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Preface

This volume is devoted to the Proceedings of the International Conference on Relativistic Astrophysics
which was aimed to Celebrate 100 Years of Einstein’s Theory of General Relativity developed by Albert
Einstein in 1915. This conference was organized by Department of Mathematics, University of the Punjab,
Lahore-Pakistan. The venue of the conference was decided as Al-Raazi Hall, Centre for Undergraduate
Studies, University of the Punjab. It was the first International Conference on Relativistic Astrophysics
organized by Department of Mathematics.

Einstein is probably the most well-known scientific genius. His creative ability allowed him to dream
of new physics and create scientific revolutions, including his masterpiece, the theory of general relativ-
ity. Nearly 100 years after his masterwork, Einstein continues to inspire younger generations of scientists,
philosophers and artists, as they strive to answer the big questions about our place in the cosmos. While
people around the globe instantly recognize Einstein’s image, many in the public still have not had an oc-
casion to learn some of the astonishing details and amazing implications of his most monumental discovery.
Celebrating Einstein draws on the power of Einstein and his ideas to tell the exciting story of relativity and
astrophysics to public, to inspire younger generations to dare to dream about exploration, to dare to join
in the most daunting question of all: to unravel the mysteries of the universe.

The conference included presentations covering the wide range of research areas in general relativity and
gravitation, alternative theories of gravity, relativistic astrophysics and cosmology as advertised initially.
The program consisted of Plenary sessions with invited talks and then contributed talks in parallel sessions.
There was a special discussion session in which it was suggested by the participants of the Conference to
hold such events in the near future and to make a society for relativity in Pakistan. The proceedings of the
International Conference on Relativistic Astrophysics appeared through the Punjab University Press.

We are most grateful to all the authors for their work in preparing the manuscripts for this proceedings.
The Conference organizers are also very grateful to University of the Punjab for providing excellent facilities
to conduct this conference with financial support. Also, we would like to acknowledge the financial support
provided by Pakistan Academy of Sciences, The Abdus Salam International Center for Theoretical Physics,
International Mathematical Union-Commission for Developing Countries. We would also like to acknowl-
edge all the members of Relativity Group of Department of Mathematics for their unfaltering efforts to
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make this meeting a success. Finally, we would like to thank all the participants of ICRA-Pakistan, 2015
for making this conference so vital and energizing. We look forward to organize such events in the near future.

Editor

Muhammad Sharif

Sponsors
University of the Punjab (PU)
Pakistan Academy of Sciences (PAS)
International Center for Theoretical Physics (ICTP)
International Mathematical Union (IMU-CDC)
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Einstein’s Blip – One of the Puzzle Stones towards Exploring
Ourselves in the Vastness of the Universe

Martin Dominika,b,1

1SUPA, University of St Andrews, School of Physics & Astronomy, North Haugh, St Andrews, KY16 9SS, United Kingdom

Abstract Einstein’s theory of General Relativity is “a
most profound theory of Nature, embracing almost all
the phenomena of physics”.1 Particularly, the gravita-
tional bending of light is “a most curious effect”,2 pro-
viding us with a unique window to the Universe. The
exploitation of this effect is a continuing story of cu-
riosity, scepticism, surprise, and fascination. Short blips
that will never be seen again now reveal distant worlds,
setting the cosmic context of our little blue planet, and
ourselves.

Keywords First keyword · Second keyword · More

1 General Relativity and Optics

Einstein’s amazing theory of curved space-time [1–3],
whose 100th anniversary we celebrate this year, is built
upon a small number of relatively simple fundamental
principles, and is the result of a long historical process
of refining our view of Nature.

With the advent of Greek philosophy, ancient mystic
ideas made way for the central and embracing concept
of geometry, going hand in hand with simplicity, sym-
metry, and beauty. These principles governed the view
for several millennia, and are famously reflected in the
drawing of the human body by Leonardo da Vinci fol-
lowing the description of the Roman architect Vitruvius
[4,5].

A strict demand for causality imposed a revolution-
ary change, ultimately leading Isaac Newton to base his
universal law of gravitation, published in 1687 in his

ae-mail: md35@st-andrews.ac.uk
bRoyal Society University Research Fellow
1A.S. Eddington in “Discussion on the Theory of Relativity”,
Mon. Not. R. Astron. Soc., 80, 96 (1919)
2A. Einstein, “Lens-Like Action of a Star by the Deviation
of Light in the Gravitational Field”, Sci., 84, 506 (1936)

most famous book “Philosophiae Naturalis Principia
Mathematica”, on the concept of acting (and re-acting)
forces [6].

It seems tempting to consider the transition from
Newton’s theory to Einstein’s theory in the framework
of mechanics. However, this is not really a story of me-
chanics, but much more one of optics.

Let us therefore have a look at light, which Newton
devoted his second most famous book to. In “Opticks”,
published in 1704, he discussed many phenomena, based
on the assumption that light is composed of small cor-
puscles [7], but he did not find time to dig deeper into
some aspects that he came across, and therefore stated
at the end: “And since I have not finished this part of
my Design, I shall conclude, with proposing only some
Queries in order to a further search to be made by oth-
ers.” Remarkably, straightaway the first of his queries
reads: “Do not bodies act upon light at a distance, and
by their action bend its rays, and is not this action (ce-
teris paribus) – i.e. everything else being the same –
strongest at the least distance?”

Almost exactly a century later, Johann Georg von
Soldner applied Newton’s theory to find a light ray graz-
ing near the edge of the Sun to be deflected by 0.84
arcseconds [8]. Moreover, he found that 1) the deflec-
tion increases with the mass of the gravitating body,
2) and increases with the proximity of the light ray to
the deflector (i.e. just as Newton proposed, the action
is strongest at the least distance). However, in 1801, he
had to conclude that this effect would not be of any
practical relevance. He was also quite unlucky with the
timing, having pointed out that “Hopefully, nobody will
get concerned that I treat a light ray just as a mas-
sive body.” But people actually did get concerned, as
the competing wave theory of light, brought forward
by Christiaan Huygens [9] was gaining supporters. Fol-
lowing the diffraction experiments by Thomas Young



2

and Augustin Fresnel [10,11], its victory wiped away
Soldner’s result by 1820. It should take about another
100 years for this fundamental question being addressed
again.

In 1905, Albert Einstein proposed a principle of rela-
tivity as well as the constancy of the speed of light [12],
regardless of whether emitted from a resting or mov-
ing body, based on the theory of electric and magnetic
fields and their interaction, as formulated by James
Clerk Maxwell [13], while also recognising the failure to
demonstrate a motion of the Earth relative to a medium
in which light would propagate [14]. These two princi-
ples intrinsically link space and time, and form what is
now known as “Special Relativity”.

Einstein then went on to think about what relativ-
ity principles would mean for gravitation. He published
thoughts about the influence of gravitation on light first
in 1908 [15], but wasn’t satisfied with the result, so that
he got back to this issue in 1911 [16]. In order to avoid
“unnecessary complexity”, he still applied the mechan-
ics of Newton and Galilei, and found that a light ray
grazing near the surface of the Sun would be deflected
by 0.83 arcseconds. This result coincidently is the same
as found by Soldner, but was derived on entirely dif-
ferent assumptions. Einstein was very clear about how
little technical issues of his treatment would matter in
stating: “I would hope that astronomers devoted at-
tention to this question, regardless of whether the pre-
sented considerations might lack of proper foundations
or even look audacious. Apart from any theory, one
has to ask whether with today’s means an influence of
gravitational fields on the propagation of light can be
established.”3

It was only four years later, in 1915, that the the-
ory of General Relativity was fully developed [1,2]. By
identifying gravitation with space-time curvature, we
are actually back to a geometrical interpretation, re-
placing Newton’s forces. However, in contrast to the
ancient Greek philosophy, the geometric properties are
now linked to a cause, namely matter, found on one side
of Einstein’s gravitational field equations, with space-
time curvature being on the other. While it turned out
that core assumption made by Einstein in his 1911 pa-
per were not justified, notably the only change in the re-
sult from applying General Relativity is that the bend-
ing angle is twice as large as suggested earlier [17].

3Original quotation (in German): “Es wäre dringend zu
wünschen, daß sich Astronomen der hier aufgerollten
Frage annähmen, auch wenn die im vorigen gegebenen
Überlegungen ungenügend fundiert oder gar abenteuerlich
erscheinen sollten. Denn abgesehen von jeder Theorie muß
man sich fragen, ob mit den heutigen Mitteln ein Einfluß der
Gravitationsfelder auf die Ausbreitung des Lichtes sich kon-
statieren läßt.”

But experimental evidence was not obtained until
Einstein’s prediction from General Relativity was fa-
mously confirmed by two British expeditions to Sobral
(in Brazil) and the island of Pŕıncipe, the latter led by
the later knighted Arthur Eddington, on the occasion of
the total Solar Eclipse of 29 May 1919 [18]. Exactly 90
years later, as part of the activities during the Interna-
tional Year of Astronomy 2009, a memorial plaque was
unveiled at the plantation on Pŕıncipe where the obser-
vations were carried out [19]. Before embarking on the
expedition, Eddington wrote about the three possible
outcomes: “The present eclipse expeditions may for the
first time demonstrate the weight of light; or they may
confirm Einstein’s weird theory of non-Euclidian space;
or they may lead to a result of yet more far-reaching
consequences – no deflection.” [20] At the end, it was
these measurements that made Einstein and his (not-
that weird) theory world-famous. Consequently, after
having returned, Eddington led the word in a discus-
sion on the Theory of Relativity held at the Royal As-
tronomical Society in December 1919, and started off
by remarking: “The generalised relativity theory is a
most profound theory of Nature, embracing almost all
the phenomena of physics.” [21]

2 The “gravitational lens” and the
microlensing effect

A massive object bending light is commonly referred to
as a gravitational lens, but this is actually a misnomer.
As illustrated in Fig. 1, if we send a bundle of parallel
light rays through a convex lens, these get (more or less)
focused in a point, given that the deflection increases
with distance from its centre. In contrast, gravitational
bending gets stronger the closer one gets to the centre,
which is similar to what happens if light passes through
the foot of a wine glass [22,23]. Sir Oliver Joseph Lodge
remarked already in 1919 that it would be “impermiss-
able to say that the solar gravitational field acts as a
lens, for it has no focal length”. [24]

Looking through the foot of a wineglass, and watch-
ing a billiard ball passing underneath (see Fig. 2), one
observes two images, resulting from light passing on one
or the other side of its centre. If the ball is directly be-
hind the centre of the wine glass the two images merge
into a ring of characteristic size. The same occurs if two
stars happen to be almost on a line with the observer.
The size of the ring in this case increases with the mass
of the star, and is actually proportional to its square
root [25]. The angular separation between the images
is less than a thousandth of an arcsecond, and thereby
to small to be resolved with telescopes.
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Fig. 1 The optical analogue of gravitational bending of light. The gravitational deflection acts in a similar way on light rays
as the foot of a wine glass, rather than a lens, with the deflection being strongest near the centre rather than weakest. Light
does not not converge in a focus.

Fig. 2 Snapshots of the images of a billiard ball rolling from left to right behind plexiglass shaped in the form of the foot
of a wine glass, illustrating the images of a background star arising from the bending of its light due to the gravitation of an
intervening foreground star (demonstration by Phil Yock, University of Auckland, New Zealand).

While we do not see the images themselves, their
distortion leads to a magnification of the observed blob
of light that they form, and one calls this effect “gravi-
tional microlensing” [25–28]. The smaller the angular
separation between the stars on the sky, the larger the
magnification, so that a series of brightness measure-
ments gives us a microlensing light curve that is sym-
metric with respect to a maximum, which corresponds
to the closest angular approach.

Already in 1912, as his notes show, Albert Einstein
discussed observable effects of the bending of light due
to other stars than the Sun [29]. But despite the fact
that the measurements of the gravitational bending of
light by the Sun were a great success, Einstein did not
believe that this effect would ever become important
for other stars. It needed intense persuasion from a
third party, namely the Czech engineer and amateur
scientist Mandl, to get Einstein to publish the relevant
results, finally happening in 1936 [25]. Einstein’s con-
clusion that “There is no great chance of observing this
phenomenon” is a politely phrased understatement of
his assessment of the relevance of these findings. In his
reply to the editor he wrote: “Let me also thank you
for your cooperation with the little publication which

Mister Mandl squeezed out of me. It is of little value,
but it makes the poor guy happy.”4 [29,30]

The chances to observe this effect are in fact not
great: just about one in a million! [27,28,31] Only with
a further 50 years of advance in technology, the de-
tection of microlensing events could turn into a real-
ity, with the first one being reported in 1993 [32]. A
key requirement was massive data processing, impossi-
ble still with computer technologies of the 1970s, not
talking about 1936, where such a development was be-
yond imagination. Einstein probable did not even dare
to dream about this.

While the chances for this effect to occur for any
given star is tiny, there is no shortage of stars on the
other hand. The Sun is just one out of around 100 bil-
lion in the Milky Way, which itself is just one out of
at least 100 billion galaxies in the Universe. But still,
as of today, our home, planet Earth, is the only place
in the whole Universe which is known to us to harbour
life. Should not we live in a usual and maybe rather
unspectacular place within a Universe full of Earths? –
Or are we indeed unimaginably unique?

4Original quotation (in German): “Ich danke Ihnen noch sehr
für Ihr Entgegenkommen bei der kleinen Publikation, die Herr
Mandl aus mir herauspreßte. Sie ist wenig wert, aber dieser
arme Kerl hat seine Freude davon.”
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3 Planets beyond the Solar System

Until 1995, the only “planets” known were those of the
Solar System, which has a clear structure: small rocky
inner planets (Mercury, Venus, Earth, and Mars), and
giant outer gas planets (Jupiter, Saturn, Uranus, and
Neptune). It was widely believed that planetary sys-
tems in general should look similar.

But then, 51 Pegasi b, the very first planet orbiting
a star other than the Sun that was detected, turned out
to have about half the mass of Jupiter, while it is closer
to its host star than Mercury is to the Sun [33]. Not at
all did this match the expectations, and therefore came
as a big surprise, forcing the prevalent theories about
planet formation and evolution that described the Solar
System all that well into a fundamental revision.

Subsequently, it literally started to rain planets [34].
150 were reported within 10 years until 2005, a further
150 then within 3 years, the next 150 within just one
year [35]. We have now already arrived at more than
2000, and from NASA’s Kepler satellite, we even have
more than 4000 candidates. These constitute a sample
of impressive diversity, most of them being completely
different than the planets of the Solar System. More-
over, the planetary systems they reside in, those with
up to 7 detected planets having been identified, them-
selves show a large variety of different structures.

Since stars outshine their planets, it is quite difficult
to detect them by means of their emitted or reflected
light. The best chances for such a direct detection arise
if one has a very nearby star and a large planet in a
wide orbit. In 2008, for example, it was possible to find
a system with three outer gas giant planets orbiting star
HR 8799, for which one could also measure the motion
of the planets [36].

If we cannot usually see planets directly, how can we
nevertheless find them? An effect that we can exploit is
that the planet and its star orbit their common centre
of mass. Similar to a hammer and its thrower, the less
massive planet speeds around a large orbit while the
star only exhibits a tiny periodic wobble. The radial
velocity of this wobble can be measured because char-
acteristic lines in the spectrum of the observed star are
shifted in wavelength, where this shift is known as the
Doppler effect: towards the blue as the star approaches
us, and towards the red as it moves away [37,38].

A further opportunity to detect planets was already
well-known to occur within the Solar system. If one of
the planets Mercury or Venus and the Earth happen
to line up with the Sun, an observer on Earth sees the
shadow of Mercury or Venus transiting the Sun, and the
total light received dips down. Earliest known recorded
observations of transits of Mercury or Venus date from

Fig. 3 Artist’s impression of OGLE-2005-BLG-390Lb, a five-
Earth-mass planet detected by means of gravitational mi-
crolensing. It was considered to be the least massive planet
known beyond the Solar system when its discovery was an-
nounced (January 2006), which moreover provided the first
observational hint for Earth-like planets being common in
the Universe. It was also recognised as the coldest extra-
solar planet (∼ −220◦C), as well as the most distant one
(∼ 21, 500 light-years) ( c© ESO).

1631 or 1639, respectively, with Johannes Kepler having
drawn attention to these opportunities in 1629 [39].

We can therefore identify planets that we do not
see by observing their host star. In fact, we can even
find planets that we do not see orbiting stars that we
do not see either, and this is because planets and stars
have mass. This brings us back to gravitation and grav-
itational microlensing...

Exploiting the gravitational microlensing effect, ded-
icated surveys are now looking towards the central re-
gions of the Milky Way, and measure the brightness of
hundreds of millions of stars, at least daily, and mostly
more frequently. This leads to about 100 ongoing events
at any time, each of them lasting about a month [40–
43].

The 390th event found in 2005 by the OGLE sur-
vey [40] in the direction of the Galactic Bulge, sys-
tematically named OGLE-2005-BLG-390, hosted a sur-
prise for us. It was monitored with a network of tele-
scopes around the world, forming part of the PLANET
and RoboNet microlensing follow-up campaigns [44,45],
and providing precise quasi-continuous round-the-clock
coverage. While the observed brightening was appar-
ently as expected for a gravitational microlensing event,
and OGLE-2005-BLG-390 continued to behave as usual
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Fig. 4 Planet OGLE-2005-BLG-390Lb (position indicated by blue dot) distorting one of the images of the source star in this
microlensing event, resulting in the observed characteric ’blip’ in the brightness that lasted about a day and revealed this
planet’s existence (simulation by Andrew WIlliams, Perth Observatory, Australia).

when reaching its peak and then fading back, a small
blip, lasting only about a day, caused a lot of excite-
ment, because it turned out to be caused by a planet
with just around 5 Earth masses (see Fig. 3), whereas
the microlensing efforts mostly aimed at targeting plan-
ets of about the mass of Jupiter [44]. Consequently, the
discovery of planet “OGLE-2005-BLG-390Lb” gave us
a first observational hint that such low-mass planets are
common rather than rare in the Universe [46].

The gravitational bending of light by the planet
caused a distortion (as illustrated in Fig. 4) of one of the
images of the source star that arises from the light bend-
ing by the gravitation of the planet’s host star (which is
the lens star, and not the observed source star) [26,47–
49]. Given that the distortion increased the image area
and thereby the amount of light received, this then gave
rise to the observed blip.

The 5 Earth masses of OGLE-2005-BLG-390Lb were
far above our sensitivity limit, with a 20 % effect that
lasted a whole day. With respect to the mass, we can
even go beyond Earth, all way down to the Moon [50,51].

The combination of real-time photometry with fully-
automatic data-analysis systems now provides us with
the opportunity to publicly disseminate quasi-live in-
formation about microlensing events (see Fig. 5) [52].
The search for planets beyond the Solar System is no
longer the sole domain of professional astronomers. En-
thusiastic amateur astronomers regularly point their
30-40 cm diameter telescopes to ongoing microlensing
events [54], becoming eye-level partners in a truly global
venture. But one does not even need a telescope for
participating in the search for new planets. The citi-
zen science project Planethunters.org provides data
from NASA’s Kepler satellite, and everybody can detect
planets, while connecting with other “planet hunters”
around the world [55].

4 Planet Earth and its context

What makes planet Earth so special? While it does not
differ that much in size, composition, and temperature
from its neighbour planets Venus and Mars, one finds
huge differences if one looks at the composition of the

Fig. 5 Microlensing live display, originally conceived for the
2008 Royal Society Summer Science Exhibition [53], in the
foyer of the Physics & Astronomy building of the Univer-
sity of St Andrews, providing real-time information and data
of ongoing gravitational microlensing events in the Galactic
Bulge (photograph by Martin Dominik c© 2008 ).

planets’ atmospheres. In the Earth’s atmosphere, we
roughly find 4/5 nitrogen and 1/5 oxygen, with 1 % of
argon, and a small amount, about 0.03%, of carbon
dioxide as the main constituents. These fractions are
by volume of dry air, while spatially and temporally
strongly varying amounts of water vapour range from
essentially nothing to 4 %. In sharp contrast, our neigh-
bour planets have carbon dioxide/nitrogen atmospheres,
with the carbon dioxide fraction exceeding 95%̇, rather
than a nitrogen/oxygen atmosphere [56]. Without the
atmospheric fingerprint, how do we know whether we
have found a “second Earth” or a “second Venus”?

Amongst all peculiarities of planet Earth, the pres-
ence of the Moon is a particularly interesting one. A
comparison of satellites within the Solar system shows
that the Earth’s moon is the largest in relation to the
planet it orbits. Some of the Jupiter and Saturn satel-
lites are larger, Ganymede being the largest and most
massive one (with about a quarter of the Earth’s mass),
but Jupiter’s radius is about ten times that of the Earth.
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Higher organisms are strongly affected by changes to
our ecosystem, whereas it is relatively hard to wipe out
bacteria. The Moon directly affects the Earth’s tides
[57], while it has been both suggested and disputed
that the Moon stabilises the rotational axis of the Earth
[58,59]. Is it just coincidence that the only planet known
to harbour life is orbited by a relatively large satellite?
[60]

In any case, the respective compositions of Moon
and Earth point to a close link in the formation process
[61]. The preferred model for this is a giant impact of
another body on the Earth, leading to some debris of
this collision ending up to form the Moon [62–64]. Such
an event could not have left Earth unchanged. And to
add to the peculiarities, Earth has a unique elevation
profile amongst all bodies in the Solar system, with the
ocean floor, the main land mass, and mountains [65].
This is reflected in the fact that 2/3 of its surface is
covered by water, not more, and not less. Futhermore,
Earth also has a strong plate tectonics activity, which
would be hard to explain from a history of just accretion
of smaller particles [66].

A giant impact event would be a sound explanation
of the dynamics and strong asymmetries that we ob-
serve, and would have come with lots of energy, and
the flow of material, crucial drivers of chemical reac-
tions. A planet of similar size, mass, and temperature
as Earth is likely to be quite different.

Popular pictures of the Solar System show the Sun
and the planets, but this is by far not everything. Not
only are more than 150 known satellites missing, but
also the small bodies, like asteroids and comets, which
hold an overwhelming majority [67]. These however are
a relevant part of the Solar System if we aim for under-
standing the role of planet Earth in the Universe.

For stars other than the Sun, we are discussing only
the planets so far. Earth mass or Earth size are not the
limit, and we must not stop our exploration there, but
instead go ever further. – What is beyond?

Ultimately, we are on the search for ourselves. Who
are we, and what are we doing here? Understanding
all this however requires context: How do we fit into
our surroundings and environment? Therefore, our view
needs to be widely open rather than restricted. And
astronomy is about exactly that: we look far out, in
order to be able to look back.

Only because the Heavens and the Earth are gov-
erned by the same laws of Nature, this is possible. We
now take this for granted, and this concept of cosmic
unity was the ever prevalent one in China since ancient
times. In Europe however, it was a revolutionary pos-
tulate at Tycho Brahe’s time, and famously reflected
in the pair of enblems over the doors of his castle on

the island of Ven: “Despiciendo suspicio – Suspiciendo
despicio” (“By looking down, I look up – By looking
up, I look down”) [68,69].

While our role in the cosmos remains puzzling, we
are now given unprecedented opportunities for leaving
an era of speculation behind. We now already know
that there is no lack of planets. Given our acquired
data, a number of more than 100 billion in the Milky
Way alone appears to be realistic [70]. However, un-
til now, we have identified a few thousand. Despite of
giant leaps forward, from comparing these numbers it
becomes obvious that we still know almost nothing.

Even if we once were to find life beyond Earth, it
would not be the ultimate goal. It would only mark a
beginning to advance into territory that we cannot even
imagine right now.

All our striving for knowledge, all advance of our
society through technology, all descriptions of our exis-
tence at the end, are anchored on a quite small number
of most fundamental principles that allow us to make
sense of our world. These connect the tiniest with the
most gigantic, and link every one’s existence to the
whole of the Universe. Einstein’s theory of gravitation
provides us with one of the keys for turning observa-
tions into understanding. There is much left to explore
and discover. Who knows where the road will actually
lead us?
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37. C. Doppler, “Über das farbige Licht der Doppelsterne
und einiger anderer Gestirne des Himmels”, Abh. Königl.
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M. Dominik, et al., “Discovery of a cool planet of 5.5 Earth
masses through gravitational microlensing”, Nat., 439, 437–
440 (2006)
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Abstract In this paper, we apply the procedure of
Stare [1] to a non-commutative black hole obtained by
the co-ordinate coherent approch. The Cardy-Verlinde
formula is entropy formula of conformal field theory in
an arbitrary dimension. It established the relation en-
tropy of conformal filed theory to its total energy and
Casimir energy. For this purpose, we have calculated
the total energy and Casimir energy of non-commutative
Schwarzschild black hole and have shown that entropy
of non-commutative Schwarzschild black hole horizon
can be expressed in terms of Cardy-Verlinde formula.
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1 Introduction

Verlinde [2] proved that the entropy of conformal field
theory in arbitrary dimension is related to its total
energy and Casimir energy, this is known as gener-
alized Verlinde formula (commonly termed as Cardy-
Verlinde formula). Recently, it has been investigated
that this formula hold well for Reissner-Nordström de-
Sitter black hole (BH) [3] and charged Kerr BH [4].
Birmingham and Mokhtari proved the validity of Birm-
ingham and Mokhtari [5] proved the Verlinde formula
for Taub-Bolt-Anti-de-Sitter BH. Setare and Jamil [6]
discussed the Cardy-Verlinde formula for charged BTZ
BH. Many authors [7]-[12] have proved the validity of
Cardy-Verlinde for different BHs. The purpose of this
paper is to investigate the validity of Cardy-Verlinde
entropy formula for NC Schwarzschild BH.

In classical general relativity (GR), the curvature
singularity is such a point where physical description of

aEmail: ghulamabbas@ciitsahiwal.edu.pk

the gravitational field is impossible. This problem can
be removed in GR by taking into account the quantum
mechanical treatment to the standard formulation of
GR. Motivated by such reasoning, some BH solutions
in non-commutative (NC) field theory have been de-
rived. In these solutions, curvature singularity at origin
is removed by de-Sitter core which is introduced due to
NC nature of spacetime [13]. Ansoldi et al. [14] formu-
lated the NC charged BHs solutions, this was extended
to rotating non-commutative BHs case by Modesto and
Nicollini [15]. Mann and Nicolini [16] have discussed the
cosmological production of NC BHs. The first NC ver-
sion of wormholes solution was investigated by Nicolini
and Spallucci [17]. Farook et al. [18] have investigated
the higher dimensional wormhole solutions in NC the-
ory of gravity. Motivated by such NC correction to BHs,
Sharif and Abbas [19] studied the thin shell collapse in
NC Reissner-Nordström geometry. Banerjee and Gan-
gopadhyay [20] derived the Komar energy and Sammar
formula for NC Schwarzschild BH.

Motivated by the recent development in NC the-
ory of gravity, we have proved that the entropy of NC
Schwarzschild BH horizon can be expressed in terms of
Cardy-Verlinde formula. For this purpose, we have used
the Setare and Jamil method [6]. The plan of the pa-
per is as follows: In section 2, we briefly discussed the
the thermodynamical relations of NC Schwarzschild BH
and Cardy-Verlinde formula and proved that entropy of
non-commutative Schwarzschild BH horizon in can be
expressed in terms of Cardy-Verlinde formula. Section
3 is devoted to the concluded remarks of the work done.
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2 Non-Commutative Schwarzschild Black Hole
and Cardy-Verlinde formula

According to GR, singularity is such a region of space-
time at which the usual laws of physics break down.
This problem can be removed by applying the formu-
lation of NC field theory to GR. For example, the NC
BHs are one of the outcomes of string theory. These
have such geometric structure in which curvature sin-
gularity is recovered by the minimal length introduced
by the NC nature of coordinates. Further, all types of
NC BHs expose the de-Sitter core due to quantum fluc-
tuations at the center of the manifold.

The NC formulation of GR is one of the long stand-
ing problems which has no solution yet. An extensive
literature survey [21]-[23], imply that the application of
Moyal ?-product among the tetrad fields in the grav-
itational action is a mathematically correct approach
but not physically. It is due to the fact that the expan-
sion of ?-product in NC parameter is truncated upto
a desirable order which causes to destroy the non-local
nature of NC theory. This results to face the BH geom-
etry with the same curvature singularities as in GR.
Instead of using ?-product, one can formulate NC form
of GR using the coordinate coherent state approach.

In this approach, the density of point like source in
NC spacetime can be governed by a Gaussian distribu-
tion by using the relation [13]

ρ =
Me−

r2

4Θ2

(4πΘ) 3
2

, (1)

where M is constant gravitational, Θ is constant having
the dimension of length squared. The line element for
NC Schwarzschild BH is [13]

ds2 = f(r)dt2 − 1
f(r)

dr2 − r2(dθ2 + sin2 θdφ2), (2)

where f(r) = 1 − 4M
r
√

π
γ

(
3
2 ; r2

4Θ

)
and γ is lower incom-

plete gamma function which is defined by

γ
(a

b
; x

)
=

∫ x

0

t
a
b−1e−tdt. (3)

In the commutative limit r√
Θ
−→ ∞, i.e., Θ → 0,

Eq.(2) reduces to conventional Schwarzschild metric.
The event horizons of BH can be found by setting f(rh) =
0, which yields

rh =
4M√

π
γ

(
3
2
;
rh

2

4Θ

)
. (4)

We take the large radius regime ( r2
h

4Θ >> 1) where we
can expand the incomplete gamma function to solve rh

by iteration. Keeping the terms upto order
√

Θe
−M2

Θ ,
we find

rh ' 2M

[
1− 2M√

πΘ

(
1 +

Θ

2M2

)
e−M2/Θ

]
(5)

Now the Hawking temperature for NC schwarzschild
BH upto order

√
Θe

−M2
Θ is given by

TH =
1

8πM

[
1− 4M3

Θ
√

πΘ

(
1− Θ

2M2
− Θ2

4M4

)
e−M2/Θ

]
.

(6)

The entropy of the NC Schwarzschild BH (S = A/4 =

πr2
h) upto order

√
Θe

−M2
Θ is given by

S = 4πM2

[
1− 4M√

πΘ

(
1 +

Θ

2M2

)]
e−M2/Θ. (7)

The generalized form of Cardy formula (also known as
Cardy-Verlinde formula) is given by [6]

SCFT =
2πR√

ab

√
EC(2E − Ec), (8)

where a, b > 0, R is radius of n + 1 dimensional FRW
universe, EC is the Casimir energy and E is the total
energy of underlying field. The definition of Casimir
energy is derived by the violation of Euler relation as
[7]

EC = n(E + PV − TS − ΦQ−ΩJ), (9)

where the pressure for CFT is P = E
nV , J , Q are zero for

NC Schwarzschild BH, V is the volume of the system
bounded by the apparent horizon. The total energy may
be written as sum of extensive part EE and Casimir
energy EC as

E = EE +
1
2
Ec, (10)

The Casimir energy EC as well as purely extensive part
of energy EE can be expressed in terms of entropy S

and radius R,

EE =
a

4πR
S1+ 1

n , (11)

EC =
b

2πR
S1− 1

n . (12)

After the work of Witten [24] on the AdSd/CFTd−1

correspondence, Savonije and Verlinde [25] proposed
that Cardy-Verlinde formula can be derived using the
thermodynamical relations of arbitrary BHs in arbi-
trary dimensions. In this point of view, we shall prove
the validity of Cardy-Verlinde formula for NC Schwarz-
schild BH.
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From Eqs.(8) and (10), we get

SCFT =
2πR√

ab

√
2EEEc, (13)

Using Eqs.(11) and (12) in above equation,

SCFT = S. (14)

The Casimir energy given by Eq.(9) for n = 2 with
Eqs.(6) and (7) takes the following

EC = 3E − 2TS, (15)

= 3E −M

[
1− 4M3

Θ
√

πΘ

(
1− Θ

2M2
− Θ2

4M4

)

× e−M2/Θ
] [

1− 4M√
πΘ

(
1 +

Θ

2M2

)
e−M2/Θ

]
. (16)

Using above equation in Eq.(10), we get the purely ex-
tensive part of total energy as

EE = −E

2
+ TS (17)

= −E

2
+

M

2

[
1− 4M3

Θ
√

πΘ

(
1− Θ

2M2
− Θ2

4M4

)

× e−M2/Θ
] [

1− 4M√
πΘ

(
1 +

Θ

2M2

)
e−M2/Θ

]
. (18)

Further

2E − EC = −E + 2TS (19)

= −E + M

[
1− 4M3

Θ
√

πΘ

(
1− Θ

2M2
− Θ2

4M4

)

× e−M2/Θ
] [

1− 4M√
πΘ

(
1 +

Θ

2M2

)
e−M2/Θ

]
. (20)

From the comparison of Eqs.(12) and (16), we get

R =
bS1/2

4π

(
3
2
E − TS

)−1

(21)

=
bM√
4π

[
1− 4M√

πΘ

(
1 +

Θ

2M2

)
e−M2/Θ

] 1
2

(
3
2
E

− M

2

[
1− 4M3

Θ
√

πΘ

(
1− Θ

2M2
− Θ2

4M4

)
e−M2/Θ

]

×
[
1− 4M√

πΘ

(
1 +

Θ

2M2

)
e−M2/Θ

])−1

. (22)

Also, the comparison of Eqs.(11) and (18), gives

R =
aS3/2

4π

(
−1

2
E + TS

)−1

(23)

= 4πaM3

[
1− 4M√

πΘ

(
1 +

Θ

2M2

)
e−M2/Θ

] 3
2

(24)

×
(
−1

2
E +

M

2

[
1− 4M3

Θ
√

πΘ

(
1− Θ

2M2
− Θ2

4M4

)

× e−M2/Θ
] [

1− 4M√
πΘ

(
1 +

Θ

2M2

)
e−M2/Θ

])−1

.

(25)

Taking the product of Eqs.(21) and (23), we get

R =

√
ab

4π

S√(− 1
2E + TS

) (
3
2E − TS

) . (26)

Using Eqs.(16), (18) and (26) in Eq.(8), we get

SCFT = S. (27)

This result shows that the entropy of the NC Schwarz-
schild BH can be expressed in terms of Cardy-Verlinde
formula. As the BH geometric and thermodynamic quan-
tities are evaluated by assuming large-radius approxi-
mations. So, the Cardy-Verlinde formula is valid only
for large BHs.

3 Out Look

As a prolongation of the research on BH and gravi-
tational collapse [13]-[28] in this paper, we derive the
entropy formula in conformal field theory of a 4D static
spherically symmetric NC Schwarzschild BH. This NC
BH solution is obtained by introducing the NC effect
through a coordinate coherent state approach, which
is in fact the substitution of the point distributions
by smeared source throughout a regular region of lin-
ear size. We perform the analysis by obtaining entropy
and temperature, which show a deviation from their
usual relations depending on the NC parameter Θ. We
have proved that the entropy of the NC Schwarzschild
BH can be expressed in terms of Cardy-Verlinde for-
mula. For this purpose, we have used the approximate
of values of incomplete gamma functions upto the term√

Θe
−M2

Θ . With the same order of approximation the
entropy and temperature of NC BH horizons has been
calculated. The procedure adopted in this paper has
been already used by Stare and Jamil [6,7]. It would
be interesting to generalize this work for charged and
charged rotating NC BHs. The Cardy-Verlinde formula
of charged NC BH [29] is in progress.
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Abstract WRadiation belt science has several enig-
matic issues among which is the yet unexplained elec-
tron acceleration in the million electron Volt (MeV) en-
ergy range. An extensive data set of Relativistic Electron-
Proton Tele-scope (REPT) on board the Radiation Belt
Storm Probe (RBSP) is studied for the 28 June, 2013
electron acceleration event. Phase space density is first
determined for 2.30 MeV particles from measured inte-
gral flux and then calculated for the appropriate energy
that conserves the first adiabatic invariant. It is shown
that the time dependent radial profile of phase space
density supports the local acceleration mechanism.

Keywords electron acceleration, phase space density,
local peak

1 Introduction

Both experimental and theoretical studies have been
carried out to study the earth’s radiation environment;
however, progress in the radiation belt particle mea-
surement advanced tremendously after the launch of
the Van Allen Probes mission (RBSP) (Mauk et al.
2013; Baker et al., 2013). In this regard major stud-
ies have done calculation of electron phase space den-
sity (PSD) using adiabatic coordinates (e.g., Chen et
al., 2007a, 2007b; Tu et al., 2009; Turneret et al. 2012;
Morely et al., 2013; Baker et al., 2014) . Radial dif-
fusion - a radical process for radial transport lowers
down the gradients, transportation of plasma from high
phase space density to the low. In this study of phase
space density identification of peaks or gradients is a
major setback as the in-situ satellite measurements do
not come in terms with the adiabatic invariants. Phase
space density is characterized by physically tenor-based

ae-mail: asifhamal@gmail.com

measurements than by flux because of the constraints of
Liouville’s theorem (please provide references). Also its
calculations in terms of adiabatic invariants have been
mostly based on dynamic geomagnetic storm intervals
(Selesnick et al., 1997a, 1997b, 1998, 2000). Studies
(Hilmer et al., 2000; McAdams et al., 2001; Reeves et
al., 2013 and Boyd et al., 2014) have also reported mea-
surements which clearly distinguish between two types
of acceleration including the ones where authors used
NASA’s Van Allen Radiation Belt Storm Probes.

2 Materials, Methods and Apparatus:

REPT consists of a stack of high-performance silicon
solid-state detectors in a telescope configuration, a col-
limation aperture, and a thick case surrounding the
detector stack to prevent the sensors from penetrat-
ing radiations (Baker et al., 2012).This instruments is
pointed perpendicular to the spin axis of the spacecraft
and measures high-energy electrons up to 20 MeV with
excellent sensitivity and also measures magnetospheric
and solar protons to energies well above E=100 MeV.
The sublime task for the REPT design is to measure
electron intensities in the range 102−106 particles/cm2

s sr MeV and energy spectra ratio up to 25 We follow
the basic method outlined in (Chen et al. 2005) to cal-
culate the phase space density. Let us write the equation
for

fch = {jch/ < p2c2 > [1.66EXP − 10]}∗200.3 (1)

where j is the particle flux in 1/cm2sr s keV, E is the
particle’s kinetic energy in MeV, m0c2 is the electron
rest mass in MeV, and the numerical factor is given by

< p2c2 >=
1
2
[kmin(kmin+2m0c

2)+kmax(kmax+2m0c
2)
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(2)

where the Kmin and Kmax are the lower and upper limit
of energy channel in MeV, respectively, and m0c

2 is the
rest energy of an electron. ”L∗” is defined as the radial
distance to the equatorial location where an electron
crosses if all external magnetic fields were slowly turned
off leaving only an internal dipole field (Roederer 1970),
which is related to third adiabatic invariant given as

L∗ = 2πµ/φRE (3)

where ”µ” is the earth’s magnetic dipole moment, RE
is the radius of earth and is the magnetic flux enclosed
in the particle drift. The calculation was done with the
Tsyganeko field model.

3 Results:

Figure (1) manifests a relativistic electron acceleration
event which took place on June 28, 2013. The panels
show the Kp index, the disturbance storm time index,
the interplanetary magnetic field north-south compo-
nent and solar wind speed. The interplanetary magnetic
field (IMF By) feeds on more strongly southward after
first 3 hours in genesis of day then fall down slightly
after one hour. IMF Bz declines below zero values af-
ter 9UT enables reconnection with the earth’s magnetic
field to transfer energy to magnetosphere.

The REPT instrument electron flux near all pitch an-
gles are shown in figure (2). Flux intensities are color
coded based on the color bar at the right vertical col-
umn side. The measurements show a very weak flux
increase at the beginning of the event and pitch angle
annihilated as the event progresses. The most appear-
ance of electrons over the entire range of pitch angles are
in boundary of 30 to 150 degrees except between time
duration of 08 to 10 UT, as seen in the three panels.
Our choice of first adiabatic invariance is determined
by the electron instrument energy range.
Figure 3 shows the flux of 2.30 MeV electron fluxes
as a function of L shell and time. From the flux mea-
surements, it is clear that there was a increase in the
relativistic electron flux between L = 4.0 to 5.0 ( We
calculate and choose a value of ? 1414 MeV/G). The
observed value of electron energy flux is converted to
PSD as function of the first adiabatic invariant using
equation (1) at equatorially mirroring particle (2nd adi-
abatic invariance is zero). The results of L* calculation
for the space craft corresponding to ? 1414 MeV/G are
also shown in figure (4).

The minimum to maximum range of phase space den-
sity is plotted in order to look for the characteristics
signatures of either radial or local acceleration. The
plotted PSD values between time of 08:00 UT 11:00 UT
against L* are shown in figure 4. At the onset, there is
smooth continuation of the gradients. From 08:43UT,
the radiation belt experiences a swift up lift increase in
phase space density that goes along for more than an
hour till 10:20UT.The analysis identified the develop-
ment of peaks in electron phase space density, which is
a compelling evidence for local electron acceleration.

4 Discussion

The strength of the pitch angle scattering appears to
be most intense near the position in L of the maximum
of the relativistic electron flux. Our calculated values of
phase space density in adiabatic invariance space con-
firmed that the same characteristic signature of local
acceleration was observed in the June 2013 storm that
was reported by previous studies of this type especially
by Reeves et al., on (OCT: 2012). The time evolution
of PSD (L*) show quick formation of the peak and then
spreads out. The above results can be expanded to look
at the EMFISIS data to observe chorus waves.

Acknowledgements Authors are grateful for suggestions
with Drs. Y. Chen and G. D. Reeves, which helped improve
the manuscript. CDA web and Dr. D. N. Baker are gratefully
acknowledged for providing the data of REPT.
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Abstract A glassful of water can be treated as a fluid
despite the fact that it is composed of discrete atoms at
a smaller scale. Can the same be true about the space-
time that happens “to be” a smooth manifold? Can it
be true that the apparent smoothness of a spacetime is
an emergent phenomenon and an approximation to an
atom-like structure at some smaller scale. One thing to
be borne in mind is that “a quantization” of a fluid will
not automatically bring out the fact that the underlying
structure is actually atomic. Similarly a quantization of
the spacetime will, in general, not tell us if the under-
lying reality is discrete, even if it happened to be so.
Discreteness in both cases has to be an independent
ingredient of the theory that intends to describe them.

Causal set theory is an attempt to quantize grav-
ity that assumes a discrete fundamental structure. Al-
though a quantum dynamics is still being sought, the
theory has a fully developed classical dynamics and has
reached a stage in its development where some predic-
tions about cosmology have started to come out. The
theory has the potential to resolve the problem of sin-
gularities of general relativity and the existence of a
fundamental length scale could help cure the problem
of infinities in quantum field theory. On top of all this
the theory is extremely simple and appealing on philo-
sophical and aesthetic grounds and tends to revolution-
ize our concepts of space and time. We summarize some
of the important aspects of the theory here.

Keywords Causal Set theory · Quantum Gravity ·
Fundamentally Discrete theories · Partial Orders ·
Cosmology
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1 Introduction

Despite the fact that there are is no lack of motivation,
both on philosophical and physical grounds, to assume
an underlying discreteness, a fundamentally discrete
theory of spacetime is still lacking. Causal set theory
is one such attempt that ventures to describe the fun-
damental reality as a discrete structure and maintains
that a successful theory of “quantum gravity” can only
be realized by a quantization of a discrete instead of a
continuum structure.

In this paper, after mentioning some of the ideas
that motivate a departure from the continuum, we in-
troduce the concept of a causal set, which represents the
discrete structure that is assumed to replace the notion
of a manifold somewhere around the Planck scale. We
then discuss some of the important kinematical results
of causal set theory and then mention some ideas on
how to recover (the illusion of a) continuum as an ap-
proximation. Before we conclude we summarize some
of the phenomenological results coming from causal set
theory as well.

2 The need for discreteness!

We will not go into the philosophical reasons of why an
atomic structure is better than a continuum but will
confine ourselves to the arguments coming from known
physical theories. Our current understanding of physi-
cal phenomena rests on two pillars of modern physics –
General Relativity (GR) and Quantum Physics (QP).
1 These immensely successful theories, which have dis-
parate domains, have helped us explain immensely dis-

1As the conference, for whose proceedings this paper is but
one contribution, was held to commemorate the hundred
years of GR and to pay tribute to Einstein, let us remember
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parate phenomena ranging from the evolution of the
universe to the structure of a proton. Despite this suc-
cess there are glaring problems that still linger. Most
disturbing are the ones that appear in the guise of sin-
gularities/infinities. For example, black hole singulari-
ties in GR and quantum field theories infinities in par-
ticle physics 2. It is a general belief that these problems
can be cured if there is a fundamental cut-off, say, in
“length”.

There is another set of issues that raises its head
when we try to deal with phenomena where both GR
and QP are relevant, for example, phenomena in the
early universe or close to a black hole singularity. One
such issue is of special importance. Let us ask the fol-
lowing question: What happens to the horizon of a black
hole when QP is taken into account? QP does not al-
low the localization of any hypersurface including that
of a horizon with infinite precision and consequently
we, in general, end up with a “thickened and wrinkled”
object [12–14]. If all possible wrinklings are summed
over the entropy associated with a black hole diverges.
Again a fundamental cut-off might help us evade the
problem 3. Thus it seems imperative, if we want our
precious semi-classical results to hold in the statistical
analysis of a quantum theory, that a cut-off be present
at the fundamental scale. Thus it is no wonder that
most quantum gravity theories do incorporate such a
fundamental length scale in one way or the other.

3 Causal Set Idea

Causal set theory [1–4] is a program to quantize gravity
using a fundamentally discrete structure. That discrete
structure is called a causal set, C, which is a partially
ordered set with a precedence relation, ≺, among some
(and not necessarily all) of its elements that satisfies
the following properties:

– x ≺ y and y ≺ z ⇒ x ≺ z, ∀x, y, z ∈ C
– x 6≺ x, ∀x ∈ C

If one takes the ≺ 4 relation to mean the relationship of
before and after, then any subset of points of a weakly
causal Lorentzian manifold satisfies the above two con-
ditions, where the first property makes ≺ a transitive
relation and the second excludes the possibility of what

the immense contributions of Einstein towards the develop-
ment of both these theories.
2The process of renormalization can ameliorate these prob-
lems in the case of quantum field theories but they again
reappear in naive attempts to quantize gravity.
3As it certainly does in the case of causal set theory.
4x ≺ y is read as x precedes y.

are called timelike loops – a condition that character-
izes weakly causal Lorentzian manifolds. We add one
more condition to ensure discreteness

– cardinality of {y|x ≺ y ≺ z} < ∞, ∀x, z ∈ C.
This is called the condition of local finiterity and basi-
cally means that the number of elements of C in every
interval are finite. These three conditions define a causal
set.

There are many ways to realize a causal set but a
Hasse diagram is the most explicit visually, where the
elements of C are drawn as dots and relations among
elements as lines. Only the irreducible relations not im-
plied by transitivity are drawn on the diagram. Figure 1

Fig. 1 A ten element causal set. Element d is related to every
other element of the set.

shows a ten element causal set. Here elements d and a
are related but this relation is implied by transitivity
and hence no line is drawn between these two elements.
A subset of C is called a chain/anti-chain if all/none
elements in the subset are related. For example, ele-
ments a, b, c and d in figure 1 form a chain whereas
and elements c and e form an anti-chain.

The above mentioned discrete structure is supposed
to replace the notion of a smooth spacetime at the
fundamental level. In other words, a spacetime is only
an approximation to an underlying reality of discrete
spacetime atoms just like the description of a glassful
of water as a fluid is an approximation to an underly-
ing reality of discrete atoms that make up that glass of
water. It should be intuitively clear that the ≺ relation-
ship at the fundamental level becomes the causal rela-
tionship of “before and after” at the spacetime level. 5

Where a causal set has just the ≺ relationship, a space-
time is intuitively thought to have much more than just
its causal relationship. More specifically it has a certain

5Hence a process of constructing a causal set, essentially cre-
ates the notion of time with it.
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topology, a differentiable structure and its geometry. It
turns out that all this can be recovered from the causal
structure of the spacetime. In other words, if all possi-
ble relationships of before and after among the elements
are given, then this is the most that can be told about
a spacetime. In fact, the metric can be recovered from
this information up to a conformal factor that in turn
can be derived from the density of elements informa-
tion. This has prompted causal set researchers to coin
the slogan geometry = number + order 6.

Every causal set has some information about the
causal structure. Does it mean that every causal set can
generate a spacetime 7? The answer to this question,
unfortunately, is a no. In fact, in some suitable sense
the number of causal sets that generate a spacetime is
super-exponentially smaller than the ones that do not.
The next question is how do we know if a certain causal
set can generate a spacetime. The natural answer to this
question starts (but does not end) with the observation
that the first property such a causal set would posses is
that it would be embeddable in that spacetime 8. We
will say more about this question in the next section.

Can any spacetime be produced by an appropriate
causal set? The answer is yes and one but has to realize
that if one took the spacetime that one wanted to gen-
erate and then took a subset of its elements and used
its causal structure to induce the ≺ relationship, one
would have at least “a causal set” that is, by construc-
tion, embeddable into that spacetime and hence sat-
isfies the first condition of generating that spacetime.
The complete answer to this question can be found in
the literature and is beyond the scope of this paper but
we will mention this again in the next section when we
talk about the concept of sprinkling.

The last answer also clears the question whether we
ever have causal sets that are embeddable into space-
times. Finally, if we are given a causal set, how do we
know if it is embeddable into a spacetime. And further-
more as the number of non-spacetime-like causal sets
are exponentially more than the one that do generate a
spacetime, the related question that how does one “give
preference” to the latter over the former type. Again we
will not give complete answers but refer the interested
reader to the literature. Essentially these are questions
which are subjects of current research and are natu-

6Thus all geometrical quantities can be obtained by a simple
process of counting (philosophically a very attractive canon-
ical measure). For example, the volume of a region of space-
time is simply the number of elements it contains or V = l4N .
7In the sense that it picks a spacetime that approximates it.
8A causal set whose elements are the points of a spacetime
and whose relations of ≺ are the same as induced by the
causal order of that spacetime is said to be embeddable into
that spacetime.

rally of utmost importance to the causal set community.
There are many criteria for checking the embeddibility
of a causal set but we will briefly mention just one. It is
related to different dimension estimators 9 [7,11] that
essentially give the same answer in the case of a space-
time. If we try these estimators on a randomly picked
subset of points of that spacetime, it should be obvious
that we should again get the same answers for different
estimators. Now We can think of this random selection
as a causal set (provided it is finite). Hence one way of
checking whether a causal set can produce a spacetime
would be to try these estimators with that given causal
set and we should get the same answer for different es-
timators if that causal set could produce a spacetime.

As far as the second part of the question is con-
cerned, only dynamics can do that for us. Just like in
the case of a particle the dynamics picks out the set
of smooth paths which is a set of measure zero in the
set of all possible paths, we expect the quantum dy-
namics of causal sets to prefer causal sets that generate
Lorentzian manifolds. Although a quantum dynamics is
as yet incomplete, a classical dynamics called the clas-
sical sequential growth (CSG) [25] already shows signs
that it can prefer causal sets that have many spacetime-
like properties despite the fact that it has been proved
that it always induces causal sets with structures (on
a local level) that cannot be embedded in Minkowski
spacetimes. Interested reader should consult [27] for a
detailed discussion.

4 Acquiring continuum

Having assumed spacetime discreteness the next step
would be to devise a process to go from the funda-
mental discrete scale to the large scale continuum 10,
which should exist as the classical limit in an appropri-
ate sense. Speaking in terms of the sum-over-histories
approach one expects that the classical limit should re-
sult from the constructive interference of some of the
histories, which in this case are causal sets. Of course,
the complete theory is as yet not available but if this
sum-over-histories is going to give anything like a man-
ifold, we can still talk about the causal sets that will
form this classical limit.

9like the volume as a function of “height” for an interval
or the number of related pair of elements in an interval as
fraction of all pairs of elements.
10Because, after all, even if the fundamental structure is dis-
crete, the large scale structure is seamlessly described by a
continuum
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4.1 The concepts of embedding and sprinkling

As already mentioned, a causal set C, is said to be em-
beddable into a given spacetime if the elements of C
form the spacetime events of that spacetime such that
the order in C matches the causal order of the space-
time. But according to this definition several causal sets
could be embedded into a given spacetime. There has
to be a way to pick out the (typical) causal set to which
that spacetime is an approximation. How do we recog-
nize that (typical) causal set that can be said to gen-
erate that particular spacetime? We will only hint at
the answer to this question and not go an any great de-
tail here. Interested reader is referred to the references
[8–10].

The first thing to notice is that in going from dis-
crete to continuum scale one would expect to take a
causal set first and then acquire the corresponding space-
time. But as mentioned earlier, there are exponentially
many more non-spacetime-like causal sets and to pick
one causal set at random that might be able to generate
a spacetime is next to impossible. Quantum dynamics
also has not reached a stage where it can help us in
this regard. So we take the opposite route and contrary
to what should be done, we choose the spacetime first
and then choose a large number of spacetime points us-
ing Poisson process from that Lorentzian manifold (in
a suitable sense). This process is called “sprinkling”.
The causal order relations of the manifold is used to in-
duce order relations amongst the spacetime points thus
chosen via sprinkling and the causal set hence obtained
is a called faithfully embeddable causal set (into that
spacetime). This causal set can be said to have come
from the sprinkling of the Lorentzian manifold with a
high probability and hence to approximate that man-
ifold. In other words, this is a typical causal set that
will be produced in a sprinkling of the spacetime that
it will in turn generate.

One very important consequence of the random na-
ture of sprinkling is that the process is locally Lorentz
invariant (LLI). Hence it produces a theory which de-
spite being discrete insofar as its large scale correspon-
dence is concerned is completely LLI. This is such an
important point that we should try to explain this idea
a bit more clearly.

For theories on a background Minkowski spacetime,
Lorentz invariance means that the dynamics should not
pick out a preferred frame. For a thoery in which Minkowski
spacetime is an approximation to some underlying dis-
crete structure, it means that discreteness may not cause
the dynamics to pick a preferred frame. This is achieved
due to the random nature of correspondence between
the fundamental level and the emergent continnum. It

can be shown that if we come up with a rule to as-
sign frames to sprinklings, a Lorentz transformation
that connects two sprinklings will in general not con-
nect the frames. Instead of proving this statement it is
more instructive to show the Lorentz invariant nature
of Poisson sprinkling by the following demonstration.

Fig 2 shows a sprinkling of 11 4096 spacetime points
in a patch of 1+1D Minkowski spacetime. A small co-
ordinate region in this patch (0.8 < t < 1,0.8 < x < 1)
is selected and magnified in the top right part of the
figure. Then a boost of β = 4/5 is applied on the origi-
nal patch and the result is shown in the bottom left of
the diagram. Again the same coordinate region that is
0.8 < t < 1 and 0.8 < x < 1 is selected and magnified
in the bottom right as before. It can be seen that the
distribution is not identical but we again get another
sprinkling with Poisson distribution of the same density
which looks “very similar”. This shows that the boost
does not affect the sprinkling in any way which could
connect it to the boost.

Fig. 2 A demonstration of the Lorentz invariant nature of
Poisson sprinkling.

As there seems to be every indication that nature
respects Lorentz invariance, this is a very important re-
sult. In fact, it will be considered a blow to the causal
set program if a violation of the LLI was ever discov-
ered.

11Courtesy Rideout.
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5 Phenomenology

As must have been felt by the reader, the structure of
the causal set theory is particularly simple and, more
than that, very clear. As a consequence, it has become
possible to make phenomenological models based on
this structure even at a relatively early stage of devel-
opment of the theory. We will discuss only two major
developments in this regard.

5.1 Dark energy in Causal Set Theory

Perhaps the most interesting phenomenological predic-
tion that has come out of the causal set theory is about
the nature of the so-called dark energy problem. This
prediction was made by Rafael Sorkin [18,19], the founder
and mainstay of the causal set program, a couple of
decades ago when the SN data had not as yet forced a
non-zero cosmological constant [17] on the cosmological
community. The prediction not only satisfies the obser-
vational constraints but also sheds light on the nature
of the dark energy. It predicts fluctuation in its magni-
tude which are quantum in nature. Later on, a model
[20] was developed based on the arguments of that pre-
dictions that allowed for the evolution of the universe
to be studied on a computer with the predicted cosmo-
logical term.

In this section we will summarize the arguments
that lead to fluctuations in the cosmological term and
are described in detail in [18–21]. We start by assuming
a relation of the type ∆Λ∆V ∼ 1 12 that is expected in
any theory of quantum gravity provided the two quan-
tities are well defined 13 as they are in causal set theory.
This relation is the basis of fluctuation in Λ, which are
of the order ∆Λ ∼ 1/∆V and
Λ = 〈Λ〉+ ∆Λ. (1)
There are reasons to believe that 〈Λ〉 = 0 [20], which
reduces the above relation to Λ = ∆Λ. In causal set
theory ∆V (and hence ∆Λ) is properly defined 14 and
is given by ∆V = ±√V . This leads to

Λ ∼ ± 1√
V

. (2)

For a rough argument assume that we take V to be the
volume of the observable universe then the last equation
predicts that the value of

|Λ| ∼ 1√
H−4

∼ H2 ∼ ρcrit. (3)

12All equations are written in natural units, i.e., h̄ = 8πG =
c = 1. Here V and Λ are the four volume and the cosmological
constant respectively.
13For example, this relationship comes out very naturally in
the uni modular attempts to quantize gravity [22,23].
14This is a consequence of the theory being Lorentz invariant.

Here H−1 is the Hubble radius of the observable uni-
verse and ρcrit is the critical energy density.

The relation 2 assigns a definite meaning to the fluc-
tuations in Λ but if we are to incorporate such a Λ into
an evolution of the universe, we still need a model that
gives us Λ as a function of time keeping (2) intact. Such
a model was developed [20,21] later but instead of men-
tioning the details of the model we will confine ourselves
with just the results. The interested reader will find de-
tailed discussions about the model in the two references
mentioned above. The results of computer simulations
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Fig. 3 This is a log-log plot where different energy densi-
ties are shown as a function of the size of the universe (in
terms of the scale factor). The solid jittery line shows the
magnitude of energy density in Λ. This magnitude initially
tracks the energy density in radiation (in lightly dotted line)
but switches over to tracking matter (in heavy dotted line)
when it becomes the dominant component around loga ∼ 27.
The bottom figure expands this crossover region to show the
change in tracking more clearly. The total energy density is
also plotted as broken jittery line.

show that we get a tracking model in the sense that the
magnitude of the energy density in Λ tracks the total
energy density as shown in figure 3. Hence the dark en-
ergy is not just becoming relevant today; it was always
relevant and will always be so. In other words, there
is nothing special about the current acceleration in the
expansion of the universe. Accelerations, decelerations
and even contractions are “natural” phases in the evo-
lution of the universe. This solves “the Why Now?”
problem without any fine tuning.

The sign of Λ is of course random, which means
that it is, at least in principle, equally likely for Λ to
be negative or positive 15 at a particular point in the
evolution of the universe. In fact, a recent unpublished

15It is when Λ is small or negative that the universe decel-
erates and it is when Λ stays negative for a relatively longer
period of time that the universe eventually starts to contract
[21].
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work of one of the authors of this article has shown
that it is an almost certainty in the model that Λ will
change sign at least once between now and a redshift
of 3 [28]. There have been recent indications [26] that
Λ might have changed sign at some time between a
redshift of 2 and 3. If these are substantiated, causal
set theory will be the only fundamental theory to have
a natural explanation of negative Λ again without any
fine tuning whatsoever. On top of the tracking behavior

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 0.5 1 1.5 2

Ω
Λ

redshift

Fig. 4 The value of ΩΛ fluctuates about zero. These fluctu-
ations show the quantum nature of the cosmological term.

mentioned earlier there are fluctuations in the value of
Λ and hence ΩΛ that allude to the quantum nature of
Λ in this model. Figure 4 shows these fluctuations in
the value of ΩΛ in one of the computer simulations.

Let us just mention further that the model is struc-
turally stable and satisfies the constraints on ΩΛ com-
ing from SN 1a observations with appreciable probabil-
ity.
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Fig. 5 CSG has parameter space that generates a universe
which shows successive cycles of expansion punctuated by one
element posts that act like big bang singularities for the new
cycle and, of course, big crunch singularities for the old cycle.

5.2 A model of the Early Universe

Classical sequential growth (CSG) dynamics mentioned
earlier has a large class of dynamical laws (choices in
the parameter space) which generate cyclic universes.
These cyclic universes grow to a certain “size” before
it contracts back to one element, only to repeat the
process all over again (figure 5). These one element
junctions are called posts and quite obviously look like
big bang (or big crunch) singularities. When the uni-
verse immediately after a post was studied [27], it was
found that this era looks very much like a de Sitter
spacetime with exponential expansion in the “spatial
volume”. This model of the early universe solves many
of the standard cosmology problems, again without any
fine tuning. For example, the resulting early universe is
homogeneous, which solves the horizon problem and is
orders of magnitude bigger than a Planck length when
it is just a few Planck times old without the use of
any inflaton and/or fine tuning, solving the size prob-
lem. There are other very interesting and important
phenomenological consequences relating to the black
hole entropy [15,16] and the origin of cosmic rays [24]
that we have not mentioned here. The interested reader
is again advised to consult the references mentioned
above.

6 Final Remarks

Causal set theory is an extremely simple and clearly
stated attempt at quantizing gravity. Despite being a
fundamentally discrete theory it is completely Lorentz
invariant. The theory has a well developed classical dy-
namics, though it still lacks a fully developed quantum
version. Still the theory has a lot to say about cosmol-
ogy and black hole entropy. It predicts quantum fluctu-
ations in the cosmological term, whose magnitude re-
mains of the order of the critical density throughout the
history of the universe. It has a model of the early uni-
verse that that has the potential to solve many of the
standard cosmology puzzles that arise out of the initial
conditions. It predicts a finite entropy of the black hole.
Taken seriously this discrete theory may just give birth
to a very new notion of the continuum.
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Static Axisymmetric Einstein Equations in Vacuum
Symmetry, New Solutions and Ricci Solitons

M M Akbar

Abstract An explicit one-parameter Lie point sym-
metry of the vacuum Einstein equations with two com-
muting hypersurface-orthogonal Killing vector fields is
presented. The parameter takes values over all of the
real line and the action of the group can be effected al-
gebraically on any solution of the system to produce
a one-parameter extended family, without having to
deal with an associated set of equations that is com-
mon in most solution-generation techniques. This en-
ables one to construct new axisymmetric static solu-
tions as well as new cylindrical gravitational wave so-
lutions in four spacetime dimensions, but can equally
be applied to higher dimensions, for both Lorentzian
and Riemannian signatures. In particular, we obtain
the one-parameter family of axially symmetric metrics
that generalize the Schwarzschild solution. Exploiting
a correspondence between static solutions of Einstein’s
equations and Ricci solitons (self-similar solutions of
the Ricci flow), this also enables us to construct new
steady Ricci solitons.

Keywords PDE Symmetry, Exact Solutions, Einstein
Equations in Vacuum, Generation Technique, Static
Solutions, Ricci Solitons

1 Introduction

The high nonlinearity of the Einstein equations makes
it extremely difficult to solve and draw generic physi-
cal conclusions about gravity and besets quantization.
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However, soon after Einstein found his equations, and
thought them unsolvable, the first exact solution de-
scribing the spacetime around a spherically symmetric
massive object was obtained by Schwarzschild. Since
then Einstein’s equations have been systematically stud-
ied for different matter fields subject to various local
symmetries, algebraic conditions and other simplifying
assumptions, and today we have many exact solutions
in four-dimensions that are well-understood ([31], [20],
[27]). These solutions provide concrete means to study
the nonlinearities of the gravitational field, shed light
on more general non-exact solutions, guide numerical
study, and play a pivotal role in every quantum gravity
program [8]. Their study has brought the physics and
mathematics communities together.

The difficulty of directly integrating Einstein’s equa-
tions has led to many solution-generation techniques in
which one obtains a solution, or a family of solutions,
from a “seed” solution, of the same system or a dif-
ferent system. Buchdahl in 1954 showed how to obtain
a Ricci-flat solution from another in the presence of a
hypersurface-orthogonal Killing vector field [9] (more
later). Ehlers in 1957 showed how one can obtain a cer-
tain one-parameter family starting from any stationary
axisymmetric metric [15]. Later in 1972, Geroch showed
that one can use the two commuting Killing vector
fields of any stationary axisymmetric metric to obtain
an infinite parameter family of solutions ([18], [19]).
Following the discovery of Tomimatsu-Sato solutions
([32], [33]), stationary axisymmetric systems were vig-
orously studied, aided by techniques developed in other
partial differential equations systems (various Bäcklund
and other transformations, inverse-scattering methods
[6] etc.). Many sophisticated general results were ob-
tained for stationary axisymmetric systems including
the Einstein-Maxwell system (see [24] for a detailed re-
view). It was however generally appreciated that trans-
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lating those results to obtain explicit solutions, of the
same system or otherwise, often involves solving an as-
sociated set of equations and performing a good number
of mathematical steps. One cannot simply write down
a new solution starting from a seed solution.

The impressive work in four-dimensions, and cur-
rent efforts in obtaining higher-dimensional gravitational
solutions modeled on four-dimensional ones, may give
the impression that there is little left to explore an-
alytically for the four-dimensional Einstein equations
with physically interesting symmetries and simple mat-
ter fields, in particular the vacuum. As we will see be-
low, the non-linearities of the Einstein equations still
hold surprises even in the very symmetric cases that
have been studied for years.

Below we study the vacuum Einstein equations in
the presence of two commuting hypersurface-orthogonal
Killing vector fields. In Lorentzian four dimensions these
are axially-symmetric static solutions and (Einstein-
Rosen) cylindrical gravitational waves and can be ob-
tained from one another by a complexification of appro-
priate coordinates. In particular, we find a one-parameter
Lie group that is a symmetry of the system and maps
any solution into a one-parameter extended family. In
addition, the action of the group can be represented
algebraically. This produces, for example, an axially-
symmetric family that contains the spherically sym-
metric Schwarzschild metric as a special case (and is
distinct from other generalizations of the latter found
in the past).

The two systems – the systems of vacuum static ax-
isymmetric solutions and cylindrical wave solutions –
are well-studied systems in relativity (see, for example,
[8] for a review). The first gravitational wave solution
found by Einstein and Rosen was cylindrical and the
cylindrical wave system is among the very first to be
quantized. Despite the fact that cylindrical waves can-
not describe radiation from an isolated body, they have
been used in understanding energy-loss due to gravity,
the asymptotic structure of radiative spacetimes, test-
ing the quasilocal mass-energy of Thorn and in cosmic
censorship.

This work was initially inspired by our study of the
Ricci flow equations, in particular the correspondences
between Ricci solitons (self-similar solutions of Ricci
flow), the Einstein-scalar field theory and static vacuum
solutions of the Einstein equations [2]. The symmetry
of the axisymmetric vacuum system that we present
here translates to an analogous symmetry for the cor-
responding steady Ricci solitons which we will discuss
at the end. The results obtained are independent of the
metric signature, and thus this work will be of interest
to mathematicians interested in warped-product Ricci-

flat metrics and warped-product Ricci solitons ([7], [28],
[29]).

2 The System(s)

Static Vacuum System: It is well know that the general
static axially symmetric vacuum solutions of Einstein’s
equations can be cast in the Weyl coordinates as

ds2 = −e2u(ρ,z)dt2 + e−2u(ρ,z)
[
e2k(ρ,z)(dρ2 + dz2)

+ ρ2dφ2
]

(1)

where u(ρ, z) and k(ρ, z) satisfy the following three equa-
tions:
∂2u

∂ρ2
+

1
ρ

∂u

∂ρ
+

∂2u

∂z2
= 0, (2)

∂k

∂ρ
= ρ

[(
∂u

∂ρ

)2

−
(

∂u

∂z

)2
]

, (3)

∂k

∂z
= 2ρ

∂u

∂ρ

∂u

∂z
. (4)

A solution is a pair (u, k) solving (2)-(4), the first of
which is nothing but the axially symmetric Laplace
equation in cylindrical coordinates in (an auxiliary) three-
dimensional Euclidean space. For any harmonic func-
tion u(z, ρ) solving (2), k(z, ρ) is found by integrating
(3) and (4), which retain the non-linearities of the Ein-
stein equations. No distinction is made between solu-
tions in which u and/or k differ by constants since they
will give rise to the same metric form by mere redefin-
ing of coordinates.

Einstein-Rosen Cylindrical Wave System: It can be ob-
tained from (2)-(4) by z → i t and t → iz and as such
we will not separate it for discussion.

3 Symmetries and Generating New Solutions
from Old

If (u1, k1) and (u2, k2) are two solutions, linearity of (2)
implies u = c1u1 + c2u2 is a solution of (2). However,
non-linearities of (3) and (4) prevent one from obtain-
ing k in terms of the four quantities {u1, u2, k1, k2} by
any standard prescription. One has to go through the
line integral of (3)-(4) (or some equivalent set of differ-
ential equations) starting with u = c1u1 + c2u2, which
is nothing short of the basic problem of solving (2)-(4)
for a given u.

Given an arbitrary solution (u0, k0) can one gen-
erate another solution by some simpler means with-
out solving the full set (2)-(4)? Ernst [16] has given
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a method in which one can obtain a new solution (u0 +
c
2 (F +G), k0 +cF − c2

2 ρ2) from a given solution (u0, k0)
provided the functions F and G satisfy the following
(simpler) set of differential equations

∇F = 2i∇u0, (5)

∇G = 2i∇(−u0 + ln ρ), (6)

where ∇ = ∂ρ + i∂z. This method has successfully been
applied to various know solutions (see [31]). Ernst him-
self applied this to obtain a generalization of the C-
metric. Kerns and Wild applied this to obtain a one-
parameter generalization of the Schwarzschild metric
[26]. In all these one solves (5)-(6) starting with the
seed solution’s u0, the difficulty of which depends on
the functional form of u0.

Are there further ways to produce new solutions
from old, and, if possible, without solving the field equa-
tions or any equivalent set of equations? One possible
avenue to address this question is to look for symme-
tries of the system. It is not difficult to see that the
transformation

(u0, k0) → (βu0, β
2k0) (7)

leaves the system (2)-(4) invariant; in other words, for
any arbitrary solution (u0, k0) there is a (non-equivalent)
solution (βu0, β

2k0) for β ∈ (−∞,∞). A special case of
this is (−u0, k0). However, this transformation does not
mix dependent and independent variables, which is why
it was easy to find it by inspection. Below we present a
transformation that mixes variables in a nontrivial way.

Theorem 3.1: For α ∈ (−∞,∞), the transformation

(u0, k0) → (u0 + α ln ρ, k0 + 2αu0 + α2 ln ρ), (8)

leaves the system (2)-(4) invariant. In other words, for
every static axially symmetric vacuum solutions of the
Einstein equations

ds2 = ±e2u0(ρ,z)dt2 + e−2u0(ρ,z)
[
e2k0(ρ,z)(dρ2 + dz2)

+ ρ2dφ2
]

(9)

there exists a one-parameter generalization:

ds2 = ±e2u0(ρ,z)ρ2αdt2 + e−2(1−2α)u0(ρ,z)ρ2α(α−1)

×
[
e2k0(ρ,z)(dρ2 + dz2)

]
+ e−2u0(ρ,z)ρ2(1−α)dφ2.(10)

Proof: By direct substitution into (2)-(4).

With hindsight we would like to note here that sym-
metry (8) could have been obtained from (5)-(6) with
the following complex identifications: F = 2iu0 and
G = 2i(−u0 + ln ρ) and c = −iα. In other words, with

these choices for (F, G, c) the Ernst equations can be
satisfied identically for any (u0, k0) — thus providing a
symmetry for the system (2)-(4). It is interesting that
this possibility went unnoticed even though (and prob-
ably because) (5)-(6) were used to generalize particular
solutions.

3.1 Group Structure and Solution Space

To appreciate the special nature of our transforma-
tion group, let us recall how one can obtain parameter-
dependent new solutions from old ones by means of
superposition. In general, the role of the Laplace equa-
tion (2) is central in characterizing the solutions of the
system since k can be obtained by quadrature from it.
Thus the vast majority of the literature speaks in terms
of “Newtonian gravitational potentials”. Given two so-
lutions u0 and u1, u = u0 +αu1 is a solution of (2) and
determines k via (3)-(4). The resulting solution (u, k)
from (u0, k0) will thus involve the parameter α with
α = 0 being (u0, k0). However, it is easy to see that
(u, k) thus obtained is specific to u0 since the new k

would in general depend on the functional form and
the derivatives of u0. One can check this by trying out,
for example, u = u0 + αz, z being a rather simple har-
monic function solving (2). What makes u = u0 +α ln ρ
special is that one gets an explicit algebraic prescription
for k.

We now note that these transformations indeed form
a Lie group with parameter α. Denoting the transfor-
mation by Tα, it is easy to check closure, Tα2 ◦ Tα1 =
Tα1+α2 , since successive transformations with α1 and
α2 take (u0, k0) to (u0+(α1+α2) ln ρ, k+2(α1+α2)u0+
(α1 + α2)2 ln ρ). The seed metric is the identity with
α = 0 (in fact any metric within the family can be
taken as identity with α = 0) and existence of inverse
is immediate with [Tα]−1 = T−α.

Contrasting with the closely-related vacuum station-
ary system – in which there exists a discrete map pro-
ducing a new solution from an old one (c.f. Eq (34.37)
in [31]) – the existence of the one-parameter Lie group
in our case means the whole solution space of axisym-
metric static vacuum Einstein system can be divided
into equivalent classes which do not intersect under
the action of the group. One naturally wonders if there
are other explicit transformations that possibly connect
these families. This requires a much detailed symmetry
analysis of the differential equation system (2)-(4) and
is work under progress.

Remark 3.1 Note that, in the Riemannian signature,
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the transformation

α → 1− α (11)

u → −u (12)

only interchanges the role of φ and t in (10). These two
geometries would therefore be indistinguishable locally.

3.2 Warped Form and Higher Dimensions

Despite the economical way Weyl coordinates express
axially symmetric solutions, it does not provide the
most natural form for many physically and mathemati-
cally important solutions with two commuting hypersurface-
orthogonal Killing vector fields. For example, Schwarz-
schild solutions have a complicated expression when
written in the Weyl form ([31]). The simplest, most in-
tuitive, form of a metric with two commuting hypersurface-
orthogonal commuting Killing vector fields is its warped-
product form with two line fibres [23]

ds2 = g11dx2 + g22dy2 + gijdzidzj , (13)

with i, j = 3, 4, .., n − 1, and in which the metric com-
ponents are only functions of zi. The theorem above
translates as follows for (n + 1)-dimensions:

Theorem 3.2: For every Ricci-flat metric of the form

ds2 = g11dx2 + g22dy2 + gijdzidzj , (14)

where all metric components are functions of zi,

ds2 = (g22)γ(g11)γg11dx2 + (g22)−γ(g11)−γg22dy2

+ (g22)γ(γ+1)(g11)γ(γ−1)gijdzidzj , (15)

is Ricci-flat for γ ∈ (−∞,∞).
The proof again is by direct computation of the

Ricci tensor. Note that this allows the metric compo-
nents to assume arbitrary signatures. The slightly elab-
orate form of the metric components in (15) is deliber-
ate, to make the group structure manifest. If g11 and
g22 have the same sign, the metrics corresponding to γ

and −γ are locally identical with the role of x and y

swapped (cf. (11)-(12)).

3.3 Examples: Solution Extending Schwarzschild and
More

We now apply (8) to the Schwarzschild solution and
obtain, for γ ∈ (−∞,∞),

ds2 = − r2−2γ (sin θ)2−2γ

(
1− 2m

r

)2−γ

dt2

+ r2γ2−2γ (sin θ)2γ2−2γ

(
1− 2m

r

)γ2−3γ+1

dr2

+ r2γ2−2γ+2 (sin θ)2γ2−2γ

(
1− 2m

r

)γ2−3γ+2

dθ2

+ r2γ (sin θ)2γ

(
1− 2m

r

)γ−1

dφ2. (16)

This to our knowledge was not found before and is
clearly distinct from the generalization of Schwarzschild
found by Kerns and Wild [26] using Ernst equations (5)-
(6). Once again one can check that (16) is indeed Ricci-
flat by direct computation. Note that for γ = 1 the
spacetime symmetry group expands and one gets the
codimension-two spherically symmetric Schwarzschild
solution. There is obviously a number of ways to write
(16), including that the role of t and φ can be inter-
changed with simultaneous signature change etc. With
γ → −γ + 1 (16) can be written such that γ = 0 is the
Schwarzschild metric:

ds2 = −r2γ (sin θ)2γ

(
1− 2m

r

)γ+1

dt2

+ r2γ2−2γ (sin θ)2γ2−2γ

(
1− 2m

r

)γ2+γ−1

dr2

+ r2γ2−2γ+2 (sin θ)2γ2−2γ

(
1− 2m

r

)γ2+γ

dθ2

+ r2−2γ (sin θ)2−2γ

(
1− 2m

r

)−γ

dφ2. (17)

Applying this transformation to the flat metric [3]

ds2 = −dt2 + dx2 + dy2 + (ax + by)2dz2, (18)

one obtains the following Ricci-flat metric

ds2 = −(ax + by)2−γdt2 + (ax + by)−γ+ 1
2 γ2

(dx2 + dy2)

+ (ax + by)γdz2. (19)

Although different from the forms found by Buchdahl
(next section), this is also a member of the Kasner class,
as one can check.

