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Abstract— In this paper we present Gun3P, aparallel 3D finite
element application that the Advanced Computations Depart-
ment at the Stanford Linear Accelerator Center is developing for
the analysis of beam formation in DC guns and beam transport in
klystrons. Gun3P is targeted specially to complex geometries that
cannot be described by 2D models and cannot be easily handled
by finite difference discretizations. Its parallel capability allows
simulations with more accuracy and less processing time than
packages currently available. We present simulation results for
the L-band Sheet Beam Klystron DC gun, in which case Gun3P
is able to reduce simulation timefrom days to some hours.

Index Terms— Electron guns, parallel computing, finite ele-
ment method, electrostatics, magnetostatics, particle tracking.

I. I NTRODUCTION

T HERE are many software packages available for the
simulation of DC guns and collectors [1] [2] [3] [4],

e.g. MICHELLE [5] [6], TRAK [7] and EGUN [8]. Currently
available codes for modeling DC guns run on single CPU
machines. The size of the problem and the amount of design
details that can be modeled using these codes are limited by
the memory and speed of a single processor. The Advanced
Computations Department (ACD) at the Stanford Linear Ac-
celerator Center (SLAC) is developing the Gun3P application,
which overcomes these limitations by using high-order finite
elements overcurved tetrahedra andparallel processing for
accuracy and speed.

The paper is organized as follows. In Section II we briefly
describe Gun3P and its underlying algorithm. Section III
presents L-band Sheet Beam Klystron (LSBK) DC gun sim-
ulation results obtained with Gun3P, followed by conclusions
in Section IV. In the Appendix we focus on the numerical
aspects of Gun3P, including the mathematical derivation of
the discrete equations solved and some convergence studies.

II. GUN3P OVERVIEW

The objective of Gun3P is to compute the equilibrium state
of four physical observables present in DC gun operations
(see Figure 1): the electrostatic field, the self-magnetostatic
field and the charge and current densities related to a beam
of charged particles. Its algorithm consists of a sequence of
computingcyclesuntil a convergence criterion is achieved, as
shown in Figure 2. Each cycle groups three computational
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Fig. 1. Equilibrium electric potential and beam trajectory obtained with
Gun3P. The picture shows three-fourths of the geometry so that the beam
can be better visualized. The blue region corresponds to the cathode at 0V,
the red surface corresponds to the anode at 115KV and the colorful curves
correspond to the change of electric potential along the gap region between
cathode and anode. The thin green lines model the beam travelling from the
cathode towards the narrow exit gap on the right. The evaluation of the beam
self-magnetic field is essential for simulation correctness.

tasks: electrostatic solver, magnetostatic solver and particle
tracker. Parallel computing is used in all three tasks.

Gun3P extends the libraries already used for the Omega3P
and Track3P codes [9] developed at ACD under the Scientific
Discovery through Advanced Computing initiative (SciDAC
[10]) of the Office of Science of the Department of Energy
(DOE). It is written in C++, uses the MPI paradigm for
parallel processing and runs on UNIX type operating systems.
Postprocessing is done with v3d, the 3D visualization package
developed by ACD under SciDAC as well.

Gun3P expresses the electrostatic fieldE and the magneto-
static flux densityB in terms of scalar potentialφ and vector
potentialA,

E = −∇φ and B = ∇× A,

so that the steady-state Maxwell equations∇ × E = 0 and
∇ ·B = 0 are automatically satisfied. At any given cycle, the
electrostatic solver deals with the equation

−∇ · (ǫ∇φ) = ρ (1)

and the magnetostatic solver deals with the equation

∇× (µ−1∇× A) = J, (2)

whereǫ is the permittivity,µ is the permeability, and the charge
densityρ and current densityJ are computed from trajectories
of the previous cycle (both terms are zero for the first cycle).
We assume homogeneous isotropic media, so thatǫ and µ
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Fig. 2. Overview of Gun3P’s algorithm.

are constant scalars. Proper boundary conditions onφ andA,
detailed in the Appendix, are also imposed. Gun3P relies on
the finite element method overcurvedtetrahedral meshes with
geometric orderq 6 2 for the discretization of bothφ and
A. Scalar basis functions up to orderpE = 4 can be used
for computing the discreteφ and vector basis functions up to
orderpB = 6 can be used for computing the discreteA.

