dual gravity interpretation can be speculative.

2 The gauge theory picture

In this section, we describe the proposed method to investigate how the black hole geometry

can be detected directly in the gauge theory. Before discussing various interpretations of

the dual gravity theory, we define the problem at hand in the gauge theory picture.

As a concrete example, let us consider the matrix model of D0-branes,2 which is

numerically tractable with reasonable computational resources. The Lagrangian of the

theory is

L =
1

2g2YM
Tr

{
(DtXM )2 + [XM , XM ′ ]

2 + iψ̄αDtψ
β + ψ̄αγMαβ

[
XM , ψ

β
]}

, (2.1)

1The Dp-brane probe has been considered in ref. [24].
2Generalizations to higher dimensions are straightforward.
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where XM (M = 1, 2, · · · , 9) are N ×N Hermitian matrices and (DtXM ) is the covariant

derivative given by (DtXM ) = ∂tXM − i[At, XM ] and At is the U(N) gauge field. The

gamma matrices γMαβ (M = 1, 2, · · · , 9) are the 16 × 16 left-handed part of the gamma

matrices in (9 + 1)-dimensions. ψα (α = 1, 2, · · · , 16) are N × N real fermionic matrices.

This Lagrangian is the dimensional reduction of 4D N = 4 super Yang-Mills theory to

(0 + 1)-dimensions.

We set the ’t Hooft coupling λ = g2YMN to one unless λ is explicitly shown. Equiv-

alently, all dimensionful quantities are measured in units of the ’t Hooft coupling; for

example the temperature T actually refers to the dimensionless combination λ−1/3T .

In this section we will consider the micro-canonical ensemble in the theory with

Minkowski signature, since we will eventually be interested in the black hole geometry

in Minkowski space. When interpreted as the low-energy effective description of open

strings and D0-branes, the diagonal and off-diagonal elements of XM can be regarded as

the D0-branes and open strings, respectively [6]. This theory can describe multiple objects

(such as multi-graviton or black hole states) through block-diagonal matrices, where each

block corresponds to a different object [7]. Interactions are then mediated by the quantum

fluctuations of off-diagonal elements.

Let us consider a typical matrix configuration about the trivial vacuum, which is a

bunch of N D0-branes. Separating one of the D0-branes, which is represented by the

(N,N)-element of XM , from the bunch allows us to regard this D0-brane as a probe.3 The

matrices are then of the form,

XM =

(
XM

BH wM

w†M xMD0

)
, (2.2)

where wM describes a small fluctuation of the N -th row and column, which are interpreted

as open string excitations between the probe xMD0 and the rest of the original bunch XM
BH.4

When we interpret the diagonal element xMD0 to be the position of a D0-brane, we

implicitly assume that the off-diagonal elements wM are small. One possible criterion

for the smallness of wM , which we will adopt in this paper, is that O(w3) terms of the

action are negligible and wM behaves as a harmonic oscillator. When w is so large that

O(w3) terms are no longer negligible, corrections to this simple geometric picture [6] will

be needed. Note that, even when no open string is excited, |w| cannot be exactly zero,

due to the zero-point oscillations of the harmonic oscillator. The zero-point fluctuations

become large when the probe gets close to the bunch. Hence, even at zero temperature, the

off-diagonal elements become large at short distances and it is probably not appropriate

to interpret the diagonal elements as the positions of D0-branes. The crossover between

these two regimes takes place when T ∼ 1.

3More precisely, we take the At = 0 gauge, in which the structure of the physical Hilbert space has

a natural connection to open strings and D0-branes, and then separate the (N,N)-component from the

others.
4Here we have used the subscript “BH” because, later in this paper, we will interpret the bunch as a

black hole (black zero-brane) via gauge/gravity duality.
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One subtle point associated with such zero-point fluctuations is the interpretation of

the bunch, XBH. It is highly non-commutative at any temperature. At high temperatures,

the non-commutativity is dominated by thermal excitations of open strings, which invali-

date a classical geometric picture on the gravity side. On the other hand, at sufficiently low

temperatures, the main source of the non-commutativity are the “zero-point oscillations”;

then, while the diagonal elements may not be the positions of D0-branes,5 the classical

geometry on the gravity side may still make sense because there are no open string excita-

tions. In this paper we study only T & 1, because the crossover between these two regimes

takes place at T ∼ 1.

Our approach in this paper is to define the distance between the probe D0-brane xMD0

and the center of the bunch
TrXM

BH
N−1 as

r ≡

√√√√∑
M

(
TrXM

BH

N − 1
− xMD0

)2

, (2.3)

and then numerically calculate the force applied by the bunch on the probe as a function

of this particular distance. This allows us to obtain insights of the geometry from the dual

gravity picture. Note that we take the large-N limit for a fixed value of r and therefore

wM and xMD0 can be treated as a “subsystem” interacting with a thermal bath described

by XM
BH.

As the distance between the bunch and the probe varies, the force should behave as

follows (see figure 16):

• Short distance: the probe merges into the bunch of other D-branes. The off-diagonal

elements wM and w†M condense and the “position” of the probe can not be defined

in a meaningful sense.7 We call this region the “bunch”. The radius of the bunch

can be estimated as rbunch ≡
√〈

1
N

∑9
M=1 Tr(XM )2

〉
when the probe is absent, or

using rbunch ≡
√〈

1
N−1

∑9
M=1 Tr(XM

BH)2
〉

. The latter is a good estimate when N

is large and it can be used in the presence of the probe, with the caveat that the

distribution in the 9-dimensional space will be skewed in the direction of the probe

when the acting force is large (we will comment on this later). In this paper we will

use these two definitions interchangeably.