3.4 Historical Link

As was mentioned in the introduction, it was Hans
Buchdahl who pioneered obtaining new solutions from
old “without solving the field equations”. In 1950’s ([10],
[11]), just before Ehlers [15], he showed that if a Ricci-
flat metric (solution to the vacuum Einstein equation)
is “static” in one of its coordinates one can obtain an-
other distinct Ricci-flat metric from it by what he called
“reciprocal transformation” that takes the d-dimensional
metric

ds2 = gik(xj)dxidxk + gaa(xj)(dxa)2 (20)

to the following d-dimensional metric

ds2 = (gaa)2/(d−3)(xj)gikdxidxk+(gaa)−1(xj)(dxa)2.(21)
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Either metric, as Buchdahl termed, is “xa-static”, and
it is easy to verify that if (20) is Ricci-flat so is (21), by
direct computation. By applying the transformation on
(21) one gets back the original metric (20).

In his very first paper [10], Buchdahl applied this
transformation on

ds2 = −(dx2 + dy2 + dz2) + x2dt2, (22)

and obtained the following Ricci-flat solution, earlier
discovered by Joseph [25]

ds2 = −x4(dx2 + dy2 + dz2) + x−2dt2. (23)

Applying the transformation on the t-static Schwarz-
schild metric,

ds2 = −
(

1− 2m

r

)
dt2 + dr2

(
1− 2m

r

)−1

+ r2
(
dθ2

+ sin2 θdφ2
)
, (24)

Buchdahl obtained

ds2 = −dt2
(

1− 2m

r

)−1

+
(

1− 2m

r

)
dr2 + r2 (25)

× (
dθ2 + sin2 θdφ2

)
, (26)

which, upon the coordinate transformation R = r −
2m, is the Schwarzschild metric with mass −m. Buch-
dahl expanded on the implication of this transformation
on gravitational energy and showed that this is a spe-
cial case of how the component of a certain tensorial
quantity, related to the Hamiltonian derivative of the
Gaussian curvature, changes sign [10]. Buchdahl noted
that more general solutions “can be formed by means
of a succession of reciprocal transformations, starting
with the line element of a flat space”. However he did
not apply this observation until much later [12], in 1978,
when he obtained from the all-positive version of (22),
i.e. from the flat space metric

ds2 = (dx2 + dy2 + dz2) + x2dt2, (27)

the following Riemannian solution

ds2 = x2n(n−1)(dx2 + dy2) + x2ndz2 + x2(n−1)dt2 (28)

at the (n − 1)th step of alternately taking the static
coordinate xa to be t and z for the transformation. Al-
though n is an integer, it is easy to see that, as Buchdahl
noted, (28) is Ricci-flat for all real n, and also that it
can be cast in the Kasner form:

ds2 = dx2 + x2ady2 + x2bdz2 + x2cdt2, (29)

with

a =
n(n− 1)

n2 − n + 1
, b =

n

n2 − n + 1,
c = − n− 1

n2 − n + 1
,

satisfying the algebraic relations a + b + c = 0 and
a2 + b2 + c2 = 0.

As a second set of nontrivial Ricci-flat solutions,
Buchdahl obtained from another form of the flat metric

ds2 = dx2 + dy2 + y2z2 + x2dt2 (30)

the following one-parameter family

ds2 = x2n(n−1)y2(n−1)(n−2)(dx2 + dy2) + x2ny2(n−1)dz2

+ x−2(n−1)y−2(n−2)dt2 (31)

which too was known from the work of Harris and Zund
[22]. In summary, no new solutions were obtained by
this generation technique.

However, in all these what was altogether left out of
Buchdahl’s consideration is the fact that the Schwarz-
schild metric has another hypersurface-orthogonal Killing
vector field, ∂

∂φ , which could be used to obtain a differ-
ent Ricci-flat metric from (24)

ds2 = −r4 sin4 θ

(
1− 2m

r

)
dt2 + r4 sin4 θ

dr2

1− 2m
r

+ r6 sin4 θdθ2 +
1

r2 sin2 θ
dφ2. (32)

Unlike its t-counterpart (26), (32) is not related to (24)
via a coordinate transformation. In addition, alternat-
ing between t and φ, as he did to arrive at the known
solutions (28) and (31), it is conceivable that he could
have arrived at our generalized Schwarzschild metric
(16) more than fifty years ago and this would have pro-
vided him with a genuinely new family of solutions from
his transformation.

In addition, and perhaps more importantly, Buch-
dahl did not look for an explanation why for two static
coordinates the discrete exponents produced by alter-
nate transformations work fine for continuous values.
Obviously, this question and its answer were hidden in
the Lie point symmetry of the vacuum axially sym-
metric static system (2)-(4) that we addressed here.
When written as warped-product with two line fibres
— the form used by Buchdahl in all his examples –
the parameter-dependent components of the general-
ized metric (15) appear in identical functional forms for
four and higher dimensions, and this can be used to gen-
eralize any higher dimensional solutions with two com-
muting hypersurface-orthogonal Killing vector fields read-
ily.

4 Ricci Flow and Ricci Solitons

Introduced by Richard Hamilton [21] in 1982, Ricci flow
has been used to study the interplay between geometry
and topology of Riemannian manifolds and has success-
fully been used to prove the Poincaré Conjecture and
Thurston’s Geometrization Conjecture (in three dimen-
sions). It is an intrinsic geometric flow in which the
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metric gµν on a manifold Mn+1 evolves by its Ricci
curvature tensor ([13], [14])
∂gµν

∂η
= −2Rµν (33)

along the flow parameter η, often referred to as “time”.
The simplest solutions of the Ricci flow are its fixed
points
∂gµν

∂η
= 0, (34)

which are the Ricci-flat metrics, Rµν = 0. The next sim-
plest are the self-similar solutions in which the metric
evolves only by rescalings and diffemorphisms

gµν(η) = σ(η)ψ∗η(gµν(0)). (35)

It is easy to show that (35) implies, and is implied by,
the following equation for the initial metric (henceforth
gµν)

Rµν − 1
2
LXgµν = κgµν (36)

with σ(η) = 1 + 2κη the scaling and Y (η) = 1
σ(η)X(x)

the vector generating ψη diffeormorphisms.
A Ricci soliton is a manifold-with-metric and a vec-

tor field (Mn+1, gµν , X) solving (36). The soliton is
called “steady” if κ = 0, “expander” if κ < 0, “shrinker”
if κ > 0. A local Ricci soliton is one that solves (36) on
an open region that might not cover a complete mani-
fold with the soliton metric. A soliton is called gradient
if X = ∇f , where f is a scalar function on Mn+1, and
thus (36) becomes

Rµν −∇µ∇νf = κgµν . (37)

For X = 0, or Killing, Ricci solitons (36) are just Ein-
stein metrics. The simplest nontrivial Ricci solition is
perhaps the Cigar soliton, which is a steady soliton on
R2:

ds2 =
dx2 + dy2

1 + x2 + y2
, (38)

with X = 2
(
x ∂

∂x + y ∂
∂y

)
. It is gradient with f = x2 +

y2. All nontrivial steady gradient solitons are non-compact.

4.1 Ricci Solitons and Static Metrics

It is well-known that ([4], [5], [31]), if

ds2 = ±e2udt2 + e−
2u

n−2 gijdxidxj (39)

is Ricci-flat in (n+1)-dimensions in which ∂
∂t is a hypers-

urface-orthogonal Killing vector field – i.e. (39) is static
in t – then (u, gij) solves the Einstein scalar field equa-
tions in n-dimensions

Rij − n− 1
n− 2

∇iu∇ju = 0 , (40)

∆u = 0 . (41)

A precise relationship between Ricci solitions and Einstein-
scalar field theory with a possible cosmological con-
stant was given in [2] in which every solution of the
latter in n-dimensions corresponds to a Ricci soliton
in (n + 1)-dimensions. In the case of zero cosmologi-
cal constant this means every (n + 1)-dimensional sta-
tic vacuum solution (39) can be put in one-to-one cor-
respondence with the following Ricci soliton metric in
(n + 1)-dimensions

ds2 = e
2
q

n−1
n−2 u

dt2 + gijdxidxj (42)

with X := −2
√

n−1
n−2gij∇iu

∂
∂xj . Adapting to axisym-

metric vacuum solutions in Weyl coordinates we have
for every vacuum solution

ds2 = ±e2u(ρ,z)dt2 + e−2u(ρ,z)
[
e2k(ρ,z)(dρ2 + dz2)

+ ρ2dφ2
]

(43)

the following local Ricci soliton

ds2 = ±e2
√

2udt2 +
[
e2k(ρ,z)(dρ2 + dz2) + ρ2dφ2

]
(44)

with X = −2
√

2e−2k(ρ,z)
(
∇ρu

∂
∂ρ +∇zu

∂
∂z

)
.

Using symmetry (8) of (2)-(4) one thus obtains the
following one-parameter family of local Ricci solitons

ds2 = ±e2
√

2uρ2
√

2αdt2 +
[
e2k(ρ,z)+4αu(ρ,z)ρ2α2

(dρ2

+ dz2) +ρ2dφ2
]

(45)

with

X = −2
√

2e−2k(ρ,z)+2αu(ρ,z)+α2 ln ρ

×
(

α

ρ

∂

∂ρ
+∇ρu

∂

∂ρ
+∇zu

∂

∂z

)

for every static axisymmetric vacuum solution (u, k).

5 Conclusion

The primary motivation behind most solution gener-
ation techniques has been to advance exact solutions,
often starting from a particular solution. We studied
(2)-(4) from a symmetry perspective and found a non-
trivial exact Lie point symmetry. Being a symmetry of
the whole system this can be applied to any solution in-
cluding non-exact solutions of the system, and thus can
guide both analytical and numerical studies. The sym-
metry applies to arbitrary dimensional vacuum systems
with two commuting hypersurface-orthogonal Killing
vector fields and can be written in a universal form (15).
This form allowed us to generalize the Schwarzschild
metric more directly than is possible in the Weyl coor-
dinates. An additional motivation for studying this sys-
tem comes from outside relativity, following the recent
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correspondence between Ricci flow and static metrics
[2]. The symmetry in the static system thus generalizes
the corresponding Ricci solitons simultaneously.

One would naturally like to understand the prop-
erties of the solutions generated by the one-parameter
symmetry (like our generalized Schwarzschild above),
and find whether they contain new spacetimes or not.
However, the stronger message that we believe comes
from the existence of explicit symmetries (8), and (7),
is that one should continue looking for more Lie trans-
formations, and other possible forms of symmetries of
the static system, in order to obtain a clearer picture
of the geometry of the solution space under their ac-
tions. This requires a detailed and systematic study
that falls within the very developed field of symme-
try analysis of non-linear partial differential equations
[30]. The related stationary system with two commut-
ing vector fields, as we mentioned earlier, has been one
of the most rigorously studied systems in relativity and
may suggest methods, indicate symmetries, and help us
understand the geometry of the solution space in gen-
eral terms for the static case. Even though the static
system is simpler, the connection is far less obvious,
and it may not be possible to realize many symmetry
transformations explicitly like (8) and one may find the
role of different coordinate systems very crucial in the
investigation. This is work under progress.
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Abstract The Kinetic Theory of non-Maxwellian Lang-
muir modes is developed in the presence of Orbital An-
gular Momentum. The Laguerre-Gaussian (LG) mode
function is applied for the modeling of the non-Maxwellian
twisted dielectric function to study the Landau wave-
particle interaction in electron plasma system. In the
last sention, some numercial results are also presented
using appropriate parameters of electron plasma waves.

1 Introduction

The electromagnetic wave consists of polarization and
orbital angular mo- mentum (OAM) oriented consti-
tutents of the angular momentum (Berestet- skii et al.,
1982). Allen et al.,1992 employed an orthonormal set of
Laguerre- Gaussian (LG) functions to study photon or-
bital angular momentum (OAM) states of laser beams.
Some laboratory experiments are setup to develop laser
beams, having orbital angular momentum (for exam-
ple Padgett et al., 1996; Harris 1996; Leach 2002). A
few years ago, the eect of orbital angular momen- tum
is transferred from quanum optics to various regimes
such as radio wave (Thide et al., 2007, Harwit 2004),
neutrino physics (Mendonca, 2008), inverse Farady eect
(S. Ali, 2010) and plasmas (Mendonca et al. 2009).
Recently, the twisted kinetic modes (Mendonca 2012
and Khan 2014) are predicted for the thermally dis-
tributed Maxwellian plasmas. But Arshad et al. 2014;
2011; 2010 pointed out the non-thermal behavior of
some laboratory and most of the space plasmas. The
suitable distribution function to model such plasmas is
non-Maxwellian distribution.
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2 Theoretical Model

In this section, the electrostatic kinetic theory is de-
veloped for an unmag- netized non-Maxwellian (Kappa
distributed) plasmas in the OAM state. The linearized
Vlasov equation for the unmagnetized electrostatic
plasma can be written as

(∂t + v · ∂r + qαE · ∂p)fα = 0. (1)

This equation is coupled with the Poisson equation ∂2
rφ

= 4πΣqαnα where nα =
∫

fαd3v. Consider the propa-
gation of ion-accoustic wave with slowly varying ampli-
tude propagating along z-axis and evolving as exp(ikz ),
so that ∂2

rφ = (∂2 − k2 + 2ik∂z)φ with transerverse
Laplacian operator ∂2

⊥ = (1/r)∂/∂r(r∂/∂r)+(1/r2)∂2/

∂θ2 in cylinderical coordinates. We can assume that
the field varies only gradually along the z-axis such
that ∂2φ/∂z2 << 2k∂φ/∂z. Under these conditions the
waves that are associated with the potential and are
having a finite orbital angular momentum satisfy the
paraxial equation (∂2

⊥ + 2ik∂z)φ = 0. Now the solution
of Poisson equation −k2φ = 4πqα

∫
fαd3v can be found

by the superposition of Laguerre-Gaussian (LG) func-
tions in clyndrical coordinates φ(r, t) =

∑
φ̃plFpl(r, t)eiθ

eikz−iw. Here φ̃pl is the mode amplitude, p and l are
the radial and angular mode numbers and θ denotes
the azimuthal angle. The Laguerre-Gaussian function
is defined as Fpl(r, z) = CplX

|l|L|l|p (X) exp(-X/2). Here
X = r2/w2(z)(w(z) is the beam waist), Cpl

=
√

(l + p!/4πp! is the normalization constant and
L
|l|
p (X) = exp(X)dp/dXp[X l+pexp(−X)] is the associ-

ated Laguerre polynomial. Now we can write the elec-
tric field in terms of effective wave number keff ; i.e.,E =
−ikeffφ, where keff = − i

Fpl
∂rFpler + 1

reθ+(k− 1
Fpl

∂z
Fpl)ez. Using Laguerre-Gaussian form of perturbed dis-
tribution function fα =

∑
pl f̃αplFpl(r, t)eiθeikz−iw in
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the Vlasov equation and inserting the resultant expres-
sion in the Poisson equation, we get 1 + χ(ω) = 0, such
that

χ(ω) =
∑

e,i

w2
pα

k2

∫
k∂vzfα0 + lqθ∂vθfα0

(ω − kvz)− lqθvθ
(2)

The three dimensional non-Maxwellian (Kappa) distri-
bution is given by the expression (Ki et al., 2011)

fk =
n0α

π3/2θ2
⊥αθ||α

Γ (κα + 1)

κ
3/2
α Γ (κα − 1/2)

[
1 +

v2
||

καθ2
||α

+
v2
⊥

καθ2
⊥α

]−κ−1

(3)

where α represents the species under consideration and
we have two spices α = e for electrons and α = i

ions. n0α is the unperturbed number density of the
plasma species, k is the spectral index and θ(||,⊥)α =√

(2κ− 3)/κvT(||,⊥)α is the Lorentzian thermal velocity
such that vT(||,⊥)α =

√
T(||,⊥)α/mα

is the respectively,
with κ > 3/2.

3 Twisted Langmuir Modes

In this section, the twisted Kinetic Theory for the non-
Maxwellian high frequency electron plasma is described
for the calculation of the dispersion relation and the
study of Landau wave-particle interaction. The back-
ground number density of the electrons is n0e.It is ob-
vious that due to their very small mass, electrons will
behave as Boltzmanen (inertialess) particles while the
dynamics of the ions are important due to their large
inertia. The dispersion function of the electrons can be
expanded under the condition (θ‖e ¿ vph = ω/k), to
get the following dielectric function;

ε(k, ω) = 1 + χe, (4)

such that

χe = −ω2
pe

ω2

[
1 +

k2θ2
‖e

ω2

3k

(2κ− 3)

]
− l2q2

θω2
pe

k2ω2

[
1 +

l2q2
θθ2
‖e

k2ω2

3κ

(2κ− 3)

]
+ 2i

√
π

ωΓ (κ + 1)
κ3/2Γ (k − 1/2)

w2
pe

l3θ3
‖e




(
1 +

ω2

κk2θ2
‖e

)−k−1

+
µ

k

(
1 +

ω2

κl2q2
θθ2
‖e

)−k−1

 . (5)

where µ = k/lqθ. The dielectric function ε(k, ω) con-
tains real and imaginary parts such that ε(k, ω) = Re[ε
(k, ω)] + lm[ε(k, ω)]. Here ω = ωr + iγ is the tempo-
ral angular frequency of the wave. The expression for

ωr can be obtained by equating the real part of the
dielectric function ε(k, ω) to zero: the yields

ω2
r = ω2

pe

(1 + µ2)
µ2

+
3κk2θ2 ‖e

(2k − 3)
(1 + µ4)

µ2(1 + µ2)
. (6)

The Landau damping rate γ for the given kappa distrib-
uted OAM electron-ion plasma can be computed from
the relation (γ = −lm(ε)/(∂Re(ε)/∂ω)). Using the re-
spective values of lm (ε) in the expression of γ, we get;

γ = −
√

πω4
rµ2

k3θ3
‖e

(1 + µ2)[γz + γθ],

where γz and γθ are presenting the contributions of con-
ventional and twisted damping factor with expressions;

γz =
Γ (κ + 1)

κ3/2Γ (κ− 1/2)

(
1 +

ω2

κk2θ2
‖e

)−κ−1

(7)

and

γz =
Γ (κ + 1)µ

κ3/2Γ (κ− 1/2)

(
1 +

ω2

κl2q2
θθ2
‖e

)−κ−1

(8)

4 Results and Discussion:

In this section, some numerical results of the kappa dis-
tributed Langmuir waves with orbital angular momen-
tum, are presented by considering some typical parame-
ters of the electron plasma [12]. In particular, the di-
mensionless damping rate (γ/ωpe) of the twisted Lang-
muir waves is analysed against appropriate parameters
for the physical interpretation of a given mode.

Fig.01 provides the analysis of wave-particle inter-
action of non-Maxwellian twisted Langmuir modes in
terms of normalized damping rates γ/ωpe . Particu-
larly, we have plotted the normalized damping rates
γ/ωpe aganist the normalized wave number kλDe for
different values of Lorentzian spectral index κ = 3, 5,
7(kappa). It can be seen very clearly that the Landau
damping pro.les have higher magnitude at small value
of spectral index as compare to larger values. This is be-
cause of existence of more superthermal particles in the
energy spectrum of distribution function. When more
particles take energy from the wave, the mode damping
increases. So wave damping is larger at κ = 3 in com-
parison to κ = 7.

The next figure Fig.02, shows the normalized damp-
ing rates γ/ωpe against the ratio of conventional and
twisted wave numbers µ = k/lqθ for different values of
Lorentzian spectral index κ = 3, 5, 7(kappa). It is ev-
ident from the damping profiles that the wave-particle
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interaction is increased corresponding to Lorentzian plas-
mas (small Lorentzian spectral index) and decreased for
the Maxwellian plasmas (large Lorentzian spectral in-
dex). The more interaction causes more particles taking
energy from wave and vice versa.

The second last figure Fig.03 describes the three
dimensional surface plot of normalized damping rates
γ/ωpe against normalized wave number κλDe and ratio
of conventional and twisted wave numbers µ = k/lqθ.
The steepness of damping rate γ/ωpe surface plot is
observed to increase with increasing value normalized
wave number kλDe. The more steepness has relevance
with more damping on the other hand the increasing
value of ratio of conventional and twisted wave num-
bers µ = k/lqθ is connected to decreasing damping rate.

Finally, Fig.04 provides the contour damping rates
γ/ωpe in terms of ratio of conventional and twisted wave
numbers µ = k/lqθ and normalized wave number kλDe.
The damping rate γ/ωpe is higher for the smaller µ and
larger kλDe.

5 Conclusion:

To conclude, the new kappa distributed dielectric func-
tion is derived in the presence of the orbital angular
momentum (OAM) state for a non-maxwellian electron
plasmas. Twisted kinetic Langmuir modes (kinetic vor-
tices) have been studied viz Landau wave-particle in-
teraction (damping rate). Our findings are general and
may be applicable to other space and laboratory plasma
systems.
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Figure Captions:

– Fig.1: The normalized Landau damping rate γ/ωpe

of twisted Langmuir modes are plotted against the
normalized wave number kλDe for the different val-
ues of kappa i.e., (κ = 3 : Purple Solid line), (κ = 5 :
Blue Dashed line) and (κe = 7 : Green Dot-Dashed
line) for fixed value of temperature Te = 3eV.

– Fig.2: The normalized Landau damping rate γ/ωpe

of twisted Langmuir modes are plotted against the
ratio of conventional wave number to twisted wave
number µ = k/lqθ for the different values of kappa
i.e., (κ = 3: Purple Solid line), (κ = 5: Blue Dashed
line) and (κe = 7: Green Dot-Dashed line) for fixed
value of temperature Te = 3eV.

– Fig.3: The three dimensional surface plot of nor-
malized Landau damping rate γ/ωpe of twisted Lang-
miur modes is drawn against normalized wave num-
ber kλDe and ratio of conventional wave number to
twisted wave number µ = k/lqθ for fixed value of
temperature Te = 3eV.

– Fig.4: The three dimensional contour plot of nor-
malized Landau damping rate γ/ωpe of twisted Lang-
muir modes is drawn against normalized wave num-
ber kλDe and ratio of conventional wave number to
twisted wave number µ = k/lqθ for fixed value of
temperature Te = 3eV.
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Abstract We review recent developments on cosmol-
ogy in extended teleparallel gravity, called “F (T ) grav-
ity” with T the torsion scalar in teleparallelism. We
explore various cosmological aspects of F (T ) gravity
including the evolution of the equation of state for the
universe, finite-time future singularities, thermodynam-
ics, and four-dimensional effective F (T ) gravity theo-
ries coming from the higher-dimensional Kaluza-Klein
(KK) and Randall-Sundrum (RS) theories.

Keywords Dark energy ·Modified theories of gravity ·
Cosmology · Compactification and four-dimensional
models
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1 Introduction

The fact that the current accelerated the cosmic ex-
pansion is currently accelerating has been supported
by various recent cosmological observations including
Type Ia Supernovae (SNe Ia), cosmic microwave back-
ground (CMB) radiation, baryon acoustic oscillations
(BAO), large scale structure (LSS), and weak lensing ef-
fects (see recent results acquired from the Planck satel-
lite [1,2] as well as the Wilkinson Microwave anisotropy
probe (WMAP) [3,4]). There exist the following two
main procedures to account for the late-time cosmic ac-
celeration: The introducttion of “dark energy” and the
extension of gravity, e.g., the so-called F (R) gravity (for
recent reviews on dark energy and modified gravity, see,
for example, [5] and [6–15], respectively).

As a formulation for gravity, there has been pro-
posed “teleparallelism” where the gravity theory is de-
scribed by using the Weitzenböck connection (for a re-
cent detailed review, see [16]). This has been considered

ae-mail: bamba@sss.fukushima-u.ac.jp

to be an alternative gravitational theory to general rel-
ativity. This gravity theory is written with the torsion
scalar T , and not the scalar curvature R defined with
the Levi-Civita connection [17–19] as in general relativ-
ity. Recently, it has been found that as in F (R) gravity,
not only inflation in the early universe [20,21] but also
the late-time cosmic acceleration [22–25] can occur in
the so-called F (T ) gravity, which is an extended version
of the original teleparallelism.

In this paper, we review main cosmological conse-
quences in F (T ) gravity obtained in Refs. [24–27]. First,
we investigate the evolution of the equation of state
(EoS) for dark energy [24,25]. We construct an F (T )
gravity model in which the crossing of the phantom di-
vide can happen1. This phenomenon has been suggested
with cosmological observations in Refs. [36–40]. Second,
we demonstrate that the finite-time future singulari-
ties [41–43] can appear in F (T ) gravity [26]. In addi-
tion, F (T ) gravity models with realizing the finite-time
future singularities are reconstructed. We find that the
finite-time future singularities can be cured by adding a
power-law term T β with β > 1, for instance, a T 2 term.
The same approach has been used for Loop quantum
cosmology [44]. Furthermore, we examine F (T ) models
in which inflation, the ΛCDM model, Little Rip sce-
nario [45–54], and Pseudo-Rip scenario [55] can be re-
alized. Third, we derive four-dimensional effective F (T )
gravity theories from the five-dimensional Kaluza-Klein
(KK) [56–58] and Randall-Sundrum (RS) [59,60] mod-
els [27]. It is also demonstrated that inflation and the
late-time cosmic acceleration can occur in the former
four-dimensional effective F (T ) gravity theory and the
latter RS model, respectively. We use units of kB = c =
~ = 1 and denote the gravitational constant 8πG by

1In Refs. [28–35], such an F (R) gravity model with the cross-
ing of the phantom divide has been reconstructed.
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κ2 ≡ 8π/MPl
2 with the Planck mass of MPl = G−1/2 =

1.2× 1019GeV.
The paper is organized as follows. In Sec. II, we

consider the cosmological evolution of the EoS for dark
energy. In Sec. III, we analyze the finite-time future sin-
gularities and reconstruct F (T ) gravity models where
these finite-time future singularities can appear. We
also examine F (T ) models to realize various cosmologi-
cal scenarios. In Sec. IV, we deduce four-dimensional ef-
fective F (T ) gravity theories from both the KK theories
and the RS models. In Sec. V, summary is presented.

2 Cosmological evolutions

In this section, we explain F (T ) gravity and examine
the cosmological evolutioin of the EoS for dark energy
based on the main results in Ref. [24]. The purpose is to
construct an F (T ) gravity model in which the crossing
of the phantom divide can occur as suggested by resent
cosmologcal observations.

2.1 Teleparallelism

We first explain the formulation of teleparallelism. The
metric is described as gµν = ηABeA

µ eB
ν . Here, ηAB is the

metric in the Minkowski space-time, eA(xµ) are ortho-
normal tetrad components (A = 0, 1, 2, 3) at points xµ

of the manifold in the tangent space, µ, ν = 0, 1, 2, 3
show coordinate indices on the manifold, andeµ

A corre-
sponds to the tangent vector of the manifold. The La-
grangian is written with the torsion scalar T . This is dif-
ferent from the case for general relativity, in which the
Lagrangian is expressed by using the scalar curvature
R. The torsion scalar T is defined as T ≡ S µν

ρ T ρ
µν ,

where T ρ
µν ≡ eρ

A

(
∂µeA

ν − ∂νeA
µ

)
is the torsion tensor

and S µν
ρ ≡ (1/2)

(
Kµν

ρ + δµ
ρ Tαν

α − δν
ρ Tαµ

α

)
with

Kµν
ρ ≡ − (1/2)

(
Tµν

ρ − T νµ
ρ − T µν

ρ

)
the contorsion

tensor.
The Lagrangian of pure teleparallelism is written by

the torsion scalar T . This has been extended to an ap-
propriate function of T to realize inflation and the late-
time cosmic acceleration. This concept is the same as
F (R) gravity, where the Einstein-Hilbert action written
by the scalar curvature R is promoted to an appropriate
function of R. Accordingly, the action of F (T ) gravity
is represented as [23] I =

∫
d4x|e| [F (T )/

(
2κ2

)
+ LM

]
with |e| = det

(
eA
µ

)
=
√−g and LM the matter La-

grangian. If F (T ) = T , this action is equivalent to that
for pure teleparallelism.

We assume the flat Friedmann-Lemâıtre-Robertson-
Walker (FLRW) space-time. The metric is given by
ds2 = dt2−a2(t)

∑
i=1,2,3

(
dxi

)2. Here, a(t) is the scale

factor, and the Hubble parameter reads H = ȧ/a, where
the dot means the time derivative. In the FLRW back-
ground, we obtain the expressions of the metric gµν =
diag(1,−a2,−a2,−a2), the tetrad components eA

µ =
(1, a, a, a), and the torsion scalar T = −6H2.

Moreover, in this background, the gravitational field
equations are written as H2 =

(
κ2/3

)
(ρM + ρDE) and

Ḣ = − (
κ2/2

)
(ρM + PM + ρDE + PDE). Here, ρM and

PM are the energy density and pressure for all of the
matters, i.e., the perfect fluids, respectively. The con-
tinuity equation for the perfect fluid becomes ρ̇M +
3H (ρM + PM) = 0. Furthermore, ρDE and PDE are
the energy density and pressure for the dark energy
components, respectively, given by ρDE =

[
1/

(
2κ2

)]
J1

and PDE = − [
1/

(
2κ2

)]
(4J2 + J1) with J1 ≡ −T −

F (T ) + 2TF ′(T ) and J2 ≡ (1− F ′(T )− 2TF ′′(T )) Ḣ,
where the prime denotes the derivative with respect to
T as F ′(T ) ≡ dF (T )/dT and F ′′(T ) ≡ d2F (T )/dT 2.
The continuity equation for the dark energy compo-
nents reads ρ̇DE + 3H (ρDE + PDE) = 0.

2.2 Crossing of the phantom divide

As an F (T ) gravity model in which the crossing of the
phantom divide can occur, we obtain

F (T )=T + γ

{
T0

(
uT0

T

)−1/2

ln
(

uT0

T

)

− T

[
1− exp

(
uT0

T

)]}
, (1)

γ≡ 1−Ω
(0)
m

2u−1/2 + [1− (1− 2u) exp (u)]
, (2)

with T0 the present value of the torsion scalar T and
u a constant. In addition, Ω

(0)
m ≡ ρ

(0)
m /ρ

(0)
crit. Here, ρ

(0)
m

is the current energy density of non-relativistic mat-
ter, and ρ

(0)
crit = 3H2

0/κ2 is the current critical density,
where H0 is the Hubble parameter at the present time.
The model in Eq. (1) consists of both the logarithmic
and exponential terms. The EoS for dark energy is de-
fined as wDE ≡ PDE/ρDE. It is seen that for the model
in Eq. (1), the EoS for dark energy wDE evolves from
wDE > −1 to wDE < −1, and thus the crossing of the
phantom divide line wDE = −1 can happen. We re-
mark that this manner is opposite to the representative
behavior for F (R) gravity models.

Furthermore, it can numerically be demonstrated
that for the model in Eq. (1), first the density para-
meter of radiation Ωr ≡ ρr/ρcrit dominates, and then
the density parameter of non-relativistic matter Ωm ≡
ρm/ρcrit is dominant, and eventually the density para-
meter of dark energy ΩDE ≡ ρDE/ρcrit becomes much
larger than the density parameters of radiation and



41

Table 1 Conditions that there exist the finite-time future singularities for H in Eqs. (3) and (4), those for ρDE and PDE, and
the evolutions of H and Ḣ for t → ts.

q( 6= 0, −1) [Type of singularities] H (t → ts) Ḣ (t → ts) ρDE PDE

q ≥ 1 [Type I (“Big Rip”)] H →∞ Ḣ →∞ J1 6= 0 J1 6= 0 or J2 6= 0

0 < q < 1 [Type III] H →∞ Ḣ →∞ J1 6= 0 J1 6= 0

−1 < q < 0 [Type II (“Sudden”)] H → Hs Ḣ →∞ J2 6= 0

q < −1 (q is non-integer) [Type IV] H → Hs Ḣ → 0
Divergence of higher derivatives of H

non-relativistic matter around the present time. Here,
ρr, ρm, ρDE, and ρcrit ≡ 3H2/κ2 are the energy den-
sity of radiation, that of non-relativistic matter, that
of dark energy, and the critical density, respectively.
Hence, in the model in Eq. (1), the dark energy dom-
inated stage, which follows the radiation dominated
stage and the matter dominated stage, can be realized.
Moreover, through the statistical analysis with the re-
cent cosmological observational data in terms of SNe
Ia, BAO, and the CMB radiation, we derive the ob-
servational constraints on the model parameters of the
model in Eq. (1). As a result, we find that the model in
Eq. (1) can fit the observational data well. In Ref. [61],
other F (T ) gravity models in which the crossing of the
phantom divide can occur have been built up.

3 Finite-time future singularities

In this section, we show that the finite-time future sin-
gularities can occur in F (T ) gravity by reviewing the
consequences in Ref. [26], We also reconstruct F (T )
gravity models in which the finite-time future singu-
larities appear.

3.1 Four types of the finite-time future singularities

For the FLRW space-time, the effective EoS is given
by [6,7] weff ≡ Peff/ρeff = −1 − 2Ḣ/

(
3H2

)
, where

ρeff ≡ 3H2/κ2 and Peff ≡ −
(
2Ḣ + 3H2

)
/κ2 are the

energy density and pressure of all of the energy com-
ponents in the universe, respectively. When the dark
energy density becomes dominant over the energy den-
sity of non-relativistic matters, the following approx-
imation is satisfied: wDE ≈ weff . In what follows, we
explore such a situation in order to examine the cosmic
evolution when there appear the finite-time future sin-
gularities at t = ts. If Ḣ < 0 (> 0), the universe is in
the non-phantom [i.e., quintessence] (phantom) phase
with weff > −1 (< −1). For weff = −1, we have Ḣ = 0,
namely, the cosmological constant.

The finite-time future singularities are classified into
four types [41]. Type I: When t → ts, a →∞, ρeff →∞
and |Peff | → ∞. This types includes the case that ρeff

and Peff become finite values at t = ts [62]. Type II:
When t → ts, a → as, ρeff → ρs and |Peff | → ∞,
where as(6= 0) and ρs are constants. Type III: When
t → ts, a → as, ρeff → ∞ and |Peff | → ∞. Type IV:
When t → ts, a → as, ρeff → 0, |Peff | → 0. Here,
the higher derivatives of H also diverge, and the case
that ρeff and/or |Peff | approach finite values in the limit
t → ts is included. Type I and Type II are known as
“Big Rip” [63,64] and “Sudden” [65,66] singularities.

3.2 Conditions for the finite-time future singularities
to appear

We suppose that H is described as [67]

H∼ hs

(ts − t)q for q > 0 , (3)

H∼Hs +
hs

(ts − t)q for q < −1, −1 < q < 0 , (4)

with hs(> 0), Hs(> 0), and q(6= 0, −1) constants. Since
the value of H has to be a real number, we examine the
range 0 < t < ts. In Table 1, we summarize the condi-
tions that there exist the finite-time future singularities
for H in Eqs. (3) and (4), those for ρDE and PDE, and
the evolutions of H and Ḣ for t → ts.

If H is represented as in Eqs. (3) and (4), we recon-
struct F (T ) gravity models, in which the finite-time
future singularities happen, by using the procedure [68,
69]. It is seen that in the flat FLRW universe, both
of two gravitational filed equations can be met when
F (T ) is given by the following power-law expression:
F (T ) = ATα, where A( 6= 0) and α(6= 0) are constants.
Furthermore, we find a correction term Fc(T ) curing the
finite-time future singularities, given by Fc(T ) = BT β

with B( 6= 0) and β( 6= 0) constants. It is known that the
finite-time future singularities can be removed by the
quadratic term (namely, β = 2) [6,7] for F (R) grav-
ity and non-local gravity [70]. As a result, for F (T ) =
ATα+BT β , which is the summation of the original and
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Table 2 Conditions that the parameters in a power-law expression for F (T ), for which the finite-time future singularities
exist, and the forms of a power-low the correction term Fc(T ) = BT β curing the finite-time future singularities.

q( 6= 0, −1) [Type of singularities] Consequence F (T ) = AT α (A 6= 0, α 6= 0) Fc(T ) = BT β (B 6= 0, β 6= 0)

q ≥ 1 [Type I (“Big Rip”)] appears α < 0 β > 1
0 < q < 1 [Type III] — α < 0 β > 1
−1 < q < 0 [Type II (“Sudden”)] — α = 1/2 β 6= 1/2
q < −1 (q is non-integer) [Type IV] appears α = 1/2 β 6= 1/2

Table 3 H and F (T ) for which (i) inflation in the early universe, (ii) the ΛCDM model, (iii) Little Rip cosmology and (iv)
Pseudo-Rip cosmology can be realized. Here, hinf , Λ, HLR, ζ, and HPR are constants.

Scenario H F (T )

(i) Power-law inflation (when t → 0) H = hinf/t , hinf(> 1) F (T ) = AT α , α < 0 or α = 1/2

(ii) ΛCDM model or exponential inflation H =
p

Λ/3 = constant , Λ > 0 F (T ) = T − 2Λ , Λ > 0
(iii) Little Rip scenario (when t →∞) H = HLR exp (ζt) , HLR > 0 and ζ > 0 F (T ) = AT α , α < 0 or α = 1/2

(iv) Pseudo-Rip scenario H = HPR tanh (t/t0) , HPR > 0 F (T ) = A
√

T

correction terms, two gravitational filed equations can-
not simultaneously be satisfied. It follows from this fact
that the finite-time future singularities can be removed
by such a power-law correction term. We show the con-
ditions that the parameters in a power-law expression
for F (T ), for which the finite-time future singularities
exist, and the forms of a power-low the correction term
curing the finite-time future singularities in Table 2.
From this table, it is clearly seen that Type I and IV
singularities can appear.

3.3 Various cosmological scenarios

Moreover, we examine which kinds of the finite-time
future singularities occur in each cosmology. If the ab-
solute value of q is large enough, the finite-time future
singularities can appear. We also explore F (T ) gravity
models in which the following cosmological scenarios
can be realized: (i) Power-law inflation, (ii) The ΛCDM
model, (iii) Little Rip scenario [45–47], and (iv) Pseudo-
Rip scenario [55]. The expressions of H and F (T ) in the
scenarios shown above are presented in Table 3.

In addition, we consider Little Rip scenario, which
is a kind of a mild phantom cosmology. The motivation
of this scenario is to remove the finite-time future singu-
larities including a Big Rip singularity. In this scenario,
the dark energy density grows as the universe evolves,
whereas the EoS for dark energy wDE becomes close to
wDE = −1 from wDE < −1. The special feature of this
scenario is that at some future time, bound structures
are dissolved because an inertial force operating objects
becomes large. Such a phenomenon is the so-called Lit-
tle Rip.

As another related cosmology, we study Pseudo-
Rip scenario. With the Hubble parameter, cosmolog-
ical scenarios can be classified [55]. (i) Power-law in-
flation: H(t) → ∞ for t → 0. (ii) The ΛCDM model
(or Exponential inflation): H(t) = H(t0) = constant,
where t0 is the current time. (iii) Little Rip scenario:
H(t) → ∞ for t → ∞. (iv) Pseudo-Rip scenario (a
phantom cosmology approaching de Sitter expansion
asymptotically: H(t) → H∞ < ∞ for t → ∞ with
t ≥ t0 and H∞(> 0) a constant. For a Big Rip singu-
larity, H(t) →∞, t → ts, as depicted in Table 1.

We note that the EoS parameter wDE for dark en-
ergy, the deceleration parameter qdec ≡ −ä/

(
aH2

)
, the

jerk parameter j ≡ ...
a/

(
aH3

)
and the snark parameter

s ≡ (j − 1) / [3 (qdec − 1/2)] [71,72] are used to obser-
vationally constrain the dark energy models. For the
ΛCDM model, we have (wDE, qdec, j, s) = (−1,−1, 1, 0).
In the flat universe, there have been proposed wDE =
−1.10 ± 0.14 (68% CL) [3]. By using these parameters,
especially, the observational constraints on the mod-
els parameters can be derived. For example, with the
observational value of wDE, the constraints on HLR

and HPR shown in Table 3 can be derived. In Little
Rip scenario, we obtain HLR ≥ [2H0/ (3e)] (1/0.24) =
1.50 × 10−42 GeV, where H0 = 2.1h × 10−42 GeV [73]
with h = 0.7 [3,74] is the current Hubble parameter
and e = 2.71828, and χ ≡ H0/ (HLRe) ≤ 0.36. On the
other hand, for Pseudo Rip scenario, we get HPR ≥
(2H0/3)

[
4/

(
e− e−1

)2
]
(1/0.24) = 2.96 × 10−42 GeV

and δ ≡ H0/HPR ≤ 0.497196. Hence, Little Rip sce-
nario with χ ¿ 1 and Pseudo Rip scenario with an ap-
propriate value of δ can be compatible with the ΛCDM
model.
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3.4 Inertial force

In the expanding universe, the relative acceleration be-
tween two points separated by a distance l is given by
lä/a, where a is the scale factor. Suppose that there
exists a particle with mass m at each of the points,
an observer at one of the masses would measure an in-
ertial force on the other mass. We assume that there
are two particles (A) and (B) with its mass m and the
distance between them is l. The inertial force Finert on
the particle (B), which is measured by an observer at
the point of the particle (A), is represented as Finert =
mlä/a = ml

(
Ḣ + H2

)
[45,47]. In the case of a Big

Rip singularity with H in Eq. (3), Finert → ∞ when
t → ts. Moreover. for Little Rip scenario with H de-
scribed in Table 3, Finert → ∞ when t → ∞. Further-
more, in Pseudo-Rip scenario with H presented in Ta-
ble 3, Finert → FPR

inert ,∞ ≡ mlH2
PL < ∞ when t → ∞.

Thus, Finert approaches a finite value asymptotically.
This is because H → HPR and Ḣ → 0.

If a force Fb to bound two particles is smaller than
a positive inertial force Finert(> 0), the two particle
bound system is disintegrated. As an example, we ex-
amine the Earth-Sun (ES) system. When FPR

inert ,∞ >

FES
b = GM⊕M¯/r2

⊕−¯ = 4.37 × 1016 GeV2, which is
the bound force in the ES system, the ES system is
dissociated, so that Pseudo-Rip scenario can be sat-
isfied. Here, we have used the mass of Earth M⊕ =
3.357 × 1051 GeV [73] and that of Sun M¯ = 1.116 ×
1057 GeV [73], and we have set m = M⊕ and l =
r⊕−¯ = 1AU = 7.5812 × 1026 GeV−1 [73] (the Astro-
nomical unit, namely, the distance between Earth and
Sun). In this case, we acquire HPR >

√
GM¯/r3⊕−¯ =

1.31× 10−31 GeV. This is consistent with the observa-
tions on the present value of wDE in Pseudo-Rip sce-
nario because this is much stronger than the constraint
HPR ≥ 2.96× 10−42 GeV given above, which originates
from the observations on the value of wDE at the present
time.

It is also remarked that in the process of collapse
of the star, the time-dependent matter instability can
happen not only for F (R) gravity [75,76] but also F (T )
gravity.

4 Higher-dimensional theories

In this section, we construct four-dimensional effective
F (T ) gravity theories from the five-dimensional Kaluza-
Klein (KK) [56–58] and Randall-Sundrum (RS) [59,60]
theories by following the investigations in Ref. [27].

4.1 Five-dimensional KK theory

First, we derive the effective F (T ) gravity theories in
the four-dimensional space-time from the KK theory in
the five-dimensional space-time. It is supposed that in
F (T ) gravity, the ordinary procedure of the KK reduc-
tion [56–58] can be executed from the five-dimensional
space-time to the four-dimensional space-time. In this
process, one dimension of space is compacted into a
small circle, while the four-dimensional space-time is
infinitely extended. The radius of the fifth dimension is
set to be around the Planck length so that the KK ef-
fects cannot appear. Consequently, the size of the circle
is small enough for the phenomena in the quite low en-
ergy scale not to be seen. From now on, we concentrate
on the gravity sector in the action, and therefore the
matter sector is neglected.

The five-dimensional action in F (T ) gravity is [77]

(5)S=
∫

d5x
∣∣∣(5)e

∣∣∣ F ((5)T )
2κ2

5

, (5)

(5)T ≡ 1
4
T abcTabc +

1
2
T abcTcba − T a

ab T cb
c . (6)

Here, (5)T is the torsion scalar, the Latin indices are
(a, b, · · · = 0, 1, 2, 3, 5) with “5” the fifth-coordinate com-
ponent, (5)e =

√
(5)g with (5)g the determinant of (5)gµν ,

and κ2
5 ≡ 8πG5 =

(
(5)MPl

)−3
with G5 the gravitational

constant and M
(5)
Pl the Planck mass. The superscrip-

tion “(5)” or the subscription“5” shows the quantities
in the five-dimensional space-time. The representation
of (5)T is equivalent to that of the torsion scalar in
the four-dimensional space-time. The five-dimensional
metric is given by (5)gµν = diag(gµν ,−ψ2), where ψ is a
dimensionless and (spatially) homogeneous scalar field
(namely, it only has the time dependence).

The four-dimensional effective action becomes

S
(eff)
KK =

∫
d4x|e| 1

2κ2
ψF (T + ψ−2∂µψ∂µψ) , (7)

where we have used eA
a = diag(1, 1, 1, 1, ψ) and ηab =

diag(1,−1,−1,−1,−1). In the case that F (T ) = T −
2Λ4 with Λ4(> 0) the positive cosmological constant
in the four-dimensional space-time, by defining another
scalar field ξ as ψ ≡ (1/4) ξ2, we find that the action in
Eq. (7) is described as [56]

S
(eff)
KK |F (T )=T−2Λ4

=
∫

d4x|e| 1
κ2

[
1
8
ξ2T +

1
2
∂µξ∂µξ − Λ4

]
. (8)

In the flat FLRW background, from the action in Eq. (8),
the gravitational field equations are given by (1/2) ξ̇2−
(3/4) H2ξ2 +Λ4 = 0 and ξ̇2 +Hξξ̇+(1/2) Ḣξ2 = 0 [78],
and the equation of motion in terms of ξ is written
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as ξ̈ + 3Hξ̇ + (3/2)H2ξ = 0. By using the gravita-
tional field equations, we have (3/2)H2ξ2−2Λ4+Hξξ̇+
(1/2) Ḣξ2 = 0. Its solution is H = Hinf = constant(>
0), where Hinf is the Hubble parameter at the inflation-
ary stage, and ξ = ξ1 (t/t̄)+ξ2 with ξ1 and ξ2(> 0) con-
stants, where t̄ denotes a time. Thus, when t → 0, infla-
tion with the de Sitter expansion can be realized, where
Hinf ≈ (2/ξ2)

√
Λ4/3, a ≈ ā exp (Hinft), and ξ ≈ ξ2.

Moreover, with the equation of motion in terms of ξ,
we acquire ξ1 ≈ − (1/2) ξ2Hinf t̄ ≈ −

√
Λ4/3t̄.

4.2 RS brane-world model

Next, we deduce the effective F (T ) gravity theories in
the four-dimensional space-time from the RS brane-
world model in the five-dimensional space-time. There
exist two branes in the RS type-I model [59]: A posi-
tive tension brane located at y = 0 and a negative one
located at y = u, where y means the fifth dimension.

The five-dimensional metric is expressed as

ds2 = exp
(
−2
|y|
l

)
gµν(x)dxµdxν + dy2 , (9)

where l =
√
−6/Λ5, exp (−2|y|/l) is the warp factor,

and Λ5(< 0) is the negative cosmological constant in
the bulk. When u → ∞, the RS type-I model is re-
duced to the RS type-II model [60]. In this model, there
is only one positive tension brane in the anti-de Sitter
bulk space. In Ref. [79], the gravitational field equa-
tion on the brane has been presented for the RS type-II
model. It corresponds to the induced equation, i.e., the
Gauss-Codazzi equation, on the brane, and it is de-
rived by using the Israel’s junction conditions on the
brane and the Z2 symmetry of y ↔ −y. This procedure
has recently been considered in teleparallelism [80]. The
vector part of the torsion tensor in the bulk is projected
on the brane, so that new terms, which do not exist in
the curvature gravity, can emerge.

In the flat FLRW background, the Friedmann equa-
tion on the brane is given by

H2 dF (T )
dT

= − 1
12

[
F (T )− 4Λ− 2κ2ρM

−
(

κ2
5

2

)2

Iρ2
M

]
. (10)

Here, I ≡ (
11− 60wM + 93w2

M

)
/4 with wM ≡ PM/ρM

the EoS for matter, where ρM and PM are the energy
density and pressure of matter, respectively. In the ex-
pression of I, the novel contributions in teleparallelism
are included (there are not these terms in the curva-
ture gravity). The effective cosmological constant on
the brane reads Λ ≡ Λ5 +

(
κ2

5/2
)2

λ2, where λ(> 0)

is the brane tension and we obtain the relation G =
[1/ (3π)]

(
κ2

5/2
)2

λ.
In the following, we consider the situation that the

dark energy is dominant and hence the contribution
of matter is negligible. If F (T ) = T − 2Λ5, with T =
−6H2, we get a solution of the de Sitter expansion as
H = HDE =

√
Λ5 + κ4

5λ
2/6 and a(t) = aDE exp (HDEt),

where HDE and aDE(> 0) are constants. Accordingly,
the late-time cosmic acceleration can happen. In addi-
tion, when F (T ) =

(
T 2/M̄2

)
+ ηΛ5 with M̄ a mass

scale and η a constant, we find a de Sitter solution with
the constant Hubble parameter

H =HDE

=

{
M̄2

108

[
(η − 4)Λ5 − 4

(
κ2

5

2

)2

λ2

]}1/4

. (11)

In this expression, the content of the 4th root has to be
positive. Therefore, we obtain a constraint on η, given
by η ≥ 4 +

(
κ2

5λ
2
)
/Λ5.

5 Summary

In the present paper, we have stated various cosmologi-
cal issues as well as theoretical properties in F (T ) grav-
ity. First, we have investigated the cosmological evolu-
tion of the EoS for dark energy wDE. We have con-
structed an F (T ) gravity model consisting of an expo-
nential term and a logarithmic one, in which the cross-
ing of the phantom divide can occur.

Next, we have found that the Type I and IV finite-
time future singularities can appear, and reconstructed
an F (T ) gravity model in which there exist the finite-
time future singularities. We have also demonstrated
that by adding a power-law term of T β (β > 1) like T 2,
the finite-time future singularities can be cured, simi-
larly to that in F (R) gravity. Furthermore, we have ex-
plored F (T ) gravity models in which the following cos-
mological scenario is satisfied: power-law inflation, the
ΛCDM model, the Little Rip scenario, and the Pseudo
Rip scenario.

Moreover, we have analyzed four-dimensional effec-
tive action of F (T ) gravity originating from the five-
dimensional KK theories and RS models. We have de-
rived the four-dimensional effective action with a cou-
pling of the torsion scalar to a scalar field through the
KK reduction to the four-dimensional space-time from
the five-dimensional one. We have shown that in this
theory, inflation can occur. We have also found that in
the RS type-II model with the four-dimensional FLRW
brane, F (T ) gravity influences on the four-dimensional
FLRW brane. We have seen that for this model, the
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late-time cosmic acceleration can be realized. Here, in-
flation or the late-time cosmic acceleration can happen
thanks to the torsion effect, and not by the curvature
one, so that these KK theories and RS models can be
considered to be constructed by not the scalar curva-
ture but the torsion one in teleparallel gravity.

It should be cautioned that there is no local Lorentz
invariance in F (T ) gravity as indicated in Refs. [81,
82], and this theory is acausal [83–85]. These are the
most crucial points for F (T ) gravity theory. Thus, these
problems have to further be considered seriously.

Finally, we mention a number of other cosmologi-
cal subjects have been studied in F (T ) gravity. As ex-
amples, the authors works are raised: Trace-anomaly
driven inflation [86], gravitational wave modes [87,88],
conformal symmetry [89], thermodynamics [90,91], and
the generation of the large-scale magnetic fields [92,
93]2. It is expected that through such various cosmo-
logical investigations in F (T ) gravity, the clues to find
novel viability conditions for F (T ) gravity as an alter-
native gravity theory to general relativity can be ac-
quired.
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Abstract This paper is aimed to investigate some phys-
ical factors which are responsible for energy density in-
homogeneity in self-gravitating systems. For this pur-
pose, we take plane symmetric spacetime in the interior
which is filled with anisotropic matter in the presence
of electromagnetic field. The inhomogeneity factors are
explored for some particular cases of dissipative as well
as non-dissipative fluids. We found that electromagnetic
field increases the energy density inhomogeneity which
is due to shear, anisotropy and dissipation.
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1 Introduction

Recent observations propose that matter distribution
is homogeneous and isotropic at present state of the
universe. But the universe was not homogeneous ini-
tially and extremely dense in certain areas. Thus, the
formation of our universe at very early stages and its
exact physical modeling has provoked interest of many
researchers. The inhomogeneous mater density is illus-
trated in many ways like formation of galaxies with
different sizes and fluctuation of the local density etc.
Abdalla [1] discussed a model describing extremely in-
homogeneous matter distribution in a certain range.
Herrera [2] studied the stability of homogeneous en-
ergy density and identified physical factors responsi-
ble for energy density inhomogeneity in self-gravitating
spherical star. Sharif and Yousaf discussed evolution of
collapsing celestial self-gravitating systems for different
viable f(R) models with spherical [3], planar [4] and

ae-mail: msharif.math@pu.edu.pk
be-mail: mzaeem.math@pu.edu.pk

axial [5] geometries. In recent papers [6], we have in-
vestigated the role of different matter variables on the
dynamics and inhomogeneity of energy density in plane,
spherical and Szekeres symmetry with suitable matter
configurations.

The magnetic field is witnessed in compact objects
like neutron stars, white dwarfs or magnetized strange
quark stars. Rosseland [7] studied the effects of electro-
magnetic field on the self-gravitating spherically sym-
metric stars. The general relativistic electromagnetic ef-
fects are easily observed through experiments which in-
volve gyroscopic rings [8]. Forder [9] studied the electro-
magnetic effects through transmission line gyroscopes
with certain types of general relativistic fields. It is well-
known that Fermi gas under the influence of magnetic
field produces pressure anisotropy, sometimes referred
as fluid anisotropy [10].

In the last decade, theoretical advances indicate that
deviations from perfect fluid models in many systems
play a significant role in describing their properties [11,
12]. To analyze the stability of compact objects in the
scenario of high red-shift, the role of anisotropic pres-
sure has extensively been studied [13]-[15]. Karmakar et
al. [16] investigated physical properties of cold compact
star by taking anisotropic pressure in Vaidya-Tikekar
model [17]. Many phenomena have been classified which
yield pressure anisotropy in star models [18]-[21]. The
study of general anisotropic configuration has been car-
ried out by different authors [22]-[25].

Gravitational collapse is exceptionally dissipative phe-
nomenon which has significant effects in the dynamics
of self-gravitating compact objects. Diffusion (valid in
final stages) and streaming out (corresponds to initial
stages) are two limiting cases in the collapse scenario.
Oppenheimer and Snyder [26] proposed the first math-
ematical collapsing picture of dust cloud and concluded
its final fate as a black hole. Israel and Stewart [27] con-
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structed transport equation for heat flux in diffusion ap-
proximation. Lake and Hellaby [28] examined the coun-
terpart of Oppenheimer-Snyder problem by providing
the end state of radiating collapsing sphere as a naked
singularity. Herrera and Santos [29] discussed the dy-
namics of dissipative collapse by taking spherical star
and explored its astrophysical applications. The collaps-
ing phenomenon has also been studied in the context of
planar, quasi-spherical and cylindrical symmetries [30]-
[36].

Di Prisco et al. [37] investigated electromagnetic ef-
fects on radiating spherically symmetric collapsing star
by coupling dynamical-transport equations. Sharif and
Bashir [38] examined the effects of electromagnetic field
on the energy density inhomogeneity of spherical star.
In recent papers [39]-[41], we have explored dynam-
ics of charged collapsing cylindrical geometry and an-
alyzed its stability using perturbation technique. We
have also studied collapse of charged plane and spheri-
cally symmetric self-gravitating stars as well as with ax-
ial symmetry by taking anisotropic and radiating mat-
ter distributions [42]-[46]. Sharif and Yousaf [47]-[50]
discussed dynamical properties of adiabatic as well as
non-adiabatic collapsing bodies with weak-field approx-
imation in the presence of electromagnetism.

The aim of this paper is to investigate the effects
of electromagnetic field with different physical factors
on the energy density inhomogeneity in planar sym-
metry using non-dissipative and dissipative fluids. In
non-dissipative case, we discuss dust, locally isotropic
and anisotropic matter while in dissipative fluid, a par-
ticular case of geodesic dust cloud is considered. The
paper is organised in the following format. In the next
section, we develop some fundamental variables and
field equations in the presence of electromagnetic field.
The conservation laws with the evolution equations for
the Weyl tensor and a transport equation for heat flux
are also formulated. Section 3 is devoted to identify
the electromagnetic effects on the emergence of energy
density inhomogeneity by considering some particular
cases. Section 4 will conclude our results.

2 Fundamental Variables and Field Equations

This section formulates some basic quantities to ana-
lyze inhomogeneities in charged self-gravitating planar
geometry. The non-static plane symmetric spacetime is

ds2 = −A2dt2 + B2
(
dx2 + dy2

)
+ C2dz2, (1)

here A, B and C are functions of t and z. The matter
distribution inside the plane symmetry is assumed to

be imperfect given by

Tαβ = (µ + P⊥)VαVβ + P⊥gαβ + (Pz − P⊥)χαχβ + qαVβ

+ Vαqβ + εlαlβ , (2)

where µ, ε, qα, Pz, P⊥, and Vα are the energy density,
radiation density, heat flux, anisotropic pressures and
four velocity, respectively. Also, lα and χα are null four-
vector in z-direction and unit four-vector, respectively.
These four-vectors in comoving coordinates are chosen
such that Eq.(1) satisfies

χα = C−1δα
3 , qα = qC−1δα

3 , V α = A−1δα
0 , (3)

lα = A−1δα
0 + C−1δα

3 , (4)

where q is a function of t and z. These quantities satisfy

V αVα = −1, χαVα = 0 χαχα = 1,

lαlα = 0, lαVα = −1, V αqα = 0.

The energy-momentum tensor of electromagnetic field
is [51]

Sαβ =
1
4π

(
F γ

αFβγ − 1
4
F γδFγδgαβ

)
,

where Fαβ = −φα,β + φβ,α is the strength field tensor
while the four potential is represented by φα. This elec-
tromagnetic field must obey the Maxwell field equations
given as

Fαβ
;β = µ0J

α, F[αβ;γ] = 0, (5)

here µ0 = 4π and Jα represent magnetic permeability
and four-current, respectively. The four potential and
four-current in comoving coordinates are

φα = φδα
0 , Jα = ξV α,

where φ, ξ indicate the scalar potential and charge den-
sity, respectively, both are functions of t and z. Us-
ing these in Eq.(5), the non-zero components of the
Maxwell field equations lead to

∂2φ

∂z2
−

(
A′

A
+

C ′

C
− 2B′

B

)
∂φ

∂z
= ξµ0AC2, (6)

∂2φ

∂t∂z
−

(
Ȧ

A
+

Ċ

C
− 2Ḃ

B

)
∂φ

∂z
= 0. (7)

Integration of Eq.(6) with respect to z yields

φ′ =
µ0s(z)AC

B2
, where s(z) =

∫ z

0

ξCB2dz, (8)

which identically satisfies Eq.(7). Using this value in the
Maxwell field tensor, the non-vanishing components of
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Einstein-Maxwell field equations (i.e. Gαβ = 8π(Tαβ +
Sαβ)) lead to the following set of equations

8πµ̃A2 +
(

µ0sA

B2

)2

=
Ḃ

B

(
2Ċ

C
+

Ḃ

B

)
−

(
A

C

)2

×
[
2B′′

B
−

(
2C ′

C
−B′

B

)
B′

B

]
,

(9)

−8πq̃AC = −2

(
Ḃ′

B
− A′Ḃ

AB
− B′Ċ

BC

)
,

(10)

8πP⊥B2 +
(µ0s

B

)2

= −
(

B

A

)2
[

B̈

B
− C̈

C
− Ȧ

A

(
Ḃ

B

+
Ċ

C

)
+

ḂĊ

BC

]
+

(
B

C

)2 [
A′′

A

+
B′′

B
− A′

A

(
C ′

C
− B′

B

)
− B′C ′

BC

]
,

(11)

8πP̃zC
2 −

(
µ0sC

B2

)2

=
(

C

A

)2

2ȦḂ

AB
− 2B̈

B
−

(
Ḃ

B

)2



+
(

B′

B

)2

+
2A′B′

AB
, (12)

here we assume µ̃ = µ + ε, P̃z = Pz + ε, q̃ = q + ε,
while prime and dot stand for z and t differentiations,
respectively.

The irrotational fluid distribution is described by
three kinematical quantities, i.e., expansion scalar, four-
acceleration and shear tensor defined by

Θ = V α
;α, aα = Vα;βV β ,

σαβ = V(α;β) + a(αVβ) −
1
3
Θhαβ ,

with hαβ = gαβ + VαVβ as a projection tensor. The
non-zero components of these quantities are

Θ =
1
A

(
2
Ḃ

B
+

Ċ

C

)
, a3 =

A′

A
, a2 = aαaα =

(
A′

AC

)2

,

σ2 =
1
2
σαβσαβ =

1
9
F 2 with F =

1
A

(
− Ḃ

B
+

Ċ

C

)
.

(13)

A relation between heat flux and kinematical quantities
is obtained using Eqs.(10) and (13) as follows

4πq̃C =
1
3
(Θ − F )′ − F

B′

B
.

The decomposition of the Weyl tensor (Cαµβν) into two
tensors leads to its electric and magnetic components.

Due to symmetry of the problem, the magnetic part
does not exist in planar geometry while the electric part
is

Eαβ = CαµβνV µV ν ,

whose non-vanishing components lead to

E11 =
1
3
B2ε = E22, E33 = −2

3
C2ε,

where

ε =− 1
2A2

[
Ḃ2

B2
− ȦĊ

AC
+

C̈

C
+

ȦḂ

AB
− B̈

B
− ḂĊ

BC

]

− 1
2C2

[
A′B′

AB
− B′2

B2
+

A′C ′

AC
− B′C ′

BC
− A′′

A
+

B′′

B

]
.

(14)

Alternatively, it can be written by using unit four-vector
and projection tensor as

Eαβ = ε(χαχβ − 1
3
hαβ).

The mass function for plane symmetry [52] under
the effects of electromagnetic field becomes

m(t, z) =
B

2

(
s2µ2

0

B2
+

Ḃ2

A2
− B′2

C2

)
. (15)

We define the proper time derivative as DT = 1
A

∂
∂t so

that the variation of the areal radius known as areal
velocity provides U = DT B = Ḃ

A . Making use of this in
the above equation, it follows that

E ≡ B′

C
=

[
U2 +

s2µ2
0

B2
− 2m

B

]1/2

.

Using Eqs.(9), (11), (12) and (15) in (14), we obtain a
relationship between the Weyl tensor and matter vari-
ables, i.e., energy density, anisotropic pressure and elec-
tric charge as follows

ε = 4µ̃π +
3s2µ2

0

B4
− 4πΠ − 3m

B3
, (16)

where Π = Pz−P⊥+ ε. Differentiation of Eq.(15) with
z and t and making use of Eqs.(9), (10) and (12), we
have

m′ = 4π (µ̃B′ + q̃UC) B2 +
s2µ2

0

B2
− ss′µ2

0

B
, (17)

ṁ = −4π

(
P̃zḂ + q̃

AB′

C

)
B2. (18)

Integrating Eq.(17) with some manipulation, it follows
that
3m

B3
= 4πµ̃− 4π

B3

∫ z

0

B3µ̃′dz +
4π

B3

∫ z

0

3B2UCq̃dz

+
3µ2

0

B3

[
s2

2B
+

∫ z

0

B′s2

2B2
dz

]
. (19)
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Using above equation in Eq.(16), we obtain

ε =
3µ2

0s
2

2B4
− 4πΠ +

4π

B3

∫ z

0

B3µ̃′dz

− 3µ2
0

B3

∫ z

0

B′s2

2B2
dz − 4π

B3

∫ z

0

3B2UCq̃dz. (20)

This shows a relation between matter variables and the
Weyl tensor.

The contracted Bianchi identities imply the equa-
tion of motion for the whole matter distribution, i.e.,
Tαβ

;β = 0, yielding

˙̃µ +
2Ḃ

B
(µ̃ + P⊥) +

Ċ

C
(µ̃ + P̃z) +

Aq̃′

C

+ 2
q̃A

C

(
A′

A
+

B′

B

)
= 0, (21)

˙̃q + P̃ ′z
A

C
+ 2q̃

(BC )̇
BC

+ (µ̃ + P̃z)
A′

A
+ 2(P̃z − P⊥)

AB′

CB

− ss′µ2
0

4πB4C
= 0. (22)

In addition to the conservation law, our system will
strictly rely on two differential equations that will play
a major role to construct inhomogeneity factors relating
the Weyl tensor to different physical variables. Using
the procedure [53], these equations are obtained from
Eq.(16) as follows

[4π(µ̃−Π)− ε]′ =
3B′

B
[ε + 4πΠ] +

4sµ2
0

B4

(
sB′

B
− 3s′

)

+12π
ḂC

AB
q̃, (23)

[4π(µ̃−Π)− ε]̇ = −12πq̃
B′A
BC

+ 3µ2
0s

2 Ḃ

B5
− 3Ḃ

B

× (4π(µ̃ + P⊥)− ε) . (24)

In order to investigate the transportation of heat as well
as mass and to interpret the action of fluid variables, we
use transport equation. The transport equation for dis-
sipative fluids in diffusion approximation (q̃ = q, ε = 0)
is represented by second order partial differential equa-
tion derived by Muller-Israel-Stewart [54]-[56] as

τhαβV γqβ;γ = −Khαβ(T,β + Taβ)− qα

− 1
2
KT 2

(
τV β

KT 2

)

;β

qα. (25)

Here K, T and τ represent thermal conductivity, tem-
perature and relaxation time (time required for a per-
turbed system to come spontaneously to its equilibrium
state), respectively. The only independent component
of Eq.(25) leads to

q̇τ = −K

C
(AT )′ − qA− 1

2
T 2qK

( τ

T 2K

).

− 1
2
τqΘ.

For truncated dissipative theory, i.e., when the last term
on the right hand side of Eq.(25) vanishes and hence its
non-zero component yields

q̇τ = −K

C
(AT )′ − qA. (26)

This shows that electromagnetic field has no effect on
the transportation of heat flux.

3 Inhomogeneities in Matter Configuration

This section explores different factors in the fluid dis-
tribution which are responsible for energy density inho-
mogeneity. We also discuss stability of energy density
inhomogeneity for some particular cases.

3.1 Non-Dissipative Charged Dust Cloud

We consider q = ε = P⊥ = Pz = 0 so that Eq.(22)
shows matter configuration to be geodesic, hence we
take A = 1 without loss of any generality. In this sce-
nario, the two equations for the Weyl tensor (23) and
(24) become

[4πµ− ε]′ =
3B′

B
ε +

4sµ2
0

B4

(
sB′

B
− 3s′

)
, (27)

[4πµ− ε]̇ = −3Ḃ

B
(4πµ− ε) + 3µ2

0s
2 Ḃ

B5
. (28)

For s = 0, we recover the uncharged case. Equation
(27) implies that ε = 0 = s ⇔ µ′ = 0 which shows
inhomogeneity in the energy density not only due to the
Weyl tensor but also due to the electromagnetic field. If
the Weyl tensor together with electric charge vanishes
then it will lead to homogeneous matter distribution.
When µ′ = 0, we obtain

ε = − 1
B3

∫ z

0

4sµ2
0

B

(
sB′

B
− 3s′

)
,

where the integration function is evaluated at ε(t, 0) =
0. This equation indicates that inhomogeneity in den-
sity distribution suggest the existence of ε in the pres-
ence of electromagnetic field. Making use of the shear
scalar (13) and the first conservation law (21) in Eq.(28),
it follows that

ε̇ +
3Ḃ

B
ε = −4πµAF − 3µ2

0s
2 Ḃ

B5
.

Integration of the above equation leads to

ε =
3µ2

0s
2

B4
− 1

B3

∫ t

0

4πµFAB3dt, (29)
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here the function of integration is found at ε(0, z) = 0.
An evolution equation for the Weyl tensor is obtained
through Raychaudhuri equation using the kinematical
quantities as

ε = Ḟ +
F 2

3
+

2
3
FΘ. (30)

It shows that in the absence of shear scalar, the sys-
tem will be conformally flat while the conformal flatness
does not imply the shear-free case as the Weyl tensor
is affected by the electric charge seen from Eq.(29).

3.2 Non-Dissipative Charged Isotropic Fluid

In this case, we take isotropic pressure, i.e., Pz = P =
P⊥ by increasing complexity in the previous case. Con-
sequently, the equations for the Weyl tensor given in
Eqs.(23) and (24) yield

[4πµ− ε]̇ = −3Ḃ

B
[4π(µ + P )− ε] + 3µ2

0s
2 Ḃ

B5
, (31)

[4πµ− ε]′ =
3B′

B
ε +

4sµ2
0

B4

(
sB′

B
− 3s′

)
. (32)

Equation (32) is exactly the same as we obtained in the
previous case for charged dissipative dust. As a result,
the behavior for inhomogeneity factor will be the same
and the Weyl tensor does not vanish in the presence of
electromagnetic field. Thus the problem of stability of
energy density homogeneity reduces to the stability of
conformal flatness which is only possible in the absence
of electromagnetic field. Using the shear scalar from
Eq.(13) and first equation of motion from Eq.(21) in
(31), we obtain

ε̇ +
3Ḃ

B
ε = −4πAF (P + µ)− 3µ2

0s
2 Ḃ

B5
, (33)

whose integration leads to

ε =
3µ2

0s
2

B4
− 1

B3

∫ t

0

4πAFB3(P + µ)dt.

In the absence of isotropic pressure, it reduces to Eq.(29)
for the dust case. Moreover, the evolution equation through
Raychaudhuri equation using kinematical quantities turns
out to be

ε =
a′

C
− Ḟ

A
− F 2

3
− a2 − a

B′

BC
− 2

3
FΘ. (34)

For zero shear scalar (F = 0), the solution of Eq.(33)
becomes

ε =
3µ2

0s
2

B4
. (35)

It appears that the Weyl tensor does not vanish at any
time t. This shows that the conformal flatness is de-
stroyed due to the presence of electromagnetic field as
the shear-free condition does not lead to the conformal
flatness (as obvious from Eq.(34)) and vice versa, unlike
the charged free case. The system will be conformally
flat only in the absence of electric charge and shear-free
condition.

3.3 Non-Dissipative Anisotropic Fluid

Here we deal with the role of anisotropic pressure on
the inhomogeneity in the matter distribution with zero
dissipation. We take q = 0 = ε so that Eqs.(23) and
(24) reduce to

[4π(µ−Π)− ε]̇ = 3µ2
0s

2 Ḃ

B5
− 3

Ḃ

B
[4π(P⊥ + µ)− ε],

(36)

[4π(µ−Π)− ε]′ =
4sµ2

0

B4

(
sB′

B
− 3s′

)
+ 3

B′

B
[ε + 4πΠ].

(37)

When we compare with the previous cases, we find
that Weyl tensor with electromagnetic effects is not the
only quantity responsible for the inhomogeneous mat-
ter distribution but anisotropic pressure also plays a
key role. In fact, a linear combination of the quantity
ε + 4πΠ + s2µ2

0
B4 follows the density inhomogeneity. It

can easily be found from Eq.(37) that ε+4πΠ = 0 = s

yields µ′ = 0. When we take µ′ = 0 then Eq.(37) turns
out to be
[
−4πΠ +

s2µ2
0

B4
− ε

]′
+ 3

Ḃ

B

[
−4πΠ +

s2µ2
0

B4
− ε

]
=

sµ2
0

B4

×
(

3sB′

B
− 10s′

)
. (38)

Making use of Eqs.(13) and (21) in (36), it follows that

[
−4πΠ +

s2µ2
0

B4
− ε

].

+ 3
Ḃ

B

[
−4πΠ +

s2µ2
0

B4
− ε

]

= 4π(Pz + µ)AF +
2s2µ2

0Ḃ

B5
− 8πΠ

Ḃ

B
. (39)

These represent evolution equations showing the quan-
tity responsible for density inhomogeneity.

Now we relate this quantity to some scalar function
which will be identified as an inhomogeneity factor. For
this purpose, we define the dual of the Riemann tensor
as follows

Xαβ =∗ R∗ασβζV
σV ζ =

1
2
ηερ

ασR∗ερβζV
σV ζ , (40)
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where R∗αβσζ = 1
2η%ςσζR

%ς
αβ . The tensor Xαβ can be

decomposed in its trace free and trace components as

Xαβ = XTF

(
χαχβ − 1

3
hαβ

)
+

1
3
XT hαβ . (41)

Using Eqs.(4), (9), (11), (12) and (14) in (40) and (41),
we find the trace and trace free scalar parts as follows

XT = 8πµ +
µ2

0s
2

B4
, XTF = −ε− 4πΠ +

µ2
0s

2

B4
. (42)

Substituting the above equation in Eqs.(38) and (39),
the evolution equations for density inhomogeneity in
terms of scalar XTF turn out to be

ẊTF + 3
Ḃ

B
XTF = −8πΠ

Ḃ

B
+

2s2µ2
0Ḃ

B5
+ 4π(µ + Pz)AF,

X ′
TF +

3B′

B
XTF =

sµ2
0

B4

(
3B′

B
− 10s′

)
,

which can be integrated to find XTF as follows

XTF =
1

B3

∫ t

0

[4π(µ + Pz)AFB3 − 8πΠ
Ḃ

B2
]dt +

2s2µ2
0

B4
,

XTF =
1

B3

∫ z

0

sµ2
0

B

(
3B′

B
− 10s′

)
dz.

This indicates that homogeneity of the system is af-
fected by the shear scalar, pressure anisotropy and elec-
tromagnetic field. Moreover, electromagnetic field in-
creases the inhomogeneity in the system.

3.4 Dissipative Charged Dust Cloud

Finally, we investigate the effects of dissipating quan-
tities in the inhomogeneity factors for a special case of
dust cloud. We take matter distribution along the geo-
desic by choosing A = 1 with P⊥ = 0 = Pz. In this
scenario, Eqs.(23) and (24) reduce to

[4πµ̃− ε]̇ = 3µ2
0s

2 Ḃ

B5
− 12πq̃

B′A
BC

− 3
Ḃ

B
(4πµ̃− ε),

(43)

[4πµ̃− ε]′ =
4sµ2

0

B4

(
sB′

B
− 3s′

)
+ 12πq̃

ḂC

BA
+ 3

B′

B
ε.

(44)

When we take µ̃′ = 0, the inhomogeneity factor from
Eq.(44) is defined as

ξ ≡ ε+
12π

B3

∫ z

0

q̃ḂB2Cdz+
1

B3

∫ z

0

4sµ2
0

B

(
sB′

B
− 3s′

)
dz,

(45)

and consequently ξ = 0 ⇔ µ̃′ = 0 which shows that
the inhomogeneity factor is affected by electric charge.

The evolution equation for ξ can be evaluated by using
Eqs.(13) and (21) in (43) as

−4πµ̃F + 4π
q̃B′

BC
− 3µ2

0s
2 Ḃ

B5
− 3Ḃ

B
ξ − 4π

q̃′

C
= ξ̇ − χ̇

B3
,

with χ = 12π
∫ z

0
q̃ḂCB2dz. The general solution of the

above equation yields

ξ =
4π

B3

∫ t

0

(
q̃
B2B′

C
− µ̃FB3 − q̃′

B3

C
− 3µ2

0s
2Ḃ

B2
+ χ̇

)
dt,

(46)

which indicates the effects of shear, dissipation and elec-
tric charge on the inhomogeneity factor of charged dis-
sipative dust fluid.