Once the field potentials are computed, particles are emitted
and tracked. Figure 3 presents the main parameters involved
in the emission model. The emission positions are assigned
during initialization and do not vary through cycles. Without
loss of generality, we assume a grounded cathode. Letm0 and
e indicate the particle rest mass and electric charge,x0 indicate
a emission position at the cathode andn̂ indicate the outward
unit normal atx0. Also, given a user-specified distanced (e.g.
d = 100µm) from the cathode, letxd = x0 − dn̂, let φd and
Ed = −∇φd indicate the electric potential and the electric
field atxd and letvd indicate the velocity magnitude satisfying

m0v
2
d

2
= −eφd.

Gun3P emitts a particle atx0 with constant velocity [7]

v0 = −
2

3
vdn̂

and associates to it a current densityJcathode according to
Child-Langmuir’s law [11] [12] [13]

Jcathode =
4

9
ǫ

√

2|e|

m0

φ
3/2
d

d2
. (3)

Once the particle reachesxd, its velocity is set to [7]

vd = vd
eEd

‖eEd‖

and its trajectory is computed through the relativistic Lorentz
equation

m0
d(γv)

dt
= e[E + v × B], (4)

Fig. 3. Emission model currently used by Gun3P.

where γ is the relativistic mass factor. The Boris algorithm
[14] is used for the discretization of (4). Currently Gun3P
does not model any thermal effects at the cathode.

Once all particles are tracked, Gun3P loops to the next
cycle, updatingρ and J in (1) and (2). As the inter-cycle
loop continues, one expects all computed values to stabilize,
e.g. particle trajectories, field magnitudes and gun current. In
fact, Gun3P loops until some convergence criterion is satisfied
or the maximum user-defined number of cycles is achieved.
Cycle convergence criteria are discussed in the Appendix.

Table I summarizes the main input parameters, while Table
II shows some output parameters. Theǫy emittance formula
used by Gun3P is

ǫy = 2π

√

〈y2〉

〈

ẏ2

ż2

〉

−

〈

y
ẏ

ż

〉2

, (5)

where the dot sign indicates the derivative with respect to the
time variable and the averages are taken over to total number
of particles. Formula (5) assumes symmetry w.r.t. tox × z
plane, that is,〈y〉 = 0, 〈ẏ/ż〉 = 0 and 〈yẏ/ż〉 = 0. Similar
formula and assumption are used forǫx emittance.

III. LSBK DC GUN SIMULATION

The sheet beam klystron (SBK) is being developed at
SLAC for the International Linear Collider as an alternative
high power RF source to conventional pencil beam klystrons,
offering advantages such as simpler fabrication and longer life
expectation due to lighter cathode loading. Because of the
elongated elliptical beam transverse profile, SBK simulations
are fully three dimensional.

Starting with an LSBK CAD/CAM model [15], we first
generate a mesh using the Cubit package [16]. Figure 4
shows four different mesh views obtained with ACD’s v3d
visualization package. The mesh is finer in and around the
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TABLE I

MAIN GUN3P INPUT PARAMETERS. LETTER “E,B,T” REFERS TO

ELECTROSTATIC/MAGNETOSTATIC/TRACKING PROBLEM.

Problem Symbol Meaning

# cycles Number of cycles
All # elems Number of tetrahedra

q Geometric order
# cpus Total number of cpus used
Vfocus Electric potential at focus electrode

E Vanode Electric potential at anode
pE Order of basis functions

B pB Order of basis functions
d Distance from cathode where

Child-Langmuir’s law is applied
T N Total number of particles

△t Time step

TABLE II

SOME OUTPUT PARAMETERS. “ DOF” MEANS “ DEGRESS OF FREEDOMN”.

Symbol Meaning

I Gun current
Jcathode Current density profile at cathode

ǫy Emittancey at a cross plane
ρ Charge density profile at a cross plane

Hitting percentage Percentage of particles hitting anode
# dofE Number of dof for electrostatic problem
# dofB Number of dof for magnetostatic problem

# time steps/cycle Number of time steps per cycle
Run time Run time

region of particle trajectories. In the simulations presented
here, the forward direction is parallel to thez axis.

We then run Gun3P with the input parameters given in Table
III and obtain the results shown in Table IV. MICHELLE [15]
results, obtained with one processor, are shown for bench-
marking purposes. The comparison in Table IV highlights the
advantadge of using parallel computing in Gun3P, namely the
reduction of run timefrom days to hours.