As we have mentioned above, rbunch is non-zero even at T = 0, due to quantum

fluctuations. At sufficiently low temperatures the classical geometry on the gravity

side may make sense even inside the bunch.

5At short distances, higher order terms can contribute and the off-diagonal elements do not behave

as decoupled harmonic oscillators. Due to this, the simple “zero-point fluctuations” picture may not be

appropriate. However, in [39], in a similar theory (possessing 4 supercharges rather than 16), it was

numerically observed that the higher order terms give only small contributions and “zero-point fluctuations”

picture is rather good.
6This is a refinement of the idea suggested in [32, 33].
7This is similar to the phase transition in a related model studied in [34].
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• Long distance: the force goes as ∼ f(T ) · Nr−8 [7, 36, 37], where the temperature-

dependent prefactor f(T ) disappears at T = 0.

• Intermediate distance: here is where non-trivial dynamics can emerge. Firstly, off-

diagonal elements are not very large and the position of the probe makes approx-

imate sense. As the probe approaches the bunch, open string excitations become

increasingly important and numerical calculations of the force are required in order

to understand this region. This is also where perturbative analysis is expected not

to work. We expect the shape of the bunch to deform in response to the probe. In

analogy with the Moon’s tidal effect on the Earth’s oceans, we expect the bunch to

become prolate.

In order to obtain a better picture of the dynamics at intermediate distances, let us

consider the T � 1 regime where, on the gravity side, α′ corrections will become important.

• When r . T , off-diagonal elements are highly excited and non-perturbative effects

become important. A strong attractive force is expected.8

• When r & T , the off-diagonal elements are exponentially suppressed as they are too

heavy and decoupled from the dynamics, making the one-loop approximation valid.

• The size of the bunch scales as rbunch ∼ T 1/4, see e.g. refs. [32, 33]. Therefore, the

intermediate distance region is separated into two parts: T 1/4 . r . T and r & T .

The emission of eigenvalues from r . T is entropically suppressed with a suppression

factor ∼ e−N , because an O(N) number of off-diagonal elements must be suppressed

simultaneously [32, 33].9 In the large-N limit, the eigenvalues cannot escape once

they reach the region r . T . Following this reasoning, we call r ∼ T the trapping

radius and denote this distance by rtrap. A schematic representation of the various

distances at play is shown in figure 1.

Classical simulations (e.g. see ref. [30]) should be a valid approximation to the full

quantum theory at r � T . Therefore, physics near the bunch, for example the thermal-

ization of a black hole [31], can be understood based on results from classical simulations.

However, the classical approximation breaks down at r & T , because the mass of strings

— the energy quanta — becomes non-negligible compared to the energy scale T . In this

region, for example, quantum effects assist the evaporation of a black hole [32, 33].

The high-temperature picture should fail for T . 1, where rbunch and rtrap become of

the same order. Below that point, we can immediately imagine two natural possibilities:

either rtrap approaches rbunch and they coincide at T = 0 or rtrap coincides with rbunch at

8The same dynamics has been discussed in [35] as ‘moduli trapping’.
9The emission’s suppression is also understood as follows. As we will demonstrate numerically in sec-

tion 3, the attractive force is of order N . The mass of the brane is of order N , and hence the D0-brane

must have an order one velocity in order to escape. However, the typical energy and velocity are of order

1 and 1/
√
N , respectively, because the energy is of order N2 and there are order N2 degrees of freedom

including the open strings.
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XBH

rtrap r

xD0

w

rbunch

Figure 1. A “black hole geometry” in a gauge theory. We also show the probe at xD0 and the

open strings w that connect it to the black hole XBH , and the length scales r, rtrap, and rbunch.

finite temperature. Regardless of the relationship between rtrap and rbunch, the force acting

on the probe should cancel at T = 0 due to supersymmetry.

In the rest of the paper we will show that our numerical results are consistent with

these expectations.

3 The numerical demonstration

In this section, we demonstrate the scenario described above by performing explicit calcu-

lations in the gauge theory. Although the force depends on the relative velocity between

the black hole and the probe, we will concentrate on the case with zero relative velocity

for a practical reason explained below.

To begin, we modify the potential by adding terms which will fix the distance between

XM
BH and xMD0, up to quantum fluctuations. If the black hole is not spinning then by

rotational symmetry we can take the displacement of the probe to be along the M = 1

direction. We add10 to the action

∆L = −c

{(
TrX1

BH

N − 1
− x1D0 − r0

)2

+
9∑

M=2

(
TrXM

BH

N − 1
− xMD0

)2
}
− c′|w1|2 (3.1)

to the Lagrangian, in order to hold the probe D0-brane near the position R = (r0,~0),

where r0 is the coordinate in the M = 1 direction and ~0 is an eight-dimensional vector.

Hence, we are introducing three new parameters, {c, c′, r0}. The last one, r0, is fixed in

each simulation to constrain the distance of the probe, while we vary the first two in order

to check that we are in a regime where the final results are unaffected by our choice (within

our total statistical uncertainty). In particular, the last term is needed in order to remove

the unphysical longitudinal oscillation modes of the open strings, and the value of c′ is

taken to be rather large ∼ 100, and fixed throughout our simulations.