To analyze the role of these factors, we discuss the
shear-free case for which Eq.(13) implies that B = zC.
Making use of this in Eq.(46), we obtain

ξ =
4π

B3

∫ t

0

(
q̃zBB′ − q̃′zB2 − 3µ2

0s
2Ḃ

B2
+ χ̇

)
dt, (47)

with χ = 12π
∫ z

0
q̃ ḂB3

z dz. Now, we study the relax-
ation effects on the evolution of inhomogeneity factor
ξ through transport equation. In the diffusion approxi-
mation, i.e., when ε = 0, we have q̃ = q, µ = µ̃, hence
Eq.(22) turns out to be

q̇ +
4q

3
Θ − ss′µ2

0

4πB4C
= 0.

Comparing the above equation with the truncated trans-
port equation (26), we obtain

q =
−ss′µ2

0τ

4πB4C
(
1− 4

3Θτ
) − KT ′

C
(
1− 4

3Θτ
) .

Using the shear-free condition, i.e., B = zC, it follows
that

q =
−ss′zµ2

0τ

4πB5
(
1− 4

3Θτ
) − zKT ′

B
(
1− 4

3Θτ
) .

Using this value of heat flux in the evolution equation
(47), we obtain the inhomogeneity factor in terms of
relaxation time τ . Thus, one can analyze the effect of τ

with electromagnetic field on the evolution of ξ.

4 Conclusion

In this paper, we have explored the effects of electro-
magnetic field on the energy density inhomogeneity for
non-static plane symmetric spacetime with radiating
anisotropic matter configuration. We have formulated a
relationship between the fluid parameters and the Weyl



54

scalar to analyse the effects of electric charge. A cou-
ple of equations for conservation laws have been devel-
oped from the contracted Bianchi identities and found
that one of these equations is affected by electromag-
netic field. The evolution equations for the Weyl tensor
are developed which indicate different aspects of energy
density inhomogeneity. To examine the role played by
heat radiation, we have developed a transport equation
in diffusion approximation. The main results are sum-
marized as follows.

– For non-dissipative charged dust cloud, it is found
that the Weyl tensor is not the only quantity to
control energy density inhomogeneity but it also de-
pends on the electric charge. Moreover, the electro-
magnetic field affects the conformal flatness of the
planar geometry. In the absence of shear scalar, we
find that the system will be conformally flat as seen
from Eq.(30) but the converse is not true due the
disturbance of conformal flatness in the presence of
electromagnetic field as seen from Eq.(29).

– When the isotropic pressure is included in the charged
dust cloud, the effects on the energy density inho-
mogeneity will remain the same. However, the zero
shear scalar does not lead to the conformal flatness
and vice versa as indicated in Eqs.(34) and (35).
Thus the stability problem of density inhomogene-
ity is converted to the stability of conformal flatness
which is affected by the electromagnetic field.

– In the case of anisotropic pressure, the inhomogeneities
in the matter distribution are related to the anisotropic
pressure, shear scalar and particularly electric charge.
A specific scalar function has been evaluated as an
inhomogeneity factor and identified as one of the
structure scalars given in Eq.(42).

– For dissipative geodesic dust, the inhomogeneity fac-
tor is the combination of geometrical and physical
variables with the effects of electromagnetic field
and is defined by ξ in Eq.(46). We also show how the
relaxation effects on the inhomogeneity of dissipa-
tive geometry can be analyzed through the evolution
of ξ.

It is worth mentioning that all our results reduce to
charge free case when we take s = 0.
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Abstract Considering the spatially non-flat Friedmann-
Lemaitre-Robertson-Walker (FLRW) universe model in
the context of f(R) gravity and scalar-tensor gravity
theories, it is constructed a point Lagrangian to seek
Noether gauge symmetry of that spacetime. For both
the f(R) gravity and scalar-tensor gravity theories, we
found all possible Noether gauge symmetries of FLRW
spacetime which turns out that the existence of Noether
symmetries for the considered gravity theories is a pow-
erful tool to find the exact solutions of field equations.

Keywords FLRW spacetime, f(R) theory of grav-
ity, scalar-tensor theory of gravity, Noether gauge
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1 Introduction

A cosmological model can be expressed in terms of
the configuration space variables which are usually the
metric coefficients, matter fields, scalar fields, etc.[1,2].
Therefore, the corresponding configuration space of the
cosmological model is a m−dimensional Riemannian
manifold with coordinates qi, i = 1, 2, . . . , m, in which
it will be constructed a point-like Lagrangian to pro-
duce the dynamics of the model.

The cosmological equations can be derived both from
the field equations of the considered gravity theory or
deduced by a Lagrangian function L(τ, qi, q̇i) of the sys-
tem related to the action S =

∫ Ldτ . Here the dot rep-
resents the derivative with respect to an affine parame-
ter τ which is the cosmic time t in most of the cosmo-
logical models. It is noted that Q = {qi, i = 1, . . . , m} is
the configuration space from which it is possible to de-
rive the corresponding tangent space TQ = {qi, q̇i} on

ae-mail: ucamci@akdeniz.edu.tr

which the Lagrangian L is defined. Taking the variation
of L with respect to the generalized coordinates qi, the
Euler-Lagrange (E-L) equations of motion become

d

dτ

∂L
∂q̇i

− ∂L
∂qi

= 0. (1)

The energy function associated with L is

EL = q̇k ∂L
∂q̇k

− L, (2)

which is also the Hamiltonian of the system.
Noether symmetries are associated with differential

equations possessing a Lagrangian, and they describe
physical features of differential equations in terms of
conservation laws admitted by them [3]. From a first
order Lagrangian L = L(t, qk, q̇k), it follows the system
of second-order ordinary differential equations (ODEs)
of the form

q̈i = wi(t, qk, q̇k). (3)

The strict Noether symmetry approach [4–9] , i.e. Noether
symmetry approach without a gauge term, is a kind of
symmetry in which the Lie derivative of the Lagrangian
that arise from the metric of interest dragging along a
vector field X vanishes, i.e. £XL = 0. Noether gauge
symmetries are the generalizations of the strict Noether
symmetries as the existence of some extra symmetries
is expected [10–17].

A Noether gauge symmetry (NGS) generator for
ODEs system (3) is given by

X = ξ(t, qk)
∂

∂t
+ ηi(t, qk)

∂

∂qi

if there exists a gauge function g(t, qk) and the Noether
symmetry condition

X[1]L+ L(Dtξ) = Dtg (4)
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is satisfied, where Dt = ∂/∂t + q̇k∂/∂qk is the total
derivative operator and X[1] is the first prolongation of
NGS generator X, i.e.

X[1] = X + η̇k(t, q`, q̇`)
∂

∂q̇k
(5)

where η̇k(t, q`, q̇`) = Dtη
k − q̇kDtξ. For every NGS,

there is a conserved quantity (or a first integral) of the
system of equations (3) given by

I = −ξEL + ηi ∂L
∂q̇i

− g. (6)

In this work, we aim to give some examples of Noether
gauge symmetries of the dynamical Lagrangian L for
the FLRW spacetimes in the following gravity theories.

The action for f(R) theory of gravity in (1 + n)-
dimensions is

S =
∫

d1+nx
√−g [f(R) + Lm] (7)

which gives rise to field equations

f ′(R)Rµν − 1
2
gµνf(R)−∇µ∇νf ′(R)

+gµν¤f ′(R) = −1
2
Tm

µν (8)

where ¤ = ∇µ∇µ and Tµν = − 2√−g
∂Sm

∂gµν .
The action for scalar-tensor theories of gravity has

the form

S =
∫

d4x
√−g ×

[
F (Φ)R− 1

2
εgµνΦµΦν − U(Φ) + Lm

]
(9)

where we set 8πG = 1 and ε = ±1 for standard scalar
and phantom fields, respectively, and Φµ ≡ ∂µΦ. The
field equations of this theory are

F (Φ)Gµν = −1
2

(
Tm

µν + TΦ
µν

)− gµν¤F (Φ) + F (Φ);µν

(10)

where TΦ
µν = ΦµΦν− 1

2gµνΦαΦα−gµνU(Φ) is the energy-
momentum tensor of a scalar field. The Klein-Gordon
equation following from the Bianchi identity Gµν

ν = 0 is
¤Φ + RF ′(Φ)− U ′(Φ) = 0.

Introducing a geometric procedure for two-dimensional
systems, Tsamparlis and Paliathanasis [12] have con-
nected the Noether gauge symmetries of classical La-
grangian to the collineations of the second order tensor,
so-called kinetic metric tensor σij , which is defined by
the kinematic part of the Lagrangian. The most of the
applications of Noether theorem to the extending theo-
ries of gravity are concerned with the following standard
form of the Lagrangian

L = T − V =
1
2
σij(qk)q̇iq̇j − V (qk), (11)

where T is the kinetic energy with a kinetic metric

ds2
σ = σijdqidqj

of the configuration space, the indices i, j, k, ... run over
the dimension of this space and V (qk) is the potential
energy function.

For the form of Lagrangian (11), we obtain the first
prolongation of the NGS generator X as

X[1]L = −ηkV,k + σijη
i
,tq̇

j

+
1
2

(£ησij − 2ξ,tσij) q̇iq̇j − ξ,kσij q̇
iq̇j q̇k (12)

where £η is the Lie derivative operator along η = ηk∂/∂qk.
Putting (12) into (4) together with Dtξ = ξ,t + ξ,k q̇k

and Dtg = g,t +g,kq̇k, the Noether symmetry condition
(4) becomes

ξ,i = 0, σijη
j
,t − g,i = 0, (13)

£ησij = (ξ,t)σij , (14)

ηkV,k + V ξ,t + g,t = 0. (15)

The above conditions explicitly yields the geometrical
character of the NGS. Here, ξ,i = 0 implies ξ = ξ(t),
and Eq. (14) means that η is a Homothetic vector (HV)
field when ξ(t) 6= 0.

2 Noether Gauge Symmetries in f(R) Theory
of Gravity

The Ricci scalar of (1 + n)-dimensional FLRW metric
is

R = 2n
ä

a
+ n(n− 1)

(ȧ2 + k)
a2

, (16)

where a(t) is the cosmological scale factor and k =
0,±1. Selecting the suitable Lagrange multiplier and
integrating by parts, the Lagrangian L becomes canoni-
cal. Then the point-like Lagrangian of (1+n)-dimensional
FLRW metric for f(R) gravity has the form

L = n(n− 1)f ′an−2ȧ2 + 2nf ′′an−1ȧṘ + an(Rf ′ − f)

−kn(n− 1)f ′an−2 + ρm0a
n−3 + ρr0a

n−4 (17)

where ρm0 and ρr0 represent the standard amount of
dust and radiation fluids. The kinetic metric for f(R)
Lagrangian (17) is

ds2
σ = 2n(n− 1)f ′an−2da2 + 4nf ′′an−1dadR, (18)

and the potential has the form

V = an(f−Rf ′)+kn(n−1)f ′an−2−ρm0a
n−3−ρr0a

n−4.

(19)
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Under the coordinate transformation

u =

√
8
n

an/2, v = (n− 1)f ′(R), (20)

the kinetic metric (18) becomes

ds2
σ = vdu2 +

nu

n− 1
dudv, (21)

with n 6= 1.
For the kinetic metric (21), the geometrical Noether

symmetry conditions (13)-(15) obtained above yield

ξ,u = 0, ξ,v = 0, η1
,v = 0, (22)

η2 + 2vη1
,u +

nu

n− 1
η2

,u − vξ,t = 0, (23)

1
u

η1 + η1
,u + η2

,v − ξ,t = 0, (24)

vη1
,t +

nu

2(n− 1)
η2

,t − g,u = 0, (25)

nu

2(n− 1)
η1

,t − g,v = 0, (26)

V,uη1 + V,vη2 + V ξ,t + g,t = 0. (27)

The general solution of Eqs.(22)-(26):

ξ = K1(t),

η1 = u

[
c1 +

n

2(n + 1)
K̇1(t)

]
+ u−

1
n K2(t),

η2 = v

[
−2c1 +

1
n + 1

K̇1 − (n− 1)u−
n+1

n

n
K2(t)

]

+u
1−n

n K3(t), (28)

g =
n v

n− 1

[
nu2

4(n + 1)
K̈1 + u

1−n
n K̇2

]

+
n2 u

1+n
n

2(n2 − 1)
K̇3 + K4(t),

where K1(t), ...,K4(t) are integration functions and c1

is an integration constant. Thus, there is only one re-
maining equation (27) to be solved. This includes the
potential function V (u, v) given by (19).

Now we take into account some form of f(R), and
give complete solution in the following. For flat (k =
0) FLRW spacetime, we list our finding of the NGS
components and the gauge functions as

– f(R) = f0R
`, ρm0 = 0, ρro = 0;

ξ = c1t + c2, η1 =
(2`− 1)

2
c1u,

η2 = 2(1− `)c1v, g = c3.

– n = 3, f(R) = f0R
7
8 , ρm0 = 0, ρro = 0;

ξ = c1
t2

2
+ c2t + c3, η1 =

3u

8
(c1t + c2),

η2 =
v

4
(c1t + c2), g =

9
32

c1u
2v + c4.

– f(R) = f0R
2n

n+1 , ρm0 = 0, ρro = 0;

ξ = c1t + c2, η1 =
(3n− 1)
2(n + 1)

c1u + (c3t + c4)u−
1
n ,

η2 =
2(1− n)
(1 + n)

c1v +
(1− n)

n
(c3t + c4)

u−
1+n

n

v
,

g =
n

2(n− 1)
c3u

n−1
n v + c5.

We note that Vakili [8] found only the Noether sym-
metry coming from the parameter c4.

– f(R) = (f0R + f1)
2n

n+1 , ρm0 = 0, ρro = 0;

ξ = c1, η1 = u−
1
n [c2 sin(αt) + c3 cos(αt)] ,

η2 =
(1− n)

n
u−

(1+n)
n v [c2 sin(αt) + c3 cos(αt)] ,

g =
nα

2
√

(n− 1)
u−

(1+n)
n v [c2 cos(αt)− c3 sin(αt)]+c4,

where α = 1
2

√
(n+1)f1

nf0
and f1/f0 > 0. As far as we

know, the above NGSs are new solutions.
– f(R) = (f0R− Λ)

2n
n+1 , ρm0 = 0, ρro = 0;

ξ = c1, η1 = u−
1
n

[
c2e

βt + c3e
−βt

]
,

η2 =
(1− n)

n
u−

(1+n)
n v

[
c2e

βt + c3e
−βt

]
,

g =
nβ

2
√

(n− 1)
u−

(1+n)
n v

[
c2e

βt − c3e
−βt

]
+ c4,

where β = 1
2

√
Λ(n+1)

f0n and Λ/f0 > 0.

– n = 3, f(R) = (f0R + f1)
7
8 , ρr0 = 0, ρmo 6= 0;

ξ = c1 + c2 sin(αt) + c3 cos(αt),

η1 =
3α

8
u [c2 cos(αt)− c3 sin(αt)] ,

η2 =
α

4
v [c2 cos(αt)− c3 sin(αt)] ,

g =
(

ρm0 − 9α2

32
u2v

)
[c2 sin(αt) + c3 cos(αt)] + c4,

where α = 2
√

f1
3f0

. The above NGSs are also new
solutions.

– n = 3, f(R) = (f0R− Λ)
7
8 , ρr0 = 0, ρmo 6= 0;

ξ = c1 + c2e
αt + c3e

−αt,

η1 =
3α

8
u

[
c2e

αt − c3e
−αt

]
, η2 =

α

4
v

[
c2e

αt − c3e
−αt

]
,

g =
(

ρm0 +
9α2

32
u2v

) [
c2e

αt + c3e
−αt

]
+ c4,

where α = 2
√

Λ
3f0

.
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For non-flat (k 6= 0) FLRW spacetime, we obtained
the NGS components and the gauge functions which
are found by n = 3 only as

– n = 3, f(R) = f0R
3
2 , ρr0 = 0, ρmo 6= 0;

ξ = c1t+c2, η1 = u−
1
3

[
c1

(
u

4
3 − 4k

32/3
t2

)
+ c3t + c4

]
,

η2 = u−
4
3 v

[
c1

(
8k

35/3
t2 − u

4
3

)
− 2

3
(c3t + c4)

]
,

g = c1

(
ρm0 − 2k(3u2)

1
3 v

)
t +

3
4
c3u

2
3 v + c5.

– n = 3, f(R) = (f0R + f1)
3
2 , ρr0 = 0, ρmo 6= 0;

ξ = c1, η1 = u−
1
3 [c2 sin(αt) + c3 cos(αt)] ,

η2 = −2
3
u−

4
3 v [c2 sin(αt) + c3 cos(αt)] ,

g =
3α

4
u

2
3 v [c2 cos(αt)− c3 sin(αt)] + c4,

where α =
√

f1
3f0

and f1/f0 > 0. We note also that
the above NGSs are new solutions.

– n = 3, f(R) = (f0R− Λ)
3
2 , ρr0 = 0, ρmo 6= 0;

ξ = c1, η1 = u−
1
3

[
c2e

βt + c3e
−βt

]
,

η2 = −2
3
u−

4
3 v

[
c2e

βt + c3e
−βt

]
,

g =
3β

4
u

2
3 v

[
c2e

βt − c3e
−βt

]
+ c4,

where β =
√

Λ
3f0

and Λ/f0 > 0.

– n = 3, f(R) = f0R
2, ρr0 = 0, ρmo 6= 0;

ξ = c1t + c2, η1 =
3
2
c1u, η2 = −2c1v,

g = ρm0c1t + c3.

3 Noether Gauge Symmetries in Scalar-Tensor
Gravity

The Lagrangian density of scalar-tensor theories of grav-
ity is

L = F (Φ)R− 1
2
εgµνΦµΦν − U(Φ) + Lm [gµν ; ψm] (29)

where Lm [gµν ;ψm] indicates matter fields approximated
by a perfect fluid and ε = ±1 represents ordinary scalar
and phantom fields, respectively.

The Ricci scalar of (1+3)-dimensional FLRW space-
time is given by

R = 6
(

ä

a
+

ȧ2

a2
+

k

a2

)
. (30)

Thus, the Lagrangian density of scalar-tensor theories
of gravity in FLRW background becomes

L = −6F (Φ)aȧ2 − 6F ′(Φ)a2ȧΦ̇ +
1
2
εa3Φ̇2

+6kF (Φ)a− a3U(Φ)− ρm0a
−3w (31)

where w = p/ρ is the equation of state parameter and
ρ = ρm0a

−3(1+w) is density.
Being qi = {a, Φ} the configuration space of the

system, the problem is 2D and then the kinetic metric
and the potential are

ds2
σ = −12F (Φ)ada2 + εa3dΦ2 − 12F ′(Φ)a2dadΦ, (32)

and

V (a, Φ) = −6kF (Φ)a + a3U(Φ) + ρm0a
−3w. (33)

Now, we impose the quadratic form of F (Φ), i.e. F (Φ) =
F0Φ

2 in scalar-tensor kinetic metric (32) and try to
achieve NGSs for some form of U(Φ).

For the FLRW spacetime the Hessian determinant
W = Σ

∣∣∣ ∂2L
∂q̇i∂q̇j

∣∣∣ turns out to be

W = −12a4(3F ′2 + εF ), (34)

which is equivalent to the determinant of the kinetic
metric σij . There exists two cases depending on the
Hessian determinant W vanishes or not.
Case (i): If the Lagrangian (29) is degenerate, then the
Hessian determinant W vanishes, so that the function
F (Φ) is given by

F = − ε

12
Φ2. (35)

Case (ii): If the Lagrangian (29) is non-degenerate,
then the Hessian determinant W do not vanish, and
the function F (Φ) has the form F = F0Φ

2, where F0 6=
−ε/12.

For F (Φ) = F0Φ
2, transforming the coordinates (a, Φ)

to a new coordinates (u, v) defined as

a =
1
4
u

2
3 v2, Φ = 4v−2, (36)

the kinetic metric (32) in the new coordinates can be
cast in a diagonal form

ds2
σ = −4

3
F0v

2du2 + (12F0 + ε)u2dv2. (37)

The potential (33) in the new coordinates becomes

V (u, v) = −24kF0
u

2
3

v2
+

1
64

u2v6U(v)+ρm0

(
1
4
u

2
3 v2

)−3w

.

(38)
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For the kinetic metric (37) of scalar-tensor gravity
theory, the geometrical Noether symmetry conditions
(13)-(15) gives

ξ,u = 0, ξ,v = 0, (39)
1
v
η2 + η1

,u −
1
2
ξ,t = 0, (40)

(12F0 + ε)
[

1
u

η1 + η2
,v −

1
2
ξ,t

]
= 0, (41)

−4
3
F0v

2η1
,v + (12F0 + ε)u2η2

,u = 0, (42)

4
3
F0v

2η1
,t + g,u = 0, (12F0 + ε)u2η2

,t − g,v = 0, (43)

V,uη1 + V,vη2 + V ξ,t + g,t = 0. (44)

In the following, we consider some form of the function
U(v), and give the components of NGS generator and
gauge function if it is not a constant.

For flat (k = 0) FLRW spacetime with dust matter,
i.e. w = 0, we obtain

– U(v) = U0v
−`, i.e. U(Φ) ∝ Φ

`
2 :

ξ = c1t + c2, η1 =
(`− 8)
2(`− 4)

c1u, η2 =
2

(`− 4)
c1v,

g = −ρm0c1t.

– U(v) = U0v
−` and F0 = − ε

12 :

ξ = c1t + c2, η1 =
(`− 8)
2(`− 4)

c1u + c3u
2

6−` ,

η2 =
2

`− 4
c1v +

2
`− 6

c3u
−1− 2

`−6 v, g = −c1ρm0t.

– U(v) = 64U0v
−6, i.e.U(Φ) ∝ Φ3, and F0 = − ε

12 :

ξ = c1t + c2, η1 = − c1

2U0u
(U0u

2 + ρm0)− c3

2U0u
,

η2 =
v

2U0u2

[
c1(2U0u

2 − ρm0)− c3

]
, g = c3t.

– U(v) = 64U0v
−6 + U1v

−8 and F0 = − ε
12 :

ξ = c1, η1 = − c2

2U0u
, η2 = − c2v

2U0u2
, g = c2t.

– U(v) = U0v
−4 and F0 = − ε

12 , i.e. U(Φ) ∝ Φ2:

ξ = c1t + c2, η1 = u(c1 ln u + c3),

η2 = −v[c1(
1
2

+ ln u) + c3], g = −ρmoc1t.

– U(v) = U0v
−8 and F0 = − ε

12 :

ξ = K1(t), η1 =
c1

u
, η2 = v

(
1
2
K̇1 +

c1

u2

)
,

g = −ρm0K1(t).

– U(v) = 16
7 U2

0 v−4, F0 = 1
6 and ε = −1:

ξ = c1 + c2e
U0t + c3e

−U0t,

η1 =
9U0

14
(
c2e

U0t − c3e
−U0t

)
u + c4u

+u
√

2
3 v

−1+ 3√
2

(
c5e

U0
t
2 + c6e

−U0
t
2

)

+u−
√

2
3 v

−1− 3√
2

(
c7e

U0
t
2 + c8e

−U0
t
2

)

η2 = −
√

2
3

u−1+
√

2
3 v

3√
2

(
c5e

U0
t
2 + c6e

−U0
t
2

)

+
√

2
3

u−1−
√

2
3 v

− 3√
2

(
c7e

U0
t
2 + c8e

−U0
t
2

)

−U0 v

7
(
c2e

U0t − c3e
−U0t

)− c4v,

and gauge function:

g =
(

U2
0

14
u2v2 + ρm0

) [
c2e

U0t + c3e
−U0t

]

− U0

3(
√

2 + 3)
u1+

√
2

3 v
1+ 3√

2

(
c5e

U0
t
2 − c6e

−U0
t
2

)

U0

3(
√

2− 3)
u1−

√
2

3 v
1− 3√

2

(
c7e

U0
t
2 − c8e

−U0
t
2

)
.

When the equation of state parameter is w = −1
(dark energy), we find the NGS components and the
gauge functions as

– U(v) = U0v
−` − ρm0:

ξ = c1t + c2, η1 =
(`− 8)
2(`− 4)

c1u, η2 =
2

(`− 4)
c1v.

– U(v) = U0v
−` − ρm0 and F0 = − ε

12 :

ξ = c1t + c2, η1 =
(`− 8)
2(`− 4)

c1u + c3u
2

6−` ,

η2 =
2

`− 4
c1v +

2
`− 6

c3u
−1− 2

`−6 v.

– U(v) = 64U0v
−6 − ρm0 and F0 = − ε

12 :

ξ = c1t + c2, η1 = −c1
u

2
− c3

2U0u
,

η2 = c1v − c3
v

2U0u2
, g = c3t.

– U(v) = 64U0v
−6 + U1v

−8 − ρm0 and F0 = − ε
12 :

ξ = c1, η1 = − c2

2U0u
, η2 = − c2v

2U0u2
, g = c2t.

– U(v) = U0v
−4 − ρm0 and F0 = − ε

12 :

ξ = c1t + c2, η1 = u(c1 ln u + c3),

η2 = −v[c1(
1
2

+ ln u) + c3].

– U(v) = U0v
−8 − ρm0 and F0 = − ε

12 :

ξ = K1(t), η1 =
c1

u
, η2 = v

(
1
2
K̇1 +

c1

u2

)
.
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For the non-flat (k 6= 0) FLRW metric and dust
matter (w = 0), it follows that

– U(v) = 64U0v
−8 and F0 = − ε

12 :

ξ = K1(t), η1 =
c1u

− 1
3√

U0u4/3 ± 2k
,

η2 =
v

6(U0u4/3 ± 2k)

[
3(2k ± U0u

4/3)K̇1

+
2c1(2ku−

4
3 ± 3U0)√

U0u4/3 ± 2k

]
,

g = −ρm0K1(t).

When k 6= 0 and the equation of state parameter is w =
−1 (dark energy), then the same components of NGS
for dust matter given above appear, but the function
U(v) takes the form U(v) = 64U0v

−8 − ρm0 and the
gauge function vanishes.

When k 6= 0 and w = 1
3 (radiation), it is found that

– U(v) = 64U0v
−8 and F0 = − ε

12 :

ξ = K1(t), η1 =
c1u

1
3√

U0u8/3 + 4ρm0 ± 2ku4/3
,

η2 =
3v(2ku4/3 ± 4ρm0 ± U0u

8/3)K̇1

6(U0u8/3 + 4ρm0 ± 2ku4/3)

+
2c1v(2ku2/3 ± 4ρm0u

−2/3 ± 3U0u
2)

(
U0u8/3 + 4ρm0 ± 2ku4/3

)3/2
.

4 Summary and Conclusion

In this study, using the FLRW metric, we derived the
Noether gauge symmetries of a canonical Lagrangian
for the f(R) gravity and scalar-tensor gravity theories.
To get the appropriate equations of motion in the con-
sidered theory of gravity, we set up an effective point-
like Lagrangian in terms of its configuration space vari-
ables and their velocities.

Using this effective Lagrangian, we determined the
kinetic metric in the configuration space of dynamical
system. Thus we considered the latter kinetic metric in
a new appropriate coordinate system and used it to cal-
culate and classify Noether gauge symmetry generators
by the the geometrical Noether symmetry conditions.
Most of the Noether gauge symmetry generators ap-
peared in the previous section are earlier obtained, but
some of them are new ones.

The Noether gauge symmetry approach is capable
to construct exact solutions of field equations for any
gravity theory by reducing their complexity through
the first integral of motion. In order to find out an-
alytical solutions of field equations for the considered
gravity theory, one can use the obtained Noether gauge

symmetry generators to get the first integrals by the
formula (6).
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Abstract This paper gives a review of the study of
symmetry in Einstein’s General Theory of Relativity
mainly from the global, geometrical viewpoint. Although
concentrating mostly on metric (Killing) symmetry, the
techniques described are applicable also to homothetic,
affine, conformal and projective symmetry together with
the symmetries of the curvature tensor and Weyl’s con-
formal and projective tensors and these are briefly de-
scribed. A discussion will also be given of Killing orbit
and isotropy theory and this will be used to characterise
cosmological and plane wave metrics in general relativ-
ity. A few brief remarks are given on local symmetry.

1 Introduction

In this section some definitions and general notation
will be established. Throughout, (M, g) will denote a
space-time, that is, a 4-dimensional, smooth, connected
(hence path connected), Hausdorff manifold M carrying
a smooth metric g of Lorentz signature and components
gab. The Levi-Civita connection arising from g is de-
noted ∇ and the associated curvature tensor is denoted
Riem with components Ra

bcd. The corresponding Ricci
tensor is denoted Ricc with components Rab ≡ Rc

acb

and the Ricci scalar is R ≡ Rabg
ab. All geometrical ob-

jects on M will be assumed smooth unless the contrary
is stated. Einstein’s field equations are written

Rab − 1
2
Rgab = Tab (1)

where T is the (tensor type (0, 2)) energy-momentum
tensor. To ensure maximum generality in the geometry
of space-times, (1) will be regarded as a definition of T .
Of course, physics must then impose its own conditions
on T to ensure that it represents the physical situation

ae-mail: g.hall@abdn.ac.uk

in an appropriate way. If T ≡ 0 on M , (M, g) is called a
vacuum space-time. It is also useful at this stage to in-
troduce the (tensor type (1, 3)) Weyl conformal tensor
C with components Ca

bcd. This tensor has the prop-
erty that if two metrics g and g′ on M are conformally
related, that is, there exists a real valued, nowhere-zero
function α on M such that g′ = αg, their corresponding
Weyl conformal tensors are equal. This tensor should
not be confused with the (tensor type (1, 3)) Weyl pro-
jective tensor W with components W a

bcd and which,
unlike the tensor C (which depends on g and ∇), de-
pends only on ∇. The tensor W has the property that
any two symmetric connections on M which give rise
to the same collection of unparametrised geodesic paths
have the same tensor W [36,35].

In coordinate representations, square brackets will
denote the usual skew-symmetrisation of the enclosed
indices and a semi-colon, a comma and the symbol L
will denote a covariant derivative with respect to ∇,
a partial derivative and a Lie derivative, respectively.
The tangent space to M at m ∈ M is written TmM

and the 6-dimensional Lie algebra (with the usual ma-
trix commutation as Lie product) of skew-symmetric
tensors (2-forms) at m is denoted ΛmM and its mem-
bers are usually referred to as bivectors. It is convenient
in considering the set ΛmM to identify the tensor types
(1, 1), (0, 2) and (2, 0) for bivectors at m because of the
natural isomorphisms between them (raising and low-
ering indices) arising from g(m).

In the study of symmetry, one must first decide ex-
actly what constitutes a “symmetry”. In essence one
would like to say, somewhat imprecisely it must be ad-
mitted, that some geometrical object is the “same” at
certain points of the space-time M , given some specifi-
cation of how these points are related. To try and make
this precise first choose some geometrical object, for ex-
ample, a globally defined smooth tensor field K on M ,
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and suppose that f : M → M is a (smooth) diffeomor-
phism, that is, a bijective map which is smooth and has
a smooth inverse. One might say that f is a “symme-
try” of K if f∗K = K, where f∗ denotes the “pullback”
of f . To understand what this means suppose that U

is some coordinate domain of M with coordinates xa

and let f(U) be the (necessarily open) image of U un-
der f . One can put a (smooth) coordinate system ya

on f(U) in a natural way as ya = xa ◦ f−1, that is, for
m ∈ U , f(m) gets the same coordinates in the ya sys-
tem that m got in the xa system (see, e.g. [1,2]). The
condition f∗K = K is then equivalent to the condition
that the components of K are (numerically) the same
at m (with coordinates xa) as they are at f(m) (with
coordinates ya). [It is noted here that one is trying to
say, intuitively, that a tensor field exhibits a “symme-
try” with respect to f if it is the “same” in U and f(U)
when the points in U and f(U) are paired off using f ,
so that f specifies the (pairs of) related points as sug-
gested above. Of course it makes no sense to compare
values of K at different points of M and so one must
circumvent this problem. What one actually does here
is to transform the coordinate chart (f(U), ya) onto U ,
pointwise, using f−1, to get the chart (U, xa) and then
to compare the original components of K at m ∈ U in
the xa system with the components of K at f(m) in the
system ya the latter now regarded as being at m in the
system xa. Thus one only compares tensor component
values at the same point and in the same coordinate
system and gets a “symmetry” in terms of K and f .]

Such a definition of symmetry suggests that the use
of smooth maps in the definition of symmetry may be
mathematically useful. One disadvantage of this exam-
ple is that the map f above is a global diffeomorphism
and physics consists of local observations. One may try
to get round the problem by retaining the above idea
but where f is now a local diffeomorphism whose do-
main and range are proper open subsets of M . However,
many such maps would be needed in order to deal with
all relevant observers, that is, some neighbourhood of
each point of M , and handling such a collection be-
comes cumbersome. One method which physicists and
geometers have used to get round this problem is the
use of symmetry vector fields. This approach retains the
advantages of the smooth mapping idea above and at
the same time gives rise to a sufficient number of local
maps upon which a reasonable mathematical structure
naturally imposes itself. However, it still requires the
existence of a global vector field and this problem will
be considered in more detail later. The other problems
which must be faced are the choice of geometrical ob-
ject K and whether, for a tensorial choice of K, one
wishes to weaken the condition f∗K = K. Since, ac-

cording to general relativity theory, the gravitational
field resides in the geometry on M , the choices g, ∇,
Riem, C, W , etc, for the geometrical object in ques-
tion suggest themselves naturally.

2 Symmetry Vector Fields

Let X be any globally defined, smooth vector field on
M . One may associate with X a family of local diffeo-
morphisms on M in the following way. Given m ∈ M ,
X admits an integral curve c : I → M , where I is some
open interval in R containing 0, which begins at m, that
is, c(0) = m. From the theory of differential equations,
given any m ∈ M there exists an open neighbourhood
U of m and a positive real number ε such that for any
m′ ∈ U the integral curve of X starting from m′ is de-
fined on (−ε, ε) (that is, c(t) is defined for t ∈ (−ε, ε)).
Thus each point of U may be “moved” along an integral
curve of X by a parameter distance t provided |t| < ε.
This gives a local smooth diffeomorphism φt with do-
main U for each such t (see, e.g. [3,4]). This construc-
tion may be applied at any m ∈ M since X is a global
vector field and thus a family of local diffeomorphisms
is generated by X each of which is called a local flow of
X. Thus vector fields can supply local diffeomorphisms
in some neighbourhood of each m ∈ M . In addition,
collections of such vector fields usually turn out to be
easier to handle than general collections of local diffeo-
morphisms. One can now consider the effect of assuming
the symmetry condition described in section 1 to apply
to each local flow of X. Thus, for example, if K is a
global tensor field on M one assumes that φ∗t K = K

for each φt and this is equivalent to the condition that
LXK = 0 [4]. This latter condition gives rise to a set
of differential equations to be solved, given K, for X.
Such equations are usually more easily handled than
collections of vector fields. Similar comments, suitably
modified, usually apply if some geometrical condition
other than φ∗t K = K is used. As an example, let K be
the metric tensor g on M . Then let X be a smooth,
global vector field on M each of whose local flows is
a local isometry for g, that is, each local flow satisfies
φ∗t g = g. In this case each φt “preserves” the metric g,
in the sense of section 1, and this is equivalent to X

satisfying LXg = 0. Then X is called a Killing vector
field. The collection of all Killing vector fields on M

is denoted K(M). Thus each X ∈ K(M) satisfies the
equivalent conditions (Killing’s equations)

(a)LXg = 0, (b)Xa;b + Xb;a = 0,

(c)Xa;b = Fab (Fab = −Fba) (2)

In these expressions, F is a smooth bivector field on M

called the Killing bivector (field) (of X). The collection
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K(M) has some nice properties; first, if X,Y ∈ K(M)
then it is clear from (2)(b) that if a, b ∈ R, aX + bY ∈
K(M) and so K(M) is a vector space over R. Second, if
X, Y ∈ K(M) and if [ ] denotes the usual Lie bracket of
vector fields, the identity L[X,Y ] = LXLY − LY LX re-
veals that the vector field [X, Y ] is a member of K(M)
and so K(M) is a (real) Lie algebra under the Lie
bracket operation called the Killing algebra of M . An
important deduction may be made from (2) by using
the Ricci identity on X, Xa;bc −Xa;cb = XdRdabc, the
algebraic identity Ra[bcd] = 0 and some index manipu-
lation. One finds

Xa;bc = Fab;c = RabcdX
d (3)

Then (2)(c) and (3) reveal a first order differential sys-
tem on (M, g) for the ten components Xa and Fab of
the pair X and F and so, since M is path connected,
a global Killing vector field on M is uniquely deter-
mined by the values X(m) and F (m) at any m ∈ M

(and vanishes identically on M if X(m) and F (m) van-
ish at some m ∈ M). This gives the important result
that K(M) is finite-dimensional and dimK(M) ≤ 4 (for
X(m)) + 6 (for F (m)) = 10. Thus, if a Killing vector
field vanishes over some non-empty open subset U of
M , F vanishes on U and hence X(m) and F (m) van-
ish at any m ∈ U . Hence X vanishes identically on M .
Thus, metric symmetry on M will be characterised in
terms of its Killing (Lie) algebra K(M). [It is here re-
marked that it does not necessarily follow that a Lie
group of symmetry transformations on M arises from
K(M), as is sometimes claimed, but rather only the
Lie algebra K(M). However, there is a well defined Lie
group action of this type on M arising from K(M) if
(and only if) each member of K(M) is a complete vec-
tor field [5] (see also [3,1]) but this may not necessarily
be the case.]

The assumption of a nontrivial K(M) on a space-
time is an advantage in finding exact solutions and
many of the well-known metrics in Einstein’s theory
were discovered in this way (for full details, see [6]). In
the event that dimK(M) = 10, (M, g) is of constant
curvature. [The converse is not true; in fact, if (M, g)
is of constant curvature, only a “local” 10-dimensional
Killing algebra is necessarily admitted in some neigh-
bourhood of each point of M ; see section 7.] If dimK(M) =
8, (M, g) is again of constant curvature (and the case
dimK(M) = 9 is impossible). The maximum dimension
of K(M) that can occur without (M, g) being of con-
stant curvature is 7 (cf, [1]). (Some further remarks on
local symmetry can be found in section 7.)

However, there are other types of symmetry which
are of interest in both general relativity theory and dif-
ferential geometry and which are not exactly of the type

described in section 1. Let X be a global, smooth vector
field on M whose local flows are local conformal isome-
tries of g, that is, φ∗t g = ξg for some (smooth) function
ξ on the domain of φt. (In the language of section 1
the pull-back of g under φt is conformally related to g

on U .) This turns out to be equivalent to X satisfying
LXg = 2ψg for a (smooth) function ψ : M → R (the
factor 2 being introduced for later convenience) and X

is then called a conformal vector field and ψ the con-
formal function of X. It can then be checked that X is
a conformal vector field if and only if, in any coordinate
domain,

Xa;b = ψgab + Fab (Fab = −Fba) (4)

where F is called the conformal bivector (field) (of X).
The collection of all conformal vector fields on M is de-
noted C(M) and a similar argument to that for K(M)
shows that C(M) is a (real) Lie algebra under the Lie
bracket operation called the conformal algebra. An ap-
plication of the Ricci identity on X and F can be used
to derive the (more complicated) analogues of (3) above
[42] (cf [1]) and reveal that a first order differential
system is obtained for the fifteen components Xa, ψ,
ψ,a and Fab associated with X and so C(M) is finite-
dimensional with dimC(M) ≤ 15. If dimC(M) = 15,
(M, g) is conformally flat (that is, the Weyl conformal
tensor vanishes on M) whilst if (M, g) is conformally
flat, a “local” 15-dimensional conformal algebra arises
about each point of M . In fact, if dimC(M) ≥ 8, (M, g)
is conformally flat [1]. Also, a similar argument to that
given in the Killing case shows that if a conformal vec-
tor field vanishes over some non-empty open subset of
M it vanishes on M . It is also clear that a Killing vector
field is necessarily conformal with zero conformal func-
tion and so K(M) is a subalgebra of C(M). A special
subset of C(M) is defined by those members of C(M)
for which the function ψ is constant on M and such
vector fields are called homothetic. The collection of all
homothetic vector fields is denoted by H(M) and is
easily checked to be a (real) Lie algebra under the Lie
bracket operation and is thus a subalgebra of C(M)
called the homothetic algebra. (and dimH(M) ≤ 11). If
X ∈ H(M) satisfies (4) with the (constant) ψ non-zero
it is called proper homothetic and if ψ = 0 it is Killing.
The vector fields in C(M) \ H(M) are called proper
conformal. It is remarked that the collections of proper
conformal and proper homothetic vector fields are not
Lie algebras or even vector spaces since they do not
contain the zero vector field on M . If (M, g) is vacuum
and non-flat (the latter term meaning that Riem does
not vanish over any non-empty open subset of M) and
admits a proper conformal vector field then it is essen-
tially a pp-wave [44,1] and dimC(M) ≤dimH(M) + 1
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[1]. A recent study of further techniques in conformal
symmetry can be found in [43].

If X is a Killing vector field on M and if m ∈ M

is such that X(m) 6= 0 then there exists a coordinate
neighbourhood U of m on which X does not vanish and
has components given by X1 = 1 and with all other
components zero (this is true for any vector field X [3])
and then, since X is Killing, the metric components gab

are independent of x1 (that is, x1 is an ignorable coor-
dinate of g on U). Conversely, if m admits a coordinate
neighbourhood U on which the components gab are in-
dependent of the coordinate x1, then the vector field X

on U given by X1 = 1 and with all other components
zero is a Killing vector field on U . These results are
easily checked from (2) and reflect the basic concept of
a symmetry given in section 1. [One should compare
this with the idea of an ignorable coordinate in elemen-
tary Lagrangian mechanics.] There are corresponding
results for homothetic and conformal vector fields [1].
One should note the local nature of the Killing vector X

(on U) in the second part of this result; such a Killing
vector field may not be extendible to the whole of M

(see section 7). It is easily checked that if g and g′ are
conformally related metrics on M , X is a conformal
vector field on (M, g) if and only if it is a conformal
vector field on (M, g′) and so the conformal algebras of
g and g′ coincide.

For a well-known example of some of these symme-
tries consider the plane wave metric given in a global
coordinate system u, v, x, y by

ds2 = Hdu2 + 2dudv + dx2 + dy2 (5)

where H(x, y, u) = a(u)x2 + b(u)y2 + c(u)xy for func-
tions a, b and c. Here there is a Killing algebra of dimen-
sion 5, 6 or 7 (depending on the choice of a, b and c in
H), one of which is ∂/∂v (since v is an ignorable coordi-
nate of the metric (5) [34,6]). Also the vector field with
components (0, 2cv, cx, cy), for some non-zero constant
c, is a proper homothetic vector field (see, e.g.[1]). This
metric may also admit proper conformal vector fields
(again depending on H).

Another type of symmetry concerns the connection
∇. This is again different from the general type of sym-
metry suggested in section 1 and arises as follows from
global vector fields on M . The connection ∇ determines
the geodesic structure of space-time and importance
thus focuses on those vector fields whose local flows are
projective, that is, they preserve the (unparametrised)
geodesics of ∇. Thus if whenever c : I → M is such
a geodesic curve in M with respect to ∇, so also is
φt ◦ c : I → M for each local flow φt of a smooth,
global vector field X, X is called projective. There is a
distinction to be drawn here between those local flows

which are affine, that is, they preserve geodesics and
their affine parameters and those which are projective
and preserve geodesics but not necessarily the affine
parameter. If, whenever c is an affinely parametrised
geodesic with respect to ∇, so also is φt ◦ c for each
local flow of X, X is called affine. Again one can show
that the collection A(M) of all affine vector fields on M

and the collection P (M) of all projective vector fields
on M are finite-dimensional (real) Lie algebras under
the Lie bracket and that A(M) is a subalgebra of P (M)
(cf, [1]). If X ∈ P (M) \A(M) it is called proper projec-
tive. If an affine or projective vector field vanishes over
some non-empty open subset of M it vanishes on M .
It is also true that H(M) is a subalgebra of A(M) and
if X ∈ A(M) \ H(M) it is called proper affine. Again
it is remarked that the collections of proper affine vec-
tor fields and proper projective vector fields are not Lie
algebras or even vector spaces. If X is projective, then
a global 1-form χ (the projective 1-form) exists on M

such that X and χ satisfy, in any coordinate system,
the equations (which are the analogues of (2c) and (3))

Xa;b =
1
2
hab + Fab LXg ≡ h hab = hba

Fab = −Fba (6)

where F is the projective bivector (field) (of X) and
where

hab;c = 2gabχc + gacχb + gbcχa. (7)

The vector field X is affine if and only if χ ≡ 0 on M ,
homothetic if and only if hab = cgab on M for some
constant c (⇒ χ ≡ 0 on M) and Killing if and only if
h ≡ 0 on M (⇒ χ ≡ 0 on M). As an example, con-
sider the metric g given in a global coordinate system
x0, ..., x3 = t, v, x, y, with v > 0 by [10,1]

ds2 = −dt2 + dv2 + v2qαβdxαdxβ (8)

where Greek letters take the values 2, 3 and where the
qαβ are independent of t and v and are chosen so that
the metric g is not flat. Then the vector field with
components (t2, vt, 0, 0) is proper projective, (t, 0, 0, 0)
is proper affine and (t, v, 0, 0) is proper homothetic.
A non-flat, vacuum space-time cannot admit a proper
projective vector field [10,1]. The existence of a proper
affine vector field on any space-time is a statement that
its holonomy group has “reduced” [11,1] as is the case
in (8). As another example, u∂/∂v is proper affine for
the metric (5).

Now consider the situation when, in the language
of the first paragraph of section 2, one chooses for K

the tensor Riem. Here one experiences some differences
to those results given in the previous paragraphs. A
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global, smooth vector field X on M is called a curva-
ture collineation if it satisfies LXRiem = 0 (and re-
call that Riem has components Ra

bcd). The collection
of all curvature collineations is a vector space denoted
CC(M). Since the local flows of affine vector fields pre-
serve the connection it follows that any affine vector
field is a curvature collineation and that A(M) is a
subalgebra of CC(M). For the set CC(M) one can-
not achieve a nice closed differential system such as is
found for Killing, conformal, etc, vector fields and, as
a consequence, CC(M) may not be finite-dimensional.
Also the direct integration of the equation LXRiem = 0
is complicated. Thus the study of such symmetries is
rather difficult and is mostly restricted to special cases
(see e.g., [12,13,9,14–16]). Fortunately, there is a result
which, at least, saves the trouble of such an integra-
tion in the “generic” case. There is, in fact, an accept-
able topological definition of a “generic situation” for
space-times [8] and should (M, g) satisfy it, the ten-
sor Riem on M uniquely determines the Levi-Civita
connection from which it arises and the corresponding
metric up to a constant conformal factor [7,1]. Then if
this is the case on M , suppose X ∈ CC(M) with local
flow φt with domain U and range V = φt(U). If g is
the metric of M restricted to U with curvature tensor
Riem and if g′ is the metric on M restricted to V with
curvature tensor Riem′ then φ∗t Riem′ = Riem since
X ∈ CC(M). But φ∗t g

′ is a metric on U with curvature
φ∗t Riem′(= Riem) and so g and φ∗t g

′ are metrics on
U with the same curvature tensor and hence from the
above result φ∗t g

′ = cg for c constant. This is true for
all such local flows and so X is homothetic on M . Thus
in this generic case, CC(M) = H(M) and CC(M) is
finite-dimensional [7,1]. If the generic condition fails,
CC(M) may not be finite-dimensional. To see this con-
sider the following metric in a global coordinate system
(x0, x1, x2, x3) ≡ (t, xα) with t ∈ R, Greek letters run-
ning from 1 to 3 and given by

ds2 = −dt2 + hαβdxαdxβ (9)

Here the hαβ depend only on the coordinates xα. In
this case, X ≡ ∂/∂t is a covariantly constant vector
field (∇X = 0) on M and from (2) is thus Killing.
It can then be checked that if f(t) is any globally de-
fined smooth function on M , f(t)X is in CC(M) for
all such choices of f . This follows from the equation
LXRiem = 0 after noting that, from the Ricci iden-
tity for X, Ra

bcdX
d = 0 and so a component Ra

bcd

of Riem is zero if at least one of the indices a, b, c, d

is 0. Thus X, tX...tnX... are independent members of
CC(M) for all positive integers n and hence CC(M) is
not finite-dimensional. The choice of the smooth func-
tion f given by f(t) = 0 if t ≤ 0 and f(t) = e−

1
t if

t > 0 also reveals that a non-trivial member of CC(M)
may vanish over a non-empty open subset of M . This
example also shows that a member X of CC(M) is not
necessarily uniquely determined by its value together
with those of any number of its covariant derivatives
at some m ∈ M (just compare it with the zero vec-
tor field in CC(M)). Another example of a situation
when CC(M) is infinite-dimensional is the metric (5)
since it admits a covariantly constant vector field [9].
There is another problem concerning the set CC(M).
First it is remarked that if X ∈ A(M) and is C2 then
it is necessarily smooth (C∞) and if X ∈ C(M) or
X ∈ P (M) and is C3 then it is necessarily smooth [1].
However, any degree of differentiability can be achieved
for members of CC(M) as is easily seen by choosing the
function f above associated with (9) to be Cr (but not
Cr+1) for r ≥ 1. Thus in this case, in order to make
CC(M) a Lie algebra, one should, perhaps, insist that
each member of CC(M) is smooth (otherwise, [X, Y ]
may not even be differentiable). However, generically,
as explained above, CC(M) = H(M) and is hence a
Lie algebra.

Another case of interest is when one chooses for K

the Weyl conformal tensor C. Call a smooth, global vec-
tor field X a Weyl conformal collineation if it satisfies
LXC = 0 and denote the set of all such vector fields
by WC(M). It is easy to check by a consideration of
the associated local flows that C(M) is a subalgebra
of WC(M). Again similar problems arise here as for
CC(M), that is, WC(M) may be infinite-dimensional.
However, as in the case of CC(M), there is a conve-
nient result which states that “generically” (as in the
case of Riem), the Weyl tensor C uniquely determines
the conformal class of the metric g from which it came
and then, by a similar argument to that for Riem, it
can be shown that, generically, if X ∈ WC(M), then
X ∈ C(M) (hence WC(M) equals C(M) and is finite-
dimensional). In this case, the generic condition may
be stated in terms of the Petrov type of C on (M, g)
[1]. The remarks made above on differentiability, etc,
regarding CC(M) also apply to WC(M). Some further
details can be found in [32]. [Interestingly, WC(M) can
be infinite-dimensional for M of any dimension ≥ 4
(this latter restriction ensuring that C is well-defined
and not necessarily identically zero) and g of any signa-
ture, except dimM = 4 with g positive definite; in this
latter case WC(M) = C(M) and is finite-dimensional
[37].] It is also remarked here that for the Weyl pro-
jective tensor W and for any dimension of M ≥ 3 (to
ensure that W is well-defined and not necessarily iden-
tically zero), the vector space WP (M) of all global,
smooth vector fields X on M satisfying LXW = 0
(whose members are called Weyl projective collineations
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and which contains CC(M) as a subalgebra) may be
infinite-dimensional (and is if CC(M) is). A considera-
tion of local flows shows that P (M) is a subalgebra of
WP (M). The remarks made above on dimension and
differentiability, etc, regarding CC(M) also apply to
WP (M). Further details can be found in [38].

Another problem which has been studied is that
of symmetries of the Ricci tensor Ricc, that is, those
(global, smooth) vector fields X on M satisfying LXRicc =
0 (Ricci collineations). Here, the lack of any shortcut in
any generic situation is a drawback and the calculations
are complicated and restricted to special cases. The
Lie algebra of Ricci collineations contains CC(M) as
a subalgebra. Yet another study concerns the so-called
“matter collineations”, that is, those (global, smooth)
vector fields X on M satisfying LXT = 0 where T is
the (tensor type (0, 2)) energy-momentum tensor. One
extra problem which arises in this latter case is that
of whether one studies the symmetries of Tab, T a

b or
T ab, the results being different, in general. Progress on
these problems seems to be difficult [17–22]. However,
if Ricc has a non-degenerate matrix Rab of components
at each m ∈ M , the collection of Ricci collineations is
a finite-dimensional Lie algebra, being the Killing al-
gebra of the metric Ricc on M . The remarks made on
dimension and differentiability, etc, regarding CC(M)
above, also apply to Ricci and matter collineations.

3 Orbit Geometry

First consider K(M), assumed non-trivial, and let m ∈
M . Construct the linear mapping of vector spaces f :
K(M) → TmM which maps the global Killing vector
field X ∈ K(M) into its value X(m) at m, X → X(m).
Let Im denote the kernel of this map; Im ≡ {X ∈
K(M) : X(m) = 0} and let ∆m denote its range;
∆m ≡ {X(m) : X ∈ K(M)} so that ∆m is a sub-
space of TmM . Then from elementary linear algebra,
dimK(M) =dimIm+dim∆m at any m ∈ M . Although
dimK(M) is fixed by (M, g), dimIm and dim∆m may
vary with m but must do so consistently with their sum
equalling dimK(M). (A consequence of the possible
variability of dim∆m over M shows that the map m →
∆m may not be a distribution in the sense of Frobe-
nius and is sometimes called a generalised distribution.
However, in dealing with the finite-dimensional symme-
try algebras, K(M),H(M), C(M), A(M) and P (M),
this does not cause any major problems [28] (and see,
e.g.[1])). Now from the fact that if X ∈ K(M) the con-
ditions X(m) = 0 and F (m) = 0 (where F is the Killing
bivector of X) imply that X ≡ 0 on M , it is clear that
the subspace of ΛmM given by {F (m) : F is the Killing
bivector of some X ∈ Im} is isomorphic to Im under

the mapping X → F (m) for X ∈ Im. This representa-
tion of Im as a subspace of ΛmM is then easily checked
to be a Lie algebra under matrix commutation and is
Lie-isomorphic to a subalgebra of the Lie algebra of the
Lorentz group (the bivector representation of the latter
being well known; see, e.g., [24]). The Lie algebra Im is
called the isotropy algebra of K(M) at m and, if non-
trivial, gives a description of the symmetry resulting
from K(M) in the tensor spaces at m. To see this let
X be a non-trivial member of Im. Then X(m) = 0 and
any local flow φt of X fixes the point m, φt(m) = m. If
v ∈ TmM , choose a smooth curve c : (−ε, ε) → M for
0 < ε ∈ R so that c(0) = m and v is tangent to c at
m. Then the curve φt ◦ c through m has tangent vec-
tor equal to the “pushforward”, φt∗(v), of v, using φt,
at m (see, e.g. [1] section 4.10). In this intuitive sense,
φt∗ “drags” TmM round as directed by the symmetries
φt associated with X. (This idea will be useful later in
sections 5 and 6.)

The subspaces ∆m can be interpreted in the follow-
ing way. Through each m ∈ M there is a connected
submanifold, denoted Om and called the orbit associ-
ated with K(M) through m. The tangent space to Om

at m′ ∈ Om equals ∆m′ and so one sees that dim∆m

(=dimOm) and hence dimIm is constant over any such
Om. As m ranges over M the dimension of Om may
change. The orbit Om may be interpreted using the in-
tegral curves of the members of K(M). In fact, if k ∈ N
let X1, ..., Xk ∈ K(M) and let φ1

t1 , ..., φ
k
tk

be the lo-
cal flows associated with them for appropriate values of
t1, ..., tk. Consider the set of all local diffeomorphisms
on M (where defined) of the form

m′ → φ1
t1(...φ

k
tk

(m′)...)) m′ ∈ M (10)

for each choice of k ∈ N, X1, ..., Xk ∈ K(M) and ad-
missible (t1, ..., tk) ∈ Rk. One can define an equivalence
relation ∼ on M by m1 ∼ m2 (m1,m2 ∈ M) if and
only if some map of the form (10) maps m1 to m2. The
equivalence classes arising from ∼ are exactly the or-
bits associated with K(M) and so the particular orbit
Om consists of those points that m is mapped to un-
der the local flows applied successively, as in (10). If
dim∆m = 4 for each m ∈ M then, since M is con-
nected, there is a single 4−dimensional orbit associated
with K(M) and K(M) is called transitive (and (M, g) is
called homogeneous). The submanifolds Om may have
some unpleasant properties [1,23] but are sufficiently
nice for most purposes. More details on their mathe-
matical structure may be found in [25–28,1,23]. They
are extremely useful for constructing natural coordinate
systems and exact solutions of Einstein’s field equations
(1) if the space-time in question admits a non-trivial
Killing algebra K(M). It is also noted for later use that
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if O is any orbit and φt : O → O any local flow of some
member of K(M), then φt : O → O is smooth and
the pushforward map φt∗ is an isomorphism of the tan-
gent space TmO to O at m ∈ O onto the tangent space
Tφt(m)O to O at φt(m).

It is useful at this point to recall that a 1-dimensional
subspace of TmM is called a spacelike (respectively,
timelike or null) direction if any spanning member of it
is spacelike, (respectively, timelike or null). Then, with
regard to the Lorentz inner product g(m) on TmM , a
2-dimensional subspace (a 2-space) U ⊂ TmM is called
spacelike if each of its non-zero members is spacelike,
null if it contains a unique null direction and timelike
if it contains exactly two distinct null directions. The
classification of 3-dimensional subspaces is similar, the
definitions for spacelike and null being identical to those
in the 2-dimensional case. A 3-dimensional subspace (a
3-space) is called timelike if it contains at least two
(and hence infinitely many) distinct null directions. It
follows for either dimension that a subspace is time-
like if and only if it contains a timelike member. Now
F ∈ ΛmM has, on account of its skew-symmetry, even
(matrix) rank. If this rank is 2, F is called simple and
it may be written as F ab = paqb−qapb for p, q ∈ TmM .
In this case F uniquely determines the 2-space in TmM

spanned by p and q and this 2-space is called the blade
of F . Then F is called spacelike, timelike or null if this
blade is, respectively, spacelike, timelike or null. In this
case, F (or its blade) is sometimes denoted p ∧ q. If F

has rank 4 it is called non-simple and it can then be
shown that F uniquely determines an orthogonal pair
of 2-spaces at m, one spacelike and one timelike, and
which are collectively called the canonical pair of blades
of F [33]. It is noted here for later use that any bivector
F at m has a finite (non-zero) number of null eigendi-
rections at m, one if F (m) is null and two if F (m) is
spacelike, timelike or non-simple.

Again considering the Lie algebra K(M), if m ∈ M

and dim∆(m) = 0, the orbit through m is the singleton
subset {m}. If dim∆(m) > 0 the orbit through m is
a connected submanifold of M and at each such m,
∆(m) coincides with the subspace of TmM tangent to
the orbit through m. An orbit is called proper if its
dimension is 1, 2 or 3. The nature of a proper orbit Om

through m ∈ M is the type (timelike, spacelike or null)
of any of the subspaces ∆(m′) for any m′ ∈ Om since,
by the definition of K(M), this nature is easily checked
to be independent of m′ ∈ Om.

If X ∈ K(M) is not trivial and X(m) = 0 then
m is a zero of X and a fixed point (φt(m) = m) of
any associated local flow φt of X. The Killing bivector
of X, evaluated at m, then makes a non-trivial contri-
bution to the isotropy algebra Im. If, in addition, the

Killing bivector of X is non-simple at m, then m is an
isolated zero of X. If, however, the Killing bivector is
simple at m there exists an open neighbourhood U of
m such that the collection of zeros of X in U is a 2-
dimensional submanifold of U and hence of M . [1]. If
Im is non-trivial, there are consequences for the various
tensors derived from g at m. For example, the energy-
momentum (or the Ricci) tensor will inherit eigenvalue
degeneracies and the Petrov type is seriously restricted
at any zero m of X, being either type N or 0 if F (m) is
null and type D or 0 if F (m) is either non-simple, space-
like or timelike. It is true that if Om is an orbit of K(M)
with dimOm ≥ 1 and dimK(M) >dimOm, any point
m′ ∈ Om is a zero of some non-trivial X ∈ K(M). To
see this let dimK(M) = n > 1 and let X1, ..., Xn be a
basis for K(M). Then X1(m′), ..., Xn(m′) are dependent
members of Tm since they lie in ∆m and n >dim∆m.
Thus there exists a1, ..., an ∈ R not all zero such that∑n

i=1 aiXi(m′) = 0. Now define the (global) vector field
X =

∑n
i=1 aiXi which is clearly a non-zero member

of K(M) (since X1, ..., Xn are independent in K(M))
and satisfies X(m′) = 0. So m′ is a zero of X. One
can extend the study of orbits and isotropies to the
finite-dimensional Lie algebras H(M), C(M), A(M)
and P (M). For details of some of these see [1,29].

As an example consider the exterior Schwarzschild
solution. Here all Killing orbits are 3-dimensional and
timelike and given by a constant value of r in the usual
coordinates of that solution. For generic FRWL cosmo-
logical solutions (see section 5), all orbits are 3-dimensio-
nal and spacelike and given by a constant value of cos-
mic time. The Einstein static metric has a single 4-
dimensional orbit and is homogeneous. For the metric
(5) the orbits can be 3-dimensional and null (and given
by u =constant) or 4-dimensional (the homogeneous
case). In each of these examples the orbits are of con-
stant dimension over M but this need not be the case.
For example, consider the metric g given in global co-
ordinates t, x, y, z on the manifold R4 by

ds2 = −dt2 + ex2+y2+z2
(dx2 + dy2 + dz2) (11)

For this metric dimK(M) = 4, with K(M) being spanned
by the global, Killing vector fields with components
(1, 0, 0, 0), (0, 0, z,−y), (0, y,−x, 0) and (0, z, 0,−x). Then
(M, g) has a 1-dimensional timelike orbit given by x =
y = z = 0 with all other orbits being 3-dimensional and
timelike.

4 Orbit Structure

An orbit O of K(M) is called dimensionally stable [1,
23] if for each m ∈ O there exists an open neigh-
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bourhood U of m such that any orbit through any
point of U has the same dimension as O. It turns out
that any 3-dimensional spacelike or timelike orbit is di-
mensionally stable as is any 4-dimensional orbit. Con-
nected regions containing only dimensionally stable or-
bits may be expected to give pleasant results along
the lines of those for a Frobenius type distribution.
Examples of pairs (M, g) and K(M) admitting orbits
which are not dimensionally stable can be easily con-
structed. (In fact, the 1-dimensional timelike orbit in
(11) is not dimensionally stable; but the other orbits
are.) The “generic” FRWL models in relativistic cos-
mology have space sections (submanifolds of constant
cosmic time) which are 3-dimensional, spacelike, dimen-
sionally stable orbits whereas the extended Schwarz-
schild metric has 3-dimensional, dimensionally stable
orbits whose nature may be spacelike, timelike or null.
Non-homogeneous plane wave metrics have 3-dimension-
al, null, dimensionally stable orbits (see section 6). If
K(M) is not trivial, one may disjointly decompose M

as M = Ms ∪ Mns where Ms (respectively, Mns) de-
notes the union of all dimensionally stable (respectively,
not dimensionally stable) orbits of K(M). The subset
Vk ≡ {m ∈ M :dim∆m = k}, for 1 ≤ k ≤ 4, is the union
of all the k−dimensional orbits of K(M) and intVk is
the union of all the dimensionally stable orbits of K(M)
of dimension k where “int” denotes the interior in the
manifold topology on M . Thus Ms is open in M . Since
K(M) 6= {0} and each X ∈ K(M) must vanish on V0,
intV0 = ∅.

If O is a proper non-null orbit then, as a subman-
ifold, it inherits an induced metric h from the global
metric g and each member of K(M) gives rise in a nat-
ural way to a vector field on O which can be shown
to be a Killing vector field in O for the metric h. This
construction gives a map K(M) → K(O) which is a
Lie algebra homomorphism and which need not be sur-
jective but, if dimO = 3, is injective. The possible lack
of injectiveness follows because of the possibility of a
non-trivial member X ∈ K(M) becoming identically
zero on the orbit (see, e.g., the metric (11) and the
1-dimensional orbit described there). But, from the re-
sults on the zeros of X, this cannot occur for (non-null)
orbits of dimension 3 and any orbit of dimension 4 [1,
23]. This is important since some arguments in relativ-
ity theory involve the inducing of independent members
of K(M) into an orbit and the assumption that such
orbit vector fields are independent there. This is true
for 3-dimensional non-null orbits (and 4-dimensional or-
bits) but not necessarily true otherwise.

One would also like a relation between the existence
of orbits of a certain dimension and the dimension of
K(M). This is provided in the following result.

Theorem1 [1,23]

Let (M, g) be a space-time with Killing algebra K(M).
Then the following hold.

(i) If there exists a 3-dimensional null orbit, 3 ≤
dimK(M) ≤ 7. If, however, there exists a dimension-
ally stable, 3-dimensional, null orbit or any non-null,
3-dimensional orbit, 3 ≤ dimK(M) ≤ 6.

(ii) If there exists a 2-dimensional, null orbit, 2 ≤
dimK(M) ≤ 5 and if there exists a 2-dimensional, non-
null orbit, 2 ≤ dimK(M) ≤ 4. If there exists any 2-
dimensional, dimensionally stable orbit, 2 ≤ dimK

(M) ≤ 3.

(iii) If there exists a 1-dimensional, null orbit, 1 ≤
dimK(M) ≤ 5 and if there exists a 1-dimensional, non-
null orbit, 1 ≤ dimK(M) ≤ 4. If there exists any 1-
dimensional, dimensionally stable orbit, dimK(M) = 1.

It is not to be understood that all possibilities con-
tained within the inequalities for dimK(M) can ac-
tually exist but many of them can and examples are
available [1,23]. One corollary of this theorem is that
dimK(M) = 9 is impossible since, if it were possible,
theorem 1 shows that all orbits would be 4-dimensional
and so, if O is any such orbit and m ∈ O, dim Im =dimK

(M)-dimO = 5. But the Lorentz algebra has no 5-
dimensional subalgebras and a contradiction is obtained.
One can similarly show from theorem 1 that if dimK(M)
= 8 all orbits are 4-dimensional and so for each m ∈ M

dimIm = 4. It then turns out that (M, g) is a con-
formally flat Einstein space and hence is of constant
curvature. Thus, locally, a 10-dimensional Lie algebra
of Killing vector fields exists.

The final two sections of this paper will give a simple
application of some of these latter results to the study
of cosmology and to the theory of plane waves in general
relativity. The first of these presents a simple rigorous
and global, geometrical view of cosmology using only
the concept of isotropy derived from astronomical ob-
servations. The second provides a similar discussion of
plane waves using the idea of wave surface isotropy. The
consequences are, of course, not new but it is believed
that the methods and techniques employed have some
interesting novelty value. The idea is to derive the cos-
mological and plane wave metrics from a single, phys-
ically reasonable, geometrical assumption. One useful
piece of information which will be required is the sub-
algebra structure of the Lie algebra L of the Lorentz
group in the bivector representation and this is given
in table 1. In this table (l, n, x, y) denotes a null tetrad,
(x, y, z, t) a pseudo-orthonormal tetrad and 0 6= ω ∈ R.
The notation is taken from [24] and the trivial subalge-
bra, R1, is omitted.
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Table 1 Lorentz Subalgebras

Type Dimension Basis Type Dimension Basis

R2 1 l ∧ n R9 3 l ∧ n, l ∧ x, l ∧ y
R3 1 l ∧ x R10 3 l ∧ n, l ∧ x, n ∧ x
R4 1 x ∧ y R11 3 l ∧ x, l ∧ y, x ∧ y
R5 1 l ∧ n + ωx ∧ y R12 3 l ∧ x, l ∧ y, l ∧ n + ω(x ∧ y)
R6 2 l ∧ n, l ∧ x R13 3 x ∧ y, y ∧ z, x ∧ z
R7 2 l ∧ n, x ∧ y R14 4 l ∧ n, l ∧ x, l ∧ y, x ∧ y
R8 2 l ∧ x, l ∧ y R15 6 L

5 Cosmological Space-Times

The observation in cosmology referred to as isotropy is,
roughly speaking, that at any space-time event m ∈ M

there exists an observer for whom “all directions at m

are equivalent”. This can only be taken to refer to infor-
mation arriving at m from the boundary or the inside
of the past null cone at m and, since most cosmological
information arrives in the form of photons, this isotropy
will be taken to refer to the indistinguishability of fu-
ture pointing null directions at m. The concept of homo-
geneity in cosmology (used here in its traditional sense
and not as in section 3) is more elusive since it refers to
the indistinguishability of events occurring at the “same
time” and thus requires the existence of some cosmo-
logical time to have already been established. However,
only the isotropy described above will be required here.
So let a space-time (M, g) be called cosmological if it
admits a global Killing algebra K(M) such that for each
m ∈ M the collection of (pushforward) isomorphisms
φt∗ arising from all members of Im acts transitively on
null directions (that is, given any two null directions
at m, some φt∗ in this collection maps one of them to
the other). Thus one tries to mimic this physical, cos-
mological isotropy using the property of the maps φt∗
described at the end of the first paragraph in section 3.

Lemma1
If (M, g) is a cosmological space-time then either;
(i) Im is isomorphic to the Lie algebra o(3) at each

m ∈ M , or
(ii) Im is isomorphic to L at each m ∈ M and, in

this case, (M, g) is of constant curvature.
If (M, g) is a cosmological space-time then it is con-

formally flat.
Proof
Since (M, g) is cosmological the collection of isomor-

phisms, φt∗, arising from all members of Im cannot fix
any null direction at any m ∈ M . Thus the bivectors
in the representation of Im cannot have a common null
eigendirection (cf [1]). A simple inspection of the pos-
sible subalgebras of L in table 1 then shows that Im is
isomorphic to either R13 (≈ o(3)) or to R15(≈ L). (The

possibility R10 is out since, then, y is fixed in the null
tetrad l, n, x, y of table 1 and any null direction orthog-
onal to y stays orthogonal to y under the maps φt∗,
contradicting transitivity.) If there exists m ∈ M with
orbit Om through m such that Im is isomorphic to o(3))
then dimK(M) =dimOm+dimIm ≤ 4 + 3 = 7. If how-
ever, there exists m ∈ M with orbit Om through m such
that Im is isomorphic to L, dimK(M) ≥dimIm = 6 and
so, from theorem 1, dimOm ≥ 3 and then dimK(M) ≥
6 + 3 = 9. This contradiction shows that either Im is
isomorphic to o(3) at each m ∈ M or Im is isomorphic
to L at each m ∈ M . Since dimK(M) = 9 is impossible
it follows that in the latter case, dimK(M) = 10 and
(M, g) has constant curvature. The fact that dimIm ≥ 3
at each m ∈ M shows that the Weyl conformal tensor
vanishes everywhere on M [34].¤

The consequences of the cosmological assumption
in lemma 1 have now become detached from the ob-
server mentioned at the beginning of this section, being
a purely geometrical statement on K(M). However, the
initial intuitive idea means that the maps φt∗ arising
from Im should preserve the (timelike) direction of the
special observer (intuitively, the universe should turn
about him, isotropically, without his need for a change
of direction or speed, as would be the case for any other
timelike direction at m). If Im ≈ o(3), the collection of
all bivectors F (m) ∈ Im admits a unique common time-
like eigendirection (see table 1) and so there is a unique
timelike direction at m which is fixed by all the φt∗ aris-
ing from Im (the “axis” of Im). This distinguishes the
(unique) special observer’s world line for this possibil-
ity of Im. If Im ≈ L, then Im is transitive on timelike
directions and the above uniqueness is lost. The general
smoothness assumptions together with the assumption
that the cosmological symmetries are a consequence of
a smooth Killing action will be seen to show that these
timelike directions can be spanned locally by smooth
unit timelike vector fields on M .

Lemma2
Suppose that (M, g) is cosmological. Then any orbit

of K(M) has dimension 3 or 4 and (M, g) consists of ei-
ther a single 4-dimensional orbit or each of its orbits is
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3-dimensional and spacelike. All orbits are dimension-
ally stable. In detail then, either;

(i) Im is isomorphic to L for each m ∈ M , in which
case, (M, g) has constant curvature, dim K(M) = 10
and K(M) has a single 4-dimensional orbit, or

(ii) Im is isomorphic to o(3) for each m ∈ M and
if (M, g) is non-flat then either K(M) has a single 4-
dimensional orbit (⇒ dimK(M) = 7) or each orbit of
K(M) is 3-dimensional and spacelike (⇒dimK(M) =
6).

Proof .
Let O be a 1-dimensional (respectively, a 2-dimensio-

nal) dimensionally stable orbit of K(M). Whatever the
dimension (3 or 6) of the isotropy on M , if m ∈ O,
dimK(M) ≥ 3 + 1 = 4 (respectively, dimK(M) ≥
3 + 2 = 5) contradicting theorem 1. So no such di-
mensionally stable orbits can exist. So let k ≡ {max
dimO : O an orbit of K(M)}. Then there exists an or-
bit O′ with dimO′ = k and by an application of the
rank theorem to the distribution ∆ the orbit O′ is di-
mensionally stable. The previous argument shows that
dimO′ ≥ 3 and so dimK(M) ≥ 3 + 3 = 6. Further
appeal to theorem 1 shows that every orbit of K(M),
dimensionally stable or not, has dimension 3 or 4. If
a null 3-dimensional orbit O exists and m ∈ O it fol-
lows ([1], section 10.5) that the tangent space TmO is
mapped into itself by the isomorphisms arising from
Im and so the unique null direction at m tangent to
O must be fixed by these isomorphisms contradicting
the cosmological assumption. If a timelike orbit O ex-
ists then, for m ∈ O a consideration of Im reveals a
fixed spacelike vector p ∈ TmM . A similar argument to
that which ruled out the possibility of the R10 case in
the proof of lemma 1 shows the impossibility of transi-
tivity on null directions. So any 3-dimensional orbit is
spacelike (and dimensionally stable). Then if M is de-
composed as M = M3 ∪ M4 where M3 (respectively,
M4) denotes the union of the all the 3-dimensional
(respectively, 4-dimensional) orbits of K(M) then M4

is open (by the rank theorem) and M3 is open since
it consists of (spacelike) dimensionally stable orbits.
Since M is connected either M3 or M4 is empty and
so M = M3 or M = M4. Finally, if the conditions of
(i) hold then, for any m ∈ M and orbit O through
m, dimK(M) =dimIm+dimO ≥ 6 + 3 = 9 and hence
dimK(M) = 10. So dimO = 4 and O is the only orbit.
Part (ii) follows immediately. ¤

The metrics in lemma 2(i), in local coordinates, give
the de Sitter (positive constant curvature), anti-de Sit-
ter (negative constant curvature) and Minkowski (zero
curvature) metrics.

For the metrics in lemma 2(ii) some further analysis
is required. The existence of a single (4−dimensional)

K(M) orbit together with the conformally flat and non-
flat conditions mean that Ricc cannot vanish at any
point of M . Further, each Ricci eigenvalue (and hence
the Ricci scalar, R) is constant on M and that the al-
gebraic Segre type of the Ricci tensor is the same at
each m ∈ M . The fact that Im is isomorphic to o(3)
for each m ∈ M forces this Segre type to be either
{1, (111)} at each m ∈ M or {(1111)} at each m ∈ M .
[1,6]. In the latter case Ricc = R

4 g and (M, g) is a con-
formally flat (lemma 1) Einstein space and hence has
constant curvature. [This does not contradict the fact
that dimK(M) = 7; it simply means that no global,
10-dimensional Killing algebra exists on M but that
a local 10-dimensional Killing algebra exists in some
neighbourhood of each m ∈ M .] In the former case one
has constant Segre type {1, (111)} for Ricc on M and
so the two Ricci eigenvalues are distinct constants. The
constancy of this Segre type shows [39] that the time-
like eigendirection of Ricc at each m ∈ M gives rise to
a smooth distribution D on M (but there may not be a
smooth global (timelike) vector field on M spanning it).
However, there is a local smooth (unit timelike) vector
field, say u, spanning it in some neighbourhood of any
point of m ∈ M and in such a (connected, coordinate)
neighbourhood U one has Rab = αgab − βuaub for con-
stants α and β with β 6= 0. Since (M, g) is conformally
flat the Bianchi identity gives

Rab;c −Rac;b = 0 (12)

For X ∈ K(M), LXRicc = 0, and so LX(uaub) =
0 from which it easily follows that LXua = λua for
some (smooth) function λ on U . A back substitution
then gives λ = 0 and so LXua = 0 on U . Since X ∈
K(M), the corresponding local flow maps φt then sat-
isfy φt∗u = u and so φt∗(∇u) = ∇u where ∇ is the
Levi-Civita connection from g. In coordinates this is
LX(ua;b) = 0 and so if F is the bivector on U de-
fined by Fab = u[a;b], LXF = 0 (⇔ φt∗F = F ). If
this last equation is applied at m with X ∈ Im and
F (m) 6= 0, the fact that the maps φt∗ are transitive
on null directions at m contradicts the known result
(section 3) that F (m), has a finite, non-zero number
of null eigendirections. It follows that F (m) = 0 and
since this holds at each m ∈ U , ua;b = ub;a on U .
Now apply the isotropy at each such m this time to
the symmetric tensor ua;b to get ua;b = ρgab +σuaub on
U for smooth functions ρ and σ [1,6] (which are actu-
ally constant on U since LX(ua;b) = 0 and since there is
a single 4-dimensional orbit for K(M), but this fact is
not needed). Since uaua is constant, uaua;b = 0 and so
ρ = σ. Thus ua;b = ρ(gab + uaub) on U . A substitution
of this into (12) reveals that ρ = 0 and so ua;b = 0 on
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U . Then one may choose U and a function t : U → R
so that ua = t,a(≡ ta).

