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Abstract

This paper is aimed at introducing an algebraic model for physical scales and

units of measurement. This goal is achieved by means of the concept of “positive
space” and its rational powers. Positive spaces are “semi—vector spaces” on which
the group of positive real numbers acts freely and transitively through the scalar
multiplication. Their tensor multiplication with vector spaces yields “scaled spaces”
that are suitable to describe spaces with physical dimensions mathematically. We

deal also with scales regarded as fields described by sections of “scale bundles”.
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1 A mathematical approach to physical scales

1.1 Informal approach to scales in physics

Units of measurement, coupling constants, scales and scale dimensions are very stan-
dard and basic objects in all fields and formulations of physics. Usually, these objects
appear in a very informal way from a mathematical viewpoint: so, we find a gap.

On one hand, nowadays many areas of physics have been formulated in a rigorous
and modern mathematical language, in particular in a geometric and algebraic language.
Thus, most objects of physics are described by specific and well defined mathematical
objects, such as manifolds, bundles, connections, functions, tensor fields and so on.

On the other hand, the concept of physical scales are usually treated intuitively in
standard literature. Actually, a rigorous mathematical analysis of relations between such
objects can be found in the literature concerning the dimensional analysis. But, still,
it is usually omitted to specify the notion itself of physical scale in terms of algebraic
objects in a way mathematically homogeneous to other geometric objects such as bundles
representing physical fields.

The reason of this gap is that every physicist knows how to deal with scales in a
practical way, hence he feels that an intuitive approach is sufficient for his purposes.

1.2 Examples of scales in physical literature

Just as an example of the standard way of dealing with units of measurement and
related questions in physics, we quote a few well known textbooks among possible thou-
sands, which are well established references in the area of physics they deal with.

The book “Classical electricity and magnetism” by W.K.H. Panowsky and M. Phillips
[27], which is a good classical reference in the field of electromagnetism, provides a valu-
able comparison between different systems of measurement. The discussion on the ex-
perimental definitions of units of measurement is fine. But, as usual in the literature,
an introduction of these objects as well defined mathematical concepts is not present, in
spite of the thorough mathematical description of the electromagnetic field in terms of
tensors.

The book “Gravitation” by C.W. Misner, Kip S. Thorne and J.A. Wheeler [25], which
is a well established reference in the field of General Relativity, takes a systematic care
of units of measurement and dimensions from the point of view of physics. Here, these
aspects of the theory are analysed in detail by means of instructive intuitive operative
reasonings. On the other hand, this analysis appears to be not completely satisfactory
from a mathematical viewpoint because the treatment of units of measurement is not
homogeneous to the geometric setting of the full theory of General Relativity, which makes
an essential use of tensor algebra. For instance, due to an insufficient distinction between
tensors and their components, the book assigns a dimension to the curvature tensor;
clearly, this cannot be true from a mathematical viewpoint, because the curvature tensor
is obtained from the connection by a differential operation which does not involve any
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4 1 A MATHEMATICAL APPROACH TO PHYSICAL SCALES

unit of measurement. So, the reader has to perform additional appropriate interpretations
in order to achieve the final correct statements.

Also in quantum mechanics physical scales play a role and further aspects arise; for
instance, should the wave functions carry a dimension and how should it be included?
Just as an example concerning the usage of units of measurement in quantum mechanics,
see the book “Mécanique quantique” by C. Cohen—Tannoudji, B. Diu and F. Laloé [8].

We recall that in theoretical physics it is customary to set some fundamental constants
equal to 1, so skipping the problems related to units of measurement. This usage is

convenient in some respects, but it can mask some problems. As a possible reference, see,
for instance, the book “Quantum Fields” by N.N. Bogoliubov and D.V. Shirkov [3].

1.3 Examples of scales in specialised physical literature

In some specialised fields of physics, units of measurement play a more explicit and
protagonist role. In particular, we quote the following topics.

The “conformal field theory” is an important theoretical area of physics which deals
with physical fields with an undetermined scale factor; in particular, Weil’s theory and
its developments belong to this area (see, for instance, [21]).

A stimulating and deep debate deals with the problem of understanding which is
the number of fundamental constants in physics from a theoretical and experimental
viewpoint (for instance, see [10, 23]).

The theory of “scale models” and “dimensional analysis” is an applicative field which
requires a theoretical approach (see, for instance, [2]).

There is a research topic in physics which investigates the possibility that the funda-
mental “coupling constants” be not really constant and might be variable with respect
to time and space (see, for instance, [32]).

There is another branch of physics devoted just to the best experimental definitions of
the units of measurements; a continuous research in this field provides a periodic updating
in agreement with the progress of the measurement technique (see, for instance, [9, 20]).

Actually, even in these specialised fields dealing specifically with physical scales, the lit-
erature does not pay sufficient attention to the mathematical foundations of these objects.
However, the theoretical aspects of these topics could be advantageously reformulated in
terms of a well defined mathematical notion of scales and scale bundles.

1.4 Scales as positive spaces used by some authors

Actually, in recent years, a series of papers (see, for instance, [7, 16, 17, 18, 24, 31, 33,
34]) has proposed a geometric formulation of covariant classical and quantum mechanics
including also a formal mathematical setting of physical scales and units of measurement
in an original algebraic way.

In another series of papers (see, for instance, [4, 5, 6]) a formal mathematical setting of
physical scales has been used in the context of spinors. In particular, a nice pure algebraic
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1.5 PHYSICAL MOTIVATION AND MATHEMATICAL NATURE OF POSITIVE SPACES )

procedure derives a distinguished space of scales from a complex space of dimension 2
and recovers the full basic stuff of spinors in this context.

The above approaches are based on the notion of “positive space” and its rational
powers, as a mathematical model for the spaces of scales and units of measurement.
Then, tensor products between positive spaces and vector bundles arising from spacetime
yield “scaled objects”, i.e. objects with physical dimension.

1.5 Physical motivation and mathematical nature of positive
spaces

The starting intuitive idea suggested by physics for this algebraic idea of “positive
space” is quite simple.

Let us consider the set of possible scales of measurement of a certain kind: just to fix
the idea, let us refer to lengths. Clearly, all possible lengths can be naturally ordered in
such a way to constitute a semi-straight line. Then, we wish to emphasise the algebraic
properties of such a set and the algebraic operations which can be performed on it. In
fact, our purpose is to obtain a structured mathematical object which can be “joined” in
a suitable way with vector spaces describing other objects of physics equipped with “scale
dimension”. It seems quite natural to focus the attention on the sum of two lengths and
on the product of a positive real number with a length. Moreover, we emphasise the fact
that every length can be represented by a real number in a unique way, once we have
chosen a unit of measurement of lengths (i.e. just one length); indeed all such units of
measurement are, in this respect, good choices on the same footing. Such a representation
of the set of lengths by means of the choice of a unit of measurement fully preserves the
algebraic properties and operations selected above. On the other hand, we do not want
to confuse the set of lengths with the set of positive real numbers IR*, because we do
wish that our theory be independent on the choice of any unit of measurement.

These simple observations lead us to the definition of a positive space as a semi-vector
space on which the group of positive real numbers acts freely and transitively.

Clearly, considerations of this kind can be performed on any other set of scales of
measurement, such as time intervals, masses, charges, and so on. Actually, in some of the
above sets also negative scales might have a meaning, hence might lead to the more usual
concept of oriented 1-dimensional vector space. But, such a space can be always recovered
from a positive space by means of a tensor product with the space of real numbers IR
and the concept of positive space turns out to have a more fundamental character for our
purposes (for instance, with respect to the concept of rational powers).

Thus, the concept of positive space is achieved in a very intuitive way and turns out
to be a rather simple mathematical notion. However, what is not so trivial is the rigorous
mathematical development of this notion with respect to tensor products and rational
powers.
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6 1 A MATHEMATICAL APPROACH TO PHYSICAL SCALES

1.6 Advantages of this approach

This language for scales and units of measurement works pretty well in all fields
of physics, as can be shown by the above papers. Even more, in some cases, a precise
mathematical language on the scales allows us to achieve new results. For instance, in
the paper [16] the uniqueness of the Schrodinger operator has been proved under the
hypothesis of covariance. Here, the covariance is understood in a broad sense: namely, as
invariance not only with respect to observers and coordinates, but also with respect to
units of measurement. Indeed, in this context, these two aspects of the covariance appear
on the same footing in virtue of our language.

