
SLAC-401
CONF-9205149
UC-405
(MI

PROCEEDINGS OF THE REXX SYMPOSIUM
FOR DEVELOPERS AND USERS

May 3-5, 1992
Annapolis, Maryland

Sponsored by
STANFORD LINEAR ACCELERATOR CENTER

STANFORD UNIVERSITY, STANFORD, CALIFORNIA 94309

Program Committee

Cathie Dager of SLAC, Convener
Forrest Garnett of IBM

Jim Weissman of Failure Analysis
Bebo White of SLAC

Prepared for the Department of Energy
under Contract number DE-AC03-76SF00515

Printed in the United States of America. Available from the National Technical information Service,
U.S. Department of Commerce, 5285 Port Royal road, Springfield, Virginia 221 61.

PROCEEDINGS OF THE REXX SYMPOSIUM
FOR DEVELOPERS AND USERS

TABLE OF CONTENTS

A. Summary
B. Presentations

Anders Christensen:

Mike Cowlishaw
Charles Daney and :
Stan Murawski
Carl Feinberg:
Eric Giguere and:

Linda Suskind Green:
Rainer F. Hauser:

Earl D. Hodil:
Marc Vincent Irvin:

Pat Meehan:
and Paul Heaney

Neil Milsted:

Walter Pachl

Stephen G. Price

Anthony Rudd
David I. Shriver
Michael Sinz

Ed Spire
Melinda Varian
P. Joseph Vertucci

Bebo White
Pete Zybrick

ii

Announcement of the Regina REXX
Interpreter 1
REXX-The Future 5
WinREXX, Presonal REXX
for Windows 14
Relational Architects 29
Programming with Objects:
a REXX-Based Approch 46
REXXbits 55
Communications and Event
Handling with REXX 100
REXXTOOLS/MVS 117
REXX2001-Chosen Language of
Man and Machine 139
Performance Engineering/
Management of a Large
REXX Application 153
ANSI X3J18 Report:
The REXX Standard 169
IBM Compiler and Library for
REW370 184
OS/2 Procedures Language 2/REXX
“A Practical Approach to
Programming” and ”Adding REXX
Power to Applications”
Interfacing with REXX
REXX in the ClCS Environment
REXX Technical Issues, Today
and Tomorrow
Uni-REXX
Plunging into PIPES
The Implications of Multimedia
for Training in the ’90s
REXX, Perl, and Visual Basic
REXX Applications in
Automated Operations

21 6
23 1
249

. 298
307
325

350
362

374
397
40 1

. ..

C. Attendees
D. Announcement of 1993 Symposium

SUMMARY

The third annual REXX Symposium for Developers and Users was held on May
3-5, 1992 in Annapolis, Maryland. Ninety-one people attended, representing
eight countries and nineteen American States.

There was a great deal of interest regarding REXX in the UNIX world. Albert0
Villarica and Anders Christensen announced two free versions of REXX for
UNIX. Also, the Workstation Group announced a free run-time version of their
Uni-REXX available to any educational institution.

Two flavors of REXX under MSMindows were presented by Eric Giguere and
Charles Daney. Both implementations demonstrated the ease in which REXX
was able to create GUI applications. This prompted some discussion of REXX
under the Macintosh, probably the last frontier for REXX.

Along with his usual informed opinions, Mike Cowlishaw described some of his
current research efforts. He also wowed us with some statistics demonstrating
the incredible penetration REXX has made internationally as measured by the
number of books published about it and the millions of users with access to it.

Prompted, in part, by Lotus’ announcement of a REXX interface to 1-2-3, there
was much discussion of ways that REXX could be promoted as a universal
scripting and macro language. In this context, REXX was compared both to
PERL and to Visual BASIC, which appears to be Microsoft’s attempt to cover
some of the deficiencies of BASIC.

Next year’s symposium will be held in San Diego, California on May 18-20.
Because of the great success of this year’s symposium, we are expanding to
three days next year and look to you, the REXX community, to help us fill these
days with interesting and useful presentations.

Signed,

1992 Program Committee:

Cathie Dager (SLAC)
Forrest Garnett (IBM)
Jim Weissman (Failure Analysis Associates)
Bebo White (SLAC)

ANNOUNCEMENT OFTHE REGINA RDO(INTERPRETEFI

ANDERS CHRISTENSEN, UNIVERSITY OF TRONDHEIM

1

Announcement of the Regina REXX Interpreter
Andes Christensen <anders@solan. un i t .no>

Annapolis, May 5, 1992

summary
Regina is a REXX interpreter for Unix systems, written in ANSI C, lex and yacc. The source
code for Regina is available by anonymous ftp on Internet. Regina is “free” software, mean-
ing that you don‘t have to pay for it.

Platforms
Regina has been built on several systems, under the following environments:

GCC v2.1, flex and bison, on several OS architectures.

0 c89 (unbundled) on Decstation 5000, under Ultrix 4.2

cc on Irix Indigo, under I R I X 4.0

0 acc 1.1 (unbundled) on Sun Sparc, under Sunos 4.2

0 cc on Decstation 3100, under OSF/1

c89 on HP 9000, under HP/UX 8.05

The lex and yacc code included in Regina is fairly standard, and can easily be processed by
the standard yacc and lex utilities under all the systems named above.

The C code is ANSI C and uses POSIX, when interfacing to the operating system. On
several machines where the standard setup of the C compiler is not completely ANSI C and
POSIX, you might have to set compiler options to force the compiler to use these standards.

At a few places in the source, where POSIX is not powerful enough, non-POSIX code
has been included. Alternative POSIX-compliant source is also present, and may be chosen
instead through the setting of C preprocessor flags.