10This deformation manifestly breaks U(N) to U(N − 1)×U(1). In principle, we can make a gauge-

invariant analogue of this deformed potential, for example by fixing the position of the largest eigenvalue

of X1. We chose this specific deformation because it is technically easy.
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An important remark is that, because of the interaction mediated by the off-diagonal

elements and the quantum mechanical nature of the system, the measured distance ac-

cording to our definition in (2.3) will deviate from r0 in the M = 1 direction (and also

slightly in the other directions). In the numerical simulation we measure the following

expectation values

rM=1 ≡
〈

TrX1
BH

N − 1
− x1D0

〉
rM=2 ≡

〈
TrX2

BH

N − 1
− x2D0

〉
, (3.2)

where the second distance, which should be distributed around zero, is only used as a

cross-check to monitor that the deformation in (3.1) is working as expected. In all our

simulations, with varying values of c, we find rM=2 ≈ 0 and therefore we identify the

distance in (2.3) with rM=1. At distance r, the force F between the probe and the bunch

is canceled by the additional force coming from ∆L. Therefore we can define a force for

each value of the input parameters, N , r0 and c, as

F (N, r0; c) = 2c(r0 − r) , (3.3)

up to higher order terms in r0 − r, where, again, r is our primary observable that we

identify with rM=1 in (3.2). Although this should be interpreted as the force at distance

r, we took c sufficiently large so that r and r0 are always very close. Hence we will regard

it as the force at distance r0 when we show it later in the paper. In appendix A we show

a typical example of our numerical simulations and we show the measured observables to

demonstrate in details all the points above.

Note that the force calculated in this manner does not contain the effect of the velocity

of the probe. Note also that the deformation on the dual gravity theory caused by this

additional deformation term is not clear. We have introduced ∆L only as a trick to deter-

mine the force on the gauge theory side. When we discuss the dual gravity interpretation,

we will only consider the standard duality, in the absence of this modification term.

With this deformation ∆L, the configuration is made static. Therefore we can Wick

rotate the system to Euclidean signature in order to measure the force.11 We perform the

path integral in imaginary time by using Monte Carlo methods,12 so the result obtained

corresponds to the canonical ensemble. At large-N , this should give the same result as the

micro-canonical ensemble.

We added the deformation term (3.1) to a lattice simulation code for the Monte Carlo

String/M-theory Collaboration [38]. We studied T = 1.0, 1.5, 2.0 and 3.0 for matrices in

SU(N) with N = 6 to N = 16, and with a variety of lattice spacings determined by L,

going from L = 8 to L = 24. The ’t Hooft coupling λ = g2YMN is set to 1.

11In the Euclidean theory at finite temperature, the gauge field At cannot be set to zero. Instead we

have used the static diagonal gauge, At = diag(α1, α2, · · · , αN ), where αi’s are t-independent and satisfy

0 ≤ αi < 2πT .
12Ofer Aharony suggested this numerical experiment to M. H. in 2009. At that time M. H. did not try

it because the physical picture was not clear to him. M. H. thanks Ofer Aharony for the valuable advice.
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Figure 2. F (N, r0)/(N − 1) at T = 1.0 and T = 2.0. For the largest value of N we only have

measurements at large r0, beyond the region of the peak.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
T

2

0

2

4

6

8

10

12

F p
ea

k

(N
1)

Linear fit
Quadratic fit
N=8 L=10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
T

2

0

2

4

6

8

10

12
F p

ea
k

(N
1)

Linear fit
Quadratic fit
N=12 L=10

Figure 3. The largest value of the force, Fpeak/(N − 1), with N = 8 and N = 12 at fixed lattice

spacing L = 10.

In figure 2 we show the normalized force F/(N−1) as a function of the position r0. The

two panels correspond to two different temperatures, T = 1.0 and T = 2.0, and numerical

results with N = 6, 8, 12 and 16 are included. Note that for the largest value of N , we do

not have results around the peak of the force. From this numerical data of the force, we

can identify interesting features pertaining to different distance regimes.

At short distance, F/(N−1) takes positive values, which confirms the O(N) attraction

region described in the previous section. There is a peak at some distance rpeak, which

we numerically determined as the interval encompassing the three largest values of the

force. We also estimate the value of the maximal force Fpeak/(N − 1) and its systematic

uncertainty, due to finite r0 spacing, using the distance between the maximum and the third

largest force (note that the statistical error is always much smaller than this systematic

error). The maximal force is shown in figure 3 as a function of the temperature for N = 8

and N = 10 at fixed lattice spacing L = 10. Simple extrapolations using linear and

quadratic ansätze indicate that the data is consistent with a null maximal force at T = 0.

In figure 4 we summarize the various distances, or “radii”, at play in the system, for

N = 8, 12 and L = 10. We can see, for example, that the peak of the force rpeak coincides,

within uncertainties, with rbunch. This suggests that the force decreases once the probe

– 8 –
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Figure 4. Plot of rbunch, rpeak and rtrap for L = 10 and two values of N . The rtrap results for

different N values are horizontally displaced for clarity. The values of rpeak and rtrap are only

determined as intervals between different simulated values of r0: the former is determined by the

interval containing the three largest values of the force, while the latter is determined by subsequent

values of r0 where the force changes sign from positive to negative.

merges into the bunch. It is easy to understand this feature of the data: when the probe

approaches the origin from the right on the positive x1 side, outside the bunch, the probe

is pulled only to the left, while in the bunch some D0-branes pull the probe in the opposite

direction. At the center of the bunch r0 ≈ 0, the force should cancel due to rotational

symmetry.

