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Paallel 3D Finite Element Numerical Modelling of
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Abstract— In this paper we present Gun3P, aparallel 3D finite
element application that the Advanced Computations Depart-
ment at the Stanford Linear Accelerator Center is developing for
the analysis of beam formation in DC guns and beam transport in
klystrons. Gun3P is targeted specially to complex geometries that
cannot be described by 2D models and cannot be easily handled
by finite difference discretizations. Its parallel capability allows
simulations with more accuracy and less processing time than
packages currently available. We present simulation results for
the L-band Sheet Beam Klystron DC gun, in which case Gun3P
is able to reduce simulation timefrom days to some hours.

Index Terms—Electron guns, parallel computing, finite ele-
ment method, electrostatics, magnetostatics, particle tracking.

. INTRODUCTION Fig. 1. Equilibrium electric potential and beam trajectory adséd with
Gun3P. The picture shows three-fourths of the geometry so that the beam

HERE are many software packages available for tisen be better visualized. The blue region corresponds to the cathode at 0V,

simulation of DC guns and collectors [1] [2] [3] [4], the red surface corresponds to thg anode at 115KV and the col_orful curves
correspond to the change of electric potential along the gap region between

e.g. MICHELLE [5] [6], TRAK [7] and EGUN [8]. Currently cathode and anode. The thin green lines model the beam travelling from the

available codes for mode|ing DC guns run on single CPtathode towards the narrow exit gap on the right. The evaluation of the beam

machines. The size of the problem and the amount of des@l{-magnetic field is essential for simulation correctness.

details that can be modeled using these codes are limited by

the memory and speed of a single processor. The_ Advanqggks: electrostatic solver, magnetostatic solver and particle
Computations Department (ACD) at the Stanford Linear AGfacker. Parallel computing is used in all three tasks.

celerator Center (SLAC) is developing the Gun3P application, 5 n3p extends the libraries already used for the Omega3P
which overcomes these limitations by using hlgh-order f|n|t§nd Track3P codes [9] developed at ACD under the Scientific
elements overcurved tetrahedra angbarallel processing for Discovery through Advanced Computing initiative (SCIDAC
accuracy and_ speed._ ) .~ _[10]) of the Office of Science of the Department of Energy
The paper is organized as follows. In Section Il we briefl DOE). It is written in C++, uses the MPI paradigm for
describe Gun3P and its underlying algorithm. Section _IEaralleI processing and runs on UNIX type operating systems.
presents L-band Sheet Beam Klystron (LSBK) DC gun SiMsogorocessing is done with v3d, the 3D visualization package
ulation results obtained with Gun3P, followed by Condus'ortfeveloped by ACD under SCiDAC as well.
in Section 1V. In the Appendix we focus on the numerical 5 ,,3p expresses the electrostatic fiElénd the magneto-

aspects of Gun3P, including the mathematical derivation of; i flux densityB in terms of scalar potentia and vector
the discrete equations solved and some convergence StUdiﬁBtentialA

Il. GUN3P QVERVIEW E=-V¢ and B=V x A,

The objective of Gun3P is to compute the equilibrium staf®® that the steady-state Maxwell equations< E = 0 and
of four physical observables present in DC gun operations’ B = 0 are automatically satisfied. At any given cycle, the
(see Figure 1): the electrostatic field, the self-magnetostafi€ctrostatic solver deals with the equation
field and the charge and current densities related to a beam —V - (Vo) = p (1)
of charged patrticles. Its algorithm consists of a sequence of ) . .
computingcyclesuntil a convergence criterion is achieved, a§nd the magnetostatic solver deals with the equation
shown in Figure 2. Each cycle groups three computational V x (1Y x A) = J, )

tAdvanced Computations Department, Stanford Linear Accelerator Centatheree is the permittivity,.. is the permeability, and the charge

5389; fax: 650-926-4603; e-mail: prudenci@slac.stanford.edu. This work Wa? h . le (both f he fi |
supported by the U. S. Department of Energy under contract DE-AC0®] tN€ previous cycle (both terms are zero for the first cycle).