Since there is a single 4-dimensional orbit for K(M)
one may choose (U and) six members Xi ∈ K(M)
(1 ≤ i ≤ 6) and six smooth associated functions µi ≡
Xa

i ta such that (a) X1(m′), X2(m′) and X3(m′) are
independent members of Tm′M for each m′ ∈ U , (b)
µ1(m) = µ2(m) = µ3(m) = 0 and (c) X4, X5 and X6

are independent members of Im (and hence of K(M))
and so X4(m) = X5(m) = X6(m) = 0. It follows that
the vector fields Xi ((1 ≤ i ≤ 6)) are independent mem-
bers of K(M). [To see this suppose Z ≡ ∑6

1 νiXi = 0
on M (νi ∈ R). Then Z(m) = 0 ⇒ ν1 = ν2 = ν3 = 0
(from (a) and (c)) and so Z =

∑6
4 νiXi = 0 on M

from which it follows from (c) that ν4 = ν5 = ν6 = 0.]
Now the Ricci identity for u gives Ra

bcdu
d = 0 where

Ra
bcd are the components of the curvature tensor of

∇ on U . So Rabu
b = 0 and hence α = −β 6= 0 and

Rab = α(gab + uaub) on U . Now it follows from (3)
that, for any X ∈ K(M), Xa

;bc = F a
b;c = Ra

bcdX
d on

U . One now easily finds that µi
;ab = Rc

abdX
dtc = 0 and

µi
,ata = 0 on U (1 ≤ i ≤ 6). Thus each covector field µi

,a

on U is covariantly constant on U and hence, from the
Ricci identity, Ra

bcdµ
i
,a = 0 and so Ra

bµi
,b = 0 contra-

dicting the fact that Ricc has everywhere rank 3, unless
each µi

,a is proportional to ta on U . It follows that µi

is a function of t only on U and since µi
,ata = 0 on U ,

µi
,a = 0 on U . Since U is connected and µi(m) = 0 each

µi vanishes on U and so each Xi is orthogonal to u on
U . It follows that for 1 ≤ i, j ≤ 6, the Killing vector
field [Xi, Xj ] is orthogonal to u on U . But, since K(M)
is 7-dimensional and transitive and Xi (1 ≤ i ≤ 6)
are independent, a basis for K(M) can be formed from
these Xi augmented by another member Y ∈ K(M)
which is nowhere orthogonal to the distribution D on
U . On writing [Xi, Xj ] out as a linear combination of
the Xi and Y on M and applying the condition of be-
ing orthogonal to u on U one finds that [Xi, Xj ] is a
linear combination of Xi (1 ≤ i ≤ 6) on M and so
the members Xi (1 ≤ i ≤ 6) of K(M) constitute a 6-
dimensional subalgebra A of K(M) which restricts to
a 3-dimensional Frobenius type distribution S on U .
Since U is connected, S admits 3−dimensional integral
manifolds through each point of U [3] and which are
(spacelike and) orthogonal to the distribution D (that
is, orthogonal to any spanning member of D) every-
where on U . Now write M = M1∪M2 where M1 denotes
the subset of those points of M at which each member
of A is orthogonal to D and M2 = M \M1. Clearly, by
definition, M2 is open in M and M1 6= ∅. If m ∈ M1,
the subspace S(m) = {X(m) : X ∈ S} of TmM is
3-dimensional at m since (M, g) is homogeneous. It fol-
lows that any m ∈ M1 admits a neighbourhood such

as U above with U ⊂ M1 and hence M1 is open in M .
Since M is connected and M1 6= ∅, M = M1 and the in-
tegral manifolds of S are 3−dimensional, spacelike and
orthogonal to D everywhere on M . These integral man-
ifolds with their induced metric from g thus admit (at
least six and hence) exactly six induced independent
Killing vector fields (section 3) and are thus of con-
stant curvature. Choosing Gauss coordinates based on
the level surfaces of t and the (geodesic) vector field u

yields, locally, the usual metric for the Einstein static-
type universe. It is clear that u spans the “axis” of the
isotropy at each m ∈ U .

In the case that dimK(M) = 6 and each orbit is
3−dimensional and spacelike then for any m ∈ M there
exists a connected coordinate domain U and X, Y, Z ∈
K(M) such that X(m′), Y (m′) and Z(m′) are indepen-
dent members of Tm′M for each m′ ∈ U . Thus X, Y

and Z span the orbits of K(M) on U and a nowhere-
zero, smooth, timelike vector field T on U is given by
T a = εa

bcdX
bY cZd, where ε denotes the alternating

tensor. Thus T aXa = T aYa = T aZa = 0 on U and a dif-
ferentiation of each of these, using (2) and a subsequent
contraction with T b shows that each integral curve of T

is geodesic and orthogonal to the orbit. As in the pre-
vious case the orbits of K(M) within U (and with the
latter having its induced metric from g) are spaces of
constant curvature and Gauss coordinates yield a met-
ric on (if necessary, a reduced) U of the form

ds2 = −dt2 + hαβdxαdxβ (α, β = 1, 2, 3) (13)

where t is an affine parameter on the geodesics or-
thogonal to the orbits and where the Ricci tensor on
U takes the form Rab = α(t)gab − β(t)vavb where α

and β are functions on U , v = dt (va = t,a) and α

and β are smooth since Ricc, g and v are. If the subset
{m ∈ M : β(m) = 0} of M has non-empty interior then
on each component of this interior α is constant and the
metric induced on it from g, has constant curvature. If
the open subset V = {m ∈ M : β(m) 6= 0} of M is non-
empty a straightforward argument (see, e.g.,[40]) using
the conformally flat Bianchi identity (12) but with the
right hand side now given by 1

6 (gabR,c−gacR,b) now re-
veals that each m ∈ V admits a coordinate neighbour-
hood on which (13) holds with hαβ = f(t)qαβ where the
components qαβ are independent of t. Thus one achieves
the standard FRWL metric locally on V . The next the-
orem now follows.

Theorem2
Suppose (M, g) is cosmological. Then either
(i) Im is isomorphic to L at each m ∈ M . In this

case (M, g) is of constant curvature, dimK(M) = 10,
there is a single 4-dimensional orbit and (M, g) is thus,
locally, de Sitter, anti-de Sitter or Minkowski, or
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(ii) Im is isomorphic to o(3) at each m ∈ M and
K(M) has a single 4-dimensional orbit. In this case
dimK(M) = 7 and (M, g) either has constant curva-
ture or is locally of the Einstein static type, or

(iii) Im is isomorphic to o(3) at each m ∈ M and
each orbit is 3-dimensional and spacelike. In this case
dimK(M) = 6 and, for each m in the open dense subset
V ∪ int(M \ V ) of M , there exists a connected, open
neighbourhood of m whose restricted metric is either
of constant curvature or of the usual FRWL type.

The assumption that (M, g) is cosmological also for-
ces “homogeneity” onto (M, g) in the following sense.
For theorem 2 parts (i) and (ii), K(M) is transitive
on M . If in part (ii) one does not have the constant
curvature situation, the orbits associated with the sub-
algebra A of K(M) define space sections and hence a
local cosmic time and spatial homogeneity for (M, g).
If the conditions of theorem 2(iii) hold the Killing or-
bits provide global 3-dimensional, spacelike submani-
folds which again form the basis of a local cosmic time
and spatial homogeneity.

Thus the definition of (M, g) being “cosmological”
leads essentially to the usual cosmological models. Some
remarks on the idea of a space-time being locally cos-
mological are given in section 7.

6 Application to Plane Waves

A plane wave in general relativity theory is usually
taken to be a space-time (M, g) with a global chart
u, v, x, y (with some appropriate range for the coordi-
nates u, v, x, y), which is not flat and where the metric
takes the form (5) [34] (see also [6]) where H satis-
fies H(x, y, u) = a(u)x2 + b(u)y2 + c(u)xy for smooth
functions a, b and c. [One should also mention here the
metric given in [41] (see also [6]) which is not contained
in (5) but which, perhaps, should be included in this
general discussion. It will be commented on later.] For
the metric (5), 5 ≤dimK(M) ≤ 7, and at each m ∈ M ,
2 ≤dimIm ≤ 3, with Im containing a subalgebra iso-
morphic to the 2−dimensional Lie algebra R8 in table 1.
The Weyl tensor is, at any m ∈ M , of Petrov type N or
O and the Ricci tensor is, at any m ∈ M , either zero or
of the null fluid type and, if non-zero, its representative
null direction la ≡ gabu,b coincides with the repeated
principal null direction of the Weyl tensor (if the latter
is non-zero) and is covariantly constant. If (5) is a vac-
uum metric, 5 ≤dimK(M) ≤ 6, and dimIm = 2 with
Im isomorphic to R8. Any 3-dimensional null hypersur-
faces of constant u can be interpreted as representing
the collection of all world lines of the waves (rays), with
tangent vector l which intersect it. If dimK(M) = 5
(and in some cases when it is 6) these hypersurfaces

are orbits of K(M); otherwise (M, g) is transitive. [It is
remarked that the metric in [41] admits no non-trivial
covariantly constant vector field.]

To proceed further let (M, g) be (any) space-time
and, for m ∈ M , let l ∈ TmM be null. A spacelike 2-
space A of TmM orthogonal to l is called a wave surface
of l at m [34]. If some observer O passing through m

has a worldline with timelike tangent vector T at m

and with T orthogonal to each member of A then A is
called an instantaneous wave surface of l to O at m and
is uniquely determined by l and T . If x ∧ y is a wave
surface of l at m spanned by orthogonal, spacelike vec-
tors x, y ∈ TmM the family of all wave surfaces of l at
m, denoted by Wm(l), can be shown to be in bijective
correspondence with the collection (x + al) ∧ (y + bl),
for a, b ∈ R, that is, with the set R2. Each member of
this collection is an instantaneous wave surface of l to
some observer at m and any observer at m has its in-
stantaneous wave surface of l of this form. Thus Wm(l)
can be regarded as the set containing the original (in-
stantaneous) wave surface of l to a particular observer
O at m together with those for all other observers at
m related to O by a Lorentz boost at m. This is easily
checked using elementary Lorentz transformation the-
ory. The members of Wm(l) are simply those 2-spaces
tangent to the level surface of u at m which do not
contain l(m).

Returning to the metric (5) and its associated Killing
algebra K(M) it can be checked that for each m ∈ M ,
the isotropy algebra Im is such that its associated maps
φt∗ are transitive on Wm(l), that is, if p, q ∈ TmM span
one such wave surface at m, φt∗(p) and φt∗(q) can, for
appropriate φt, span any other wave surface at m (see
the comments regarding the action of φt∗ at the end of
the first paragraph of section 3). In this sense the in-
stantaneous wave surfaces of l at m to all observers at m

are indistinguishable. It is remarked that any member
of Wm(l) may be extended to a 2−dimensional subman-
ifold of M to which it is tangent at m. To see this note
that one such submanifold W containing m is given by
appropriate choices of constant values for u and v in
(5). Then choose a coordinate neighbourhood U of m

whose coordinates are the restrictions of u, v, x, y to U

and on which the appropriate φt from Im is defined.
Then if W ′ is the submanifold of U through m with
appropriate choices of constant values for u and v in U ,
φt(W ′) is the required submanifold. [If the metric (5)
is chosen to be geodesically complete (as it can be [34])
any affine vector field (and hence each X ∈ K(M)) is
complete as a vector field [4] and so K(M) gives rise to
an effective action of a connected Lie group on M as
a Lie transformation group ([5], see also [3,1]). In this
case, each local flow φt is defined on the whole of M
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and so an appropriate choice of φt will map W onto the
required submanifold.

Now suppose that a second definition of a plane
wave is proposed, that is, a space-time (M, g) which
is not flat and which admits a Killing algebra K(M)
such that, at each m ∈ M , there is a unique null direc-
tion spanned by l′ ∈ TmM , called the wave direction
at m, for which the transformations φt∗ arising from
Im are transitive on Wm(l′). Thus the “symmetry” in
this second definition arises by assuming the indistin-
guishability of the instantaneous wave surfaces of l′ for
all observers at m for each m ∈ M . It follows that if
k ∈ TmM is not proportional to l′, Im cannot fix the
direction of k. To see this suppose it does and that
kal′a = 0 at m. Then k is spacelike and lies in some
wave surface S ∈ Wm(l′). But then all wave surfaces
that Im can map S into must contain k and since it is
easily checked that l′ must have a wave surface not con-
taining k a contradiction is obtained. If, on the other
hand, kal′a 6= 0 at m, k ∧ l′ is timelike and the orthogo-
nal complement S of l′ ∧ k is spacelike, orthogonal to k

and in Wm(l′). Then the only wavesurface that Im can
map S into is itself and again a contradiction arises.
This completes the proof and reference to table 1 im-
mediately shows that the only possibilities for Im are
R8, R9, R11, R12 and R14 with l′ = l. This is because
R15 is transitive on wave surfaces of all null directions
and the others either fix a non-null direction or two
distinct null directions in contradiction to the above
result. Hence dimIm ≥ 2. Each of these possibilities is,
in fact, transitive on Wm(l) (since R8 is and all the
others contain R8 as a subalgebra) and each fixes the
null direction l (since each bivector in their Lie alge-
bras has l as an eigenvector). Hence l is unique in this
respect since if any of these subalgebras were transitive
on wave surfaces of another null direction the previous
argument shows that it could not fix the direction of l.

With (M, g) satisfying this new definition of a plane
wave let Mk = {m ∈ M : dimIm = k} so that M =
M2 ∪ M3 ∪ M4 and each m ∈ M2 has Im of type R8,
each m ∈ M3 of type R9, R11 or R12 and each m ∈ M4

of type R14. Since dimK(M) =dimOm+dimIm, each
Mk is a union of orbits of dimension (dimK(M) − k)
and a simple application of the rank theorem shows
that M2 and M2 ∪ M3 are open subsets of M . Now
if intMk 6= ∅ the orbit through any point of intMk is
dimensionally stable. The following lemmas are easily
established for this second definition of a plane wave.
The proofs are largely similar to those in the cosmolog-
ical case and only the first is given (theorem 1 is useful
in many places here). Always (M, g) will be assumed to
satisfy the above (second) definition of a plane wave.

Lemma3

Suppose M is such that Riem does not take the
constant curvature form at any m ∈ M and let O be
a dimensionally stable orbit in K(M). Then O is of
dimension 3 or 4. If dimO = 3, O is null and the wave
direction l(m) is normal to O at each m ∈ O. Whatever
the dimension of O, Im is either type R8 or R11 at each
m ∈ O.

Proof
Since O is dimensionally stable, if dimO 6= 4 one

must have dimO = 3 (otherwise, one gets dimK(M) ≤
3 and hence dimIm ≤ 1 from theorem 1 and a contradic-
tion). If m ∈ O one can choose an open neighbourhood
U of m and a smooth vector field k on U such that
all orbits through U are 3−dimensional and k is every-
where orthogonal to these orbits on U . It follows that
kaXa = 0 on U for any X ∈ K(M). Choosing X to
be a non-trivial member of Im (so that X(m) = 0) a
differentiation of kaXa = 0 and evaluation at m shows
that Fabk

b = 0 at m for each bivector F in Im. It fol-
lows (table 1) that Im must be of type R8 or R11 and
that the direction spanned by k is unique and null being
equal to the wave direction l(m) at m. It follows that O

is (3−dimensional and) null. If Im is of type R9, R12 or
R14 at some m ∈ M , the previous argument shows that
the orbit through m is 4−dimensional and this forces
C = 0 on O and also O to be an Einstein space ([1] p
302). Thus (M, g) is of constant curvature on O and a
contradiction follows. ¤

Lemma4
Let O be an orbit in K(M) of dimension 4. Then
(i) O ⊂ M2 ⇔ dimK(M) = 6 and if these hold,

M4 = ∅ and if M3 6= ∅ it is the union of a (possibly
empty) family of 3−dimensional, dimensionally stable
null orbits at each point of which Im is of type R11,
together with at least one non-empty, 3−dimensional,
null but not dimensionally stable orbit.

(ii) O ⊂ M3 ⇔ dimK(M) = 7 and if these hold,
M2 = ∅ and intM4 = ∅. Any orbit in M4 is 3−dimensio-
nal, null but not dimensionally stable.

(iii) O ⊂ M4 ⇔ dimK(M) = 8 and if these hold,
M2 = M3 = ∅ and M = M4 is of constant curvature.

Lemma5
Let O be an orbit in K(M) of maximum dimension

with dimO = 3. Then O is dimensionally stable and,
from lemma 3, is null and O ⊂ M2 or O ⊂ M3 and

(i) O ⊂ M2 ⇔ dimK(M) = 5 and if these hold,
intM3 =intM4 = ∅ and hence any orbit in M3 or M4 is
of respective dimension 2 or 1 and is not dimensionally
stable.

(ii) O ⊂ M3 ⇔ dimK(M) = 6 and if these hold,
M2 = M4 = ∅.

Theorem3
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Suppose (M, g) satisfies the above (second) defin-
ition of a plane wave, that all orbits are dimension-
ally stable and that Riem nowhere satisfies the con-
stant curvature condition. Then either M = M2 with
dimK(M) = 5 (respectively, dimK(M) = 6) and all or-
bits are 3−dimensional and null (respectively, there ex-
ists a single 4−dimensional orbit) and Im is of type R8

for each m ∈ M , or, M = M3 with dimK(M) = 6 (re-
spectively, dimK(M) = 7) and all orbits are 3−dimens-
ional and null (respectively, there exists a single 4−dim-
ensional orbit) and Im is of type R11 for each m ∈ M .

Now suppose, that the conditions of theorem 3 hold.
Then at no m ∈ M can Ricc and C vanish together
since then Riem would satisfy the constant curvature
condition at m. Now consider those cases where the
orbits are 3−dimensional (and null). If the isotropy is
R8 at each point, Ricc, where it does not vanish, is
of Segre type {(211)} (with null eigenvector l) and C,
where it does not vanish, is of Petrov type N (with
principal null direction spanned by l). If the isotropy
is R11, C = 0 and Ricc is nowhere zero and has Segre
type {(211)} (with null eigenvector l). Also the null
normal to the orbits, l, may be scaled so that la;b = lb;a
on some open neighbourhood U of any m ∈ M , and
satisfies LX l = λl on U . Since also Xala is zero on
U , a differentiation of this and use of the preceeding
result shows that λ = 0 and so LX l = 0 on U . Thus
LX la;b = 0 on U . Since la;b is symmetric, one finds
from the isotropy that la;b = αgab + βlalb for functions
α and β on U and a contraction with la shows that
α = 0, that is la;b = βlalb. One may now compute
Ra

bcdl
d in two ways; once from the Ricci identity on l

and again from the expression for Riem and the above
algebraic conditions on Ricc and C. One finds, after
a short calculation, that the Ricci scalar vanishes on
U and hence the space-time is either vacuum or a null
fluid. It now follows (see, e.g. [6] sections 12.1 and 24.2)
that under the conditions of theorem 3, either (M, g) is
(locally) a plane wave space-time (with the usual (first)
definition given at the beginning of this section) which,
at each m ∈ M , either satisfies the vacuum condition or
has an energy-momentum tensor of the null fluid type
where the null fluid direction is represented, locally, by
a covariantly constant null vector field, or that it is
one of the type N, pure radiation (with cosmological
constant), homogeneous metrics first given in [41] and
for which dimK(M) = 6. Those cases with Im of type
R11 are conformally flat (and hence are not vacuum)
and those with Im of type R8 are such that the Weyl
tensor is of Petrov type N where it is non-zero. The
examples with either M = M2, dimK(M) = 6 and Im

of type R8 or with M = M3, dimK(M) = 7 and Im of

type R11 are homogeneous. Thus the two definitions of
a plane wave considered in this section are essentially
equivalent.

7 Local Symmetry

The concept of a local symmetry can now be discussed.
For both mathematical and physical reasons, the idea
of a symmetry being represented by a global Killing vec-
tor field is rather a strong restriction (cf section 1). Let
M be a manifold of any dimension admitting a met-
ric g of any signature and let U be some non-empty
open subset in M . Suppose X is a smooth vector field
on U which satisfies Killing’s equations (2) on U . Then
X is called a local Killing vector field for M (but note
that X may not be extendible to a global Killing vector
field on M and so may not be a member of K(M)—–
just consider an arbitrary space-time possessing a “flat”
proper open subset). One may speak of (M, g) as pos-
sessing “local” symmetry if M admits a collection of
local Killing vector fields such that for any m ∈ M

there exists an open neighbourhood U of m together
with a non-trivial local Killing vector field X from this
collection defined on U . The set of all Killing vector
fields defined on a particular U is then a Lie algebra in
the usual way, denoted by K(U). It is clear that if V

is an open subset of U , any X ∈ K(U) restricts to a
member of K(V ), but that there may be Killing vec-
tor fields defined on V that cannot be extended to U .
It turns out that if (M, g) possesses “local” symmetry
and m ∈ M , there exists an open subset W of m on
which the Killing algebra K(W ) is “maximal”, that is,
if W ′ ⊂ W , dimK(W ′) =dimK(W ) and K(W ) may be
called the local Killing algebra at m. The open subset
W is called special for m and it can be shown that W

is then special for any m′ ∈ W [30]. Local Killing al-
gebras occur naturally in mathematics, for example, as
mentioned in section 2, a space of constant curvature is
characterised as a pair (M, g) with M a (connected, etc)
manifold of dimension n and g a metric on M of arbi-
trary signature such that each m ∈ M admits a special
neighbourhood U with K(U) of maximum dimension
1
2n(n + 1) (which equals 10 for space-times). Clearly,
if (M, g) admits a global Killing algebra of this maxi-
mum dimension then the previous local Killing condi-
tion is satisfied and (M, g) is of constant curvature but
conversely, if (M, g) is of constant curvature, only the
local Killing algebras are guaranteed and may not be
extendible to M (e.g. consider a 2−dimensional, infi-
nite cylinder in R3). One may define local conformal,
affine, etc, symmetry in an analogous way. It then fol-
lows, for example, that (M, g) has vanishing Weyl ten-
sor (so that it is conformally flat) if and only if each
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m ∈ M has a special neighbourhood U with C(U) of
maximum dimension 1

2 (n + 1)(n + 2) (which equals 15
for space-times).

From the point of view of physics the same conclu-
sion may be arrived at for different reasons. Symmetry
in physics is a consequence of observation and experi-
ment and is thus local. Thus if experiment determines
something that may be described in terms of Killing
symmetry this description is really in terms of local
Killing symmetry. One question that may be asked con-
cerns the relationship between local and global Killing
symmetry. Clearly a global Killing algebra of a cer-
tain dimension yields a local Killing algebra of at least
that dimension for each m ∈ M . The converse centres
around whether one can extend a local Killing vector
field or a local Killing algebra on some neighbourhood
like U above to a global one on M . An answer to this
question is that if the local Killing algebras (that is, on
the above special neighbourhoods) all have the same di-
mension N and if the manifold topology of M is simply
connected then the global Killing algebra has dimension
N [30,31]. In other words any of these local Killing vec-
tor fields can be extended to a global one. Thus, for ex-
ample, in cosmology, if all astronomers are convinced
that the universe exhibits local symmetry consistent
with the 6-dimensional Killing algebra characteristic of
the generic FRWL metrics, and if the universe can be
represented by a simply connected manifold, then the
universe admits a global 6-dimensional Killing algebra
of the FRWL form. Similar results hold for homothetic,
affine and conformal symmetry [31].
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Abstract We review a recently proposed framework
for studying axially symmetric dissipative fluids [1]. Some
general results are discussed at the most general level.
We then proceed to analyze some particular cases. First,
the shear-free case is considered [2]. We shall next dis-
cuss the perfect fluid case under the geodesic condition,
without impossing ab initio the shear–free condition [3].
Finally a dissipative, geodesic fluid [4], is analyzed in
some detail. We conclude by bringing out the attention
to some open issues.

Keywords Relativistic fluids · Gravitational radiation

1 INTRODUCTION

The main purpose of the line of work outlined in this
conference, is to establish the relationship between grav-
itational radiation and source properties. Thus, for ex-
ample, we known that gravitational radiation is an ir-
reversible process, accordingly there must exist an en-
tropy production factor in the equation of state (dissi-
pation) of the source.

Since we are dealing with gravitational radiation,
we need to depart from the spherical symmetry. On
the other hand, we shall rule out cylindrical symmetry
on physical grounds. Thus we are left with axial and
reflection symmetry, which as shown in [5] is the highest
degree of symmetry of the Bondi metric [6], which do
not prevent the emission of gravitational radiation.

We are using the 1+3 formalism [7–9], in a given co-
ordinate system, and we are going to ressort to a set of
scalar functions known as Structure Scalars [10], which
have been shown to be very useful in the description of
self–gravitating systems [11–20].

ae-mail: lherrera@usal.es

2 BASIC EQUATIONS, CONVENTIONS
AND NOTATION

We shall consider fluid distributions endowed with axial
and reflection symmetry, and we shall assume the line
element to be of the form:

ds2 = −A2dt2+B2
(
dr2 + r2dθ2

)
+C2dφ2+2Gdθdt,(1)

where A,B, C, G are positive functions of t, r and θ,
and coordinates are numbered as: x0 = t, x1 = r, x2 =
θ, x3 = φ.

The energy momentum tensor describes a dissipa-
tive fluid distribution and in its canonical form may be
written as:

Tαβ = (µ + P )VαVβ + Pgαβ + Παβ + qαVβ + qβVα. (2)

with

µ = TαβV αV β , qα = −µVα − TαβV β , (3)

P =
1
3
hαβTαβ , Παβ = hµ

αhν
β (Tµν − Phµν) , (4)

hµν = gµν + VνVµ, (5)

V α = (
1
A

, 0, 0, 0); Vα = (−A, 0,
G

A
, 0). (6)

where µ, P,Παβ , qα, Vα denote the energy density , the
isotropic pressure, the anisotropic tensor, the dissipa-
tive flux and the four velocity respectively.

Next,in order to form an orthogonal tetrad, let us
introduce the unit, spacelike vectors K,L, S, with com-
ponents

Kα = (0, B, 0, 0); Lα = (0, 0,

√
A2B2r2 + G2

A
, 0), (7)

Sα = (0, 0, 0, C), (8)

satisfying the following relations:

VαV α = −KαKα = −LαLα = −SαSα = −1, (9)
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VαKα = V αLα = V αSα =

KαLα = KαSα = SαLα = 0. (10)

In terms of the above vectors, the anisotropic tensor
may be written as

Παβ =
1
3
(2ΠI + ΠII)(KαKβ − hαβ

3
)

+
1
3
(2ΠII + ΠI)(LαLβ − hαβ

3
)

+ 2ΠKLK(αLβ), (11)

with

ΠKL = KαLβTαβ , , (12)

ΠI = (2KαKβ − LαLβ − SαSβ)Tαβ , (13)

ΠII = (2LαLβ − SαSβ −KαKβ)Tαβ . (14)

For the heat flux vector we may write

qµ = qIKµ + qIILµ, (15)

or

qµ = (
qIIG

A
√

A2B2r2 + G2
,
qI

B
,

AqII√
A2B2r2 + G2

, 0), (16)

qµ =

(
0, BqI ,

√
A2B2r2 + G2qII

A
, 0

)
. (17)

2.1 Kinematical variables

The kinematical variables (the four acceleration, the ex-
pansion, the shear tensor and the vorticity) are defined
respectively as:

aα = V βVα;β = aIKα + aIILα

=
(

0,
A,r

A
,

G

A2

[
−A,t

A
+

G,t

G

]
+

A,θ

A
, 0

)
, (18)

Θ = V α
;α

=
AB2

r2A2B2 + G2

[
r2

(
2
B,t

B
+

C,t

C

)

+
G2

A2B2

(
B,t

B
− A,t

A
+

G,t

G
+

C,t

C

)]
, (19)

σαβ = V(α;β) + a(αVβ) −
1
3
Θhαβ , (20)

or

σαβ =
1
3
(2σI + σII)(KαKβ − 1

3
hαβ)

+
1
3
(2σII + σI)(LαLβ − 1

3
hαβ), (21)

where

2σI + σII =
3
A

(
B,t

B
− C,t

C

)
, (22)

2σII + σI =
3

A2B2r2 + G2

[
AB2r2

(
B,t

B
− C,t

C

)

+
G2

A

(
−A,t

A
+

G,t

G
− C,t

C

)]
, (23)

ωα =
1
2

ηαβµν V β;µ V ν =
1
2

ηαβµν Ωβµ V ν , (24)

where Ωαβ = V[α;β] + a[αVβ], ωα and ηαβµν denote the
vorticity tensor, the vorticity vector and the Levi-Civita
tensor, respectively;

Ωαβ = Ω(LαKβ − LβKα), (25)

ωα = −ΩSα. (26)

Ω =
G(G,r

G − 2A,r

A )

2B
√

A2B2r2 + G2
. (27)

Observe that from (27) and regularity conditions at
the centre, it follows that: G = 0 ⇔ Ω = 0.

2.2 The orthogonal splitting of the Riemann Tensor
and structure scalars

Using the well kown decomposition of the Riemann ten-
sor in terms of the Weyl tensor, the Ricci tensor and the
Ricci scalar, and linking the two later variables with the
energy momentum tensor, via the Einstein equations, it
can be shown that the Riemann tensor may be written
as:

Rαβ
νδ = Rαβ

(F ) νδ + Rαβ
(Q) νδ + Rαβ

(E) νδ + Rαβ
(H) νδ, (28)

with

Rαβ
(F ) νδ =

16π

3
(µ + 3P )V [αV[νh

β]
δ] +

16π

3
µhα

[νhβ
δ], (29)

Rαβ
(Q) νδ = −16πV [αh

β]
[ν qδ] − 16πV[νh

[α
δ] q

β] − (30)

−16πV [αV[νΠ
β]
δ] + 16πh

[α
[ν Π

β]
δ]

Rαβ
(E) νδ = 4V [αV[νE

β]
δ] + 4h

[α
[ν E

β]
δ] , (31)

Rαβ
(H) νδ = −2εαβγV[νHδ]γ − 2ενδγV [αHβ]γ . (32)

In the above, Eαβ ,Hαβ denote the electric and mag-
netic parts of the Weyl tensor, respectively, defined as
usual by:

Eαβ = CανβδV
νV δ, Hαβ =

1
2
ηανερC

ερ
βδ V νV δ ,(33)

where εαβρ = ηναβρV
ν .
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In our case these tensors may be written in terms
of five scalar functions as:

Eαβ =
1
3
(2EI + EII)(KαKβ − 1

3
hαβ)

+
1
3
(2EII + EI)(LαLβ − 1

3
hαβ)

+ EKL(KαLβ + KβLα), (34)

Hαβ = H1(SαKβ + SβKα) + H2(SαLβ + SβLα). (35)

Let us now introduce the following tensors

Yαβ = RανβδV
νV δ, (36)

Xαβ =
1
2
η ερ

αν R?
ερβδV

νV δ, (37)

Zαβ =
1
2
εαερR

ερ
δβ V δ, (38)

where R?
αβνδ = 1

2ηερνδR
ερ

αβ .
Or, using (28)

Yαβ =
1
3
YT hαβ +

1
3
(2YI + YII)(KαKβ − 1

3
hαβ)

+
1
3
(2YII + YI)(LαLβ − 1

3
hαβ)

+ YKL(KαLβ + KβLα), (39)

with

YT = 4π(µ + 3P ), (40)

YI = EI − 4πΠI , (41)

YII = EII − 4πΠII , (42)

YKL = EKL − 4πΠKL. (43)

Xαβ =
1
3
XT hαβ +

1
3
(2XI + XII)(KαKβ − 1

3
hαβ)

+
1
3
(2XII + XI)(LαLβ − 1

3
hαβ)

+ XKL(KαLβ + KβLα), (44)

with

XT = 8πµ, (45)

XI = −EI − 4πΠI , (46)

XII = −EII − 4πΠII , (47)

XKL = −EKL − 4πΠKL. (48)

Finally

Zαβ = Hαβ + 4πqρεαβρ. (49)

or

Zαβ = ZIKβSα+ZIIKαSβ+ZIIILαSβ+ZIV LβSα(50)

where

ZI = (H1 − 4πqII); ZII = (H1 + 4πqII);

ZIII = (H2 − 4πqI); ZIV = (H2 + 4πqI). (51)

Variables:YT,I,II,KL, XT,I,II,KL, ZI,II,III,IV are the struc-
ture scalars of our distribution.

2.3 The super–Poynting vector

An important role in our discussion is played by the
super–poynting vector. Indeed, we recall that we define
a state of intrinsic gravitational radiation (at any given
point), to be one in which the super-Poynting vector
does not vanish for any unit timelike vector [21–23].
Then since the vanishing of the magnetic part of the
Weyl tensor implies the vanishing of the super-Poynting
vector, it is clear that FRW does not produce gravita-
tional radiation. It is also worth recalling that the tight
link between the super-Poynting vector and the exis-
tence of a state of radiation, is firmly supported by the
relationship between the former and the Bondi news
function [6,24] (see [25] for a discussion on this point).

Then from the definition of the super-Poynting vec-
tor,

Pα = εαβγ

(
Y γ

δ Zβδ −Xγ
δ Zδβ

)
, (52)

we obtain

Pα = PIKα + PIILα, (53)

with

PI =
H2

3
(2YII + YI − 2XII −XI) + H1(YKL −XKL)

+
4πqI

3
[2YT + 2XT −XI − YI ]− 4πqII(XKL + YKL),

PII =
H1

3
(2XI + XII − YII − 2YI) + H2(XKL − YKL)

− 4πqI(YKL + XKL)

+
4πqII

3
[2YT + 2XT −XII − YII ] . (54)

Both components have terms not containing heat
dissipative contributions. It is reasonable to associate
these with gravitational radiation. Also, note that both
components have contributions of both components of
the heat flux vector.

There is always a non-vanishing component of Pµ,
on the plane orthogonal to a unit vector along which
there is a non-vanishing component of vorticity (the θ−
r- plane). Inversely, Pµ vanishes along the φ-direction
since there are no motions along this latter direction,
because of the reflection symmetry.

We can identify three different contributions in (54).
On the one hand we have contributions from the heat
transport process. These are independent of the mag-
netic part of the Weyl tensor, which explains why they
remain in the spherically symmetric limit.

On the other hand we have contributions from the
magnetic part of the Weyl tensor. These are of two
kinds: a) contributions associated with the propagation
of gravitational radiation within the fluid, b) contribu-
tions of the flow of super–energy associated with the
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vorticity on the plane orthogonal to the direction of
propagation of the radiation. Both are intertwined, and
it appears to be impossible to disentangle them through
two independent scalars.

As mentioned before, both components of the heat
flux four-vector, appear in both components of the super–
Poynting vector. Observe that this is achieved through
the XKL+YKL terms in (54), or using (43, 48), through
ΠKL. Thus, ΠKL couples the two components of the
super–Poynting vector, with the two components of the
heat flux vector.

3 THE EQUATIONS

We shall now deploy the whole set of equations for the
variables defined so far.

3.1 The heat transport equation

We shall need a transport equation derived from a causal
dissipative theory (e.g. the Müller-Israel-Stewart sec-
ond order phenomenological theory for dissipative flu-
ids [26–29]).

Indeed, the Maxwell-Fourier law for radiation flux
leads to a parabolic equation (diffusion equation) which
predicts propagation of perturbations with infinite speed
(see [30]-[32] and references therein). This simple fact
is at the origin of the pathologies [33] found in the ap-
proaches of Eckart [34] and Landau [35] for relativis-
tic dissipative processes. To overcome such difficulties,
various relativistic theories with non-vanishing relax-
ation times have been proposed in the past [26–29,36,
37]. The important point is that all these theories pro-
vide a heat transport equation which is not of Maxwell-
Fourier type but of Cattaneo type [38], leading thereby
to a hyperbolic equation for the propagation of thermal
perturbations.

A fundamental parameter in these theories is the re-
laxation time τ of the corresponding dissipative process.
This positive–definite quantity has a distinct physical
meaning, namely the time taken by the system to return
spontaneously to the steady state (whether of thermo-
dynamic equilibrium or not) after it has been suddenly
removed from it. Therefore, when studying transient
regimes, i.e., the evolution between two steady–state
situations, τ cannot be neglected. In fact, leaving aside
that parabolic theories are necessarily non–causal, it
is obvious that whenever the time scale of the prob-
lem under consideration becomes of the order of (or
smaller than) the relaxation time, the latter cannot be
ignored, since neglecting the relaxation time amounts

-in this situation- to disregarding the whole problem
under consideration.

Thus, the transport equation for the heat flux reads
[27,28,31],

τhµ
ν qν

;βV β+qµ = −κhµν(T,ν+Taν)−1
2
κT 2

(
τV α

κT 2

)

;α

qµ,(55)

where τ , κ, T denote the relaxation time, the thermal
conductivity and the temperature, respectively.

Contracting (55) with Lµ we obtain

τ

A
(qII,t + AqIΩ) + qII = − κ

A

(
GT,t + A2T,θ√
A2B2r2 + G2

+ ATaII

)

− κT 2qII

2
(
τV α

κT 2
);α, (56)

where (27), has been used.
On other hand, contracting (55) with Kµ, we find

τ

A
(qI,t −AqIIΩ) + qI = − κ

B
(T,r + BTaI)

−κT 2qI

2
(
τV α

κT 2
);α. (57)

It is worth noting that the two equations above are
coupled through the vorticity. This fact entails an inter-
esting thermodynamic consequence. Indeed, let us as-
sume that at some initial time (say t = 0) and before it,
there is thermodynamic equilibrium in the θ direction,
this implies qII = 0, and also that the corresponding
Tolman’s temperature [39] is constant, which in turns
implies that the term within the round bracket in the
first term on the right of (56) vanishes. Then it follows
at once from (56) that:

qII,t = −AΩqI , (58)

implying that the propagation in time of the vanishing
of the meridional flow, is subject to the vanishing of
the vorticity and/or the vanishing of heat flow in the r-
direction.

Inversely, repeating the same argument for (57) we
obtain at the initial time when we assume thermody-
namic equilibrium,

qI,t = AΩqII . (59)

Thus, it appears that the vanishing of the radial
component of the heat flux vector at some initial time,
will propagate in time if only, the vorticity and/or the
meridional heat flow vanish.

In other words, time propagation of the thermal
equilibrium condition, in either direction r or θ, is as-
sured only in the absence of vorticity. Otherwise, it re-
quires initial thermal equilibrium in both directions.

This result is a clear reminiscence of the von Zeipel’s
theorem [40].
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3.2 The equations for the metric functions, the
kinematical variables and the Riemann tensor
components.

Let us first recall the decomposition of the covariant
derivative of the four–velocity in terms of the kinemat-
ical variables given by:

Vα;β = σαβ + Ωαβ − aαVβ +
1
3
hαβΘ, (60)

which entails all the equations (18), (19), (20), (24).
Now, if we regard the above expression as a first or-

der differential equation relating the kinematical vari-
ables with first order derivative of the metric functions,
and look for its integrability conditions, we find

Vα;β;ν − Vα;ν;β = Rµ
αβνVµ. (61)

From this last equation the following equations are
obtained, by projecting with different combinations of
the tetrad vectors:

An evolution equation for the expansion scalar (the
Raychaudhuri equation)

Θ;αV α +
1
3
Θ2 +2(σ2−Ω2)− aα

;α +4π(µ +3P ) = 0(62)

where 2σ2 = σαβσαβ .
An equation for the evolution of the shear tensor:

hµ
αhν

βσµν;δV
δ + σµ

ασβµ +
2
3
Θσαβ

− 1
3

(
2σ2 + Ω2 − aδ

;δ

)
hαβ + ωαωβ − aαaβ

− hµ
(αhν

β)aν;µ + Eαβ − 4πΠαβ = 0. (63)

An equation for the evolution of the vorticity tensor:

hµ
αhν

βΩµν;δV
δ+

2
3
ΘΩαβ+2σµ[αΩµ

β]−hµ
[αhν

β]aµ;ν = 0.(64)

Two constraint equations relating the kinematical
variables and their derivatives with the heat flux vector
and the magnetic part of the Weyl tensor:

hβ
α

(
2
3
Θ;β − σµ

β;µ + Ω µ
β ;µ

)
+(σαβ + Ωαβ) aβ = 8πqα,(65)

2ω(αaβ) + hµ
(αhβ)ν (σµδ + Ωµδ);γ ηνκγδVκ = Hαβ . (66)

3.3 The conservation equations

The conservation law Tα
β;α = 0, leads to the following

equations:

µ;αV α + (µ + P )Θ +
1
9
(2σI + σII)ΠI

+
1
9
(2σII + σI)ΠII + qα

;α + qαaα = 0, (67)

(µ + P )aα + hβ
α

(
P;β + Πµ

β;µ + qβ;µV µ
)

+
(

4
3
Θhαβ + σαβ + Ωαβ

)
qβ = 0. (68)

3.4 The Bianchi identities

Next, if we regard (61) as a system of differential equa-
tions of first order, relating the Riemann tensor com-
ponents with the kinematical variables and their deriv-
atives, and look for their integrability conditions, we
are lead to the Bianchi idenitities, which together with
(28), lead to the following set of equations:

An evolution equation for the electric part of the
Weyl tensor

hµ
(αhν

β)Eµν;δV
δ + ΘEαβ + hαβEµνσµν − 3Eµ(ασµ

β)

+ hµ
(αη δγκ

β) VδHγµ;κ − Eδ(αΩ δ
β) − 2Hµ

(αηβ)δκµV δaκ =

− 4π(µ + P )σαβ − 4π

3
ΘΠαβ − 4πhµ

(αhν
β)Πµν;δV

δ − 4πσµ(αΠµ
β)

− 4πΩµ
(αΠβ)µ8πa(αqβ) +

4π

3
(
Πµνσµν + aµqµ + qµ

;µ

)
hαβ

− 4πhµ
(αhν

β)qν;µ. (69)

A constraint equation for the spatial derivatives of the
electric part of the Weyl tensor

hµ
αhνβEµν;β − η δνκ

α Vδσ
γ
ν Hκγ + 3Hαβωβ =

8π

3
hβ

αµ;β

− 4πhβ
αhµνΠβν;µ − 4π

(
2
3
Θhβ

α − σβ
α + 3Ω β

α

)
qβ , (70)

A constraint equation for the spatial derivatives of the
magnetic part of the Weyl tensor

(
σαδE

δ
β + 3ΩαδE

δ
β

)
ε αβ
κ + aνHνκ −Hνδ

;δhνκ =

4π(µ + P )Ωαβε αβ
κ

+ 4π
[
qα;β + Πνα(σν

β + Ων
β)

]
ε αβ
κ , (71)

An evolution equation for the magnetic part of the Weyl
tensor

2aβEακε αβ
γ − Eνβ;δh

ν
κε δβ

γ + Eδ
β;δε

β
γκ +

2
3
ΘHκγ

+ Hµ
ν;δV

δhν
κhµγ − (σκδ + Ωκδ)Hδ

γ

+ (σβδ + Ωβδ) Hµ
αε δ

κ µε αβ
γ +

1
3
ΘHµ

αε δ
κ µε α

γ δ

=
4π

3
µ,βε β

γκ + 4πΠαν;βhν
κε αβ

γ

+ 4π

[
qκΩαβ + qα(σκβ + Ωκβ +

1
3
Θhκβ)

]
ε αβ
γ . (72)

Equations (55), (62)-(72) form the full set of equa-
tions for the variables of our problem. However, the
following remarks are in order at this point:

– Obviously, not all of these equations are indepen-
dent, however depending on the problem under con-
sideration, it may be more advantageous to use one
subset instead of the other, and therefore here we
present them all.
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– The scalar equations obtained by projecting the above
system, on all possible combinations of tetrad vec-
tors, are deployed in the Appendix B of [1].

– The obtained equations are of first order, unlike the
Einstein equations, which are differential equations
of second order for the metric functions. This reduc-
tion is achieved by enlarging the number of variables
and equations.

– In the case of specific modeling, another important
question arises, namely: what additional informa-
tion is required to close the system of equations? It is
clear that information about local physical aspects
of the source (e.g. equations of state and/or infor-
mation about energy production) are not included
in the set of deployed equations and therefore should
be given, in order that metric and matter functions
could be solved for in terms of initial data.

4 THE EFFECTIVE INERTIAL MASS
DENSITY OF THE DISSIPATIVE FLUID

In classical dynamics the inertial mass is defined as the
factor of proportionality between the three-force ap-
plied to a particle (a fluid element) and the resulting
three-acceleration, according to Newton’s second law.

In relativistic dynamics a similar relation only holds
(in general) in the instantaneous rest frame (i.r.f.), since
the three-acceleration and the force that causes it are
not (in general) paralell, except in the i.r.f. (see for ex-
ample [41]).

We shall derive below, an expression for the effective
inertial mass density for our dissipative fluid distribu-
tion.

By “effective inertial mass” (e.i.m.) density we mean
the factor of proportionality between the applied three-
force density and the resulting proper acceleration (i.e.,
the three-acceleration measured in the i.r.f.).

As we shall see, the obtained expression for the
e.i.m. density contains a contribution from dissipative
variables which reduces its value with respect to the
non-dissipative situation. Such decreasing of e.i.m. den-
sity was brought out for the first time in the spherically
symmetric self-gravitating case in [42]. Afterwards this
effect was also detected in the axially symmetric self-
gravitating case [43], for slowly rotating self-gravitating
systems [44], and under other many different circum-
stances [45–50].

It is perhaps worth noticing that the concept of
effective inertial mass is familiar in other branches of
physics, thus for example the e.i.m. of an electron mov-
ing under a given force through a crystal, differs from
the value corresponding to an electron moving under

the same force in free space, and may even become neg-
ative (see [51,52]).

Combining the equations (68) and (55) we obtain

(µ + P ) (1− α) aα = −hβ
αΠµ

β;µ −∇αP

− (σαβ + Ωαβ)qβ +
κ

τ
∇αT

+
{

1
τ

+
1
2
Dt

[
ln(

τ

κT 2
)
]
− 5

6
Θ

}
qα, (73)

an expression which takes the desired, ”Newtonian”,
form.

Force=e.i.m.× acceleration(proper),

where ∇αP ≡ hβ
αP,β , Dtf ≡ f,βV β and α = κT

τ(µ+P ) .

The factor multiplying the four acceleration vector
represents the effective inertial mass density. Thus, the
obtained expression for the e.i.m. density contains a
contribution from dissipative variables, which reduces
its value with respect to the non-dissipative situation.

From the equivalence principle it follows that the
“passive” gravitational mass density should be reduced
too, by the same factor. This in turn might lead, in some
critical cases when such diminishing is significative, to
a bouncing of the collapsing object.

It should be observed that causality and stability
conditions hindering the system to attain the condition
α = 1, are obtained on the basis of a linear approxima-
tion, whose validity, close to the critical point (α = 1),
is questionable [53].

At any rate, examples of fluids attaining the critical
point and exhibiting reasonble physical properties have
been presented elsewhere [54,55].

In order to evaluate α, let us turn back to c.g.s.
units. Then, assuming for simplicity µ + p ≈ 2µ, we
obtain

κT

τ(µ + p)
≈ [κ][T ]

[τ ][µ]
× 10−42 (74)

where [κ], [T ], [τ ], [µ] denote the numerical values of
these quantities in erg. s−1 cm−1 K−1, K, s and g. cm−3,
respectively.

Obviously, this will be a very small quantity (com-
pared to 1), unless conditions for extremely high values
of κ and T are attained.

At present we may speculate that α may increase
substantially (for a non-negligible values of τ) in a pre-
supernovae event

Indeed, at the last stages of massive star evolution,
the decreasing of the opacity of the fluid, from very
high values preventing the propagation of photons and
neutrinos (trapping [56]), to smaller values, gives rise
to radiative heat conduction. Under these conditions
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both κ and T could be sufficiently large as to imply a
substantial increase of α. Indeed, the values suggested
in [57] ([κ] ≈ 1037; [T ] ≈ 1013; [τ ] ≈ 10−4; [µ] ≈ 1012

) lead to α ≈ 1. The obvious consequence of which
would be to enhance the efficiency of whatever expan-
sion mechanism, of the central core, at place, because
of the decreasing of its e.i.m. density. At this point it is
worth noticing that the relevance of relaxational effects
on gravitational collapse has been often exhibited and
stressed (see [58–62], and references therein)

It is also worth noticing that the inflationary equa-
tion of state (in the perfect fluid case) µ + P = 0, is,
as far as the equation of motion is concerned, equiva-
lent to α = 1 in the dissipative case (both imply the
vanishing of the e.i.m. density).

Finally, it is worth stressing that it is the first term
on the left and the second on the right, in (55) the
direct responsible for the decreasing in the e.i.m density.
Therefore any hyperbolic dissipative theory yielding a
Cattaneo-type equation in the non-relativistic limit, is
expected to give a result similar to the one obtained
here.

5 SOME PARTICULAR CASES

In what follows we shall consider some particular cases,
where some variables (e. g. the shear) are assumed to
vanish. We do so, on the one hand for simplicity, and
on the other, in order to bring out the role of some spe-
cific variables. However, it should be kept in mind that
such kinds of “suppressions” may lead to inconsisten-
cies in the set of equations. This is for example the case
of “silent” universes [63,64], where dust sources have
vanishing magnetic Weyl tensor, and lead to a system
of 1+3 constraint equations that do not seem to be in-
tegrable in general [65]. In other words for any specific
modeling, the possible occurrence of these types of in-
consistencies should be carefully considered.

5.1 The shear free case

This case has been analyzed in detail in [2]. Below we
summarize the main results obtained under the shear–
free condition.

– For a general dissipative and anisotropic (shear free)
fluid, vanishing vorticity, is a necessary and suffi-
cient condition for the magnetic part of the Weyl
tensor to vanish.

– Vorticity should necessarily appear if the system
radiates gravitationally. This further reinforces the
well established link between radiation and vortic-
ity.

– In the geodesic (shear–free) case, the vorticity van-
ishes (and thereof the magnetic part of the Weyl
tensor). No gravitational radiation is produced. A
similar result is obtained for the cylindrically sym-
metric case, suggesting a link between the shear of
the source and the generation of gravitational radi-
ation.

– In the geodesic (non-dissipative) case, the models
do not need to be FRW, however the system relaxes
to the FRW spacetime (if Θ > 0). Such tendency
does not appear for dissipative fluids.

5.2 The perfect, geodesic fluid

In [3] we have considered the case of perfect and ge-
doesic fluid, without assuming ab initio the shear–free
condition. As the result of such study we have found
that:

– All possible models compatible with the line element
(1) and a perfect fluid, are FRW, and accordingly
non–radiating (gravitationally). Both, the geodesic
and the non–dissipative, conditions, are quite re-
strictive, when looking for a source of gravitational
waves.

– Not only in the case of dust, but also in the absence
of dissipation in a perfect fluid, the system is not
expected to radiate (gravitationally) due to the re-
versibility of the equation of state. Indeed, radiation
is an irreversible process, this fact emerges at once
if absorption is taken into account and/or Sommer-
feld type conditions, which eliminate inward travel-
ing waves, are imposed. Therefore, the irreversibil-
ity of the process of emission of gravitational waves,
must be reflected in the equation of state through
an entropy increasing (dissipative) factor.

– Geodesic fluids not belonging to the class considered
here (Szekeres) have also been shown not to produce
gravitational radiation. This strengthens further the
case of the non–radiative character of pure dust dis-
tributions.

5.3 The dissipative, geodesic fluid

From the results discussed above, it becomes clear that
the simplest fluid distribution which we might expect
to be compatible with a gravitational radiation, is a
dissipative dust under the geodesic condition. Such a
case was analyzed in [4].

The two possible subcases were considered sepa-
rately, namely: the fluid distribution is assumed, from
the beginning, to be vorticity–free, or not.
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In the former case, it is shown that the vanishing
vorticity implies the vanishing of the heat flux vector,
and therefore, as shown in [3], the resulting spacetime
is FRW.

In the latter case, it is shown that the enforcement
of the regularity conditions at the center, implies the
vanishing of the dissipative flux, leading also to a FRW
spacetime.

Thus all possible models, sourced by a dissipative
geodesic dust fluid, belonging to the family of the line
element considered here, do not radiate gravitational
waves during their evolution, unless regularity condi-
tions at the center of the distribution are relaxed. There-
fore physically acceptable models require the inclusion
of, both, dissipative and anisotropic stresses terms, i.e.
the geodesic condition must be abandoned. In this case,
purely analytical methods are unlikely to be sufficient
to arrive at a full description of the source, and one has
to resort to numerical methods.

6 OPEN ISSUES

Below we display a partial list of problems which we
believe deserve some attention:

– How could one describe the “cracking” (splitting) of
the configurations, in the context of this formalism
?

– We do not have an exact solution (written down in
closed analytical form) describing gravitational ra-
diation in vacuum, from bounded sources. Accord-
ingly, any specific modeling of a source, and its match-
ing to an exterior, should be done numerically.

– It should be useful to introduce the concept of the
mass function, similar to the one existing in the
spherically symmetric case. This could be relevant,
in particular, in the matching of the source to a spe-
cific exterior.

– What is the behaviour of the system in the quasi–
static approximation? Would be there gravitational
radiation in this case?
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Abstract In this note a brief review of the relation-
ship between Lie symmetries, Noether symmetries and
spacetime symmetries or collineations is given.
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Noether symmetries or symmetries of Lagrangians
(more generally symmetries of actions) and Lie Sym-
metries or symmetries of the corresponding equations
of motion (in general symmetries of differential equa-
tions (DEs)) play an important role in finding solutions
of DEs [1]. In the case of ordinary differential equa-
tions (ODEs) they reduce the order of the ODEs. They
can be used to reduce the number of independent vari-
ables in the case of partial differential equations (PDEs)
[2]. They have also used to linearize nonlinear DEs [3–
6]. Between these two type of symmetries the Noether
symmetries are more useful than the Lie symmetries
(for those problems for which Lagrangian exists) in the
sense as they give double reduction of DEs. Another
important property of the Noether symmetries is that
they yield conservation laws or conserved quantities or
first integrals of the Euler-Lagrange equations via the
Noether theorem [7].

On the other hand spacetime symmetries or
collineations have their own importance in Einstein’s
the theory of General Relativity (GR) [8]. The Space-
time symmetries e.g. isometries or Killing vectors (KVs),
homothetic vectors (HVs), conformal Killing vectors
(CKVs) and curvature collineations (CCs) etc have widely
used in classification of different spacetimes of GR [9–
14]. They have also used for finding exact solutions of
the Einstein Field Equations [15]. Here we give the def-
initions of the Lie symmetries, Noether symmetries and
collineations.

aE-mail: ibrar.hussain@seecs.nust.edu.pk

Consider a vector field

X=ξ(s, xµ)
∂

∂s
+ ην(s, xµ)

∂

∂xν
, (1)

where s, the arc length parameter, is the independent
variable and xµ are the dependent variables. The first
and second prolongations of the above vector field is
given by

X[1] = X + (ην
,s + ην

,µẋµ − ξ,sẋ
ν − ξ,µẋµẋν)

∂

∂ẋν
, (2)

and

X[2] = X + η[1]µ ∂

∂ẋµ
+ η[2]µ ∂

∂ẍµ
. (3)

The prolongation coefficients η[1] and η[2] are defined
by

η[1]µ =
dηµ

ds
− ẋµ ξ

ds
, (4)

η[2]µ =
dη[1]µ

ds
− ẍµ ξ

ds
. (5)

The vector field X given in (1) is said to be a Lie sym-
metry generator of a DE if

X[2]E = 0, mod E ≡ 0, (6)

where E is a second-order DE. Note that here we re-
strict the definition of Lie symmetries to the second-
order DEs only as they corresponds to the first-order
Lagrangians which are physically interesting. More gen-
eral definition of the Lie symmetries is available in the
literature (see for example [16]). Throughout this note
“ ·” denotes differentiation with respect to the indepen-
dent variable s.

The vector field X given by (1)is a Noether point
symmetry generator of the Lagrangian

L(s, xµ, ẋµ) = gµν(xσ)ẋµẋν , (7)
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if there exists a gauge function, G(s, xµ), such that

X[1]L + (Dsξ)L = DsG, (8)

where

Ds =
∂

∂s
+ ẋµ ∂

∂xµ
, (9)

is the total derivative operator. The significance of Noether
symmetries can be seen from the following Noether’s
theorem [1].

Theorem: If X is a Noether point symmetry gen-
erator corresponding to a Lagrangian L(s, xµ, ẋµ) of a
second-order ODE ẍµ = f(s, x, ẋµ), then

I = ξL + (ηµ − ẋµξ)
∂L

∂ẋµ
−G, (10)

is a first integral (the conserved quantity) of the ODE,
associated with X.

A vector field X is said to be a CKV if the condition

£Xgµν = ψ(xσ)gµν , (11)

holds [17]. Where ψ(xσ) is a conformal factor and £
denotes the Lie derivative operator. If ψ,σ = 0, then X
is known as a HV and a KV if ψ = 0, where the comma
denotes the partial derivative with respect to the space-
time coordinates. In (1), if we replace the metric tensor
gµν with the Riemann curvature tensor Rµ

νλσ and put
ψ = 0, then the vector field X is known as a CC. On
using the Weyl tensor Cµ

νλσ , Ricci tensor Rµν or mat-
ter tensor Tµν instead of the Rieman tensor one can get
Weyl collineations (WCs) [14], Ricci collineations (RCs)
[18] and matter collineations (MCs)[19] respectively. To
restrict ourselves to the four dimensional manifold of
GR, all the indexes µ, ν, λ and σ run from 0 to 3.

Among all these types of spacetime symmetries the
set of KVs is the basic one. This set is always contained
in the set of all other types of spacetime symmetries
e.g. CKVs, HVs, CCs , WCs, RCs, and MCs (for detail
see [17]). The algebra of KVs form a subalgebra of the
symmetry algebra of the geodesic equations or Euler-
Lagrange equations of the underlying spaces [20]. It is
also known that the set of Noether symmetries always
contained in the set of the Lie symmetries of the corre-
sponding Euler-Lagrange equations [16].

For the Minkowski spacetime which is flat and hence
conformally flat, it is known thatt it admits 15 CKVs
[21]. The geodesic Lagrangian for this spacetime admits
17 Noether symmetries which properly contains the 15
CKVs [22]. Since the algebras of KVs and HVs form
subalgebra of the CKVs, therefore for the Minkowski
spacetime all these three types of spacetime symmetries
are contained in the set of 17 Noether symmetries. On

the basis of this result, it was conjectured, that the alge-
bra of the CKVs form a subalgebra of the algebra of the
symmetry generators of the Lagrangian that minimizes
arc length for any spacetime [22]. A counter example
of a non-flat cylindrically symmetric static spacetime
was constructed for which the set of symmetries of the
Lagrangian for the geodesic equations only contain the
set of the KVs and not the sets of the HVs and CKVs.
Hence the conjecture was proved false [23]. The geodesic
Lagrangian depends on the metric tensor gµν only and
and not on its conformal structure, therefore it seems
reasonable that the geodesic Lagrangian may only ad-
mit the symmetries of the metric tensor i.e. KVs and
not the CKVs. Since for conformally flat spacetimes
the metric is transformed conformally, therefore, one
may expect that the geodesic Lagrangian may admit
the CKVs in the case of conformally flat spacetimes.
This issue was addressed in [24], and it was shown that
the symmetry algebra of the Lagrangian for the geo-
desic equation in conformally flat spacetimes only con-
tains the algebra of KVs and not of the CKVs.

In the recent years Noether symmetries are used
for the classification of different spacetimes in GR. In
this regards plane symmetric static [25], and spheri-
cally symmetric statics [26], spacetimes have been clas-
sified by using their Noether symmetry algebra. Re-
cently the Noether symmetry classification of Bianchi
type II spacetimes has been done in [27]. The classifi-
cation of Bianchi type V spacetimes via their Noether
symmetries has been carried out in a very recent work
[28]. Noether symmetries and its relation with KVs
has been studied in [29]. An investigation of Noether
symmetries and isometries of the minimal surface La-
grangian under constant volume in a Riemannian space
is given in [30]. Collineations, Lie symmetries and Noether
symmetries of geodesic equations have been discussed
in [31].
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Abstract In this paper we study the dynamics of scalar
field thin-shell. We formulate equation of motion using
Israel junction conditions. The corresponding effective
potentials and scalar fields are evaluated numerically
for massless and massive cases. We conclude that mass-
less scalar shell leads to collapse, expansion and equi-
librium while the massive case leads to collapse only.

Keywords Gravitational collapse · Scalar field · Israel
thin-shell formalism.
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1 Introduction

Scalar fields play a key role in several astrophysical
phenomena and have many applications in theoreti-
cal physics, cluster dynamics and cosmology. Wheeler
[1] found particle like solutions (geons) from classical
electromagnetic field coupled to general relativity (GR)
which were extended by Brill and Wheeler [2] as well as
by Frederick [3]. Bergmann and Leipnik [4] investigated
solution of the Einstein field equations in the presence
of scalar field for Schwarzschild geometry. Christodoulou
[5] examined spherically symmetric scalar collapse and
formation of singularities. Choptuik [6] studied spheri-
cally symmetric collapse of a massless scalar field min-
imally coupled with gravity and discussed its solutions
numerically.

The study of dynamics of a thin-shell has been the
subject of keen interest for many people. Chase [7] ex-
amined instability of spherically symmetric charged fluid
shell by using equation of state. Boulware [8] investi-
gated time evolution of the charged thin-shell and found
that end state of collapse could be a naked singularity

1msharif.math@pu.edu.pk
2sehrish3iftikhar@gmail.com

if and only if density is negative. Barrabès and Israel [9]
studied dynamics of thin-shells traveling at the speed
of light. Núñez et al. [10] investigated stability and dy-
namical behavior of a real scalar field for the Schwarz-
schild BH. Goncalves [11] examined dynamical proper-
ties of timelike thin-shell by using Israel formalism and
formulated necessary and sufficient condition for the
shell crossing. Recently, Sharif and Abbas [12] explored
the dynamics of scalar field charged thin-shell and con-
cluded that for both (massless and massive scalar fields)
shell can expand to infinity or collapse to zero size form-
ing a curvature singularity or bounce under suitable
conditions.

It is well-known that BH solutions (Schwarzschild,
Reissner-Nordström (RN), Kerr and Kerr-Newman) con-
tain curvature singularity beyond their event horizons.
A comprehensive understanding of BH requires singularity-
free solutions. Black holes having the regular centers
are called regular or nonsingular BHs. Regular BHs are
static and asymptotically flat, satisfying the weak en-
ergy condition. Regular BHs are the exact solutions of
Einstein’s equations for which singularity is avoided in
the presence of horizons (the exterior Schwarzschild-
like horizon and an interior de-Sitter-like horizon). An
important analysis of singularity avoidance has been
proposed by Hayward [13]. This BH consists of a com-
pact spacetime region of trapped surfaces, with inner
and outer boundaries which join circularly as a single
smooth trapping horizon.

The purpose of this paper is to study the dynamical
effects of scalar field on magnetically charged thin-shell
using Israel thin-shell formalism for Hayward BH. The
format of the paper is as follows. In the next section,
we derive equation of motion for the thin-shell using
Israel formalism. Section 3 investigates the equation of
motion for Hayward BH for both massless and massive
scalar fields. Final remarks are given in the last section.
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2 Thin-Shell Formalism and Equation of
Motion

Thin-shell formalism [14] has extensively been used to
study the dynamics of matter fields, wormholes, colli-
sion of shells, interior structure of BHs, bubble dynam-
ics and inflationary scenarios. In this method, surface
properties are described in terms of jump of the extrin-
sic curvature (functions of intrinsic coordinates of the
layer) across the boundary layer. This formalism allows
to choose four-dimensional coordinates independently
on both sides of the boundary layer. The governing
equations resulting from this formalism correspond to
the equation of motion whose solution can completely
describe the dynamics of the shell.

We assume three-dimensional timelike boundary sur-
face Σ, which splits spherically symmetric spacetime
into two four-dimensional manifolds N+ and N−. The
interior and exterior regions are described by a metric
of the form

ds2 = F±(R)dT 2−F−1
± (R)dR2−R2(dθ2+sin2 θdϕ2),(1)

where F±(R) = 1 − 2M±R2

R3+2e2
±

and M± and e± are the
mass and monopole charge of a self-gravitating mag-
netic field of a non-linear electrodynamics source, re-
spectively. The above metric describes Hayward BH
which correspond to the Schwarzschild BH for e = 0.
Moreover, it is assumed that the interior region con-
tains more mass than the exterior region, i.e., gravi-
tational masses are unequal M− 6= M+ while charge is
uniformly distributed in both regions, i.e., e = e− = e+.
By applying the intrinsic coordinates (τ, θ, ϕ) on the
hypersurface (Σ) at R = R(τ), Eq.(1) becomes

(ds)2±Σ =
[
F±(R)− F−1

± (R)(
dR

dτ
)2(

dτ

dT
)2dT 2

]

− R2(τ)(dθ2 + sin2 θdϕ2). (2)

Here, it is assumed that T (τ) is a timelike coordinate,
i.e., g00 > 0. Also, the induced metric on the boundary
surface is given as

(ds)2 = dτ2 − α2(τ)(dθ2 + sin2 θdϕ2). (3)

The continuity of first fundamental forms give[
F±(R)− F−1

± (R)(
dR

dτ
)2(

dτ

dT
)

1
2

]
dT = (dτ)Σ ,

R(τ) = α(τ)Σ . (4)

The outward unit normals η±µ in N± coordinates are
calculated as

η±µ = (−Ṙ, Ṫ , 0, 0), (5)

where dot represents differentiation with respect to τ .
The surface stress energy-momentum tensor is defined
as

Sµν =
1
κ

([Kµν ]− γµν [K]), (6)

where γµν denotes the induced metric, κ is the coupling
constant and

[Kµν ] = K+
µν −K−

µν , [K] = γµν [Kµν ]. (7)

The non-vanishing components of extrinsic curvature
are

K±
ττ =

d

dR

√
Ṙ2 + F±, K±

θθ = −R

√
Ṙ2 + F±,

K±
ϕϕ = sin2 θK±

θθ. (8)

The surface stress energy-momentum tensor for a per-
fect fluid is

Sµν = (ρ + p)uµuν − pγµν , (9)

where ρ is the energy density, p is the isotropic pressure
and uµ = δ0

µ is the velocity of the shell. Using Eqs.(4),
(6) and (9), we find

ρ =
2

κR2
[Kθθ], p =

1
κ

([Kττ ]− [Kθθ]
R2

). (10)

Using Eq.(8) in (10), we can obtain the following rela-
tions

(ω+ − ω−) +
κ

2
ρR = 0, (11)

d

dR
(ω+ − ω−) +

1
R

(ω+ − ω−)− κp = 0, (12)

where ω± =
√

Ṙ2 + F±.
The above equations lead to the following differen-

tial equation
dρ

dR
+

2
R

(ρ + p) = 0, (13)

which is equivalent to the energy conservation of the
thin-shell

ṁ + pȦ = 0, (14)

where m = ρA and A = 4πR2(τ) represent mass and
area of the shell, respectively. It is mentioned here that
Eq.(13) can be solved using the equation of state p = ǩρ

whose solution is

ρ = ρ0

(
R0

R

)2(ǩ+1)

, (15)

where R0 represents initial position of the shell at time
τ = τ0 and ρ0 denotes matter density of the shell at R0.
Using the above equation, the mass of the shell takes
the form

m = 4πρ0
R

2(ǩ+1)
0

R2ǩ
. (16)

Equation (11) leads to the equation of motion of the
shell

Ṙ2 + Veff = 0, (17)

where

Veff (R) =
1
2
(F+ +F−)− (F+ + F−)2

(κρR)2
− 1

16
(κρR)2,(18)

is the effective potential which describes shell’s motion.
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3 Analysis of Equation of Motion

Here we study the dynamical behavior of the scalar shell
for a family of regular BHs. For this purpose, we first
calculate the effective potential and the corresponding
velocity of the shell with respect to the stationary ob-
server. We investigate the effect of charge parameter on
the dynamics of the shell. In 2006, Hayward [13] found
a simple regular BH solution in which e is related to
the cosmological constant Λ as e2 = 3M

Λ and for the
well-defined asymptotic limits, this corresponds to the
Schwarzschild BH as R → ∞ while it becomes de Sit-
ter spacetime at the center (R → 0). The corresponding
effective potential is

Veff (R) = 1−
(

2R3

R3 + 2e2

)2 (
M+ −M−

m

)2

− (M+ + M−)R2

(R3 + 2e2)
−

( m

2R

)2

. (19)

Equation (17) and (19) yield

Ṙ = ±
[(

2R3

R3 + 2e2

)2 (
M+ −M−

m

)2

(20)

+
(M+ + M−)R2

R3 + 2e2
+

( m

2R

)2

− 1
] 1

2

.

Here −(+) correspond to collapse (expansion) of the
shell. In Figure 1, the left graph represents Ṙ > 0 while
the right graph shows the behavior of shell’s velocity
when Ṙ < 0. In the first case, the velocity of the shell
decreases positively while increases negatively in the
second case. We also see that velocity of charged shell
is less than the uncharged in both cases and both curves
match for the large radius.

3.1 Dynamics of Scalar Shell

In this section, we study the dynamics of thin-shell with
the scalar field. For this purpose, we obtain the energy-
momentum tensor for the scalar field by applying a
transformation on Eq.(9) given as [15]

uµ =
ϕ,µ√
ϕ,νϕ,ν

, ρ =
1
2
[ϕ,νϕ,ν + 2V (ϕ)],

p =
1
2
[ϕ,νϕ,ν − 2V (ϕ)], (21)

where V (ϕ) = m2ϕ2 is the potential term represent-
ing a massive scalar field. In the absence of this term,
the scalar field will become massless. From Eqs.(9) and
(21), the energy-momentum tensor for the scalar field
can be written as

Sµν = ∇µϕ∇νϕ− γµν [
1
2
(∇ϕ)2 − V (ϕ)]. (22)

1 2 3 4 5
RHΤL

2

3

4

R
•
HΤL

1 2 3 4 5
RHΤL
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-2

-1

R
•
HΤL

Fig. 1 Plots of Ṙ(τ) versus R for Hayward BH

Since the induced metric is a function of τ only, so ϕ

also depends on τ . Thus Eq.(21) takes the form

ρ =
1
2
[ϕ̇2 + 2V (ϕ)], p =

1
2
[ϕ̇2 − 2V (ϕ)]. (23)

The total mass of the scalar shell can be written as

m = 2πR2[ϕ̇ + 2V (ϕ)]. (24)

Inserting Eqs.(23) and (24) in (14), we obtain

ϕ̈ +
2Ṙ

R
ϕ̇ +

∂V

∂ϕ
= 0, (25)

which is the Klien-Gordon (KG) equation, ϕ+ ∂V
∂ϕ = 0,

written in shell’s coordinate system.
The effective potentials for the Hayward BH in terms

of scalar field are obtained as

Veff (R) = 1−
(

2R3

R3 + 2e2

)2 (
M+ −M−

2πR2(ϕ̇ + 2V (ϕ))

)2

− (M+ + M−)R2

(R3 + 2e2)
− [πR(ϕ̇ + 2V (ϕ))]2. (26)

Now we solve Eqs.(17) and (25) with the help of Eq.(26).
These equations cannot be solved analytically, so we
solve them numerically, assuming M− = 0, M+ = 1,
R0 = ρ0 = ǩ = 1, e = 1 and m = 1 which are shown
in Figure 2. Left graph describes solutions of the KG
equation (17). The upper curves represent collapsing
while the lower curves show the expanding scalar shell.
The scalar field density is increasing in the first case
(collapse) while it decays to zero as time increases in
the second case (expansion). Right graph shows the be-
havior of shell’s radius is represented where the upper
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Fig. 2 Plots of the scalar field (left) and shell’s radius (right).
Green and red curves correspond to collapse and expansion

and lower curves represent the expanding and collaps-
ing shell which describe the motion of the shell. The
upper curves indicate that the shell expands endlessly
and the lower curve shows that the radius is decreasing
continuously.

3.1.1 Massless Scalar Shell

Here we investigate dynamics of the shell in the absence
of V (ϕ), i.e., the massless scalar field. In this case, KG
equation becomes ϕ̈ + 2Ṙ

R ϕ̇ = 0, and its integration
leads to ϕ̇ = λ

R2 , where λ is an integration constant.
The corresponding equations of motion become

Ṙ2 + 1−
(

2R5

R3 + 2e2

)2 (
M+ −M−

2πλ2

)2

− (M+ + M−)R2

R3 + 2e2
−

(
πλ2

R3

)2

= 0. (27)

This can be simplified by using the parameters

[M ] = M+ −M−, M̄ =
M+ + M−

2
. (28)

Inserting these parameters in above equation, we have

Ṙ2 + Veff = 0, (29)

where

Veff (R) = 1−
(

2R5

R3 + 2e2

)2 (
[M ]
2πλ2

)2

− (2M̄)R2

R3 + 2e2
−

(
πλ2

R3

)2

. (30)
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Fig. 3 Behavior of radius (left) and Veff versus R for the
massless case (right) for fixed M− and M+.
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Fig. 4 Behavior of Veff of the massless shell by varying M+
(left), M− (right)

In Figures 3-5, we examine numerical results for the
massless scalar field using M− = 0, M+ = 1, R0, e = 1
and λ = 1 . In Figure 3 left graph shows that increas-
ing and decreasing shell radius lead to expansion and
collapse, respectively. The behavior of the effective po-
tential is presented in the right graph which is divided
into two regions. The upper region has a positive poten-
tial that leads to expansion. There is a turning (saddle)
point where Veff = 0, the shell stops for a while and
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Fig. 5 Behavior of Veff of the massless shell by varying e
(left) and λ (right)

then changes its behavior at R ≈ 4. The effective poten-
tial decreases infinitely after these points and becomes
negative. This suggests that for large values of R the
shell begins to contract continuously. Figures 4 describe
behavior of the effective potential by varying M+ and
M−. The saddle point (Veff = 0) separates shell’s mo-
tion into two regions: the upper (positive) and lower
(negative) regions describe expansion and contraction
of the shell, respectively. Figures 5 represents the be-
havior of effective potential by varying charge and λ.
Again, the shell depicts three types of motion, expands
in the upper region (Veff > 0), in equilibrium posi-
tion (Veff = 0) and in the lower region the effective
potential diverges negatively which leads the shell to
collapse.