At an intermediate distance, after the peak, the force crosses zero. We identify this

distance with rtrap and we conservatively define an uncertainty related to the interval

containing the first point where the force changes sign from positive to negative. As shown

in figure 4, rtrap defined this way behaves linearly with the temperature rtrap ∼ T at high

temperature. By definition, rtrap cannot be smaller than rpeak. In figure 4, rtrap goes

closer to rpeak as the temperature decreases and it is consistent with rtrap = rpeak ' rbunch
at T = 0.

At r0 > rtrap, the force is repulsive and we will comment on the implications of this

below. After the repulsive region, at very large r0, we expect F/(N − 1) ∼ 1/r80. However,

our data is not precise enough to distinguish this from zero.

In figure 5 we plot the square radius of the bunch in the direction of the probe r2M=1 =

〈 1
(N−1)Tr(X1

BH)2〉 and the one averaged over the orthogonal directions (M = 2 . . . 9). We

note that, when the probe is far away, the two radii are consistent, while r2M=1 quickly grows

to a maximum when the probe moves between rtrap and rpeak. This can be interpreted

as a deformation of the bunch due to the interactions with the probe similar to a tidal

effect; in fact, when the force has a peak at rpeak, the bunch is quite prolate. When

r0 . rpeak, the bunch relaxes back to a spherical shape and ultimately becomes oblate as

r0 vanishes, although one should take care in this regime, as the geometrical interpretation

becomes obscure.
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Figure 5. The squared radius of the bunch in the direction of the probe r2M=1 =

〈 1
(N−1)Tr(X1

BH)2〉 (red) and the squared radius averaged over the eight orthogonal directions,

r2average = 〈 1
8(N−1)

∑9
M=2 Tr(XM

BH)2〉 (green) as a function of the probe position r0. The radius

of the bunch in M=1 is larger than the one in the orthogonal directions once the probe enters rtrap
and grows to a maximum near rpeak. rtrap and rpeak are indicated by vertical colored bands, while

r2M=1 and r2average are shown with error bands representing statistical uncertainties of the Monte

Carlo simulations. The data is for N = 12, L = 10 and T = 2.0, but similar features are present

for all parameters N ,L and T that we studied. The larger error bands on the M = 1 direction

compared to the orthogonal direction reflects the fact that there are 8 orthogonal directions so we

effectively get a larger statistical sample for the orthogonal directions.

Next, let us consider the size of the fluctuation of the off-diagonal elements,

∑
|w|2 ≡ 1

8β

9∑
M=2

∫
dt|wM |2. (3.4)

When |wM | is small enough that O(|w|3) and O(|w|4) terms in the Lagrangian are negligi-

ble, the off-diagonal elements behave as harmonic oscillators. In this case,
∑
|w|2 becomes

N−1
2rN

1+e−r/T

1−e−r/T (for the derivation see appendix B). Note that we have treated the length of

all open strings, connecting the probe brane and the bunch of eigenvalues, to be r; this is

valid only when r is sufficiently larger than rbunch. When taking into account the finite

extent of rbunch, the harmonic oscillator formula should be replaced by
∑N−1

i=1
1

2riN
1+e−ri/T

1−e−ri/T
,

where ri is the distance between i-th D0-brane in the bunch and the probe. Of course,

due to the non-commutativity of the matrices, the “positions” of D0-branes, and hence

the distances, are ambiguous; see [39] for detailed argument with numerical inputs. Here,

for simplicity, we consider a 9-dimensional spherical surface (shell) and a 9-dimensional

spherical volume (ball) of radius rbunch.13

13Adding the probe brane breaks the SO(9) symmetry. At each N,L and T , we could use samples with

the largest values of r0, where the SO(9) symmetry is almost restored, to determine rbunch. In the following,

for our plots at T = 2.0, we used the extrapolated continuum limit value rbunch = 1.96(6) for N = 12 and

rbunch = 1.91(1) for N = 6.
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Figure 6. Values of
(

1
8β

∑9
M=2

∫
dt|wM |2

)
measured on the lattice as a function of r0 for N = 12,

T = 2 and various L. The continuum limit is obtained by extrapolating the finite-L points to

L = ∞ at each r0 where enough values for a robust estimate are present. Even when we can not

take a reliable continuum limit, we show the fixed-L results. The perturbative curve is obtained

following the procedure in appendix B with rbunch = 1.96, N = 12 and T = 2. The continuum

curve at r0 > 10 is agreeing nicely with the perturbative expectation, while an enhancement can

be seen at smaller r0 . 5.

In figure 6, the values of
∑
|w|2 as a function of r0 are plotted together with the

harmonic oscillator value estimated by including the effects of the bunch and of thermal

fluctuations. A continuum limit is also performed by using simulations at different lattice

spacings, from L = 8 to L = 24. For some values of r0 we are unable to reliably determine

the continuum limit, but we still plot the individual results at fixed lattice spacings. First of

all, we can see that
∑
|w|2 in the continuum limit is perfectly consistent with the harmonic

oscillators behavior at r0 ≥ 10. At smaller r0 distances the off-diagonal fluctuations become

larger than the perturbative estimate, which means many open strings are excited and non-

perturbative effects are becoming important.