Figure 5 shows the equilibrium particle trajectories. The
beam width in thex-direction is practically constant through-
out the whole path from cathode to the exit gap.

Gun3P also monitors a variety of beam features. Figure 6,
for instance, shows phase-spaces on three crossx × y planes
positioned along thez axis. The beam leaves the cathode
undergoing strong focusing (Figures 5-(a) and 6-(a)), travels
parallel to thez axis aroundz = 14cm, the region of beam
waist (Figure 6-(b)), and shows some expansion atz = 18cm,
the exit gap region (Figure 6-(c)).

Figure 7 shows theǫy emittance profile along thez axis,
sharply decreasing near the cathode, since that is the region
where the beam experiments the strongest acceleration in the
forward direction.

In both Figures 6 and 7 we show results for four different
meshes, from the coarsest with 479k tetrahedra to the finest
with 1,817k tetrahedra. The results change less as the mesh
is refined, a necessary condition for correctly discretized

TABLE III

INPUT VALUES USED FORGUN3PAND MICHELLE SIMULATIONS.

Problem Input Gun3P MICHELLE
Parameter Value Value

# cycles 41 80
All # elems 1,316,530 1,073,000

tetrahedra hexahedrons
q 2 1

# cpus 48 1
(1.9 GHz each) (3.0 GHz)

Vfocus (V ) -500 -500
E Vanode (V ) 115,000 115,000

pE 3 1
B pB 1 unknown

d(µm) 100 unknown
T N 145,675 96,064

△t (ps) 2 unknown

TABLE IV

OUTPUT VALUES OBTAINED BY GUN3PAND MICHELLE SIMULATIONS.

Output Gun3P MICHELLE
parameter Value Value

I(A) 129.3 129.3
Jcathode (A/cm2) min = 1.7528 min = 1.7500

max = 2.3622 max = 2.4000
ǫy,z=18cm (π mm-mrad) 4.3 unknown

ρz=14cm (mC/m3) max = 3.9 unknown
Hitting percentage 0% 0%

# dofE 6,114,694 unknown
# dofB 1,599,393 unknown

# time steps/cycle 785 unknown
Run time(hrs) 5.5 63.6

problems.
In Figures 8 and 9 we again compare some Gun3P results to

MICHELLE ones. Figure 8 shows the current density profile
at the cathode and Figure 9 shows the charge density profile
on the cross plane atz = 14cm.

Results in Figures 8-(a) and 8-(b) agree pretty well. Each
dot in Figure 8-(a) represents a Gun3P particle and the color
varies according to the current density computed with Child-
Langmuir’s emission law (3). The appearance of Figure 8-(a) is
smooth. Indeed, since Gun3P uses tetrahedral meshes, particles
are distributed “everywhere”, not just at regular positions
inside cells of regular meshes. The distribution of emission
positions oversufficiently fineirregular meshes contributes to
more realistic beam simulations.

Figure 9-(a) is obtained by dividing the cross section into
a rectangular grid of cells and adding the contributions of all
particles crossing each cell, as explained in the Appendix.

In Figure 10 we analyze the same cross section of Figure
9 but now plot a dot for each particle and color the dots
according to the current density of the particleat the cathode
(Figure 8). With this approach we are able to indicate which
cathode region a particle in Figure 10 came from. The fact that
color profile in the vertical direction is preserved, from the
cathode at aroundz = 0cm to the cross section atz = 14cm
is consistent with a laminar flow.
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(a) (b)

(c) (d)

Fig. 4. A mesh for one-fourth of LSBK gun: (a)y×z view, with the hidden horizontal symmetry plane beingx×z, the bottom horizontal line corresponding
to the z axis and the right-bottom point being(x, y, z) = (0, 0, 18cm); (b) zoom of figure (a), with the left-bottom point being(x, y, z) = (0, 0, 0); (c)
x × y view highlighting the cathode, part of the focus electrode and the gap between them; (d)x × y view highlighting the anode and the exit gap.

Gun3P users can also visualize computed fields ascones,
as well at their magnitudes at boundary surfaces and cross
planes, as in Figure 11.

In Figure 12 we show Gun3P scalability. Although the real
scalability curve is always expected to diverge from the ideal
scalability line, there is room for improvement through the
use of better linear preconditioners for the electrostatic and
magnetostatic discrete systems of equations.