3.1.2 Massive Scalar Shell

Here we discuss the case when the thin-shell is com-
posed of a massive scalar field with scalar potential.
From Eq.(23), we obtain

ϕ̇2 = ρ + p, V (ϕ) =
1
2
(p− ρ). (31)

We take p as an explicit function of R, i.e., p = p0e
−ǩR,

where ǩ and p0 are constants. Using the value of p in
Eq.(13), we find

ρ =
ζ

R2
+

2(1 + ǩR)p0e
−ǩR

ǩ2R2
, (32)
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Fig. 6 Plots of the shell radius in massive scalar field.
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Fig. 7 Behavior of Veff of a massive scalar shell for fixed e
(left) and by varying e (right).

where ζ is the constant of integration. Inserting the
values of p and ρ in Eq.(31), we obtain

V (ϕ) =
ζ

2R2
− p0e

−ǩR

2

(
1− 2(1 + ǩR)

ǩ2R2

)
, (33)

ϕ̇2 =
ζ

R2
+ p0e

−ǩR

(
1 +

2(1 + ǩR)
ǩ2R2

)
, (34)

which satisfy the KG equation. Using Eqs.(32)-(34) in
(26), it follows that

Veff (R) = 1−
(

2R3

R3 + 2e2

)2 (
M+ −M−

m

)2

− (M+ + M−)R2

(R3 + 2e2)
−

( m

2R

)2

, (35)

where

m = 4πR2ρ ≡ 4πζ +
8πp0e

−ǩR

ǩ2
(1 + ǩR). (36)

Figures 6 and 7 show the behavior of thin-shell
for the massive scalar field for M− = 0, M+ = 1,
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R0 = p0 = ǩ = 1, e = 1 and ζ = 3. Figure 6 de-
scribes the nature of the shell radius for the massive
scalar field. The upper curve corresponds to constant
motion which leads to expansion of the shell with the
increasing time. The lower curve follows the same ini-
tial configuration leading the shell to collapse. Figures 7
illustrate the behavior of effective potential for the mas-
sive scalar field with fixed mass and varying the charge
parameter. The effective potential diverges for the ini-
tial data. This negative effective potential indicates that
the gravitational forces lead the shell to collapse. In the
right graph, the effective potential is plotted for differ-
ent values of charge parameter which shows that the
shell collapses for all values of charge.

4 Final Remarks

In this paper, we have examined the dynamics of spher-
ically symmetric scalar thin-shell (both massless and
massive scalar fields) by taking Hayward BH for the
interior as well as exterior regions. The equation of mo-
tion (17) and the KG equation (25) can completely de-
scribe the dynamical behavior of the shell. We have dis-
cussed solutions of these equations graphically shown in
Figures 1 and 2 which represent both collapse and ex-
pansion of the shell. It is found that the scalar field
increases for the case of collapse while for expansion it
shows decreasing behavior for all BHs.

In massless case, the increase or decrease in shell’s
radius along the proper time represents that the shell
expands continuously or collapses. The motion of the
shell is determined by the effective potential where the
shell is partitioned into two regions by a saddle point
(Veff = 0) which expands forever in the region Veff > 0
while the region with Veff < 0 indicates the collapsing
shell. For massive scalar field, the behavior of the shell
radius shows that it either expands forever or undergoes
collapse. The effective potential is always negative for
the fixed mass (interior and exterior) with different val-
ues of e. These results indicate that the massive scalar
shell always collapse to zero size for the considered pa-
rameters. We conclude that there are three possibili-
ties in the dynamical evolution of the scalar thin-shell:
continuous expansion (Veff > 0), stable configuration
(Veff = 0) and gravitational collapse (Veff < 0).
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Abstract The dynamics of a neutral particle moving
around a slowly rotating Kerr black hole and a Schwarzschild-
like black hole. We are interested to explore the condi-
tions under which the charged particle can escape from
the gravitational field of the black hole after colliding
with another particle. The escape velocity of the parti-
cle in the innermost stable circular orbit is calculated.

Keywords Black hole · Escape velocity · Kerr
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1 Introduction

The dynamics of particles (wether massive or massless,
charged or neutral) around compact objects such as
a black hole is among the most important theoretical
problems of black hole astrophysics. These studies not
only help us to understand the geometrical structure
of spacetimes but also shed light on the high energy
phenomenon occurring near the black hole such as for-
mation of jets (which involve particles to escape) and
accretion disks (particles orbiting in circular orbits).

A rotating black hole (i.e. a Kerr black hole) may
provide sufficient energy to the particle moving around
it due to which the particle may escape to spatial in-
finity. This physical effect appears to play a crucial role
in the ejection of high energy particles from accretion
disks around black holes. In the process of ejection of
high energy particles, besides the rotation of black hole,
the magnetic field plays an important role [1,2].

In the present article, it is considered that a particle
is orbiting in the innermost stable circular orbit (ISCO)
of a black hole and is suddenly hit by a radially in-
coming neutral particle. The aftermath of collision will
depend on the energy of the incoming particle which

ae-mail: mjamil@sns.nust.edu.pk

may result one of the three possible outcomes: charged
particle may escape to infinity; being captured by the
black hole or keep orbiting in ISCO. For simplicity we
consider the motion in the equatorial plane only.

2 Particle Dynamics Around a Slowly Rotating
Kerr Black Hole

We consider the slowly rotating black hole and neglect
the terms involving a2. The line element is given by

ds2 = (1− rg

r
)dt2 +

4aM sin2 θ

r
dφdt− 1

1− rg

r

dr2

− r2dθ2 − r2 sin2 θdφ2.

Here rg = 2M , is the gravitational radius of the slowly
rotating Kerr black hole just like Schwarzschild black
hole. Note that for a slowly rotating Kerr and Schwarz-
schild black hole the horizon occurs at r = rg.

In terms of Lagrangian mechanics (L = gµν ẋµẋν),
the t and φ coordinates are cyclic which lead to two con-
served quantities namely energy and angular momen-
tum with the corresponding Noether symmetry gener-
ators

ξ(t) = ξµ
(t)∂µ =

∂

∂t
, ξ(φ) = ξµ

(φ)∂µ =
∂

∂φ
. (1)

This shows that the black hole metric is invariant under
time translation and rotation around symmetry axis.
The corresponding conserved quantities are the energy
E per unit mass and azimuthal angular momentum Lz

per unit mass

ṫ =
r3E + aLzrg

r2(r − rg)
,

φ̇ =
1
r2

(
argE

(r − rg)
+

Lz

sin2 θ

)
. (2)
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From the astrophysical perspective, it is known that
particle orbits a rotating black hole in the equatorial
plane [3]. Therefore we choose θ = π

2 to get

ṫ =
r3E + aLzrg

r2(r − rg)
,

φ̇ =
1
r2

( argE
(r − rg)

+ Lz

)
. (3)

Using the normalization condition, uµuµ = 1, we get
the equation of motion

ṙ2 =
(Er2 − aLz)2

r4
− r2 − rgr

r4
(r2 + L2

z − 2aELz). (4)

At the turning points ṙ = 0, the equation of motion
yields

E =
aLzrg ±

√
r5(r − rg) + L2

z(r4 − r3rg + a2r2
g)

r3
, (5)

which gives E = Veff, as the effective potential. The
condition ṙ = 0 is termed as the turning point because
it gives the location at which an incoming particle turns
around from the neighborhood of the gravitating source
[4].

The particle moving in the ISCO has the angular
momentum and the energy as follows:

Lzo = ±
√

rg

(
ro ± a

√
2rg

ro

)

√
2ro − 3rg ∓ 2a

√
2rg

ro

, (6)

Eo =
1− rg

r ∓ a
r

√
rg

2r√
1− 3rg

2r ∓ a
r

√
2rg

r

. (7)

After the collision particle should have new values
of energy and momentum E , Lz and the total angular
momentum L2. We simplify the problem by applying
the following conditions (i) the azimuthal angular mo-
mentum is fixed (ii) initial radial velocity remains same
after the collision. Under these conditions only energy
of the particle can determine its motion. After collision
particle acquires an escape velocity (v⊥) in orthogonal
direction of the equatorial plane [5]. The square of to-
tal angular momentum of the particle after collision is
given by

L2 = r4θ̇2 + r4 sin2 θφ̇2. (8)

which turns out to be

L2 = r2v2
⊥ + sin2 θ

(
argEo

r − rg
+

Lzo

sin2 θ

)2

. (9)

Here we denote v ≡ −rθ̇o. The angular momentum and
the energy of the particle after the collision becomes

L2 = r2
ov2
⊥ +

(
argEo

ro − rg
+ Lzo

)2

, (10)

Enew =
aLrg +

√
r5
o(ro − rg) + L2(r4

o − r3
org + a2r2

g)

r3
o

.

(11)

These values of angular momentum and energy are greater
than their values before the collision.

Therefore particle escapes to infinity if Enew ≥ 1, or

v⊥ ≥ ±r(rg − r)(Lz(r − rg) + arg(Eo − 1))
r2(r − rg)2

+

√
r2rg(r − rg)2(r3 + rg(a2 − r2 − 2a2Eo))

r2(r − rg)2
. (12)

Particle escape condition is |v| ≥ v⊥ i.e. the magni-
tude of velocity should be greater than any orthogonal
velocity.

3 Dynamics of a Neutral Particle Around
Kiselev Black Hole

Quintessence is defined as a scalar field coupled to grav-
ity with the potential [6]. The solution for a spheri-
cally symmetric black hole surrounded by quintessence
matter was derived by Kiselev [7]. It has the state pa-
rameter in the range −1 < wq < −1

3 . We consider a
Schwarzschild-like black hole surrounded by quintessence
matter. We start with the simpler case of calculating
the escape velocity of a neutral particle. The geometry
of static spherically symmetric black hole surrounded
by the quintessence matter is given by [7]

ds2 = f(r)dt2 − 1
f(r)

dr2 − r2dθ2 − r2 sin2 θdφ2,

f(r) = 1− 2M

r
− c

r3wq+1
. (13)

Here M is the mass of black hole, c is the quintessence
parameter and we focus on wq = −2

3 . The last metric
diverges when r = 0 which is a curvature singularity.
For f(r) = 0 we get two values of r:

r+ =
1 +

√
1− 8Mc

2c
, r− =

1−√1− 8Mc

2c
. (14)

The region r = r− corresponds to black hole hori-
zon while r = r+ represents the cosmological horizon.
Therefore, r− and r+ are the two coordinate singular-
ities in the metric. If 8Mc = 1 then we get the de-
generate solution for the spacetime at r± = 1

2c and if
8Mc > 1 then horizons do not exist. For very small
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value of c, r+ ≈ 1
c . Further more, we can say that the

restriction on c, is c ≤ 1
8M .

We discuss the dynamics of a neutral particle in
the Schwarzschild-like background. There are three con-
stants of motion corresponding in which two of them
arise as a result of two Killing vectors

ξ(t) = ξµ
(t) = ∂t, ξ(φ) = ξµ

(φ) = ∂φ. (15)

where ξµ
t = (1, 0, 0, 0) and ξµ

φ = (0, 0, 0, 1). The cor-
responding conserved quantities (conjugate momenta)
are the energy per unit mass E and azimuthal angular
momentum per unit mass Lz, respectively given by

E ≡ f(r)ṫ, (16)

−Lz ≡ φ̇r2 sin2 θ. (17)

Here over dot represents differentiation with respect
to proper time τ . The third constant of motion is the
total angular momentum of black hole comprising the
black hole and particle’s angular momentum, i.e.

L2 = r4θ̇2 +
L2

z

sin2 θ
= r2v2

⊥ +
L2

z

sin2 θ
. (18)

Here we denote v⊥ ≡ −rθ̇o. By using the normalization
condition of 4-velocity uµuµ = 1 and constants of mo-
tion, we get the equation of motion of neutral particle

ṙ2 = E2 − (1 +
L2

z

r2 sin2 θ
)f(r). (19)

At the turning points of the moving particles from the
trajectories ṙ = 0, hence we get

E2 = (1 +
Lz

r2 sin2 θ
)f(r) ≡ Ueff, (20)

where Ueff is the effective potential.
Consider a particle in the circular orbit r = ro,

where ro is the local minima of the effective potential.
This orbit exists for ro ∈ (4M,∞). Generally for non-
degenerate case (r+ 6= r−) the energy and azimuthal
angular momentum corresponding to local minima ro

are

Lzo =

√
cr2

o − 2M√
c + 6M−2ro

r2
o

, (21)

Eo =
2
(
2M + ro(cro − 1)

)2

ro

(
6M + ro(cro − 2)

) . (22)

For the degenerate case which is defined by c = 1
8M or

r+ = r−. The energy and azimuthal angular momentum
corresponding to ro are

Lzo =

√
r2

o

8M − 2M
√

1
8M + 6M−2ro

r2
o

, (23)

Eo =
2
(
2M + ro( ro

8M − 1)
)2

ro

(
6M + ro( ro

8M − 2)
) . (24)

The ISCO is defined by ro = 4M which is the convolu-
tion point of the effective potential.

After collision the total angular momentum and en-
ergy of the particle become (at θ = π

2 )

L2 = r2
ov2
⊥ + L2

z, (25)

E =
[
f(r)

(
1 +

(Lz + rv⊥)2

r2

)] 1
2

. (26)

These new values of angular momentum and energy
are greater from their values before collision because
during collision colliding particle may impart some of its
energy to the orbiting particle. The last equation yields
the condition on the escape velocity for the particle
from the vicinity of the black hole:

vesc
⊥ ≥ Lzr(r − 2M − cr2)

r2(2M + r(cr − 1))

+

√
r4(r(1− cr)− 2M)(2M + r(cr + E2 − 1))

r2(2M + r(cr − 1))
,

(27)

particle would escape if |vesc
⊥ | ≥ v⊥.

4 Conclusion

We have briefly discussed the dynamics of neutral parti-
cles in two different gravitational backgrounds namely,
a slowly rotating Kerr spacetime and the Kiselev space-
time. The analysis was performed using the symmetries
of the spacetime, conserved quantities and then analyz-
ing equations of motion. The later yields the conditions
on the escape velocity of the particle from the vicinity of
the black hole. Although studies dealing with single par-
ticle dynamics around black holes have some benefits,
however it can not be used to predict the dynamics of
particles in more complicated situations such as an ac-
cretion disk or an astrophysical jet. There one needs to
employ relativistic magnetohydrodynamical equations
to obtain realistic model for particle or fluid motion.
Further details related to presented study can be seen
in [9,10]
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Abstract eLISA (evolved Laser Interferometer Space
Antenna) is a space-based mission designed to measure
gravitational waves over a broad band of frequencies
ranging from ∼ 0.1 mHz to ∼ 1 Hz. Possible sources
are a variety of systems and events throughout the Uni-
verse, including the coalescences of massive black holes
brought together by galaxy mergers; the inspirals of
stellar-mass black holes and compact stars into central
galactic black holes; several millions of ultracompact
binaries, both detached and mass transferring, in the
Galaxy; and possibly unforeseen sources such as the
relic gravitational-wave radiation from the early Uni-
verse. eLISA’s high signal-to-noise measurements will
provide new insight into the structure and history of
the Universe, and it will test general relativity in its
strong-field dynamical regime.

Keywords Gravitational waves · Black holes · eLISA

1 Introduction

The proposal “The gravitational Universe” for a space
mission dedicated to the detection of gravitational waves
based on the eLISA concept has been selected in No-
vember 2013 as a science theme of the European Space
Agency (ESA), which is foreseen to be implemented as
the L3 mission in the framework of ESA’s Cosmic Vi-
sion Programme [1]. eLISA will survey the low-frequency
gravitational-wave sky (from 0.1 mHz to 1 Hz). The ba-
sic principle of gravitational wave detection for eLISA
is based on a laser interferometer designed to detect
the passage of a gravitational wave by measuring the
time varying changes of optical path length between
free-falling test masses. The two measurement arms are

ae-mail: jetzer@physik.uzh.ch

defined by three spacecraft orbiting the Sun in a trian-
gular configuration (see Figs. 1 and 2). A key feature
of the eLISA concept is that the test masses are pro-
tected from disturbances as much as possible by a care-
ful design and the ”drag-free” operation. Several of the
needed technologies, in particular the drag-free oper-
ation will be tested in space with the satellite LISA-
Pathfinder (Fig. 3), which is scheduled to be launched
in fall 2015. LISA-Pathfinder is a ESA mission with
a contribution from NASA [2,3]. For more details on
eLISA and LISA Pathfinder we refer to the homepage:
https://www.elisascience.org as well as to [4,5].

According to General Relativity, black holes and
compact binaries are expected to be powerful sources
of gravitational waves. Rather than seeing electromag-
netic radiation, as all of astronomy has done until pre-
sent, eLISA will hear the vibrations of the fabric of
spacetime itself, emitted coherently by macroscopic bod-
ies. Studying these signals will convey rich new infor-
mation about the behaviour, the structure and the his-
tory of the Universe, and it will clarify several issues in
fundamental physics.

Gravitational waves travel undisturbed through spa-
cetime, and when observed they will be a new and
uniquely powerful way to probe the very distant Uni-
verse, from the extremely early Big Bang to the early
epoch of galaxy and black hole seed formation. This
may allow us to address deep questions such as: what
powered the Big Bang; how did galaxies and their black
holes form and evolve; what is the structure of space-
time around the massive objects we believe to be black
holes; what is the nature of the mysterious dark mat-
ter and dark energy accelerating the expansion of the
Universe. In the frequency band covered by eLISA the
Universe is richly populated by strong sources of grav-
itational waves. For binary systems the characteristic
gravitational-wave frequency f is twice the Keplerian
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Fig. 1 The eLISA orbit: The constellation is shown trailing the Earth by about 20 degrees and is inclined by 60 degrees with
respect to the ecliptic. The trailing angle will vary over the course of the mission duration from 10 to about 25 degrees. The
separation between the spacecrafts is L = 109 m (from [5]).

orbital frequency, which in turn is proportional to
(M/a3)1/2, where M is the total mass of the binary and
a its semi-major axis. In the eLISA frequency band,
gravitational waves are produced by close binaries of
stellar-mass objects with orbital periods of a few to
several minutes. Massive black hole binaries with M ∼
104M¯ − 107M¯ and mass ratio 0.01 ≤ q ≤ 1 on the
verge of coalescing have orbital frequencies sweeping to
higher and higher values, until the binary separation
a becomes as small as the scale of the event horizon
GM/c2. Finally, eLISA could observe binaries compris-
ing a massive black hole and a stellar-mass compact ob-
ject (e.g., a stellar-mass black hole) skimming the hori-
zon of the larger black hole before being captured: these
systems are commonly referred to as extreme mass ra-
tio inspirals (EMRIs). Furthermore, a stochastic back-
ground in the eLISA frequency band can be generated
by less conventional sources, such as phase transition
in the very early Universe.

2 Description of the mission

eLISA is based on a laser interferometer designed to de-
tect the passage of a gravitational wave by measuring
the time-varying changes of optical pathlength between
free-falling masses. The measurement arms are defined

by three spacecraft orbiting the Sun in a triangular con-
figuration (Figs. 1 and 2). A key feature of the eLISA
concept is a set of three orbits that maintain a near-
equilateral triangular formation with an armlength of
about L = 109 m, which is achieved by putting the
different spacecrafts on orbits whose orbital plane is
tilted with respect to the ecliptic. Depending on the
initial conditions of the spacecraft, the formation can
be kept in an almost constant distance to the Earth or
be allowed to slowly drift away to about 70 × 109 m,
the outer limit for communication purposes.

The centre of the formation is in the ecliptic plane
1AU from the Sun and 20 degrees behind the Earth.
The plane of the triangle is inclined by 60 degrees with
respect to the ecliptic. These particular heliocentric or-
bits for the three spacecraft were chosen such that the
triangular formation is maintained throughout the year,
with the triangle appearing to rotate about the centre
of the formation.

A very attractive feature of the eLISA orbits is the
almost constant Sun-angle of 30 degrees with respect to
the normal to the top of the spacecraft, thereby result-
ing in an extremely stable thermal environment, mini-
mizing the thermal disturbances on the spacecraft.

The three satellites, separated by a distance of 1 mil-
lion km, will form a high precision interferometer that
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Fig. 2 Artistic view of eLISA triangular formation and its orbit around the Sun.

senses gravitational waves by monitoring the changes
in distance between free falling test masses inside the
spacecraft. The laser interferometer has thus an arm
length of 1 million km. eLISA will coherently measure
the stretching and squeezing of spacetime, including fre-
quency, phase, and polarisation. Hence it will shed light
on the origin of gravitational waves large-scale violent
cosmic events and trace the motions of distant matter
directly. Compared to the Earth-bound gravitational
wave observatories like LIGO and VIRGO, eLISA ad-
dresses the much richer frequency range between 0.1
mHz and 1 Hz (Fig. 4), which is inaccessible on Earth
due to armlength limitations and terrestrial gravity gra-
dient noise.

3 Scientific goals of the mission

eLISA observations will probe massive black holes over
a very wide range of redshift, covering essentially all
important epochs in their evolutionary history. eLISA
will offer a unique new way to address a number of
unanswered questions: When did the first black holes
form in pre-galactic haloes? What is their initial mass
and spin? What is the mechanism of black hole forma-
tion in galactic nuclei? How do black holes evolve over
cosmic time due to accretion and mergers? What can
we learn about galaxy hierarchical assembly?

To answer these questions eLISA will discover the
first black hole seeds out to redshifts of order 20, in
the cosmic dark ages before reionisation, and determine
their masses and spins, using gravity alone. eLISA will
also study the evolution of massive black holes by track-
ing their merger history during cosmic dawn and high
noon. To this end, it is important to precisely measure
their mass, spin and redshift over a wide, yet unexplored
range [6,7].

Intermediate massive black holes with masses in the
interval between 104 M¯ and 107 M¯ will be detected
by eLISA, to explore for the first time the low-mass end
of the massive black hole population, at cosmic times
as early as z ∼ 10.

eLISA will make it possible to survey the vast ma-
jority of all coalescing massive black hole binaries throug-
hout the whole universe. This will expose an unseen
population of objects which will potentially carry pre-
cious information about the black hole population as
a whole. It will provide both the widest and deepest
survey of the sky ever, since gravitational wave detec-
tors are non-directional in nature, and operate as non-
pointed and weakly directional full-sky monitors. The
range of black hole redshifts and masses that will be
explored is complementary to the space explored by
electromagnetic observations.

eLISA will detect all binary black hole mergers even
when the black holes are not active. With this unbi-
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Fig. 3 LISA-Pathfinder at the top of the propulsion module which will bring it at the L1 point (first Sun-Earth Lagrange
point).

ased and complete survey, it will be possible to investi-
gate the link between the growing seed population with
the rich population of active supermassive black holes
evolving during cosmic dawn and high noon, probing
the light end of the mass function at the largest red-
shifts. Black hole coalescence events will illuminate the
physical processes of black hole formation and feeding.
While the mass distribution carries information about

the seeds, the spin distribution charts the properties of
the accretion flows, whether they are chaotic or coher-
ent. Gravitational wave observations alone will be able
to distinguish between the different massive black hole
formation and evolution scenarios.

By probing the dynamics of intrinsically dark, relic
stars in the nearest environs of a massive black hole,
eLISA will allow the deepest view of galactic nuclei. The
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Fig. 4 Time, sky and polarisation averaged eLISA sensitivity (from [1]).

probes used are the so-called Extreme Mass Ratio Inspi-
rals EMRIs: a compact star (either a neutron star or a
stellar-mass black hole) captured into a highly relativis-
tic orbit around the massive black hole and spiraling
through the strongest field regions a few Schwarzschild
radii from the event horizon before plunging into the
massive black hole. As the compact star weighs much
less than the massive black hole, the mass ratio is ex-
treme, and as the star-black hole pair is a binary, the
inspiral phase is governed by the emission of gravita-
tional waves. eLISA will discover EMRI events, explor-
ing the deepest regions of galactic nuclei, those near the
horizons of black holes with masses close to the mass of
the black hole at our Galactic Centre, out to redshifts
as large as z ∼ 0.7.

EMRIs are exquisite probes for testing stellar black
hole populations in galactic nuclei. With eLISA we will
learn about the mass spectrum of stellar-mass black
holes, which is largely unconstrained both theoretically
and observationally. The measurement of even a few
EMRIs will give astrophysicists a totally new and dif-
ferent way of probing dense stellar systems, determin-
ing the mechanisms that govern stellar dynamics in the
galactic nuclei.

4 Conclusions

General Relativity has passed all current tests in the
weak field regime. eLISA will explore relativistic grav-
ity in the strong field, non-linear regime, in a unique
way not feasible by other methods [8,9]. Unlike the
ground-based instruments, eLISA will have sufficient
sensitivity to notice even small corrections to Einstein
gravity. eLISA will map the spacetime around astro-

physical black holes, yielding a battery of precision tests
of General Relativity in an entirely new regime. These
have the potential to uncover hints about the nature of
quantum gravity, as well as enabling measurements of
properties of the universe on the largest scales.
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Abstract The purpose of research study was to de-
velop a theoretical relativistic framework for research
in open and flexible learning environment because it is
a new dimension in the field of education. Developing a
theoretical relativistic framework for any research study
is first and prime step in walking on the track to reach
the distinction set by the researcher. Open and flexi-
ble learning is a new trend in education, enriched with
ICT-use as a basic demand of the 21st century genera-
tion in all parts of the globe. So, it requires a theoretical
framework for its initiation, implementation, develop-
ment and evaluation which is relatively developed and
advanced from the existing framework. In any research
study the literature review is carried out in order to de-
velop, build or construct a theoretical framework. The
researcher of the study has observed while attending the
international conference on ODL (AAOU, 2013) that
most of the studies require theoretical underpinning for
ICT-use in education. The researcher assume that being
a new trend in education to use ICT for teaching learn-
ing purposes; it requires conceptual clarity and theo-
retical background of the user and researcher, because,
without theory the practice is wastage of money, time
and energy and it becomes ineffective and requires rel-
atively new conceptual development. So, the problem
stated by the researcher for the study was: Developing
theoretical relativistic framework for research in open
and flexible learning: A new trend in educational re-
search. The objective of the study was to integrate the
interrelated concepts in order to build a pnemonological
network for identifying the constructs in ICT-rich open
and flexible learning environment. The study was sig-
nificant because it provided theoretical background for
conducting research in ICT-use in teaching and learn-
ing through open and flexible systems; whether it is

ae-mail: uswat@hotmail.com

blended or online learning and training. The method-
ology used by the researcher was qualitative and in-
terpretive because there were reviewing of literature
and meta-analysis for building the framework. The data
were analyzed and interpreted by the researcher for the
findings and drawing conclusions. On the basis of con-
clusions the researcher has made suggestions and rec-
ommendations for conducting further research in open
and flexible learning environment by using this theoret-
ical relativistic framework. The framework was named
as Virtual Learning Environment Framework (VLEF).

Keywords Open and flexible learning, Research
in ICT, Research in open and flexible learning and
Pnemonological network in ODL and ICT.

1 Introduction: Virtual Learning Environment
Framework (VLEF)

The framework developed by the researcher for the con-
ference ICRA (2015) was based on the review of models,
frameworks, theories, strategies and tools (interdiscipli-
nary and cross disciplinary). The literature for review-
ing was made available by ICT tools in open and flex-
ible learning environment at the researcher life space
(integrated study). The approach of the researcher was
pragmatic and interdisciplinary as well as cross disci-
plinary in order to find a discipline that best suit to
explain all the relevant and related concepts (pnome-
nalogical network) in the motion of a person towards
the knowledge peak (wisdom) against the gravitational
potential and to find competence in a discipline with
the availability of scientific and psychological tools and
vehicles or resources to reach to the peak of global
knowledge (wisdom); so that his/her knowledge become
virtual and global but at the same time measurable
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in the field of education (Figure:11). Knowledge devel-
opment is relativistic in nature and it is develop it-
eratively. The researcher has found that the universe
is material and a person (as a mass) is a part of it;
and when the knowledge globe is iteratively developed,
he/she also develops to move to the new step with in-
cremental increase (change) in knowledge use through
the help of tools (or resources) in a spiral manner (spi-
ral framework of software development), using interac-
tion in an instantaneous activity (small time) to pro-
vide experience for adaptation and development in a
life space (Figure: 5). The researcher found that the
person has both body and mind. The body is physical
but the mind is psychological and dependent on think-
ing process. So, it requires measurement and evaluation
of both qualitative and quantitative characteristics or
variables of his knowledge in the globe for assessment
and evaluation in the framework. The researcher found
that the disciplines of physics and psychology has the
capacity to explain these phenomena; because there is
motion in developmental process towards wisdom (Fig-
ure:4 http://learning.pknursery.com/) and can be ex-
plained by the laws, theories and principles of physical
sciences and personality development theories of psy-
chology when we take the person as an energy system
(Sigmund Freud theory of personally development). In
this system, person (mass) is having a potential energy
(P.E) and can be converted into kinetic energy (K.E)
to make this system dynamically integrated but mea-
surable and observable
(Figure:1 http://learning.pknursery.com/). So, the frame-
work is used to develop the person’s knowledge through
the concepts of energy and motion to such an extent
that the Einstein’s theory of relatively (E = mc2) and
Quantum theory of mechanics (small energy) can be
applied for incremental increase in his knowledge and
comprehension (scaled agile framework of software de-
velopment) and causes evolution (biological and psy-
chological) frameworks. In this evolution the theory base
is that of Charles Darwin, survival of the fittest and
natural selection. Knowledge getting is a life-long and
continuous process and ends when the life space is made
fixed in grave (Islamic perspective and religious belief)
while the spirit (soul) remains alive. It means that the
person is moving from real knowledge (in a place) to
virtual knowledge (in space) to make it global knowl-
edge (Figures: 1 - 11 http://learning.pknursery.com/).
This traveling is made possible by modern technolog-
ical tools and social networking technologies and the
progress is continuous and life-long which is the quest of
Virtual Learning Environment Framework (VLEF) de-
veloped by the researcher in this study using interdisci-
plinary and cross disciplinary Critical Discourse Analy-

sis (CDA) and vision in the field of education for open
and flexible learning.

2 Basic Assumptions of VLEF:

The researcher has developed the following assumptions
for the theoretical relativistic framework of open and
flexible learning:
a) The person is in the knowledge globe and can be
developed to the peak of this globe (wisdom) by us-
ing tools and technologies (toolkit) in open and flexible
learning environment.
b) The person approaches and moves towards his/her
destination with the help of tools (resources) and gad-
gets (devices) available due to scientific inventions and
technological developments.
c) The person motion towards the knowledge field in
the globe is interdisciplinary or contextualized (cross
disciplinary).
d) The person motion towards the peak of knowledge
(wisdom) is personalized (interpretive).
e) The person progress in the fields of knowledge is mea-
surable and evaluated by using research tools of Crit-
ical Discourse Analysis (CDA) in a discursive practice
(community of practice). Such as the conference ICRA
(2015).
f) It requires incrementally developed software to evalu-
ate researchers and their researches in open and flexible
learning environment or education. (Relativistic knowl-
edge).
g) The unit of analysis can be iteratively developed
from real to virtual knowledge in a field to become
philosophical and spiritual. (Knowledge in disciplines
and discursive practice).
h) The person’s knowledge can be measured by us-
ing scaled agile framework for software development in
Pnemonological network. (To find the knowledge gap
filled by the person).
i) A multi-dimensional framework is also needed for
evaluating the total quality of open and flexible learn-
ing and education. (Interdisciplinary and cross discipli-
nary).

3 Objectives of using VLEF for Research:

a) In educational research the new approach is to eval-
uate the researcher when there is integration of ICT
and education (interdisciplinary and cross disciplinary).
The researcher must use an integrative framework de-
veloped through the modern scientific inventions for the
development of education for all in a democratic, Open
and Flexible Virtual Learning Environment (OFVLE)
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by using the tools of social networking and mobile tech-
nology for autonomy, collaboration, interaction, com-
munication and information exchange known as soft-
ware of Learning Management System (LMS) used in
virtually open, distance and flexible environments.
b) The best methodology for evaluation is analysis of
the discursive practice and discourses for dialogue (in-
teraction), structure (program) and practice (learner’s
autonomy and collaboration in a community).
c) The evaluation is not possible without using a soft-
ware for discriminating disciplines in the field and de-
veloping the person’s intelligence and knowledge to an
artificial level known as artificial intelligence or virtual
knowledge (scaled agile framework).
d) The knowledge development or incremental unit is
very small and instantaneous (scaled agile framework)
but its impact is wide in scope (Spiral framework and
iterative framework).
e) The motion is relative and interpretive (potential de-
pendent) in a constructivist learning environment (op-
timum iterative framework).
f) Developing Critical Discourse Analysis (CDA) is an
authentic methodology for research in education to find
gap and ambiguity in existing research (waterfall frame-
work) and filling that gap to form a new whole (inte-
grated) form or structure (meaningful learning) to con-
vert it into new research (Scaled agile framework).

4 Discussion and Diagrammatical presentation
of VLEF (Pnemonological Network):

The VLEF has been diagrammatically presented in (Fig-
ures: 1 - 12 http://learning.pknursery.com/). The VLEF
has twelve stages of development in its Pnemonological
network.
a) Globalization of knowledge: Real and Virtual Frame-
work (Fig: 1)
b) Physical science framework (Fig: 2)
c) Motion of person in the field of real and social knowl-
edge (Fig: 3)
d) Developmental theories (psychological) framework
(Fig: 4)
e) Activity system (Constructivist learning) framework
(Fig: 5)
f) Person-situation theory of construction of knowledge
framework (Fig: 6)
g) Anchored theory framework (Fig: 7)
h) Web-based knowledge and social networking frame-
work (Fig: 8)
i) Stepping in the virtual space: Global knowledge frame-
work (Fig: 9)
j) Virtual web-based interaction (community framework
of practice) (Fig: 10)

k) Unit of analysis framework for global virtual knowl-
edge (Fig: 11)
l) Dimensional framework for evaluating total quality
(Fig: 12)

5 Background of the Study (Methodology):

The study was aimed at developing a ”framework” for
research in open and flexible education in the context
of ICT-rich environment to make provision of open and
flexible education; evaluation and qualitative interpre-
tation for ICOFE (2014) in the Open University of
Hong Kong. The study was modified for making it rel-
atively developed for ICRA (2015) at the University of
The Punjab, Lahore on the eve of 100th anniversary of
Einstein. The researcher found that Critical Discourse
Analysis (CDA) framework was leading towards Vir-
tual Learning Environment Framework (figure 1 - 11)
and was best suited for this purpose.
The requirements of critical discourse analysis (CDA)
and VLEF (Virtual Learning Environment Framework)
were enlisted as:

– Activity analysis (process of learning in construc-
tivist

– Interaction analysis (social and cultural aspects)
– Communication analysis (dialogue, discussion and

communication)
– Conversation and dialogue analysis (Discursive prac-

tices and structure)
– Discursive practice analysis (Evaluation of practice)
– Focus group discourse analysis (Developing the prac-

tice)
– Analysis for integration in discursive practices (In-

terdisciplinary and cross disciplinary integration and
analysis)

– Analysis of globalization in discourse (Whole inte-
gration for filling the gap in virtual environment)
through scaled agile framework by using Pnemono-
logical network for various constructs.

Analysis of learning by doing and interaction through
mediating tools, (ICT and non ICT) in a virtual learn-
ing environment in the globe (synchronous and asyn-
chronous) are important aspects in CDA and VLEF.

6 Need Analysis of Researchers in Virtual
Learning Environments (VLEs):

In globalization due to technological advancements, there
are needs of the researcher for Critical Discourse Analy-
sis (CDA) of dissertations, theses, research papers, posters,
practices, theories, articles, artifacts and tools:
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– Unit of analysis for activity in virtual leaning envi-
ronment is needed to evaluate holistic approach for
integration.

– Common language is needed to analyze the dialogue
in a discourse (situated in community).

– Unit of analysis in a discourse is needed (for com-
mon language analysis).

– Unit of analysis in a practice is needed (for compe-
tence or life skill knowledge)

– Unit of analysis in a structure for cognitive tools
and strategies or toolkit is needed (for knowledge
utilization)

– Unit of analysis for integration is needed (for inter-
disciplinary and cross disciplinary approach deter-
mination and evaluation)

7 Need Analysis of Researches in Education
(Open and flexible learning):

Education is a field consisting of various disciplines and
is dependent on educational activity starting from sim-
ple task in which there is S - R or S - O - R inter-
action in an environment or surrounding. So, it can
be analyzed from biological, psychological, ecological,
temporal, spatial, political and religious (cultural) per-
spectives in a place or life space. His/her knowledge
is directed toward the educational field in a multiple
meaningful layers of knowledge development (Iterative
cycles). So, knowledge is multiphasic.

The knowledge development is open (for all) and
flexible (time independent) due to relative motion of
person in a knowledge discipline towards the peak of
the field (wisdom). It means that flexibility is created
due to schedule and time for motion in life space. So,
motion is relative and not absolute.

The motion towards the peak of the field (wisdom)is
accelerated by modern technologies and tools due to the
application of theories in the field; to develop method-
ologies, techniques, strategies, tools, models, theories
and frameworks and also to create artifacts in a prac-
tice; hence making the process of getting knowledge me-
chanical and automated (theory into practice). Hence,
acceleration is made possible by tools and technologies.

Due to these technologies the person is able to move
in all directions in the field of knowledge. The recent in-
vention of social networking has converted the field of
knowledge into knowledge globe by using a unit activ-
ity of the constructivist learning environment system
(theory of construction) and is iteratively and spirally
developed to form the globe of knowledge (wisdom) as

an integrated whole. So, knowledge is integrated (inter-
disciplinary and cross disciplinary).

Hence, the globalization has created a gap in the
already existing frameworks of learning due to open
and flexible learning opportunities of getting knowledge
through artifacts and tools using different learning the-
ories and pedagogies (review of learning theories and
pedagogical mapping). Globalization has created gap
in knowledge by making the knowledge virtual and ab-
stract.

So, this research in open and flexible learning in
ICT-rich environment has made the existing research
methodologies integrated into linear framework and mod-
els for making it more realistic, objectives and scien-
tific. But due to social interaction it cannot be made
fully realistic and remains always interpretive, context
dependent and qualitative. Therefore, both qualitative
and quantitative research is needed in open and flexible
education.

Moreover, when the knowledge in the field of educa-
tion is global, virtual and interpretive due to the person
situation or position in the field at a point on the globe
(life space situation theory). There are eight dimensions
of open and flexible learning in the knowledge globe to
develop an octagon structure Fig: 12 (Geometrical per-
spective):

1. Open (for all): Democratization of education all over
the world is needed (Internationalization).

2. Space (place): location with reference to a point (po-
sition): Transactional theory of Distance Education
(DE) is needed. Jung (2001).

3. Time: to cover distance in the filed with a pace
(schedule): Flexible timing is needed (Scaled agile
framework of software development).

4. Individuals needs and styles (force of motion): Di-
versity of structure, media and dialogue is needed.

5. Autonomy as well as collaboration: Diversity in modes
of delivery and Instructional Designs (IDs) is needed.

6. Quality: authentic, efficient and effective learning
environments are needed.

7. Relevance: market oriented, society-related, futuris-
tic and individual based-learning is needed.

8. Total quality-based-framework: covering the qual-
ity of all the aspects of education system including
research is needed.
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When it becomes flexible in all the eight dimensions:
open, space, time, pace, need and style flexible, au-
tonomy and collaboration, relevance, quality and total
quality framework; it becomes fully flexible and open
education system (Octo-Dimensional framework).

So, the open dimension brings democratization and
internationalization in education while the dimension of
time is to brings flexibility in task performance sched-
ule and is more critical and discriminative dimension
for flexibility and rigidity, because, other dimensions
are dependent on time(schedule).

Time is needed and required to move (slow or fast)
referring to the pace (autonomy). Hence, we can con-
clude that if time (schedule) of learning is flexible and
according to the persons’ need it will make learning
flexible in a real sense.

Time is core component of flexibility in open system
of education.

Flexibility can also be determined by its integration
of traditional forms of education (multimedia and hy-
permedia). The other characteristics of open and flexi-
ble learning are anytime, anywhere i.e. synchronous and
asynchronous (ubiquitous) this is also made possible by
mobiles (m-learning), and ICT technologies in virtual
learning environment (VLEs).

So, in an ICT-rich environment the knowledge is
integrated (interdisciplinary) and the learner is in the
globe of knowledge (Real and Virtual) with his own
community of practice, and having virtual and real so-
cial interactions (collaboration) and discourses; mov-
ing on in an autonomous ladder for knowledge devel-
opment to have self-actualization and contributions in
the knowledge globe (utilizing wisdom) .

8 Findings:

The framework developed by the researcher in this study
was based on the interdisciplinary and cross disciplinary
review of literature and experience in the field of edu-
cation and can be used as an epistemological, ontolog-
ical and methodological guide for research evaluation
in open and flexible education phenomenon. The ap-
proach is based on Critical Discourse Analysis (CDA)
framework and is named as VLEF (Virtual Learning
Environment Framework) and its nature is relativistic
and virtually synonymous with Einstein theory of rel-
ativity in the conversion of real knowledge (mass) into
virtual knowledge (energy). Here energy refers to wis-
dom.

9 Conclusion:

Keeping in view, the above discussion, a framework was
developed by using activity system framework construc-
tion with mapping of scaled agile framework for soft-
ware development to be used by a researcher to sit-
uate or position a discourse, theory, practice, artifact
and tool developed by another researcher in education
through critically analyzing the discourse for filling the
gap in knowledge and development in education.
So, the best method to reach to the peak of all knowl-
edge (ontology of wisdom) in open and flexible learning
is Critical Discourse Analysis (CDA) framework and
Virtual Learning Environment Framework (VLEF) is
based on Critical Discourse Analysis (CDA) in a field.

10 Suggestions/Recommendations:

The following suggestions are proposed and recommended:
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1. The (VLEF) framework is to be made a prototype
(software) used in educational research evaluation
related to the fields of education and ICT.

2. It can also be used as a developed model frame-
work for evaluation of researchers in open and flex-
ible learning environment and education.

3. It is proposed that the researchers may use Critical
Discourse Analysis and VLEF as best and suitable
methods for the evaluation of researches grounded in
ICT or e-learning or virtual learning environments
(a software is needed for it).

4. A further research is suggested for its theoretical
underpinning, more grounded in theories of learning
and software development and applications.

5. The name suggested for the framework is Virtual
Learning Environment Framework (VLEF) for open
and flexible learning and education.

6. It is also proposed that VLEF require Critical re-
view by other researcher in the field of education
and e-learning.

7. The new knowledge developed in educational re-
search is to be evaluated on the basis of relativity
and not on absolute scale. (Knowledge development
is relativistic in nature).

11 Significance of the Study:

The study was significant because it had provided a
framework for research in education taking place in
open and flexible environment; where there are variety
of ICT tools, approaches and social networking tech-
nologies to provide virtual learning opportunities across
the globe and throughout life.
The study would be helpful in all disciplines in the field
of education because of its interdisciplinary and cross
disciplinary approach in educational research.
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Abstract Stars are formed following the gravitational
collapse of cold molecular clouds found in the Universe.
As the cloud or portions of it collapses, approximately
half of the gravitational energy gained is used to in-
crease the internal temperature of the cloud and the
remaining energy is irradiated as electromagnetic radi-
ation in space.

Zero Age Main Sequence (ZAMS) is the time when a
star first joins the main sequence on the Hertzsprung-
Russell diagram (HR diagram) by burning hydrogen
in its core through fusion reactions. After this time,
the star enters into a phase of stellar evolution that
is quite stable, and steadily processes Hydrogen into
higher elements. As a result, the main sequence is a
broadband that is displaced slightly from this zero-age
strip.

Stars are comparatively easier to analyze than some
other astronomical objects because they have simple
shapes and structure i.e. spherically symmetric. The
stellar model contains four basic first-order differential
equations; two represent the variability of the matter
and pressure with the radius; and other two represent
how temperature and luminosity vary with radius.

In our paper, the Statstar code has been used to
model ZAMS star of mass M = 10M}. The star is in
hydrostatic equilibrium i.e. its size is fixed and the at-
mosphere, rotation and magnetic field of the star are
exempted in this model. We have solved some basic
stellar structure equations by assuming star into spher-
ically symmetric mass shells with specified boundary
conditions and calculated associated properties of the
star such as temperature, pressure, density and opacity
in each zone.

ae-mail: pisces221988@hotmail.com

The study shows that the temperature and the pres-
sure of the star is higher in the core while the luminosity
and opacity of the star is higher at the surface.

Keywords HR Diagram, ZAMS, Stellar Evolution,
Statstar Code.

1 Introduction

Stars are formed following the gravitational collapse of
cold molecular clouds found in the Universe. As the
cloud or portions of it collapses, approximately half of
the gravitational energy gained is used to increase the
internal temperature of the cloud and the remaining en-
ergy is irradiated as electromagnetic radiation in space.
If the mass of the collapsed cloud is sufficient (i.e. more
than approximately 8% of the mass of the Sun), the
central temperatures will attain a value superior to the
threshold temperature for sustained hydrogen fusion,
which leads to star birth. The gravitational collapse will
continue until equilibrium is reached, where the nuclear
energy generated per unit time (or its power) at the cen-
ter of the star equals the power output at its surface due
to radiation emitted. A star at this stage of its life is
commonly called a main - sequence star. Since gravity
has radial symmetry, a star will have a spherical shape
(unless it has a high rotational speed). The luminos-
ity of a star depends on both its radius and effective
temperature. Hertzsprung - Russell diagram (HRD),
shows the relation between the luminosity and the effec-
tive temperature of stars. The HRD is extremely useful
when studying the evolution of stars, since there are
well - determined paths along which stars should travel
as they evolve. These paths depend mostly on stellar
mass [1 - 2].

Stars are comparatively easier to analyze than some
other astronomical objects because they have simple
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shapes and structure i.e.spherically symmetric. The stel-
lar model contains four basic first-order differential equa-
tions; two represent the variability of the matter and
pressure with the radius; and other two represent how
temperature and luminosity vary with radius. The di-
agonal line in the HRD where stars of various masses
first reach the main sequence and begin equilibrium hy-
drogen burning is known as the zero-age main sequence
(ZAMS)[1 - 2].

In this paper, basic stellar equations are verified for
the zero age main sequence (ZAMS) star with a mass of
10} M using StatStar code. Stellar models allow us to
predict stellar evolution and also be able to tell us how
changes in composition lead to changes in the structure.

2 Materials and Methods:

Inspection of the classical results given in Table 1 shows
that the amount of time required for stars to collapse
onto the ZAMS is inversely related to mass. For in-
stance, a 0.8M} star takes over 68 Myr to reach the
ZAMS, where as a 60M} star makes it to the ZAMS in
only 28,000 years.

Figure 1: Classical pre-main-sequence evolutionary
tracks computed for stars of various masses with the
composition X=0.68, Y=0.30 and Z=0.02. The direc-
tion of evolution on each track is generally from low ef-
fective temperature to high effective temperature (right
to left). The mass of each model is indicated beside its
evolutionary track. The square on each track indicates
the onset of deuterium burning in these calculations.
The long-dash line represents the point on each track
where convection in the envelope stops and the envelope
becomes purely radiative. The short-dash line marks
the onset of convection in the core of the star[1 - 2].

Contraction times for each track are given in Table
1 below:

Table 1: Pre-main-sequence contraction times
for the classical models presented in Fig. 1 (Data
from Bernasconi and Maeder, Astron. Astro-

phys., 307,829, 1996.)

Initial Mass(M}) Contraction Time (Myr)
60 0.0282
25 0.0708
15 0.117
9 0.288
5 1.16
3 7.24
2 23.4

1.5 35.4
1 38.9

0.8 68.4

Stars on the zero-age main sequence are nearly homo-
geneous in composition and are in complete hydrosta-
tic and thermal equilibrium. Detailed models of ZAMS
stars are computed by solving the four differential equa-
tions for stellar structure numerically. From the homol-
ogy relations, we expect a homogeneous, radiative star
in hydrostatic and thermal equilibrium with constant
opacity and an ideal-gas equation of state to follow a
mass-luminosity and mass-radius relation: [2]

Lαµ4M3, Rα
v − 4
µv − 3

v − 1
Mv − 3

(1)

The StatStar code is based on the equations of stel-
lar structure equations. It is designed to illustrate as
clearly as possible, many of the most important as-
pects of numerical stellar astrophysics. To accomplish
this goal, StatStar models are restricted to a fixed com-
position throughout as they are homogeneous zero-age
main-sequence models (ZAMS). The four basic stellar
structure equations are computed in the functions are:
[1-3]

dP

dr
= −G

Mr

r2
ρ = ρg (2)

dMr

dr
= 4πr2ρ (3)

dLr

dr
= 4πr2ρε (4)

dT

dr
= − 3

4ac

kε

T 3

Lr

4πr2
(5)

∣∣∣∣
dT

dr

∣∣∣∣ = −
(

1− 1
r

)
µmH

k

GMr

r2
(6)

The density [ρ(r) = rho] is calculated directly from
the ideal gas law and the radiation pressure equation
in FUNCTION Opacity, given local values of the pres-
sure [P(r) = P], temperature [T (r) = T], and mean
molecular weight (µ = mu, assumed here to be for a
completely ionized gas only). Once the density is deter-
mined, both the opacity [k̄(r) = kappa] and the nuclear
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energy generation rate [ε(r) = epsilon] are calculated.
The opacity is determined in FUNCTION Opacity us-
ing the bound-bound and bound-free opacity formulae:

Kbf = 4.34x1021 gbf

t
Z(+X)

ρ

T 3.5
m2kg−1 (7)

Kff = 3.68x1018gff(1− Z)(1 + X)
ρ

T 3.2
m2kg−1 (8)

Together with electron scattering

Kes = 0.02(1 + X)m2kg−1 (9)

and H-ion:

KH− ≈ 7.9× 10−34(Z/0.02)ρ1/2T 9m2kg−1... (10)

The energy generation rate is calculated in Function
Nuclear from the equations for the total pp chain:

¤pp = 0.241ρX2fppΨppCppT
−2/3
6 e−33.80T

−1/3
6 Wkg−1...

(11)

¤CNO = 8.67x1020ρXXCNOCCNOT
−2/3
6 e−152.28T

−1/3
6 Wkg−1...

(12)

2.1 Modeling of M = 10} Zero Age Main Sequence
Star:

We used the central boundary conditions for modeling
of ZAMS stars asthe interior mass and luminosity ap-
proach to zero, or

Mr → 0

Lr → 0

It reveals that the star is physically realistic and does
not contain a hole, a core of negative luminosity, or

central points of infinite ρ or ε. A second set of bound-
ary conditions is required at the surface of the star.
The simplest set of assumptions is that the tempera-
ture, pressure, and density all approach to zero at the
surface for the star’s radius(R∗), or

T → 0

P → 0

ρ → 0

However, the conditions of the above equationsare dif-
ficult to obtain in a real star (especially, in the case of
the temperature)[2].

2.2 Visualization:

By using StatStar we observed that how temperature,
luminosity, density, pressure, opacity and optical depth
vary from the surface to the core of ZAMS star of mass
10M}. All results have been obtained by using StatStar
and for the graphical representation, weused Matlab
R2012a Software.

2.3 Results and Discussion:

Temperature and Zones (Graph 1)show that tempera-
ture rapidly increasing as we approached to the center
of a star. One of the facts of thermonuclear fusion reac-
tion is due to such high temperature in the core of the
star. In graph 2, we can see that the luminosity of the
star is higher at the surface than at the core and this
is due to the reason that the rate of fusion reaction is
much higher in the core and the increased fusion rate
causes the star’s luminosity and radius to go up. As the
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star fuses hydrogen the core begins to become ”clogged
up” with helium ash, which would tend to damp out the
fusion reaction. The result is that the pressure goes up
in the core and goes down on the surface which can be
seen in the graph 3 i.e. between the pressure and zones
of the star. In the process of nucleo-synthesis, the hy-
drogen in the core is converted into helium ash. This
helium ash increases the density of the core which can
be seen in graph 4. The opacity of a star is inversely pro-
portional to its density. At the core, the fusion process
is greater than at the surface and hence the density of
the star is higher. Due to this reason, the opacity of the
star is less at the core and high at the surface as shown
in the graph 5 of opacity and zones [2-4, 7-10].

The scattering of photons is very low at the surface
and very high at the core because of high density at the
core of the star. As shown in the graph 6, the optical
depth is directly proportional to the density that is why
it is very high at the core as compared to the surface
so that the outermost layer of the star is taken at τ=0
[2-6].

3 Conclusion:

It is concluded that the StatStar code is a handy tool to
model the ZAMS. It can produce the physical charac-
teristics of the evolutionary star. The molding in Stat-
Star reveals that due to thermonuclear fusion reaction,
the temperature, pressure, and density of the ZAMS
star are rapidly increasing as we approached to the cen-
ter of a star. The opacity of a star is the absorption of
photons in the star and is inversely proportional to its
density, therefore, the luminosity and opacity of the star
is less at the core and high at the surface. Due to low
scattering of photons at the surface, the optical depth
of the star is high at the core where the outermost layer
of the star is taken at τ = 0.
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Abstract There are various types of global and local
spacetime invariant in general relativity. Here I focus on
the local invariants obtainable from the curvature ten-
sor and its derivatives. The number of such invariants
at each order of differentiation that are algebraically
independent will be discussed. There is no universally
valid choice of a minimal set. The number in a complete
set will also be discussed. The invariants can then be
used to characterize solutions of the Einstein equations
(locally), to test apparently distinct solutions for equiv-
alence, and to construct solutions. Other applications
concern limits of families of spacetimes, and the char-
acterization of horizons and singularities. Further uses
are briefly mentioned.

Keywords Invariants · horizons · singularities · exact
solutions
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04.20.Jb

1 Introduction and motivation

This lecture developed from one given some years ago
at the retirement party of my friend, colleague and
co-author Dr. Eduard (“Eddie”) Herlt. At the Lahore
meeting, time did not permit a complete exposition of
all aspects of the subject. This text follows what was
said rather than what might have been said in an ex-
panded version. I intend to write up the expanded ver-
sion as a review article in due course.

I could have been more precise in my title, at the
cost of being rather lengthy. There are many occur-
rences of the word ’invariant’ in our field, e.g.:
gauge-invariant (in gauge theory)
gauge-invariant (in perturbation theory)

ae-mail: m.a.h.maccallum@qmul.ac.uk

invariant under a symmetry
Lorentz-invariant
scale-invariant.
And I could be talking about some global conserved
quantity, without a well-defined local density, e.g. Bondi
mass.

What I actually meant was local, geometric, invari-
ants of spacetime: essentially curvature invariants.

I started to be seriously interested in this area when
we were writing the first edition of the exact solutions
book [1] in the late 1970s. One of the big problems we
faced was that of identifying the same solution when
found with different assumptions or for different rea-
sons, and presented in different coordinate systems. I
realised at the time that the work of the Stockholm
group on invariant classification, which I will mention
later, and which I first heard about in the late 70s, held
the key.

This first application, as far as I was concerned, the
“equivalence problem”, was what got me started.

2 Mathematics

2.1 Definitions of invariants

Christoffel proved in 1869 that scalars constructed from
the metric and its derivatives must be functions of the
metric itself and the Riemann tensor and its covariant
derivatives.

The first examples to spring to mind are scalar
polynomial (s.p.) invariants, such as RabR

ab

or CabcdC
cdefCef

ab. Often when people just say “in-
variant” they mean “s.p. invariant”.

However, these are not adequate in all circumstances,
as one can see by noting that pp waves and flat space
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both have all scalar polynomial invariants, of all orders,
equal to zero [2].

Fortunately they are not the only choice. An impor-
tant alternative is to use ideas due to Cartan, as follows.
As a side benefit, in my view an important one, Cartan
invariants require less calculation, in general.

Let F (M) denote a “suitable” frame bundle over
a spacetime M (i.e. take the set of all frames at each
point) and Rq be the set
{Rabcd, Rabcd;f , . . . , Rabcd;f1f2···fq} of the components
of the Riemann tensor and its derivatives up to the qth
in a frame.

Choose from F (M) in a canonical and invariant
way, e.g. use the principal null directions of the Weyl
tensor, when they are distinct, as the basis vectors. The
resulting Rq are called the Cartan invariants. They
are scalars, because the frames are invariantly defined,
e.g. if a, b, c and d are basis vectors (not necessarily all
distinct) of the chosen frame, one of the Cartan invari-
ants is Rijkla

ibjckdl . The idea is like characterizing a
symmetric bilinear map (matrix) by its eigenvalues.

2.2 Independence of (s.p.) invariants

In a manifold M of n dimensions, at most n scalar
invariants can be functionally independent, i.e. in-
dependent functions on M.

The number of algebraically independent scalar
polynomial invariants, i.e. s.p. invariants not satisfy-
ing any polynomial relation (called a syzygy), is rather
larger, as we shall see next. (A set of algebraically in-
dependent Cartan invariants in a general spacetime,
written using the Newman-Penrose spinor formalism,
is given in [3]: it takes fully into account the Ricci and
Bianchi identities.)

Larger still is the size of a complete set of s.p. invari-
ants (a finite Hilbert basis): such a set {I1, I2, . . . , Ik}
is complete if any other s.p. invariant can be written
as a polynomial in the Ij but no invariant in the set can
be so expressed in terms of the others.

One way to find the number of algebraically inde-
pendent scalar invariants is to consider Taylor expan-
sions of the metric and of the possible coordinate trans-
formations [4]; another way follows Hilbert [5].

The result [6] is that in a general Vn the number
of algebraically independent scalars constructible from
the metric and its derivatives up to the pth order (the
Riemann tensor and its derivatives up to the (p− 2)th)
is 0 for p = 0 or p = 1 and

N(n, p) =
n[n + 1][(n + p)!]

2n! p!
− (n + p + 1)!

(n− 1)! (p + 1)!
+ n,

for p ≥ 2, except for N(2, 2) = 1. Thus in a general
space-time the Riemann tensor has N(4, 2) = 14 al-
gebraically independent scalar invariants. In particular
cases the number is reduced.

The origin of many syzygies can be understood in
terms of the vanishing of any object skewed over (n+1)
indices in n dimensions [7–9]. In a series of papers [10–
12] Carminati and Lim have given a detailed discussion
of the syzygies for scalar polynomial (s.p.) invariants of
the Riemann tensor, using graph-theoretic techniques.

A given invariant may be written in more than one
way, due to symmetries, and other relations between
components, of the Riemann tensor and its derivatives.
This is essentially a problem in representations of the
permutation group. The issue is to select a canonical
representative of each equivalence class in the orbit un-
der permutations.

One wants to select a canonical set of invariants and
then express any other invariant in terms of canonized
members of the algebraically independent set.

Several methods have been used to do this for s.p.
invariants, e.g. by Hörnfeldt, by Fulling et al., by Ilyin
and Kryukov, and by Dresse. The method most read-
ily available is due to Portugal [13]. It has been im-
plemented in MapleTM and Mathematicar by Martin-
Garcia et al, and is distributed in xAct, a package for
use with Mathematicar. It has (e.g.) been applied to
all objects with up to 12 derivatives of the metric [14].

Any complete set of s.p. invariants of the Riemann
tensor, and any set which always contains a maximal set
of independent scalars, contains redundant elements.
Hence all the old papers giving specific sets of 14, in 4
dimensions, are inadequate.

The smallest known set of s.p. invariants for a gen-
eral Riemann tensor that always contains a maximal set
of algebraically independent scalars consists of 17 poly-
nomials [15], though 16 suffice for perfect fluids and
Einstein-Maxwell fields. There is a special subclass of
spacetimes [16] which require 18.

The smallest set of s.p. invariants known to be com-
plete contains 38 scalars [17], and Lim and Carminati
[12] proved that it is minimal.

2.3 Computation of invariants

The s.p. invariants are expressions whose contractions
hide very large numbers of individual terms, and are
therefore hard to calculate. It is thus very useful to
adopt a method that reduces the number of terms. One
can use a bivector formalism (see e.g. [15]). Another
way, in 4 dimensions, is to use the Newman-Penrose
complex spinor (or null tetrad) formalism, the GHP
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formalism, or related ideas: this has analogues in other
dimensions (e.g. in three dimensions one can use real
two-component spinors: see [18]).

For higher dimensions it may be efficient to use par-
allel computing, i.e. to split the calculation into sub-
problems e.g. by fixing some of the dummy indices, and
then sending the subproblems to separate processors
[19].

A simple practical way in many cases is to use Car-
tan invariants instead. They are quite cheap to calculate
provided the frame choice is easy to calculate with, in
particular because one never has to multiply curvature
components, or their derivatives, together. In a general
case, either s.p. or Cartan invariants would character-
ize the spacetime, as we shall see below. so the choice
is really a question of convenience or purpose. There is
an open research problem about which is actually more
computationally efficient (or for which cases).

In four dimensions we can always choose a frame,
for example by the principal null directions of the Weyl
tensor, and thus compute Cartan invariants, but in gen-
eral this may entail using the unpleasant algebraic ex-
pressions which arise from the general formulae for so-
lutions of quartics. However, in practice many solutions
give way easily. Note that in 5 dimensions or more there
is no guarantee we can calculate frames of a specified
type even if we can show they must exist, as there is no
general algebraic formula for solutions of quintics.

2.4 Do scalar polynomial invariants suffice?

Until 2009, I would have said definitely not. I mentioned
earlier that pp waves and flat space both have all scalar
polynomial invariants, of all orders, equal to zero. In
fact all vacuum type N and III metrics with ρ = 0 have
this property [20]. There are also metrics which have
equal non-zero s.p. invariants e.g. [21–23].

These ambiguities are associated with the indefi-
niteness of the metric and the non-compactness of the
Lorentz group [24].

Coley et al. [25] gave an argument that spacetimes
are completely characterized by their s.p. invariants, ex-
cept for spacetimes in the Kundt class. Although their
proof seems to me to have a gap, and I have not yet
been able to see if it has been filled, the result seems
correct.

In particular Coley and collaborators have followed
up by a substantial number of papers, which I did not
have time to review comprehensively in my Lahore talk.
These consider not only 4D spacetimes, but higher di-
mensional spaces and various signatures. I just men-
tioned a few to give the flavour. In the initial paper

[25], they also discuss what properties a given set of
invariants characterize.

– Hervik and Coley [26] show that any metric with an
analytic continuation to the pure Riemannian case
is completely characterized by its s.p. invariants

– Coley et al. [27] give a detailed analysis of the generic
5D spacetimes.

– Hervik [28] gave arguments that spacetimes not char-
acterized by s.p. invariants are limits of families that
are so characterized.

It may be worth noting that since it is obvious that
the algebraically independent set of Cartan invariants
given in [3] completely and uniquely specify the s.p. in-
variants, the result of [25] amounts to saying that in
general the converse is true, i.e. that the s.p. invari-
ants uniquely determine the Cartan invariants (given
the procedure for the choice of frame).

The work just described picked out the Kundt class
as the exceptions. These are spacetimes which have
a null vector field which is geodesic, and expansion-,
shear- and twist- free. In a paper [29] which appeared
just before [25] this class was discussed in detail. For it,
one has to use the Cartan approach or some equivalent.

In [29] Coley et al. discussed the Petrov D exam-
ples in the Kundt class. Podolsky and Svarc [30] gave
a classification of Kundt metrics in arbitrary dimen-
sion, and later discussed their physical interpretation.
A subclass of “universal spacetimes” was discussed by
Hervik et al. [31]: universal in that they solve vacuum
equations of all gravitational theories with Lagrangian
constructed from the metric, the Riemann tensor and
its derivatives of arbitrary order. Hervik et al. [32] found
all cases where there exists a continuous family of met-
rics having identical [scalar] polynomial invariants.

3 Uses of spacetime invariants

3.1 The Equivalence Problem

Now let me return to my original motivation, i.e. iden-
tifying the same solution when found with different
motivations and assumptions and presented in differ-
ent coordinate systems. It could be considered either
a mathematical or a physical problem. It is essentially
resolved by the following theorem (in terms of Cartan
invariants).

Theorem 1 (Sternberg [33], Ehlers [34]) Given two
spacetimes,M andM, each expressed using some frames
E and E, then there is an isometry which maps (x, E)
to (x, E) if and only if Rp+1 for M is such that the
independent quantities and the functional relations are
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the same for Rp+1 and Rp+1
, where p is the last deriv-

ative at which a new functionally independent entry in
Rp arises.

See [35] for a more careful statement.
One could therefore calculate everything on a suit-

able frame bundle.

– Christoffel used coordinate frames. This works but
the dimension of F (M) is large.

– Cartan proposed using frames with constant scalar
products, e.g. null frames or orthonormal frames,
which is better (hence the credit for Cartan invari-
ants).

– In 1965 Brans [36] proposed practical use of this
method via lexicographic indexing of components.

– Later Brans and, more fully, Karlhede [37,38] re-
alised that a more efficient way to implement the
idea was to restrict the frames wherever possible by
only allowing canonical forms of the curvature and
its derivatives (i.e. go to Cartan invariants).

– This makes the whole thing manageable (with a
computer) and it was first implemented by Åman
in 1979 [39].

Given the Coley et al. results, we now know we
could in general work only with s.p. invariants, but the
present software [40,41] uses the Cartan method. In
an algebraically general spacetime, one can choose the
principal null directions of the Weyl tensor to fix the
frame, or in a conformally flat spacetime one can begin
with eigenvectors of the Ricci tensor. In the actual im-
plementation we use the Weyl PNDs, where they exist,
as the first choice.

Many details have been considered (by Åman, my-
self, Skea, d’Inverno, McLenaghan, Pollney and others)
in specifying frames and in making the computations
more efficient. The main aspects are the enumeration
of canonical forms, the tests of which canonical form
applies, and the transformation of the non-canonical to
the canonical. The literature cited in the exact solutions
book gives more information.

A first extension is to maps more general than isome-
tries, e.g. homotheties [42] or conformal equivalence
[43]. One can of course tackle Euclidean metrics and
metrics in any dimension, though the details of making
the method work efficiently are different (e.g. [44]).

The above ideas are in fact a special case of Cartan’s
general procedures (see e.g. [45]), which apply to other
situations which can be expressed in differential forms
and a connection or similar structures. In particular it
applies to the equivalence of (systems of) differential
equations, under coordinate transformations (see the
books of Gardner [46] and Olver [47]).

Another context is that of gauge theories of physics,
the gauge potential being just a connection [48].

One interesting issue for spacetimes is how large p

in the theorem has to be. Karlhede [38] showed p ≤ 7.
For a long time examples suggested p ≤ 3. At the time
of the second edition of the exact solutions book [35]
an example with p = 5 was known, as were a number
of bounds for subclasses. We quoted results suggesting
that p ≤ 5 was generally true.

In 2009 (the result was actually first announced in
2007), Milson and Pelavas [49] showed that the origi-
nal bound of 7 is sharp, by giving a (unique) example.
This is still small enough for calculation to be practical.
The example is of course in Kundt’s class, as are those
further examples they found where p = 6.

As well as giving a way to compare two spacetimes,
the theorem above also implies that the Cartan invari-
ants uniquely classify and determine the local geome-
try. This implies that all local properties are encoded
in this information. I will rather briefly discuss some
of the possible resulting applications. Aspects I was
not able to cover in Lahore included: applications to
three-dimensional spaces, including the use in checking
junction conditions; applications in numerical relativ-
ity; applications to cosmology and to perturbations; use
in constructing alternative theories of gravity; and ap-
plications to internal state spaces of thermodynamics.
I think there must be more we have not yet explored.

Note that global topology is of course not deter-
mined by the invariants we have been considering (local
invariants cannot distinguish a plane and a flat torus)
and nor are continuations which do not respect the re-
quired differentiability for the theorem above.

My original motivation can now be carried out for
many cases. I used these methods, for example, to dis-
entangle the known exact solutions for inhomogeneous
cosmologies with a symmetry group G2. It would be
good to have a complete online catalogue of (at least)
the solutions in [35]. Skea and Lake have independently
implemented systems to facilitate this. Properties such
as the isometry group can also be found [50–52]: for
examples see e.g. [53,54]. Similar results apply for ho-
motheties [42].

3.2 Finding solutions

The same ideas can be used to find solutions, by work-
ing out consistent sets of Cartan invariants and then
integrating to get a metric. Examples are mentioned in
the exact solutions book. Machado Ramos and Edgar
[55,56] used these ideas, implemented in their invariant
operator formalism, to find pure radiation solutions of
types N and O with a cosmological constant.
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Coley and collaborators looked for all spacetimes
in which all s.p. invariants vanish (which they called
VSI spacetimes although not all Cartan scalar invari-
ants vanish). In the 4-d Lorentzian case these give all
spacetimes indistinguishable from flat space by s.p. in-
variants [57]. The higher dimensional cases give exam-
ples in supergravity and string theory. A closely related
series of papers has studied the spacetimes with con-
stant s.p. invariants (CSI spacetimes). For a review of
this work see [58].

3.3 Limits of families of spacetimes

Another aspect, described first by Paiva et al. [59], is
the use of invariants to work out the limits of families
described by parameters. This enables one to find all
possible limits in a coordinate-free way, whereas pre-
vious treatments were in effect trial and error. This is
another area where further work would be useful.

I did not give more detail in my Lahore lecture, but
passed quickly on to limiting points within spacetimes.

3.4 Black hole and other horizons

Karlhede et al [60] first noted that Rabcd;eR
abcd;e = 0 at

the Schwarzschild horizon (so a prudent space traveller
might monitor that). Skea in his thesis [61] noted that
this is not true for other horizons (a point rediscussed
by Saa [62] for higher-dimensional static cases: Saa also
found points where Rabcd;eR

abcd;e = 0 but which are
not horizons). Lake [63] continued the work on Kerr by
considering first derivative invariants, and found their
vanishing characterized the horizons.

Related to my arguments against the claims of An-
toci and others that the Schwarzschild horizon was sin-
gular, I proposed in 2006 [64] a new test for occurrence
of a horizon using ratios of Cartan invariants which
works in all cases of Petrov type D. I believe it works
more generally, but this needs further study. Maybe it
could also be useful to numerical relativists (and space
travellers).

More recently Abdelqader and Lake [65,66] have
given an invariant characterization of the Kerr hori-
zon, and, prompted by that, Page and Shoom [67] have
given another for stationary black holes. I have not yet
had the opportunity to check how these relate to earlier
characterizations.

Moffat and Toth [68] considered the relation of the
“Karlhede invariant” (i.e. Rabcd;eR

abcd;e) to discussions
of a “firewall” at the horizon.

3.5 Singularities

Singularities in general relativity are defined to occur
when a causal geodesic cannot be continued to infi-
nite affine parameter values even when the spacetime
is maximally extended – “geodesic incompleteness” (for
the reasons for this definition see [69]).

It is well-known that this happens if an s.p. invari-
ant of the Riemann tensor itself (not its derivatives)
blows up along the geodesic. This does not however
mean that:
(i) an “infinite” Riemann tensor implies a singularity,
or
(ii) if an invariant blows up, there is a singularity, or
(iii) at all singularities, an s.p. invariant of the Riemann
tensor blows up.

1. An “infinite” Riemann tensor does not imply a sin-
gularity. Geodesics can be continued across a delta
function curvature modelling a thin shell or an im-
pulsive gravitational wave.

2. The blowing up of an invariant does not imply a sin-
gularity. For example [64] the invariant 1/Rabcd;eR

abcd;e

blows up at the Schwarzschild horizon, but the hori-
zon is not singular.

3. There are singularities at which no s.p. invariant of
the Riemann tensor blows up. At “whimper” singu-
larities an invariant involving first derivatives does,
though [70]. An example was studied by Podolsky
and Belan [71].

Question: when does blow up of higher derivative
invariants imply a singularity?

Another application is to “directional” singularities,
where a singular point apparently has directionally de-
pendent limits. Scott and Szekeres [72,73] showed that
the directional singularity of the Curzon metric hid
more extended regions at whose boundary the original
coordinates broke down. My student Taylor [74] showed
that such cases could be appropriately “unravelled” by
using level surfaces of Cartan invariants to define new
coordinates. Lake [63] used the Weyl tensor s.p. invari-
ants to show that the Kerr singularity was not direc-
tional.

With Coley and others [75], I considered “kinematic
singularities” (where fluid expansion blows up), giving
examples in which, given an integer p, the Cartan (and
hence s.p.) scalars can be finite up to the p-th deriva-
tive, but not the (p + 1)-th.

Geodesic continuation needs a C2− metric. In invari-
antly defined frames the connection coefficients (which
would be C1−) are typically expressible as ratios of first
derivative Cartan invariants to zeroth derivative ones.
We know that there are “intermediate” or “whimper”
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singularities where s.p. invariants of the Riemann tensor
do not blow up, while s.p. invariants of the first deriva-
tives of the Riemann tensor do. Hence I conjecture that
under some suitable differentiability conditions:

Conjecture: Spacetime singularities are either lo-
cally extendible or at least one Cartan invariant in R1

has an infinite limit along any curve approaching the
singularity.
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Abstract Non-singular coordinates (T, R) for Reissner
Nordström black hole surrounded by quintessence are
obtained in this paper. We also find the geodesics equa-
tions of a test particle moving around the black hole, in
these coordinates. In particular, it is observed that the
value of dT/dR, is regular on the event horizon of the
black hole in contrast with the derivative dt/dr = ∞,
at the event horizon.

1 Introduction

Accelerated expansion of the universe is a well known
observational phenomena in this era. Many candidates
for dark energy have been proposed to explain this ex-
pansion behavior [1]. Quintessence field is a scalar field
coupled to gravity, a candidate for dark energy, with
state parameter in the range , −1 < wq < −1

3 [2,
3]. Many aspects of quintessence field have been stud-
ied in literature (for details see [4]). Kiselev derived
the solution for a spherically symmetric black hole sur-
rounded by quintessence field [12]. In this paper we con-
sider the Reissner Nordström black hole surrounded by
quintessence (RN-Quintessence) and obtain its metric
in non-singular coordinates.

In (t, r) coordinates, Schwarzschild spacetime has
a singularity at r = 2M , where M is the black hole
mass, which could be removed by using Kruskal co-
ordinates and the maximal singularity free extension
of Schwarzschild geometry is obtained [5]. Eddington
Finkelstein (EF) and Kruskal Szekeres (KS) [6–8] co-
ordinates are the most popular coordinate systems in
which schwarzschild metric is regular at event horizon
r = 2M . Extending this approach to other black hole

aEmail Address: bushra.majeed@sns.nust.edu.pk
bEmail Address: azad@sns.nust.edu.pk

metrics with an event horizon, the coordinate singu-
larities could be avoided and the interior and exterior
regions of the black hole could be described by the same
metric [10,11].

Kinematics of a test particle around a black hole
could be better understood in KS coordinates (T, R)
because working in these coordinates there is no barrier
on the geodesics of the particle due to event horizon [9–
11].

Constructing the KS-like coordinates for the RN-
Quintessence black hole we derive the expression for
the KS derivative dT/dR. We shall show that in accor-
dance with the singularity free nature of the KS coor-
dinates, geodesics are regular on the horizon in these
coordinates. Plan of the paper is as follows: In section
II coordinate singularities of the RN-Quintessence are
discussed. In section III we present non singular KS-
like coordinates for the RN-Quintessence black hole. In
section IV geodesics of a test particle in KS-like coordi-
nates are given. Conclusion is given in the last section.

2 Reissner Nordström Black Hole Surrounded
by Quintessence

The spherically symmetric and static solution for Ein-
stein’s field equations, in the presence of energy-matter,
was investigated by Kiselev [12], known as quintessence
and black holes. Metric of the RN-Quintessence black
hole is defined as [13]

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2(dθ2 + sin2 θdφ2), (1)

where f(r) is

f(r) = 1− 2M

r
+

Q2

r2
− σ

r1+3ωq
, (2)
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here Q is charge of the black hole, and σ is normaliza-
tion parameter and ωq is state parameter of the quinte-
ssence field [12]. Choosing ωq = −2

3 we have

f(r) =
−σr3 + r2 − 2Mr + Q2

r2
. (3)

Solving f(r) = 0, horizons of black hole are ob-
tained. Depending on the nature of the discriminant,
∆,

∆ = 4(M2 −Q2) + σ(−32M3 + 36MQ2)− 27σ2Q4,(4)

of the cubic equation σr3−r2+2Mr−Q2 = 0, there
are following possible cases for the roots:

– All real roots,
– One real root and two complex roots.

We consider the later case, i.e. when f(r) has one
real root, r = r3 (say), and two complex roots, in this
case the RN- Quintessence spacetime has one horizon
at r = r3. We can write f(r) as

f(r) =
(r − r3)(−σr2 + r(1− σr3) + r3 − σr2

3 − 2M)
r2

,(5)

here r = r3 is a coordinate singularity, we can re-
move it by an appropriate change of coordinates.