We emphasize that the notion of “the position of the probe” becomes obscure when

open strings are non-perturbatively excited. Figure 6 and figure 7 suggests that the “ge-

ometry” becomes obscure approximately at r < rtrap. At r < rbunch, the “position” does

not even make sense approximately.

3.1 Comments on the D0/D4 system

The setup discussed above resembles the Berkooz-Douglas matrix model [40], which consists

of the D0-brane matrix model plus a flavor sector which describes the open strings stretched

between D0-branes and D4-branes. This flavor sector is analogous to the off-diagonal

elements in our D0-brane probe setup. The mass of the strings is the distance between

D0-branes and D4-branes, which is analogous to the distance between the bunch and the

probe in our setup. The dual gravity picture is similar to the D3/D7 system [41] which is

often used to study flavor dynamics in AdS/CFT.
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Figure 7. Vaules of
(

1
8β

∑9
M=2

∫
dt|wM |2

)
measured on the lattice as a function of r0 for N = 6,

T = 2 and various L. The continuum limit is obtained by extrapolating the finite-L points to

L = ∞ at each r0 where enough values for a robust estimate are present. Even when we can not

take a reliable continuum limit, we show the fixed-L results. The perturbative curve is obtained

following the procedure in appendix B with rbunch = 1.91, N = 6 and T = 2. The continuum curve

at r0 > 12 is agreeing nicely with the perturbative expectation. An enhancement can be seen at

r0 . 5, though it is less clear compared with N = 12.

This D0/D4 case has been studied in a series of papers [42–44]. The gravity analysis

suggests that, like in the D3/D7 case, a phase transition takes place when the D4 comes

close to the BH and touches the horizon; see e.g. [45–47]. The large-mass (long-distance)

and small-mass (short-distance) regions are “deconfined” and “confined” phases, respec-

tively. (In the holographic QCD setup by the D3/D7, the gluons are always deconfined,

but quarks can still have a confined phase.) The order parameter is the condensation of

the strings and, in the confined phase, strings are highly excited.

In [42–44], some gauge theory results based on Monte Carlo simulations are also shown.

They did not find a nice agreement with the dual gravity calculation at intermediate

distance, but this could be attributed to α′ corrections, given their temperature range

(T = 1.0 and T = 0.8).

4 Possible dual gravity interpretations

In this section, we discuss what kind of possible dual gravity interpretations can be given

for the results or our numerical simulations. Since we have studied only T ≥ 1, which is

rather high temperature, the dual gravity theory is expected to suffer from large stringy

corrections. Hence the geometric interpretations simply inspired by supergravity may not

be appropriate. In spite of this possible shortcoming, let us review the standard duality

picture and discuss alternative interpretations of the emerging geometry.

4.1 The standard duality dictionary

In this paper, we consider the finite temperature dynamics near the ’t Hooft limit (N →∞
with λ = g2YMN fixed), to which the interpretation in the context of the gauge/gravity
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duality [48] can be applied. When all N eigenvalues are clumped up to form a bunch, the

dual geometry is the near-extremal, near-horizon limit of the type IIA black zero-brane,

whose metric in string frame is given by

ds2 = α′

−U
7/2
(

1− U7
0

U7

)
√

240π5λ
dt2 +

√
240π5λ

U7/2
(

1− U7
0

U7

)dU2 +
√

240π5λU−3/2dΩ2
8

 , (4.1)

where U is the radial coordinate times (α′)−1, which has the dimension of [mass], and U0

is the horizon. The ’t Hooft coupling λ has the dimension of [mass]3. Note also that the

curvature radius of S8 depends on the radial coordinate. The dilaton depends on the radial

coordinate as well,

eφ =
4π2λ

N

(
240π5λ

U7

)3/4

. (4.2)

The Hawking temperature is given by

T =
7U

5/2
0

16π3
√

15πλ
(4.3)

and is identified with the temperature of the matrix model.

The energy of the black hole at finite temperature has been studied numerically on

the matrix model side starting in [49]; see also [50–55]. Recent Monte Carlo results in the

continuum and infinite-N limit [55] strongly support the validity of the duality, including

the string corrections.

From (4.1) and (4.3), we can see that the horizon shrinks in the string frame when the

effective dimensionless temperature λ−1/3T is large, while the horizon expands in Einstein

frame due to the non-trivial behavior of the dilaton (4.2). Therefore, the α′-corrections

become larger at higher temperature. At T = 0, the black zero-brane is extremal, i.e. the

horizon and the singularity coincide. However, note that in the ’t Hooft limit, N → ∞ is

taken before T → 0, and then in Einstein frame there is a parametrically large separation

between the singularity and horizon. Note that the horizon scales as U0 ∼ T 2/5.

The probe brane is believed to be described by the Dirac-Born-Infeld (DBI) action in

this spacetime.

4.2 Where is the horizon?

Now we discuss a few possible geometric interpretations and their advantages, disadvan-

tages, and falsifiability. Before going into the details, let us clarify the assumptions re-

garding the holographic dictionary. Firstly, the duality between the real-time theories is

only employed without the deformation term, ∆L. The deformation ∆L was employed

on the gauge theory side just as a numerical trick to determine the force of the original

theory in Minkowski signature without the deformation. In order to relate the original

theory with Minkowski signature to string theory, we need neither the deformation nor the

Euclidean theory.