IV. CONCLUSIONS

Theparallel 3D finite element Gun3P code was used for the
simulation of LSBK DC gun and showed very good agreement
to MICHELLE on gun current and current density profile at
the cathode. Besides having parallel capabilities, Gun3P is able
to calculate and generate a variety of parameters, profiles,
images and movies through detailed built-in monitoring of
particle trajectories and fields. Some examples of output data
include gun current, charge and current densities, phase-
spaces, emittances, fields, beam path and beam cross shape.

Possible modelling improvements are the inclusion of ther-
mal noise into particle emission and curvature effects into

Child-Langmuir’s law. Possible numerical enhancements are
the use of meshes that are finer in the focusing direction (y
axis in this paper), for the calculation of less noisy phase-
spaces and beam cross shapes, and the use of better linear
solvers on the electrostatic and magnetostatic problems, for
the improvement of Gun3P performance and scalability.

The purpose of any simulation package is to provide its
users (engineers and scientists) details on all possible features
of the device being designed or studied. The combination of
parallel computing with conformal grids and high-order basis
functions positions Gun3P as a competitive package for the
design of modern DC gun devices with precise simulations
under reasonable run times ofhours, instead of days.
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(a)

(b)

Fig. 5. Different views of the same particle trajectories.

used resources of the National Energy Research Scientific
Computing Center under contract DE-AC03-76SF00098 of the
Office of Science of the U. S. DOE.

REFERENCES

[1] P. T. Kirstein, G. S. Kino, and W. E. Waters,Space-Charge Flow.
McGraw-Hill Book Company, 1967.

[2] S. Humphries Jr.,Principles of Charged Particle Acceleration. John
Wiley & Sons, 1986.

[3] ——, Charged Particle Beams. John Wiley & Sons, 1990.
[4] Jon C. Freeman, “Preliminary Study of Electron Emission for Use in

the PIC Portion of MAFIA,” NASA/TM-2001-210890, 2001.
[5] J. Petillo et al., “The MICHELLE Three-Dimensional Electron Gun and

Collector Modeling Tool: Theory and Design,”IEEE Trans. Plasma Sc.,
vol. 30, no. 3, pp. 1238–1264, 2002.

[6] E. M. Nelson and J. J. Petillo, “Current accumulation for a self magnetic
field calculation in a finite-element gun code,”IEEE Trans. Magn.,
vol. 41, no. 8, pp. 2355–2361, 2005.

[7] S. Humphries Jr., “Numerical modeling of space-charge-limited charged-
particle Emission on a conformal triangular mesh,”Journal of Compu-
tational Physics, vol. 125, pp. 488–497, 1996.

[8] W. B. Herrmannsfeldt, “EGUN: An Electron Optics and Gun Design
Program,” Stanford Linear Accelerator Center, Publication SLAC-231,
1988.

[9] DOE Office of Science, “Scientific discovery through advanced com-
puting,” http://www.scidac.gov, 2001-2007.

[10] K. Ko et. al., “SciDAC and the International Collider: Petascale Comput-
ing for Terascale Accelerator,”SciDAC 2006 Conference, Denver, CO,
June 25-29, 2006.

[11] I. Langmuir, “The effect of space charge and initial velocities on
the potential distribution and thermionic current between parallel plate
electrodes,”Phys. Rev., vol. 21, pp. 419–435, 1923.

[12] I. Langmuir and K. B. Blodgett, “Currents limited by space charge
between coaxial cylinders,”Phys. Rev., vol. 22, pp. 347–357, 1923.

(a)

(b)

(c)

Fig. 6. Evolution ofy − vy phase-space alongz axis. (a) at cathode; (b) at
z = 14cm (beam waist region); (c) atz = 18cm (exit gap).



6 SLAC-PUB-13097, JANUARY 2008

Fig. 7. Emittanceǫy along z axis, according to formula (5).

[13] ——, “Currents limited by space charge between concentric spheres,”
Phys. Rev., vol. 24, pp. 49–59, 1924.

[14] C. K. Birdsall and A. B. Langdon,Plasma Physics via Computer
Simulation. McGraw-Hill Book Company, 1985.

[15] Alexander Burke, internal communications, SLAC, 2007.
[16] Sandia Corporation, “Cubit geometry and mesh generation toolkit,”

http://cubit.sandia.gov, 1995-2007.
[17] M. L. Barton and Z. J. Cendes, “New vector finite elements for three-

dimensional magnetic field computation,”J. Appl. Phys, vol. 61, no. 8,
pp. 3919–3921, 1987.