1.7 Concrete use of positive spaces in our papers

In order to give an idea of how the language of scales has been implemented in the
above series of papers, we sketch a few hints.

One starts by assuming the basic positive spaces of scales of time intervals T, of
lengths L and of masses M.

In non relativistic classical mechanics, the “absolute time” is a 1 dimensional affine
space associated with the tensor product T ® IR . In the standard language, the “metric”
is usually assumed to be a non degenerate symmetric section g : P — T*P @ T*P |
where P is the the configuration space of the theory. Actually, this section g is able to
measure the real valued scalar product of vectors only if one fixes the unit of measurement;
indeed, this is usually done by an additional choice expressed informally “on a side”.
Unfortunately, in the usual language, later one can use only informal intuitive reasonings,
in order to process this side information. Whereas, according to our language, one assumes
the “metric” to be a non degenerate symmetric section g : P — L? @ (T*P @ T*P).
Thus, such a metric measures the scalar product of vectors valued into the “scaled space”
L? ® IR. Then, any choice of a unit of measurement of lengths allows us to transform
the “scaled metric” g into the “unscaled metric” g. This can be done not only by means
of an intuitive reasoning, but through an algebraic contraction. Actually, such a choice
of unit of measurements is needed only eventually in some very concrete descriptions of
experiments; for most purposes one can carry on such an “abstract” formulation of the
metric without any difficulties or complications.

In relativistic mechanics, one can proceed in a similar way. In this case, T ® IR is
no longer the vector space associated with the absolute time, but it just describes the
proper time intervals of any absolute motion. Moreover, the speed of light is assumed to
be an element ¢ € L® T*. Indeed, it becomes a number only after having chosen units of
measurement of time intervals and of lengths. Then, the Lorentzian metric can be defined
as a section g : E — L2 @ (T*E @ T*E), or, equivalently, as the section g/c* : E —
T? ® (T*E ® T*E), where E is spacetime. Again, such an “abstract” formulations of ¢
and g can be carried on in the theory without any difficulties or complications.

An analogous approach can be used for the electromagnetic field and all other fields
involved in the theory, by introducing them as scaled fields.
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1.8 NEED OF A PAPER DEVOTED TO THE MATHEMATICAL FOUNDATIONS 7

Moreover, in order to write laws of physics by comparing scaled tensors with different
scale factors, one needs to introduce some coupling scales belonging to the tensor product
of one scale times the dual of the other scale.

Once the basic scaled objects of the theory are introduced, then the standard algebraic
and differential operations usually performed on tensors can be immediately extended to
“scaled tensors”. So, by using essentially the usual theoretical constructions, we obtain
automatically the information on the scale dimension of any new object derived from the
starting scaled objects postulated in the theory. In particular, we stress that the Levi—
Civita connection, its curvature tensor and the Ricci tensor turn out to be automatically
unscaled objects.

Thus, in a sense our procedure starts by taking into due account the essential “con-
formal” nature of physical theories; actually, in our approach each conformal object is
described not by a family of objects defined up to a (positive) real factor, but as a unique
object valued in a unique scaled space. The difference between the standard language and
our viewpoints is more than a trivial formality. Indeed, several advantages arise when we
use our approach in a concrete development of a specific theory; we just quote the result
on the uniqueness of the Schrédinger operator proved in [16].

1.8 Need of a paper devoted to the mathematical foundations

In the papers [4, 5, 6, 7, 16, 17, 18, 24, 31, 33, 34] the theory of positive spaces is
sketched very briefly. Actually, only the practical basic rules concerning these spaces are
declared without any true mathematical justification. So, a comprehensive mathematical
foundation of this subject is required in order to fill in this gap.

Indeed, this subject deserves a mathematical paper, as the present one, because a
clear and rigorous mathematical treatment of the tensor products and the rational powers
concerning positive spaces are more subtle than it could appear at a first insight.

Thus, the present paper is devoted to the mathematical foundations of the concepts
of scales, scale dimension and units of measurement.

1.9 Positive spaces and tensor products

The starting concept of positive space is quite simple and intuitive. However, subtle
mathematical problems arise when we look for a rigorous construction of the tensor prod-
uct between positive spaces, of the tensor product between a positive space and a vector
space and of the rational powers of a positive space.

We would like to follow as far as possible the modern algebraic definition and explicit
construction of tensor product between vector spaces via a universal property in a certain
category (see, for instance, [13]). Indeed, such a definition of tensor product works for
positive spaces. But, a direct rephrasing of the effective construction of this object is not
possible because of the fact that difference operation is lacking. So, we cannot achieve
the tensor product between positive spaces directly. One has first to introduce the tensor
product between a positive space and a vector space, exploiting the linear structure of the
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8 1 A MATHEMATICAL APPROACH TO PHYSICAL SCALES

second one. In particular, the tensor product of a positive space with the vector space of
reals generates a “universal vectorialising” space of the positive space. Eventually, we can
define the tensor product between two positive spaces by considering the tensor product
of one with the universal vectorialising space of the other one and by taking into account
the natural inclusion of this positive space into its universal vectorialising space.

We observe that in a more general setting of semi—modules the tensor product can be
defined without difference operation (but with zero element), [12, 35]. But this approach
is far too general for the concrete purpose of the algebraic model of physical scales.

For the definition of rational power of a positive space we try to rephrase the usual
properties holding for positive real numbers. But, we need a construction which does not
depend on the choice of a unit of measurement. Then, we are led to introduce a rather
formal and abstract algebraic approach, which does the job.

The tensor product techniques developed here for positive spaces can be generalised
to a larger class of semi—vector spaces and semi-modules with higher dimension. We have
studied this subject in [19]. However, we think that the theory developed here is suitable
and well sized for the purposes of the present paper devoted to physical scales.

1.10 Possible use of positive spaces in physics

By proceeding in an analogous way, the language of scales based on positive spaces
can be conveniently used in all theories of physics. In order to formulate a physical theory
according to the language proposed in this paper one should start by selecting the basic
scales involved in that theory.

The formal mathematical language should not discourage at all physicists to use this
scheme. In fact, on one hand, a rigorous mathematical foundation of positive spaces
involves subtle difficulties, which require a theoretical care. On the other hand, once
the physicist has checked that the formal definitions and statements concerning these
objects are mathematically solid, he can forget for ever these formalities and work with
a technique of language which is simple and automatic in practice.

Even more, the physicist who is inclined to trust the mathematical foundations of the
theory needs not to study it thoroughly. It is sufficient to use the standard rules of tensor
products, of rational powers and the relation between duality and inversion for positive
spaces, as it is explained in the present paper. This reproduces the standard treatment
of units in mathematical models, as can be seen by close comparison with dimensional
analysis (see below). Thus, for practical purposes, the positive spaces can be treated as
if they were positive numbers, in many respects.

So, the language proposed here, on one hand is mathematically well established and
on the other hand reflects very closely the standard usage.

1.11 Example: the interplay with dimensional analysis

The dimensional analysis (here, we use [2] as a reference) is the branch of mathe-
matical physics which studies the properties of physical models which depend on units of
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1.12 PERSPECTIVES AND FURTHER DEVELOPMENTS 9

measurement.

Many of the foundational ideas of dimensional analysis become very natural facts
in our algebraic theory of the units of measurement. Moreover, some basic results of
dimensional analysis provide further motivation for the choice of rational tensor powers
as scale spaces. Below, we list the main correspondences between the two theories.

A class of systems of units [2, p. 14] is, in our language, the choice of basic spaces
of scales (like time, length, mass, etc.). The basic spaces of scales can then be raised to
a rational power and multiplied tensorially between themselves in order to obtain scale
spaces.

The dimension function, or dimension, of a physical quantity [2, p. 16] is the expression
of the physical quantity with respect to a given scale basis (see Section 3). Such an
expression is always a rational function (provided that the quantity depends only on the
chosen basic spaces of scales).