On the gravity side, we consider the motion of a probe D0-brane in the black zero-brane

geometry. As can be seen from the arguments and calculations in the previous sections,
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we have assumed that the (N − 1)× (N − 1) block XBH corresponds to the black hole, and

the probe D0-brane corresponds to the (N,N)-components of the matrices. We assumed

TrXBH/(N − 1) is the ‘center’ of the black hole, in the sense that the distance between the

probe and the black hole is defined by |TrXBH/(N − 1)− xD0|. This interpretation can be

made precise as long as the stringy effects are not too large; when many of the open strings

are excited (correspondingly, when the N -th row and column take large values), the notion

of the localized probe becomes obscure.

We have calculated the force when the relative velocity between the black hole and the

probe is zero. Without knowing the velocity dependence, we cannot follow the motion of

the probe precisely. Below we will assume that the velocity dependence does not change

the behavior of the system drastically.

For sake of clarity, let us repeat here an important difference between the two tem-

perature regions, T & 1 and T . 1, which we have briefly mentioned in section 2. On the

gauge theory side, there are two different sources of the non-commutativity: the thermal

excitations and the zero-point oscillations. The former corresponds to the actual stringy

excitations on the gravity side, while the latter may not invalidate the classical gravity

picture based on the smooth geometry. These two contributions should become of the

same order at T ∼ 1. Our simulations have been performed for T & 1, where the bunch is

dominated by the thermal excitations. Below, we will consider T & 1 in detail, and then

briefly comment on T . 1.

4.2.1 T & 1: is 0 ≤ r ≤ rbunch the horizon?

Probably the most conservative interpretation in this high-temperature regime is that the

entire bunch, 0 ≤ r ≤ rbunch, describes the horizon of the type IIA black zero-brane. If one

believes that all the information about the black hole is encoded in the horizon, why don’t

we regard the entire bunch, which is the carrier of the information on the gauge theory

side, with the horizon? This interpretation has some other advantages as well:

• If the gauge theory describes the system from the exterior observer’s viewpoint, the

light modes should appear near the horizon due to the redshift. The light strings

between the bunch and the probe, which become massless when the probe reaches

r = rbunch, are natural counterparts. See [34] for a related consideration for a solv-

able model.

• On the gravity side, the dynamics at the horizon naturally explains fast scram-

bling [56]. On the gauge theory side, the non-local interaction mediated by open

strings is crucial for fast scrambling. Then 0 ≤ r ≤ rbunch, where the open strings

condense, is a natural place where fast scrambling can take place. Note however that

this argument may not exclude the possibility that r = rtrap is the horizon, because

the open string excitations are enhanced for r ≤ rtrap.

• In this interpretation, the interior of the horizon cannot be seen from the eigenvalue

distribution. This is an advantage when we consider the theory with Euclidean

signature, whose gravity dual does not have an ‘interior’.
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A possible difficulty of this interpretation is that the physical meaning of the distance

scale rtrap is not clear. It may not be an immediate problem, especially in the D0-brane

case, in which the α′-corrections are inevitable at finite temperature. We will come back

to this point later. Note also that this difficulty might be seen as good news because, in

case one determines the existence/absence of such distance scale by studying the dynamics

of the probe D-brane from string theory, it is possible to test this interpretation.

In ref. [30], the spectrum of the Dirac operator acting on the fermion ψ has been

studied by means of semi-classical simulations. In such simulations, a (N − 1) × (N − 1)

matrix XM
BH was generated and a ‘probe D0-brane’ xMD0 was introduced by hand. The

spectrum of the Dirac operator obtained from the matrix

XM =

(
XM

BH 0

0 xMD0

)
(4.4)

was then studied. Ref. [30] identified the horizon with the distance scale where the Dirac

operator becomes gapless. This length scale is likely to be our rbunch.

4.2.2 T & 1: is rtrap the horizon?

Another possibility is that rtrap is the horizon. This interpretation has some favorable

features:

• When r is slightly above rtrap, the force is repulsive. This is not something expected

in the interior of the black hole. It is natural to regard r > rtrap to be (at least a

part of) the exterior.

• As mentioned above, the off-diagonal elements are highly excited when r < rtrap,

although they do not condense until the probe goes to r ≤ rbunch. Such excitations

can explain why the D-branes are trapped there; see section 2. Furthermore, when a

D-brane is emitted to r > rtrap, the temperature of the black hole goes up [32, 33].

• Note also that, if we identify rhorizon with rtrap, it is consistent with a conservative

stance on possible stringy effects — if stringy effects should become relevant, it should

be at r ≤ rhorizon.

In [57], the force acting on a D0-brane probe outside the horizon was studied on the

gravity side. At the level of supergravity, the force is attractive at any distance. When

O(gs) corrections are taken into account, a repulsive force correction is added near the

horizon. The effects from the α′ corrections and the higher order terms in gs are not

known. If rtrap is the horizon, then our result on the gauge theory side (O(N) repulsion)

suggests that the α′ corrections lead to a repulsion near the horizon. It provides us with

the falsifiability of this interpretation.14

The disadvantages of this interpretation include the following:

• This distance scale makes sense in the Euclidean theory as well. Then this interpre-

tation would mean that the dual Euclidean black hole geometry may somehow knows

the black hole interior, which is against usual lore.