76SF00515. We assume homogeneous isotropic media, so ¢haind p
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Fig. 2. Overview of Gun3P’s algorithm.

Fig. 3. Emission model currently used by Gun3P.

are constant scalars. Proper boundary conditiong @md A,
detailed in the Appendix, are also imposed. Gun3P relies on
the finite element method oveurvedtetrahedral meshes withWherey is the relativistic mass factor. The Boris algorithm
geometric order; < 2 for the discretization of bothy and [14] is used for the discretization of (4). Currently Gun3P
A. Scalar basis functions up to ordgg, = 4 can be used does not model any thermal effects at the cathode.
for computing the discrete and vector basis functions up to Once all particles are tracked, Gun3P loops to the next
orderpg = 6 can be used for computing the discrete cycle, updatingp and J in (1) and (2). As the inter-cycle

Once the field potentials are computed, particles are emitt®@p continues, one expects all computed values to stabilize,
and tracked. Figure 3 presents the main parameters invol@. particle trajectories, field magnitudes and gun current. In
in the emission model. The emission positions are assign@§t, Gun3P loops until some convergence criterion is satisfied
during initialization and do not vary through cycles. Withou®r the maximum user-defined number of cycles is achieved.
loss of generality, we assume a grounded cathodenigeand Cycle convergence criteria are discussed in the Appendix.
e indicate the particle rest mass and electric chaxgéndicate ~ Table | summarizes the main input parameters, while Table
a emission position at the cathode aindhdicate the outward |l shows some output parameters. Theemittance formula
unit normal atx,. Also, given a user-specified distané¢e.g. used by Gun3P is
d = 100pum) from the cathode, lex, = x¢ — dn, let ¢4 and ” —
E; = —V¢, indicate the electric potential and the electric ¢, = 27 \/<y2> <7J_> _ <yg> (5)
field atx, and letv, indicate the velocity magnitude satisfying 22 2/

mov3 where the dot sign indicates the derivative with respect to the
2 —€Pa. time variable and the averages are taken over to total number
Gun3P emitts a particle at, with constant velocity [7] of particles. Formula (5) assumes symmetry w.r.t.ato z
5 plane, that is(y) = 0, (y/2) = 0 and (yy/%) = 0. Similar
vo = _gvdﬁ formula and assumption are used tgremittance.

and associates to it a current densify,;,.qc according to
Child-Langmuir's law [11] [12] [13] I11. LSBK DC GUN SIMULATION
The sheet beam klystron (SBK) is being developed at
SLAC for the International Linear Collider as an alternative
high power RF source to conventional pencil beam klystrons,
offering advantages such as simpler fabrication and longer life
expectation due to lighter cathode loading. Because of the
v eEq elongated elliptical beam transverse profile, SBK simulations
eEd] are fully three dimensional.
and its trajectory is computed through the relativistic Lorentz Starting with an LS_BK CAD/CA.M model [15], we_ﬁrst
equation generate a mesh using the_ Cubit pf_;lckage_ [16]. Figure 4
d(yv) shows four different mesh views obtained with ACD’s v3d
a e[E+v x B, (4)  visualization package. The mesh is finer in and around the

4 20| ¢3*
Jcathode = §6 ml—olﬁ (3)

Once the particle reacheg, its velocity is set to [7]

