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Weyl uses a U(1) freedom caught between matter and gravity to produce an electromagnetic
potential A and field F = dA. As his potential is curved the electromagnetic field doesn’t vanish,
which is noteworthy—for an exact potential A = dλ is often used to produce nothing at all:
F = d2λ = 0.
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Electricity, gravity and matter

1. Introduction

Weyl’s first gauge theory1 was a generalization of Einstein’s general relativity; his second,2 which
grew out of the first, remained a relativistic theory of curved spacetime, but with a matter field
of two-spinors governed by ‘half’ of the (massless) Dirac equation. The proper orthochronous
Lorentz group SO+(1,3) changes neither the length, origin, spatial parity nor temporal orienta-
tion of spacetime four-vectors, which are accordingly propagated in Weyl’s second theory by a
connection A = A a

µ dxµ ⊗Ta with values in the Lie algebra o(1,3) = LieSO+(1,3). The par-
allel transport of Weyl’s two-spinors, which are subject to a group we can call W(2,C) = {g ∈
GL(2,C) : |detg | = 1}, is given by a connection A with values in w(2,C) = LieW(2,C); the ho-
momorphism h : W(2,C)→ SO+(1,3) is indeed at the core of Weyl’s theory. We’ll see how he
exploits the angular freedom eiλ left by h for “the critical part of the theory”: the derivation of
electromagnetism.3

The standard “gauge principle” or “gauge argument” is sometimes attributed to Weyl.4 Not
only is his argument quite different, but it avoids the exact connection A = dλ and vanishing field
F = d2λ that vitiate the standard argument.

2. The standard gauge argument

One begins with a free field, of two-spinors ψ ∈ C2 for instance. The Lagrangian L = ψ̄ /∂ ψ is
invariant under the global transformation ψ 7→ eiξ ψ , where ξ is constant; /∂ stands for the sum
σ µ∂µ , in which σ0 is the identity and σ k the three Pauli operators. It is then claimed5 that L

should also be invariant under the local transformation

ψ 7→ ψλ = eiλ
ψ , (2.1)

where λ : M→R is a smooth function on the base manifold M which here is an appropriate space-
time. The Lagrangian Lλ = ψ̄λ

/∂ ψλ = ψ̄σ µ(∂µ + i∂µλ )ψ is not invariant since the derivative
∂µ has become ∂µ + i∂µλ . To offset (2.1) we therefore have to subtract the term i∂µλ that alters
L , yielding the covariant differential D = d− idλ with components Dµ = ∂µ − i∂µλ . Writing
/D = σ µDµ , the balanced Lagrangian L ′

λ
= ψ̄λ

/Dψλ will be equal to L for all λ . It is then argued
that an interaction F = dA = d2λ is thereby deduced, whose potential A is dλ . But since d2

vanishes the interaction does too, as has often been pointed out.6

The gauge argument is fertile enough to produce another two Lagrangians,7

L A =−i j∧A =−i jµAµ =−iψσ
µAµψ and LF = F ∧∗F =−1

4
FµνFµν ,

1Weyl (1918)
2Weyl (1929a,b,c). See Straumann (1987), Brading (2002) and Scholz (2005) for more recent accounts.
3Weyl (1929b) p. 348.
4Brading (2002) pp. 3-4, Healey (2007) p. 160 for instance.
5See footnote 5 of Afriat (2013).
6See footnote 9 of Afriat (2013).
7Cf. Weyl (1929c) p. 283.
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Electricity, gravity and matter

where the current density three-form j = εµνστ jµdxν ∧dxσ ∧dxτ/3! corresponds to the vector
with components jµ = ψσ µψ . One can either leave A = dλ in L ′

λ
to offset (2.1), or balance Lλ

with L A
λ
=−iψλ σ µAµψλ in the sum L ′

λ
= Lλ +L A

λ
. A Lagrangian LF derived from the gauge

argument will of course vanish. But once the argument has produced the exact potential A = dλ

and vanishing interaction F = dA = d2λ one can perhaps claim that A is no longer exact. The exact
term dλ would then be added to one that isn’t8 in the gauge transformation

A 7→ A′ = A+dλ , (2.2)

which suggests a new differential D = d− iA subject to

D 7→ D′ = D− idλ . (2.3)

The Lagrangian L ′
λ

is sensitive to both (2.1) and (2.3) individually, but invariant under their joint
action. Since LF is indifferent to (2.3) and has nothing to do with (2.1), the total Lagrangian
L ′

λ
+LF is also indifferent to (2.1) offset by (2.3).