What is Included in Regina
Regina follows the 3.50 version of REXX, as described by the first edition of ”The REXX
Language” by Mike Cowlishaw. The areas where it is not according to that description are:

0 The SIGNAL ON command is missing

Arithmetics are done using C-functions, so anything related to the NUMERIC command
will not work. In fact, conversion of numbers might even be dependent on the C-
compiler you are using, This also effects the results of the FORMAT() builtin function.

There are some problems connected with tracing.

For (external) commands, there is not a persistent shell in the background to which
commands are sent. Instead, a shell is started up each time (ADDRESS SYSTEM), or the
command is run directly (ADDRESS PATH and ADDRESS COMMAND).

2

Other Parts of the Regina Package
Regina comes with more than just the source code for the interpreter itself. A set of docu-
ments that describe the functionality of the interpreter, both the standard REXX function-
ality, and the extra functionality of Regina, in particular the parts interfacing to the Unix
system. The documentation is located in the "doc" subdirectory of the Regina distribution.

Also included is a test consisting of a set of REXX programs that check various parts of the
REXX language, in particular the more obscure features, border-conditions and limits. Both
this "trip-test" and the documentation are under construction, and are far from complete in
the current version.

In the "code" subdirectory are various small REXX programs included, that demonstrate
features and programming techniques in REXX. I have no intention of writing all these my-
self. I hope to be able to include small REXX-programs written by other people, in this
demo-directory, in order to gather a nice collection of instructive programming pearls.

In the Future .. .
I intend to continue developing Regina, improvements and new features include:

The remaining parts of the 3.50 REXX standard will be implemented. In particular,
true string arithmetics will be added.

The interpreter will be made compatible to the 4.00 version of REXX, as defined in the
second edition of "The REXX Language".

A mechanism for dynamically adding external function packages, during execution time.
These packages may be written in compiled languages (e.g. C). This will allow Regina
to use numerous functions as if they were builtin, without having to link in the code for
these functions into the executable of the interpreter at compile time.

Using this library mechanism, some libraries will be added to Regina, including a wrap-
per library to curses (for fullscreen manipulation of ASCII graphics), a math library, an
interface to Unix system services and an interface to TCP/IP.

0 I will port Regina other Unix systems, and to some non-Unix systems, in particular
MS-DOS and VAX/VMS. Support for other systems will depend on what access 1 have
to those systems.

Tools for program development will be added, such as syntax-checking, pretty-printing,
crossreferences etc.

Still in Beta Version
Please note that Regina is still in beta-version. The code will be released as version 1.00
when full REXX 4.00 functionality has been implemented, and most of the known bugs have
been removed.

Where to Get Regina
If you have access to anonymous ftp on Internet, you can get it from the server:

flipper,pvv.unit.no (129.241.36.200)

Use ftp to log in to the account "ftp", and use you electronic mail address as password
(that is the normal etiquette of the Net.) If you do not have access to the anonymous ftp
service, you will have to get Regina from another source. Hopefully other people will redis-
tribute the code to places to which you have access.

Note that flipper is located in Norway, so if you are located outside Europe and can get
the Regina from a site closer to you, please try to do so.

3

Copyright and Distribution
As long as the code is released as beta-version, the copyright for the interpreter generally
says: 'dYou can use it for whatever you want, as long as you don't use it for commercial
purposes.". More details on these is included in the "README" file that accompanies the
source distribution.

When Regina is released as version 1-00, i t will most likely have the copyright notice
generally known as the "Gnu General Public License" (GPL). I t (generally) says: "You can
(re)distribute the program as you wish, including selling it, but you have to provide the full
source for it when you distribute it. Including the source for any modifications you might
have done to the program." More information about this is available in files contained in
the distribution.

Bugreports
I f you use Regina, and you find a bug in it, I would be very glad to hear about it. Although I
do not guarantee that I will fix anything that is broken (after all it is free software), I generally
fix anything that 1 too consider broken, and which is within my capasity to fix.

The interpreter in its current version has bugs and missing features, some of them are
listed in the accompanying documentation. I f you report a bug, the easiest method (at least
for me) is to use electronic mail with a description of the bug. Preferably, such a bugreport
should contain:

Description of what equipment you used, i.e. hardware-platform, operating system,
compiler version, compiler options used, version of Regina etc.

A description of the buggy behavior that you saw (and the behavior that you expected
to see.)

0 Preferably a piece of REXX code that demonstrates the behavior, it should be as small
as possible, preferably not more than about 10 lines.

0 If you have already fixed the bug, please append a context diff of the changes you made
to the source, then 1 won't need to redo the same work to track down the bug.

Please make sure that the bug is really a bug in the interpreter, not a bug in your pro-
gram or a peculiar behavior of your machine. If possible, run your program on other REXX
interpreters to see how they behave, and check with a REXX manual if you have access to
one.

Where to Send Electronic Mail
If you have questions concerning Regina, feel free to contact me at my electronic mail address
listed below. 1 will gladly accept comments, bugreports, wishes or cries for help. But since 1
do this on my spare time, and since I don't charge any money for it, 1 can't guarantee bugfixes
and help in advance.

Anders Christensen
Norwegian Institute of Technology
University of Trond heim

emaii: anders@solan.unit.no
or: andersQpvv.unit.no

snail: Stud.post. 31
N-7034 Trondheim-NTH
Norway

4

MIKE COWUSHAW
IBM

5

Q
)

x x
x

.-
3

m
 6

I-
cn
a,
cn
cn
a

X

X

W

CT
+

O
S

m-

.-

-
c
n

.-

+

eD

Q
)

S

3

L

w

I

r
 H Q

)

r
I
-

€ a, cn
>

cn

c
,

cn
0

0

cd
L

E
 O
a
,

L
.
-

O
O

s
-

.- .

I
N

rn
rn
7

L

2 Q
I

N

a,
>

0

E

0

a,
3

TZ
S

.

.- .
cn C

0

0

0

&
a
,

0

cn
S

0

.- .