14We would like to thank Y. Hyakutake for the discussion concerning this point.
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• If rtrap is the horizon, then the probe can pass through the horizon within a finite

time in gauge theory. If we then identify the time in gauge theory with the exterior

observer’s time as usual, it suggests that the in-falling observer can go into the black

hole within a finite time as seen from the exterior observer’s clock.15,16

4.2.3 T & 1: is r ≤ rtrap the horizon?

An important and subtle point related to the disadvantages mentioned in the end of sec-

tion 4.2.2 is that, when r < rtrap, many strings are excited, hence it is not clear whether

a smooth geometry can make sense there. (Clearly, for r ≤ rbunch, the geometry does not

make sense.) If a smooth geometry does not make sense, the “interior” of the black hole

may not make sense; it would be better to regard the entire region r < rtrap to be some

‘stringy stuff’ which represents the horizon. Then the disadvantages mentioned above can

be resolved.

4.2.4 T & 1: fuzzball?

Yet another possibility is the fuzzball (see e.g. [58] for a review). In this interpretation,

space itself ends at r = rbunch (or r = rtrap) due to some stringy stuff. At this moment we

do not know how to distinguish this possibility from the scenarios suggested in section 4.2.1

and section 4.2.2.

4.2.5 T . 1: low-temperature region

As we have commented before, at low temperature, a large non-commutativity does not

necessarily mean the breakdown of smooth spacetime, as long as the thermal excitation

on top of the quantum fluctuation is not large; hence the geometry would make sense

even at r < rbunch. The results of ref. [21] and ref. [39] seem to be consistent with this

expectation. In this case it would be natural to expect that the horizon is hidden below

rbunch, as discussed in ref. [21]. It fits well with the standard duality dictionary, in which

the radial coordinate U in (4.1) is identified with r up to a constant multiplicative factor.

Note that the horizon is at U0 ∼ T 2/5, as one can see from (4.3).

As T becomes large, U0 ∼ T 2/5 increases. At T ∼ 1, it can become as large as rbunch
and rtrap. Hence it would be natural to think that rbunch and rtrap at high temperature is

related to the horizon. At this moment this is just a speculation as we have yet to study

this scenario in the low temperature region.

15We would like to thank T. Banks for pointing out this problem.
16A possible resolution in the philosophy of the Matrix Theory Conjecture — everything is made of

eigenvalues — is as follows. Suppose everything, including the in-falling and exterior observers, is made of

eigenvalues. They communicate with each other by exchanging eigenvalues. As the in-falling observer goes

parametrically close to rtrap, say the distance of order 1/N , stringy effects turn on and make it hard to

send eigenvalues to the exterior observer. Then the exterior observer would have to wait longer to receive

the message.
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5 Discussion

In this paper, we have studied the dynamics of eigenvalues in gauge theories, particularly

in the D0-brane matrix model. We have performed explicit numerical calculations in high

temperature region. There are two length scales, which we denoted by rtrap and rbunch,

which may be related to the horizon on the gravity side.

Our study of the high temperature region has pros and cons. The biggest pro is that

the stringy effect is large, and the largest con is that the stringy effect is large. Stringy

effects are something we want to learn from gauge theory, but at the same time, when

the stringy effects are too large the gravity interpretation is not easy. As a next step,

it is necessary to study a parameter region responsible for small stringy effects. There

are two natural approaches: (1) long distance, corresponding to far outside the bunch,

regardless of the temperature, and (2) low temperature inside the bunch. The former is

more straightforward as off-diagonal elements are suppressed. (Note that stringy effects

are large at long distance, but as long as we only look at the dynamics of the eigenvalues

we expect the DBI action to provide an accurate description.) For the latter, we need to

resolve the problem of the non-commutativity. One possible approach is to study D0/D4

system (section 3.1).17 Here, the masses of the flavor sector specifies the position of the D4

at spatial infinity, and if the critical mass agrees with the dual gravity prediction it means

that the D4 probe is actually described by the DBI action. We can also use the D1-probe

in (1 + 1)-d SYM. Fixing the two end points far outside bunch and allowing the middle

of the D1 to fall down into the bunch, the shape of the probe can be determined, (at least

outside the bunch), and it is possible to test if the DBI action is valid there.

In the correspondence between (p + 1)-dimensional SYM and the black p-brane [48],

one can probe the geometry in the same way, by using Dp-branes; see e.g. refs. [23, 24]. An

important difference from the case of D0-branes is that various shapes can appear. Using

lattice simulations, it should be possible to see a minimal surface directly. Other probes

such as the D-instanton can also be useful. An important point, which is not apparent

from the current analysis, is whether or not the horizon depends on the kind of probe.

In the D0-brane quantum mechanics, the Schwarzschild black hole in eleven dimen-

sions is expected to emerge in the M-theory parameter region, which is at much lower

temperatures than the ’t Hooft large-N limit. Also, 4D N = 4 SYM on S3 is expected

to contain low-energy states describing the ten-dimensional Schwarzschild black hole [59].

On the gauge theory side, they should be described by bunches of eigenvalues of scalar

fields (see e.g. refs. [60, 61]) and hence the method proposed in this paper can be applied;

it is very important to study the emergent geometries in these cases. Another important

direction is the time-dependence; see e.g. refs. [32, 33, 35] for previous attempts.
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Figure 8. Map of the c values used at each r0 distance for N = 8, L = 8 and T = 3.0. The

distance where the force becomes negative is r0 ∈ [9, 10].
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A Numerical calculation of the force

In this appendix we present a typical example of the numerical Monte Carlo simulations

described in section 3. We take a representative set of parameters {N,L, T} = {8, 8, 3.0}
where we have explicitly checked how the force F (N, r0; c) = 2c(r0 − r) depends on c,

according to the potential in (3.1).