[18] J. Jin,The Finite Element Method in Electromagnetics. John Wiley &
Sons, 1993.

[19] P. G. Ciarlet,The Finite Element Method for Elliptic Problems. North-
Holland Publishing Company, 1978.

[20] J. P. Webb and B. Forghani, “Hierarchical Scalar and Vector Tetrahedra,”
IEEE Trans. Magn., vol. 29, no. 2, pp. 1495–1498, 1993.

[21] J. P. Webb, “Hierarchal Vector Basis Functions of Arbitrary Order for
Triangular and Tetrahedral Finite Elements,”IEEE Trans. Ant. Prop.,
vol. 47, no. 8, pp. 1244–1253, 1999.

[22] J.-F. Lee, D. K. Sun, and Z. J. Cendes, “Tangential Vector Finite
Elements for Electromagnetic Field Computation,”IEEE Trans. Magn.,
vol. 27, no. 5, pp. 4032–4035, 1991.

[23] A. Ahagon and T. Kashimoto, “Three-dimensional Electromagnetic
wave analysis using high order Edge Elements,”IEEE Trans. Magn.,
vol. 31, no. 3, pp. 1753–1756, 1995.

[24] A. Bossavit, “A Rationale for ’Edge-Elements’ in 3-D Fields Computa-
tions,” IEEE Trans. Magn., vol. 24, no. 1, pp. 74–79, 1988.

[25] D.-K. Sun, J.-F. Lee, and Z. Cendes, “Constructions of Nearly Orthog-
onal Nedelec Bases for Rapid Convergence with Multilevel Precondi-
tioned Solvers,”SIAM J. Sci. Comput., vol. 23, no. 4, pp. 1053–1076,
2001.

[26] J. P. Webb, “Edge Elements and What They Can do for You,”IEEE
Trans. Magn., vol. 29, no. 2, pp. 1460–1465, 1993.

[27] D. Sun, J. Manges, and X. Yuan, “Spurious modes in finite-element
methods,”IEEE Ant. Propag. Magn., vol. 37, no. 5, pp. 12–24, 1995.

[28] R. Albanese and G. Rubinacci, “Integral formulation for 3D eddy-current
computation using edge elements,”IEE Proceedings, vol. 135A, no. 7,
pp. 457–462, 1988.

[29] ——, “Magnetostatic field computations in terms of two-component
vector potentials,”Int. J. Num. Meth. Eng., vol. 29, pp. 515–532, 1990.
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(b)
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z = 14cm, from mininum/blue value to maximum/yellow value: (a) Gun3P
results; (b) MICHELLE results. For an easier comparison, both pictures show
the same red ellipse with half-axes2.25mm and9.21cm.
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Figure 8-(a)). The red ellipse drawn in this picture has the same dimensions
as in Figure 9.
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corresponding location. The surface colors in this picture show the magnitude
of the electric field, not the electric potential (shown in Figure 1, for instance).
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APPENDIX

In the Appendix we focus on the numerical aspects of
Gun3P algorithm. A DC gun will be represented by a bounded
piecewise-smooth domainΩ ⊂ R

3 with boundary

Γ = Γ0 ∪ Γfocus ∪ Γanode ∪ Γout ∪ Γgap ∪ Γsym,

whereΓ0 is the grounded electrode which contains the region
Γemi ⊂ Γ0 that emitts particles of rest massm0 and chargee,
Γfocus is the focus electrode maintained at a given negative
voltageVfocus < 0, Γanode is the electrode maintained at a
given positive voltageVanode > 0, Γout is the aimed exit
region for the particles,Γgap represents the gap(s) between
electrodes andΓsym represents the symmetry plane(s), if any.

Let n̂ denote the outward unit normal alongΓ. Gun3P then
deals with three physical problems:







∇ · (ǫE) = ρ in Ω,
E× n̂ = 0 on Γ0 ∪ Γfocus ∪ Γanode,
E · n̂ = 0 on Γout ∪ Γgap ∪ Γsym,

(6)







∇× (µ−1
B) = J in Ω,

B · n̂ = 0 on Γ \ Γsym,
B× n̂ = 0 on Γsym,

(7)

and






m0
d(γv)

dt = q[E + v × (B + Bext)] for t > 0,
x = x0 at t = 0,
v = v0 at t = 0,

(8)

where ǫ is the permittivity, µ is the permeability,γ is the
relativistic mass factor,x is a particle position,v is a particle
velocity, Bext is an external focusing magnetostatic flux
density andx0 ∈ Γemi andv0 are given initial position and
velocity of a particle. Above, (6) is the electrostatic problem,
(7) is the magnetostatic problem, and (8) is the description of
particle trajectories through the relativistic Lorentz equation. It
should be pointed out that the boundary condition onΓ\Γsym

in (7) is exact for the case of cylindrical symmetric domains
and, if such a symmetry is not present, it is still considered to
be a good approximation for the case of short pulse DC guns
[6], such as the LSBK gun discussed in Section III.