0

c
d
a
,

73
C

co

C
. U

cn

-
0

0
 == i3

r
0
0

0c
s
 .-

.- .
a

0

Y
-
0

cd
.E

3

+
+

4

O
N

c3

*
N

0

v
)

0

v
)

0

Y
c

3

0

0

r

r

m

x x W

U

CHARLES DANWANDSTAN MURAWSKI
QUERCUS SYSTEMS

14

'0

I=
S

0

L

m

z
 0 a

m

L

a
.IC

1
0

3

'0

0

k c, IC
a,
L

L

3

0

= C

a a,
z

0

0

0

15

rn
k

a2
m

7

16

17

I

N

m

\

0

031

Q
)

I

a
a

o
a

o

a

1313
4

Q
)

o

9 0

18

4

4
 0

19

20

IQ)

0

a
 X

u1
tn k
 X

W

PL S

I
-
-
-
-
-
-

\
I

E Q
)

t

21

m

E

x

22

M

-3

O
E

EL
a
E

s
t

r
n
3

E

0

23

i

0

m

m

Q
)
u
 0

k

&

d
5

e

"
a

cct

k
6

Q

)
m

x x

24

*
 E 0

0

$
I,

E

0

0

i 0

I
m

0
 .i *

 0

d
 I

.
4

k

X X

X
2

25

ai w

a
 s w

d

a
r

v

LC
u

X

26

0

c

c
 aJ
M

0

0

k

0

r;A

*
d

a 1

a d

F
r

e
*

4

PC
PC
crs

cii
A

m

Q

)
*

s E
m

E
E I

I€
m

r

crs
0

0

Q
)

c

c

k

c.
0

M

G
 0

0

k

PC

.d

.c
,

E r

m

1

0

k

*
d

aJ PC

0
0

"
E

a
n

crs +
0

*

*
 Q
)
0

k

m

.
d

s
 0 m

0

k

0

.d

0

+ cb
.d

c

c

3 W
E

27

I

m

3

‘v

E

.M

h

c.
0

aJ bn
a s
bn
Li ca
r
 28

RELATIONALARCHITECTS PRODUCT FAMILY

CARL FEINBERG
RELATIONAL ARCHITECTS

29

E 3

*
 v) d

I

30

Q
)

w 0

E
Q

)
l

u

E
o

31

4

QQ
Q

 E
2 m
v
)

4

o

o

0

5 pe

0

v
)
h

U
 c (D

0

.k

t
 0

4

4

3

VI

8 v
)

33

4

0

u)

0

v)
Q

)
c

4

C

0
 0

34

5 pe S

?

v)
Q

)

s s 3 5

9

0

TJ s

f

s,
2

v)
m Q

)
a
 E

m

35

E-
5 er *
 u) Q

)
*

ts s 0

36

S

ai

8

0
0

0
0

 0
0

I

w
w

u
)

w
w

w
~

w
w

u
)

w
w

w
w

u
)

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

tn
m

m
am

m
m

m
m

m
m

m
m

m
m

a
a
a
a
a
a
a
a
a
a
o
a
a
a
a

a
a
a
a
a
o
a
a
a
a
a
a
a
a
o

z5zz5zzzzzz55zz

I

Im
plem

entation of TO
 W

N
ER

U

sing R
W

R
E

X
X

/*

RLX
REXX EXEC

T

O
W

E
R

 -- using embedded SQ
L and

ISPF
services

*/
a
r
g
 c
r
e
a
t
e
d
b
y

/* O
b
t
a
i
n
 t
h
e

creator's name

a
s

a p

a
r
a
m
e
t
e
r

*/
address

&X
/* R

o
u
t
e
 ho
s
t
 co
m
m
a
n
d
s

t
o
 R

LX

f
o
r
 ex
e
c
u
t
i
o
n

*/

/*
You denote REXX

host variables with th
e
 standard colon prefix.*/

"
r
l
x
 d

e
c
l
a
r
e
 t

b
l
n
a
m
e
s
 c

u
r
s
o
r
 f

o
r

s
e
l
e
c
t

name,

c
r
e
a
t
o
r
,
 t

y
p
e
,
 d

b
n
a
m
e
,
 t

s
n
a
m
e
,
 d

b
i
d
,
 c

o
l
c
o
u
n
t

from sysibm.systables
w
h
e
r
e
 c

r
e
a
t
e
d
b
y
 =

:createdby"

/*
Address R

LX
 recognizes all ISP

F
 dialog service names

"
T
B
C
R
E
A
T
E
 T

B
L
N
A
M
E
S

NAMES(NAME,
C
R
E
A
T
O
R
,
 T

Y
P
E
,

DBNAME,

T
S
N
A
M
E
,

DBID,

C
O
L
C
O
U
N
T
)

N
O
W
R
I
T
E
"

"
r
l
x

o
p
e
n

t
b
l
n
a
m
e
s
"

/*
P
r
o
d
u
c
e

S
Q
L

q
u
e
r
y

r
e
s
u
l
t

/*
RLX

F
E

TC
H

es
values directly thru memory into

'
h
o
s
t
'

/*
variables which R

L
X

,
ISPF

and
the REXX

interpreter share.
"rlx fetch t

b
l
n
a
m
e
s
 i

n
t
o

name,
:creator,

:type,
:dbname,

:tsname, :dbid,
:colcount"

/*
RLX

updates a
ll t

h
e
 host variables comprising th

e
 SQ

LC
A

D
o
 w
h
i
l
e
 s
q
l
c
o
d
e

=
0

/*
W
h
i
l
e
 F
E
T
C
H
e
s

are

s
u
c
c
e
s
s
f
u
l

"
T
B
A
D
D
 T

B
L
N
A
M
E
S
"

*/

*/

*/
*/

*/
*/

/*
RLX

recognizes statements it
'
s
 already processed t

o
 further*/

/*
improve performance.