Vg =

mo
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TABLE | TABLE Il
MAIN GUN3PINPUT PARAMETERS LETTER“E,B,T” REFERS TO INPUT VALUES USED FORGUN3PAND MICHELLE SIMULATIONS.
ELECTROSTATIOMAGNETOSTATIC/TRACKING PROBLEM.
Problem Input Gun3P MICHELLE
Problem | Symbol Meaning Parameter Value Value
# cycles 41 80
7 cycles Number of cycles All # elems 1,316,530 1,073,000
All # elems Number of tetrahedra tetrahedra hexahedrons
q Geometric order q 2 1
# cpus Total number of cpus used # cpus 48 " 1
Vioeuws | ElECHIC potential at focus electrode (1.9 GHz each)| (3.0 GHz)
E Vanode Electric potential at anode Viocus (V) -500 -500
PE Order of basis functions E Vanode (V) 115,000 115,000
B PB Order of basis functions PE 3 1
d Distance from cathode where B PB 1 unknown
Child-Langmuir's law is applied d(pm) 100 unknown
T N Total number of particles T N 145,675 96,064
7 Time step At (ps) 2 unknown
TABLE I TABLE IV
SOME OUTPUT PARAMETERS “DOF” MEANS “DEGRESS OF FREEDOMR OUTPUT VALUES OBTAINED BY GUN3PAND MICHELLE SIMULATIONS.
Symbol Meaning Output Gun3P MICHELLE
parameter Value Value
T Gun current 1(A) _ 129.3 . 129.3
Teathode Current density profile at cathode Jeathode (Alcm?) min = 1.7528 | min = 1.7500
€y Emittancey at a cross plane max = 2.3622| max = 2.4000
) Charge density profile at a cross pland €y,z=18cm (m_ mm-mrad) 4.3 unknown
Hitting percentage|  Percentage of particles hitting anode pz=14cm (MC/MT) max = 3.9 unknown
# dofg Number of dof for electrostatic problem Hitting percentage 0% 0%
# dofg Number of dof for magnetostatic problem # dofg 6,114,694 unknown
# time steps/cycle Number of time steps per cycle # dofg 1,599,393 unknown
Run time Run time # time steps/cycle 785 unknown
Run time(hrs) 55 63.6

region of particle trajectories. In the simulations present
here, the forward direction is parallel to theaxis. problems.

We then run Gun3P with the input parameters given in TableIn Figures 8 and 9 we again compare some Gun3P results to
Il and obtain the results shown in Table IV. MICHELLE [15]MICHELLE ones. Figure 8 shows the current density profile
results, obtained with one processor, are shown for bendi-the cathode and Figure 9 shows the charge density profile
marking purposes. The comparison in Table IV highlights th@n the cross plane at= 14cm.
advantadge of using parallel computing in Gun3P, namely theResults in Figures 8-(a) and 8-(b) agree pretty well. Each
reduction of run timefrom days to hours dot in Figure 8-(a) represents a Gun3P particle and the color

Figure 5 shows the equilibrium particle trajectories. Thearies according to the current density computed with Child-
beam width in ther-direction is practically constant through-Langmuir's emission law (3). The appearance of Figure 8-(a) is
out the whole path from cathode to the exit gap. smooth. Indeed, since Gun3P uses tetrahedral meshes, particles

Gun3P also monitors a variety of beam features. Figure &g distributed “everywhere”, not just at regular positions
for instance, shows phase-spaces on three crosg planes inside cells of regular meshes. The distribution of emission
positioned along the: axis. The beam leaves the cathodgositions oversufficiently fineirregular meshes contributes to
undergoing strong focusing (Figures 5-(a) and 6-(a)), traverpore realistic beam simulations.
parallel to thez axis aroundz = 14cm, the region of beam  Figure 9-(a) is obtained by dividing the cross section into
waist (Figure 6-(b)), and shows some expansion at18cm, a rectangular grid of cells and adding the contributions of all
the exit gap region (Figure 6-(c)). particles crossing each cell, as explained in the Appendix.

Figure 7 shows the, emittance profile along the axis, In Figure 10 we analyze the same cross section of Figure
sharply decreasing near the cathode, since that is the regdobut now plot a dot for each particle and color the dots
where the beam experiments the strongest acceleration in #iteording to the current density of the partigiethe cathode
forward direction. (Figure 8). With this approach we are able to indicate which

In both Figures 6 and 7 we show results for four differentathode region a particle in Figure 10 came from. The fact that
meshes, from the coarsest with 479k tetrahedra to the finestor profile in the vertical direction is preserved, from the
with 1,817k tetrahedra. The results change less as the meathode at around = Ocm to the cross section at= 14cm
is refined, a necessary condition for correctly discretizad consistent with a laminar flow.
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Fig. 4. A mesh for one-fourth of LSBK gun: (@)x z view, with the hidden horizontal symmetry plane being z, the bottom horizontal line corresponding
to the z axis and the right-bottom point being:, v, z) = (0,0, 18cm); (b) zoom of figure (a), with the left-bottom point beirdg, y, z) = (0,0, 0); (c)
x x y view highlighting the cathode, part of the focus electrode and the gap between themx (g)view highlighting the anode and the exit gap.