3. Weyl’s argument

3.1 Gravity and electricity

Some history to begin with.
First, there was general relativity. Levi-Civita (1917) saw that the connection determined by

Einstein’s covariant derivative transported the direction of a vector anholonomically, but not its
length, which was left unchanged. This was unfair, protested Weyl—length deserved the same
treatment as direction.9 To remedy he proposed a more general theory that propagated length
anholonomically too. This congruent transport would also be governed by a connection, which
Weyl defined as a bilinear mapping between neighbouring points: linear in the object propagated
and in the direction of propagation. A connection transporting the (squared) length l = g(γ̇, γ̇)
from a = γ(a) to its neighbour10 b = γ(b) along the curve γ : [a,b]→ M would therefore be a
real-valued11 one-form A applied to the direction γ̇ ∈ TaM and multiplied by the initial length
la, yielding the small difference δ l = la− lb = la〈A, γ̇〉 subtracted from la. The final length lb is
la(1−〈A, γ̇〉)—unless a and b are too far apart for γ to remain straight in between, in which case la
has to be multiplied by exp

∫
γ

A instead.
To correct the geometrical injustice of Einstein’s theory, the curvature F = dA cannot vanish—

unlike the three-form dF , which does. Seeing all this, Weyl couldn’t help thinking of the electro-
magnetic four-potential A, the Faraday two-form F = dA and Maxwell’s two homogeneous equa-
tions dF = 0: he had unified gravity and electromagnetism, by mistake!12 And indeed Einstein

8One can wonder what the gauge argument is for if the curved potential A was already there to begin with. The
exact term added in (2.2) has more to do with the invariance of F = dA = dA′ than with the gauge argument.

9See Afriat (2009).
10Which is so close to a it practically belongs to the tangent space TaM; see Weyl (1926) p. 28, Weyl (1931b) p. 52.
11Here the structure group is the multiplicative group R× of dilations, generated by the Lie algebra 〈R,+, [ · , · ]〉 or

rather 〈R,+〉; the Lie product [ · , · ] vanishes since real numbers commute.
12See Ryckman (2005) pp. 149-54, 158.
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would soon point out the mistake: the anholonomy on which Weyl based his theory is not observed
in nature, as we’ll see in §3.2.

Weyl sought to rectify general relativity using the curvature F = dA, which ensured geomet-
rical justice. Differentiation is destructive, or rather irreversible; what (the nontrivial kernel of)
d annihilates is the freedom (2.2) invisible to F = dA = dA′, in the sense that the inverse image
d−1F of F under d is the whole equivalence class [A] = [A+dλ ]λ given by the equivalence relation
A∼ (A+dλ ). If A only served to produce the curvature F , (2.2) would be vacuous; but A appears
elsewhere too, notably in the law of propagation

∇g = A⊗g, (3.1)

which is not indifferent to (2.2), where g is the metric. To make (3.1) invariant, (2.2) therefore has
to be balanced by

g 7→ g′ = eλ g. (3.2)

Such compensation is typical13 of a gauge theory: an invariant expression (here (3.1)) is sensitive to
a first transformation, and to a second as well—but indifferent to the two together, if their variations
are appropriately constrained, and balance one another.

3.2 Einstein’s objection

The tangent of a worldline’s image γ̄ ⊂M only has a direction; the length l of the tangent γ̇ = dγ/dt
is given by the parameter rate ∂γ/∂ t. If the values of the parameter are identified with the readings
of a clock describing γ , the length l giving the proper ticking rate should remain constant—the
hands of a good clock don’t accelerate. But far from remaining constant, lengths in Weyl’s theory
aren’t even integrable: lb(γ) = la exp

∫
γ

A depends on γ—an exact connection A = dµ would of

course give lb = la exp
∫ b

a dµ = la exp∆µ along any path joining a and b, ∆µ being the difference
µ(b)−µ(a) between the final and initial values of µ . In addition to the first clock effect (Langevin’s
twins) already present in Einstein’s theory, Weyl’s theory therefore involves a second clock effect
expressed in the anholonomy of ticking rates.

Einstein objected that nature provides integrable clocks.14 Two clocks trace out a loop γ̄ = ∂ω

enclosing a region ω (without holes): starting from the same point a they describe worldlines γ1,
γ2 that meet at b. They tick at the same rate if A is exact, for then

∮
∂ω

dµ =
∫∫

ω
d2µ vanishes—in

fact (without holes) it is enough for A to be closed,
∮

∂ω
A =

∫∫
ω

dA vanishes too provided dA does.
But if the loop encloses an electromagnetic field F = dA, one of the clocks will tick faster than the
other once they’re compared at b. In any case the theory didn’t work: from the beginning it rested
on an anholonomy not seen in nature.