A
 reexecuted RLX SQ

L
 statement runs

*/
/*

at
'
s
t
a
t
i
c
'
 SQ

L
 speed.

*/

"
r
l
x
 fetch

t
b
l
n
a
m
e
s
 i

n
t
o

name,
:creator,

:type,
:dbname,

:tsname, :dbid,
:colcountn

END
"
r
l
x

c
l
o
s
e

t
b
l
n
a
m
e
s
"

/*
c
l
o
s
e

t
h
e

c
u
r
s
o
r

*/

TBTOP
T
B
L
N
A
M
E
S
 'I

D
o
 wh
i
l
e
 rc

=
 0

/*
u
n
t
i
l
 us
e
r
 si
g
n
a
l
s
 en
d

or
r
e
t
u
r
n
 */

End
I' T
B
E
N
D

T
B
L
N
A
M
E
S

'I

exit
rc

"
T
B
D
I
S
P
L
 T

B
L
N
A
M
E
S
 PANEL(TBLNAMES)"

39

lm
piem

entation of TO
 W

NER
Using R

LX/ISPF

a
r
g
 c

r
e
a
t
e
d
b
y

/*
O
b
t
a
i
n
 t
h
e
 c
r
e
a
t
o
r
'
s
 n
a
m
e

as
a
 p
a
r
a
m
e
t
e
r

*/
a
d
d
r
e
s
s

R
L
X

/*
R
o
u
t
e

h
o
s
t
 c
o
m
m
a
n
d
s

t
o
 R

L
X

for

e
x
e
c
u
t
i
o
n

*/

/*
F
l
o
w

t
h
e
 SQ

L
q
u
e
r
y
 r

e
s
u
l
t
 i

n
t
o
 an

ISP
F

 t
a
b
l
e
 -- w

i
t
h

a

s
i
n
g
l
e
 */

/*
s
t
a
t
e
m
e
n
t
 --

u
s
i
n
g

t
h
e

D
EC

LARE
ISPFTABLE s

e
r
v
i
c
e

*/

"
r
l
x
 d

e
c
l
a
r
e
 t

b
l
n
a
m
e
s
 i

s
p
f
t
a
b
l
e
 f

o
r

s
e
l
e
c
t
 n

a
m
e
,
 c

r
e
a
t
o
r
,
 t

y
p
e
,
 d

b
n
a
m
e
,
 t

s
n
a
m
e
,
 d

b
i
d
,
 c

o
l
c
o
u
n
t

f
r
o
m

sysibrn.systables

w
h
e
r
e
 c

r
e
a
t
e
d
b
y
 =

:createdby"

D
o
 w

h
i
l
e
 r

c
 =

 0

end "
r
l
x

t
b
d
i
s
p
l

t
b
l
n
a
m
e
s

p
a
n
e
l

(
r
l
x
)

'I

Exit rc

40

L

m E E 3
v)

5 Q:

a
 E m

b

E

v)

0

4

3 2 'tr s I- lu
v
)

*
r

s m d 5 v
)

p:
s E m

0
,
r,

m
 d v
)

n
o

o
n

41

9

v)
L

0

Q
)
k

tn
0

.-I (d
-4

a
 z k

0

n

z W

0

0

Q
)

Ik

8 ai
4

%

Q
)

A
h

II

II
II

II II
II 4Jo
C
k

a
lk

E

a
l

u
tn

bi

d

a
m

a

m

W 2 3
 - ..

; 2
-

k

0

EZ
k

. ..

X

al a
h

lJ

c,
a
 a id 4J m

.d

k

v
(
0

al 7
d

m P 2 7 rl 0 u 0

rn 7
a

a
 al

c,

k

z 0 I
Ln
0

d

0

(II
PC

I I I I I I I I I I I I I I I I I I I h

J

4

4

74

u (d
4 al 3 c,
(d
k c, m rl

1 4 X

2 I I I I I I I I I I I I I
h

1

I1
I

II
I

I1
I I

C

0

m
 -rl
'
c
,

m
a

3
0

2 W
e

i
m

o

m L

rn
L

x

a,

d
k
5
h

o
m

m
2 a

-c
 a

51d

n
c

,

z
c

A

E
A

.. 7

0

A
h

U
(
d

m

a

C
a

l

c
o

o
0

O

V
IO

V
IU

.-I

45

I
I

w W
W

I kk
W

tn
tn

3
3

W
H

H

c,
(d
a

PROGRAMMING WITH OBJECTS: A REXX-BASED APPROACH

E X GIGUERE AND ROB VEITCH
1 JNNERSITV OF WATERLOO

46

Programming With Objects:
A REXX-Based Approach

Eric Gigu6re
Rob Veitch

Computer Systems Group
University of Waterloo

Waterloo, Ontario, Canada
N2L 3G1

giguereQcsg.uwater1oo.ca
rgv0csg.uwaterloo.ca

Introduction

The emergence of graphically-oriented user interfaces (GUIs) on a variety of multitasking platforms gives
rise to a whole new set of problems for REXX language implementors. What do you do when a console-
oriented language like REXX is to be ported to an environment like Microsoft Windows that lacks any
kind of command-line environment? How does a user access the GUI from REXX to create dialogs?
What changes are required to a REXX interpreter for it to function in a multitasking environment?

These are some of the issues we tackled in implementing a REXX interpreter, WRexx, for use in the
Microsoft Windows environment. This paper discusses our approaches to solving these problems, con-
centrating for the most part on the REXX-to-GUI interface, where we feel the interesting and original
work of this implementation lies. (Readers with no Windows programming experience may wish to read
the appendix for a quick overview of Windows.)

Note: Throughout this paper, Windows refers to the Microsoft Windows environment, X11 refers to
the base X Window System, X t refers to the X Toolkit and DOS refers to MS-DOS/PC-DOS.