Gun3P users can also visualize computed fieldsases Child-Langmuir's law. Possible numerical enhancements are
as well at their magnitudes at boundary surfaces and crdle use of meshes that are finer in the focusing direction (
planes, as in Figure 11. axis in this paper), for the calculation of less noisy phase-

In Figure 12 we show Gun3P scalability. Although the realpaces and beam cross shapes, and the use of better linear
scalability curve is always expected to diverge from the idesblvers on the electrostatic and magnetostatic problems, for
scalability line, there is room for improvement through théhe improvement of Gun3P performance and scalability.
use of better linear preconditioners for the electrostatic andThe purpose of any simulation package is to provide its

magnetostatic discrete systems of equations. users (engineers and scientists) details on all possible features
of the device being designed or studied. The combination of
IV. CONCLUSIONS parallel computing with conformal grids and high-order basis

Theparallel 3D finite element Gun3P code was used forthf n(?uons positions Gun3P as a compentwe Pa"""’?ge fOT the
gsign of modern DC gun devices with precise simulations

simulation of LSBK DC gun and showed very good agreeme d bl . b6 instead of d
to MICHELLE on gun current and current density profile at'Nder reasonapie run times bours, instead ot days

the cathode. Besides having parallel capabilities, Gun3P is able

to calculate and generate a variety of parameters, profiles, ACKNOWLEDGMENTS
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APPENDIX

In the Appendix we focus on the numerical aspects of
Gun3P algorithm. A DC gun will be represented by a bounded

m’”‘ﬁrrmmmw‘:’frﬂaﬂ R
e ' piecewise-smooth domaid C R? with boundary

I'= 1—‘lO U Ffocus U Fanode U FouiE U Fgap U Fsymv

Fig. 10. Particle distribution at the rectangular crossieadtz = 14cm, the Wherel', is the grounded electrode which contains the region
same Cross se;ction of Figure 9._ Each c_olorful dot corresponds to a particle gnedml. c Ty that emitts particles of rest massg, and chargez,
each particle is colored according to “its” current density at the cathode (j;a]e is the f lectrod intained at . ti
Figure 8-(a)). The red ellipse drawn in this picture has the same dimensiongocus IS the Tocus elec I’O. € maintained at a _g've_n negative
as in Figure 9. voltage Vioeus < 0, Tanode is the electrode maintained at a
given positive voltagel,,oqe > 0, Ty iS the aimed exit
region for the particles]'y,, represents the gap(s) between
electrodes andl,,,,, represents the symmetry plane(s), if any.
Let n denote the outward unit normal alohg Gun3P then

deals with three physical problems:

s i : V-(E) = p in Q,

LT A Exn = 0 on Lo UT focus U anodes (6)
E-n = 0 oNn Loy UT gap U T gym,
Vx(u1B) = J in Q,
Bn = 0 on'\ Tsym, (7)
Bxn = 0 on Tsyrm,
and
mo?0¥) = G[E+v x (B + Bey)] for t >0,