The independence of dimensions for some quantities [2, p. 20] is just the property of
those quantities of being a scale basis (see Section 3), i.e., the tensor product of their
rational powers generates scales.

It can be proved [2, p. 17] that the dimension function is always a power-law monomial.
This justifies our algebraic setting: we obtain a rigorous formulation of these powers via
tensor products and semi-linear duality. On the other hand, polynomials or power series
would require additional constructions which seem not to be justified in view of the above
property of the dimension function. Indeed, when in physics formulas containing power
series occur, they always involve real numbers, i.e. unscaled quantities (usually called
“pure numbers”), obtained as ratio of two scales belonging to the same positive space.
Often one of the two scales plays the role of a variable and the other one is regarded as
a fixed distinguished scale.

Any function that defines some relationship between quantities is homogeneous; this
is a proposition from [2, p. 24]. It is a natural consequence of our setting that functions
between scale spaces are rational, hence homogeneous. This property leads to the II-
theorem of dimensional analysis [2, 26] (concerning the independence of dimensions),
which follows in our approach as an algebraic consequence, rather than an analytic one.

Summarising, after realising that physical quantities transform with a power-law
monomial, it is natural to implement scales in physical models as rational tensor powers,
and maps between them as rational maps.

1.12 Perspectives and further developments

Besides the formulation of any standard theory in physics, the language of scales
proposed in the present paper could be convenient for further specific purposes.

In the final part of our paper we discuss the bundles of positive spaces based on
spacetime and their semi-linear connections. These bundles can be fruitfully used as a
mathematical contribution to the current debate in the community of physicists concern-
ing the question whether the “physical constants” are really ”constant” [32]. Conformal
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10 1 A MATHEMATICAL APPROACH TO PHYSICAL SCALES

field theories, briefly described in the last sections in our context, are just an example of
theories of this type.

Indeed, we believe that the clear mathematical setting provided by the language of
scales would help researchers to focus on physical problems.

1.13 Summary of the present paper

The sections of the present paper are organised as follows.

In section 2, we start by introducing “positive spaces”. Roughly speaking, they are 1-
dimensional “semi-vector” spaces. This concept is not new, and has been used in contexts
which differ a lot from the present one: for instance, see [22] for the analysis of some
properties of Zy—valued matrices, [11] for problems of fuzzy analysis, [28] for problems
of measure theory, [29, 30] for topological fixed point problems. Then, we introduce the
sesqui—tensor product of a semi—vector space with a vector space and the semi-tensor
product between semi-vector spaces. These concepts are treated analogously to tensor
products of vector spaces, but an additional care in details is strictly necessary. Moreover,
we introduce the rational powers of a positive space.

In section 3, we show how positive spaces and their rational powers can be used as scale
spaces in a broad class of physical theories. We start by assuming three positive spaces,
T, L and M as representatives of the spaces of time, length and mass scales. Then, we
describe all possible derived scales in terms of semi—tensor products of rational powers of
T, L and M. Next, we introduce the “scaled objects”, by considering the sesqui—tensor
product of a positive space of scales with a vector bundle arising from spacetime. We also
sketch differential calculus with scaled objects. Then, we introduce bundles of positive
spaces based on spacetime. Sections of these bundles represent variable scales; problems
involving the variability of physical constants find here a natural setting. These bundles
can be equipped with geometric structures, like connections. We show that this setting
is adequate to reformulate conformal field theories. Instead of defining a conformal field
as a family of fields defined up to a numerical factor, we consider the tensor product of
a scale bundle with the bundle of the basic field and define a conformal field just as a
section of this tensor bundle.
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11

2 Positive spaces

Positive spaces are defined through the concept of semi-vector space. A semi-
vector space is defined through axioms which are similar to those of vector spaces
but with the field of scalars replaced by the semi-field IR™ [14].

We will use these spaces for achieving an algebraic model of scales and units of
measurement.

2.1 Semi-vector spaces

Let IR™ C IR be the subset of positive real numbers and let us set IR := IR" U {0} .

The set IRT is a semi—field [14] with respect to the operations of addition and multipli-
cation. This means that (IR", +) is a commutative semi-group, (IR",-) is a commutative
group and the distributive law holds. Note that, for each x,y,2 € IR", the “cancellation
law” holds: if t + 2=y + 2z, then z = y.

2.1 Definition. A semi-vector space (over IR") is defined to be a set U equipped
with the operations + : U x U — U and - : RY x U — U, which fulfill the following
properties, for each 7,5 € R", u,v,w € U,

u+t (v+w)=(ut+v)+w, utv=v+u,
(rs)u=r(su), lu=u, r(u+v)=ru+rv, (r+s)u=ru+su.0

For instance, any vector space is a semi—vector space and the set of linear combinations
over R of n independent vectors in a vector space is a semi-vector space.

Despite the fact that some authors (see [11]) require that a semi—vector space has a zero
vector, here we do not make such a general assumption. On the other hand, interesting
properties arise for semi-vector spaces with a zero vector.

Let U be a semi—vector space.

An element 0 € U is said to be neutral if, for each u € U , we have 0 +u = u.

If two elements 0,0’ € U are neutral, then they coincide; in fact, we have 0/ = 040" =
0+0=0.

If 0 € U is a neutral element, then, for each » € IR, we have 70 = 0 in fact, for
cachu € U, we have rO+u =r(0+ 2u) =r(tu) =u.

A semi—vector space U equipped with neutral element 0 turns out to be also a semi-
vector space over IR{ , by setting Ou = 0, for each u € U .

2.2 Definition. A map f: U — V between semi—vector spaces is said to be semi—
linear if, for each u,v € U, r € R", we have f(u+v) = f(u)+ f(v) and f(ru) = rf(u).O

If U and V are semi—vector spaces, then we obtain the semi—vector space
s-Lin(U,V) :={f:U — V| f is semi-linear} .
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12 2 POSITIVE SPACES

In particular, if U is a semi—vector space, then its semi—dual is defined to be the
semi—vector space

U* :=sLin(U,R").

2.2 Positive spaces

The positive spaces are the basic objects of our approach.

2.3 Definition. A positive space is defined to be a semi-vector space U, such that
the product - : R" x U — U is a left free and transitive action of the group (IR*,-) on
U.O

Thus, a positive space can be regarded as a “generalized affine space” associated with
the group (IR, ).

Let us consider a positive space U and show some immediate consequences of the
definition.

The positive space U has no neutral element 0. In fact, the action - : R" x {0} — U
would be non transitive.

Let b € U be any element. Then, each v € U can be written in a unique way as

u=(u/b)b, with  u/be R™T.

Moreover, the map U — IR : u + u/b turns out to be a semi-linear isomorphism.
The above fact and the cancellation law for IR™ imply the cancellation law for U : if
u, v, w € U, then u +w = v 4+ w implies u = v.

If U and V are positive spaces, then the semi—vector space s-Lin(U, V) turns out to
be a positive space.

In particular, the semi-vector spaces U* := s-Lin(U,IR") and s-Lin(U, U) turn out to
be positive spaces.

Even more, each semi-linear map f : U — U turns out to be of the type f:u— ru,
with r € IR"; hence it is a semi-linear isomorphism. Indeed, this fact yields a natural
semi-linear isomorphism s-Lin(U, U) ~ R™".

2.3 Sesqui-tensor products

The tensor product between a positive space and a vector space can be achieved
by rephrasing the procedure for the tensor product of vector spaces. However, it
requires an additional care in order to distinguish the role of semi-linear and linear
maps. Because of this delicate aspect, we provide a detailed statement and proof,
for the convenience of the reader.

Let U be a positive space and V' a vector space.
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2.3 SESQUI-TENSOR PRODUCTS 13

2.4 Definition. A (left) sesqui—tensor product between U and V is defined to be a
vector space U® V along with a map ® : U x V — U® V, which is semi-linear with
respect to the 1st factor and linear with respect to the 2nd factor and which fulfills the
following universal property: if W is a vector space and f: U x V — W a map which is
semi-linear with respect to the 1st factor and linear with respect to the 2nd factor, then
there exists a unique linear map f: U®V — W, such that f = fo & .0

2.5 Theorem. The sesqui—tensor product exists, is unique up to a distinguished linear
isomorphism and is linearly generated by the image of the map @ :UxV - URV .