1. Adapting The REXX Console Model

The REXX language assumes the existence of a console through which it can interact with a user. The
SAY instruction is the most obvious example:

say "Please enter your name:"
p u l l name

47

Programming With Objects: A REXX-Based Approach

This model works well on systems like DOS, CMS, Unix (text mode) and OS/2 (text mode), where a
console is the normal mode of operation. It also works well on hybrid systems like X11 and the Amiga,
where virtual consoles coexist within the GUI environment. Systems like the Macintosh and Windows,
however, do not provide operating system support for consoles. Consoles become the responsibility of
the REXX environment.

WRexx uses a virtual console to handle user interaction and tracing, and a separate virtual console for
displaying error messages. The consoles are windows that can be moved and resized like any conventional
window. Users can also scroll through the console's contents using the cursor keys or the scrollbars.
Neither console is displayed until input or output occurs, and once visible remains onscreen until explicitly
closed.

WRexx also adds a virtual console stream type to the REXX 1/0 model:

c a l l l i n e o u t 'con:My Window', 'Hello, world'

The consoles can be used with any of the stream-based functions.

2. UI Options for REXX

While virtual console support allows a REXX interpreter to function in a GUI environment, the inter-
preter will be more useful if it can also use the environment. Instead of consoles, REXX programs can
use windows, buttons, edit fields and other user interface objects to interact with the user.

When designing WRexx we considered three options for adding GUI access to REXX:

1. Language extensions. Extending the REXX language to include new instructions and program-
ming structures for building dialogs, menus and so on.

2. UI-oriented funct ions. Adding functions like CreateMenu(), CreatePushButton(),
ShowWindow(), etc., as BIFs or through an external function library.

3. Object-or iented functions. Adding functions like UICreate (), UISet (), U I G e t (), etc. These
functions work on generic user interface objects.

There are advantages and disadvantages to each approach. Language extensions make it easy to connect
individual objects and events with REXX code:

menu "Fi le"
item "Open. . . "

c a l l OpenFile
item "Exit"

e x i t
endmenu

But such extensions are also completely non-portable and may require other changes to the REXX
language. We rejected this approach because we wanted to remain faithful to the language as defined
by Cowlishaw's book [Cowlishaw 901.

Programming With Objects: A REXX-Based Approach

Once the function-based approach was chosen, it became a matter of choosing between the two kinds of
function libraries: very specific, UI-oriented functions, or more generic, object-oriented functions. We
eventually settled on the object-oriented approach (described in the next section) because we felt it
would be a more consistent and extensible interface, even though UI-oriented functions are the more
traditional approach for REXX extensions.

3. The OOUI Library

The WRexx GUI library is known simply as the “OOUI” (object-oriented user interface, pronouced oo-
ee) library. It is implemented as a Windows dynamic link library (DLL) and is only needed by REXX
programs that wish to access the Windows GUI.

3.1 Objects and Classes

The OOUI library implements a hierarchical class structure of window objects such as edit fields, but-
tons and various containers, Each object has a set of properties that determines its current state and
behaviour, as well as a set of methods to alter that state. The properties, methods and behaviour of an
object are defined by its class. The library is hierarchical in the sense that each class inherits properties,
methods and behaviour from a parent class or superclass. The subclass usually adds new properties or
methods to those of the superclass. The current OOUI class hierarchy is shown in Figure 1. It is based
for the most part on the window types defined by Microsoft Windows.

C programmers can also use the facilities provided by the OOUI DLL to write their own DLLs to
implement new cIasses and subclasses.

3.2 Object Manipulation

Objects are manipulated from within WRexx using five functions. UICreateO creates an object of a
given class and UIDestroy() destroys an object. UISet () and UIGet () are used to set and retrieve
property values, while UIMethodO invokes a method. Objects are identified by handle (returned by
UICreate()) or by name (assigned by the user).

Objects are also created hierarchically. Except for objects called Forms, each object has a parent object
on the screen which affects the child’s positioning and other properties. Each object tree is rooted on a
Form, which is a top-level (application or dialog) window.

For example, the following code creates a blank Form on the screen and immediately centers it:

f = UICreate(’Form’ , ’ v i s i b l e ’ , ’ t r u e ’ , ,

c a l l UIMethod f , ’centerwindow ’
’he igh t ’ , 100, ’width’, 200)

This example attaches some text and a button to the Form:

f = UICreate(’Form’ , ’ v i s i b l e ’ , ’ f a l s e ’)

49

Programming With Objects: A REXX-Based Approach

Figure 1: Viewing the OOUI Class Hierarchy

t = UICreate(f, ’TextBox’, ’caption’, ’This i s some t e x t ’
p = UICreate(f, ’PushButtonJ, ’capt ion’ , ’Press He! ’)
c a l l UISet f, ’ v i s i b l e ’ , ’ t r u e ’

Because the Form is the parent object for both the TextBox and the PushButton, neither child object
will be shown until the Form itself is made visible.

Note: Form and GroupBox objects include behaviour (which may be turned off) for automatically
resizing and positioning their children, thus freeing the programmer from having to specify absolute
coordinates when positioning objects.

When finished with an object, a call to UIDestroy () recursively destroys an object and all of its children.

3.3 Events and REXX

Objects will generate events whenever something interesting occurs; for example, when a pushbutton is
clicked. These events must be passed to the REXX program that created the objects so that the program
can respond to the user. This is done using event strings for each object’s events. The event string is
merely a string that is associated with a specific event. The string will be returned to the REXX program
whenever that event occurs. The REXX program checks for pending events by calling the UIEvent ()
function, which will return the next event string. For example, the PushButton object has a “click”

50

Programming With Objects: A REXX-Based Approach

Figure 2: Running ‘click.rex’

event signifykg that the user has clicked on the button. The following program demonstrates the use
of event strings:

/* c l i c k . r e x */

do fo reve r
interpret UIEventO

end

F i r s t p r e s s :
c a l l UISet p , ’ cap t ion ’ , ’You pressed me
count = I
c a l l UISet p , ’ c l i ck ’ , ’ ca l l Nex tp res s ’
return

once ! ’

Nextpress:
count = count + I
c a l l UISet p , ’ cap t ion ’ , ’You pressed me’ count ’times!’
r e t u r n

The program creates a form with two pushbuttons and then enters an event loop, waiting for user events
to occur. When the user presses a button, an event string is returned to the program and the program
executes it using the i n t e rp re t statement.