3 Non-singular coordinates for
RN-Quintessence Black Hole

The in-going and out-going null geodesics of a particle
moving around black hole satisfy

t = ±r∗ + constant, (6)

where

r∗ =
∫

dr

f(r)
. (7)

Define new coordinates u and v having directions of null
geodesics as [6,7]

u = t− r∗, v = t + r∗. (8)

Kruskal and Szekeres developed a coordinate system
[8], which changes (t, r) to (T,R), while θ and φ are
left unchanged, given as

U = −α exp(
−u

β
), V = α exp(

v

β
), (9)

where α and β are arbitrary constants. Using Eqs. (8)
and (9) the metric given in Eq. (1) becomes

ds2 = −f(r)e
−2r∗

β
β2

α2
dUdV + r2(dθ2 + sin2 θdφ2). (10)

Or metric could be better understood with the help
of coordinates T and R which correspond to mutually
perpendicular axis, defined as

T =
V + U

2
, R =

V − U

2
. (11)

Using Eq. (11) in Eq. (10) we get

ds2 = −F (r)(dT 2 − dR2) + r2(dθ2 + sin2 θdφ2), (12)

where F (r) = f(r)β2

α2 e−2r∗/β .
Using Eq. (7) with Eq. (5) we have

r∗ =
−2(M + r3Mσ + r3(−1 + σr3)) tan−1(−1+2σr+σr3

K
)

Kλ

−r2
3 ln |r − r3|

λ
− M + r3(−1 + σr3) ln (X)

σλ
, (13)

where

λ = 2M + r3(−2 + 3σr3)

K =
√
−1 + 8Mσ − 2σr3 + 3r2

3σ
2

X = 2M + r2σ + r(−1 + σr3) + r3(−1 + σr3).

If we chose

β =
(−2r2

3)
λ

, α = 1, (14)

the metric given in Eq. (12) transforms to

ds2 = − (−σr2 + r(1− σr3) + r3 − σr2
3 − 2M)

r2

(−2r2
3)2

λ2

(
exp (

−4(M + r3Mσ + r3(−1 + σr3)) tan−1(−1+2σr+σr3
K

)

2r2
3Kλ

)

)

(X)
−M+r3(−1+σr3)

σr2
3 dUdV + r2(dθ2 + sin2 θdφ2).

(15)

Notice that the metric given is Eq. (15) is regular
at r = r3 so the coordinate singularity is removed in
new coordinates (T, R). Relation between new and old
coordinates is

R2 − T 2 = exp(2r∗/β), (16)

using Eq. (3) we get

R2 − T 2 = exp
(

4(M + r2Mσ + r3(−1 + σr3)) tan−1
(−1+2σr+σr3

K

)

2r 2
3Kλ

)

(r − r3)(2M + r2σ + rX)
M+r3(−1+σr3)

σr2
3 , (17)

clearly at r = r3

R2 − T 2 = 0. (18)
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4 Geodesics of a Test particle Moving around
RN-Quintessence Black Hole

Since the RN-Quintessence black hole metric is invari-
ant under time translation and rotation around sym-
metry axis so the Killing vectors

ξµ
(t)∂µ = ∂t, ξµ

(φ)∂µ = ∂φ, (19)

will give the constants of motion, where ξµ
(t) = (1, 0, 0, 0)

and ξµ
(φ) = (0, 0, 0, 1). The corresponding conserved

quantities are the energy per unit mass E and angular
momentum L of the moving particle, given by

E = −f ṫ, (20)

L = r2φ̇. (21)

The dot denotes the differentiation with respect to proper
time τ and f := f(r) throughout the calculations. Con-
sidering the planar motion of the particle i.e. for θ =
π/2 the normalization condition uµuµ = −1, gives

ṙ2 = E2 − Veff , (22)

where Veff is the effective potential given as

Veff = (1− 2M

r
+

Q2

r2
− σr)(1 +

L2

r2
). (23)

Geodesics of a particle moving around a black hole are
given by

dt

dr
= ± E

f(r)
√E2 − Veff

. (24)

Since f(r3) = 0 so the geodesics equation diverges at
r = r3, we can say that the geodesics are not complete
in usual (t, r) coordinates. We need to write geodesics
equation in modified (non-singular) coordinates.

Using Eqs. (7) and (8) along with Eq. (24) we get
geodesic equation in KS coordinates as

dv

du
=

1 + A

1−A
, (25)

where

A =
±(

√E2 − Veff )
E . (26)

Further using Eq. (26) with Eq. (9) we obtain

dV

dU
=
−V

U

(1 + A

1−A

)
. (27)

Using Eq. (27) with Eq. (11) we have

dR

dT
=

(T + R)(E + A) + (T −R)(E −A)
(T + R)(E + A)− (T −R)(E −A)

. (28)

This is clear from Eq. (28) that the geodesics equations
are well behaved at singularity r = r3.

5 Conclusion

Using the similar transformations, as introduced by Kr-
uskal Szekeres, to obtain well known Kruskal Szekeres
coordinates for the Schwarzschild black hole, we have
obtained non-singular Kruskal Szekeres like coordinates
for the Reissner Nordström black hole surrounded by
quintessence, for the case when it has one horizon only.
Further we find the expression for the geodesics equa-
tions in these coordinates. It is observed that the sin-
gularity appearing in the geodesics equations in usual
(t, r) coordinates is removed in the new constructed
Kruskal Szekeres (T, R) coordinates.
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Abstract Stability analysis can be used to describe
gravitational collapse phenomenon in modified theories
of gravity. It can explains collapse in different configura-
tions (spherically, cylindrically and axially symmetries
etc) as well as in different dynamical conditions, i.e.,
effects of dissipation and electromagnetism etc. In this
manuscript, we explain instability of spherically sym-
metric star in Brans- Dicke gravity. For this purpose,
we use contracted bianchi identities and perturbation
approach to construct collapse equation (hydrostatic
equilibrium). We obtain instability ranges in Newtonian
regimes by incorporating equation of state involving
adiabatic index (Γ ).
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1 Introduction

Brans-Dicke (BD) theory, one of the most fascinated ex-
amples of scalar-tensor theories, is a generalized form
of general relativity. It has the following main features:
relation of scalar field φ with dynamical gravitational
constant (G = G0

φ ), a tuneable constant coupling para-
meter ωBD, non-minimal coupling of geometry (R) with
scalar field, compatibility with Mach’s principle, Dirac’s
large number hypothesis and weak equivalence prin-
ciple. This theory satisfies all weak field regimes test
(solar system experiments and observation) for |ω| ≥
40, 000. It is the most dominant and prevailing case of
modified theories which provides convenient evidences
of many cosmic problems such as early and late behav-

1msharif.math@pu.edu.pk
2rubab.manzoor@umt.edu.pk

ior of the universe, inflation, coincidence problem and
cosmic acceleration [1,2].

In relativistic physics, the phenomenon of dynam-
ical instability of self-gravitating objects (stellar col-
lapse) has been an interesting issue. Stellar collapse is
a process in which a massive body collapses due to its
own gravitational pull or it is a phenomenon in which
stable celestial bodies turn into unstable objects due to
their own gravity. It is well-known that different ranges
of stability for celestial objects lead to different struc-
tures of collapsing objects as well as different evolution
approaches of astronomical bodies during the collapse.

Chandrasekhar [3] was the first who described the
instability ranges of isotropic fluid in general relativity
(GR) with the help of adiabatic index Γ and found that
the fluid becomes unstable for Γ < 4

3 . Later, many peo-
ple [4]-[7] explored dynamical stability for anisotropic,
shearing viscous, adiabatic as well as non adiabatic fluid
and concluded that instability ranges depend on differ-
ent physical characteristics of the fluid.

There has been a large body of literature which indi-
cates keen interest on the stability analysis in modified
theories of gravity. Nutku [8] investigated dynamical
instability of isotropic fluid in BD gravity and found
that the fluid remains unstable for Γ > 4

3 . Kwon et al.
[9] described different stability ranges for the Schwarz-
schild black hole in BD gravity. Sharif and Kauser [10,
11] studied stability analysis for spherical as well as
cylindrical collapsing system in f(R) gravity. Sharif and
Yousaf [12]-[15] explored the effects of matter variables
as well as electromagnetic field on stability analysis for
different cases in f(R) theory of gravity. Sharif and
Rani [16] investigated dynamical instability of spher-
ical collapse in f(T ) gravity.

In this paper, we explore dynamical instability of
spherically symmetric anisotropic collapsing model in
BD gravity. The paper is designed in the following for-
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mat. The next section deals with BD equations, junc-
tion conditions and two dynamical equations describ-
ing the evolution of collapse. In section 3, we apply
perturbation scheme to BD as well as dynamical equa-
tions and obtain collapse equation from static and non-
static configurations of dynamical equations. Section 4
explores dynamical instability ranges at Newtonian ap-
proximation. Finally, we summarize our results in the
last section.

2 Brans-Dicke Gravity and Dynamical
Equations

Brans-Dicke theory is the natural extension of GR in
which gravity is mediated by the tensor field of GR and
a massless scalar field. The action of self-interacting BD
gravity with 8πG0 = c = 1 is [1]

S =
∫

d4x
√−g[φR− ωBD

φ
∇αφ∇αφ− U(φ) + Lm],(1)

where U(φ) and Lm represent the self-interacting po-
tential and matter contribution, respectively. By vary-
ing Eq.(1) with respect to gµν and φ, we obtain BD
equations as

Gµν =
1
φ

(Tm
µν + Tφ

µν), (2)

φ,µ
;µ =

Tm

3 + 2ωBD
+

1
3 + 2ωBD

[φ
dU(φ)

dφ
− 2U(φ)], (3)

where Gµν (µ, ν = 0, 1, 2, 3) represents the Einstein
tensor, Tm

µν is a stress energy tensor of matter fluid, Tm

is the trace of Tm
µν .

Tφ
µν = [φ,µ;ν − gµνφ,µ

;µ] +
ωBD

φ
[φ,µφ,ν − 1

2
gµνφ,αφ,α]

− U(φ)
2

gµν , (4)

defines the energy part of scalar field. Equation (2) de-
scribes the respective BD field equations and Eq.(3)
being a wave equation describes the evolution of scalar
field.

In order to discuss spherically symmetric collapse,
we take 3-dimensional hypersurface Σ(e) as an exter-
nal boundary of collapsing star. In this way, the 4-
dimensional geometry splits into two regions named as
exterior and interior spacetimes. The line element of in-
terior spacetime is described by the most general spher-
ically symmetric metric as

ds2
− = A2(t, r)dt2 −B2(t, r)dr2 − C2(t, r)dθ2

− C2(t, r) sin2 θdφ2). (5)

In BD gravity, the only physically valid vacuum static
spherical solution is the Schwarzschild solution which

is taken as the exterior metric to Σ(e), having the line
element of the form

ds2
+ =

(
1− 2M

r

)
dν2 +2drdν−r2(dθ2 +sin2 θdφ2).(6)

Here M is the total mass of the system and ν represents
the retarded time, respectively. We assume that the in-
terior region is filled with a non-dissipative anisotropic
fluid described by the energy-momentum tensor as

Tm
µν = (ρ + p⊥)uµuν − p⊥gµν + (pr − p⊥)χµχν , (7)

where ρ is the energy density, p⊥ represents the tan-
gential pressure and pr is the radial pressure. The four
velocity, uµ and a unit four-vector (along the radial di-
rection), χµ, are evaluated by the relations uµ = A−1δµ

0

and χµ = B−1δµ
1 , which satisfy uµuµ = 1, χµχµ =

−1, χµuµ = 0.
For the interior metric, the field equations (2) be-

come(
2Ḃ

B
+

Ċ

C

)
Ċ

C
−

(
A

B

)2
[

2C ′′

C
+

(
C ′

C

)2

−2B′C ′

BC
−

(
B

C

)2
]

=
1
φ

(
ρA2 +

ωBD

2φ
(φ̇2 +

A2φ
′2

B2
)

)

− φ̇

φ

(
Ȧ

A
+

Ḃ

B
+

2Ċ

C

)
+

φ′

φCB2

(
A2B′C

B
+ 2AA′C

+2A2C ′
)

+
A2φ′′

B2φ
− A2U(φ)

2φ
, (8)

2

(
− Ċ ′

C
+

ĊA′

CA
+

ḂC ′

BC

)
=

ωBD

φ2
(φ̇φ′) +

1
φ

(
φ̇′

− Ȧφ̇

A
− Ḃφ′

B

)
, (9)

−
(

B

A

)2
[

2C̈

C
−

(
2Ȧ

A
− Ċ

C

)
Ċ

C

]
+

(
2A′

A
+

C ′

C

)
C ′

C

−
(

B

C

)2

=
1
φ

(
prB

2 +
ωBD

2φ
(φ
′2 +

B2φ̇2

A2
)

)

+
φ̇

φA2C

(
Ȧ

A
CB2 + 2BḂC +

2ĊB2

C

)
+

φ′

φ

(
B′

B
+

A′

A

+
2C ′

C
+

Ḃ

B

)
+

B2U(φ)
2φ

, (10)

−
(

C

A

)2
[

B̈

B
+

C̈

C
− Ȧ

A

(
Ḃ

B
+

Ċ

C

)
+

ḂĊ

BC

]
+

(
C

B

)2

×
[
A′′

A
+

C ′′

C
+

A′B′

AB
+

(
A′

A
− B′

B

)
C ′

C

]
=

1
φ

×
(

p⊥C2 +
ωBD

2φ
(
Ċ2φ̇2

A2
− C2φ

′2

B2
)

)
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+
φ̇

A2Bφ

(
ȦABC2 + ḂC2 + CĊB

)
− φ′

AB2φ

×
(

B′AC2

B
+ A′C2 + 3CC ′A

)
+

φ̈C2

A2φ
+

C2U(φ)
2φ

,(11)

and the corresponding wave equation (5) takes the form

φ̇

(
− Ȧ

A
+

Ḃ

A2B
+

2Ċ

A2B

)
+

φ̈

A2
+ φ′

(
− A′

AB2

+
B′

B3
− 2C ′

CB2

)
− φ′′

B2
=

1
2ωBD + 3

[(ρ− pr

−p⊥) +
(

φ
dU

dφ
− 2U

)]
. (12)

Here prime and dot describe differentiation with respect
to r and t, respectively.

Junction conditions represent the correct behavior
of an exterior spacetime by smoothly connecting the
exterior region to the interior region over a hypersur-
face Σ(e). Darmois junction conditions are assumed to
be more appropriate to discuss gravitational collapse.
For this purpose, we use Misner-Sharp mass function,
m(t, r) = C

2 (1 + gµνC,µC,ν), which describes the total
energy of spherical object of radius C. For Eq.(5), it
becomes

m(t, r) =
C

2

(
1 +

Ċ2

A2
− C ′2

B2

)
. (13)

Since in BD theory, the metric tensor as well as scalar
field are the gravitational field variables (source of grav-
ity), therefore, the matching of the exterior and interior
regions require φ = φΣ(e) = constant along with conti-
nuity of first and second fundamental forms (Darmois
conditions) [17]. The above consideration yields the fol-
lowing results on the boundary surface

r = rΣ(e) = constant, M =Σ(e)
m(t, r), (14)

and

2

(
Ċ ′

C
− ĊA′

CA
− ḂC ′

BC

)
= Σ(e) − B

A

[
2C̈

C
−

(
2Ȧ

A
−

+
Ċ

C

)
Ċ

C

]
+

A

B

[(
2A′

A
+

C ′

C

)
C ′

C
−

(
B

C

)2
]

. (15)

Substituting the field equations (9) and (10) in the
above equation, we get

−pr

φ
=Σ(e) Tφ

11

B2
− Tφ

01

AB
=

U(φ)
2φ

, (16)

which represents the conservation of momentum flux
across Σ(e). Dynamical equations of the collapsing star
are obtained from the non-trivial contracted Bianchi
identities, which provide conservation of total energy

of the collapsing system. These identities are given as
follows(

Tµν
m

φ
+

Tµν
φ

φ

)

;ν

uµ = 0,

(
Tµν

m

φ
+

Tµν
φ

φ

)

;ν

χµ = 0,

(17)

yielding
[

ρ̇

A
− ρφ̇

φ2A
+ (ρ + pr)

Ḃ

AB
+ 2(ρ + p⊥)

Ċ

AC

]

+H1 = 0, (18)[
p′r
B

+
φ′pr

φ2B
+ (ρ + pr)

A′

AB
+ 2(pr − p⊥)

C ′

BC

]

+H2 = 0, (19)

where H1 and H2 are mentioned in Appendix A.

3 Perturbation Scheme

In this section, we develop collapse equation with the
help of perturbation scheme. We assume that initially
the system is in static equilibrium, i.e., material as well
as metric parts have radial dependence only. After that
all the metric functions and other dynamical quantities
are perturbed and become time dependent. The metric
functions and scalar field have the same time depen-
dence, while the pressure, density and scalar potential
have the same time dependence in their perturbations.
We define

A(t, r) = A0(r) + εT (t)a(r), (20)

B(t, r) = B0(r) + εT (t)b(r), (21)

C(t, r) = C0(r) + εT (t)c(r), (22)

φ(r, t) = φo(r) + εT (t)Φ(r), (23)

pr(t, r) = pr0(r) + εp̄r(t, r), (24)

p⊥(t, r) = p⊥0(r) + εp̄⊥(t, r), (25)

ρ(t, r) = ρ0(r) + ερ̄(t, r), (26)

U(φ) = U0(r) + εŪ(t, r), (27)

where 0 < ε ¿ 1 and the static background is de-
scribed by subscript zero. In order to obtain static and
perturbed distribution of the field and dynamical equa-
tions, we choose C0 = r as a radial coordinate. The
static configuration of Eqs.(8)-(11) becomes

ρ0

φ0
+

ωBDφ
′2
0

2B2
0φ2

0

+
B′

0φ
′
0

B3
0φ0

+
2A′0φ

′
0

A0B2
0φ0

+
2φ′0

B2
0rφ0

+
φ′′0

B2
0φ0

+
U0

2φ0
=

1
(B0r)2

(
2r

B′
0

B0
+ B2

0 − 1
)

, (28)

pr0

φ0
+

ωBDφ
′2
0

2B2
0φ2

0

− B′
0φ
′
0

B3
0φ0

− A′0φ
′
0

A0B2
0φ0

− 2φ′0
B2

0rφ0
+

U0

2φ0
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=
1

(B0r)2

(
2r

A′0
A0

−B2
0 + 1

)
, (29)

p⊥0

φ0
+

ωBDφ
′2
0

2B2
0φ2

0

− B′
0φ
′
0

B3
0φ0

− A′0φ
′
0

A0B2
0φ0

− 3φ′0
B2

0rφ0

+
φ′′0

B2
0φ0

+
U0

2φ0
=

1
B2

0

[
A′′0
A0

− A′0
A0

B′
0

B0
+

1
r

(
A′0
A0

− B′
0

B0

)]

. (30)

The corresponding static distribution of wave equation
is

φ′0A
′
0

A0B2
0

− φ′0B
′
0

B3
0

+
2φ′0
rB2

0

=
−1

2ωBD + 3
[(ρ0 − pr0 − p⊥0)

+ (φ0U0 − 2U0)] .

The first dynamical equation (18) is identically satisfied
in the static background while (19) turns out as

p′r0 +
φ′0pr0

φ0
+ (ρ0 + pr0)

A′0
A0

+
2
r
(pr0 − p⊥0)

− H ′
2

B0φ0
= 0, (31)

where H ′
2 is given in Appendix A. The junction condi-

tion (16) for static configuration is

pr0

φ0
=Σ(e) −U0

2φ0
, (32)

and the perturbed form of the field Eqs.(8)-(11) takes
the form

−2T

B2
0

[( c

r

)′′
− 1

r

(
b

B0

)′
−

(
B′

0

B0
− 3

r

) ( c

r

)′

−
(

b

B0
− c

r

)(
B0

r

)2
]

= − ρ̄

φ0
− Tρ0Φ

φ2
0

+
TωBDφ

′2
0 b

φ2
0B

3
0

+
Tφ′0
φ0B2

0

[
2

(
a

A0

)′
+ 2

( c

r

)′
+

(
b

B0

)′]
+

2Tbφ′0
φB3

0

×
[
A′0
A0

− 1
r

]
+

[
T

B2
0r

+
TA′0
B2

0A0
+

TB′
0

B3
0

] [
Φ

φ0

]′

+
TΦ′′

φ0B2
0

− 2Tbφ′′0
B3

0φ0
− Tφ′0Φ

B2
0φ2

0

−TU0Φ

2φ2
0

− TŪ

2φ0
, (33)

−c′

c
+

A′0
A0

+
b

cB0
=

ωBDṪΦ′

φ2
0

− ṪΦ′

φ0
, (34)

−2T̈B2
0c

rA2
0

+
2T

r

[(
a

A0

)′
+

(
r
A′0
A0

+ 1
) ( c

r

)′
+

B2
0

r

×
(

c

r
− b

B0

)]
=

p̄r

φ0
− Tpr0Φ

φ2
0

− TωBDφ
′2
0 b

φ2
0B

3
0

− Tφ′0
φ0B2

0

×
[(

a

A0

)′
+ 2

( c

r

)′
+

(
b

B0

)′]
+

2Tbφ′0
φB3

0

[
A′0
A0

− 1
r

]

−
[

T

B2
0r

+
TA′0
B2

0A0
− TB′

0

B3
0

] [
Φ

φ0

]′
− Ṫ bφ′0

φ0B2
0

+
T̈Φ

A2
0φ0

−TU0Φ

2φ2
0

+
TŪ

2φ0
, (35)

− T̈

A2
0

(
b

B0
+

c

r

)
+

T

B2
0

[(
a

A0

)′′
+

( c

r

)′′
+

(
2A′0
A0

− B′
0

B0
+

1
r

)(
a

A0

)′
−

(
A′0
A0

+
1
r

)(
b

B0

)′

+
(

A′0
A0

− B′
0

B0
+

2
r

) ( c

r

)′]
= − p̄⊥

φ0
− Tp⊥0Φ

φ2
0

−TωBDφ
′2
0 b

φ2
0B

3
0

+
TωBDbφ

′
0Φ
′

B3
0φ2

0

− TωBDΦφ
′2
0

φ3
0B

2
0

− Tφ′0
φ0B2

0

×
[(

a

A0

)′
+ 2

( c

r

)′
+

(
b

B0

)′]
+

2Tbφ′0
φB3

0

[
A′0
A0

− 1
r

]

−
[

T

B2
0r

+
TA′0
B2

0A0
− TB′

0

B3
0

] [
Φ

φ0

]′

+
T̈Φ

A2
0φ0

− TΦ′′

φ0B2
0

+
2Tbφ′′0
B3

0φ0
+

Tφ′0Φ
B2

0φ2
0

+
TU0Φ

2φ2
0

+
TŪ

2φ0
.

(36)

The perturbed wave equation becomes

H̄3 =
1

2ωBD + 3
[
ρ̄ + p̄r + 2p̄⊥ + TΦU0 − 2Ū

]
, (37)

where

H̄3 =
T̈Φ

A2
0

− Tφ′0
B
′2
0

(
a

A0

)′
+ Tφ′0

(
b

B3
0

)′
+

T

B0

(
Φ

B0

)′

− 2Tφ′0
B2

0

( c

r

)′
− 2TbA′0φ

′
0

B3
0A0

− TΦA′0
B3

0A0
+

4Tbφ′0
B3

0r

− 2TΦ′

rB2
0

− 2Tbφ′′0
B3

0

.

The perturbed form of Eq.(18) takes the form

˙̄ρ +
[
(ρ0 + pr0)

b

B0
+ 2(ρ0 + p⊥0)

c

r
+

Φρ0

φ0

+A0φ0H̄1

]
Ṫ = 0, (38)

which on integration yields

ρ̄ = −
[
(ρ0 + pr0)

b

B0
+ 2(ρ0 + p⊥0)

c

r
+

Φρ0

φ0

+A0φ0H̄1

]
T. (39)

The perturbed configuration of the second Bianchi iden-
tity provides

p′r0 − (ρ0 + pr0)

[(
a

A0

)′
B0

b
− A′0

A0
− ΦB0

A0b

]

−(ρ̄ + p̄r)
A′0B0

φ0A0Tb
− 2(pr0 − p⊥0)

(
B0

b

( c

r

)′
− 1

r
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−B0Φ

bφ0r

)
− (p̄r − p̄⊥)

2B0

Tbrφ0
− ΦB0

Tb
p̄′r −

p′r0ΦB0

φ0

+
p̄rφ

′
0B0

Tbφ0
− φ0H̄2

Tb
= 0, (40)

where H̄1 and H̄2 are given in appendix A. The per-
turbed form of Eq.(16) is

−p̄r =Σ(e) −TΦpr0

φ0
− TΦU0

2φ0
+

Ū

2φ0
. (41)

Using junction conditions with this equation, Eq.(35)
can be written as

a(r)T̈ + b(r)T =Σ(e)
0, (42)

where

a(r) =Σ(e) Φ

φ0A2
0

− 2C

rA2
0

,

b(r) =Σ(e) 2
r

[
−1

r

(
b

B0
− c

r

)]
.

The general solution of Eq.(42) is

T (t) = c1 exp(wΣ(e)t) + c2 exp(vΣ(e)t), (43)

where wΣ(e) = +
√

b(r)
a(r) , vΣ(e) = −

√
b(r)
a(r) and c1, c2 are

arbitrary constants. The solution of the above equation
represents static as well as non-static configurations
which lead to stable and unstable phases of collapse.
In order to discuss instability analysis for collapsing
system, we consider only static solution. For this pur-
pose, we assume that at t = −∞, T (−∞) = 0, i.e.,
when the collapse process begins, the system is in com-
plete hydrostatic equilibrium. Using these assumptions
in Eq.(43), we obtain c2 = 0 whereas c1 = −1 is taken
arbitrarily. The corresponding solution is given by

T (t) = − exp(wΣ(e)t). (44)

For the instability regions to be in a real static distrib-
ution, we consider only positive values of b(r)

a(r) .

4 Dynamical Instability

In order to explore instability ranges of collapsing fluid,
we use adiabatic index Γ by assuming Harison-Wheeler
equation of state as

p̄r = Γ
pr0

ρ0 + pr0
ρ̄. (45)

The adiabatic index determines the variation of pres-
sure with respect to density which describes the rigid-
ity of the fluid. We assume this index to be constant
throughout instability analysis of fluid. Using the value
of ρ̄ in the above relation, we obtain

p̄r = −Γ

[
b

B0
pr0 +

2c

r

ρ0 + p⊥0

ρ0 + pr0
pr0 +

pr0

ρ0 + pr0

Φρ0

φ0

+
pr0

ρ0 + pr0
A0φ0H̄1

]
T. (46)

Using Eqs.(31), (37), (39) and (46) in (40), we have

p′r0

(
1− ΦB0

φ0

)
− (ρ0 + pr0)

[
B0

b

(
a

A0

)′

−A′0
A0

− ΦB0

bA0

]
− 2 (pr0 − p⊥0)

[
B0

b

( c

r

)′
− 1

r
− B0Φ

brφ0

]

+
ΓB0

b

[
b

B0
pr0 +

2c

r

ρ0 + p⊥0

ρ0 + pr0
pr0 +

pr0

ρ0 + pr0

Φρ0

φ0

+
pr0

ρ0 + pr0
A0φ0H̄1

]
,1−ΓB0

b

[
−φ′0

φ0
+

A′0
A0

+
3

rφ0

]

×
[

b

B0
pr0 +

2c

r

ρ0 + p⊥0

ρ0 + pr0
pr0 +

pr0

ρ0 + pr0

Φρ0

φ0

+
pr0

ρ0 + pr0
A0φ0H̄1

]
− B0

b

[
A′0
A0

− 1
rφ0

]

×
[

b

B0
(ρ0 + pr0)− 2c

r
(ρ0 + p⊥0)− Φρ0

φ0
+ A0φ0H̄1

]

− B0

brφ0

[
H̄3(2ωBD + 3) + Ū

]− φ0H̄2

Tb
= 0, (47)

where

p′r0 = −φ′0pr0

φ0
− (ρ0 − pr0)

A′0
A0

− 2
r
(pr0 − p⊥0) +

H ′
2

B0φ0
.

Equation (47) is the required general form of collapse
equation which describes the instability ranges of an
evolving celestial object in Newtonian and post-Newtonian
limits.

4.1 Newtonian limit

The Newtonian approximation in BD gravity obeys the
following conditions

ρ0 À pr0, ρ0 À p⊥0, pr0 À p⊥0, B0 = 1,

A0 = 1− m0

rc2
, φ0 = constant, U0 = Ū = 0.

Using these conditions along with (43), the collapse
equation with at most O(c−2) turns out to be

Γ

[
1
b
XN ,1−

(
m0

r2c2b
+

3
rφ0b

)
XN

]
− ρ0YN

−2pr0ZN + HBD = 0, (48)

where

XN =
(

pr0b(
2c

br
+ 1)

)
,

YN =
[(

m0

r2c2
+

2
r

)(
1− Φ

φ0

)
+

[
a′

bc

(
1 +

m0

rc2

)

+ +
am0

brc2
+

Φ

b

(
1 +

m0

rc2

) (
m0

r2c2b
− 1

brφ0

)(
b

B0

− 2c

r
− Φ

φ0

)]]
,
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ZN =
[
1
b

( c

r

)′
− 1

r
− Φ

φ0rb

]
,

HBD =
(

m0

r2c2
− 1

brφ0

)
H̄1Nφ0 − φ0H̄2N

b

−φ0(2ωBD + 3)H̄3N

b
.

Here H̄1(N) and H̄2(N) are Newtonian approximations
of H̄1 and H̄2 given in Appendix A. It is mentioned
here that the dynamical instability of isotropic fluid de-
pends upon the numerical value of the adiabatic index
in GR. Here, Eq.(48) shows that adiabatic index (for an
anisotropic fluid in BD gravity) depends on dynamical
variables similar to the case of f(T ) and f(R) gravity.

The above equation gives the instability ranges as

Γ <
ρ0YN + 2pr0ZN −HBD[

1
b XN ,1−

(
m0

r2c2b + 3
rφ0b

)
XN

] , (49)

which indicates that the adiabatic index depends on
structural properties, such as energy density, anisotropic
pressure and scalar field. Thus at Newtonian approxi-
mation, the collapsing system remains unstable until
Eq.(49) is satisfied. In order to satisfy the dynamical
instability condition, we consider

ρ0YN + 2pr0ZN −HBD[
1
b XN ,1−

(
m0

r2c2b + 3
rφ0b

)
XN

] > 0, (50)

which means that both expressions (numerator and de-
nominator) are either positive or negative. Moreover,
the fraction

ρ0YN + 2pr0ZN −HBD[
1
b XN ,1−

(
m0

r2c2b + 3
rφ0b

)
XN

] , (51)

leads to the following possibilities:

1. ρ0YN +2pr0ZN −HBD = 1
b XN ,1−( m0

r2c2b + 3
rφ0bXN ,

2. ρ0YN +2pr0ZN−HBD < 1
b XN ,1−( m0

r2c2b + 3
rφ0b )XN ,

3. ρ0YN +2pr0ZN−HBD > 1
b XN ,1−( m0

r2c2b + 3
rφ0b )XN .

The first case together with (49) indicates that the
system becomes unstable for 0 < Γ < 1. In the sec-
ond case, there will be different exact numerical value
depending upon the values of dynamical variables but
it is clear from the second inequality that it must be
less than 1. Hence in this case the predicted value for
instability will be 0 < Γ < 1. Similarly, in the third
case, different ranges of dynamical variables give differ-
ent numerical values which show that these values are
greater than 1. In this way, from Eqs.(49) and third
possibility, we can conclude that the system remains
unstable for Γ > 1. Thus, all the above cases indicate
that 0 < Γ < 1 always provides dynamical instability
for the collapsing system under consideration.

5 Conclusion

In this paper, we have explored dynamical instability
of a spherically symmetric collapsing body in the con-
text of BD gravity. We have used general spherical sym-
metric metric filled with anisotropic fluid as an interior
metric whereas the Schwarzschild metric as an exterior
to Σ(e) and have derived two dynamical equations of
collapsing model through contracted Bianchi identities.
We have applied perturbation approach on BD as well
as dynamical equations to describe both static and non-
static (perturbed) configurations of metric functions as
well as mater distribution. The collapse equation has
been constructed through perturbed second dynamical
equation.

The adiabatic index plays a key role in exploring
the ranges of instability for a collapsing body. We have
used Harison-Wheeler equation of state along with col-
lapse equation to analyze the ranges of dynamical in-
stability at Newtonian approximation. It is found that
in this regime the adiabatic index depends upon struc-
tural properties (like pressure anisotropy, energy den-
sity and some constraints for the validity of instability
condition). We conclude that 0 < Γ < 1 provides dy-
namical instability in all cases while Γ > 1 is the insta-
bility range for only one special case. In the following,
we give comparison of our results with GR and some
modified theories.

– In GR, the dynamical instability of spherical and
cylindrical configurations depends upon numerical
values Γ < 4

3 and Γ < 1. Here this depends on
physical characteristics (density, pressure and scalar
filed) that indicate that 1 is the critical value for
the instability ranges, i.e., 0 < Γ < 1 and Γ >

1 are two different instability criteria according to
different conditions.

– In f(R) gravity as well as in f(T ) gravity, the dy-
namical instability depends on physical variables
such as density, pressure and respective modified
dark terms. Here the instability criteria depends on
physical quantities as well as some numerical insta-
bility predictions (0 < Γ < 1 and Γ > 1) through
these physical variables.

– It is remarked that the instability range of isotropic
fluid in BD gravity is Γ > 4

3 but we have found that
in anisotropic case, the numerically predicted insta-
bility ranges are 0 < Γ < 1 or Γ > 1 in different
cases.
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Appendix A

The scalar terms H1 and H2 of Eqs.(18) and (19) are

H1 =
(
Tφ

00A
−4

)
,0

A−
(
Tφ

01A
−2B−2

)
,1

A

+

[
2Ȧ

A
+

Ḃ

B
+

2Ċ

C

]
Tφ

00A
−3 +

ḂB−3

A
Tφ

11

+
2ĊC−3

A
Tφ

22 −
[
A′ +

B′A
B

+
2C ′A

C

]
(Tφ

01A
−2B−2),

H2 =
(
Tφ

11B
−4

)
,1

B −
(
Tφ

01A
−2B−2

)
,0

B

− 2A′A
B

Tφ
00A

−4 +

[
2Ḃ

B
+

Ȧ

A
+

2Ċ

C

]
Tφ

01B
−1A−2

+
[
A′

A
+

2B′

B
+

2C ′

C

]
(Tφ

11B
−3) +

2C ′C−3

B
Tφ

22.

The term H ′
2 in (31) is the static configuration of H2

and is given by

H ′
2 = (B−2

0 Tφ
11(unp)),1B0 − A′0A

−1
0

B0
Tφ

00(unp)

−
[
−2B0B

2
0 −

A′0B
3
0

A0
− 2

r

](
Tφ

11(unp)B
−4
0

)

+
2r3

B0
Tφ

22(unp)B
−4
0 .

The perturbed terms H̄1 and H̄2 in Eqs.(38) and (40)
are described as

H̄1 = Ṫ

[
A0T

φ
00(p) −

(
Tφ

01(p)A
−2B−2

)
,1

A0

−
(
Tφ

01(p)A
−2B−2

) [
A′0 +

B′
0A0

B0
+

2A0

r

]]
,

H̄2 = −B0

(
Tφ

11(p)B
−2
0

)
,1
− 2TB0

(
bB−3

0 Tφ
11(unp)

)
,1

+ Tb
(
B−2

0 Tφ
11(unp)

)
,1
−

[
T

B0

(
aA3

0

)′ − Tb
A3

0A
′
0

B2
0

]

× Tφ
00(unp) −

[
2B′

0B
2
0 +

A′0B
−1
0

A0

]
Tφ

11(p)

+

[
4TbB0B

′
0 + Tb′B2

0 + TB3
0

(
a

A0

)′

+ Tb
B2

0A′0
A0

− 2T
( c

r

)′
B3

0

6TcB2
0

r

]
Tφ

11(unp)B
−4
0

+
[
6Tcr2 + Tc′r3 − Tbr3

B0

]
Tφ

22(unp).

Here Tφ
µν(unp) and Tφ

µν(p) are unperturbed as well as per-
turbed configurations of BD energy-momentum tensor,
respectively and are given in respective configurations
of the BD field equations.

The Newtonian approximation of scalar terms H̄1, H̄2

and H̄3 are given as follows

H̄(1N) = ẇΣ(e)ew
Σ(e) (t)

[(
1− m0

rc2
)(

1
r
) +

m0

rc2

]
Φ

φ0

+
m0

rc2

Φ′′

φ0
− 5m0

r2c2

Φ′

φ0
+

Φ′′

φ0
+

2
r

Φ′

φ0
,

H̄(2N) = −
[
1
r

+
m0

r2c2

]
Φ′

φ0
+

(
ẅΣ(e) + ẇ2

Σ(e)

)

×
(
1 +

m0

rc2

) Φ

φ0
,

H̄(3N) = ew
Σ(e) (t)

[
Φ′ + Φ

m

r2c2
− 2Φ′

rφ0

+ ẅΣ(e)Φ

(
1− 2m0

rc2

)]
,
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Abstract As the proton number increases the first-
forbidden (FF) charge-changing transitions start gain-
ing prominence for the nuclei. This is partly because the
allowed Gamow-Teller (GT) transitions get smaller for
larger Z and partly due to phase space amplification
for FF decays under stellar conditions. Against those
by the GT contributions alone the FF transitions plays
a vital role in scaling down the half-lives. In this pa-
per we calculate allowed GT as well as 0+ → 0− and
0+ → 2− transitions for neutron-rich Zn and Ge iso-
topes. Two distinct pn-QRPA models were utilized with
a schematic separable interaction to calculate GT and
FF transitions. After the incorporation of FF transi-
tions half-lives are found to be in excellent concurrence
with experimental data. Our results are also compared
with previous calculations and showed better results.
For astrophysical applications allowed GT and unique
FF stellar β-decay rates are also calculated. In case of
86,88Ge a significant contribution to the total β-decay
rate comes from unique FF transitions.

1 Introduction

During presupernova evolution the stellar nucleosyn-
thesis of nuclei beyond iron is usually attributed to
the neutron capture process known as r-process (see
e.g. [1–4]) and is accountable for the mass abundance
of the nuclei in the neutron rich environment of solar
system. The r-process is the most favored process for
the production of about half of heavy elements beyond
iron. The r-process occurs at relatively high tempera-
ture (∼109K) and very high neutron densities (>1020cm−3)
(see e.g. [5,6]). The elemental distribution on the r-
path and the resulting final distribution of stable nu-
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clei are highly sensitive to the β-decay properties [7,8]
of neutron-rich nuclei engaged in the process. The β-
processes are responsible for the flow of the r-process
material to the elements with higher charge numbers
[9] and for setting the r-process time scale. The appear-
ance of the r-peak at A=80 surely indicate the role of
the neutron shell closure at N=50 in the nucleosynthe-
sis process. The calculation of β-decay rates, specially
for waiting point nuclei, is one of the key issues of the
r-process nucleosynthesis.

Weak interaction rates are the hallmark of all the
stellar processes: the hydrostatic burning of massive
stars, late (presupernova) stage of their evolution and
production of heavy elements in stellar nucleosynthe-
sis (see e.g. [10]). The major contribution to β− rate
comes from the GT strength function, i.e. most of the
strength associated with the β−-decay operators lies in
the GT resonance, well above the decay threshold. The
first-forbidden (FF) decays have a strong impact on the
β-decay characteristics of the r-process of the relevant
nuclei with Z≈28, N>50; Z≥50, N>82 and Z=60-70,
N≈126 owing to the shell configuration effects.

In case of neutron rich nuclei, FF β-decay takes vi-
tal importance due to the enlarged phase space for the
transitions [11,12]. The FF β transitions process pro-
vides convenient data in checking the effectiveness of
theories associated with the r-process [13–15]. The FF
transitions become important in an environment where
the allowed β-decay approximation is not sufficient to
describe the isotopic dependence of the β-decay charac-
teristics. Forbidden transitions give a prevailing part to
the total half-life for nuclei crossing the closed N and
Z shells, specially for N < 50 in 78Ni region. At the
same time the FF transitions become relatively impor-
tant for nuclei with larger Z as the contribution from
the allowed GT transitions get smaller for such nuclei
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and bear consequences for nucleosynthesis calculations
[16]. It was shown in this study that the third peak of
the element abundance of the r-process shifted toward
higher mass region by using calculated half-lives includ-
ing FF contributions. Cooperstein and Wambach [17]
found in their calculation that FF process, particularly
the 2− unique first-forbidden (U1F) transitions, con-
tributed effectively to the calculated stellar weak rates
(see also [18]). Authors in Ref. [17] concluded that for-
bidden transitions are small as compared to allowed GT
transitions, but soon begin to compete as soon as the
chemical potential of the electron approaches 20 MeV
at high stellar densities ∼ 1011gcm−3. The increment
was mainly attributed to the U1F transitions whose
strength gets enhanced at high electron energies due
to momentum dependence of the corresponding tran-
sition operator. The factual studies of the r-process
can be achieved with understanding of just few nuclear
properties, namely, the nuclear mass (from which neu-
tron separation energies and β-decay Q values can be
trivially obtained), the β-decay half-lives and β-delayed
neutron-emission probabilities.

In this work the β-decay rates have been calculated
using a microscopic model based on the proton neu-
tron quasi-particle random phase approximation (pn-
QRPA). The pn-QRPA was developed by Halbleib and
Sorensen [19] by generalizing the usual RPA which was
formulated for excitations induced by a charge-changing
transition operator. In pn-QRPA model quasi-particle
basis construction is performed first with a pairing in-
teraction and after that with GT residual interaction
the solution to RPA equation is found. Möller and his
coworkers combined the pn-QRPAmodel with the Gross
Theory of the FF decay (pn-QRPA+ffGT)[20] and gave
a hybrid genre of pn-QRPAmodel. The pn-QRPAmodel
describes the charge changing transitions, (Z,A) → (Z
± 1, N ∓ 1). Halbleib and Sorensen took the particle-
hole terms of the separable Gamow-Teller force into
account to calculate the Gamow-Teller strength func-
tion. The particle-particle interaction, first considered
by Cha [21] was neglected. It was taken into account by
simply adding a schematic GT interaction to the QRPA
Hamiltonian. An excellent agreement with experimen-
tal decay rates was also achieved when QRPA is ap-
plied to β− decay half-lives of nuclei far from stability
[22]. The pn-QRPA theory was also successfully em-
ployed in calculations of β+ /electron capture half-live
and a satisfactory comparison with experimental half-
lives was again reported [23]. It was Nabi and Klapdor-
Kleingrothaus who used the pn-QRPA model, for the
first time, to calculate stellar weak rates [24]. A system-
atical study of the total β-decay half-lives and delayed
neutron emission probabilities was done by Homma and

his coworkers [25] . We discuss here the calculation of
the FF β-decay rates for neutron-rich even-even zinc
(76−82Zn) and germanium isotopes (84−88Ge) using the
pn-QRPA model. Inspiration of the current work came
from the work of Ref. [26] where the authors showed
their interest to incorporate rank 0 contribution to first
forbidden (FF) decay rates. The total β-decay half-
lives and the U1F β-decay rates (rank 2) for a num-
ber of neutron-rich nickel isotopes, 72−78Ni, were cal-
culated using the pn-QRPA theory in stellar environ-
ment. In addition allowed GT, FF and U1F transitions
were calculated and a comparison of total half-lives was
made with experimental and different theoretical calcu-
lations.

Section 2 of this paper discusses briefly the required
formalism for allowed GT, FF and U1F transitions rates.
Results and discussions follow in Section 3. Finally Sec-
tion 4 states our conclusions.

2 Formalism

The theory of allowed and FF β-decay transitions is
well-established [14,27–29]. The allowed β-decay is sim-
ple to calculate but the FF decay shows a far wider
spectrum both in lepton kinematics and in nuclear ma-
trix elements.

All our calculations for allowed and FF β-decay
rates were performed within the framework of pn-QRPA.
Two different pn-QRPA models were used to calculate
allowed and forbidden weak rates. The first pn-QRPA
model considered only spherical nuclei and used the
Woods-Saxon potential basis and is referred to as pn-
QRPA(WS) in this work. The transition probabilities
in this model were calculated within the ξ approxima-
tion (ξ is a dimensionless parameter representing the
magnitude of the Coulomb energy and is approximated
by 1.2ZA−1/3). Calculation of rank 0 FF transitions
(0+→0−) was done within the pnQRPA(WS) formal-
ism. Details of this model can be seen from [30]. For
the same model, allowed GT transitions were also cal-
culated using the Pyatov method (PM) [31] to solve
the RPA equation. The second pn-QRPA model em-
ployed a deformed Nilsson basis and in referred to as
pn-QRPA(N) in this work. A separable interaction was
used both in particle-particle and particle-hole channels
which reduced the eigenvalue equation to solving an al-
gebraic equation of fourth order (for further details see
[32]). Deformation of nuclei was taken into account in
the pn-QRPA(N) model. Allowed GT and U1F transi-
tions were calculated within the pn-QRPA(N) formal-
ism.

In order to compare our results with experimental
data and prior calculations, we introduced a quenching
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factor of 0.6 [33–35] in both pn-QRPA(WS) and pn-
QRPA(N) models. The same quenching factor was also
used later to calculate astrophysical reaction rates.

The ft values for charge-changing first-forbidden tran-
sitions in the pn-QRPA(WS) model are given by:

(ft)β− =
D

(gA/gV )24πBFF (U1F )(Ii −→ If , β−)
, (1)

where

D =
2π3h̄2ln2
g2

V m5
ec

4
= 6250sec,

gA

gV
= −1.24.

In Eq. 1, BFF (U1F ) are the transition probabilities
and are calculated within the ξ approximation [36]. De-
tails of evaluating these nuclear matrix elements can be
seen from [37].

Allowed GT transitions within the pn-QRPA(WS)
model was calculated using the Pyatov method [31].
The ft values for the allowed GT β transitions are cal-
culated using

ft =
D

( gA

gV
)24πBGT (Ii → If , β−)

, (2)

details of calculation of reduced matrix elements of GT
transitions BGT can be seen in [38].

In the pn-QRPA(N) formalism [32], proton-neutron
residual interactions occur as particle-hole and particle-
particle interactions. We used a schematic separable
interaction (as in the case of pn-QRPA(WS) model).
Details of the separable potential and detailed formal-
ism of calculation of ft values may be seen from [26]
(and references therein). The U1F stellar β-decay rates
from the ith state of the parent to the j th state of the
daughter nucleus is given by

λβ
ij =

m5
ec

4

2π3h̄7

∑

∆Jπ

g2f(∆Jπ; ij)B(∆Jπ; ij), (3)

where f(∆Jπ; ij) and B(∆Jπ; ij) are the integrated
Fermi function and the reduced transition probabil-
ity for β-decay, respectively, for the transition i → j

which induces a spin-parity change ∆Jπ and g is the
weak coupling constant which takes the value gV or
gA according to whether the ∆Jπ transition is associ-
ated with the vector or axial-vector weak-interaction.
Details of calculation of phase-space factors f(∆Jπ; ij)
and nuclear matrix elements B(∆Jπ; ij) can be seen
from [26]. Due to finite probability of occupation of par-
ent excited states at stellar temperatures, contribution
of partial decay rates from these states must be taken
into account to ensure satisfactory convergence in the
total decay rate calculation. The rate per unit time per
nucleus for stellar β-decay process is finally given by

λβ =
∑

ij

Piλ
β
ij . (4)

We note that due to the availability of a huge model
space (up to 7 major oscillator shells in the pn-QRPA(N)
model) convergence is easily achieved in our rate calcu-
lations for excitation energies well in excess of 10 MeV
(for both parent and daughter states).

3 Results and Discussion

The calculated GT, U1F and FF transitions in our pn-
QRPA(N) and pn-QRPA(WS) models are shown in Ta-
ble 1 for Zn isotopes and in Table 2 for Ge isotopes. All
these charge-changing transitions were quenched by a
factor of 0.6 as indicated before. Plainly evident from
these tables the pn-QRPA(WS) model calculates high-
lying transitions, specially for the FF case. The claim
of [39,40], by performing experiments, that average en-
ergy of 0− giant FF resonance exceeds 20 MeV is sup-
ported by our results. It can be seen from the tables
that neglect of deformation of nuclei forces transitions
to high excitation energies in daughter and do not yield
much fragmentation. In this respect the pn-QRPA(N)
model displays much better results. Wherever available,
the experimental (XUNDL) data were incorporated in
the calculation to improve the authenticity of calcu-
lated transitions in our model. Calculated excitation
energies were replaced with measured levels when they
were within 0.5 MeV of each other. Where appropriate
inverse transitions (along with their logft values) were
also taken into account and measured states missing in
the model were inserted. No attempt was taken in or-
der to replace the theoretical levels with experimental
ones for which the experimental data had no definite
spin and/or parity. Only low-lying strength distribu-
tion up to an excitation energy of 2 MeV in daughter
nucleus have been shown in Table 1 and Table 2 for the
pn-QRPA(N) model (it is to be noted that calculations
were performed up to 15 MeV in daughter nucleus). In
addition transition strengths less than 10−4 are not re-
ported in these tables. In the pn-QRPA(N) model the
GT strength of 76,78Zn is also well fragmented. Whereas
no U1F transition strengths were calculated in 76,78Zn
up to 2 MeV they do show up in the case of 80,82,84,86Zn.
Using the same pn-QRPA(N) model similar results for
Ge isotopes were also calculated (see Table 2). The low-
lying U1F transitions should be noted in daughter ar-
senic isotopes. As would be seen later, the U1F tran-
sitions contribute in lowering the calculated β-decay
half-lives bringing them in better agreement with the
experimental data.

As mentioned before, the amplification of phase space,
due to U1F transitions in stellar conditions, results in
significant increment in the calculated total β-decay
rates. The phase space integrals for U1F transitions
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compete well with those of allowed GT and under cer-
tain stellar conditions supersede the allowed phase space.
For the neutron-rich Zn and Ge isotope the phase space
calculation of allowed and U1F transitions, as a func-
tion of stellar temperature and density, is shown in
Fig. 1 and Fig. 2, respectively. Calculation of phase
space is done at selected densities of 102 g/cm3, 106

g/cm3 and 1010 g/cm3 (corresponding to low, interme-
diate and high stellar densities, respectively) with as-
sociated stellar temperature ranging from T9 = 0.01 -
30 (T9 gives the stellar temperature in units of 109 K).
At low and intermediate densities the calculated U1F
phase space, for the case of 78Zn, is roughly a factor of
3 bigger than GT phase space (see Fig. 1). However the
phase space factors for GT transitions start increasing
at a much faster rate than those of U1F transitions. At
T9 = 30, the GT phase space is roughly an order of
magnitude bigger. At high stellar densities the phase
space gets choked and becomes finite only as stellar
temperature soars to T9 = 0.2. For 78Zn the GT phase
space is orders of magnitude bigger than U1F phase
space at high stellar densities. A similar trend is seen
for the phase space calculation of remaining five iso-
topes of Zn, namely 76,80,82,84,86Zn and is not shown
here to save space. Our calculation shows that increas-
ing the number of neutron amplifies the phase space
factor for U1F transitions.

For the case of 86Ge the U1F phase space is around
a factor six bigger at low and intermediate densities and
low temperatures (Fig. 2). With increasing stellar tem-
perature the GT phase space increases at a higher rate
and approaches the U1F phase space for low and inter-
mediate densities. A similar behavior exists for 84,88Ge
at low and intermediate densities. The difference ap-
pears at high densities where the allowed phase space
is a shade smaller than U1F phase space. With soaring
stellar temperatures the allowed phase space is observed
coming closer to the U1F phase space. At high density
(lower panel), the GT phase space is orders of magni-
tude smaller at low temperatures and the U1F phase
space is a factor 1.2 bigger at T9 = 30. As with the
case of zinc isotopes, the U1F phase space for germa-
nium isotopes also gets enlarged with increasing neu-
tron number. Next we discuss the contribution of en-
larged U1F phase space to the forbidden β-decay rates.

Calculation for allowed and U1F stellar β-decay rates
were done at temperature ranging from 0.01 ≤ T9 ≤ 30
with associated densities covering the range of (10 -
1011) g/cm3. Figs. 3 - 11 show the pn-QRPA(N) calcu-
lated allowed and U1F stellar β-decay rates for Zn and
Ge isotopes as a function of stellar temperature and
density. The first panel depicts the β-decay rates at low
stellar densities i.e. 10 - 104 g/cm3 (in this density range

the β-decay rates are observed to hold out constant).
The middle panel shows the rates at intermediate stellar
density of 107 g/cm3 and the last panel depicts β-decay
rates at high stellar density of 1011 g/cm3. Stellar β-
decay rates for 76Zn in units of s−1 are shown in Fig. 3.
It is to be noticed that contribution from all excited
states are included in the final calculation of all decay
rates. The allowed β-decay rates, for low and intermedi-
ate densities, in Fig. 3 are seen to be one order of magni-
tude bigger at low temperatures and around two order
of magnitude bigger at T9 = 30. For 76Zn we calculated
the phase space of allowed GT to be greater than U1F
phase space by an order of magnitude. At high densi-
ties when the temperature is low the allowed β-decay
rates are orders of magnitude bigger and around two
orders of magnitude bigger at T9 = 30. A similar trend
is witnessed for the calculated β-decay rates of 78,80Zn
(see Fig. 4 and Fig. 5, respectively). The U1F rates are
relatively more augmented at high temperatures and
only around an order of magnitude smaller at T9 = 30
for 82Zn which is shown in Fig. 6. The behavior of 84Zn
(Fig. 7) and 86Zn (Fig. 8)is interesting. At low and in-
termediate densities the allowed β-decay rates for 84Zn
is roughly a factor 2.27 smaller than that of the U1F
decay rate. On other hand for 86Zn the allowed β-decay
rates (at low and intermediate densities) are a factor of
1.17 bigger than U1F rates. At high stellar densities
the behavior is same as that of Zn isotopes explained
earlier.

In Fig. 9 (84Ge) the calculated β-decay rates for al-
lowed GT are about a factor six greater than U1F at
low temperatures and densities. At high temperatures
allowed rates are 50 times bigger. With increasing den-
sity the allowed β-decay rates become orders of magni-
tude bigger at low temperatures and more than an order
of magnitude bigger at T9 = 30. For the case of 86Ge in
Fig. 10, the U1F decay rates at low temperatures and
densities are only a factor two smaller. This trend is
also seen at high densities where U1F rates are a factor
five smaller. The reason is linked to the calculation of
much larger U1F phase space (see Fig. 2).

In Fig. 11 for the case of 88Ge, at low and interme-
diate densities and low stellar temperatures, the U1F
stellar β-decay rates are competing very well with the
allowed rates. At T9 = 30, the allowed rates are only
double the U1F rates (for all densities). The reason for
this large U1F contribution may be traced back to the
much larger phase space available for U1F transitions
at all temperatures and densities.

Comparison of our half-life calculations with exper-
imental data and other model calculations is done for
Zn and Ge isotopes in Fig. 12. The top panel in Fig. 12
shows results for Zn isotopes whereas the bottom panel
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gives terrestrail half-lives for Ge isotopes. The recent
atomic mass evaluation data of Ref. [41] have been used
for experimental half-lives values. Results of our pn-
QRPA(N) and pn-QRPA(WS) allowed GT calculations
alone and those including the FF contribution have
been shown. Results of self-consistent density functional
+ continuum quasiparticle random phase approxima-
tion (DF3 + CQRPA) calculation from Ref. [42] includ-
ing the FF contribution can also be viewed. The work
of Möller and collaborators [43] on QRPA calculation
including deformation of nucleus and folded-Yukawa
single-particle potential is also presented in Fig. 12. It
must be noted that [43] did not calculate FF contri-
bution. It is noted from Fig. 12 that FF contribution
brings substantial improvement in our pn-QRPA cal-
culations. The pn-QRPA(N) calculation including de-
formation has more sizeable contribution from FF de-
cay. The pn-QRPA(WS) results are better for Zn iso-
topes (see Fig. 12) whereas the pn-QRPA(N) shows
overall best agreement with experimental data. The
DF3+CQRPA results for Zn and Ge isotopes are roughly
a factor two bigger than measured data. GT calcula-
tion of [42] are even bigger for obvious reason though
for 82Zn the agreement is excellent. Likewise for 88Ge
in Fig. 12 a marked improvement with measured data
is noted. It may be concluded that QRPA calculation
of Möller et al. improves as the nucleus becomes more
neutron-rich. For 88Ge DF3+CQRPA did not perform
calculation. It is noted that pn-QRPA(N) emerges as
the best model and has overall excellent agreement with
experimentally determined half-lives of Zn and Ge iso-
topes. It is also expected to give reliable results for nu-
clei close to neutron-drip line for which no experimental
data is available.

4 Conclusion

As the nuclei become heavier, allowed GT transitions
get smaller and with increasing neutron number the
contribution of FF transitions becomes more and more
significant. We used two versions of the pn-QRPAmodel,
one for spherical cases and other incorporating nuclear
deformation. The spherical pn-QRPA(WS) was used to
calculate allowed GT (using the Pyatov method) U1F
and FF transitions whereas the deformed pn-QRPA(N)
was used to calculate the allowed and U1F transitions.
The FF transitions to 0− daughter states were calcu-
lated at rather high excitation energies. However the
2− states using the pn-QRPA(N) were connected also
to low-lying daughter states. Further the spectra was
more fragmented which was attributed to the deforma-
tion parameter incorporated in the model.

It was also shown that the U1F phase space has a
sizeable contribution to the total phase space at stel-
lar temperatures and densities. It was shown that the
U1F phase space gets amplified with increasing neutron
number. Specially for the case of 86,88Ge the U1F phase
space is orders of magnitude bigger which resulted in
significant lowering of the β-decay half-lives as com-
pared to those calculated only with allowed GT con-
tribution. For 86,88Ge roughly half the contribution to
the total decay rate comes from U1F transitions. This
is a significant finding of the current work. The micro-
scopic calculation of U1F β-decay rates, presented in
this work, could lead to a better understanding of the
nuclear composition and Ye in the core prior to collapse
and collapse phase.

The terrestrial half-life calculations were also com-
pared with the recent atomic mass evaluation 2012 data
and other theoretical calculations. The FF inclusion
improved the overall comparison of calculated terres-
trial β-decay half-lives in the pn-QRPA(WS) model.
Likewise, and more significantly, the UIF contribution
improved the pn-QRPA(N) calculated half-lives. The
pn-QRPA(N) model reproduced the experimental half-
lives very well for Zn and Ge isotopes and showed better
results than the pn-QRPA(WS) model. The DF3+CQRPA
calculation was around a factor two bigger than expe-
riential data and allowed GT calculation by Möller and
collaborators was up to a factor 18 bigger but were in
excellent agreement as neutron number increased (82Zn
and 88Ge).

The reduced β-decay half-lives bear consequences
for nucleosynthesis problem and site-independent r-process
calculations. Our findings might result in speeding-up
of the r-matter flow relative to calculations based on
half-lives calculated from only allowed GT transitions.
We are in a process of including rank 1 operators in our
FF calculation of terrestrial β-decay half-lives in near
future for still better results. The allowed and U1F β-
decay rates on Zn and Ge isotopes were calculated on
a fine temperature-density grid, suitable for simulation
codes, and may be requested as ASCII files from the
corresponding author.
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Tables and Figures

Table 1 Calculated strength distributions for allowed GT, U1F transitions and FF transitions for 76,78,80,82,84,86Zn.

Calculated strength distributions
A Ej pn-QRPA(N) Ej pn-QRPA(N) Ej pn-QRPA(WS) Ej pn-QRPA(WS) Ej pn-QRPA(WS)

(MeV) (GT) (MeV) (U1F) (MeV) (GT) (MeV) (U1F) (MeV) (FF)

0.2 4.0×10−3 4.9 0.2×100 7.6 2.0×100 20 2.14×10−2

0.2 1.0×10−3 7.2 4.7×100 15.0 1.8×100 24 4.74×10−2

76 0.3 8.0×10−3 11.0 11×100 19.0 2.5×100

0.6 3.0×10−2 12.0 0.6×100 20.0 1.9×100

1.0 8.0×10−2 23.0 4.4×100

1.6 1.2×10−1

1.8 8.0×10−2

1.8 3.8×10−1

0.3 2.0×10−4 6.7 1.1×100 15.0 2.4×100 20.5 2.2×10−2

0.3 1.0×10−3 7.5 7.3×100 17.0 1.1×100 24.1 9.4×10−3

78 0.6 5.7×10−3 9.0 8.3×100 17.0 2.7×100 24.2 1.8×10−2

0.7 3.0×10−4 11.0 5.2×100 19.0 1.9×100 24.5 1.9×10−2

0.9 7.6×10−3 20.0 1.7×100

1.0 4.5×10−3 23.0 2.2×100

1.9 5.7×10−2

0.7 6.9×10−4 0.9 2.4×10−4 7.9 3.0×100 9.0 3.0×100 22 1.8×10−2

1.1 9.0×10−4 1.0 3.4×10−4 8.0 7.2×100 15.0 1.1×100 25 6.8×10−2

80 1.4 9.0×10−3 1.3 7.8×10−4 9.5 6.5×100 17.0 3.2×100 26 9.4×10−2

1.5 9.0×10−4 13.0 1.5×100 19.0 0.9×100

20.0 1.6×100

21.0 2.7×100

24.0 1.7×100

25.0 2.9×100

0.4 3.4×10−4 0.0 2.0×10−4 8.6 2.6×100 5.6 1.6×100 23 1.2×10−2

1.1 7.0×10−3 0.5 5.3×10−4 8.9 3.9×100 11.0 2.2×100 25 9.9×10−3

82 1.8 1.0×10−3 1.5 3.9×10−4 11.0 5.6×100 17.0 1.1×100 26 5.8×10−2

12.0 1.3×100 19.0 1.6×100

13.0 2.7×100 21.0 1.1×100

23.0 4.6×100

27.0 4.3×100

29.0 1.5×100

7.0 1.3×10−4 1.0 4.7×10−4 8.8 5.1×100 5.5 1.7×100 22 0.8×100

1.2 9.9×10−3 2.0 3.9×10−3 9.5 2.6×100 10.0 2.2×100 26 3.4×100

84 2.4 1.4×10−3 11.0 6.6×100 18.0 1.8×100 29 4.7×100

13.0 0.8×100 19.0 1.2×100

22.0 2.5×100

23.0 6.2×100

27.0 5.4×100

29.0 3.2×100

0.1 1.1×10−1 0.5 9.1×10−3 6.7 4.5×100 6.0 1.7×100 23 0.9×100

0.9 1.5×10−3 1.3 2.9×10−3 9.2 3.5×100 11.0 2.2×100 24 0.6×100

86 1.2 6.4×10−2 1.9 3.0×10−3 12.0 7.1×100 17.0 1.8×100 27 5.4×100

2.4 2.0×10−2 2.1 8.1×10−3 20.0 1.5×100

23.0 0.8×100

24.0 5.8×100

26.0 2.6×100

27.0 2.5×100

28.0 6.0×100
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Table 2 Same as Table 1 but for 84,86,88Ge.

Calculated strength distributions
A Ej pn-QRPA(N) Ej pn-QRPA(N) Ej pn-QRPA(WS) Ej pn-QRPA(WS) Ej pn-QRPA(WS)

(MeV) (GT) (MeV) (U1F) (MeV) (GT) (MeV) (U1F) (MeV) (FF)

0.6 9.2×10−3 0.1 2.9×10−4 8.3 4.5×100 11.0 2.2×100 22.0 1.0×10−2

1.2 9.2×10−4 0.1 1.9×10−4 9.1 5.6×100 16.0 1.3×100 25.0 3.6×10−2

84 1.6 2.9×10−3 0.2 5.7×10−4 10.0 8.2×100 18.0 1.7×100 28.0 4.8×10−2

1.8 7.3×10−4 1.3 3.7×10−4 12.0 3.4×100 19.0 1.3×100

1.9 3.4×10−2 1.8 1.2×10−4 21.0 1.4×100

23.0 4.1×100

25.0 1.6×100

27.0 3.0×100

28.0 1.7×100

1.1 2.9×10−4 0.1 2.2×10−4 8.8 6.6×100 5.2 1.7×100 26.0 3.4×10−2

1.3 2.2×10−2 0.7 1.8×10−3 10.0 8.3×100 10.0 2.2×100 29.0 5.1×10−2

86 1.5 3.9×10−3 1.2 4.4×10−4 12.0 2.0×100 16.0 1.7×100

18.0 1.8×100

21.0 1.7×100

23.0 5.1×100

26.0 4.4×100

29.0 3.1×100

0.9 2.8×10−2 0.1 1.9×10−4 8.4 3.0×100 5.9 1.7×100 23.0 2.2×10−2

1.1 3.8×10−4 0.3 6.6×10−4 9.3 3.8×100 11.0 2.2×100 26.0 1.7×10−2

88 1.3 1.7×10−2 0.9 9.0×10−4 11.0 4.5×100 17.0 1.4×100 28.0 5.3×10−2

1.5 5.2×10−3 1.8 2.0×10−3 12.0 6.0×100 19.0 1.4×100

1.9 4.9×10−3 22.0 1.5×100

25.0 2.1×100

27.0 4.5×100

29.0 1.6×100
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Fig. 1 Comparison of calculated phase space for allowed and U1F transitions for 78Zn as a function of stellar temperatures and densities.
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Fig. 2 Same as Fig. 1 but for 86Ge.
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Fig. 3 Allowed (GT) and unique first-forbidden (U1F) β-decay rates on 76Zn as a function of temperature for different selected densities. All
β decay rates are given in units of sec−1. Temperatures (T9) are given in units of 109 K.
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Fig. 4 Same as Fig. 3 but for 78Zn.
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Fig. 5 Same as Fig. 3 but for 80Zn.
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Fig. 6 Same as Fig. 3 but for 82Zn.
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Fig. 7 Same as Fig. 3 but for 84Zn.
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Fig. 8 Same as Fig. 3 but for 86Zn.
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Fig. 9 Same as Fig. 3 but for 84Ge.
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Fig. 10 Same as Fig. 3 but for 86Ge.
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Fig. 11 Same as Fig. 3 but for 88Ge.
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Fig. 12 Total β-decay half-lives for Zn and Ge isotopes calculated from the pn-QRPA(N) and pn-QRPA(WS) (this work) including only
the allowed (GT), allowed plus unique first-forbidden (GT+U1F) and allowed plus first-forbidden (GT+FF) transitions, in comparison with
experimental data [41], the DF3+CQRPA [42] calculation and those by [43].
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Abstract In this study, we consider the induced the-
ory of gravity in Bianchi I space-time. We found new
exact solutions of those space-time via Noether gauge
symmetries. We use the Noether gauge symmetries to
calculate the first integrals which give rise the exact
solutions of field equations for the induced theory of
gravity.
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1 Introduction

The existence of cosmological problems such as dark
matter, dark energy, the flatness and horizon problems,
in the Universe as well as the recent observational data
[1–11] supporting the accelerated mode of expansion
of the Universe constitutes a fundamental theoretical
problems to the Einstein’s “standard” theory of grav-
ity and the standard model of particle physics [12]. The
study of alternative theories of gravity that might be
able to solve these problems and at the same time re-
duce to GR in the weak field regime [13]. Scalar ten-
sor theories include non-minimal scalar field to gravity.
They introduce naturally scalar fields which are capa-
ble of giving rise to inflationary behaviour [16,14,15] of
the universe, and generate dark energy dynamics [17].
For these reasons, scalar tensor theories become one of
those issues which are of interest in cosmology.

All cosmological models, except the Friedmann-Lemaitre-
Robertson-Walker (FLRW) model, contain more arbi-
trary functions. Then this function can be determined
by the field equations. Alternative theories of gravity

ae-mail: isilbasaran@akdeniz.edu.tr
be-mail: ucamci@akdeniz.edu.tr
ce-mail: aydinyildirim@akdeniz.edu.tr

may bring arbitrary functions from their Lagrangian
and thus increases arbitrariness. One suitable way to
restrict this arbitrariness is to use Noether symmetries
which are directly related to the presence of conserved
quantities, as selection rules. Symmetries are a funda-
mental tool to study physical systems since they al-
low to reduce dynamics and give insight into conserved
quantities. They allow us to select the scalar field’s self-
interaction potential in a dynamical way, and might be
able to reduce the number of dynamical variables of the
system of differential equations due to possible cyclic
variables.

A Lagrangian density L accept a strict Noether sym-
metry if there exists a vector field X, for which the Lie
derivative of the Lagrangian vanishes, i.e. £XL = 0.
This approach in terms of space-times like FLRW and
Bianchi type universe models has already been used
with great success in the frameworks of f(R), f(T ) and
specific models of scalar-tensor gravity theories. Using
this method, the determination of the dynamic con-
served quantity and the exact solutions derived, studies
are available [18–27].

The strict Noether symmetry approach can be gen-
eralized to include a gauge term, giving the Noether
gauge symmetry (NGS) approach. This method can be
a more suitable method to seek for physically motivated
solutions of field equations; for some applications; see
[28–34].

In this study, we apply the NGS to Bianchi I (BI)
space-time, generalizing their earlier work [26]. In the
next section, we introduce the Lagrangian, re-derive for
completeness, both the equations of motion in scalar-
coupled theory of gravity, and their specialized forms
for BI space-time. In section 3, we discuss the NGS ap-
proach to the Lagrangian for BI space-time, and give
solutions of the NGS equations for the scalar-coupled
gravity theory motivated from induced gravity. In sec-
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tion 4, we search for exact solutions of the field equa-
tions using the obtained NGS. Finally, in section 5, we
offer a brief overview and discuss the obtained results.

2 The Equations of Motion

The general form of the Lagrangian density for the ac-
tion A =

∫ Ldt involving gravity non-minimally cou-
pled with a real scalar field Φ is given by [19]

L =
∫

d3x
√−g

[
F (Φ)R− 1

2
gabΦaΦb − U(Φ)

]
(1)

where R is the Ricci scalar, F (Φ) is the generic function
describing the coupling, U(Φ) is the potential for the
scalar field, Φa = Φ,a stand for the components of the
gradient of Φ and the signature of metric is (−+ ++),
(+2). We use Planck units. For F (Φ) = −1/2, it reduces
to the Einstein-Hilbert action minimally coupled with a
scalar field. For F (Φ) = Φ2/6, the conformally coupled
theory can be obtained. For F (Φ) = F0 Φ2/12, (F0 6=
−1) represents the theory motivated from induced grav-
ity, and for F (Φ) = 1−ζΦ2, L is of the form of the more
standard non-minimally coupled scalar field theory.

The variation of the action A with respect to gab

provides the field equations

F (Φ)Gab = +
1
2
TΦ

ab − gabF (Φ) + F (Φ);ab (2)

where is the d’Alembert operator,

Gab = Rab − 1
2
Rgab (3)

is the Einstein tensor, and

TΦ
ab = ΦaΦb − 1

2
gabΦcΦ

c − gabU(Φ) (4)

is the energy-momentum tensor of the scalar field. The
variation with respect to Φ gives rise to the Klein-
Gordon equation governing the dynamics of the scalar
field

¤Φ + RF ′(Φ)− U ′(Φ) = 0, (5)

where the prime indicates the derivative with respect
to Φ. The Bianchi identity Gab

;b = 0, which gives the
conservation laws for the scalar field, also yields the
Klein-Gordon equation (5) as a general result [21].

As discussed in the introduction, we will treat the
BI space-time. The line element for this space-time can
be written in the common form

ds2 = −dt2 + A2dr2 + B2
(
dθ2 + sin2 θdΦ2

)
, (6)

where A and B depend on t.

The Ricci scalar computed from the line element is

R = 2

[
Ä

A
+ 2

B̈

B
+

Ḃ2

B2
+ 2

ȦḂ

AB

]
, (7)

where the dot represents the derivation with respect to
time. Then, the Lagrangian of BI space-time become

L = −2FAḂ2 − 4FBȦḂ − 2F ′B2ȦΦ̇− 4F ′ABḂΦ̇

+AB2

[
Φ̇2

2
− U(Φ)

]
. (8)

The field equations (2) and Klein-Gordon equation (5)
for the metric (6) become

Ḃ2

B2
+ 2

ȦḂ

AB
+

F ′

F

(
Ȧ

A
+ 2

Ḃ

B

)
Φ̇

− 1
2F

[
Φ̇2

2
+ U(Φ)

]
= 0, (9)

2
B̈

B
+

Ḃ2

B2
+

F ′

F

[
Φ̈ + 2

Ḃ

B
Φ̇

]
+

(
F ′′

F
+

1
4F

)
Φ̇2

− 1
2F

U(Φ) = 0, (10)

Ä

A
+

B̈

B
+

ȦḂ

AB
+

F ′

F

[
Φ̈ +

(
Ȧ

A
+

Ḃ

B

)
Φ̇

]

+
(

F ′′

F
+

1
4F

)
Φ̇2 − 1

2F
U(Φ) = 0, (11)

Ä

A
+ 2

B̈

B
+

Ḃ2

B2
+ 2

ȦḂ

AB
+

q

B2

− 1
2F ′

[
Φ̈ +

(
Ȧ

A
+ 2

Ḃ

B

)
Φ̇ + U ′(Φ)

]
= 0, (12)

where F ′ 6= 0. Note that the equations (10)-(12) can
also be obtained as the Euler-Lagrange equations using
the Lagrangian (8), whereas eq.(9), the (0,0)-Einstein
equation, can be obtained as the requirement for the
energy function EL associated with the Lagrangian (8)

EL =
∂L

∂Ȧ
Ȧ +

∂L

∂Ḃ
Ḃ +

∂L

∂Φ̇
Φ̇− L

=
Ḃ2

B2
+ 2

ȦḂ

AB
+

F ′

F

(
Ȧ

A
+ 2

Ḃ

B

)
Φ̇

− 1
2F

[
Φ̇2

2
+ U(Φ)

]
(13)

to vanish.
If Ä and B̈ can be eliminated form the Eqs. (10)-

(12) the continuity equation can be found as

2(3F ′2 + F )

[
Φ̈ +

Ȧ

A
Φ̇ + 2

Ḃ

B
Φ̇

]
+ F ′(6F ′′ + 1)Φ̇

−2(2UF ′ − FU ′) = 0. (14)
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The unknown quantities of the field equations are
A,B, Φ, U(Φ) and F (Φ), but we have only four inde-
pendent differential equations, namely, Eqs. (9)-(12).
Then, in order to solve this system of nonlinear differ-
ential equations we need to assume a functional form
of the scalar field potential energy U(Φ) or the function
F (Φ).

3 Noether Gauge Symmetries

We search the condition for the Lagrangian (8) to ac-
cept NGS.

Let us consider a NGS generator

X = ξ
∂

∂t
+ Xi ∂

∂Qi
, (15)

where the configuration space of the Lagrangian is Qi =
(A, B,Φ) with tangent space TQ = (A, B,Φ, Ȧ, Ḃ, Φ̇),
Xi = (α, β, γ), i = 1, 2, 3; and the components ξ, α, β

and γ are functions of t, A, B and Φ. The existence of a
NGS implies the existence of a vector field X as given
in (15), if the Lagrangian L(t,Qi, Q̇i) satisfies

X[1]L + L(Dtξ) = Dtf, (16)

where X[1] is the first prolongation of the NGS genera-
tor (15) in the form

X[1] = X + Ẋi ∂

∂Q̇i
, (17)

f(t, A, B, Φ) is a gauge function, Dt is the total deriv-
ative operator with respect to t

Dt =
∂

∂t
+ Q̇i ∂

∂Qi
, (18)

and Ẋi is defined as Ẋi = DtX
i − Q̇iDtξ. It is impor-

tant to give the following first integral to emphasize the
significance of NGS: If X is the NGS generator corre-
sponding to the Lagrangian L(t,Qi, Q̇i), then

I = −ξEL + Xi ∂L

∂Q̇i
− f, (19)

is the Noether first integral, i.e. the Hamiltonian or a
conserved quantity associated with the generator X.
Here, EL is the energy function defined for any La-
grangian, EL = Q̇i ∂L

∂Q̇i
− L.

Obviously, the gauge function f is arbitrary up to an
additive constant, and this arbitrariness will be used to
simplify expressions in the rest of the paper, whenever
possible. Also, the trivial Noether gauge symmetry ∂t

is related to the conservation of energy, and gives rise
to the Hamiltonian (EL = 0) of the dynamical system.