PROOF. FEuxistence. We consider the vector space F' consisting of all maps ¢ : U x V' — IR, which
vanish everywhere except on a finite subset of U x V . Clearly, the set F' becomes a vector space in a
natural way. Accordingly, each ¢ € F' can be written as a formal sum of the type

¢ = ¢11(U1,’U1) +-- ¢nm(un,vm) ,

where ¢ = ¢(u;,v;) € R are the (possibly) non vanishing values of ¢.
Next, we consider the subset S C F' consisting of elements of the type

(u + u/’ ’U) - (ua U) - (ulvv)v (ua v+ U/) - (uav) - (uvv/)’

(ru,v) — r(u,v), (u, sv) — s(u,v),

with u,u/ € U, v,o' € V., r € RT, s € R. Then, we consider the vector subspace (S)r C F linearly
generated by S on IR . Eventually, we obtain the quotient vector space and the map

UV :=F/(S)r  and ®=qoy:UxV =-UV,

where ): UxV < F and q: F — F/(S)R are the natural inclusion and the quotient projection. Indeed,
themap ® : UxV — U®YV is semi-linear with respect to the 1st factor and linear with respect to the
2nd factor.

Clearly, U® V is linearly generated by the image of the map & .

Now, let us refer to the universal property (Definition 2.4). If the map f:U®V — W exists, then
it is unique because U® V is linearly generated by the image of the map & . Indeed, such a map exists.
In fact, we can easily prove that the map f: U x V — W yields naturally a linear map f': F — W,
which passes to the quotient yielding the required linear map f: U@V — W.

Uniqueness. The sesqui-tensor product is “unique” in the following sense. If U®V and U® V are
sesqui—tensor products, then the universal properties of the two sesqui—tensor products yield the following
commutative diagram

(=2 % % UoVv
®
‘% )
UxV

where @ :U®V - U@V and ® : U®V — U®V are mutually inverse linear isomorphisms. QED

2.6 Note. Clearly, for each u,v’ € U, v,v' € V, r € R", s € R, we have

(u+v)Rv=uxv+u v, U@V +0)=u®v+uv,
(ru)@v=r{uev), u®(sv) =s(u®v).0
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14 2 POSITIVE SPACES

The following annihilation rules follow from the universal property:

2.7 Proposition. If u € U, 0y € V then we have u® 0y =0 € UR V.

PrOOF. If f : UQV — W is any linear map, then ¢ := fo @ : Ux V — W is a linear map
with respect to the 2nd factor. Hence, we have ¢(u,0y) = 0, which, in virtue of the universal property,
implies f(u®0y) = Oy . Therefore, in virtue of the arbitrariness of f, we obtain u® 0y = 0.QED

2.8 Corollary. Let us consider an element b € U and a basis B C V' . Then,
b@B :={bxb; | b e B} cU®V
is a basis of U® V . Hence, we have
dm(U®V)=dimV .

PrOOF. Clearly, b B linearly generates UQ V.

Next, let us prove that the elements of b ® B are linearly independent. For this purpose, let us observe
that the universal property of the sesqui-linear tensor product yields a bijection f — f between the maps
J:UxV — R, which are semi-linear with respect to the 1st factor and linear with respect to the
2nd factor, and the linear maps f : U® V — IR, according to the rule f(u®v) = f(u,v), for each

u €U, v e V. Now, let us consider an element ¢ := >, b® (t'b;) € U® V . Indeed, for any f as above,
we have f(32,0& (t'b;)) = 3., t° f(b,b;). Then, we can be prove that f is uniquely determined by its
values on {(b,b;) | b; € B}. This implies that >_.t"f(b,b;) = 0, for all f as above, if and only if ' = 0.
Hence, f(3, b (t°b;)) = 0, for all f as above, if and only if t* = 0. QED

We can introduce the right sesqui-tensor product V' @ U analogously to the left sesqui—
tensor product U® V . Clearly, we have a natural linear isomorphism VU ~ U®V,
which is characterised by the map v®u — u®v.

2.4 Universal vectorialising space

The sesqui—tensor product of the vector space of reals with a positive space
yields a natural extension of the last one into a vector space. Indeed, this vector
space fulfills a universal property.

Let us consider a positive space U .

2.9 Definition. We define the the universal vector extension of U to be the sesqui-
tensor product U := R®U.O

If be U, then 1®bis a basis of R®U.
2.10 Lemma. For each u,u’ € U, the equality 1 ® u = 1 ®u’ implies v = u’.

PRrROOF. Let us consider any semi-linear map ¢ : U — IR and the induced map f: R x U — IR :
(r,u) — 7 ¢(u), which is linear with respect to the 1st factor and semi-linear with respect to the 2nd
factor. Then, we obtain the induced linear map f :~IR®U S TR:r7@u+—rou).

The equality 1 ®u = 1 ® @ implies f(1®u) = f(1®u), hence ¢(u) = ¢(u) . Therefore, the arbitrari-
ness of ¢ implies u = u. QED
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2.4 UNIVERSAL VECTORIALISING SPACE 15

2.11 Lemma. For each u, v’ € U, we have 1 ®@u # (1) ®u'.

PROOF. Let us consider a semi-linear map ¢ : U — IR, with positive values. This map yields the
map f:IRxU — R : (r,v) = r ¢(v) ; indeed, the map f is linear with respect to the 1st factor and semi—
linear with respect to the 2nd factor. Then, in virtue of the universal property, we obtain the linear map
f:R&®U — IR. Indeed, we obtain f(1®u) = ¢(u) € RT and f((—1)@u') = —¢(u’) € R~ . Hence,
1®u # (—1) @, because there is a linear map which takes different values on these elements. QED

2.12 Proposition. The two distinguished subspaces
U, ={1®u|uecU}cR®U and U_:={(-1)®u|ueU}CcRxU
turn out to be positive spaces. Moreover, we have the disjoint union
U=U,uU_u{o}
and the natural semi-linear inclusion
1 U—-ReU:u—1®@u.0

2.13 Proposition. If W is a vector space and ¢ : U — W a semi-linear map, then
there is a unique linear map ¢ : U — W | such that f o: = f. Indeed, this map is given

by o(1@u) = ¢(u).

PROOF. Uniqueness. If the map ¢ exists, then it is unique. To prove this it suffices to show that the
value of ¢ on U_ is determined by the value of ¢ on U, . In fact, by taking into account that ¢ is linear,
we obtain ¢((—1) &) = 6(—(18u)) = —6(1du) = —¢(u).

Ezistence. Let W be a vector space and ¢ : U - W a semi-linear map. Then, we obtain the map
f IR xU— W : (r,u) = r¢(u), which is linear with respect to the lst factor and semi-linear with
respect to the 2nd factor. Hence, in virtue of the universal property of the sesqui-tensor product, we
obtain the linear map ¢ := f : IR®U — W , whose expression is given by d(1®u) = ¢(u). QED

2.14 Note. We have the natural linear isomorphism
U) =(ReU)* ~ U :=R®(U"):r(1®(1/b) = r® (1/b).0

2.15 Note. If V is a vector space, then, in virtue of the universal property of the
sesqui—tensor product, there is a unique linear map

UV UV,
which makes the following diagram commutative

1 xid -
UxV —UxV

5| E

UV —UQV
J
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16 2 POSITIVE SPACES

Indeed, the map j turns out to be a linear isomorphism. O

2.5 Semi-tensor products

The tensor product of two positive spaces cannot be achieved by the same
procedure used for the tensor product of vector spaces. In fact, this procedure
would fail in some essential aspects. Actually, we overcome this difficulty by passing
through the sesqui—tensor product of a positive space with the universal vector
extension of the other positive space.

Let us consider two positive spaces U and V.