Notice that no language modifications or extensions were necessary to add GUI support to
REXX, only clever use of t he i n t e rp re t instruction.

In some cases it may not be obvious to which object an event belongs. The UIInfo() function can be
used to obtain this and other information on the string most recently returned by UIEvent ().

51

Programming With Objects: A REXX-Based Approach

o . l . - . ~ . : ~ Graphical REXX Application D$elopm,ent ',. a

, . . : > ,>,-.

- File Edit Ioo ls Code

Figure 3: The GRAD Tool

4. Programming With OOUI

After using the OOUI library and REXX, three things become apparent:

1. The traditional REXX program s t r u c t u r e i s no longer suitable. REXX programs typically
consist of a single file, augmented with external (and independent) functions. However, even the
simplest REXX application under Windows may display several Forms with numerous objects on
each form. The single-file approach in this case leads to monolithic programs that take longer to
load and are harder to debug. Performance is improved and debugging made simpler (and code
reuse encouraged) if an OOUI-based program is split across multiple small REXX files.

2. Exposing variables across files is extremely useful. Splitting a program into several files is
much more tolerable if variables can be exposed across files. WRexx has been extended so that
procedure expose will expose variables across file boundaries. (This feature becomes invaluable
to the programmer in a very short time.)

3. OOUI programming is ugly, so automated tools are needed. Adding object-oriented con-
cepts to a procedural language almost always seems to lead to ugly code, and REXX is no exception
to the rule. Writing the REXX programs to display complicated dialogs is itself a complicated
process if all the programmer has is a text editor to work with. Tools such as the class browser
(Figure 1) and GRAD' (Graphical REXX Application Development, Figure 3) can be of immense
help.

An issue that also comes up when using the OOUI library is that of multiple independent (i.e., modeless)
Forms. There is only one call to UIEvent 0 active at any time (because there is only a single thread
of execution within a REXX program), and it may be in a different file or procedure. Problems can
then arise due to scoping issues. Luckily, there are few situations where modeless Forms are required.
(Problems do not arise with modal Forms because the previously active Form is always disabled before
the new one is made active.)

'The reader may find it interesting to note that both the browser and the GRAD tool are themselves written in REXX.

52

Programming With Objects: A REXX-Based Approach

5. Conclusions

Virtual consoles and the OOUI function library allow WRexx to thrive in the Windows environment.
With them, REXX can be used both as a general-purpose scripting language (which Windows lacks) or
for implementing real applications.

Appendix A. A Crash Course on Windows Programming

Readers with no GUI programming experience will discover that there is a substantial learning curve
involved in developing for systems such as Microsoft Windows. This section is intended to provide you
with enough information to understand the rest of the paper, but for more complete treatments of GUI
programming models please refer to the bibliography. (Note: The Windows programming model is
almost identical to the model used by the O S / 2 Presentation Manager. Readers with PM experience
should have little trouble understanding the terminology used throughout this paper.)

What is Microsoft Windows?

Windows is a multitasking environment built on top of DOS. It provides a windowing environment,
device-independent graphics and inter-application communication (IAC) facilities. Windows applications
will not run under DOS, as they use a completely different application programming interface (API) and
a different programming model. Windows can emulate a DOS environment (the so-called “DOS box”)
in which to run DOS programs, but such programs cannot take advantage of Windows’ features.

The multitasking model used by Windows is often termed cooperative multitasking: each Windows
application will run until it voluntarily releases control of the CPU, at which time Windows will switch
control to another application. Well-behaved applications must ensure that they give up the CPU at
small time intervals. Unlike OS/2, Windows is not a preemptive system, nor does it support threads
(lightweight processes). Because of this there are no semaphores or other means of task synchronization.

Programs and User Interaction

Like other GUI platforms, Windows uses an event-driven programming model. Applications create one
or more windows, to which are attached user interface objects such as buttons and menus. The programs
then wait for user events (such as clicking on a button or pressing a key) to occur. When an event occurs,
Windows sends a message to the application that “owns” the event. The message is added to the end
of a queue which the application continually checks for new messages. Each Windows application has a
loop in it to do this (in pseudo-code):

do forever
get next event
process event

end

53

I

Programming With Objects: A REXX-Based Approach

The same type ofloop is used in Macintosh, Amiga and X11 applications. In Windows (and PM) the loop
serves mainly to demultiplex the application message queue, dispatching messages to the appropriate
window procedure. When you create a window (or more accurately, a window class) you register a
window procedure to handle that window’s events, including those that bypass the application message
queue.

do fo reve r
get next event
d i spa tch event

end

window procedure:
case message i s BUTTONDOWN

e t c .
....

end procedure

Note that Xt applications (this includes Motif applications) take this demultiplexing one step further by
registering callback routines for each event of interest.

Dynamic Link Libraries

The Dynamic Link Library (DLL) is a method for sharing code and resources between Windows appli-
cations. (Windows itself is implemented as a set of DLLs.) A DLL is a run-time library that is loaded
into memory on demand and dynamically linked to an application. Applications can call DLL routines
just like normal (statically-linked) library routines.

One important feature of a DLL is that it has its own dataspace, shared by all tasks using the DLL.
(Note: OS/2 has DLLs as well, but OS/2 DLLs have a separate dataspace for each process.)