X = xpatt=0, (8)

v = vgatt=0,

where e is the permittivity, © is the permeability;y is the
Fig. 11. Electrostatic field visualization. Cone directidnglicate the field relativistic mass factorx is a particle positiony is a particle
direction and the larger a cone is, the larger is the field magnitude at ‘Uélocity B..; is an external focusing magnetostatic flux
corresponding location. The surface colors in this picture show the magnitustiie L dx r d . initial iti d

of the electric field, not the electric potential (shown in Figure 1, for instance .en‘Q"_ty anoxp < - emi andvo are_ given Iniia pOS_I Ion an
velocity of a particle. Above, (6) is the electrostatic problem,
(7) is the magnetostatic problem, and (8) is the description of
particle trajectories through the relativistic Lorentz equation. It

should be pointed out that the boundary conditiorTofT .,

3 P in (7) is exact for the case of cylindrical symmetric domains
i and, if such a symmetry is not present, it is still considered to
6 S be a good approximation for the case of short pulse DC guns
_ [6], such as the LSBK gun discussed in Section lll.
st _ 1 We assume homogeneous isotropic media and express
1. = ] E=-Vé and B=V x A.

The tangential continuity of the vector potent&lguarantees
the continuity of the normal component Bf [17].

A. Strong Formulations

1 fiad The strong formulation of the electrostatic problem reads
? Ideal scalability
oL { | i i | i S GunaP scalablty -V (ng)) = g inQ,
’ ° 4:um=rol?rmwrs?;nssip|atf‘::nntNEF1|;°c|cz4_4$:& 160 * o (25 = 0 on Fo,
¢ - ‘/focus on Ffocu57 (9)
Fig. 12. Gun3P scalability, as of December of 2007. ¢ = Vanode ONTagnode,
9
2 =0 0N Tyt UTgap U Dy,
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and the strong formulation of the magnetostatic problem reagnote the-th global scalar basis function. We then substitute
VXVxA = uJ in Q, the approximation

NEg
(VxA)h = 0 onT\ Ty, (10) B N
(VxA)xn = 0 on Cgym. ¢_;¢1%

into (11) and, after using the basis functions as test functions

o . and correctly imposing the boundary conditions fgrend up
Let Vg indicate the set of sufficiently smooth scalar teskith the system ofVy; linear equations

functionsy : Q — R satisfying

B. Weak Formulations

© =0 onT,. Mg® = bg pir + bg,, (14)
The weak solution of problem (9) shall then satisfy whereM g is a Ng x Ng matrix, ® is the vector of unknowns
®;,i=1,2,...,Ng, bg pir is the portion of the right hand
/ Vo Vo dQ = / 6?@ dr + side (rhs) related to the nonhomogeneous Dirichlet boundary
Q r on conditions involving potential$/s,..s and Vipoqe, andbg,,
+ / BSO A0 Y oeVp, (11) is th_e portipn of .the rhs related to the charge generated by the
Q¢ particle trajectories.
where we have used the identity Similarly, let N5 denote the number of vector global basis
functions belonging toVz and, fori = 1,2,..., Np, let
— | Appd = / Vo -V dd+ N; : Q — R3 denote the-th global vector basis function. The
Q Q need for the tilde inVz and other symbols will be understood
/a_ibgp dr. shortly and we shall denote bgdge basis functionthose
r on hierarchical vector basis functions of lowest possible order.

The homogeneous Neumann boundary condition in (9) maKéshe approximation
the boundary integral in (11) vanish. _

Similarly, let Vz indicate the set of sufficiently smooth
vector test functiondN : ) — R3 satisfying

Nxfaxn=0onI\Tgp, (12) is substituted into (13) and basis functions are used as test

that is, vector functions that have null tangential component&fictions, one obtains a singulafz x Np matrix M with
the boundary. The reason for such condition will become clear _ _
in Subsection C. The weak solution of problem (10) shall then Mgz, = | V xN;-V xN; d, 1 <4,j < Np.
satisfy @
Besides, it not obvious how to correctly treat the boundary
/ VXA -VxNdIQ = —/(ﬁ xVxA) NdI'+ condition onT \ T,,,,. These difficulties are handled in
£ r two steps. First, from the theory of hierarchical vector basis
+ / pJ -N dQ VN e Vp(13) functions [21] we know that, fop > 1, the space spanned by
Q the hierarchical vector basis functions of orgdnas either (a)