2.16 Definition. A semi—tensor product between U and V is defined to be a positive
space U® V along with a semi-bilinear map ® : U x V — U®V, which fulfills the
following universal property: if W is a positive space and f: U X V. — W a semi-bilinear
map, then there exists a unique semi-linear map f U®V — W, such that f = f o® .0

2.17 Theorem. The semi—tensor product exists and is unique up to a distinguished
semi—linear isomorphism.

PROOF. The uniqueness can be proved by a standard procedure as in Theorem 2.5. Then, we have
to prove the existence of the semi—tensor product.

For this purpose, we consider the subset U®V C U® V consisting of the semi-linear combinations
of elements of the type u® (1®wv), with u € Uand v € V, and the map @ : UxV - U&V : (u,v)
u®@(1®v).

We can easily see that U® V is a positive space and @ : U x V — U® V a semi-bilinear map.

Next, we prove that the above objects fulfill the required universal property.

Clearly, if the map f: U&V — W of the universal property exists, then it is unique because U&V
is semi-linearly generated by the image of the map & .

Moreover, this map is well defined by the equality f (u® (1®v)) = f(u,v), according to the following
commutative diagram

i

UxV UxV
Uev T

where the maps 4,1, j are natural inclusions and where the map (20 f ) o 7 uniquely factorises through a
map f We can easily see that the map f is semi—linear and that f o® = f.QED

Thus, if b € U and ¢ € V, then b® ¢ € U® V generates the semi-tensor product.

In an analogous way, we can construct the semi-tensor product via the right sesqui-
tensor product (instead of via the left sesqui-tensor product). We can also easily prove
that the two constructions are naturally isomorphic.
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2.6 RATIONAL MAPS BETWEEN POSITIVE SPACES 17

We have the natural semi—linear isomorphisms

RTQU—-U:r®u— ru,
UR" = U:u®r—ru,
U&V ~ U®V,
U*®V < sLin(U,V),

where the last isomorphism is characterised by a®@v : U — V : u — a(u)v, for all
aelUveV.

We obtain the contravariant “semi-tensor algebra” of a positive space in a way anal-
ogous to that of vector spaces.

Let m be a positive integer. If Uy,...,U,, are positive spaces, then we can eas-
ily define the semi-tensor product U; ® ... ® U,, and prove its basic properties along
the same lines as for vector spaces. In particular, if U = U; = --- = U,,, then we

set U = @™U:=U;® ... ®0U,, and ®°U := R". Moreover, the semi-direct sum
@D,,cn U™ turns out to be a “semi-algebra” over R™ .

Note that each element ¢ € ®"U is decomposable; even more, it can be uniquely
written as t =4 ® ... ®u, with u € U.

For positive spaces we shall often adopt a notation similar to the standard notation
used for numbers. Namely, if U and U’ are positive spaces, we shall often write uu' =
u®@u € U U, for each uw € U and v/ € U'.

Moreover, if U is a positive space and v € U, then the unique element 1/u € U*,
such that (1/u, u) = 1, is called the inverse of u (not to be confused with the additive
inverse). Clearly, for each u € U and » € R", we have = =1L Moreover, (1/u) is just

the dual element of .

2.6 Rational maps between positive spaces

Next, we discuss the notion of g—rational maps between positive spaces.
Let us consider two positive space U and V and a rational number ¢ € Q.

2.18 Definition. A map f: U — V is said to be g—rational (or, rational of degree q)
if, for each w € U and r € R" | we have f(ru) =r? f(u).O

We denote by Rat?(U,V) C Map(U, V) the subspace of g-rational maps between the
positive spaces U and V.

2.19 Proposition. If © € U and v € V, then there exists a unique g-rational map
f:U— V such that f(u) =v.0O

The composition of two rational maps is a rational map, whose degree is the product
of the degrees. Hence, positive spaces and rational maps constitute a category.
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18 2 POSITIVE SPACES

2.20 Note. Let ¢’ be another rational number. If f : U — IR" is a ¢-rational map,
then the map f7 : U — R" : u > (f(u))? is (¢¢')-rational. D

2.21 Proposition. The subspace Rat?(U, V) C Map(U, V) turns out to be a semi-
vector subspace and a positive space.

PROOF. The 1st statement is trivial. Moreover, Rat?(U, V) is a positive space because, for any given
u € U, the map Rat?(U,V) —» V: f — f(u) is a semi-linear isomorphism. QED

2.22 Corollary. A g-rational map f : U — V is a bijection if and only if ¢ # 0; in
this case the inverse map is (1/¢)-rational. O

2.23 Example. We have the following distinguished cases.
a) The O-rational maps f : U — V are just the constant maps. Hence, we have the
natural semi-linear isomorphism

Rat’(U,V) ~ V: f f(u),

which turns out to be independent of the choice of u € U. In particular, we have
Rat’(U,R") ~ R".
b) The 1-rational maps f : U — V are just the semi-linear maps. Hence, we can write

Rat'(U, V) = s-Lin(U, V).

In particular, we have Rat' (U, R") = s-Lin(U, R") = U*.
c) The (—1)-rational maps f : U — V can be identified with the semi-linear maps
f: U =V, through the natural semi-linear isomorphism

Rat™'(U,V) — s-Lin(U*, V) : f — f,

where f : U* — V is the unique semi-linear map such that f(1/u) = f(u), with reference
to a chosen element u € U. Indeed, this isomorphism turns out to be independent of the
choice of u € U.O
In particular, the map
inv:U—-U":u~— 1/u,

which associates with each element u € U its dual form 1/u € U*, is a (—1)-rational
map.
Indeed, inv € Rat™ (U, U*) is the distinguished element which corresponds to the
element idy. € s-Lin(U*, U*), through the isomorphism Rat (U, U) ~ s-Lin(U*, U).
We have also the map
inv: U ->U" ~U.O

2.7 Rational powers of a positive space

Eventually, we introduce the rational powers of a positive space.
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2.7 RATIONAL POWERS OF A POSITIVE SPACE 19

The basic idea is quite simple and could be achieved in an elementary way, by
referring to a “semi—basis” and showing that the result is independent of this choice.

However, a full understanding of this concept is more subtle than it might appear
at first insight and suggests a more sophisticated formal approach.

Let us consider a positive space U and a rational number ¢ € Q.

2.24 Lemma. The map
77 : U — Rat! (U, IR") : u > u?,

where u? € Rat?(U*,IR") is the unique element such that u%(1/u) = 1, turns out to be
g-rational.

PrROOF. In fact, we have 1 = v?(1/u) and 1 = (ru)?(1/(ru)) = (ru)?(1/r1/u) = (1/r)? (ru)?(1/u) .
Hence, we obtain u?(1/u) = (1/r)? (ru)?(1/u), which yields (ru)? = r?u?.QED

2.25 Definition. The g—power of U is defined to be the pair (U?, 79) defined by
U? := Rat?(U*,IR") and 7 U—=U%:uw—u?,
where u? : U* — IR™ is the unique ¢-rational map such that u?(1/u) = 1.0

We can re-interpret the above notion in a natural way in terms of semi-tensor powers
as follows.

2.26 Note. Clearly, for each » € IR™ | the following diagram commutes
U —— U7
U —— U9,

where s, and s,¢ denote the scalar multiplications by r and 7.
Thus, the rational power of positive spaces emulates the rational power of positive
numbers, according to the above commutative diagram. O

2.27 Note. We have the following distinguished cases.
1) If ¢ =0, then we have a natural semi-linear isomorphism

U° := Rat’(U*,R") ~ R",

and 7° turns out to be the constant map with value 1.
2) Let ¢ = n be a positive integer.
Then, we have the natural mutually inverse semi-linear isomorphisms
®"U — Rat" (U, IRM) : u® ... @u — f.,,
Rat”(U,R") - @"U: f > u; ® ... Quy,
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20 2 POSITIVE SPACES

where f, : U* - R" : w — w(u)...w(u) and where u; := 1/w; € U, being w; € U* the
unique element such that f(wy) =1.
Moreover, according to the above isomorphisms, the map 7™ is given by

7 U — Rat"(US, R") : u s f,.
In particular, in the case ¢ = n = 1 we have the natural semi-linear isomorphism
U! := Rat'(U*,IR") = s-Lin(U*,IR") := U~ ~ U.