We assume homogeneous isotropic media and express

E = −∇φ and B = ∇× A.

The tangential continuity of the vector potentialA guarantees
the continuity of the normal component ofB [17].

A. Strong Formulations

The strong formulation of the electrostatic problem reads






















−∇ · (∇φ) = ρ
ǫ in Ω,

φ = 0 on Γ0,
φ = Vfocus on Γfocus,
φ = Vanode on Γanode,

∂φ
∂n̂

= 0 on Γout ∪ Γgap ∪ Γsym,

(9)
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and the strong formulation of the magnetostatic problem reads






∇×∇× A = µJ in Ω,
(∇× A) · n̂ = 0 on Γ \ Γsym,

(∇× A) × n̂ = 0 on Γsym.
(10)

B. Weak Formulations

Let VE indicate the set of sufficiently smooth scalar test
functionsϕ : Ω → R satisfying

ϕ = 0 on Γ0.

The weak solution of problem (9) shall then satisfy
∫

Ω

∇φ · ∇ϕ dΩ =

∫

Γ

∂φ

∂n̂
ϕ dΓ +

+

∫

Ω

ρ

ǫ
ϕ dΩ ∀ ϕ ∈ VE , (11)

where we have used the identity

−

∫

Ω

△φ ϕ dΩ =

∫

Ω

∇φ · ∇ϕ dΩ +

−

∫

Γ

∂φ

∂n̂
ϕ dΓ.

The homogeneous Neumann boundary condition in (9) makes
the boundary integral in (11) vanish.

Similarly, let VB indicate the set of sufficiently smooth
vector test functionsN : Ω → R

3 satisfying

N× n̂× n̂ = 0 on Γ \ Γsym, (12)

that is, vector functions that have null tangential component at
the boundary. The reason for such condition will become clear
in Subsection C. The weak solution of problem (10) shall then
satisfy
∫

Ω

∇× A · ∇ × N dΩ = −

∫

Γ

(n̂ ×∇× A) · N dΓ +

+

∫

Ω

µJ ·N dΩ ∀ N ∈ VB,(13)

where we have used the identities
∫

Ω

∇×∇× A ·N dΩ =

∫

Ω

∇× A · ∇ × N dΩ +

+

∫

Γ

(N× n̂) · ∇ × A dΓ

and
(N× n̂) · ∇ × A = (n̂ ×∇× A) · N.

The boundary condition onΓsym in (10) makes the boundary
integral in (13) vanish.

C. Discretizations

We discretize both problems with the finite element method
[18], generating a tetrahedral meshΩh of characteristic size
h > 0. The electrostatic problem uses scalar basis functions
[19] and the magnetostatic problem uses hierarchical vector
basis functions [24] [22] [20] [23] [21] [25].

Let NE denote the number of scalar global basis functions
belonging toVE and, for i = 1, 2, . . . , NE , let ϕi : Ω → R

denote thei-th global scalar basis function. We then substitute
the approximation

φ =

NE
∑

i=1

Φiϕi

into (11) and, after using the basis functions as test functions
and correctly imposing the boundary conditions forφ, end up
with the system ofNE linear equations

MEΦ = bE,Dir + bE,ρ, (14)

whereME is aNE×NE matrix,Φ is the vector of unknowns
Φi, i = 1, 2, . . . , NE , bE,Dir is the portion of the right hand
side (rhs) related to the nonhomogeneous Dirichlet boundary
conditions involving potentialsVfocus and Vanode, andbE,ρ

is the portion of the rhs related to the charge generated by the
particle trajectories.