Dynamic Data Exchange

Dynamic Data Exchange (DDE) is a form of inter-application communication. Applications communi-
cate by setting up DDE “conversations” using invisible windows and a well-defined protoc.01. Communi-
cation is done by sending messages to these windows. The DDE protocol includes facilities for sending
commands and for maintaining data links.

References

[Cowlishaw 901 M. F. Cowlishaw. The REXX Language: A Practical Approach to Programming, 2nd
edition, Prentice-Hall, 1990.

54

LINDA SUSKIND GREEN
IBM

55

Linda Suskind Green
SAA Procedures Language Interface Owner

IBM
Endicott Progranlming Lab

G9316Cl2

Endicatt, MY 13760
Po BQX 6

INTERNET: green ls~g~ l lv rm7.~1~e~ .~~rn .~ :~m
Phone: 607-752-1 'I 72

@Copyright I R M Corporation 1991. 1992

56

REXX History
REXbecomesREXX . 2
REXXFirsts . 3

Jeopardy: REXX for $800 . 5

Jeopardy: REXX for $400 . 7

Jeopardy: REXX for $500 . 9

Jeopardy: REXX for $1000 . 4

Jeopardy: REXX for $600 . 6

Jeopardy: REXX for $200 . 8

Jeopardy: REXX for $400 . 10
Jeopardy: REXX for $300 . 11
Jeopardy: REXX for $200 . 12
Jeopardy: REXX for $100 . 13
REXXButtons . 14
Text of the REXX Buttons . 17

0 REXX Excitements
REXX Excitement! . 19
ANSI . 20
REXX Symposium ... 21
SHARE Inter. est in REXX . 22
Publications . 23
REXX Books as of 3/92 . 24
REXX is International . 25
REXX is International . Part 2 . 26
REXX Trade Press Article Titles . 27
REXXLanguageLevel . 30
Implementations . 32
REXX Implementations by year First Available 33

0 REXX Curiosities
Name of a REXX Entity . 35
IsREXXa ? . 38
Cowlishaw Book Cover . 39

.
@?Copyright IBM Corporation 1991, 1992

-.. ...-..-.-..
R EXX-LSG

I Contents 1
REXXbits Summary

REXXbitsSummary . 41

-
@Copyright IBM Corporation 1991, 1992

58 REXX-LSG

-..

@Copyright IBM Corporation 1991, 1992
------C.I"-_-...----I_.

59 R EXX-LSG

In the beginning, there was

REX (REformed executor)

which eventually became

REXX (REstrlrctured extended executor)

@Copyright IBM Corporation 1991, 1992 60
-___ __-_-_." .I_...I__.-" -_---I- _-

REXX-LSG

I REXX Firsts I

1979 - Mike Cowlishaw (MFC) starts work on REX

1981 - First SHARE presentation on REX by Mike

1982 - First non-IBM location to get REX is SLAC

1983 - First REXX interpreter shipped by lE3M for V M

1985 - First non-IBM implementation of REXX shipped

1985 - First REXX trade press book published

1987 I IBM Selects REXX as the SAA Procedures Language

1989 - First REXX compiler shipped tny 1BM for VM

1990 - SHARE REXX committee becanws a project

1990 - First $HARE presentation on Object. Oriented REXX

I990 - First Annual REXX symposium held (organized by
SLACs Cathie Dager)

1991 - First REXX ANSI committee meeting held

@?Copyright IBM Corporation 199.1, I992 61 R EXX-LSG

I

I I I Jeopardy: REXX for $1000 I

Answer is:

19

Question is:

What are the number of official members of X3J18
(ANSI REXX committee)?

@Copyright IBM Corporation 1991,1992
--..---..----

62 R EXX-LSG

I Jeopardy: REXX for $800 I

4nswer is:

118

guestion is:

How many people attended the first annual REXX
symposium in 1990 (as listed in the proceedings)?

---_I

BCopyright IBM Corporatiotl 1991, 1992 63
---..-

REXX-LSG

I Jeopardy: REXX for $GOO I

Answer is:

203

Question is:

What is the number of pages in ,the secand
edition of TRL (The REXX Language) trocrk by
Mike Cowlishaw?

I ----- I I Jeopardy: REXX for $400 I

Answer is:

646

Question is:

What are the number of pages in T’RM (The REXX
Handbook) written by many people in this room?

-..-

@Copyright IBM Corporation 1991, 1992 65
--.II.-_--_-...-.-._-___

REXX-LSG

I Jeopardy: REXX for $200 I

Answer is:

4794

Question is:

Haw many days has it been since REXX was
started on March 20, 1979? (13 year's, 45 days)

I Jeopardy: REXX for $500 I

Answer is:

5

Question is:

How many programming languages has MFC
designed?
Note that REXX is his latest!!!!

--
@Copyright IBM Corporation 1991, 1992 67

- ----- --,--...---
REXX-LSG

I Jeopardy: REXX for $400 I

Answer is:

350

Question is:

What is the peak amount of REXX electronic mail
MFC received per working day?

I Jeopardy: REXX for $300 I

Answer is:

4000

Question is:

Wtlat is the approximate number of hours
MFC spent on REXX before the first product
shipped?

@Copyright IBM Corporation 1991, 1992 69 REXX-LSG

I Jeopardy: REXX far $200 I

Answer is:

500,000

Question is:

What are the approximate number of REXX related
electronic mail MFC has read 9imx HEXX started?

I -- - -I-- ^___.. - I. .- -.-
@Copyright IBM Corporation 1991, 1992 7o REXX-LSG

I Jeopardy: REXX far $100 I

Answer is:

over 6,000,000

Question is:

What is the largest known total number of lines
of REXX code used in any one company‘?

@Copyright IBM Corporation 1991, 1992 71
---”-*--._.-.--

REXX-LSG

Custorner Creded:

..
-.