3) Let ¢ = 1/n be the inverse of a positive integer n .
Then, we have the natural mutually inverse semi-linear isomorphisms

&"Rat/"(U*,IR") - s-Lin(U*,R") :=U* ~U: f& ... & f — ",
U ~ U := s-Lin(U*,R") —» &@"Rat’/" (U R"): f — f/"& ... & f'/",

where f*: U* - R" : w— f(w)... f(w) and f/7: U* - R* 1w (f(w))/".

Moreover, according to the above isomorphisms, the map 7'/" is given by
/" U ~ U™ — UY" := Rat'/"(U*,RY) : f — fY/".

4) Let ¢ = —n be a negative integer.
Then, we have the natural mutually inverse semi-linear isomorphisms

®"U* — Rat (U, RT) :w® ... Qw — f.,,
Rat’”(U*,]R*) — ®HU* : f |—>CL)f® S Wy

where f, : U* - R" : a = w(l/a)...w(1/a) and w; € U* is the unique element such
that f(ws) =1.
Moreover, according to the above isomorphisms, the map 7=" is given by

7" :U— Rat ™" (U, RT) : u > fis.
In particular, in the case ¢ = —1, we have the natural semi-linear isomorphism
U™ !:=Rat (U, R") ~ s-Lin(U*,IR") ~ s-Lin(U,R") := U*.O

Next, we analyse the natural behaviour of the exponents of rational powers. Indeed,
this behaviour is just what we expect and is analogous to that of powers of positive real
numbers. We leave to the reader the easy proofs of the following Propositions.

2.28 Proposition. Let p and ¢ be rational numbers. Then, we obtain the natural
semi—bilinear map

b: Rat?(U*, R") x Rat?(U*,IR") — Rat?™(U*,IR") : (f,9) — fg,
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2.7 RATIONAL POWERS OF A POSITIVE SPACE 21

which yields the unique semi-linear isomorphism b:UPQUI — UPH, such that 7P =
bo (7’ @), in virtue of the universal property of the semi-tensor product. O

2.29 Proposition. If p and ¢ are rational numbers, then we have the natural semi—
linear isomorphism

c¢: (UP)? := Rat? (Rat”(U*,IR"), R") — U?"? := Rat’"*(U*,IR") : f > gy,
where g7 : U* — IR" : 1/u— f(1/uP). Moreover, we have 777 = co (1?0 7P) .0
2.30 Corollary. If g is a rational number, then
(U9)* =~ (U7
If p < g are two positive integers, then

QU (®PU*) ~ TIQUP=T"P ~ @I°PU
®pw®(®qU*) ~UPQU =171 ~ &P 94U O
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22 3 ALGEBRAIC MODEL OF PHYSICAL SCALES

3 Algebraic model of physical scales

Next, we discuss the physical model of scales and units of measurement through
positive spaces. Thus, we introduce the fundamental scale spaces and related no-
tions, including scale dimension, scale basis and coupling scales. Finally, we show
how unit spaces can be employed in physical theories by the language of differential
geometry.

The formalism discussed in this section has been widely used in several papers
dealing with physical theories (see, for instance, [7, 16, 17, 24, 31, 33, 34]). In the
present paper we analyse the mathematical foundations of this formalism for the
first time. We also discuss the interplay of our theory with dimensional analysis.

3.1 Units and scales

We introduce the fundamental scale spaces and related notions.

In this paper, we shall be concerned just with scales derived from time, length
and mass scales via rational powers. Of course, the treatment could be extended to
other types of systems in an analogous way.

In several theories of physics it is convenient to assume the following positive spaces
as basic spaces of scales:

(1) the space T of time scales,

(2) the space L of length scales,

(3) the space M of mass scales.

The elements of the above spaces are called basic scales. More precisely,

(1) each element ug € T is said to be a time scale,

(2) each element 1 € L is said to be a length scale,

(3) each element m € M is said to be a mass scale.

For each time scale ug € T, we denote its dual by u® := 1/uy € T*.

3.1 Definition. A scale space is defined to be a positive space of the type
S = Sldy, dy, d3] == T4 & L% &M% | where d; € Q.

A scale is defined to be an element k € S.
A scale k € S, regarded as a generator of the scale space S, is called a unit of

measurement.
For each scale space S = T% & L% © M and for each scale k € S, we set

[S] :=(d1,ds, d3), k] = ([k]1, k]2, [k]3) = (di, da, d3)
[k] := T @ L2 @ M®%.

The above 3-plet | k]| :=(dy, ds, d3) of rational numbers is called the scale dimension
of Sand of k.0
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3.2 SCALED OBJECTS 23

3.2 Note. The scale dimension |k| of a scale k determines the corresponding scale
space S. In other words, for two scales k and k', we have |k] = |k’] if and only if the two
scales belong to the same scale space. If this is the case, then k = rk’, where r = k/k’.
Hence, the scale dimension |k| of a scale k determines k up to a positive real factor.

The map k — |k] fulfills the following properties, for each k € S, ¥ € §', r € R"
and q € Q,

k] =1k], [kl =—1k], [kok]=|k]+[k]', [K]=qlk].O

3.3 Definition. A 3-plet of scales (e, es,e3) is said to be a scale basis if each scale
k can be written in a unique way as

E=r1r(e1)” ® (e2)? ® (e3), with reRY, ¢, €Q.0
3.4 Proposition. A 3-plet of scales (eq, s, €3) is a scale basis if and only if
det([e;]:) # 0.

Moreover, let (e, eq,€3) be a scale basis and k a scale. Then, the 3-plet of rational
exponents (c1, ¢, c3) is the unique solution of the linear rational system

ki = lejlicy.

J
PROOF. Let us consider a 3-plet of scales (e1, e2,e3) and a scale k. Then,

k=7(e1) & (e2)® ® (e3)® & ki = ZtejJi cj -

Hence, the above left hand side expression holds and is unique if and only if det(|e;];) # 0. QED
3.5 Example. Clearly, each 3—plet of the type
(up,Lm) e T x L x M
is a scale basis. More generally, each 3—plet of the type
(ud', 192 m%) € T x L% x M | with d; € Q — {0},
is a scale basis. O

Of course, we can also consider variable scales. Indeed, given a manifold M , we define
a scale of M to be a map of the type k : M — S.

3.2 Scaled objects

In geometric models of physical theories one is often concerned with vector
bundle valued maps which have physical dimensions. Our theory of positive spaces
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24 3 ALGEBRAIC MODEL OF PHYSICAL SCALES

allows us to keep into account this fact in a formal algebraic way. In fact, we consider
maps with values in vector bundles tensorialised with positive spaces. The positive
factors can be treated as numerical constants, with respect to differential operators.

3.6 Note. Let U be a positive space. We observe that U has a natural structure
of 1-dimensional manifold. Moreover, it is easy to prove that the tangent space TU is
naturally isomorphic to the cartesian product 7U ~ U x U.O

Now, let us consider a scale space S := T4 @ L% @M% , and two vector bundles p :
F — B and ¢ : G — B and a manifold M .

We can easily define the sesqui-tensor product bundle (U® F) — B . We can regard
this vector bundle as the sesqui-tensor product over B of the trivial semi—vector bundle
U :=(B x U) — B and the vector bundle F — B.

3.7 Definition. The bundle (S® F) — B, the sections s : B — S® F and the
linear differential operators ¢ : sec(B, G) — sec(B, S® F) are said to be scaled.
Moreover, they are said to have scale dimension

[SOF] =[s] = |¢] = [S] = (d1,dn, d3)

and we set
[S®OF] =[s] =[¢] =T* L2 @M% .0

3.8 Note. Let D : sec(B, F) — sec(B, G) be a linear differential operator. Then, we
obtain the linear differential operator (defined by the same symbol)

D :sec(B,S® F) — sec(B, S®G) : s+ Ds := u®@D{a,1/u),

where u € S and (a, 1/u) € sec(B, F'). Of course, this definition does not depend on the
choice of v.O

The above construction applies, for instance, to the cases when D is the exterior
differential, a Lie derivative, a covariant derivative, and so on.