For N = 8, L = 8 and T = 3.0 we have used several values of c, going from 30 to 120,

across the whole range of “constraining” distance r0. Remember from (3.1) that r0 is the

distance along direction M = 1 where the constraining potential is centered, while c is the

strength of the quadratic potential. A summary of the values of c used for this point in

parameter space as a function of r0 is shown in figure 8.

For larger values of c, the probe will be more tightly constrained around r0 in the M = 1

direction, and around zero in the perpendicular directions. We show the observables rM=1

and rM=2 in the left and right plots of figure 9, respectively. For each panel we report the

Monte Carlo history and the histogram of the observables, after the initial 1000 samples are
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Figure 9. Monte Carlo history (binned in blocks of 40 samples for clarity) and histogram of the

two observables rM=1 and rM=2 defined in (3.2) at r0 = 7.0, for N = 8, L = 8 and T = 3.0.

On each plot we show two values of c, c = 50 and c = 100. The blue dotted line in the left plot

corresponds to r0 = 7, while on the right plot it corresponds to zero.

Figure 10. Force F (N, r0; c) = 2c(r0− r) measured for N = 8, L = 8 and T = 3.0 at two distances

r0 and five values of c. When distance is small (left panel) the value of c for which the force is

independent of c must be larger than c = 30. When the distance is large (right panel) all values of

c that we tried are equivalent within the statistical precision of our measurements.

discarded for thermalization. The plot of rM=1 show that, for a potential centered around

r0 = 7.0 in the M = 1 direction (and for N = 8, L = 8 and T = 3.0) the actual coordinate

of the probe in such direction is very close to r0, and more so for larger c, as expected.

Similarly for rM=2, the distribution of the samples is narrower around zero when c = 100

rather than c = 50, again confirming that our constraining potential is behaving correctly.

For both values of c ∈ {50, 100} the force near distance r0 is the same, because the

expected shift of the probe r0 − r is smaller for larger c, and the two effects cancel in the

force F = 2c(r0 − r). This cancellation will break down if the potential is too shallow or

the force is too strong — if the probe wanders far from the center of its potential. We

observe deviations of this kind, for example, if c = 30 is used at small r0 = 4.0 or r0 = 5.0,

where the force is large and positive. This is clearly exemplified in figure 10. Typically, in

the region where the force is attractive, between r0 = 0 and the transition to a repulsive
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r0=5.0

r0=11.0
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Figure 11. For fixed r0 distance at N = 8, L = 8 and T = 3.0, we plot the probe shift (r0 − r) as

a function of 1/c. The slope of the linear relation defines the force (r0 − r) = F/2 1/c. A deviation

from the linear behavior is present when the force is large and c is too small. The dotted lines

represent the slopes for our typical choices of c = 100 in the small r0 regions and c = 50 in the large

r0 region (circled points).

force, we choose c = 100, while we settle on c = 50 in the region where the force is small

or almost zero.

Another equivalent way to look at this is to investigate the relation between (r0 − r)
and c at fixed r0: our definition of force will be correct in the region of c where the data

is described by a linear function. We show the probe deviation from the center of the

potential (r0 − r) as a function of 1/c in figure 11, for the same four values of r0 reported

in figure 10. We plot the force obtained from the relation F = 2c(r0 − r) with c fixed to

the typical values reported above at different r0. Note again the deviation of the c = 30

measurements from the linear behavior when the force is large.

B Behavior of off-diagonal elements

At long distances, the off-diagonal elements are approximated by harmonic oscillators.

There are 8(N − 1) complex d.o.f., and hence 16(N − 1) harmonic oscillators. By writing

wM,j =
(xM,j+iyM,j)√

2N
, the action for the off-diagonal part can be written as

9∑
M=2

N−1∑
i=1

(
ẋ2M,i

2
+
ẏ2M,i

2
+
r2x2M,i

2
+
r2y2M,i

2

)
up to the higher order terms. Note that we did not rescale r. Hence x and y are harmonic

oscillators with m = 1 and ω = r. The ground state wave function is ∼ e−x
2/2, e−y

2/2.

At sufficiently long distances, |w|2 is approximated by zero-point fluctuations, and 〈x2〉 =

〈y2〉 '
∫
dxx2e−rx2∫
dxe−rx2

= 1
2r , 〈|wM,i|2〉 ' 〈x2〉+〈y2〉

2N = 1
2Nr . Therefore, 1

8β

∑9
M=2

∫
dt|wM |2 '

N−1
N · 1

2r . When the excited modes are taken into account, this expression is modified to
N−1
N · 1

2r ·
1+e−r/T

1−e−r/T .
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Because the bunch of D0-branes has finite size, there is a correction to the above

expression. If one imagines the D0-branes to be distributed in a spherically symmetric

manner, the average distance between them and the probe brane is larger than r. Hence

the fluctuation of the off-diagonal elements should be slightly smaller. We have numeri-

cally implemented two possible distributions for the D0-branes in the bunch to assess the

corrections due to non-zero bunch size:

• an 8-dimensional sphere S8 of radius rbunch,

• a 9-dimensional ball of radius rbunch.

The bunch effects have been taken into account by replacing r with r− rs, where rs is the

position of a point randomly sampled according to the aforementioned two distributions,

and by taking the average of the function over the whole sample. We have checked that

the final result does not change within the needed precision when the number of samples

is large enough.
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