3.3 Gravity, electricity and matter

But then wavefunctions appeared in the twenties, and Weyl accordingly developed a quantum
gauge theory of gravity, electricity and matter. As long as there was only gravity and electric-
ity, the gauge relation—worth preserving in some form or other—could only hold between them;

13Typical but mysterious, even for Weyl (1931b) p. 54: “insbesondere [ . . . ] Eichfaktor eλ .”
14missives to Weyl dated 15, 19 April 1918
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but now, with a third element, as many compensations were in principle possible, of which only
two were plausible: the old relation (2.2)-(3.2) between gravity and electricity, and a new one be-
tween electricity and the matter wave. With (2.2)-(3.2) the theory would have remained subject to
Einstein’s objection—all the more convincing in the new quantum-mechanical context which pro-
vided an absolute (integrable!) standard of length or ticking rate allowing the distant comparisons
Weyl wanted to prevent in 1918.15 The other possibility was left: (2.2) with a quantum version of
(3.2),16 of which the simplest and most obvious17 was (2.1), where U(1) replaced the multiplicative
group R× of (3.2).18 As the wave function was now part of a four-dimensional space-time theory,
it could no longer obey the Schrödinger equation, which violates relativity by treating space and
time very differently.19 Weyl adopted what amounted to a Dirac equation, but cut in half, without
mass or the associated crisscrossing of component pairs . . .

3.4 Dirac-Weyl theory

We can first take H = p2
1 as the simplified Hamiltonian of a particle whose mass is one-half (and

whose motion is one-dimensional). Momentum p in quantum mechanics is represented by dif-
ferentiation, in the sense that20 p 7→ id, in components pµ 7→ i∂µ . Our quantum Hamiltonian
will therefore be −∂ 2

1 = −(∂/∂x1)2, which means that Schrödinger’s equation i∂tψ = ∂ 2
1 ψ dif-

ferentiates space twice as much as time. But by what should it be replaced? The d’Alembertian
�= ∂ 2

0 −∂ 2
1 −∂ 2

2 −∂ 2
3 and (massless) Klein-Gordon equation �ψ = 0 treat space about the same

way as time, they have the right transformation properties; but � is ‘squared’ and there are reasons
to prefer a wave operator and especially a time derivative21 that aren’t. In seeking a square root√
� Dirac found /∂ = γµ∂µ , where the γµ ’s have the algebraic properties needed to get rid of the

cross terms that appear when squaring. He therefore proposed the Dirac equation (m− i/∂ )ψ = 0
which not only treats the three spatial derivatives γk∂k the same way as the time derivative γ0∂0,
but differentiates with respect to time only once.22 The γµ ’s, which do not commute, cannot be
numbers; they admit for instance the canonical representations

γ
0↔

(
0 σ0

−σ0 0

)
γ

k↔

(
0 σ k

σ k 0

)
, (3.3)

where all four quaternions σ µ : C2→C2 are hermitian and unitary; σ0 is the identity, and the three
traceless operators σ k satisfy 2iσ j = ε jkl[σ k,σ l].

The wave ψ on which the γµ ’s act therefore has four (complex) components—embarras
de richesses which Weyl found most troubling: “doppelt zu viel Energieniveaus”! The anti-
diagonality of the γµ ’s governs the embarrassing excess by swapping the two two-spinors making

15Weyl (1929c) pp. 284, 290; and Weyl (1931b) p. 55: “Die Atomistik [ . . . ] Überzeugungskraft.”
16Weyl (1929c) p. 284: “this principle [ . . . ] position and time.”
17The conservation requirement ‖ψλ ‖2 = ‖ψ‖2 being very natural. And (2.1) isn’t even observable (with respect to

position at any rate); cf. Weyl (1931a) p. 87.
18Weyl (1931a) p. 89, Weyl (1931b) pp. 55, 57
19Weyl (1931a) pp. 187-8
20Weyl (1931a) p. 89
21Weyl (1931a) pp. 188, 193
22Weyl (1931a) p. 190
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up ψ . As the embarrassment is due to the sign that distinguishes between the different interweav-
ings23 produced by the γµ ’s, Weyl deals with it by choosing the only mass—none at all—that
doesn’t distinguish between plus and minus.24 Without mass and cut in half, the Dirac equation
becomes σ µ∂µψ = 0. The reduced wave has two complex components but four (null) real ones:
the three Hermitian quadratic forms jk = ψσ kψ and the squared length j0 = ‖ψ‖2 = ψσ0ψ =√
( j1)2 +( j2)2 +( j3)2.