Similarly, let ÑB denote the number of vector global basis
functions belonging toVB and, for i = 1, 2, . . . , ÑB, let
Ni : Ω → R

3 denote thei-th global vector basis function. The
need for the tilde inÑB and other symbols will be understood
shortly and we shall denote byedge basis functionsthose
hierarchical vector basis functions of lowest possible order.
If the approximation

A =

ÑB
∑

i=1

ãiNi

is substituted into (13) and basis functions are used as test
functions, one obtains a singular̃NB × ÑB matrix M̃B with

M̃B,i,j =

∫

Ω

∇× Ni · ∇ × Ni dΩ, 1 6 i, j 6 ÑB.

Besides, it not obvious how to correctly treat the boundary
condition on Γ \ Γsym. These difficulties are handled in
two steps. First, from the theory of hierarchical vector basis
functions [21] we know that, forp > 1, the space spanned by
the hierarchical vector basis functions of orderp has either (a)
all its basis functions equal to the gradient of scalar functions
or (b) all its elements with nonzero curl. For the former case
(a), the curl of the basis functions obviously vanish and so we
eliminate the degrees of freedomn (dof) associated to them.
Second, regarding the edge basis functions of lowest order
p = 1, we use the tree-cotree approach [28] [29] [26] [27],
that is, once an overall tree has been constructed overΩh (by
“walking” through all its nodes passing only once at any node),
we eliminate the basis functions associated to the edges in it,
further reducing the order of the problem matrix to a value
denoted byNB and turning such matrix into a nonsingular
one. The cotree is the tree formed by the remainder edges,
whose dof continue to exist. A key feature in the tree-cotree
approach for the magnetostatic problem is to form the overall
tree through three substeps. First, a tree is generated only
for the boundary nodes ofΩh. Second, a tree is generated
only for the interior nodes ofΩh. Finally, an edge linking
both trees is selected. The first substep is necessary for the
correct imposition of the boundary condition onΓ \ Γsym in
(10). Indeed, takingΓ2 to be any closed polygon formed by



PRUDENCIOet al.: PARALLEL 3D NUMERICAL MODELLING OF DC ELECTRON GUNS 9

boundary edges onΓ \ Γsym, the Stokes theorem gives
∮

∂Γ2

A · dl =

∫

Γ2

∇× A · n̂ dΓ = 0.

Then, since a graph is a tree if and only if it has no cycles
but the addition of any edge results into a unique cycle, we
conclude that the dof associated to the unique cotree edge
in any suchΓ2 will have to value zero as well, that is, the
boundary condition onΓ \ Γsym becomes thehomogeneous
Dirichlet boundary condition

∫

ℓ

A · dℓ = 0 for any mesh edgeℓ on Γ \ Γsym. (15)

This concludes the explanation for condition (12). Some refer-
ences on the numerical solution of the magnetostatic problem
are [30] [31] [32] [33] [34].

After dof elimination we then substitute the approximation

A =

NB
∑

i=1

aiNi

into (13), use the basis functions as test functions and impose
boundary conditions forA, ending up with the system ofNB

linear equations
MBa = bB, (16)

where MB is a NB × NB matrix and a is the vector of
unknownsai, i = 1, 2, . . . , NB.

D. Particle Tracking

Given a tetrahedral mesh, all cathode triangles are further
subdivided inton2 smaller triangles, as determined by a
integer user-defined input parametern. Let N denote the total
number of resulting triangles,p be the subindex used for their
designation,1 6 p 6 N , and△p be the area of a smaller
triangle. We also refer to “p” as particle id or ray id.

Gun3P sets an emission positionx0,p at the center of each
smaller triangle. As explained in Section II, emission positions
are selected during initialization and do not vary from cycle
to cycle. Once particles are emitted, Gun3P associates to
each emitted particle a ray with current densityJcathode (see
equation (3)), currentIp = Jcathode·△p and infinitesimal cross
areaδAp. As the rays travel, their currents are kept constant
and their current densitiesJp and cross areasδAp satisfy

Jp · δAp = Ip.

A ray path consists of a sequence of connected straight
segments, each segment corresponding to a time step in the
Boris algorithm [14] used for the discretization of (8). An
important tracking task is to provide these segments for the
computation of the integrals

∫

Ωe

ρ

ǫ
ϕ dΩe and

∫

Ωe

µJ · N dΩe

in any given tetrahedronΩe. Such integrals are related to the
rhs of equations (14) and (16). For the case of an infinitesimal
cylinder δV of ray cross areaδAp and lengthδl, which is

traveled inδtp time by a ray with velocityvp = δl/δtp, it is
easy to check that

∫

δV

ρ

ǫ
ϕ dδV =

JpδApδtp
δApδl

ϕ δApδl =
Ip

ǫvp
ϕ δl

and
∫

δV

µJ · N dδV = µJp · N δApδl = µIp ·N δl.