From the Lagrangian (8) the NGS condition (16)
yields the following set of over-determined system of
equations

ξA = 0, ξB = 0, ξΦ = 0, (20)

−2B (2Fβt + F ′Bγt)−GA = 0, (21)

−4 [F (Bαt + Aβt) + F ′ABγt]−GB = 0, (22)

−2F ′
(
B2αt + 2ABβt

)
+ AB2γt −GΦ = 0, (23)

2FβA + BF ′γA = 0, (24)

α + 2BαB + 2AβB + A
F ′

F
(γ + 2BγB)−Aξt = 0, (25)

α + 2
A

B
β + 2AγΦ − 4F ′

(
αΦ + 2

A

B
βΦ

)
−Aξt = 0, (26)

β + B

[
αA + βB +

F ′

F

(
γ + AγA +

B

2
γB

)]

+AβA −Bξt = 0, (27)
F ′

F
(2β + BαA + BγΦ + 2AβA −Bξt) +

F ′′

F
Bγ

+2βΦ − 1
2F

ABγA = 0, (28)

F ′

F

(
α +

A

B
β +

B

2
αB + AβB + AγΦ −Aξt

)
+

F ′′

F
Aγ

+αΦ +
A

B
βΦ − 1

4F
ABγB = 0, (29)

−2qF

(
α +

F ′

F
Aγ + Aξt

)
+ B(Bα + 2Aβ + ABξt)U(Φ)

+AB2γU ′(Φ) = 0. (30)

Then, selecting the function F , the above NGS equa-
tions will give the solutions for ξ, α, β, γ, f and the po-
tential U(Φ).

For BI space-time the Hessian determinant W =
Σ

∣∣∣ ∂2L
∂Q̇i∂Q̇j

∣∣∣ is given by

W = −16AB4F (3F ′2 + F ). (31)

There exists two cases depending on the Hessian deter-
minant W vanishes or not:

3.1 Case (i):

If the Lagrangian (8) is degenerate, then the Hessian
determinant W vanishes, and therefore the function F

is given by

F (Φ) = − 1
12

Φ2. (32)

In this case, the first two of the three main terms of
eq.(14) vanish, enabling us to directly determine

U(Φ) = λΦ4 (33)

whenever (14) applies.
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We show some of the NGSs in Tables 1 and 2. In
order to keep the tables compact, we explicitly present
the simplest case (i.1) in the text, and then express
some results of some other cases in terms of the ex-
plicitly presented ones. We also explicitly display some
cases, (i.3), (ii.a.1) and (ii.a.4), that are too long to
fit in the tables.

Case (i.1): U(Φ) = 0. For this case, the components
of the NGS generator (15) are found as follows:

ξ = c1
t2

2
+ c2t + c3,

α = A(c1t + c2)− 2c4A + 2c5A ln(BΦ)

+2c6
(A/B)1/3

Φ
− 2c7

A

BΦ
− 2c8A,

β = c1tB − c5B ln(AΦ)− c6
(B/A)2/3

Φ
+

c7

Φ
+ c8B, (34)

γ = −c1tΦ +
[
c4 + c5 ln

(
A

B

)]
Φ

+c6(A2B)−1/3 +
c7

B
,

where ci’s are constants of integration. Then, the eight
NGSs are given by

X1 = ∂t, X2 = −2A∂A + B∂B ,

X3 = −2A∂A + Φ∂Φ, X4 = t∂t + A∂A,

X5 = t2∂t + 2t (A∂A + B∂B − Φ∂Φ) ,

X6 = 2A ln (BΦ)∂A −B ln (AΦ)∂B + Φ ln
(

A

B

)
∂Φ, (35)

X7 = − 2A

BΦ
∂A +

1
Φ

∂B +
1
B

∂Φ,

X8 = 2
(A/B)

1
3

Φ
∂A − (B/A)

2
3

Φ
∂B + (A2B)−

1
3 ∂Φ.

with the non-vanishing Lie brackets

[X1,X4] = X1 [X1,X5] = 2(X2 −X3 + X4),

[X2,X6] = 2X2 − 3X3, [X2,X7] = −X7,

[X2,X8] = X8, [X3,X6] = X2 − 2X3,

[X3,X7] = −X7, [X3,X8] =
1
3
X8,

[X4,X5] = X5, [X4,X6] = X3 −X2, (36)

[X4,X8] = −2
3
X8,

[X6,X7] =
1

BΦ
(X2 − 3X3) + ln (BΦ)X7,

[X6,X8] =
3

(A2B)1/3Φ
(X2 −X3)

+ ln
(

1
(A2B)1/3Φ

)
X8.

Using (19), we find the first integrals for those of eight
NGSs:

I1 = −EL, I2 =
1
3
AB2Φ2

(
Ȧ

A
− Ḃ

B

)
, (37)

I3 =
1
3
AB2Φ2

(
Ȧ

A
+

Φ̇

Φ

)
, (38)

I4 = −tEL +
1
3
AB2Φ2

(
Ḃ

B
+

Φ̇

Φ

)
, (39)

I5 = −t2EL, (40)

I6 =
1
3
AB2Φ2

[
− ln (BΦ)

Ȧ

A
+ ln (AΦ)

Ḃ

B

+ ln (
A

B
)
Φ̇

Φ

]
, (41)

I7 =
1
3
ABΦ

(
2
Ȧ

A
+

Ḃ

B
+ 3

Φ̇

Φ

)
, (42)

I8 = (AB5)1/3Φ

(
Ḃ

B
+

Φ̇

Φ

)
. (43)

Case (i.3): U(Φ) = λΦm, where m(6= 2) is a con-
stant. In this case, it follows from the continuity equa-
tion (14) that m = 4. Then the NGS components are
obtained by

ξ = g(t),

α = Aġ(t)− 2
BΦ3

(
c1

A

3B2
+

c2

A

)
− 2c3A,

β = Bġ(t)− 5c1

3B2Φ3
− c2

A2Φ3
+ c3B, (44)

γ = −Φġ(t) +
1

BΦ2

( c1

B2
+

c2

A2

)
,

where g(t) is an arbitrary function of t. This result is in-
teresting because of that there exists an infinite family
of NGSs due to the functional dependence of NGS com-
ponents. Thus the four NGSs of this case are X3

1 = X2

given above and

X3
2 = − 2

ABΦ3
∂A − 1

A2Φ3
∂B +

1
A2BΦ2

∂Φ,

X3
3 = − 2A

3B3Φ3
∂A − 5

3B2Φ3
∂B +

1
B3Φ2

∂Φ, (45)

X3
4 = g(t)∂t + ġ(t) (A∂A + B∂B − Φ∂Φ) .

The non-zero Lie brackets due to the NGS generators
X3

3 and X3
4 are

[X2,X3
3] = −3X3

3, [X2,X3
2] = 3X3

2. (46)
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Table 1 The potential functions and lists of NGSs of cases (i) and (ii) for the BI space-time, where λ is a constant.

Potential Function Case(i) F = −Φ2/12 Case(ii.a) F = F0Φ2/12 Case(ii.b) F = 1− ζΦ2

1. U(Φ) = 0 X1,X2,X3,X4,X5,X6,X7,X8 X1,X2,X3,X4,Xa1
5 ,Xa1

6 X1,X2,X4
2. U(Φ) = λ X1,X2,X3,X6,X2

5 X1,X2,Xa2
3 X1,X2

3. U(Φ) = λΦm, m 6= 2 X2,X3
2,X3

3,X3
4 X1,X2,Xa3

3 X1,X2
4. U(Φ) = λΦ2 X1,X2,X3,X6,X4

5 X1,X2,X3,Xa4
4 ,Xa4

5 ,Xa4
6 X1,X2

Table 2 The NGSs and corresponding first integrals for the BI spacetime cases not covered in the text.

Case NGS First Integral

(i.2) X2
1 = X1, X2

2 = X2, X2
3 = X3, X2

4 = X6 I2
1 = I1, I2

2 = I2, I2
3 = I3, I2

4 = I6

X2
5 = t∂t −A∂A + Φ∂Φ I2

5 = 1
3AB2Φ2

�
Ȧ
A

+ Ḃ
B

+ 2 Φ̇
Φ

�

(i.4) X4
1 = X1, X4

2 = X2, X4
3 = X3, X4

4 = X6 I4
1 = I1, I4

2 = I2, I4
3 = I3, I4

4 = I6

X4
5 = t∂t −A[4 ln (BΦ) + 1]∂A −B ln (BΦ)∂B I4

5 = 1
3A(BΦ)2

h
ln (BΦ)

�
2 Ȧ

A
+ Ḃ

B
+ 3 Φ̇

Φ

�
−
�

Ḃ
B

+ Φ̇
Φ

�i

+3Φ ln (BΦ)∂Φ

(ii.a.2) Xa2
1 = X1, Xa2

2 = X2, Xa2
3 = X2

5 Ia2
1 = I1, Ia2

2 = I2, Ia2
3 = I2

5

(ii.a.3) Xa3
1 = X1, Xa3

2 = X2 Ia3
1 = I1, Ia3

2 = I2

Xa3
3 = t∂t + (m+2)

(m−2)A∂A − 2
(m−2)Φ∂Φ Ia3

3 = k3
3(m−2)A(BΦ)2

h
m
�

Ḃ
B

+ Φ̇
Φ

�
− 2

�
Ȧ
A

+ Ḃ
B
− Φ̇

Φ

�
− 6

k3

Φ̇
Φ

i

(ii.b.1) Xb1
1 = X1, Xb1

2 = X2, Xb1
3 = X4 Ib1

1 = I1, Ib1
2 = I2, Ib1

3 = I4

(ii.b.2) Xb2
1 = X1, Xb2

2 = X2 Ib2
1 = I1, Ib2

2 = I2

(ii.b.3) Xb3
1 = X1, Xb3

2 = X2 Ib3
1 = I1, Ib3

2 = I2

(ii.b.4) Xb4
1 = X1, Xb4

2 = X2 Ib4
1 = I1, Ib4

2 = I2

The first integrals for the NGSs of this case are given
by

I3
1 =

1
3
AB2Φ2

(
Ȧ

A
− Ḃ

B

)
,

I3
2 = − B

3AΦ

(
Ḃ

B
+

Φ̇

Φ

)
, (47)

I3
3 = − A

9BΦ

(
2
Ȧ

A
+

Ḃ

B
+ 3

Φ̇

Φ

)
,

I3
4 = −g(t)EL.

3.2 Case (ii):

If the Lagrangian (8) is non-degenerate, then the Hessian
determinant W does not vanish. For the form of F , we
will consider (ii.a) F = F0Φ

2/12, where F0 6= −1, the
form motivated by induced gravity; or (ii.b) F (Φ) =
1−ζΦ2, which is a more standard form of non-minimally
coupled scalar field theory, where ζ is a constant.

We now present solutions of the NGS equations in
the BI space-time for the coupling functions F (Φ) listed
above. The NGS equations also allow determination of
U(Φ) via eq.(30), but we will classify the solutions ac-
cording to the U(Φ) functions from the beginning, in ad-
dition to the classification according to the F (Φ) func-
tions outlined just above. We will show the results in
tables, elaborating on only some of them in the text.

Case (ii.a.1): U(Φ) = 0. For this case, the compo-
nents of NGS generators, and the gauge function are
found as

ξ = c1
t2

2
+ c2t + c3,

α = A

(
c1

k4

k1
t + c2 − 2c4

)
+ 2c5A ln (BΦ

k4
k3 )− 2c6,

β = c1
5

k1
Bt + c5B ln (

Φ
k4
k3

A
) + c6B, (48)

γ = c1
k3

k1
tΦ + c4Φ + c5Φ ln (A/B),

f = c1
k2k3

k1
AB2Φ2,

where k1 = −8F0 − 9, k2 = −F0 − 1, k3 = −F0 and
k4 = −2F0 − 3. It is easily seen that k2 and k3 are
non-zero in this case, but k1 or k4 could be. Hence, we
need to consider subcases where they are both nonzero,
vs. where one or the other vanishes. The latter singular
ones cannot be obtained as special cases of the above
solutions, they have to be trated from scratch.

Subcase ii.a.1.1. k1 6= 0, k4 6= 0. In this subcase, the
number of NGSs is six which are Xa1

1 = X1,Xa1
2 =
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X2,Xa1
3 = X3,Xa1

4 = X4 and

Xa1
5 = t2∂t +

2t

k1
[k4(A∂A + B∂B) + k3Φ∂Φ] , (49)

Xa1
6 = 2A ln

(
BΦ

k4
k3

)
∂A + B ln

(
Φ

k4
k3

A

)
∂B

+Φ ln (A/B)∂Φ. (50)

The non-vanishing Lie brackets due to Xa1
5 and Xa1

6 are

[X1,Xa1
5 ] =

k4

k1
X2 +

k3

k1
X3 + X4,

[X2,Xa1
6 ] = 2X2 − 3X3, (51)

[X3,Xa1
6 ] = −2X3 − cX2,

[X4,Xa1
5 ] = Xa1

5 ,

[X4,Xa1
6 ] = X4 −Xa1

6 .

where c = −(3 + 4F0)/F0. The first integrals of the
generators Xa1

5 and Xa1
6 are

I5 =
2k2k3

k1
AB2Φ2

[
t
( Ȧ

A
+ 2

Ḃ

B
+ 2

Φ̇

Φ

)
− 1

]
, (52)

I6 =
2k3

3
tAB2Φ2

[1
2

ln (B−1Φ`)
Ȧ

A
+ ln (Φ

3`
2 )

Ḃ

B

+ ln (BΦ4/A)`/2 Φ̇

Φ

]
, (53)

where ` = k4/k3.

Subcase ii.a.1.2. F0 = −9/8, i.e. k1 = 0. There are
seven NGSs for this subcase, which are Y1 = X1,Y2 =
X2,Y3 = X3,Y4 = X4 and

Y5 = −8t

[
2
3

(A∂A + B∂B)− Φ∂Φ

]
, (54)

Y6 = −2A

3
[ln (BΦ)2 + 1]∂A − B

3
[ln (BΦ2)]∂B

+Φ ln (BΦ
4
3 )∂Φ, (55)

Y7 =
2A

3
[ln (B)− 1]∂A − B

3
[ln (BA3Φ4)]∂B

+Φ ln (AΦ
4
3 )∂Φ, (56)

where we have a nonzero gauge function for Y5 as f =
AB2Φ2. The non-zero Lie brackets for this subcase are

[Y1,Y5] = −16
3

Y2 + 8Y3,

[Y2,Y6] = −1
3
Y2 + Y3, [Y2,Y7] =

5
3
Y2 − 2Y3,

[Y3,Y6] = −2
3
(Y2 − 2Y3),

[Y3,Y7] =
2
3
(Y2 −Y3), [Y4,Y5] = Y5, (57)

[Y4,Y7] = −Y2 + Y3,

[Y5,Y6] =
2
3
Y5, [Y5,Y7] =

2
3
Y5,

[Y6,Y7] =
2
3
(Y2 −Y3) +

1
3
(Y6 −Y7).

The first integrals related to Y5,Y5 and Y7 are

I5 = AB2Φ2

[
t
( Ȧ

A
+ 2

Ḃ

B
+ 2

Φ̇

Φ

)
− 1

]
, (58)

I6 =
1
4
AB2Φ2

[
ln (BΦ)

Ȧ

A
+

(
ln (B

1
2 Φ)− 1

) Ḃ

B

+
(

ln (BΦ
4
3 )− 1

) Φ̇

Φ

]
, (59)

I7 =
1
8

[
− ln (B)

Ȧ

A
+ (ln (A3BΦ4)− 2)

Ḃ

B

+(ln (A3Φ−4)− 2)
Φ̇

Φ

]
. (60)

Subcase ii.a.1.3. F0 = −3/2, i.e. k4 = 0. There are
six NGSs for this subcase: Y1 = X1,Y2 = X2,Y3 =
X3,Y4 = X4 and

Y5 =
t2

2
∂t +

t

2
Φ∂Φ, (61)

Y6 = 2A ln (B)∂A −B ln (A)∂B − Φ ln (
A

B
)∂Φ, (62)

with a nonzero gauge function f = 1
4AB2Φ2 for Y5.

The non-zero Lie brackets of the above vector fields
yield

[Y1,Y5] =
1
2
Y3 + Y4, [Y2,Y6] = 2Y2 − 3Y3,

[Y3,Y6] = 2(Y2 −Y3), [Y4,Y5] = Y5, (63)

[Y4,Y6] = −Y2 + Y3.

The first integrals of Y5 and Y6 are

I5 =
1
4
AB2Φ2

[
t
( Ȧ

A
+ 2

Ḃ

B
+ 2

Φ̇

Φ

)
− 1

]
, (64)

I6 = AB2Φ2
[
ln (

B1/2

A
)
Ȧ

A
+ ln (

B2

A3/2
)
Ḃ

B

+2 ln (B/A)
Φ̇

Φ

]
. (65)

Case (ii.a.4): U(Φ) = λΦ2. For this case, we find
the following NGS components and gauge function:

ξ = c1 + c2 sin (at) + c3 cos (at),

α =
ak4

k1
A [c2 cos (at)− c3 sin (at)]

−c5
2A

k2k3
ln (Bφ)− 2(c4 + c6)A,

β =
ak4

k1
B [c2 cos (at)− c3 sin (at)]

−c5B ln (Aφ−k4/F0) + c6B, (66)

γ =
ak3

k1
Φ [c2 cos (at)− c3 sin (at)]

+c4Φ + c5Φ ln (A/B),

f = −2λABΦ2 [c2 sin (at) + c3 cos (at)] .
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where a =
√

2λk1/k2k3, k1 = −8F0 − 9, k2 = −F0 −
1, k3 = −F0 and k4 = −2F0 − 3. Here we observe that
k2 is different from zero because F0 6= −1, and it is
clear that k3 6= 0. Therefore, again we need to consider
subcases analogous to the Case (ii.a.1).

Subcase ii.a.4.1. k1 6= 0, k4 6= 0. The NGSs are ob-
tained as Xa4

1 = X1,Xa4
2 = X2,Xa4

3 = X3 and
Xa4

4 = 2A ln (Bφ−k4/F0)∂A −B ln (Aφ−k4/F0)∂B

+Φ ln (A/B)∂Φ,

Xa4
5 =

a

k1
cos (at)

[
k4(A∂A + B∂B) + k3Φ∂Φ

]

+sin (at)∂t, (67)

Xa4
6 = − a

k1
sin (at)

[
k4(A∂A + B∂B) + k3Φ∂Φ

]

+cos (at)∂t,

where f = −2λABΦ2 sin (at) and f = −2λABΦ2 cos (at)
for Xa4

5 and Xa4
6 , respectively. The non-zero Lie brack-

ets for this case are
[X1,Xa4

5 ] = aXa4
6 , [X1,Xa4

6 ] = −aXa4
5 , (68)

[X2,Xa4
4 ] = −3X4 + 2X2, (69)

[X3,Xa4
4 ] = 2X3 + bX2, [Xa4

5 ,Xa4
6 ] = −aX1. (70)

where b = −(3+4F0)/F0. Then, the first integrals read

I4 =
k3

3
ABΦ2

[
ln (Φ

k4
F0 /B)

Ȧ

A
+ ln (BΦ−

k4
F0 )

Ḃ

B

+
k4

k3
ln (B/A)

Φ̇

Φ

]
, (71)

I5 =
3ak2k3

k1
cos (at)AB2Φ2

[ Ȧ

A
+ 2

Ḃ

B
+ 2

Φ̇

Φ

+
a tan (at)

B

]
, (72)

I6 = −3ak2k3

k1
sin (at)AB2Φ2

[ Ȧ

A
+ 2

Ḃ

B
+ 2

Φ̇

Φ

−a cot (at)
B

]
. (73)

Subcase ii.a.4.2. F0 = −9/8, i.e. k1 = 0. The six
NGSs are found as Y1 = X1,Y2 = X2,Y3 = X3 and

Y4 = t∂t +
1
3
(16λt2+3)A∂A +8λt2(

2
3
B∂B−Φ∂Φ), (74)

Y5 = −2
3
t(A∂A + B∂B) + φ∂φ (75)

Y6 = −2A ln (Bφ2/3)∂A−B ln (Aφ2/3)∂B +φ ln (
A

B
)∂φ,

(76)

Y7 =
1
6

[
− 8λt2 + 3 ln (B)− 3

]
A∂A

− 1
12

[
16λt2 + 3 ln (A3BΦ4)

]
B∂B

+
1
4

[
8λt2 + ln (A3Φ4)

]
Φ∂Φ, (77)

where the corresponding non-zero Lie brackets for this
subcase are

[Y1,Y4] = Y1 − 16λY5, [Y1,Y5] = −2
3
Y2 + Y3,

[Y1,Y7] = 4λY5, [Y2,Y6] = −2Y2 + 3Y3,

[Y2,Y7] =
5
4
Y2 − 3

2
Y3, [Y3,Y6] = −4

3
Y2 + 2Y2,

[Y3,Y7] = −1
2
(Y2 −Y3), [Y4,Y5] = Y5, (78)

[Y4,Y6] = Y2 −Y3, [Y4,Y7] = −3
4
(Y2 −Y3),

[Y5,Y7] =
1
2
Y5, [Y6,Y7] =

1
2
(Y2 −Y3) +

1
4
Y6.

The first integrals of the six NGSs are given by

I4 =
1
8
ABΦ2

[
− 8λt2

Ȧ

A
+ (3− 16λt2)

Ḃ

B

+(40λt2 + 3)
Φ̇

Φ
+

4
3
λt

]
, (79)

I5 =
1
8
ABΦ2

[
(3− 2t)

Ȧ

A
+ (6− 4t)

Ḃ

B

+(8− 6t)
Φ̇

Φ
+ 1

]
, (80)

I6 =
3
8
ABΦ2

[
− ln

(
BΦ2/3

) Ȧ

A
+ ln

( A

(BΦ)2
) Ḃ

B

+ ln
( A2/3

B14/3Φ8/3

) Φ̇

Φ

]
, (81)

I7 =
1
32

ABΦ2
[
(8λt2 − 3 ln B)

Ȧ

A

+(16λt2 + 3 ln (A3BΦ4 − 6))
Ḃ

B

+2(8λt2 + ln (A3Φ4 − 3))
Φ̇

Φ
+ 16λt

]
. (82)

Subcase ii.a.4.3. k4 = 0, i.e. F0 = −3/2. There are
six NGSs which are Y1 = X1,Y2 = X2,Y3 = X3 and

Y4 = 2A ln (B)∂A −B ln (A)∂B − Φ ln (
A

B
)∂Φ,

Y5 = sin2
√

2λt∂t + Φ
√

2λ cos 2
√

2λt∂Φ, (83)

Y6 = cos 2
√

2λt∂t − Φ
√

2λ sin 2
√

2λt∂Φ,

with the non-zero Lie brackets

[Y1,Y5] = 2
√

2λY6, [Y1,Y6] = −2
√

2λY5,

[Y2,Y4] = 2Y2 − 3Y3, [Y3,Y4] = 2Y2 − 2Y3, (84)

[Y5,Y6] = −2
√

2λY1.
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The first integrals are

I4 =
1
2
ABΦ2

[
ln (

1
B

)
Ȧ

A
+ ln (A)

Ḃ

B

]
, (85)

I5 =
1
2
ABΦ2

[√
2λ cos (2

√
2λt)

( Ȧ

A
+ 2

Ḃ

B
+ 2

Φ̇

Φ

)

+4 sin (2
√

2λt)
]
, (86)

I6 = −1
2
ABΦ2

[√
2λ sin (2

√
2λt)

( Ȧ

A
+ 2

Ḃ

B
+ 2

Φ̇

Φ

)

−4 cos (2
√

2λt)
]
. (87)

4 Exact Solutions

In order to find new exact solutions of the field equa-
tions in the cases of the above section, the algebra of the
NGS generators has to be closed, and the first integrals
need to be utilized. Now, we proceed in this manner.

For case (i), in the view of relation (32), the field
equations (9)-(12) of BI space-time reduce to

Ḃ2

B2
+ 3

Φ̇2

Φ2
+ 2

ȦḂ

AB
+ 2

ȦΦ̇

AΦ
+ 4

ḂΦ̇

BΦ
+ 6

U(Φ)
Φ2

= 0, (88)

2
B̈

B
+ 2

Φ̈

Φ
+

Ḃ2

B2
− Φ̇2

Φ2
+ 4

ḂΦ̇

BΦ
+ 6

U(Φ)
Φ2

= 0, (89)
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A
+

B̈

B
+2

Φ̈

Φ
− Φ̇2

Φ2
+

ȦḂ

AB
+2

(
Ȧ

A
+

Ḃ

B

)
Φ̇

Φ
+6

U(Φ)
Φ2

= 0,

(90)

Ä

A
+ 2

B̈

B
+ 3

Φ̈

Φ
+

Ḃ2

B2
+ 2

ȦḂ

AB
+ 3

(
Ȧ

A
+ 2

Ḃ

B

)
Φ̇

Φ

+3
U ′(Φ)

Φ
= 0. (91)

We consider only case (i) here, because unfortunately in
case (ii) it has proven difficult, if sometimes impossible,
to find any solutions of the field equations satisfying
NGSs.

For this space-time, we find from the above field
equations that λ vanishes in cases (i.2), (i.4), (ii.a); and
the scalar field Φ is constant in case (ii.b.1). Therefore,
we drop these cases and only consider cases (i.1) and
(i.3).

Case (i.1): To get a closed algebra of the NGS gen-
erators X6,X7 and X8 in this case of vanishing po-
tential, the commutator relations (36) of Lie brackets
require that

BΦ = k, A = (k`)−3/2
B, (92)

where k and ` are non-zero constants. Note that we
have not explicitly obtained the scalar field Φ, but the

metric functions A and B are stated in terms of the
field.

The non-zero Lie brackets of X6,X7 and X8 become

[X6,X7] =
1
k

(X2 − 3X3) + ln (k)X7,

[X6,X8] = 3`(X2 −X3) + ln(`)X8,

which give indeed a closed algebra. Then, using the fact
that EL = 0 because of (9), eqs. (37)-(43) yield that all
the first integrals I1, . . . , I8 vanish. Eq. (92) gives also

Ȧ

A
=

Ḃ

B
= − Φ̇

Φ
. (93)

Putting these relations in the field equations (9)-(12)
we find that the field equations are identically satisfied.

Case (i.3): Recall that for this case the potential is
U(Φ) = λΦ4, and the coupling function F (Φ) is given
by (32). For simplicity of writing, we will rename the
constants of motion found in (47) as I3

1 ≡ J1, I3
2 ≡ J2,

I3
3 ≡ J3 and I3

4 ≡ J4. The last one vanishes by (88) and
for the others we get

Ȧ

A
− Ḃ

B
=

3J1

AB2Φ2
, (94)

Ḃ

B
+

Φ̇

Φ
= −3J2

AΦ

B
, (95)

2
Ȧ

A
+

Ḃ

B
+ 3

Φ̇

Φ
= −9J3

BΦ

A
, (96)

which are actually the constraints that have to be sat-
isfied by the field equations (88)-(91). Substitution of
(95) into the field equations (90) and (91) gives

Ä

A
+

Φ̈

Φ
− Φ̇2

Φ2
+

ȦΦ̇

AΦ
−6J2

AΦ

B

(
Ȧ

A
+

Φ̇

Φ

)
+6λΦ2 = 0, (97)
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Φ̈

Φ
− Φ̇2

Φ2
+

ȦΦ̇

AΦ
− 12J2

AΦ

B

(
Ȧ

A
+

Φ̇

Φ

)

+9(J2)2
(

AΦ

B

)2

+ 12λΦ2 = 0. (98)

Then, subtracting Eq. (97) from Eq. (98)), one gets

−6J2
AΦ

B

(
Ȧ

A
+

Φ̇

Φ

)
+9(J2)2

(
AΦ

B

)2

+6λΦ2 = 0, (99)

which yields the constraint equation

(AΦ). = 3J2
A2Φ2

2B
+

λ

J2
BΦ2, (100)

where J2 6= 0. Here we need to correct a mistake in
our previous study [26], where we have used c0 instead
of the constant of motion J2; and they are related by
c0 = −3J2. Also, it can be seen that the Eq. (42) of
that reference is erroneously calculated, the correct one
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is Eq.(98). Thus, the Eqs. (43) and (47) of Ref. [26] do
not apply and the solution (49) does not exist.

Using the Eqs. (94) and (95) in (96) we find another
constraint relation

2J1 − 3J2A
2BΦ3 + 3J3(BΦ)3 = 0. (101)

Considering (94)-(96) in the field equations (88) and
(89) gives the third constraint relation

−6J1I2 + 9J2A
2BΦ3 + 2λ(BΦ)3 = 0. (102)

The remaining field equations (90) and (91) are iden-
tically satisfied using the obtained relations (101) and
(102). Now, we use the transformation of the time co-
ordinate by dt = (B/AΦ)dτ in the above Eqs. (95) and
(100). Further, after integration with respect to the new
time coordinate we find

A2 =
2

9a(J2)3Φ2

(
3J1J2e

3J2τ − λa3e−6J2τ
)
, (103)

B = a
e−3J2τ

Φ
, (104)

where a is a constant of integration. Again, we have
given the metric functions in terms of the scalar field.

5 Concluding remarks

In this paper, we have considered the induced theory of
gravity and studied the Noether gauge symmetry ap-
proach to search the Noether symmetries of Lagrangian
(8) for BI space-time. We have shown that a number of
Noether gauge symmetries for BI space-time exist and
each of them are related to a constant of motion. Using
the two coupling functions F (Φ) and the choices given
in Tables 1 for the potential U(Φ), we used the first
integrals obtained through the NGSs to solve the field
equations for BI space-time. In some cases, the NGSs
and the first integrals are explicitly elaborated in the
paper, for other cases, the NGS vector fields and corre-
sponding first integrals are collected in Tables 2.

The maximum number of NGS generators is found
to vary from two to eight in the cases considered. Here
we also correct a mistake in our previous study [26],
namely we find that NGSs for BI space-time do exist,
contrary to the claim of that work.

In both of the cases (i) and (ii), it is possible to
find particular exact solutions for the system of field
equations (9)-(12), obtaining the explicit behaviour of
the scale factors A(t) and B(t). For BI space-time, we
have found the exact solutions (92) in case (i.1) and
(103)-(104) in case (i.3). As it is clearly seen in the
solutions (92), (103)-(104) in terms of the conformal
time τ , both of the scale factors A(τ) and B(τ) are

proportional to the inverse of the scalar field Φ. We do
not have the explicit form of the scalar field Φ in the
cases (i.1) and (i.3) for BI space-time.
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Abstract There is a question that arises of the gener-
ation of magnetic fields primordially. Following up on
a suggestion of Mahajan and Yoshida that special rel-
ativistic effects in plasmas could provide the desired
magnetic field, Asenjo, Mahajan and Qadir suggested
the generation by a strong gravitational field through
its curvature. The first attempt, using a plasma in an
accretion disc about a simple black hole provided the
seed but the fields so obtained were extremely low.
Later a rotating black hole was considered and it not
only gave large enough fields but in fact the field ap-
peared to diverge. The expectation is that this diver-
gence would be eliminated by the back-reaction of the
radiation from the plasma surrounding the black hole.
This work is reviewed here.

1 Introduction

Cosmic rays were originally the source of particles with
the highest energies. Even now, despite the tevatrons,
the highest energy photon recorded ∼ TeV , came from
cosmic rays. The recent discovery of a neutron star
emitting particles with energies ∼ 101−102TeV means
that there are such particles produced in astrophysical
processes. To produce the particles in the laboratory, we
use particle accelerators. They are normally (roughly)
circular and several kilometers in diameter and use ex-
tremely high magnetic fields. To get a comparable linear
accelerator we would need even larger dimensions and
even higher (electric) fields. The question is, how do the
cosmic accelerators that produce cosmic rays work? It
should be borne in mind that the cosmic rays come
from very far away, outside our galaxy, outside our lo-
cal cluster and quite probably from a whole lot further

aEmail Address: asgharqadir46@gmail.com
bEmail Address: rhameez.herbst@gmail.com

away. As such, they come from the very far past, i.e.
the early Universe.

We know that astronomical bodies have magnetic
fields. The Earth and the planets have relatively small
fields and stars have larger fields. This is related to the
rotation and composition of the bodies. White dwarfs
have considerably higher magnetic fields as they are
more compact and hence spin faster. Neutron stars have
very much higher magnetic fields. We need giant struc-
tures like enormous dust clouds or whole galaxies to
produce the observed cosmic rays. Gas clouds, being ir-
regular, are not good sources and normal galaxies are
probably too diffuse. Only neutron stars, gamma ray
bursters and quasars could be the sources but how do
they get their magnetic fields? There have been var-
ious proposals for spontaneous magnetic field genera-
tion. One of them is that special relativistic effects could
lead to a plasma acquiring a magnetic field. Since high
accelerations often give results similar to high speeds,
one could also look for spacetime curvature generating
magnetic fields.

The essential problem is that in the early Universe
there was no preferred direction. The net spin of the
Universe is measured to be zero to a very high accu-
racy and there were no magnetic fields. Also, the inter-
stellar medium is an undifferentiated gas which cannot
have any preferred directions. To generate the fields one
may look to a plasma. A plasma is an electrically neu-
tral gas of charged particles. Though overall neutrality
is assured, the fact that it consists of charges means
that there will be electromagnetic interactions between
the charges. As they are moving charges, there will be
magnetic fields. However, due to lack of a preferred di-
rection, the fields will be random and evanescent, aris-
ing and disappearing, with a zero net field over any
significant time period. In other words, they would just
be thermal fluctuations in the plasma. Once a magnetic
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field is started, we can rely on nonlinear effects in the
plasma to make it grow, but how can we have a net
significant field started?

2 The Special Relativistic Mechanism

Mahajan and Yoshida [1] suggested that one could pro-
vide the preferred direction, which they called a “gener-
alized vorticity” and denoted by Ω, by special relativis-
tic effects in a plasma. Using Classical Mechanics the
corresponding generalized helicity for a non-relativistic
plasma is K =

∫
P ·Ωdx, where P = mV + (q/c)A is

the canonical momentum, m the mass, V the fluid ve-
locity, q the generalized charge, c the speed of light and
A a vector potential. There will then be a generalized
magnetic field, B = ∇×A.

The circulation
∮

L
δQ, associated with a physical

quantity Q, calculated along the loop L, may be zero
or finite depending on whether Q is an exact differential
dφ or not, φ being a state variable. For example, if δQ =
TdS, where T is the temperature and S the entropy;
the circulation is generally finite and measures the heat
gained in a quasi-static thermodynamic cycle.

For a moving loop, L(t), in an ideal fluid flow,∮

L

P · dx =
∮

L

Pfluid · dx, (1)

where V is the flow velocity. Since the integrand is mi-
nus the derivative of the energy, ε = 1

2mV 2φ+h, where
φ is the potential energy and h the enthalpy density, the
left side of equation (1) is zero and hence the circulation
is conserved. However, relativistically an exact differen-
tial would be re-scaled by a factor γ−1 =

√
1− V 2/c2,

and hence the circulation would no longer be conserved.
This can be seen more rigorously by taking the in-

ner product of the momentum and position 4-vectors
in the integral. The right side integrand will now be
the line integral of the inner product of the velocity 4-
vector and the generalized curl of the momentum. The
generalized curl is the angular momentum tensor. Since
the canonical momentum is,

Pµ = mcfV µ + (q/c)Aµ, (2)

where f is a factor corresponding to the thermal in-
crease of mass, the angular momentum tensor is

Mµν = 2∂[µP ν] = mcSµν + (q/c)Fµν , (3)

where Sµν and Fµν are the spin (angular momentum
per unit mass) tensor and Maxwell tensor respectively.

The equation of motion now becomes

cMµνV ν = TS,µ, (4)

where T is the temperature and “, µ” stands for the
derivative with respect to the position 4-vector. Taking

the space part of this equation one can write it in terms
of the generalized electric and magnetic fields as

qγ[E + V ×B/c] = cT∇S. (5)

Hence the source for the magnetic field generation is

G = −cT

qγ
∇S = −∇×

(
cT

qγ
∇S

)
, (6)

which may be broken into the familiar baroclinic term

Gb = −(c/qγ)∇T ×∇S, (7)

and the relativistically induced correction

Gr = −(cγT/2q)∇(
V

c
)2 ×∇S. (8)

. Writing (V/c) = β, the ratio of the magnitudes of the
forces is β2γ2.

Now, for a stable plasma ∇T ×∇S = 0. Hence the
baroclinic term averages to zero, meaning that there
is no long term significant seed magnetic field in that
term. However, the relativistically induced term is sig-
nificant. The resistive dissipation, is

D = ∇× (ηJ) = (c/4π)∇× (η∇×B). (9)

Then the relative strengths are:

|Gr|
|D| =

(γV/c)2(T/mc2)
(VA/c)(ν/ωp)

, (10)

where VA is the Alfven speed, ν is the collision fre-
quency and ωp is the plasma frequency. The relativistic
term generates ∼ 1G at T = 20eV ∼ 2× 104 oK.

3 Re-interpretation of special relativistic effect

Einstein had early on noted that with accelerated mo-
tion one must modify the geometry as Euclidean geom-
etry could not hold. Though he never published the
argument till much later, he claimed that he had al-
ready come to it in 1908. The argument is beautifully
simple and telling (see for example [2]). Consider an
observer at the edge of a circular disc of radius a ro-
tating with an angular speed ω. A rod placed along the
direction of rotation will appear contracted by a factor√

1− a2ω2/c2, while a rod of the same size placed along
the radial direction will be unchanged (as it lies perpen-
dicular to the direction of motion). Consequently, the
observer will measure the ratio of the circumference to
the diameter as shrunk by the same factor. Since, in
Euclidean geometry this ratio defines π, and the mea-
sured value will be less than pi, the geometry cannot be
Euclidean. Notice that even though the speed does not
change and only the direction does, it is enough to warp
the geometry. This warping of the geometry will play a
crucial role in understanding how the special relativistic
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drive, discussed above, can work, when the effect seems
to be only frame dependent.

The conservation laws of Physics may be seen as
arising from Noether’s theorem, that for every dynam-
ical symmetry there is a conserved quantity [3]. Thus,
for the gauge symmetry of classical electrodynamics,
that Aµ → Ãµ = Aµ + ∂f(xν)∂xµ leaves the Maxwell
field Fµν invariant, the conserved quantity is the charge
[2]. Thus in classical mechanics spatial translational
invariance, R3, yields momentum conservation, tem-
poral translational invariance, R, yields energy con-
servation and rotational invariance, SO(3) yields an-
gular momentum conservation. Thus we could char-
acterize free-particle classical mechanics by the invari-
ance group R

⊗
[R3

⊗
s SO(3)], where

⊗
s is the “semi-

direct product” (signifying that the two subgroups do
not commute), the spatial part (in the square bracket)
is the 3-dimensional Euclidean group. For special rel-
ativity the group has to be the 4-dimensional sym-
metry group for Minkowski space, called the Poincaré
group, R4

⊗
s SO(1, 3). Instead of separate energy and

momentum conservation the R4 gives conservation of
energy-momentum, allowing a ‘mixing’ of the two. The
SO(1, 3) contains the rotational group as a proper sub-
group, but also contains spin-angular momentum in it.
thus the conservation is of the two together and they
can mix as well; J = L + S.

Since this special relativistic effect is frame depen-
dent for a homogeneous stress-energy tensor the Lorentz
rotation can be undone over the entire spacelike hy-
persurface in a homogeneous spacetime. However, it
persists in an inhomogeneous system as undoing it at
one place will simply push the twist elsewhere. In other
words, there would still be no “seed” without charges to
introduce the non-homogeneity required in the space-
time. Thus a plasma is needed to provide the effect.
The distortion is purely in the spacelike section (as the
spacetime remains flat). This could now be undone lo-
cally, but not globally, by a change of frame because of
inhomogeneity.

4 Plasma dynamics in a curved space

We now come to plasmas in the general theory of curved
spacetimes, where the energy content of the spacetime
is responsible for the curvature. In principle this will
be no different from the case where it is the motion
that is responsible for the effective curvature of the 3-
space. We can take the local rest-frame at one point as
given by the tangent space, using Riemann normal co-
ordinates, and compare it with the local rest-frame at
another point. There will be a definable local Lorentz
factor there, giving the above special relativistic effect

produced by gravity. The frame chosen by us is a spe-
cial Fermi-Walker frame, which gives the geodesics as
if they were straight lines bent due to an (appropri-
ately modified) force of gravity. The GR effects open
up the exciting possibility of spontaneous generation of
magnetic fields near gravitating sources.

Consider a plasma with the ideal fluid stress-energy
tensor density, Tµν = hV µV ν + pgµν , where h is the
enthalpy density, V µ is the velocity 4-vector and p is
the pressure. Since we have total energy-momentum
conservation, and there is also the electromagnetic en-
ergy density of the plasma, the conservation equation
is Tµν

;ν = qnFµνVν , where q is the charge and n is the
number density of the charged particles. The continuity
equation for the plasma particles is (nV µ);µ = 0. Then
the conservation of energy becomes mnV ν(fV µ);ν =
qnFµνVν + p, νgµν , where f = h/mn and m is the par-
ticle mass.

Equation (4) still holds with the angular momentum
tensor of the plasma field, using the flow velocity 4-
vector, Vµ, to give the spin tensor Sµν ,

Mµν = (q/c)Fµν + 2(fV[ν),µ]. (11)

The entropy density S is related to the pressure p by

S,µ =
p,µ −mnf,µ

nT
. (12)

This along with the Maxwell equations gives the com-
plete description of the system.

We will use the canonical formalism [4] to compute
the general relativistic effect in the plasma. Though one
would ideally like to use the charged Kerr metric for the
background spacetime and then include back-reactions,
in this first step we will use the simpler case of the
Schwarzschild metric and a more naive way of seeing
the effects. The approach used for the purpose is the
“pseudo-Newtonian”, or “ψN formalism”. (It was in-
vented by Mahajan, Valanju and me [5], and later de-
veloped formally by my students and I, starting with
Jawaid Quamar [7,8] for static metrics, applying it to
pulsars with Rafique [9,10] and Sharif [11–13] for time-
varying metrics.)

This formalism takes a preferred frame, which corre-
sponds to an observer falling freely in the gravitational
field from rest at infinity, or given a velocity correspond-
ing to that from any place in the spacetime. The special
feature of this frame is that the observer sees the spe-
cial relativistic, Minkowski, space. In geometric terms
the spatial sections turn out to be flat (at least this is
explicitly proved for spherically symmetric static space-
times). In terms of the usual canonical formalism, this
frame is a special Fermi-Walker frame [14]. The advan-
tage of using this formalism is that it allows one to
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use ones usual intuition based on forces in Newtonian
mechanics.

Working out the tidal force from the geodesic devi-
ation formula for the tidal force:

Aµ = Rµ
νρπtν lρtπ, (13)

where R is the curvature tensor, t the unit timelike 4-
vector tangent to the geodesic and l the spacelike sep-
aration 4-vector, one can define the ψN−force as the
quantity whose directional derivative along the separa-
tion vector. We can now choose the time axis along t
and the space section orthogonal to it. This leads to a
ψN−potential, whose gradient is the negative of this
force. This potential turns out to be 1

2 ln(g00) in this
frame.

The general metric written in the canonical formal-
ism is:

ds2 = α2dt2 + 2βidtdxi + Γijdxidxj , (14)

where α2 is g00, giving the gravitational potential, βi

is the shift vector, giving the momentum, and Γij is
the 3-space metric tensor, having chosen units in which
the speed of light is unity. We can choose a gauge (by
performing an appropriate gauge transformation, i.e.
choosing a frame) in which the shift vector is zero.
The ψN -frame corresponds to this very choice. We now
write the unit timelike vector in the chosen coordinates
as

tµ = (α, 0, 0, 0) , tµ = (1/α, 0, 0, 0), (15)

so that we can write the 3-d metric tensor with the full
4× 4 matrix form as

Γµν = tµtν − gµν . (16)

Then V µ = (γ, γv) and we can write

V µ = γ (αtµ − Γµ
ν vν) , (17)

where the index of the 3-d metric tensor is raised by
the 4-d metric tensor and vν is the local fluid 3-velocity.
This allows us to write the generalization of the usual
Lorentz factor,

γ = 1/
√

α2 − Γµνtµtν . (18)

Whereas the fluid particle velocity is defined by v =
dx/dt the velocity according to the fiducial observer is
defined as vf = dx/dτ giving γf = αγ. Then tµ = V µ =
γf .

5 The general relativistic effect

In the chosen frame we can write the electric and mag-
netic fields as

Eν = Fµνtµ , Bµ =
1
2
εµνρπtνFρπ, (19)

so that both fields are spacelike, i.e. t.E = t.B =
0, where these are taken to be 4-vectors. Using the
Maxwell equations we get ∇.E = 4πqnαγ, where the
∇ is defined by the requirement that ∇Γ = 0. Direct
manipulation of the other Maxwell equations yields

∇× (αB) = 4πqnαγv + Et, (20)

and the continuity equation gives

(qnαγ)t +∇.(qnαγv) = 0, (21)

where the suffix t stands for the derivative with respect
to the coordinate time. The other two Maxwell equa-
tions come from the identity d× F = 0 as F = d×A
and hence remain unaltered by the breaking of the met-
ric tensor into the time and space parts, except that in
the Faraday law the electric field picks up a factor of α.

Now defining the generalized electric and magnetic
fields

ξµ = Mµνtν , Ωµ =
1
2
εµνρπtνMρπ, (22)

where

Mµν = Fµν +
m

q
Sµν . (23)

Since from (22)

Mµν = ξµtν − ξνtµ − εµνρπΩρtπ, (24)

using the spacelike condition for the fields

αqξ = αqE−∇(fα2γ)−m(fγv)t ,

Ω = B + m∇× (fγv). (25)

The Ω corresponds to the generalized vorticity vector
mentioned earlier. Thus the GR effect comes from the
local Lorentz factor. Using the above generalized elec-
tric and magnetic fields in the earlier equations, we get

qαγv · ξTSt ,

qαγξ + qγv ×Ω = T∇S. (26)

The generalized Maxwell equations yield

Ωt = −∇× ξ. (27)

Using the earlier constraints and equations one ar-
rives at

Ωt −∇× v ×Ω = Ξb + Ξr, (28)

where Ξb is the baroclinic term given by (7) and Ξr

is the relativistic term given by (8). Here the latter
becomes

2qΞr = γT [−∇α2 +∇v2]×∇S. (29)

This provides a drive for the generation of the mag-
netic field, even without high speeds. Of course, the
high speeds can either add in or subtract out from the
curvature effect depending on their direction. The net
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result for a non-zero baroclinic term is that the ratio of
the strengths of the curvature and baroclinic terms is

|Ξr|
|Ξb|

=
γ2Γ

2
|∇α2 +∇v2|. (30)

Notice that the gradient of the metric coefficient is
directly related to the ψN force and the second term is
the directional derivative of the fluid velocity vector,
while the Lorentz factor square ∼ inverse of the differ-
ence of the metric coefficient and fluid speed square.
As such, if these two are close together but directions
are different, the ratio can be arbitrarily large. Strik-
ing result is that the gravitational potential, through
g00 (or α), can produce a magnetic field in any region
populated by charged particles even if their local veloci-
ties are negligible. Despite the confusion of terminology,
where “gravitomagnetic” is used for the particular com-
ponents of the curvature tensor, we feel that this should
be called a gravito-magnetic battery!

6 Relativistic drives for different spacetimes

The GR drive will obviously require very high gravita-
tional fields such as are found in the vicinity of a black
hole. As such, we will consider three black hole space-
times: (a) Schwarzschild [15]; (b) Reissner-Nordstrom
[16]; (c) Kerr [16]. The first, being the simplest and a
good approximation to a simple gravitational source is
an obvious initial choice. What may seem strange is
to use the Reissner-Nordstrom spacetime for this pur-
pose. After all, astrophysical bodies are charge neutral
and it does not seem possible to generate a significantly
charged black hole that will retain its charge for any
length of time. The reason to take it is just as an exer-
cise, to guide us to the calculations for the more com-
plicated spinning black hole given by the Kerr metric.

(a) The Schwarzschild black hole spacetime

The Schwarzschild metric is

ds2 = eνdt2 + e−νdr2 + r2dθ2 + r2sin2θdφ2, (31)

where, eν = (1−ro/r). Consider a particle in the plasma
following a Keplerian orbit. Choose the plane of the
orbit to be the equatorial plane. Clearly, the azimuthal
speed must be much greater than the radial speed for
the orbit to be stable. The drive, Ξr, depends on the
gradient of the entropy variations. The usual definition
of the entropy density is valid as the GR nonlinearity
is only significant close to the surface of a black hole,
say 5ro. Since S = F (T ), (T/c)∇S ∝ ∇T and hence

the baroclinic term, Ξb, is zero and the only drive is
the GR drive,

|Ξr| =
3cζr0e

ν/2

4qr3
(1− 3ro

2r
)−1/2 ∂

∂φ
, (32)

where q is now the electric charge for the plasma par-
ticle, φ is the azimuthal angle and ζ = F ′(T )T/c. This
drive acts in the z-direction. For a thin disc the poloidal
temperature gradients would be negligible compared
with the azimuthal gradients, so the entire plasma would
contribute to the drive.

At 5ro and taking the average temperature of the
plasma as coming from a black body at 5×107(M¯/−
M)1/4K [17], the total GR drive (obtained by integrat-
ing over all φ) will be |Ξr,t| = 3 × 10−2ζ(M¯/M)9/4.
Note that the plasma is at a non-relativistic tempera-
ture as the rest energy of the particles is much greater
than the thermal energy for even solar mass stars. The
total seed magnetic field will be proportional to the
time for generating it. Putting in estimates we find the
field to be ∼ 10−9(M¯/M)1/4G. It should be noted
that though the seed is very small, even for very high
mass objects, it is not expected to provide a large field
directly. It only sets the process of magnetic field gen-
eration in motion, where there was none. Also, closer to
the surface of the object, the factor goes as ζT/eνqro,
and hence as e−ν , which blows up at the black hole
surface. As such, if objects are nearly black holes they
can produce fairly large fields. For an effective drive we
would need a black hole. Of course, we are depending
on a plasma in the form of an accretion disc about the
object.

The Reissner-Nordström black hole

To go beyond the simple black hole for simplicity
of visualization and calculation, we need to use the
ψN -formalism. Here we only need the time component
of the metric to obtain the gravitational potential. As
the simplest extension we take the Reissner-Nordström
metric, for which we replace the factor eν in (31) by
(1 − 2m/r + Q2/r2), where m is the mass and Q the
charge in gravitational units c = G = 4πεo = 1. (The
earlier, ro = 2m.) The ψN -potential is the natural log-
arithm of this quantity. Since the relativistic drive is
related to its gradient, the ψN -force comes in (with
a scale factor due to the ψN term). We only need to
see how its modification changes the strength of the
drive. The |∇eν | = |2M/r2 + 2Q2/r3|, and the change
comes from the ratio of the second term to the first. At
5ro it is Q2/10M2. As such, the strength is decreased
by this amount. This is not expected to be a serious
model for the seed generation as there are no signif-
icantly charged astrophysical bodies. As such, it does
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not matter that we have here neglected the interaction
between the charges in the plasma and the charge of
the black hole, which could be sizable for an extreme
(or near-extreme) black hole.

The Kerr black hole

A spinning black hole changes the discussion in a dif-
ferent way. The approximations used for estimates de-
pended crucially on neglecting polar angle derivatives.
This would be badly off for an axially symmetric source.
Further, reduction from staticity to stationarity could
also make a significant difference. (Recall that a metric
is stationary if it admits a global timelike Killing vector
and static if the Killing vector is globally hypersurface
orthogonal). For this purpose a more detailed analysis
would be needed. At present we just look at the changes
in the ψN -potential and the ψN -force.

Here we have ,

goo = 1− 2GMr/c2

r2 + a2 cos2 θ
:= 1− 2Rr

ρ2
, (33)

where a is the “spin”, i.e. the angular momentum per
unit mass. The ψN -potential is ln

√
goo and so the ψN -

force is θ-dependent:

∇ ln
√

goo =
R

ρ2χ2
(r2−a2 cos2 θ,−2ra2 cos θ sin θ, 0),(34)

where χ2 = r2 − 2Rr + a2 cos2 θ/c2. The squared mag-
nitude of the force then becomes

F 2
ψN =

R2

ρ6χ4
[(r2 − 2rR + a2)(r2 − a2 cos2 θ)2

+a4r2 sin2 2θ . (35)

This is too complicated to convey much wisdom, so we
need to look at special cases to make sense of what it
means. At the poles we get

F 2
ψN =

R2(r2 − a2)2

(r2 + a2)3(r2 − 2Rr + a2)
. (36)

which is slightly less than for the Schwarzschild black
hole. At the equator we get

F 2
ψN =

R2(r2 − 2Rr + a2)
r4(r − 2R)2

. (37)

which is more, and can be much more, than for the
Schwarzschild. Since the plasma will lie in an equato-
rial orbit and the drive is stronger there than for the
Schwarzschild case, there will anyhow be an enhance-
ment. Further, since the expression blows up at r = 2R,
which is accessible, it will be much more! The behavior
of the ψN -force is shown in the graphs in Figures 1(a)
and (b).

Fig. 1 The normalized magnitude of the ψN-force for a given
distance r/R = 2.3 in terms of θ and β = a/Rc. The dark
blue plane is the Schwarzschild drive and the light blue curve
is the Kerr drive. The Kerr drive could be smaller or greater
than the Schwarzschild drive depending of the value of β. For
a 6= 0, the Kerr drive at the poles is always smaller than the
Schwarzschild drive, while on the equator the Kerr drive is
always greater than the Schwarzschild drive. Notice how the
maximum of the Kerr drive is around π/2.

Fig. 2 The normalized magnitude of the ψN-force is plotted
in terms of the normalized distance r/R and θ, for the extreme
Kerr black hole, β = 1.

7 Radiation reaction in the Kerr spacetime

Our problem now is that we have “too much of a good
thing”. We had wanted to get a large enough seed gen-
erated, but not an infinite seed. To avoid this out-
come we need to incorporate the damping of the field
due to radiation reaction. For this purpose we use the
ψN−formalism once again. We consider the Kerr equiv-
alent of radially inward falling particles, starting at in-
finity coming radially in and then spiraling in along a
cone of constant polar angle θo [18]. These particles will
be in a ψN -frame and so one can look for the change
in the force due to the radiation. (This approach is
Wheeler’s “poor man’s” way of getting results without
having to work through complicated calculations that
may lose sight of the underlying Physics. As he used to
say, “I never start a calculation unless I already know
the answer”, quoted in [19].)
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We first calculate the change in the metric, which
we write as hµν . Since the radiation should be emitted
radially outward, we take the ansatz that the only non-
zero components are htt and htr. The equation for htr

yields the solution htr ∼ ρ2/χ2. For the htt the first
non-zero term to appear is at the 8th order (the term
is independent of θ) and yields

htt =
c1

4ω

[
e−ξ3 (

1− 3ξ3
)

+ 3ξ6E1/3

(
ξ3

)]
, (38)

where c1 is an arbitrary constant, E is the exponential
integral function [21] defined as

En(x) =
∫ ∞

1

e−xtt−ndt,

ξ =
(

ω2

3R

)1/3

r and ω is the wave frequency. The pres-
ence of c1 is important in that it can be determined in
such a way that the singularity found at r = 2R in the
Kerr case is eliminated. This results in a value for c1

which is given by

c1 =
3e

8ω2
3

8ω
[
32ω4E−2/3

(
8ω2

3

)− 3(1 + 4ω2)
] .

To the same order, the expression for htr is given by

htr = −c1e
iωtr

3ξ
Γ1/3

(
ξ3

)
(39)

where Γ is the incomplete gamma function [20].
To this end the reaction-corrected version of the g00

component of the metric is given by
g00 = 1− 2

r2+a2 cos2 θ +

e−ξ3 (
1− 3ξ3

)
+ 3ξ6E1/3

(
ξ3

)

32ω2
[
32ω4E−2/3

(
8ω2

3

)− 3e−
8ω3
3 (1 + 4ω2)

] , (40)

ξ has is defined as it was above. From this the square
of the ψN -force may by found to be

F 2
ψN =

A + B2

C2
, (41)

where A,B and C are defined by

A =
9ξ2

0

16χ

[
8eξ3

(
3eξ3

0ξ6
0E−2/3

(
ξ3
0

)− 3ξ3
0 − 2

) (
8ξ2 − ξ2

0ρ2
)

− 2ξ2eξ3
0ρ4

(
3eξ3

ξ6E−2/3(ξ3)− 3ξ3 − 2
)]

,

B = 12eξ3
ξξ2

0 sin 2θ
(
2 + 3ξ3

0 − 3eξ3
0ξ6

0E−2/3(ξ3
0)

)
(42)

and

C = 6e3ξξ2
0ρ(ξ0ρ

2 − 4ξ)(2 + 3ξ3
0 − 3eξ3

0ξ6
0E−2/3(ξ3

0))

+ ρ3eξ3
03eξ3

ξ6E1/3 − 3ξ3 + 1). (43)

The variables χ, ρ and ξ have their usual meanings
and ξ0 = ξ|r=2. Once again the equation for the force
squared is too complicated to perform any meaningful
analysis. We therefore consider the force along the pole
and equator particularly at r = 2R, the force increases
toward r = 0 and rapidly decreasing as r are increases.
In both cases we see that there are no singularities in
the limit as ξ → ξ0.
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Abstract In this paper, we analyze the effects of gen-
eralized dissipative coefficient on the dynamics of warm
logamediate inflationary universe models during strong
dissipative regime. We explore these models within the
framework of locally rotationally symmetric Bianchi type
I universe. We evaluate inflaton, scalar potential, dissi-
pative coefficient, slow-roll parameters, scalar (tensor)
power spectra, scalar spectral index and tensor-scalar
ratio under slow-roll approximation. The inflationary
model as well as perturbed parameters are constrained
using recent data. We conclude that n = 1 is the only
consistent case during logamediate era.

Keywords Warm inflation · Slow-roll approximation

PACS 98.80.Cq · 05.40.+j.

1 Introduction

The standard hot big-bang cosmology successfully ex-
plains the observations of CMBR. The issues including
horizon problem, flatness, magnetic monopole and ori-
gin of fluctuations still remain unresolved. Inflation is
very successful paradigm in addressing the shortcom-
ings of standard model providing an elegant mechanism
to resolve these issues. The simplest primary ingredient
of inflation is that of scalar field which provides a seed
for causal interpretation of the origin of LSS distribu-
tion and observed temperature anisotropies in CMBR
[1]. The standard inflationary models are classified into
slow-roll and reheating epochs. During slow-roll infla-
tionary period, the scalar potential must have a very
flat region as potential energy dominates kinetic en-
ergy and all the interactions among scalar fields as well

1msharif.math@pu.edu.pk
2rabiasaleem1988@yahoo.com

as other fields become negligible, hence the universe in-
flates [2]. The universe then enters into reheating period
where both types of energy (potential and kinetic) are
comparable and the inflaton starts an oscillation about
minimum of its potential losing their energy to other
fields present in the theory [3].

A more general class of models where fluctuation-
dissipation effects are significant is known as warm in-
flation. It has an appealing feature of joining the end
stage of inflation with the present structure of the uni-
verse. During this regime, density thermal fluctuations
arise rather than quantum fluctuations [4]. Warm infla-
tionary era ends when the universe stops inflating, fi-
nally enters into the radiation dominated phase smoothly.
The remaining inflatons or dominant radiation fields
create matter components of the universe [5]. Dissipa-
tion is a natural outcome of the interactions between
the inflaton field and other degrees of freedom which are
required to ensure a graceful exit into radiation dom-
inant era. Bastero-Gil et al. [6] made considerable ex-
plicit calculations using quantum field theory method
that compute all the relevant decay and scattering rates
in the warm inflationary models.

Exact solutions of the inflationary cosmology can
also be obtained for intermediate and logamediate sce-
narios with specific growth of the scale factor [7,8].
This intermediate type of expansion is slower than de
Sitter inflation but faster than power-law inflation, so
dubbed as “intermediate”. These models were originally
developed as exact solutions of inflationary cosmology
but were best formulated using slow-roll approximation
which may lead to give a spectral index ns = 1. In par-
ticular, intermediate inflation leads to ns = 1 for special
value of f∗ = 2/3 that corresponds to the Harrizon-
Zel’dovich spectrum [9,10]. In both models, an impor-
tant observational quantity is the tensor-scalar ratio
(r), which is significantly non-zero [11]. Recently, the ef-
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fects from BICEP2 experiment of gravitational waves in
B-mode have been analyzed which predict r = 0.2+0.07

−0.05

(68% C.L.) and take out the value r = 0 at a signifi-
cance of 7.0σ [12].

Setare and Kamali [13,14] studied characteristic of
“warm inflation” with vector and non-abelian gauge
fields during intermediate and logamediate scenarios
using flat FRW background taking constant and vari-
able dissipative coefficients. We have proved that locally
rotationally symmetric (LRS) Bianchi I (BI) universe
model remains compatible with WMAP7 observations
with both types of field [15,16]. Inflationary dynamics
of generalized cosmic Chaplygin gas using standard and
tachyon scalar fields (with and with out viscous pres-
sure) during intermediate and logamediate scenarios is
discussed in [17,18]. We have investigated dynamics of
warm viscous inflation in LRS BI universe model with
constant and variable dissipative as well as bulk vis-
cosity coefficients [19]. Herrera et al. [20] analyzed the
possible realization of an expanding intermediate and
logamediate scale factors within the framework of FRW
as well as loop quantum cosmology models.

In this paper, we check the compatibility of LRS
BI model with recent data during strong dissipative
regime. The paper is organized as follows. The basic for-
malism of warm LRS BI inflationary universe is given in
section 2. Section 3 deals with strong dissipative regime
developing the model during logamediate inflation. We
evaluate explicit expressions for inflaton, scalar poten-
tial, rate of decay and perturbed parameters. These pa-
rameters are analyzed through graphical trajectories by
constraining the model parameters with recent obser-
vations. Finally, the results are concluded in the last
section.

2 Anisotropic Inflationary Model

The line element of LRS BI universe model is given as

ds2 = −dt2 + X2(t)dx2 + Y 2(t)(dy2 + dz2). (1)

A proportionality relationship between expansion and
shear scalar leads to a linear relationship, X = Y µ (µ 6=
1 stands for anisotropic parameter). Under this relation,
the above metric is reduced to

ds2 = −dt2 + Y 2µ(t)dx2 + Y 2(t)(dy2 + dz2). (2)

The basic ingredients of the universe are assumed to be
self-interacting scalar field (ψ) and radiation field (γ).
The inflaton possesses the following energy density (ρψ)
and pressure (Pψ)

ρψ =
ψ̇2

2
+ V (ψ), Pψ =

ψ̇2

2
− V (ψ), (3)

where V (ψ) is the effective potential and dot represents
derivative with respect to cosmic time t. The dynam-
ics of anisotropic warm inflation is described by the
evolution equation as well as conservation equations of
inflaton and radiation given by

H2
2 =

κ

1 + 2µ
(ρψ + ργ) =

κ

1 + 2µ

(
ψ̇2

2
+ V (ψ) + ργ

)
,

ρ̇ψ + (µ + 2)H2(ρψ + Pψ) = −Γψ̇2,

ρ̇γ +
4
3
(µ + 2)H2ργ = Γψ̇2, (4)

where ργ is the radiation density and H2 is the Hubble
parameter in y direction. The second law of thermody-
namics suggests Γ > 0 implying that ρψ dissipates into
ργ . This factor has specific forms as it may be a con-
stant, function of inflaton (Γ (ψ)), function of tempera-
ture (Γ (T )), function of both (Γ (ψ, T )) and equivalent
to V (ψ) in some papers [4].

We have considered a more general form of the dis-
sipative coefficient as

Γ = Cψ
Tn

ψn−1
, (5)

where n be any arbitrary integer and Cψ is associated
to the dissipative microscopic dynamics [21]. In this
reference, Zhang and Basero-Gil et al. analyzed differ-
ent choices of n that correspond to different expres-
sions for dissipative coefficient. In particular, for n = 3,
Cψ = 0.64h4N , where N = NχN 2

decay (Nχ is the mul-
tiplicity of X superfield and N is the number of de-
cay channels available in X ’s decay) [21–23]. The value
n = 1 leads to Γ ∝ T (represents the high-temperature
SUSY case), n = 0 generates Γ ∝ ψ (corresponds to an
exponentially decaying propagator in the SUSY case)
and n = −1 leads to the decay rate Γ ∝ ψ2

T (corre-
sponds to the non-SUSY case). The case n = 3 implies
the most common form Γ ∼ T 3 considered for the warm
intermediate and logamediate models [24,25].

During inflation, stable regime can be obtained by
applying an approximation, i.e., ρψ ≈ V (ψ), ρψ > ργ .
Under this limit, the evolution equation is reduced to

H2
2 =

κ

1 + 2µ
ρψ =

κ

1 + 2µ
V (ψ). (6)

Using this equation along with conservation equation
of inflaton, we have

ψ̇2 =
2(1 + 2µ)(−Ḣ2)
(µ + 2)κ(1 + R)

, (7)

where decay rate between Γ and H2 is given by R =
Γ

(µ+2)H2
. In warm inflation, the radiation production is

assumed to be quasi-stable where ρ̇γ ¿ 4
3 (µ + 2)H2ργ ,
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ρ̇γ ¿ Γψ̇2. Using Eq.(7) and quasi-stable condition in
the last equation of Eq.(4), it follows that

ργ =
3(1 + 2µ)Γ (−Ḣ2)

2κCγ(µ + 2)2(1 + R)H2
= CγT 4, (8)

where Cγ = π2g∗
30 in which g∗ is known as the number

of relativistic degrees of freedom. The temperature of
thermal bath can be extracted from second equality of
the above equation as

T =

[
3(1 + 2µ)Γ (−Ḣ2)

2κ(µ + 2)2(1 + R)H2

] 1
4

. (9)

Substituting the value of T in Eq.(5), we have

Γ
4−n

4 = αn(1 + R)−
n
4

(
−Ḣ2

H2

)n
4

ψ1−n, (10)

where αn = Cψ

[
3(1+2µ)

2κCγ(µ+2)2

]n
4
. The effective potential

can be obtained from the first evolution equation with
the help of Eqs.(7) and (8) as

V (ψ) =
(

1 + 2µ

κ

)
H2

2+
(1 + 2µ)Ḣ2

(µ + 2)κ(1 + R)

[
1 +

3
2
R

]
.(11)

Next, we check the compatibility of the desired model
with recent observations in the context of logamediate
regime.

2.1 Warm Logamediate Strong Regime

The logamediate scale factor evolutes as [8]

Y (t) = Y0 exp[A∗(ln t)λ∗ ]. (12)

The solution ψ(t) can be found using the above equa-
tion as

ψ(t)− ψ(t0) = ξ6γn[t], (13)

where ξ6 and the incomplete gamma function γn[t] are
defined as

ξ6 =

[
(1 + 2µ)(3− n)2(A∗λ∗)

8−n
4

2κ(µ + 2)
n
4 αn

] 1
3−n

×
(

n− 2
4

) (n−8)(λ∗−1)−1
4(3−n)

,

γn[t] =
[
Γ

(
1 +

(8− n)(λ∗ − 1)
8

,

(
2− n

4

)
ln t

)] 2
3−n

.

In this case, H2(ψ) and V (ψ) have the following form

H2(ψ) = (A∗λ∗)
(

ln γ−1
n

[
ψ

ξ6

])λ∗−1 (
γ−1

n

[
ψ

ξ6

])−1

,

V (ψ) =
(

1 + 2µ

κ

)
(A∗λ∗)2

(
ln γ−1

n

[
ψ

ξ6

])2(λ∗−1)

×
(

γ−1
n

[
ψ

ξ6

])−2

.
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Fig. 1 Log(R) versus ns for µ ≈ 0.5, n = 1, Cγ =
70, A∗ = 1 × 10−3, λ∗ = 3.55, Cψ = 3 × 10−1 (red),
A∗ = 1.2 × 10−3, λ∗ = 3.65, Cψ = 5 × 10−1 (green)
A∗ = 1.5 × 10−3, λ∗ = 3.75 , Cψ = 7 × 10−1 (blue) dur-
ing logamediate regime.

The strong dissipation coefficient turns out to be

Γ (ψ) = αn [(µ + 2)(A∗λ∗)]
n
4

(
ln γ−1

n

[
ψ

ξ6

])n(λ∗−1)
4 (

γ−1
n

×
[

ψ

ξ6

])−n
2

ψ1−n.

Figure 1 shows that for n = 1, R attains larger values
with the increasing value of Cψ. For n = −1, 0, the
model remains incompatible with strong regime.

The slow-roll parameters in logamediate era are

ε =
(

3
µ + 2

)
(A∗λ∗)−1

(
ln γ−1

n

[
ψ

ξ6

])(1−λ∗)

,

η =
(

3
µ + 2

)
(A∗λ∗)−1

(
ln γ−1

n

[
ψ

ξ6

])−λ∗ [
2 ln γ−1

n

[
ψ

ξ6

]

− (λ∗ − 1)] .

In this case, the extent of inflation is

N =
(

µ + 2
3

)
A∗

[(
ln γ−1

n

[
ψ2

ξ6

])λ∗

−
(

ln γ−1
n

[
ψ1

ξ6

])λ∗
]

.(14)

The initial and final inflatons are calculated as

ψ1 = ξ6γn

(
exp

[(
3

µ + 2

)
(A∗λ∗)−1

] 1
λ∗−1

)
,

ψ2 = ξ6γn exp Ξ.

where Ξ =

[(
3

µ+2

)[
N
A∗ +

((
3

µ+2

)
(A∗λ∗)−1

) λ∗
λ∗−1

]] 1
λ∗

.

The number of e-folds dependent PR turns out to be

PR =


 (µ + 2)

3(6−n)
8 KC

3
2
ψ

18
√

3π2(3(1 + 2µ))
3(2−n)

8




(
A∗λ∗

2KCγ

) 3n+2
8

× (Ξ)
(λ∗−1)(3n+6)

8 exp
[
−3n

4
Ξ [ξ6γn (exp Ξ)]

] 3(1−n)
2

.
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Fig. 2 Plot of r versus ns for µ ≈ 0.5, n = −1, Cγ = 70,
A∗ = 3 × 10−1, λ∗ = 3.00, Cψ = 107 (red), A∗ = 2.5 ×
10−1, λ∗ = 3.05, Cψ = 106 (green), A∗ = 2 × 10−1, λ∗ =
3.15, Cψ = 105 (blue).

The spectral index becomes

ns = 1− 9n

4(A∗λ∗)(µ + 2)
(Ξ)1−λ∗ +

(
3(λ∗ − 1)(3n + 6)
8(A∗λ∗)(µ + 2)

)

× Ξ−1 + Ξλ∗(−1+n( 1−λ∗
8λ∗ )) exp Ξ(1−λ∗)( n+2

4λ∗ )

× [ξ6γn (exp Ξ)]−1
.

Finally, the tensor-scalar ratio takes the form

r =
2κ

π2

(
µ + 2

3

)2

(A∗λ∗)
10−3n

8 (2KCγ)
3n+2

8

×

18

√
3π2(3(1 + 2µ))

3(2−n)
8

(µ + 2)
3(6−n)

8 KC
3
2
ψ


 Ξλ∗ (λ∗−1)(10−3n)

8

× exp
(

3n− 8
4

Ξ

)
[ξ6γn (exp Ξ)]

3(n−1)
2 . (15)

In order to constrain the physical parameters in
warm logamediate model, we numerically solve equa-
tions only for n = 1. In this case, we are unable to find
any specific range of Cψ for three values of n. The only
case n = 1 shows that two-dimensional marginalized
constraints on the inflationary parameters r and ns are
compatible with recent observations for µ ≈ 0.5, n =
−1, Cγ = 70, A∗ = 3 × 10−1, λ∗ = 3.00, Cψ = 107

represented by red curve (Figure 2). This proves that
our anisotropic warm logamediate inflationary model is
compatible with recent observations in the range 105 <

Cψ < 107. However, the model does not well fitted with
recent observations for n = −1, 0.

3 Final Remarks

Recent observational data from the Planck satellite proves
that the large angle anomalies represent real feature of
the CMB map of the universe. This outcome has a key
importance in this sense that the small temperature

anisotropies and large angle anomalies may be caused
by some unknown mechanism or anisotropic phase dur-
ing the early evolution of the universe. This statement
is particularly interesting as it helps to construct an
alternative model of the universe to decode the effects
of the early universe on the present structure of LSS
without affecting the processes in the nucleosynthesis
[?].

To study the warm inflation comprehensively on
small scale structure of the universe, we have used the
framework of homogeneous but anisotropic LRS BI uni-
verse model which is asymptotically equivalent to the
standard FRW universe. It is assumed that the universe
is composed of standard scalar field and radiation. We
have analyzed possible realization of an expanding loga-
mediate scale factor during strong dissipative regime
and checked that how this type of inflation work with
generalized form of the dissipation coefficient.

During warm logamediate inflationary era, the ex-
plicit expressions for inflaton (ψ), corresponding effec-
tive potential (V (ψ)) and rate of strong dissipation (R)
are calculated by applying slow-roll approximation. We
have also evaluated inflationary parameters in strong
regime: slow-roll parameters (ε, η) to find more general
conditions on the starting and ending points for the oc-
currence of inflationary era, scalar and tensor power
spectra (PR, PT ), scalar spectral index (ns) and fi-
nally observational parameter of interest, tensor-scalar
ratio (r). We have constrained the model parameters
(A∗, f∗, λ∗, Cψ) by WMAP9, Planck and BICEP2
data for three particular values of n = 1, 0,−1. It is
concluded that the logamediate model is not in good
agreement with recent observations for n = −1, 0. The
r − ns trajectories plotted in both regimes are the ver-
ifications of our results.

It is noted that compatibility of the model disturbs
for too large values of the anisotropic parameter µ >

103. The case n = 3 (Γ ∝ T−
2
3 ) is discussed during

logamediate regime [15]. It is worth mentioning here
that all the results reduce to the isotropic universe for
µ = 1 [20] and n = 3 leads to [24].
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Abstract A technique was developed by F. J. Ernst in
1976 for immersing black hole spacetimes in Melvin’s
magnetic universe. This method for magnetizing lack
holes uses Harrison’s transformations. In this paper we
review the earlier work done on magnetizing the Schwar-
zschild, Reissner-Nordström and Kerr-Newman black
holes.

1 Introduction

In 1952 W. B. Bonner gave the solution for empty
space having cylindrical symmetry containing electro-
magnetic field and discussed its physical interpretation
[1,2]. This was subsequently rediscovered by M. A. Mel-
vin [3]. It is now usually referred to as the “Melvin uni-
verse”. The metric that describes Melvin universe is [3,
4]

ds2 = (1 + 1
4B2ρ2)2(−dt2 + dρ2 + dz2)

+ (1 +
1
4
B2ρ2)−2ρ2dφ2, (1)

with t, z ∈ (−∞, +∞), ρ ∈ [0,∞), φ ∈ [0, 2π). The
electromagnetic field can be described by the Maxwell
tensor

F = e−iψB(dz ∧ dt), (2)

where ψ is a real parameter of duality rotation. In par-
ticular, for ψ = 0, the Maxwell tensor is F = Bdz ∧
dt which describes an electric field pointing along the
z-direction, whereas for ψ = π/2 one obtains F =
B(1 + 1/4B2ρ2)−2ρdρ ∧ dφ, which represents a purely
magnetic field oriented along the z-direction. It is a
spacetime which is static cylindrically symmetric and

aElectronic Address: rizvi g@hotmail.com
bElectronic Address: saifullah@qau.edu.pk

in which there exists an axial magnetic and/or elec-
tric field aligned with the z-axis, and the magnitude of
the field is determined by the parameter B. This so-
lution represents a universe which contains a parallel
bundle of electric or magnetic flux held together by its
own gravitational pull. Further, for B = 0, the met-
ric is Minkowski metric in cylindrical coordinates. If
B 6= 0, the metric is not asymptotically flat because
1 + 1/4B2ρ2 does not go to 1 at any z.

The above Melvin magnetic solution has been con-
sidered as a useful model in, among others, the stud-
ies of astrophysical processes, quantum black hole pair
creation and gravitational collapse. Its importance de-
rives also from the fact that it appears as a limit in
more complicated solutions and is therefore considered
as a background for a number of interesting solutions.
It was shown already by Melvin [5] and Thorne [6]
that the spacetime is, somewhat surprisingly, stable
against small radial perturbations, as well as arbitrarily
large perturbations which are confined to a finite region
about the axis of symmetry.

In 1976, F. J. Ernst using Harrison’s transformation
[7] presented a procedure for transforming asymptot-
ically flat axially symmetric solutions of the coupled
Einstein-Maxwell equations into solutions resembling
Melvin’s magnetic universe [8,9]. He used this tech-
nique for the removal of the nodal singularity of the
C-metric [10], and studied the Schwarzschild, Reissner-
Nordström and Kerr-Newman black holes in Melvin
universe [8,9]. Recently, Ernst’s solution generating tech-
nique is used by M. Astorino for embedding hairy black
holes in Melvin universe [11] and by G. W. Gibbons et.
al. for Kerr-Newman black holes [12]. In this paper we
present a review of this work and discuss some exam-
ples that illustrate how Ernst used Harrison’s transfor-
mation [7] to generate some electrovac solutions, which
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are of physical interest. In Section 2 we shall discuss
how Ernst obtained Melvin universe using Harrison’s
transformation. Sections 3 and 4 deal with Schwarz-
schild and Reissner-Nordström black holes in Melvin
universe. In Section 5 we review the work [12] done on
Kerr-Newman solution having electric as well as mag-
netic charge in Melvin universe. A brief conclusion is
given at the end.