where we have used the identities all its basis functions equal to the gradient of scalar functions
or (b) all its elements with nonzero curl. For the former case
/QV XVxA -NdQ = /QV XA -V xNdQ+ (a), the curl of the basis functions obviously vanish and so we
eliminate the degrees of freedomn (dof) associated to them.
+ /(N xn)-VxAdl Second, regarding the edge basis functions of lowest order
r p = 1, we use the tree-cotree approach [28] [29] [26] [27],
and that is, once an overall tree has been constructed Qydiby
(Nxn) - VxA=HmxVxA) N “walking” through all its nodes passing only once at any node),

we eliminate the basis functions associated to the edges in it,
further reducing the order of the problem matrix to a value
denoted byNg and turning such matrix into a nonsingular
one. The cotree is the tree formed by the remainder edges,
whose dof continue to exist. A key feature in the tree-cotree
We discretize both problems with the finite element methapproach for the magnetostatic problem is to form the overall
[18], generating a tetrahedral mes§h, of characteristic size tree through three substeps. First, a tree is generated only
h > 0. The electrostatic problem uses scalar basis functiofts the boundary nodes d,. Second, a tree is generated
[19] and the magnetostatic problem uses hierarchical vectmly for the interior nodes of),. Finally, an edge linking
basis functions [24] [22] [20] [23] [21] [25]. both trees is selected. The first substep is necessary for the
Let N denote the number of scalar global basis functior®rrect imposition of the boundary condition @h\ Iy, in
belonging toVz and, fori = 1,2,..., Ng, letp; : @ — R (10). Indeed, takind', to be any closed polygon formed by

The boundary condition ofi,,,, in (10) makes the boundary
integral in (13) vanish.

C. Discretizations
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boundary edges oh \ I'y,,,,, the Stokes theorem gives traveled indt, time by a ray with velocityv, = 6l/dt,, it is
easy to check that
A-dl= VxA-ndl=0.
p JpdA,dt, 1,
I’y s - == & = =
/5\/ m dsv 5451 w 0Ap0l evp(p ol

Then, since a graph is a tree if and only if it has no cycles
but the addition of any edge results into a unique cycle, vnd
conclude that the dof associated to the unique cotree edge
in any suchI'y will have to value zero as well, that is, the

b‘,",‘”dary condition orl’ _\, L'sym becomes théromogeneous | o¢ N, denote the number of ray segments inside elerfient
Dirichlet boundary condition s be the subindex used for their designatidng s < Ne, ps

be the id of the ray related to theth segment insid€), and
ls be the lenght of such segment. We then have

/ pd N d§V = pJ, - N §A,61 = pI, - N 61,
2%

/A -d€ =0 forany mesh edgéonl'\T,,,. (15)
14

This concludes the explanation for condition (12). Some refer- p Ne I,

ences on the numerical solution of the magnetostatic problem /Q 7 dde = Z/z ES" dl

are [30] [31] [32] [33] [34]. ‘ s=ioie
After dof elimination we then substitute the approximatiognd

Ne
Np / MJ-NdQe:Z/uIPS~Ndl,
_ N . Qe s=1"71ls

i=1 where the velocity,, and both basis functions andN can
into (13), use the basis functions as test functions and impo&#y alongl.
boundary conditions foA, ending up with the system df g

linear equations E. Computation of Densities at Cross Sections

Mpa =bsg, (16) Without loss of generality, let us assume that the the cross
where M is a Nz x Ny matrix anda is the vector of section is perpendicular to theaxis and that it is located at
unknownsa;, i = 1,2,..., Ng. z = z.. GUn3P computes the charge dengity.. and current

densityJ,—._ at across section by sampling, as follows. Given
an infinitesimal lengthdz, a sampling cross region (e.g. a
D. Particle Tracking rectangle) of aress and a volume formed by the extrusion
Given a tetrahedral mesh, all cathode triangles are furth@ S from z. — §2/2 to z. + 0z/2, let N. be the number of
subdivided inton? smaller triangles, as determined by days crossingS, r be the subindex used for their designation,
integer user-defined input parameterLet N denote the total 1 <7 < N, p, be the id of the ray related to theth crossing,
number of resulting triangleg, be the subindex used for theird 4, be its infinitesimal cross sectiodt,,. be the time it takes
designation,l < p < N, andA, be the area of a smallerfor traveling fromz, —0z/2 to z. + 6z/2 andv,, . be thez