3.5 Electricity out of gravity and matter

Weyl’s first gauge theory generalized Einstein’s general relativity by adding electricity to gravity—
to which Weyl then adds a further ingredient, matter, in his second theory. But to understand
Weyl’s quantum-mechanical gauge argument one has to begin not with gravity and electricity but
with gravity and matter, for it is out of their group-theoretical relationship that electricity emerges.
We have just seen that the matter Weyl introduces in 1929 is represented by a two-spinor-valued
wavefunction, presumably subject to something like SL(2,C); gravity by an Achsenkreuz (tetrad)
field subject to SO+(1,3). The relationship between gravity and matter might be given by the
2-1 homomorphism between SL(2,C) and SO+(1,3); but what about electricity and the angular
freedom needed to produce it? SL(2,C) is too small.

It is tempting to imagine that Weyl chooses the slightly larger group25 W(2,C) in order to pro-
duce electricity; but the choice seems dictated rather by the object jµ = ψσ µψ which (aside from
representing the four-current density) expresses the homomorphism between matter and gravity—
and is indifferent to phase.26 The 2-1 homomorphism can be understood as the correction of
g ∈ SL(2,C) by h(g) ∈ SO+(1,3) in jµ = h(g)µ

ν (ψgσνgψ). The further U(1) seems to come from
the disappearance of eiλ in ψe−iλ gσ µgeiλ ψ , which Weyl takes to indicate the existence of an an-
gular degree of freedom caught between gravity and matter. One can also see the loose angle by
writing h(g) = h(eiλ g) ∈ SO+(1,3) or h−1(h(g)) = [eiλ g]λ ⊂W(2,C). Infinitesimally we have the
Lie algebras o(1,3) = sl(2,C) and w(2,C) = sl(2,C)⊕ iR12 (where iR = u(1) = LieU(1)), and
the homomorphism h : w(2,C)→ o(1,3); the free phase eiλ ∈ U(1) becomes the additive freedom
iλ12 ∈ iR12 in h(g) = h(g⊕ iλ12) ∈ o(1,3) and h−1(h(g)) = [g⊕ iλ12]λ ⊂ w(2,C).27 Once the
freedom is there, surely it deserves propagation!28 So a connection A is needed; and why should it
be flat?

23Symplectic for time but simply ‘NOT’ for space. The interweaving produced by a purely NOT γ0 would be gra-
tuitous; the symplecticity given by the sign difference is essential—with respect to the three γk’s with merely NOT

anti-diagonality.
24Weyl (1929c) pp. 292, 294
25Weyl (1929b) p. 333: “man beschränke sich auf solche lineare Transformationen U von ψ1, ψ2, deren Determinante

den absoluten Betrag 1 hat.”
26Weyl (1929c) p. 291, Weyl (1931a) p. 195: “Aus der Natur, dem Transformationsgesetz der Größe ψ ergibt sich,

daß die vier Komponenten ψρ relativ zum lokalen Achsenkreuz nur bis auf einen gemeinsamen Proportionalitätsfaktor
eiλ durch den physikalischen Zustand bestimmt sind, dessen Exponent λ willkürlich vom Orte in Raum und Zeit ab-
hängt, und daß infolgedessen zur eindeutigen Festlegung des kovarianten Differentials von ψ eine Linearform ∑α fα dxα

erforderlich ist, die so mit dem Eichfaktor in ψ gekoppelt ist, wie es das Prinzip der Eichinvarianz verlangt.”
27Weyl (1929b) p. 348: “Dann ist aber auch die infinitesimale lineare Transformation dE der ψ , welche der in-

finitesimalen Drehung dγ entspricht, nicht vollständig festgelegt, sondern dE kann um ein beliebiges rein imaginäres
Multiplum i ·d f der Einheitsmatrix vermehrt werden.” See also Weyl (1929c) p. 291.