2 Melvin universe by Ernst’s technique

The line element of Minkowski space in cylindrical co-
ordination is given by

ds2 = −dt2 + dz2 + dρ2 + ρ2dφ2, (3)

and the general form of stationary axial symmetric line
element can be written as [8]

ds2 = f−1[−2P−2dξdξ∗ + ρ2dt2]− f(dφ− ωdt)2. (4)

On comparing Eqs. (3) and (4) we have

f = −ρ2, ω = 0, P = ρ−1, dξ =
(dz + idρ)√

2
. (5)

The complex gravitational potential ε associated with
gravity is defined by

ε = f − |Φ|2 + iϕ, (6)

where Φ is the complex electromagnetic potential, whose
real and imaginary parts are electrostatic and magneto-
static potentials, respectively and |Φ| is the magnitude
of complex potential. If Er, Eθ, Hr and Hθ are the ra-
dial and angular components of electric and magnetic
fields, the complex electromagnetic potential may be
evaluated by

Hr + iEr = P
∂Φ

∂θ
, Hθ + iEθ = −P

∂Φ

∂r
. (7)

In Eq. (6) ϕ is the twist potential. If one defines the
symbol

∇ = r
∂

∂r
+ i

∂

∂θ
, (8)

the twist potential may be determined by equation

−ρ−1f2∇ω = i∇ϕ + Φ∗∇Φ− Φ∇Φ∗. (9)

Here Φ∗ is the conjugate of Φ. Since initially there is no
electromagnetic field, so complex gravitational, electro-
magnetic and twist potentials are given by

ε = f = −ρ2, Φ = 0, ϕ = 0. (10)

Now by Harrison’s transformations new functions are
defined as [8]

Λ = 1 + BΦ− 1
4B2ε, (11)

ε
′

= Λ−1ε, (12)

Φ
′

= Λ−1(Φ− 1
2Bε), (13)

and under this transformation functions, f and ω are
transformed into new functions f

′
and ω

′
as

f
′
= Reε

′
+ |Φ′ |2 = |Λ|−2

f, (14)

∇ω
′
= |Λ|2∇ω + ρf−1(Λ∗∇Λ− Λ∇Λ∗), (15)

where the operator ∇ is different for different cases,
while the function P and ρ are unmodified. From Eqs.
(11) - (13)

Λ = 1 +
1
4
ρ2B2, (16)

ε
′
= Λ−1ε = − ρ2

1 + 1
4ρ2B2

, (17)

f
′
= |Λ|−2

f = − ρ2

(1 + 1
4ρ2B2)2

. (18)

As Λ = 1 + 1
4ρ2B2 is real so Λ∗∇Λ − Λ∇Λ∗ = 0, and

from Eq. (5) ω = 0, so ω
′
= 0. Using the new functions

f
′
and ω

′
in Eq. (4) the transformed line element is [8]

ds2 = (1 +
1
4
B2ρ2)2[−dt2 + dz2 + dρ2]

+ (1 +
1
4
B2ρ2)−2ρ2dφ2, (19)

with the electromagnetic potential

Φ
′
=

1
2
Λ−1Bρ2 =

1
2

Bρ2

(1 + 1
4ρ2B2)

. (20)

From the above equation the components of magnetic
field are

Hz = Λ−2B, Hρ = 0 = Hφ. (21)

This solution is same as Melvin’s magnetic universe (1).

3 Schwarzschild black hole in Melvin universe

The Harrison transformation can be used to magne-
tize the Schwarzschild black hole. The metric of the
Schwarzschild black hole is given by

ds2 = −(1−2M

r
)dt2+

dr2

(1− 2M
r )

+r2dθ2+r2 sin2 θdφ2,(22)

or

ds2 = − 1
r2

(r2 − 2Mr)dt2 +
r2dr2

(r2 − 2Mr)
+ r2dθ2

+ r2 sin2 θdφ2. (23)
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Comparing the above equation with Eq.(4) we have

f = −r2 sin2 θ, ω = 0, ρ = (r2 − 2Mr)1/2 sin θ,(24)

P = (r2 sin θ)−1, dξ =
1√
2

(
dr

(r2 − 2Mr)1/2
+ idθ

)
.

(25)

The radial and angular components of electric and mag-
netic fields satisfy the equation

Hr+iEr = P
∂Φ

∂θ
, Hθ+iEθ = −P (r2−2Mr)1/2 ∂Φ

∂r
.(26)

If one defines the symbol

∇ = (r2 − 2Mr)1/2 ∂

∂r
+ i

∂

∂θ
, (27)

the twist potential may be determined by

−ρ−1f2∇ω = i∇ϕ + Φ∗∇Φ− Φ∇Φ∗. (28)

Since initially there is no electromagnetic field, also ω =
0, so the complex gravitational, electromagnetic and
twist potentials are given by

ε = f = −r2 sin2 θ, Φ = 0, ϕ = 0, (29)

while Eqs. (11)-(13) yield

Λ = 1 + BΦ− 1
4
B2ε = 1 +

1
4
B2r2 sin2 θ, (30)

ε
′
= Λ−1ε = −(1 +

1
4
B2r2 sin2 θ)−1r2 sin2 θ, (31)

Φ
′
= Λ−1(Φ− 1

2
Bε)

=
1
2
(1 +

1
4
B2r2 sin2 θ)−1Br2 sin2 θ. (32)

The transformed fields f
′
and ω

′
from Eqs. (14) and

(15) are

f
′
= |Λ|−2

f = − r2 sin2 θ

(1 + 1
4B2r2 sin2 θ)2

, ω
′
= 0. (33)

Using f
′
from ω

′
from the above equations and unmodi-

fied functions P and ρ from Eq. (4) we obtain the trans-
formed line element [8]

ds2 = |Λ|2 [−(1− 2M

r
)dt2 +

dr2

(1− 2M
r )

+ r2dθ2] + |Λ|−2
r2 sin2 θdφ2. (34)

In this case the magnetic field components are given by

Hr = Λ−2B cos θ, (35)

Hθ = −Λ−2B(1− 2M

r
)1/2 sin θ. (36)

Note that if M = 0 the above metric becomes Melvin’s
magnetic universe, while for M 6= 0 there is an event
horizon at r = 2M and the angular component of mag-
netic field vanishes at the event horizon. Further, the
metric has singularity at r = 0, as in the case of Schwarz-
schild metric. If we take B = 0, this reduces to the
Schwarzschild solution.

4 Reissner-Nordström black hole in Melvin
universe

The application of the procedure to the Reissner-Nords-
tröm black hole is not so simple. In this case E × H
serves as a source for twist potential, and the trans-
formed metric is not static as in the case of the Schwarz-
schild black hole, but stationary. The spacetime of Reis-
sner-Nordstr öm black hole is

ds2 = −(1− 2M

r
+

q2

r2
)dt2 + (1− 2M

r
+

q2

r2
)−1dr2

+ r2dθ2 + r2 sin2 θdφ2, (37)

or, we can write

ds2 = − 1
r2

(r2 − 2Mr + q2)dt2 + r2(r2 − 2Mr + q2)−1dr2

+ r2dθ2 + r2 sin2 θdφ2. (38)

Comparing Eq. (38) with Eq. (4) we note that

f = −r2 sin2 θ, ω = 0, ρ = (r2 − 2Mr + q2)1/2 sin θ, (39)

P = (r2 sin θ)−1, dξ =
1√
2

(
dr

(r2 − 2Mr + q2)1/2
+ idθ

)
.

(40)

The complex electromagnetic potential Φ, whose real
and imaginary parts are electrostatic and magnetosta-
tic potentials, respectively, may be evaluated by the
equations

Hr + iEr = P
∂Φ

∂θ
, (41)

Hθ + iEθ = −P (r2 − 2Mr + q2)1/2 ∂Φ

∂r
. (42)

Solving the above equation we have Φ = −ιq cos θ. If
one defines the symbol

∇ = (r2 − 2Mr + q2)1/2 ∂

∂r
+ i

∂

∂θ
, (43)

the twist potential ϕ can be determined from

−ρ−1f2∇ω = i∇ϕ + Φ∗∇Φ− Φ∇Φ∗. (44)

Since Φ is pure imaginary so Φ∗∇Φ − Φ∇Φ∗ = 0, also
ω = 0, so the twist potential is also equal to zero i.e.
ϕ = 0. The complex gravitational potential ε associated
with gravity is given by

ε = f − |Φ|2 + iϕ = −r2 sin2 θ − q2 cos2 θ, (45)

while Eqs. (11) - (14) take the form

Λ = 1 + BΦ− 1
4
B2ε

= 1 +
1
4
B2(r2 sin2 θ + q2 cos2 θ)− iBq cos θ, (46)
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ε
′
= Λ−1ε

= −
(

r2 sin2 θ + q2 cos2 θ

1 + 1
4B2(r2 sin2 θ + q2 cos2 θ)− iBq cos θ

)
,(47)

f
′
= |Λ|−2

f

= − r2 sin2 θ

(1 + 1
4B2(r2 sin2 θ + q2 cos2 θ))2 + (Bq cos θ)2

,(48)

and ω
′
can be evaluated by the equation

∇ω
′
= ρf−1(Λ∗∇Λ− Λ∇Λ∗). (49)

Integrating Eq. (49) yields the following expression for
ω
′

ω
′
= −2Bqr−1 + B3qr +

1
2
B3q3r−1 − 1

2
B3qr−1

× (r2 − 2Mr + q2) sin2 θ + const. (50)

Consequently, the transformed metric takes the form
[8]

ds2 = |Λ|2 [−(1− 2M

r
+

q2

r2
)dt2 + (1− 2M

r
+

q2

r2
)−1dr2

+ r2dθ2] + |Λ|−2
r2 sin2 θ(dφ− ω

′
dt)2, (51)

where Λ and ω
′

are given by Eqs. (46) and (50). The
above metric is known as the Reissner-Nordström black
hole in Melvin universe which is the charged general-
ization of Schwarzschild black hole in Melvin universe.
If q = 0 then this metric reduces to the Schwarzschild
black hole in Melvin universe, and if B = 0, then the
above metric reduces to Reissner-Nordström black hole.

Finally, the components of the electric and magnetic
fields may be evaluated from electromagnetic potential
Φ
′
. The results are

Hr + iEr = Λ−2[i(
q

r2
){1− 1

4
B2(r2 sin2 θ + q2 cos2 θ)}

+ B(1− 1
2
iBq cos θ)(1− q2

r2
) cos θ], (52)

Hθ + iEθ = −B |Λ|2 (1− 1
2
iq2 cos θ)

× (1− 2M

r
+

q2

r2
)1/2 sin θ. (53)

5 Kerr-Newman black hole in Melvin universe

The spacetime describing magnetized Kerr-Newman bl-
ack hole of mass M , angular momentum per unit mass
a, carrying electric charge q and magnetic charge p,

embedded in a Melvin’s universe of magnetic field B is
[12]

ds2 = H[−fdt2 + R2(
dr2

∆
+ dθ2)]

+
Σ sin2 θ

HR2
(dφ− ωdt)2, (54)

where

R2 = r2 + a2 cos2 θ, (55)

∆ = (r2 + a2)− 2Mr + q2 + p2, (56)

Σ = (r2 + a2)2 − a2∆ sin2 θ, (57)

f =
R2∆

Σ
, (58)

H = 1 +
H(1)B + H(2)B

2 + H(3)B
3 + H(4)B

4

R2
, (59)

with

H(1) = 2aqr sin2 θ − 2p(r2 + a2) cos θ,

H(2) =
1
2
[(r2 + a2)2 − a2∆ sin2 θ] sin2 θ

+
3
2
q2(a2 + r2 cos2 θ),

H(3) = −qa∆

2r
[r2(3− cos2 θ) cos2 θ + a2(1 + cos2 θ)]

− 1
2
p(r4 − a4) sin2 θ cos θ +

qq2a[(2r2 + a2) cos2 θ + a2]
2r

− pa2∆ sin2 θ cos θ − 1
2
pq2(r2 + a2) cos3 θ

+
aq(r2 + a2)2(1 + cos2 θ)

2r
,

H(4) =
1
16

(r2 + a2)2R2 sin4 θ

+
1
4
M2a2[r2(cos2 θ − 3)2 cos2 θ

+ a2(1 + cos2 θ)2] +
1
16

q4[r2 cos2 θ

+ a2(1 + sin2 θ)] cos2 θ +
1
4
Ma2r(r2 + a2) sin6 θ

+
1
4
Ma2q2r(cos2 θ − 5) sin2 θ cos2 θ

+
1
8
q2(r2 + a2)(r2 + a2 + a2 sin2 θ) sin2 θ cos2 θ.

Here q2 = q2 + p2, and

ω =
1
Σ

[(2Mr−q2)a+ω(1)B+ω(2)B
2+ω(3)B

3+ω(4)B
4],(60)

with

ω(1) = −2qr(r2 + a2) + 2ap∆ cos θ,

ω(2) = −3
2
aq2(r2 + a2 + ∆ cos2 θ),

ω(3) = 4qM2a2r +
1
2
apq4 cos3 θ +

1
2
qr(r2 + a2)[r2 − a2

+(r2 + 3a2) cos2 θ] +
1
2
ap(r2 + a2)[3r2 + a2 − (r2

−a2) cos2 θ] cos θ − aMq2(2aq + pr cos3 θ)− apMr

×[2R2 + (r2 + a2) sin2 θ] cos θ +
1
2
apq2[3r2 + a2
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+2a2 cos2 θ] cos θ +
1
2
qq2r[(r2 + 3a2) cos2 θ − 2a2]

+qM [r4 − a4 + r2(r2 + 3a2) sin2 θ],

ω(4) =
1
2
a3M3r(3 + cos4 θ)− 1

8
aq4[r2(2 + sin2 θ) cos2 θ

+a2(1 + cos4 θ)] +
1
16

aq2(r2 + a2)[r2(1− 6 cos2 θ

+3 cos4 θ)− a2(a + cos4 θ)]− 1
4
a3M2q2(3 + cos4 θ)

− 1
16

aq6 cos4 θ +
1
4
aM2[r4(3− 6 cos2 θ + 3 cos4 θ)

+2a2r2(3 sin2 θ − 2 cos4 θ)− a4(1 + cos4 θ)]

+
1
8
aMq4r cos4 θ +

1
8
aMq2r[2r2(3− cos2 θ)

× cos2 θ − a2(1− 3 cos2 θ − 2 cos4 θ)] +
1
8
aMr

×(r2 + a2)[r2(3 + 6 cos2 θ − cos4 θ)

−a2(1− 6 cos2 θ − 3 cos4 θ)].

The electromagnetic vector potential is

A = (Φ0 − ωΦ3)dt + Φ3dφ, (61)

where

Φ0 =
Φ

(0)
0 + Φ

(1)
0 B + Φ

(2)
0 B2 + Φ

(3)
0 B3

4Σ
, (62)

with

Φ
(0)
0 = 4[−qr(r2 + a2) + ap∆ cos θ,

Φ
(1)
0 = −6aq2(r2 + a2 + ∆ cos2 θ),

Φ
(2)
0 = −3q[(r + 2M)a4 − (r2 + 4Mr + ∆ cos2 θ)r3

+ a2(2q2(r + 2M)− 6Mr2 − 8M2r − 3r∆ cos2 θ)]

+ 3p∆[3ar2 + a3 + a(a2 + q2 − r2) cos2 θ] cos θ,

Φ
(3)
0 = −1

2
a[4a4M2 + 12a2M2q2 + 2a2q4 + 2a4Mr

− 24a2M3r + 4a2Mq2r − 24a2M2r2 − 4a2Mr3

− q2r4 − 6Mr5 − 6r∆{2M(r2 + a2)− q2r} cos2 θ

+ a4q2 − 12M2r4 + ∆(q4 − 3q2r2 + 2Mr3

+ a2(4M2 + q2 − 6Mr)) cos4 θ],

and

Φ3 =
Φ

(0)
3 + Φ

(1)
3 B + Φ

(2)
3 B2 + Φ

(3)
3 B3

R2H
, (63)

with

Φ
(0)
3 = aqr sin2 θ − p(r2 + a2) cos θ,

Φ
(1)
3 =

1
2
[Σ sin2 θ + 3q2(a2 + r2 cos2 θ)],

Φ
(2)
3 =

3
4
aqr(r2 + a2) sin4 θ − 3

4
p(r2 + a2)2 sin2 θ cos θ

+3a2pMr sin2 θ cos θ +
3
2
aqm[r2(3− cos2 θ)

× cos2 θ + a2(1 + cos2 θ)]− 3
4
aqq2r sin2 θ cos2 θ

−3
4
pq2[(r2 − a2) cos2 θ + 2a2] cos θ,

Φ
(3)
3 =

1
4
q2(r2 + a2)[r2 + a2 + a2 sin2 θ cos2 θ]− 1

2
a2q2

×Mr(5− cos2 θ) sin2 θ cos2 θ +
1
2
a2M2[r2(3

− cos2 θ)2 cos2 θ + a2(1 + cos2 θ)2] +
1
2
a2Mr(r2

+a2) sin6 θ +
1
8
R2(r2 + a2)2 sin4 θ +

1
8
q4[r2 cos2 θ

+a2(2− cos2 θ)2] cos2 θ.

6 Conclusion

We have described Ernst’s solution generating tech-
nique [8–10] which uses Harrison’s transformations for
magnetizing black holes. We have reviewed the ear-
lier work in this direction on Schwarzschild, Reissner-
Nordström and Kerr-Newman black holes. Note that if
we take electric charge e and magnetic charge p equal to
zero the metric for Kerr-Newman black hole in Melvin
universe reduces to Kerr black hole in Melvin universe.
Further if we take the rotation parameter a equal to
zero the metric reduces to the magnetized Schwarz-
schild black hole. If we put the magnetic field B = 0
all the metrics reduce to their unmagnetized versions.
Other properties of these magnetized black holes and
further work in this direction [13] will be reported else-
where.
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Abstract This paper mainly describes how to make
a potable homemade tool to calculate the Horizontal
coordinates of Celestial bodies like sun. The sun alti-
tude and azimuth are the functions of the earth motion
around the sun. They are functionally varied through-
out the year. The conversion of these coordinates to
equatorial coordinates has also described. Direction of
Holy Kaaba with the help of this tool has been calcu-
lated for the study area Lahore Pakistan. Mathematical
techniques of Concurrent and Similarity has used to cal-
culate the diameter of the sun. With the assumption of
the sun is a spherical in shape the volume of the sun
disk has been calculated. The complete description to
make this tool is also the part of this paper.

1 Introduction

In ancient times gnomon (vertical stick casting shadow)
was used as sun dial and other observations. With the
passage of time it starts to use as tool to navigations.
Still it is reliable instrument for the basic astronomical
as well as geographical calculations.

2 Study Area

Lahore (74.27985278E, 31.4421667N) is the capital city
of Punjab province, Pakistan. It is the second most
populated city of Pakistan. An estimate in the 2014,
it has population of 7,566,000.By geography it is flat
area. The hottest month is June, when average highs
temperature routinely exceeds 40 C. The monsoon sea-
son starts in late June and the wettest month is July,
with heavy rainfalls. The coolest month is January with

ae-mail: osman.geomatics@gmail.com

dense fog. Elevation of the Lahore from mean sea level
is 208 to 213m. (See fig 1).

3 Objectives

The primary purpose of this research was to build an
instrument which can help us in calculating position of
the observer in the survivor conditions. This instrument
can calculate Geographic coordinates as well as Hori-
zontal and Equatorial Coordinates of the Sun. Able us
to calculate the direction of Holy Kaaba, Apparent so-
lar noon time, Time of Sun set and Sun rise. Using the
Techniques of Al Buruni, it helps us to calculate ra-
dius of the earth (not discuss here) and through the
techniques of similarity and enlargement it help us to
calculate diameter of the celestial bodies like sun, moon.

4 Data Set Use

Solar azimuth and altitude angles have been calculated
for the January 2, 2015. Time of observation was dif-
ferent for azimuth and altitude. Observations are taken
from 11:30am to 16:00pm (UTC+5h). Through these
data sets objectives of this research are achieve and for
the validation, output has been compared with the US
Navy Observatory Data and NOAA Earth System Re-
search Laboratory Data.

5 Research Methods and Methodology

5.1 Direction of Holy Kaaba

S.Abdali (1997)[1] mentioned as the direction of Qibla
for a person is, a ray coming out of his eye in that
direction of the plane of the great circle passing through
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the direction of his zenith and the point corresponding
to (the zenith) of Mecca. The cube of Holy Kaaba has
the central significance in the follower of world’s second
most religious Islam. This figure has the main direction
for the five time prayers per day in Islam.

5.2 Direction of Holy Kaaba

It is not advisable to determine direction of Holy Kaaba
using compass especially for orienting Mosque. The fol-
lowing method which uses the sun is more reliable. It
has been observed for centuries and reported in many
books by Muslims around the world that two times a
year the sun comes overhead above Kaaba. This is ob-
servational fact for centuries, and is used to set the
correct prayer direction in places far from Mecca by
Muslims for last so many centuries. Those two dates
and times are:
May 28 at 9:18UTC
July 16 at 9:27UTC

5.3 Basic Spherical Trigonometric Formula

Use the rule of spherical trigonometry (S.Abdali, 1997)
[1]

λ = arc tan[
sine(¤λ)

cosine(φL)∗tangent(φK)− sin e(φL)∗ cos ine(¤λ)

]
.

(1)

To prove the formula we have to rely on Four Part
formula: Cosine (inner side)*Cosine (inner angle) =Sine
(inner angle)*Cot (other side)-Sine (inner angle)*cot
(other angle). (See fig 2)

cos(900 − φL)∗cos(¤λ) = sin(900 − φL)∗cot(900 − φK)
− sin(¤λ)∗cot(λ)

sin(φL)∗cos(¤λ) = cos(φL)∗tangent(φK)− sin
(¤λ)∗cot(λ)
Rearranging the terms

sin(¤λ)∗cot(λ) = cos(φL)∗tangent(φK)−sin(φL)∗cos(¤λ)

∴ cot(λ) =

cosine(φL)∗tangent(φK)− sin e(φL)∗ cos ine(¤λ)
sine(¤λ)

⇒ λ = arctan
[

sin(¤λ)
cos(φL)∗tangent(φK)− sin e(φL)∗ cos ine(¤λ)

]

Which is the prove of equation (1).

λL = Longtitude of Lahore (testing site)

λK = Longtitude of the Holy Kaaba

φL = Latitude of Lahore (testing site)

φK = Latitude of Holy Kaaba
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Inner angle = ¤λ− λL − λM = 74.27985278-39.82624
=34.45361278

Inner side = 900 − φL = 90-31.33066582=58.6693418

Other side = 900 − φK = 90-21.42249444=68.5775.556

Other angel=λ= Direction of the Holy Kaaba from
Lahore (testing site) with respect to magnetic north
(fig.2). Putting the values from table 1 into equation
(1)

= arc tan
[

0.5657387908
−0.09358561315

]

Hence the direction of Holy Kaaba from the testing
site (Lahore) is

λ = 180+(-80.60703027)=99.39296973 west of north

5.4 Horizontal Coordinates for Sun

The Pole star (Polaris) is lies very near to the direc-
tion of the North celestial pole. The north celestial pole
is the angle above the horizon equal to your Latitude
(φ).Halfway between the North celestial pole and south
celestial pole is the Celestial equator. The number of the
degrees that a celestial object is north or south of the
celestial equator is its Declination (δ).A celestial object
reaches its maximum elevation angle (Alt) above the

horizon when it is on the celestial meridian. Hour an-
gle is measured in the earth equatorial plane. It is the
angle between the projection of the line draw from the
location to the center of the earth and the projection
of the line draw from the center of the Earth to the
center of the Sun. At solar noon, the hour angle is 00

and the westward direction for the solar noon is taken
positive (Kreith & West, 1996)[2].For the Azimuth and
altitude angles of the sun, use an instrument having
plane horizontal surface (remember wood changes its
shapes with seasons).Cut this sheet of wood into a cir-
cle of convenient diameter. At the center of the sheet
makes two small holes and adjust a meter rod and mov-
able antenna (gnomon) in these holes. Put two bubble
levelers on the wood sheet which will tell us about the
level of the instrument in horizontal plane. To achieve
the horizontal level, that instrument is mounted with
net screws of around 3 inches length. Put a magnetic
compass on the wooden plane so that we can calculate
azimuth of the sun. Before a day or two the experiment,
makes your quartz clocks as accurate as you can with
your local time, also takes a look on the weather con-
dition from the National Weather Forecasting Center.
Select a site where the gnomon shadow throughout the
day is easily measureable and obstacles are not present
between the sun and gnomon. Use a plum line to ensure
the verticality of the gnomon. Before one or two hours
the experiment set your apparatus. Use millimeter to
calculate the length of the shadow cast by gnomon and
height of the gnomon. It is best to measure the length
of the shadow, from 100 minutes before the time of the
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Table 1 Inputs to spherical triangle.

λL φL λM φK

Calculated 74.27985E 31.33066583N 39.82624E 21.42249444N

Table 2 Errors in Qibla direction.

Uncertainty in magnetic declination ±0.290

Error in Direction 0.1783641

local apparent noon until 100 minutes after the local ap-
parent noon. To avoid the effect of Umbral and Penum-
bral shadow of the gnomon, use white paper to produce
the contrast. Table 3 shows solar elevation angle with
time of observations. Note that these time of observa-
tion is not uniform spaced due to clouds prominent. Sun
altitude angle is the angle of the sun disk center to the
plane of horizon of the observer.Altitude angle varies
though out the year.Its depends on the earth position
around the sun during its orbit.Solar altitude angle will
be 00 at the time of sun rise and sun set. 900 solar alti-
tudes indicate you are standing at the equator. Appar-
ent solar noon occur when sun’s altitude angle in the
day is highest or when the shadow cast by the gnomon
will be minimum. The only one time no shadow cast
by the gnomon will be occur when the sun is directly
overhead of the gnomon (solar declination varies though
out the years from +23.500 N to −23.500 S). The sun
rays coming parallel to the gnomon cast its shadow. By
calculating the length or height of gnomon we can esti-
mates the altitude angle (Alt) using trigonometry.(see
equation 2)

Alt = tan− 1
(

height

lengthofshadow

)
(2)

In order to calculate the solar azimuth angles (angle
from the earth geographic north pole to toward east-
ward) use the same apparatus with some magnetic com-
pass. The value of the azimuth angle varying from 00

to 3600. If the solar azimuth angle is 00 to 1800, then
sun is seting and if this angle is between 1800 to 3600

then sun is riseing. With the use of buble levelers ,we
make the horizontal plane of the apparatus in level.
Put a piece of the paper and fixed it on the wooden
plane so that errors in taking reading will be minimize.
When the gnomon cast shadow, takes a magnetic com-
pass and draw the direction of the magnetic north pole
on the paper. Now also draw a line which showing the
direction of the shadow of the gnomon. Measure the
angle you will get the solar azimuth angle. We know
the earth magnetic poles are not aligne with the true

geographic poles.There is some some angular shift be-
tween them.This angular shift is called magnetic dec-
lination. If this magnetic declination is 1000W, then
ture geographic north is 100 west of magnetic north
pole. Compass gives the direction of magnetic North
Pole. NOAA gives the magnetic field calculator based
on these two magnetic field models, IGRF (1590-2019)
& WMM (2014-2019)[3]. From the WMM (2014-2019)
model, on the date 2 January 2015, we find the values of
magnetic declinations which were 1.80330 E. It means
that the magnetic North Pole on this date lies 1.80330

E from the true geographic north pole.(see table 4) It
is advice to set the apparatus before the time of ob-
servations so that you can take correct solar azimuth
angles.

5.5 Equatorial Coordinates of the Sun

As on the January 2, 2015 the sun has declination of
southern hemisphere therefore using the spherical tri-
angles

δ = φ− (90−Alt) (3)

Where φ = latitude of the observer and Alt = is the
solar altitude angle at local apparent noon (when the
show of the gnomon will be minimum). Taking the val-
ues from the table (1) and (3) and putting these values
in equation (3).

δ = 31.4421667− (90− 35.69) = −22.867833

Actual value taken from the US Navy data is = -22.89585
decimal degrees. Error in the declination is 0.017520.
Negative singe indicate it is in southern hemisphere.

5.6 Hour Angle At Sun set And Sun rise

Hour angle is defined as the number of the hours be-
tween the solar noon and the time of interest multiplied
by the constant 150 /hour. The value of this constant
is known by the rate at which the sun appears to move
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Table 3 Data for the Solar Elevation angles.

Time (UTC+5h) Length of shadow (mm) Height of gnomon (mm) Solar elevation angel (decimal degree)

11:28am 281 199 35.305

11:45am 280 199 35.401

12:00am 277 199 35.69

12:24am 282 199 35.2

13:08am 307 199 32.95

11:47am 348 199 29.76

14:11am 361 199 28.86

14:40am 459 199 23.43

15:26am 679 200 16.41

15:59am 898 200 12.54

Table 4 Particular informantions and Magnetic decliantion taken from the NOAA NationaGeographic Data Center.[3]

Date 2-Jan-15

Latitude 31.4421667N

Longitude 74.279852778E

Elevation from the sea level 208.983m

Magnetic declination (+E/-W) 1.8283degree/year

Change/year 0.0587degree/year

Uncertainty 0.29degree

Model for magnetic field WMM(2014-2019)

Table 5 Calculation of Solar Azimuth Angle with US Naval Observatory Data.

Time Calculated Azimuth Magnetic declination Azimuth (with geographic north) US Navy Data
(with magnetic north)

(UTC+5h) Azimuth(E of N ) (+E/-W) True Azimuth(E of N) Azimuth (E of N )

11:32am 162 1.8283 163.8283 170.2

11:48am 169 1.8283 170.8283 174.7

12:01pm 172 1.8283 173.8283 178.4

12:24pm 178 1.8283 179.8283 184.9

13:09pm 191 1.8283 192.8283 197.2

13:47pm 197 1.8283 198.8283 206.9

14:12pm 204.9 1.8283 206.7283 212.8

14:38pm 212 1.8283 213.8283 218.4

15:23pm 228 1.8283 229.8283 227.1

15:54pm 231.9 1.8283 233.7283 232.3

around the earth namely 3600 in 24h or 150 per hour.
In calculating the hour angle it is important to use so-
lar time not clock time, Standard time rather than day
light time must be used. Sun rise and sun set define
as the time at which the solar altitude angle is zero.it
means that center of the sun has passed below the local
horizontal plane. Hourset is at the sunset hour angle

which is calculated as

Hourset = cos−1[tan(δ) tan(φ)] (4)

For the time of sunset occurs, Hourset, is expressed in
degrees is divided by 15. The result is the number of
hours after local solar noon at which the sun sets. To
find the hour of sunrise, this same number of hours is
subtracted from the noon (Kreider & Kreith, 1982)[4].
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Table 6 Calculations for Hour Angle (Calculated, US Navy observatory, NOAA Data)

(φ, δ) Difference from US Difference from NOAA data
(Navy Data(decimal degrees) (decimal degrees)

Hourset Hourrise Hourset Hourrise

Actual 0.180984 0.0356823 0.09765066 -0.047651

Calculated 0.191783 0.05234934 0.075115896 -0.06431736

Putting the values as we calculated from the gnomon
Hourset= cos−1[− tan(−22.867833) tan(31.33067)] =
75.123261060=5.008217404h. From table 3, we can see
that apparent solar noon(when altitude angle is maxi-
mum) occur at 12pm. Therefore following the formula
describe in literature (see equation (5))

Hourrise = LocalApparentNoon−Hourset (5)

Hour rise =12− 5.008217404− 6997650660

For the difference in values Hourrise and Hourset from
the true values table 7 is given below

5.7 Size of the Sun

Aristarchus was the first to estimate the distance of the
sun from the earth at the half moon using the trigono-
metrically techniques. He then calculates the radius of
the sun on the lunar eclipses. We use the property of
two similar side angle side (SAS).On the top of the
gnomon, we have attached a shirt button which has di-
ameter of 1.1cm (taken from the venial caliper). Hold
this apparatus some good time in day when the sun
disk is not very blurry. Use the solar glasses to avoid
the harmful effect from the sun radiations. Now hold
the apparatus such that disk of the button fully cover

disk of the sun. Now calculate the distance from your
eyes to the button (usually center of the button).There
are two triangles will formed. One is formed between
the eye of the observer and diameter of the button
while other is formed by the diameter of the sun and
observer eye. When the button fully covers the sun
disk then the second triangle is just enlargement of the
first triangle. Earth sun distance varies though out the
year. As the earth orbit is elliptical, having mean eccen-
tricity of 0.01671022. During the journey of the earth
around sun, it comes close to the sun called Perihelion
(distance=147.09∗106km) and Aphelion when it is far-
thest from the sun (152.10∗106km) (Williams, 2013)[5].
Use the simple formula to calculate the size of the sun.

Diameter of the button
Diameter of the sun

=
Distance of button from eye
Distance of the sun from eye

(6)

To calculate the volume of the sun disk, use the
formula

V =
4
3
∗ 3.143∗r3 (7)

Volume of the sun disk is 2.356730366∗1018km3
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Table 7 Difference in the Hourset, Hourrise from the US Navy and NOAA Data.

Coordinates Hour Angles US Navy Data NOAA Data
Used for Testing Site (UTC+5h) (UTC+5h)

Observations Latitude Hourset Hourrise Hourset Hourrise Hourset Hourrise

Calculated 31.33067 5.008217 6.99765066 7.05 17.2 6.9333333 17.0833333
with gnomon

Table 8 Sun diameter calculations.

Earth sun diameter of distance from Diameter of Actual diameter Difference
distance(m) the button(m) the eye(m) the sun(km) (km) (km)

1.47097∗1011 0.011 0.98 1651088.776 1391684 259404.8

6 Conclusion

Fewer errors in the each calculation suggest us; gnomon
can be used in the basic calculations of Astromical, As-
trophysical and remote navigations.

Acknowledgements The author would like to acknowledge
the assistance of his student Muhammad Mohid for the ac-
quisition of data for this research.

References

1. S.Abdali, K. (1997). The Correct Qibla.(p.,15) Re-
trieved 24 February 2015, from http://patriot.net/ ab-
dali/ftp/qibla.pdf

2. Kreith, F., & West, R. (1996). Handbook of energy effi-
ciency (p. 717). Boca Raton, Fla.: CRC.

3. Ngdc.noaa.gov,. (2015). Help: Magnetic Field Calcu-
lator ngdc.noaa.gov. Retrieved 30 January 2015, from
http://www.ngdc.noaa.gov/geomag/help//igrfwmmHelp.
html#interpretingresults

4. Kreider, J., & Kreith, F. (1982). Solar heating and cooling
(p. 24). Washington: Hemisphere Pub. Corp.

5. Williams, D. (2013). Earth Fact Sheet.
Nssdc.gsfc.nasa.gov. Retrieved 8 February 2015, from
http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html

admin
Highlight



195

admin
Highlight



Proc. Int. Conf. Relativ. Astrophys.
Pages 196-201, (2015)

Introduction to Teleparallel, and f(T ) Gravity and Cosmology

Emmanuel N. Saridakis a,1,2

1CASPER, Physics Department, Baylor University, Waco, TX 76798-7310, USA
2Instituto de F́ısica, Pontificia Universidad de Católica de Valparáıso, Casilla 4950, Valparáıso, Chile

Abstract We investigate the cosmological implications
of a class of modified gravity based on torsion. Starting
from the Teleparallel Equivalent of General Relativity
(TEGR), in which the gravitational field is described
by the torsion tensor instead of the curvature one, we
extend the Lagrangian to arbitrary functions of the tor-
sion scalar. In such a scenario, one obtains an extra
geometrodynamic sector, and thus the torsional modi-
fication can describe the dynamics of the universe with-
out the need of introducing extra components by hand.
We show that this scenario can describe inflationary
and bouncing solutions, as well as late-time accelera-
tion. The whole discussion can be enlightening as to
what roads one could follow and what possibilities one
has, in order to modify the gravitational interaction.

Keywords teleparallel gravity · f(T ) gravity · dark
energy

1 Introduction

The standard paradigm of gravitational interactions is
General Relativity. In this theory, and contrary to the
rest of the fundamental interactions, gravity is described
through geometry. In particular, the distribution of mat-
ter, namely its energy-momentum tensor, changes the
curvature of space-time, and then the curved space-time
determines the motion of matter in it [1]. However, the
discovery of the accelerating nature of the universe ex-
pansion through various and different cosmological ob-
servations [2], clearly asks for a solution beyond the
standard picture of physics. The simplest explanation
is to consider a cosmological constant, however the data
still allow the component that drives inflation to be of

ae-mail: Emmanuel Saridakis@baylor.edu

dynamical nature. This possibility led to a huge amount
of research along two main directions.

The first is to maintain General Relativity but in-
troduce the concept of “dark energy”, that is introduce
an exotic component alongside the standard-model par-
ticles [3]. The second possible direction is to modify the
gravitational sector itself, that is to modify General Rel-
ativity in order to be able to trigger acceleration at large
distances. In order to do so, one usually adds higher-
order corrections to the Einstein-Hilbert action. The
simplest model is to replace the Ricci scalar R by func-
tions of it, giving rise to f(R) gravity [4], which can lead
to interesting cosmological behavior both in inflation [5]
and late-time acceleration [6,7]. Additionally, one could
proceed to other higher-curvature corrections, such as
the Gauss-Bonnet term G [8] the Lovelock terms [9],
the Weyl term [10] etc (for reviews on modified gravity
see [11]).

All the above gravitational modifications use as ba-
sis the standard formulation of gravity, i.e. General Rel-
ativity, that is they start from the curvature gravita-
tional formulation. However, it is well known that Ein-
stein had also constructed the so-called “Teleparallel
Equivalent of General Relativity” (TEGR), in which
the gravitational field is described by the torsion ten-
sor instead of the curvature one [12,13]. In particu-
lar, contracting the torsion tensor one constructs the
torsion scalar T , and using it as a Lagrangian he ob-
tains exactly the same equations with General Relativ-
ity. Hence, a question arises naturally, namely whether
we can modify gravity starting from TEGR instead of
GR. Indeed, the simplest such modification would be
to extend T to f(T ) in the Lagrangian, obtaining f(T )
gravity [14]. The interesting feature is that although
TEGR is completely equivalent with GR, their mod-
ifications f(T ) and f(R) are different, corresponding
to distinct classes of gravitational modifications. This
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led to a huge amount of research on the cosmological
applications of the theory [15–27].

In this talk we desire to explore some of the possibil-
ities of f(T ) gravity, reviewing some of its basic prop-
erties and investigating some possible solutions relating
to inflationary, bouncing and late-time accelerating so-
lutions.

2 Teleparallel Equivalent of General Relativity

The dynamical variables in torsional formulation of grav-
ity are the vielbein field ea(xµ), and the connection 1-
form ωa

b(x
µ) which defines the parallel transportation.1

In terms of coordinates, they can be expressed in com-
ponents as ea = e µ

a ∂µ and ωa
b = ωa

bµdxµ = ωa
bce

c.
The dual vielbein is defined as ea = ea

µdxµ. One can
express the commutation relations of the vielbein as

[ea, eb] = Cc
abec , (1)

where Cc
ab are the structure coefficients functions given

by Cc
ab = e µ

a e ν
b (ec

µ,ν − ec
ν,µ), and comma denotes

differentiation.
One can now define the torsion tensor, expressed in

tangent components as

T a
µν = ea

ν,µ − ea
µ,ν + ωa

bµeb
ν − ωa

bνeb
µ . (2)

Similarly, one can define the curvature tensor as

Ra
bµν = ωa

bν,µ − ωa
bµ,ν + ωa

cµωc
bν − ωa

cνωc
bµ . (3)

Additionally, there is an independent object which is
the metric tensor g. This allows us to make the vielbein
orthonormal g(ea, eb) = ηab, where ηab = diag(−1, 1, ...1),
and we have the relation

gµν = ηab ea
µ eb

ν . (4)

As it is well known, amongst the infinite connec-
tion choices there is only one that gives vanishing tor-
sion, namely the Christoffel or Levi-Civita one Γ a

b, with
Γabc = 1

2 (Ccab−Cbca−Cabc). For clarity, we denote the
curvature tensor corresponding to the Levi-Civita con-
nection as R̄a

bcd. The arbitrary connection ωabc is then
related to the Christoffel connection Γabc through the
relation

ωabc = Γabc +Kabc , (5)

where Kabc = 1
2 (Tcab − Tbca − Tabc) = −Kbac is the

contorsion tensor.
As long as the vielbein ea

µ and the connection ωa
bµ

remain independent from each other, the Einstein-Hilbert

1Our notation is the following: Greek indices span the coor-
dinates of the D-dimensional space-time, while Latin indices
span the tangent space.

Lagrangian density eR (with R = eaµebνRabµν the Ricci
scalar and e = det (ea

µ) =
√
|g|) is a function of ea

µ, ωa
bµ,

and thus a first-order formulation is needed. If we now
calculate the Ricci scalar R corresponding to the arbi-
trary connection, and the Ricci scalar R̄ corresponding
to the Levi-Civita connection, they are found to be re-
lated through

R = R̄ + T − 2T νµ
ν ;µ . (6)

where we have defined

T =
1
4
TµνλTµνλ +

1
2
TµνλTλνµ − T νµ

ν Tλ
λµ. (7)

We mention that the quadratic quantity T is diffeomor-
phism invariant since Tµνλ is a tensor under coordinate
transformations. Additionally, T is local Lorentz invari-
ant, since Tabc is a Lorentz tensor.

One can now introduce the concept of teleparal-
lelism by imposing the condition of vanishing Lorentz
curvature

Ra
bcd = 0, (8)

which holds in all frames. One way to realize this con-
dition is by assuming the Weitzenböck connection ω̃λ

µν

which is defined in terms of the vielbein e µ
a in all co-

ordinate frames as

ω̃λ
µν = e λ

a ea
µ,ν . (9)

The corresponding torsion tensor is related to the struc-
ture coefficients, the contorsion tensor or the Weitzenböck
connection, through

T̃λ
µν = ω̃λ

νµ − ω̃λ
µν , (10)

while (5) simplifies to Γabc = −K̃abc.
As we observe the Lagrangian density eR̄ of Gen-

eral Relativity (that is the one calculated with the Levi-
Civita connection) differs from the torsion density −eT

only by a total derivative. Therefore, one can immedi-
ately deduce that the General Relativity action

SEH =
1

2κ2
D

∫

M

dDx e R̄, (11)

is equivalent (up to boundary terms) to the action

S
(1)
Tel[e

a
µ, ωa

bµ] = − 1
2κ2

D

∫

M

dDx e T (12)

(κ2
D is the D-dimensional gravitational constant).
If the Weitzenböck connection (9) is adopted, then

the teleparallel action (12) becomes a functional only
of the vielbein, which is denoted for clarity as S

(1)
tel [e

a
µ]

and has the same functional form as (12), but with
tilde quantities. Varying S

(1)
tel [e

a
µ] with respect to the

vielbein gives again the Einstein field equations. That
is why the constructed theory in which one uses torsion
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to describe the gravitational field, under the teleparal-
lelism condition, was named by Einstein as Teleparallel
Equivalent of General Relativity. In particular, varia-
tion of the action S

(1)
tel +Sm, with Sm the matter action,

in terms of the vierbein ea
µ, gives rise to the equations

of motion of the theory, namely

e−1∂µ(eeρ
ASρ

µν)− eλ
AT ρ

µλSρ
νµ +

1
4
eν
AT =

κ2
D

2
eρ
A

em

T ρ
ν ,

(13)

where S µν
ρ ≡ 1

2

(
Kµν

ρ + δµ
ρ Tαν

α − δν
ρ Tαµ

α

)
, and with

em

T ρ
ν the matter energy-momentum tensor. As we ob-

serve, the above equations indeed coincide with those
of General Relativity.

3 f(T ) gravity and cosmology

Inspired by the f(R) extension of GR, in [14] the author
replaced T by T +f(T ) in the action of TEGR, namely

S =
1

2κ2
D

∫
dDxe [T + f(T )] . (14)

Hence, variation of S+Sm gives the equations of motion

e−1∂µ(eeρ
ASρ

µν)(1 + fT )− eλ
AT ρ

µλSρ
νµ(1 + fT )

+eρ
ASρ

µν∂µ(T )fTT +
1
4
eν
A [T + f(T )] =

κ2
D

2
eρ
A

em

T ρ
ν ,(15)

where fT and fTT denote the first and second deriv-
atives of the function f(T ) with respect to T , respec-
tively.

In order to apply the above theory to a cosmologi-
cal framework, we first restrict to four dimensions, with
κ2 = 8πG the four-dimensional Newton’s constant. Ad-
ditionally, we consider a spatially flat Friedmann-Robertson-
Walker (FRW) geometry of the form

ds2 = −dt2 + a2(t)δîĵdxîdxĵ , (16)

where a(t) is the scale factor (the hat indices run in the
three spatial coordinates). This metric arises from the
diagonal vierbein

ea
µ = diag(1, a(t), a(t), a(t)) (17)

through (4), while the dual vierbein is

e µ
a = diag(1, a−1(t), a−1(t), a−1(t)), (18)

and its determinant e = a(t)3.
Inserting the above vierbein ansantz into (15) we ob-

tain the Friedmann equations of f(T ) cosmology, namely

6H2 + f − 12H2(1 + fT ) = 2κ2ρm, (19)

6H2+f−4(Ḣ+3H2)(1+fT )−48fTT H2Ḣ = −2κ2pm ,

(20)

where H = ȧ
a is the Hubble parameter and dots denote

differentiation with respect to t. Additionally, note that
inserting the vierbein (17) into (7) we find

T = 6
ȧ2

a2
= 6H2, (21)

which is a very useful relation connecting T and H2.
The Friedmann equations (19), (20) can be rewrit-

ten in the usual form

H2 =
κ2

3
(ρ + ρDE) (22)

Ḣ = −κ2

2
(ρ + p + ρDE + pDE), (23)

that is the torsion gives rise to an effective dark energy
sector with energy density and pressure given by

ρDE = − 1
2κ2

(f − 12H2fT ) (24)

pDE =
1

2κ2

[
f − 4(Ḣ + 3H2)fT − 48fTT H2Ḣ

]
. (25)

Since the standard matter is conserved independently,
i.e. ρ̇m + 3H(ρm + pm) = 0, we obtain from (24), (25)
that the effective dark energy density and pressure also
satisfy the usual evolution equation ρ̇DE + 3H(ρDE +
pDE) = 0. Finally, we can define the dark energy equation-
of-state parameter as wDE = pDE/ρDE .

4 Inflation and dark energy

As we saw, in f(T ) gravity the gravitational field is de-
scribed through torsion. Hence, in the context of f(T )
cosmology, one can describe the dynamics of the expan-
sion through the effects of torsion, obtaining a geometro-
dynamic effective dark energy sector. Indeed, torsional
gravity can describe very efficiently the inflationary stage
and of course the late-time universe acceleration.

4.1 Inflation

Let us first describe the inflationary regime. We con-
sider a quadratic f(T ) ansantz of the form f(T ) = T 2,
and hence we consider the total action to be

Stot =
1

2κ2

∫
d4x e

[
T + αT 2

]
. (26)

Note that since we focus on inflation realization, we
neglect the matter sector. In order to investigate the
effects on the universe dynamics of the above scenario,
we numerically evolve the system of cosmological equa-
tions and in Fig. 1 we present the evolution of the scale
factor as a function of time. One can clearly observe
the exponential expansion. Hence inflation can be eas-
ily realized in the context of f(T ) gravity.
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Fig. 1 Four inflationary solutions for the ansatz T + αT 2,
corresponding to a) α = −20 (black-solid), b) α = −8 (red-
dashed), c) α = 2 (blue-dotted), d) α = 2.8 (green-dashed-
dotted). All parameters are in units where κ2 = 1.

4.2 Bounce

Although inflation is considered to be a crucial part of
the cosmological history of the universe, it still faces the
problem of the initial singularity. A potential solution to
this problem may be provided by non-singular bouncing
cosmologies [28]. Such scenarios have been constructed
through various approaches to modified gravity, such
as gravitational actions with higher order corrections
[29–34], braneworld scenarios [35,36], non-relativistic
gravity [37,38], nonlinear massive gravity [39], or in the
frame of loop quantum cosmology [40]. Hence it would
be interesting to see whether f(T ) cosmology can lead
to bouncing behavior.

We start with a bouncing scale factor of the form
[41]

a(t) = aB

(
1 +

3
2
σt2

)1/3

, (27)

where aB is the scale factor at the bouncing point, and
σ is a positive parameter which describes how fast the
bounce takes place. Such an ansatz presents the bounc-
ing behavior, corresponding to matter-dominated con-
traction and expansion, and additionally it exhibits the
advantage of allowing for semi-analytic solutions. In
such a scenario t varies between −∞ and +∞, with
t = 0 the bounce point. Finally, in the following we
normalize the bounce scale factor aB to unity.

Straightforwardly we find

H(t) =
σt

(1 + 3σt2/2)
, T (t) =

6σ2t2(
1 + 3

2σt2
)2 .

Therefore, provided −
√

2
3σ 6 t 6

√
2
3σ , the inversion

of this expression gives the t(T ) relation as

t(T ) = ±
(
− 4

3T
− 2

3σ
+

4
√

Tσ3 + σ4

3Tσ2

)1/2

, (28)

where we have kept the solution pair that gives the cor-
rect (t = 0 at T = 0) behavior. Notice that when t >√

2
3σ and t < −

√
2
3σ we have assumed the usual Ein-

stein gravity or the TEGR to be the prevailing frame-
work, thus negating the need to pursue an f (T ) ac-
tion in that region. Furthermore, we assume the mat-
ter content of the universe to be dust, namely wm ≈ 0.
When inserted in the evolution-equation, this leads to
the usual dust-evolution ρm = ρmBa3

B/a3, with ρmB its
value at the bouncing point.

Inserting the above expressions into the Friedmann
equations, we obtain a differential equation for f(t),
which can be easily solved analytically as

f(t) =
4κ2t

(2 + 3σt2)
×

[
ρmB

t
+

6tσ2

κ2 (2 + 3t2σ)

+
√

6σρmB ArcTan

(√
3σ

2
t

)]
. (29)

Hence inserting (28) into (29) we finally obtain the f(T )
form that can produce the bouncing solution (27).

Fig. 2 Evolution of the Hubble parameter H as a function
of t in the f(T ) scenario at hand, for σ = 7 × 10−6 and
ρmB = 1.41× 10−5, in units where κ2 = 1.

In Fig. 2 we depict the evolution of the Hubble para-
meter for the scenario at hand. Clearly, one can observe
the matter bounce realization in f(T ) gravity.
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4.3 Dark Energy

Let us now describe dark energy, through the modified
torsional geometry of f(T ) gravity. We consider an ex-
ponential f(T ) ansatz, and thus the total action takes
the form [14]

Stot =
1

2κ2

∫
d4x e

[
T + αT0(1− e−p

√
T/T0)

]
+ Sm,

(30)

with α and p the two model parameters. At p → +∞
this model reduces to ΛCDM cosmology, since as we can
see limp→+∞[T + f(T )] = T − 2Λ, with Λ = −αT0/2.
Note that since we now focus on the late-time evolution,
we consider also the matter sector Sm.

Fig. 3 Upper graph: The evolution of the dark energy den-
sity parameter ΩDE (black-solid) and the matter density pa-
rameter Ωm (green-dashed), as a function of the redshift z, for

the exponential ansatz T +αT0(1−e−p
√

T/T0), with α = 0.82
and p = 2. Lower graph: The evolution of the corresponding
dark energy equation-of-state parameter wDE . All parame-
ters are in units where the present Hubble parameter is 1, and
we have set the present values of the dark matter and dark
energy density parameters to be Ωm0 ≈ 0.3 and ΩDE0 ≈ 0.7
respectively.

In the upper graph graph of Fig. 3 we depict the
evolution of the matter and effective dark energy den-
sity parameters, while in the lower graph we show the
corresponding behavior of the dark energy equation-of-
state parameter, for a specific choice of the model pa-
rameters. As independent variable we use the redshift
z = a0/a − 1, with a0 the present value of the scale
factor. As we observe, the f(T ) scenario at hand can
describe the thermal history of the universe, as well as
the late-time acceleration, in agreement with the ob-
served behavior.

5 Conclusions

In the present work we investigated the cosmological
implications of a class of modified gravity based on tor-
sion. In particular, starting from the Teleparallel Equiv-
alent of General Relativity (TEGR), in which instead
of using the torsionless Levi-Civita connection one uses
the curvatureless Weitzenböck one, and thus the gravi-
tational field is described by the torsion tensor instead
of the curvature one, we extended the Lagrangian to
arbitrary functions of the torsion scalar f(T ). In such a
scenario, one obtains an extra geometrodynamic sector,
and thus the torsional modification can describe the dy-
namics of the universe without the need of introducing
a dark energy sector by hand.

As we saw, the scenario of f(T ) gravity can describe
the inflationary stage of the universe, that is it can give
rise to de Sitter solutions. Additionally, f(T ) cosmology
can describe the late-time acceleration of the universe
very efficiently, with the equation-of-state parameter of
dark energy acquiring a dynamical nature due to tor-
sion. In summary, the rich behavior of the above sce-
nario of f(T ) gravity makes it a promising cosmolog-
ical scenario. More importantly, the whole discussion
can be enlightening as to what roads one could follow
and what possibilities one has, in order to modify the
gravitational interaction.
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Abstract In this paper, we discuss the role of f(R)
model on dynamical instability of self-gravitating sys-
tem. For this purpose, we consider such a system a sys-
tem which begins collapse under some constraints. We
evaluate dynamical equations and consider perturba-
tion scheme which linearize field equations and help to
construct collapse equation to study the role of stiffness
parameter.
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1 Introduction

Gravitational collapse and dark energy (DE) are con-
sidered to be the most fundamental and fascinating is-
sues of gravitational physics and cosmology. The grav-
itational repulsion in the universe causes the accelerat-
ing expansion. Astronomical data obtained from high
redshift type Supernova Ia experiments as well as the
cosmic microwave background radiation show that the
universe is expanding as well as accelerating [1]. General
Relativity (GR), despite of many favorable outcomes
in the astronomical study, unable to describe the ex-
panding behavior of the universe. Consequently, many
alternative mechanisms are introduced out of them al-
ternative theories of gravity, for example, scalar tensor
theory, Brans-Dick theory, f(T ) theory, Gauss-Bonnet
theory and f(R) theory, have been suggested to handle
these issues. The theory of f(R) gravity [2] has gained
a lot of interest due to its possible explanation of DE
in a simplest manner.

ae-mail: msharif.math@pu.edu.pk
be-mail: zeeshan.math@pu.edu.pk

Gravitational collapse is basically a process in which
a massive body falls inward due to its own gravity. Sta-
ble celestial objects turn out to unstable objects when
they suffer gravitational collapse. The most energetic
explosions from the self-gravitating fluid distributions
occur frequently in the universe. The analysis of stellar
stability against fluctuations plays a significant role to
study its existence. It is remarkable that different insta-
bility ranges of the astronomical bodies lead to differ-
ent patterns of the evolution and structure formation.
The stability of such systems can be discussed through
dynamical equations. Misner and Sharp [3] presented
dynamical equations of self-gravitating sphere of ideal
fluid which are used to explain relativistic gravitational
collapse.

Herrera and Santos [4] extended this work for dissi-
pation case including both streaming out and diffusion
approximations. By coupling the dynamical and trans-
port equations, they showed that the effective inertial
mass density of fluid decreases by a factor which de-
pends on dissipative variables. Di Prisco et al. [5] gen-
eralized it by considering anisotropic fluid undergoing
dissipation in the form of shear viscosity as well as the
electromagnetic field. Sharif and Bhatti [6] found that
the increase of gravitational mass through coupled dy-
namical transport equations causes rapid collapse in the
presence of electromagnetic field.

It is argued that the range of dynamical instabil-
ity is discoursed with the aid of an adiabatic index Γ .
Chandrasekhar [7] investigated the stability of isotropic
relativistic spherical body. Later, it was found that var-
ious physical variables like shearing viscosity, dissipa-
tion, radiation, anisotropy, etc affect the dynamical in-
stability of the relativistic stars. Herrera et al. [8] ex-
amined the instability range for non-adiabatic spher-
ical system with locally isotropic fluid dissipating in
the form of heat flow at both Newtonian (N) and post
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Newtonian (pN) regimes. Chan et al. [9] explored the
results of anisotropic and shearing viscous collapsing
relativistic fluids at both N and pN eras. Sharif and
his collbaorators [10], [11] described subsequent evolu-
tion of compact relativistic matter distributions under
various kinematical variables in GR as well as modified
theories of gravity.

Recent literature demonstrates some interesting con-
sequences through the inclusion of an electromagnetic
field to discuss stability and gravitational collapse. Ghezzi
[12] discussed the stabiliy, relativistic structure as well
as gravitational collapse of charged neutron star and
showed that stars undergo a direct collapse in unstable
state to form a BH. Di Prisco et al. [13] studied grav-
itational collapse of the non-rotating anisotropic cylin-
drical fluid distribution under certain conditions. Joshi
and Malafarina [14] investigated the stability of Oppen-
heimer, Snyder and Datt BHs under small tangential
pressure and found that this BH is unstable inside the
collapsing cloud.

In this paper, we discuss dynamical instability of
spherically symmetric non-viscous and adiabatic col-
lapsing body filled with isotropic charged fluid with
Carrol-Duvvuri-Trodden-Turner (CDTT) f(R) model.
The paper is organized as follows. In section 2, we for-
mulate the field equations and present a viable extended
f(R) model. Section 3 provides dynamical equations
and also the collapse equation through perturbation
scheme. In section 4, we discuss instability ranges of
the fluid configuration along with their asymptotic be-
havior at N and pN regimes. Finally, we summarize and
conclude the results.

2 Matter Configuration and CDTT f(R) Model

The f(R) generalization of Einstein-Hilbert action with
Maxwell source takes the form

Sf(R)+M =
1
2

∫
d4x

√−g

(
f(R)

κ
− F

2π

)
,

where f(R) is an arbitrary function of scalar curvature,
F = 1

4FµνFµν is the Maxwell invariant and κ is the
coupling constant. The metric f(R) field equations, by
keeping the first variation zero, are obtained as

fRRαβ− 1
2
fgαβ−∇α∇βfR + gαβ¤fR = κ(Tαβ +Eαβ),

(1)

where ∇α is the covariant derivative, fR = df
dR and

¤ = ∇α∇α. We can write in the configuration of the
field equations of GR as

Gαβ =
κ

fR
(Xαβ), (2)

where Xαβ = Tαβ +
(D)

Tαβ + Eαβ with

(D)

Tαβ =
1
κ

{
f −RfR

2
gαβ +∇α∇βfR −¤fRgαβ

}
,

as the effective stress energy tensor. The f(R) gravity
may be associated to explain the nature of DE and
expanding behavior of the universe in the gravitational
phenomenon.

We take a timelike 3D spherical boundary surface
that demarcates the 4D line elements into two regions,
i.e., interior and exterior. The line element of the inte-
rior region is [15]

ds2
− = A2(t, r)dt2−B2(t, r)dr2−C2(t, r)(dθ2+sin2 θdφ2),

(3)

while for the exterior region, we take

ds2
+ =

(
1− 2M

r
+

Q2

r2

)
dν2+2dνdr−r2(dθ2+sin2 θdφ2),

(4)

where M, ν and Q indicate the total mass, retarded
time and total charge of the fluid. Since gravitational
collapse is an extremely dissipative mechanism, so it
would be interesting to examine the effects of dissipa-
tion in the study of collapse. The energy-momentum
tensor of dissipative nature with pressure isotropy is
[15]

Tαβ = (µ + P )VαVβ − Pgαβ + qαVβ + qβVα, (5)

where µ, qα, P and Vα are the energy density, heat
flux, pressure and four velocity of the matter, respec-
tively. The vectors V α = A−1δα

0 and qα = qB−1δα
1 in

comoving coordinates yield

V αVα = 1, qαV α = 0.

The electromagnetic energy-momentum tensor is given
as

Eαβ =
1
4π

(
−F γ

αFβγ +
1
4
F γδFγδgαβ

)
, (6)

where Fαβ = φβ,α−φα,β represents the electromagnetic
field tensor, φα is the four potential. The electromag-
netic field equations are

Fαβ
;β = µ0J

α, F[αβ;γ] = 0, (7)

where Jα and µ0 are the four current and magnetic
permeability. In order to solve the Maxwell equations,
we assume that in comoving coordinates, the magnetic
field in the the interior will be zero. Thus we choose

φα = φ(t, r)δ0
α, Jα = ρ(t, r)V α,
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where φ and ρ indicate the scalar potential and the
charge density, respectively.

The Maxwell field equations yield

∂2φ

∂r2
−

(
B′

B
+

A′

A
− 2C ′

C

)
∂φ

∂r
= 4πρB2A, (8)

∂

∂t

(
∂φ

∂r

)
−

(
Ḃ

B
+

Ȧ

A
− 2Ċ

C

)
∂φ

∂r
= 0, (9)

where dot and prime mean differentiation with respect
to t and r, respectively. Integration of Eq.(8) yields φ′ =
qBAC−2, where

q(r) = 2π

∫ r

0

ρBC2dr, (10)

is the total amount of charge interior to radius r. The
corresponding electric field intensity is

E(t, r) =
q

4πC2
. (11)

The field equations (2) for the interior metric (3) be-
come

κA2

fR

[
µ + 2πE2 +

1
κ

{
f −RfR

2
+

f ′′R
B2

−
(

Ḃ

B
− 2Ċ

C

)

×
˙fR

A2
−

(
B′

B
− 2C ′

C

)
f ′R
B2

}]
=

(
2Ḃ

B
+

Ċ

C

)
Ċ

C
−

(
A

B

)2

×
[

2
C

{
C ′′ − B′C ′

C

}
+

(
C ′

C

)2

−
(

B

C

)2
]

, (12)

κ

fR

[
qAB − 1

κ

(
˙f ′R −

˙fRA′

A
− Ḃf ′R

B

)]
=

2
C

(
Ċ ′

−A′Ċ
A

− ḂC ′

B

)
, (13)

κB2

fR

[
P + 2πE2 − 1

κ

{
f −RfR

2
− f̈R

A2
+

(
2Ċ

C
+

Ȧ

A

)

×
˙fR

A2
+

(
2C ′

C
+

A′

A

)
f ′R
B2

}]
= −

(
B

A

)2
[

2C̈

C
+

(
Ċ

C

−2Ȧ

A

)
Ċ

C

]
−

(
B

C

)2

+
(

2A′

A
+

C ′

C

)
C ′

C
, (14)

κC2

fR
[P + 2πE2 − 1

κ

{
f −RfR

2
+

f ′′R
B2

− f̈R

A2
−

(
Ḃ

B

− Ċ

C
− Ȧ

A

)
˙fR

A2
−

(
B′

B
− C ′

C
−A′

A

)
f ′R
B2

}]
= −

(
C

A

)2

×
[

B̈

B
+

ḂĊ

BC
− Ȧ

A

(
Ḃ

B
+

Ċ

C

)
− C̈

C

]
+

(
C

B

)2

×
[
A′′

A
+

C ′′

C
+

A′

A

(
C ′

C
− B′

B

)
− B′C ′

BC

]
. (15)

The CDTT f(R) model is given by

f(R) = R + ρ
δ4

R
, (16)

which describes the accelerating behavior of the uni-
verse in the late-time era. Here δ > 0 is a parame-
ter with the same units as that of mass and δ−1 ∼
(1033eV )−1 ∼ 1018sec. However, there are controver-
sion in defining ρ which was initially taken to be−1 [16].
The stability condition for this model is 1/(3

√
3δ2−1) >

0. For the viable f(R) model, it must give fRR > 0
as well as fR > 0. The former inequality is required
to prevent tachyonic instability while the later is in-
troduced to give up the state of ghost. However, this
model with ρ = −1 does not work as a reasonable f(R)
model since it gives fRR < 0 which leads to instability
of tachyons. Moreover, it suffers several issues such as
failure in satisfying the local gravity constraints [17],
the instability of cosmological perturbations [18], mat-
ter instability [19] etc. Sawicki and Hu [20] suggested
that this model with ρ = +1 resolves various prob-
lems of instability and meets the stability requirement
fRR > 0 all over in and around the polytrope. This
model can be used to obtain matter domination epoch
and consistent results [21]. We shall take ρ = +1 for
this model.

3 Dynamical Equations and Perturbation
Scheme

In this section, we first formulate dynamical equations
and then develop collapse equation through perturba-
tion scheme. The dynamical equations are very impor-
tant to understand the behavior of the dynamical sys-
tem. These equations have the following form

|Xαβ |;βVα = 0, |Xαβ |;βqα = 0, (17)

yielding

µ̇ +
A

B
q′ +

(
˙2C

C
+

Ḃ

B

)
(P + µ) + 2q

(
C ′

C
+

A′

A

)

A

B
+ H0(t, r) = 0, (18)

P ′ +
B

A
q̇ +

A′

A
(P + µ) + 2q

(
Ċ

C
+

Ḃ

B

)
B

A

− 4πE

C
(CE′ + 2EC ′) + H1(t, r) = 0, (19)

where the components of the dark source, i.e., H0 and
H1 are given in Appendix A of [15].

The perturbative expansion refines the expressions
with the help of correction terms which become smaller
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and smaller controlled by the perturbation parameter,
α. We use here the perturbation technique which leads
to the collapse equation. In this scenario, we assume
initially that the metric coefficients and fluid variables
are enforced to have r dependence, i.e., the system is
in complete static equilibrium. After perturbation, all
these quantities will become time dependent. Taking
0 < α ¿ 1, it follows that

A(t, r) = A0(r) + αT (t)a(r), (20)

B(t, r) = B0(r) + αT (t)b(r), (21)

C(t, r) = C0(r) + αT (t)c(r), (22)

E(t, r) = E0(r) + αT (t)s(r), (23)

µ(t, r) = µ0(r) + αµ̄(t, r), (24)

P (t, r) = P0(r) + αP̄ (t, r), (25)

q(t, r) = αq̄, (t, r), (26)

R(t, r) = R0(r) + αT (t)e(r), (27)

f(t, r) =
[
R0(r) + δ4R−1

0 )
]

+ αT (t)e(r)
[
1− δ4R−2

0

]
, (28)

fR(t, r) = 1− δ4R−2
0 + 2αT (t)e(r)δ4R−3

0 . (29)

Taking C0(r) = r as the Schwarzschild coordinate (by
the degree allowed in the r coordinate), Eq.(18) is triv-
ially satisfied for the static configuration, while Eq.(19)
turns out to be

P ′0 + (P0 + µ0)
A′0
A0

− 4π

r
(2E2

0 + rE0E
′
0) +

H2(r)
κ

= 0,(30)

where H2(r) is mentioned in Appendix A of [15]. Under
the perturbation scheme, Eqs.(18) and (19) give

¯̇µ +
A0

B0
q̄′ − 2q̄

(
1
r
− A′0

A0

)
A0

B0
+

[
(µ0 + P0)

(
c

r
+

b

B0

)

+
H3(r)

κ

]
Ṫ = 0, (31)

P̄ ′ + ˙̄q
B0

A0
+ (P̄ + µ̄)

A′0
A0

+ T (P0 + µ0)
(

a

A0

)′
− 4πE0T

r

×
[
4s + 2rE0

( c

r

)′
+ rs′ + rs

E′
0

E0

]
+ T

H4(t, r)
κ

= 0,

(32)

where H3(r) and H4(r) are given in Appendix A of [15].
Using Eqs.(20)-(29), we obtain q̄

q̄ =
2(R2

0 − δ4)
κR2

0A0B0

[
cA′0
rA0

+
b

rB0
− c′

r
+

R2
0

R2
0 − δ4

{
δ4

R3
0

×
(

e′

R0
+

eA′0
R0A0

− 4e
R′0
R2

0

+ R′0
b

B0

)}]
Ṫ = 0. (33)

Using the above relation in Eq.(31) and integrating, it
follows that

µ̄ = −
[
(P0 + µ0)

(
c

r
− b

B0

)
−H5(r)

]
= 0, (34)

where H5 is mentioned in Appendix A of [15].
Now, we formulate the collapse equation which has a

crucial importance for the stellar stability investigation.
To have a link between µ̄ and P̄ , we choose an equation
of state of Harrison-Wheeler type in the framework of
second law of thermodynamics. This equation of state
is the ratio of specific heat [22]

P̄ = Γ
P0

P0 + µ0
µ̄, (35)

where Γ is an adiabatic index that determines the change
of pressure relative to the given change in density. We
treat it as a constant term in the evolution of mat-
ter distribution taken under consideration. Substituting
the value of µ̄ in the above equation, we have

P̄ = −ΓP0

(
c

r
+

b

B0

)
T + Γ

P0

P0 + µ0
H5T = 0. (36)

Using Eqs.(33), (34) and (36) in Eq.(32), it follows that

[
Γ

{
P0

(
c

r
+

b

B0

)
+

P0

P0 + µ0
D5

}′
+ (µ0 + P0)

(
a

A0

)′

−A′0
A0

{
(µ0 + ΓP0 + P0)

(
c

r
+

b

B0

)
−

(
Γ

P0

P0 + µ0
+ 1

)

× H5} − 4πE0

r

{
4s + 2rE0

( c

r

)′
+ rs′ + rs

E′
0

E0

}
+

H4

κ

]

× T − 2(R2
0 − δ4)

(R0A0)2κ

[
cA′0
rA0

. +
b

rB0
− c′

r
+

R2
0

R2
0 − δ4

{
δ4

R3
0

×
(

e′

R0
+

eA′0
R0A0

− 4e
R′0
R2

0

+ R′0
b

B0

)}]
T̈ = 0. (37)

The perturbed configuration of the Ricci scalar yields

T̈ (t)− ω(r)T (t) = 0, (38)

where ω(r) is mentioned in Appendix A of [15]. All
terms in ω(r) are supposed to be positive just for the
sake of stellar instability range. The solution obtained
from the above equation is given as

T (t) = − exp (
√

ωt). (39)

4 Instability Regions in the Newtonian and
post-Newtonian Limits

Here, we discuss the instability ranges of the relativistic
star at both N and pN order as well as the role of Γ

in this context. In order to compare our solutions to
GR, we also calculate the asymptotic behavior of the
corresponding results.
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4.1 Newtonian Limit

We analyze the contribution of matter variables of the
evolving star by assuming

µ0 À P0, A0 = 1, B0 = 1,

for which Eq.(37) gives
[
Γ

{
−P0

( c

r
+ b

)}′
+ µ0a

′ − 4πE0

r

{
4s + 2rE0

( c

r

)′

+rs′ + rs
E′

0

E0

}
+

H4(N)

κ

]
T − 2

(R2
0 − δ4)
R2

0κ

[
b

r
− c′

r

+
(R2

0 − δ4)
R2

0

{
δ4

R3
0

(
e′

R′0
+ bR′0 − 4e

R′0
R2

0

)}]
T̈ = 0, (40)

where H4(N) are the terms of N approximation of Eq.(32).
Using Eq.(39) in the above equation, the required con-
straint for the dissipative and isotropic spherically sym-
metric collapsing matter distribution is given as

Γ <
1{−P0

(
c
r + b

)}′
(

µ0a
′ − 4πE0

r

{
4s + 2rE0

( c

r

)′

+rs′ + rs
E′

0

E0

}
+

H4(N)

κ
+ H6(r)

)
, (41)

where H6 is the dark source component. We see that
the adiabatic index Γ plays a central role to investigate
dynamical instability of the relativistic system. Thus,
at N approximation, the matter distribution will be
unstable until (41) is satisfied. We also note that the
dependence of inequality on Γ implies that instability
of the system relies on the stiffness of the fluid. How-
ever, there is no contribution of heat flux in defining
the dynamical instability conditions, while this range
of instability decreases in the presence of electromag-
netic field in spherical symmetric background. When δ

approaches to zero, (41) reduces to

Γ <
1{−P0

(
c
r + b

)}′
(

µ0a
′ − 4πE0

r

{
4s + 2rE0

( c

r

)′

+rs′ + rs
E′

0

E0

}
+ 2

ω

κ

(
b

r
− c′

r

)
, (42)

which provides the solution of GR.

4.2 Post Newtonian Limit

Here we study the conditions for the dynamical insta-
bility in the scenario of pN approximations. For this
purpose, we consider effects upto O

(
m0
r + Q2

2r2

)
and as-

sume

A0 = 1− m0

r
+

Q2

2r2
, B0 = 1 +

m0

r
− Q2

2r2
. (43)

Using Eqs.(43), Eq.(37) reduces to

Γ <
η + λ + H7(r)

βϕ′ + ϕ
, (44)

where

η =
(

m0r −Q2

r3

)(
1 +

m0

r
− Q2

2r2

)
[(P0 + µ0) {b (1

+
m0

r
− Q2

2r2

)
+

c′

r

}
−H5(PN)

]
+ (P0 + µ0) [a

×
(

1 +
m0

r
− Q2

2r2

)]′
, λ = −4πE0

r

(
1− m0

r
+

Q2

2r2

)

×
[
4s + 2rE0

( c

r

)′
+ rs′ + rs

E′
0

E0

]
,

β =
(

m0r −Q2

r3

)(
1 +

m0

r
− Q2

2r2

)
,

ϕ =
[
P0

{
b

(
1 +

m0

r
− Q2

2r2

)
+

c′

r

}
− P0

P0 + µ0
H5(PN)

]
,

and H7 is mentioned in [15]. For the onset of the dynam-
ical instability, the expression (44) must be satisfied.
In addition, it is argued that instability will develop
as long as all the terms in the above expression are
positive. Thus we require that all terms in (44) should
be positive. For this purpose, the following inequalities
must hold

(P0 + µ0)
{

b

(
1 +

m0

r
− Q2

2r2

)
+

c′

r

}
> H5(PN), (45)

P0

{
b

(
1 +

m0

r
− Q2

2r2

)
+

c′

r

}
>

P0

P0 + µ0
H5(PN),(46)

m0

r
+

Q2

2r2
< 1. (47)

It is observed that in the phenomenon of gravitational
collapse, the energy density may increase or decrease
which is controlled by the electromagnetic field, pres-
sure and higher curvature terms of CDTT f(R) model.
The system remains unstable at pN order under the
above inequalities. Taking δ to be zero, we get the same
constraint for dynamical instability of the relativistic
fluid configuration with spherical symmetry as men-
tioned in (44) with the difference that H7(r) goes to
zero. This shows that the system becomes more stable
in the presence of electric charge.

5 Summary and Discussion

This work investigates dynamical instability of the charged
spherical dissipative collapse in f(R) gravity. For this
purpose, we have assumed non-adiabatic collapsing sphere
with inhomogeneous energy density and locally isotropic
charged fluid in CDTT f(R) model. Here dark source
f(R) curvature terms suffer the collapse rate and the
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passive gravitational mass. In order to study the effects
of electromagnetic field and the f(R) model, we have
applied the perturbation scheme on the field equations
and on the dynamical equations, which leads to the col-
lapse equation.

In general, the adiabatic index determines the dy-
namical instability of relativistic stars. It is worth men-
tioning here that for Γ < 4

3 and Γ < 1, the spherical
[7] and cylindrical [24] relativistic body becomes un-
stable thereby enforces the importance of index Γ . We
have also established the relevance of such index in the
discussion as seen from expressions (41) and (44) at
both N and pN eras. We conclude that the stability of
the fluid is affected by the local pressure isotropy, elec-
tromagnetic field, energy density and higher curvature
terms of f(R) CDTT model.

For the onset of self-gravitating dynamical instabil-
ity, we require that the system meets the requirements
(41) and (44)-(47). The violation of these constraints
leads the system to decrease instability. These results
indicate that the physical variables of the relativistic
star has a central role for stellar stability which is well
consistent with [8]-[10] and [23]-[25]. It is also seen that
the invoking of electromagnetic field in the star de-
creases the range of instability thus making it more sta-
ble. This behavior agrees with the results obtained in
[25]. The relevance of dynamical instability analysis in
astrophysical study stems from the fact that this may
be fruitful in the evolution and structure formation of
the relativistic bodies.
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