Let Ne denote the number of ray segments inside elementΩe,
s be the subindex used for their designation,1 6 s 6 Ne, ps

be the id of the ray related to thes-th segment insideΩe and
ls be the lenght of such segment. We then have

∫

Ωe

ρ

ǫ
ϕ dΩe =

Ne
∑

s=1

∫

ls

Ips

ǫvps

ϕ dl

and
∫

Ωe

µJ · N dΩe =

Ne
∑

s=1

∫

ls

µIps
· N dl,

where the velocityvps
and both basis functionsϕ andN can

vary alongls.

E. Computation of Densities at Cross Sections

Without loss of generality, let us assume that the the cross
section is perpendicular to thez axis and that it is located at
z = zc. Gun3P computes the charge densityρz=zc

and current
densityJz=zc

at a cross section by sampling, as follows. Given
an infinitesimal lengthδz, a sampling cross region (e.g. a
rectangle) of areaS and a volume formed by the extrusion
of S from zc − δz/2 to zc + δz/2, let Nc be the number of
rays crossingS, r be the subindex used for their designation,
1 6 r 6 Nc, pr be the id of the ray related to ther-th crossing,
δApr

be its infinitesimal cross section,δtpr
be the time it takes

for traveling fromzc − δz/2 to zc + δz/2 andvpr ,z be thez
component of the crossing velocity. One then has:

ρz=zc
=

∑Nc

r=1 Jpr
δApr

δtpr

Sδz
=

Nc
∑

r=1

Ipr

Svpr ,z

and

Jz=zc
=

∑Nc

r=1 Jpr
δApr

S
=

Nc
∑

r=1

Ipr

S
.

Both densities vary with the sampling region location and size.

F. Inter-Cycle Averaging Factor

Gun3P updatesρ andJ through cycles with a user-defined
inter-cycle averaging factorξ, 0 < ξ < 1 [7]. A weight of ξ is
given to the density values obtained with the trajectories most
recently computed, while a weight of1 − ξ is given to the
previously used densities. More specifically, letb

(k)
E,ρ andb

(k)
B

indicate the values used in equations (14) and (16) during the
k-th cycle,k = 0, 1, . . . , kmax, and letb(k+1/2)

E,ρ andb
(k+1/2)
B

indicate the values obtained with the trajectories computed at
the end of the samek-th cycle. Gun3P then sets

b
(0)
E,ρ = 0 andb

(0)
B = 0,
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Fig. 13. Gun current convergence, as cycles progress.

b
(k+1)
E,ρ = ξb

(k+1/2)
E,ρ + (1 − ξ)b

(k)
E,ρ for k > 0

and

b
(k+1)
B = ξb

(k+1/2)
B + (1 − ξ)b

(k)
B for k > 0.

The ξ parameter plays an important role in the stability
of the whole numerical algorithm. Values close to 1 might
produce gun current values that overshoot on the first cycle
and oscillate on the next cycles, delaying the achievement of
the equilibrium value or even causing the overall numerical
algorithm to diverge. Properξ values cause these oscillations
to be smoothed or even disappear, as shown in Figure 13. For
the LSBK DC gun simulation we usedξ = 0.1.

G. Cycle Convergence Studies

As stated in Section II, one expects all computed values to
stabilize as algorithm cycles progress, and in fact this is the
behavior we have been observing on Gun3P simulations. We
show some cycle convergence histories in Figures 13, 14 and
15, which are respectively related to the gun current, static
fields and crossing positions on the cross plane atz = 14cm.

In Figure 13, after 41 cyles, the current changes by about
just 4mA around a value of approximately129A, which
represents0.003%. Figures 14 and 15 also show a persistent
decrease of monitored values as cycles advance.

Figure 16 shows that no particles hit the anode on all cycles
k > 22, a stable behavior consistent with the convergences
observed in the previous three figures.

Fig. 14. Relative change of computed dof, as cycles progress.

Fig. 15. Distribution of distances(µm) of crossing positions on cross plane at
z = 14cm, between two consecutive cycles, as cycles progress. Each particle
has its crossing position in current cycle compared to its crossing position
in previous cycle. Only particles crossing on both cycles contribute to the
average and standard deviation calculations.

Fig. 16. Percentage of particles hitting the anode, as cyclesprogress.