3.9 Example. If a € sec(M, S®A"T*M) is a scaled form, then we obtain the
“scaled exterior differential”

do == u®@da’ € sec(M,S@ AN T*M),
where u € S and o is the form o :=(«, 1/u) € sec(M, A"T*M) .01

3.10 Example. Ift € sec(M, @ TM) is a form and X € sec(M, S®TM) a scaled
vector field. Then, we obtain the “scaled Lie derivative”

Lxt:=u® Ly t€sec(M,S®("TM)),
where u € S and X’ is the vector field X' :=(X,1/u) € sec(M, TM).O
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3.11 Example. If ¢ is a linear connection of the vector bundle FF — B, X €
sec(B, TB) a vector field and s € sec(B, S® F) a section. Then, we obtain the “scaled
covariant deriative”

Vxs =u®Vys €sec(B,SQVF),

where u € U and ¢’ is the section s’ := (s, 1/u) € sec(B, F).

We can re-interpret the above result in the following way:.

The trivial linear connection of (B x U) — B and the linear connection c of F — B
yield a linear connection ¢ of (U® F) — B , which has the same symbols of c¢. The scaled
covariant derivative can be regarded as the covariant derivative with respect to the above
product connection.

By abuse of language, we shall denote by ¢ also the product connection ¢’ .

3.3 Distinguished scales

In this section, we discuss the algebraic model of distinguished scales occurring
in physics.

Let us consider a vector bundle F' — B . Suppose that in a physical theory we meet
two scaled sections with different scale factors

s:M —>SQF and s M-S &F.

Then, we can compare the two scales and write s = k® ', provided we avail of a
scale factor k : B — S®S'* | whose scale dimension is |k] = |s] — [s'] . We call such a
factor a coupling scale (or, according to the traditional use, a coupling constant).

Some coupling scales, such as, for instance, the speed of the light, the Planck constant,
the gravitational constant and the positron charge have a fixed value, without reference
to specific systems. For this reason, we shall call these coupling scales universal.

Other types of coupling scales, such as, for instance, masses and charges, arise, case
by case, and are associated with different particles.

For instance, we have the following universal coupling scales:

1) the speed of the light c€ T'®L,

2) the Planck constant h € T' @ L2 @M,

3) the gravitational constant g € T2QL> @M1,

4) the positron charge e € T~ @ L2 QM2

Besides the above universal coupling scales, there are the following scales which depend
on the choice of a particle:

1) a mass m € M,

2) a charge ¢ € T'®L*?QMY2. We stress that a charge is a scale tensorialised
with real numbers; hence, a charge might be positive, vanishing, or negative.
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3 ALGEBRAIC MODEL OF PHYSICAL SCALES

3.12 Note. The following 3-plets are scale bases (for ¢ # 0):

1) (e1,eq,e3) :=(m,q,h),
2) (61, €2, 63) = (m7 hv g) )
3) (e1,ez,e3) :=(q,h,Qg).

Conversely, the following 3-—plet is not a scale basis (for g # 0):
4) (e1,€2,€3) :=(m,q, 9).
In fact, we have the following values of determinants in the above cases, respectively:
1) det(le;|;) = —1/2, 2) det(|e;];) =1, 3) det(|lej];) =1, 4) det(le;];) =0.
Note that |g] = |¢*/m?] .0

It may be algebraically correct, but not physically reasonable to express certain scales

by means of some of the above scale bases. For instance, it may not be physically rea-
sonable to express the gravitational coupling scale g through the scale basis (m,q, k),
because g is a universal coupling scale, while m and ¢ depend on the choice of a specific
particle.

Scales-2009-03-09.tex; [output 2011-01-11; 8:46]; p.26



27

4 Fields of scales

We can regard scales as fields described by sections of bundles ruled by a dy-
namical equation formulated in terms of a covariant derivative. In view of such
developments, we introduce bundles of scales equipped with semi-linear connec-
tions.

4.1 Bundles of scales

We naturally regard positive spaces as manifolds and define bundles structured
in the category of positive spaces.

In the following, we denote all kinds of tensor products by the standard symbol &,
for the sake of simplicity.

Let us consider a positive space U.

Each element b € U induces a bijection U — IR" C IR : s — s/b. Indeed, these maps
yield a smooth manifold structure on S.

By taking into account the natural smooth inclusion U C U := IR®U and the natural
linear fibred isomorphism UxU — Ux IR : (b,v) + (b, v/b) over U, we obtain the natural
linear fibred isomorphisms over U

TU~UxU~UxIR.

Now, let us consider n positive spaces S;,...,S, and the tensor product P:=5 ®
.. ® S, . Moreover, let us consider n smooth curves ¢; : R — S;,... ,¢, : IR = S,, and
the tensor product ¢ :=c¢; ® ... ® ¢, : R — P. By considering the natural inclusions
S; € S;and P C P, we have also the smooth curves ¢; : IR — S; and ¢ : R — P.
Then, we obtaln the differentials d¢; : R — S; and dé : IR — P. Indeed, by taking into
account the natural isomorphism S; ®S, ® ... ®S, ~ ... ¥ S ®...0S,.1®S, ~ P,
we can prove the equality

dc=de; ®@(ca®...0¢)++(1®...Qc,1) ®dC,.

Next, let us consider a positive space S, a smooth curve ¢ : IR — S, a rational number
m/n and the smooth curve ¢™" : IR — S™™ . By considering the natural inclusions S C S
and S™/" C W, we have also the smooth curves ¢ : IR —>_§and cm/m R — Smin .

Then, we obtain the differentials dé : R — S and d(c™/) : IR — S™/m. Indeed, we
can prove the equality

d(cm/m) = (m/n) ™ML @ de.

Moreover, for each b, € S, we have the following coordinate expressions

C:Caba7 Cl®ba,
dc=Dc*1® ba , d(cm/n) (m/n) ( a) (m/n)—1 D1 ® (ba)m/n ‘
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In the above formula and later, in order to follow the standard coordinate notation,
we quote the index a explicitly, even if its range is just {1}.

Indeed, the above rules of differentiation are consistent with the algebraic rules con-
cerning exponentials and tensor products.

Now, let us consider a manifold E .

We define a positive bundle over E to be a bundle 7 : § — E | whose fibres are
smoothly endowed with a structure in the category of positive spaces. Thus, each fibre
S. C S, with e € E, is a positive space and 7 : § — FE turns out to be an Abelian
principal bundle with structure group IR" .

Thus, a (local) section s : E — S assigns the choice of the scale s(e) € S, , for each
ec k.

Due to a well-known theorem [15, p. 21|, bundles whose fibre is topologically trivial
(like IR") admit a global section. In our case, this implies that positive bundles are trivial
bundles. However, we do not assume any distinguished trivialization here.

The tangent prolongation of the operations 4+ and - on the fibres of the positive bundle
7w : S — E makes the bundle T'r : TS — TE a semi-vector bundle (but not a positive
bundle).

Moreover, let us consider the Abelian group IRT x IR, with the multiplication (r, \) -
(s, 1) = (rs,rpu+ s\); we have the natural subgroup R* C RT x R : r + (r,0) .

The tangent prolongation of the fibred action § x IR* — S makes the bundle T'7 :
TS — TE a principal bundle with structure group IR™ x IR. On the other hand, the
subgroup IR™ acts freely (but not transitively) on the fibres of this bundle.

The positive bundle 7 : § — FE yields also the 1-dimensional vector bundle 7 :
S :=IR®S — E: we have a natural semi-linear fibred inclusion S C S over E .

The vertical bundle V.S — FE turns out to be naturally isomorphic to the 1-dimensional
vector bundle S ]>; S and to the trivial 1-dimensional vector bundle S x IR . Indeed, IR is

the trivial Lie algebra of the structure group IR™ .

From now on, we shall refer to fibred charts (z*,4%) of 7 : § — E , which are adapted
to the IR*affine structure of the fibres. Namely, the fibre coordinate of a chart is defined
by choosing a (local) section b, and by setting y® o s := s/b, : E — IR" | for each section
s:E— S.

The transition rule between the fibred charts (2*,y?) and (2, y'®), associated with
the sections b, and b, is y'* = f@y*, where f* := b,/b, : E — R™".