28Again, Weyl (1931a) p. 195: “infolgedessen [ . . . ] verlangt.”
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Even if the (electromagnetic) ‘structure’ group of Weyl’s second theory is no longer R× but
U(1), the two Lie algebras are the same since the groups are locally equivalent; characterized
infinitesimally (and not integrally), the connection A propagating λ is the same as the length con-
nection we saw in §3.1. Here the infinitesimal variation δλ will be linear in λ and in the direction
γ̇ . Applied to the direction γ̇ , the one-form A yields the infinitesimal generator 〈A, γ̇〉, which then
multiplies λ to produce the increment δλ = λ 〈A, γ̇〉.29 So there’s a connection for tetrads, another
for spinors, and a third one—A—for the residual U(1) freedom between tetrads and spinors. The
values 〈A, γ̇〉 are in the Lie algebra u(1) of the group U(1) caught between gravity and matter. The
values 〈A , γ̇〉=A r

µ γ̇µTr of the gravitational connection A =A r
µ dxµ⊗Tr are in o(1,3), the values

〈A, γ̇〉= Ar
µ γ̇µUr of the material connection A= Ar

µdxµ ⊗Ur in w(2,C).
The whole point of allowing the propagation of λ to depend on direction is to admit an-

holonomies. So the curvature F = dA of A will not necessarily vanish; and since F is exact, it is
also closed: dF = d2A= 0. In F , A and dF = 0 Weyl (again) saw30 the electromagnetic field, its po-
tential and Maxwell’s two homogeneous equations (which are the same—up to Hodge duality—as
the other two, away from sources).

3.6 The curved electromagnetic connection

Nothing in Weyl’s argument indicates a flat connection. The electromagnetic connection of Weyl’s
1918 gauge theory not only isn’t necessarily flat; it has to be curved (as a matter of geometrical
justice)—and we have seen that the electromagnetic connection of Weyl’s 1929 theory is its direct
descendant.

We have a theory of gravity, matter and electricity, with connections for all three. Gravity and
matter are clearly governed by curved connections; why not electricity too? The three connections
are related by their Lie algebras LieW(2,C) = LieSL(2,C)⊕LieU(1); the equation SL(2,C)×
U(1) =W(2,C) makes more sense locally than globally, where it becomes a 2-1 homomorphism.

SO+(1,3) = G and W(2,C) = G′ are just ‘structure’ groups, acting at a generic spacetime
point. What about the corresponding gauge groups G , G ′ acting on all of spacetime M? In special
relativity “there’s just a single tetrad”; so there’s just one SO+(1,3) = G = G , one W(2,C) =
G′ = G ′, and above all one eiλ .31 But with spacetime curvature the tetrad varies,32 and so does λ .
This could mean the following: Only a flat gravitational connection allows the assignment of the
same tetrad to distant points—only with flatness can there be global constancy or ‘sameness.’ With

29Weyl (1929b) p. 348: “Zur eindeutigen Festlegung des kovarianten Differentials δψ von ψ hat man also außer
der Metrik in der Umgebung des Punktes P auch ein solches d f für jedes von P ausgehende Linienelement

−→
PP′ = (dx)

nötig. Damit δψ nach wie vor linear von dx abhängt, muß d f = fp(dx)p eine Linearform in den Komponenten des
Linienelements sein. Ersetzt man ψ durch eiλ , so muß man sogleich, wie aus der Formel für das kovariante Differential
hervorgeht, d f ersetzen durch d f − dλ .” See also Weyl (1929c) p. 291. Weyl’s notation is confusing: whereas the
one-form dλ (which is a differential) is necessarily exact, d f (my A) isn’t.

30Weyl (1929b) p. 349, Weyl (1929c) pp. 291-2
31Weyl (1929b) p. 348: “In der speziellen Relativitätstheorie muß man diesen Eichfaktor als eine Konstante ansehen,

weil wir hier ein einziges, nicht an einen Punkt gebundes Achsenkreuz haben.”
32Weyl (1929b) p. 348: “Anders in der allgemeinen Relativitätstheorie: jeder Punkt hat sein eigenes Achsenkreuz

und darum auch seinen eigenen willkürlichen Eichfaktor; dadurch, daß man die starre Bindung der Achsenkreuze in
verschiedenen Punkten aufhebt, wird der Eichfaktor notwendig zu einer willkürlichen Ortsfunktion.” See also Weyl
(1929c) p. 291.
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curvature it becomes meaningless to say that tetrads at distant points are the same. Where tetrads
cannot remain constant, one has to suppose they vary. A flat electromagnetic connection alongside
a curved A can of course be countenanced, but it is in the spirit of Weyl’s argument for both to be
flat or both curved. So if the tetrad varies (anholonomically), λ might as well too.33

4. Final remark

Whatever its idiosyncrasies, Weyl’s gauge argument at least avoids the exact connection A = dλ

and vanishing curvature F = d2λ = 0 produced by the standard argument.

I thank Ermenegildo Caccese, Johannes Huisman, Marc Lachièze-Rey, Thierry Levasseur and Jean-
Philippe Nicolas for many valuable conversations and clarifications.
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