triangle. We also refer top” as particle id or ray id. component of the crossing velocity. One then has:
Gun3P sets an emission positigg,, at the center of each ZNC T A 5t Ne g
smaller triangle. As explained in Section Il, emission positions Pomsp, = Sr=LPr T Pr Pr Pr
are selected during initialization and do not vary from cycle S0z =1 Stp, 2
to cycle. Once particles are emitted, Gun3P associates iy
each gmltted particle a ray with current Qens_]’t%t.hode (see ZN:Cl Jp 0A, Ne I,
equation (3)), current, = J.uthode- 2\, and infinitesimal cross Jomzy = % = ?
areadA,. As the rays travel, their currents are kept constant r=1
and their current densitie$, and cross areasA4, satisfy Both densities vary with the sampling region location and size.
Jp - 0A, = I,

F. Inter-Cycle Averaging Factor

A ray path consists of a sequence of connected straighlgn3p updateg andJ through cycles with a user-defined
segments, each segment corresponding to a time step injihier cycle averaging facta, 0 < € < 1 [7]. A weight of € is
Boris algorithm [14] used for the discretization of (8). Angiven o the density values obtained with the trajectories most
|mportant_ tracking t_ask is to provide these segments for ﬂf‘@cently computed, while a weight df — ¢ is given to the
computation of the integrals previously used densities. More specifically,llég)p andb'y

p indicate the values used in equations (14) and’(16 during the
/se ¥ dfle and /g pot - N df2e k-th cycle,k = 0,1, ..., kmas, and Ietb(bf“;l/z) andb{i /2
indicate the values obtained with the trajectories computed at

in any given tetrahedrof2.. Such integrals are related to theo and of the same-th cycle. Gun3P then sets
rhs of equations (14) and (16). For the case of an infinitesimal

cylinder 6V of ray cross area A, and lengthdl, which is b%)?p =0 and bg) =0,
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Fig. 13. Gun current convergence, as cycles progress. Fig. 14. Relative change of computed dof, as cycles progress.
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b(E,p — gb%)p /2) +(1— §)b§3)p fork >0 | ! Siddev
and W P
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b — bW 41— op® for k> 0.
The ¢ parameter plays an important role in the stability |
. . . E |
of the whole numerical algorithm. Values close to 1 mighr 2 .
. g w0
produce gun current values that overshoot on the first cyc § |
and oscillate on the next cycles, delaying the achievement ° ]
the equilibrium value or even causing the overall numerice ™ : e
algorithm to diverge. Propef values cause these oscillations 5 : :
to be smoothed or even disappear, as shown in Figure 13. F ;']
the LSBK DC gun simulation we used= 0.1. |
w0’ L L i | |
G. Cycle Convergence Studies ’ : i T am T = » ®

As stated in Section Il, one expects all computed values to S . _ N
stabilize as algorithm cycles progress, and in fact this is thig- 15. Distribution of distanceg:m) of crossing positions on cross plane at
. . ! . . = 14cm, between two consecutive cycles, as cycles progress. Each particle
behavior we have been observing on Gun3P simulations. % its crossing position in current cycle compared to its crossing position
show some cycle convergence histories in Figures 13, 14 amgbrevious cycle. Only particles crossing on both cycles contribute to the
15, which are respectively related to the gun current, staffitérage and standard deviation calculations.
fields and crossing positions on the cross plane at14cm.
In Figure 13, after 41 cyles, the current changes by abor
just 4mA around a value of approximately29A, which o)
represent$).003%. Figures 14 and 15 also show a persisten '
decrease of monitored values as cycles advance. _ v
Figure 16 shows that no particles hit the anode on all cycle & | b
k > 22, a stable behavior consistent with the convergence
observed in the previous three figures.

L
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Fig. 16. Percentage of particles hitting the anode, as cymegress.