We shall also refer to linear fibred charts (z*, %) of the vector bundle 7 : § — E.

4.2 Semi-linear connections on positive bundles

We analyse the semi-linear connections on positive bundles and discuss the
tensor product and the rational powers of semi-linear connections.

Let us consider the positive bundle 7 : S — FE.
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A semi-linear connection of the bundle 7 : § — FE is defined to be a connection

c: SXTE — TS, which is a semi-linear map over T'E . Clearly, a semi-linear connection
E

is equivariant with respect to the action of the group IR, i.e. it makes the following
diagram commutative, for each r € R™,

SxTE —° TS
FE
7“1 \7"
SxTE —° TS
FE e}

Indeed, a connection ¢: S x TE — TS is semi-linear if and only if it is principal.
E

Now, let us suppose that the scale bundle 7 : S — FE be equipped with a semi-linear
connection c: S xTE — TS
E

The coordinate expression of ¢ is of the type
c=d® 0y + ey’ 0a), with o E—1R.
Then, the coordinate expression of the covariant differential of a section s : E — S
Vs E-5T'EQVS ~T'E® S ~ S;;(T*E@Rﬂ ~ S;;T*E
is
Vs = (0xs* — cx" s°) d* @ by, where e = —y*(Vaby) .

Thus, the connection c is characterised by the 1-form w = —¢\%d* : E — T*E,
which depends on the choice of the chart. The transition rule for the above 1-form, with
respect to two fibred charts (2}, y®) and (2*,9/%) , is A% = % + O\ f2/f2.

A section s : E — S is said to be c—constant if Vs = 0, i.e. if, in coordinates,
Ors® = )2 s”.

The curvature r of the connection c¢ is the 2—form

ri=—[c,c]: E->NT*EQVS®V*S ~ AN*T*E,
where [, | denotes the Frolicher—Nijenhuis bracket. We have the coordinate expression
r=2dw=—20\c, d* Nd".

We stress that, the above 2—form does not depend on the choice of the fibred chart,
even if the 1-form w depends on the the choice of the fibred chart.

Semi-linear connections yield further distinguished connections on the bundles asso-
ciated with a positive bundle in the following way.
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4.1 Lemma. Ifc: S xTE — TS is a semi-linear connection of the positive bundle,
E —_ —_ p—
then there is a unique linear connection ¢ : S xTE — T'S of the vector bundle 7 : S — E |
E

which makes the following diagram commutative

SxTE —° TS
FE
ml N
SxTE ¢ TS

@ X
o

Indeed, both connections ¢ and ¢ are represented in coordinates by the same symbols
CAab.

Conversely, if ¢ : § x TE — TS is a linear connection of the vector bundle S — E,
E

then the restricted map § x TE C § x TE — TS factorises through a semi-linear
E E
connection ¢: S x TE — T'S of the positive bundle 7 : § — FE, according to the above
E

commutative diagram.
In this way, we obtain a bijection between semi-linear connections of the positive
bundle S — FE and linear connections of the vector bundle S — E .0

4.2 Proposition. We have a natural bijection between semi-linear connections ¢ of
the positive bundle S — E and semi-linear connections ¢* of the dual positive bundle
S* — E . Indeed, in coordinates we have the equality ;% = —c)\% .

PROOF. Let us consider a semi-linear connection ¢ of the positive bundle S — F and the associated

linear connection ¢ of the vector bundle § — E . Then, ¢ yields the dual linear connection ¢* : 8" x TE —
E

TS" of the dual vector bundle §* — E . Moreover, by considering the natural linear fibred isomorphism
S* ~ 8* over E, we can regard ¢* as a linear connection & : §* x TE — T'S* of the vector bundle
E

S* — E. Hence, in virtue of Lemma 4.1, we obtain a semi-linear connection ¢* : §* x TE — T'S* of

E
the positive bundle $* — E . QED

4.3 Proposition. Let us consider n positive bundles 7; : S; — E , equipped with the
semi-linear connections ¢; : §; x TE — T'S;. Then, we obtain naturally a semi-linear

E

connection ¢ 1= ¢1®...®c¢, : PxT*E — TP of the positive bundle P := §1®...®S, —
E

E.

PROOF. In virtue of Lemma 4.1, the semi-linear connections ¢; : S; X TE — TS, yield the linear
E
connections ¢; : S; x TE — TS, hence the linear connection ¢ := ¢, ®...®¢, : (S1®...085,)xTE —
E E

TS ®...® Sn), by means of the Leibniz’ rule. Moreover, by considering the natural linear fibred

isomorphism P ~ 8; ®...® S, over E, we can regard ¢ as a connection ¢ : P x TE — TP of the
E

vector bundle S — E.
Eventually, again in virtue of Lemma 4.1, the above linear connection yields naturally a semi-linear
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connection ¢: P x T*E — TP of the positive bundle P — E . QED
E

4.4 Proposition. Let us consider a positive bundle 7 : § — FE equipped with a semi—
linear connection ¢ : § x TE — T'S and a rational number m/n. Then, the covariant
E

differentiation rule V(s™™) :=(m/n)s™/™~1 @ Vs yields a semi-linear connection on
the positive bundle ™" — E .0

The above rules of covariant differentiation are consistent with the algebraic rules
concerning exponentials and tensor products.

We can interpret physically the above setting as follows.

The manifold E represents spacetime and a positive bundle 7 : S — E represents
all possible values of a certain physical scale S (for instance, units of lengths, or of time,
etc.), for each event e € E. Then, a section s : E — S represents a choice of the above
type of scale for each event.

Moreover, the parallel transport associated with the connection ¢ represents a physical
way to transport a unit of measurement of the chosen type from an event to another.
Clearly, in every physical model we consider, such a transport needs to be operatively
specified by suitable experimental rules.

If the physical model under consideration is based on a certain scale basis, then the
semi-linear connections chosen on the corresponding bundles yield a semi-linear connec-
tion on each scale bundle obtained via tensor product or rational powers.

This mathematical setting can yield some possible consequences on the physical prob-
lems of defining “global units of measurement” and of understanding whether fundamental
scaled and unscaled coupling factors are really constant or not. We just quote a couple
of remarks, just as examples. If the holonomy of the connection ¢ is non trivial, then
there is no way to choose a global c—constant unit of measurement of the considered type.
Another remark arises with respect to an unscaled coupling factor obtained through a
tensor product of scale bundles. In principle, it might be that the connections of these
scale bundles have non vanishing curvature, even if their tensor product be a trivial con-
nection. In such a case, we might have a “constant” unscaled coupling factor generated
by scales which do not admit global constant sections.

4.3 Conformal fields

Eventually, we analyse a pair of examples of scaled fields, in order to show how
typical differential equations for the unscaled fields appear if we do not choose a
covariantly constant scale as unit of measurement.

Let us consider a manifold E equipped with a linear connection I".

Let L — FE be a positive bundle equipped with a semi-linear connection c.
Then, we consider the scaled vector bundle G := L* ® (T*E @ T*E) — E and the
linear connection K := ¢> ® I'* ® I'* induced on it by I" and c.
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Let ¢ : E — G be a scaled symmetric non degenerate section. Chosen a section
[ : E — L, we can write the section ¢ as the tensor product g = I> ® g, where g is the
symmetric non degenerate unscaled section g == 12 ®g: E - T'EQ T*E.

4.5 Proposition. The Levi-Civita condition Vg = 0 for the scaled metric g can be
written, in terms of the unscaled metric g, as

Vg=-21""®Vixg.O

In the particular case when the chosen scale section [ is covariantly constant, the above
condition reduces to the classical equality Vg =0.

Let S — FE be a positive bundle equipped with a semi-linear connection c.
Then, we consider the vector bundle F := § ® A>’T*E — E of scaled 2-forms.
Let F : E — F be a scaled 2-form. Chosen a scale section s : E — S, we can

write the section F' as the tensor product F' = s ® F, where F is the unscaled 2—form
Fi=s5'®@F:E— AT*E.

4.6 Proposition. The condition of (exterior) covariant closure VF = 0 for the scaled
2—form F' can be written, in terms of the unscaled 2—form F, as

dF = —s'®@Vs®F.O
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