*
\

I

I

@Copyright IBM Corporation 1991, 1992 72 REXX-LSG

I

I 1
e I REXX Buttons 1

1 I

REXX
RATED

/

'and I '.
like it!!

@Copyright IBM Corporation 1991, 1992 73 REXX-LSG

a (1 REXX Buttons

IBM Created:

-.

SAA Procedurei '
Lanyuaye/REXX

..

r-- -~ - I I Text of the REXX Buttons I

General
REX is not BASIC

0 REXX is not BASIC
The beginning /* of the end
REXX RX for the future
I’ve been REXX’d and I like it
REXX is not a m.m

REXX Havoc
REXX, Libs and Video Displays

VM
/* Rest Language of the Year */ VM SHARE AWARD
VM/SP has REXX Appeal
RXSQL good medicine!
Programming Power-CUA 2001-REXX

SAA
SAA Procedures LanguagdREXX

’ TSO/E
I practice safe REXX (TSWE v.2)
TSWE is REXX rated!
Tyrannosaurus REXX TSWE v2
TSWE Puttin’ on the REXX

. .

Copyright IBM Corporation 1991, 1992 75 REXX-LSG

ANSI committee started

REXX Users start a yearly REXX Symposium in 1990

SHARE elevated REXX to a Project

Increasing number of books and articles on R.EXX

Increasing number of REXX In-nplementatiorrs on different
platforms by increasing number of companies

--
)Copyright IBM Corporation 1991, 1992 ,7 REXX-LSG

REXX is one of 15 languages to be worked on as an ANSI
standardized language. Qthers are:

APL
APT
BASIC
C
C + +
COBOL
DATABUS
DIBOL
FORTH
FORTRAN
LISP
PASCAL
P L/I
PROLOG

@Copyright IBM Corporation 1991, 1992 78
---.__-.".-_I---

REXX-LSG

t -1 I REXX Symposium I

Annual event started in 1990

Run by Users of REXX

Attended by all vendors of REXX implementations and their
users

includes presentations, demos, panel discussions, etc

Initiated by Cathie Dager of SLAC in 1990

1990: 118 attendees for a single day
1991: expanded to 2 days
1992: planned for May 3-5, ‘l992 in Annapolis, MD

Purpose: “a gathering where REXX users and developers
could meet each other, exchange ideas, and information
about the language and discuss future plans.”

Copyright IBM Carporation 1991, 1992 79 R EXX-LSG

I SHARE Interest in REXX I

--
SHARE Meeting Number of R E X X S e s s i o n s

72 C 3/89 I 9

73 C 8/89 I

74 c 3/90 I

74.5 c5/901 -
75 C 8/90 I

76 C 3/91 I

Note that the sessions are in the REXX Project, MVS Project, and
CMS Project.

-.-
@Copyright IBM Corporation 1991, 1992 Bo

.-------..- ..---. -..--_ --_._.-
REXX-LSG

s of 12/90, REXX has been the subject of:

4 books (plus 4 in the works)

40 User Group Presentations

40 product manuals

40 articles

I REXX Books as of 3/92 I

Published:

The REXX Language, A Practical Approach to Programming
by Mike Cowlishaw (1985, 1490)

Modern Programming Using REXX by Bob O’tiara and Rave
Gomberg (1 985,1988)

REXX in the TSO Environment by Gabriel F. Gargiulo (1990)

Practical Usage of REXX by Anthony Rudd (1990)

Using ARexx on the Amiga by Chris Zamara ;and Nick
Sullivan (1 991)

Amiga Programmers Guide to AREXX by Eric Giguere (1991)

REXX Handbook edited by Gabe Galdberg and Phil Smith
(1 992)

Programming in REXX by Charles Daney (1992)

Planned:

+ 3 others being worked on

@Copyright IBM Corporation 1991, 1992 82 R EXX-LSG

I REXX is International I

REXX books and manuals have been translated into many
languages, including:

+ Chinese

+ French

+ German

+ Japanese

+ Portuguese

+ Spanish

- --
@Copyright IBM Corporation 1991, I992 83

- .._.. --._..--...-------
REXX-LSG

r I I REXX is International - Patl: 2 I

REXX presentations have been given in the following countries:

Austria

Australia

Belgium

Canada

England

France

Germany

Holland

Japan

Jersey

Scotland

Spain

United States

Wales

As of 1982, MFC had received mail from over 30 c:cruntries!

@Copyright lBM Corporation 1991, 1992 84 R EXX-LSG

REXX Trade Pr,ess Article Titles '-.::
. . .

=EXOTIC LANGUAGE
=OF - THE MONTH CLUB

. . . , , -. . .

I ' REXX-Porwrait of a
. .

: : New Procedu.res Lunguuge
L

Capture cross-systertl cupabilities with REXX
--- --- -.-__._,_. .. .

@Copyright IBM Corporation 1991 R .5 R E X X

-
.REXX Trade Press .Article Titles 1%.

. .

@Copyright IBM Corporation 1991 86 REXX

.REXI(Trade Press Article Titles '!

3

, , . , .

@Copyright IBM Corporation 1991 87 R E X X

I REXX Language Level I

I----

R E X X Level U s a g e
1 - - 1 1 . . 1 _ 1 _ 1

3.20 CMS release 3
-_.._I-.--.-------

3.40 CMS release 4 , 5 , 5.5
M U S I C / S P version 2 . 3 ,

..--..--I

3.45 CMS release 6
TSO/E version 2 rel-ease 1.

-.--I

3.46

3.48

3.50

4.00

CMS r e l e a s e 6 with S P E
TSO/E v e r 2 , r e 1 1 wi1;h APAR
370 comp i le r

S A A Procedures Language I.eve1 1
--.".I-..-

OS/400 r e J - 1.. 3
---,.-----

Cowlishaw 1985 1:1ook
P o r t a b l e R E X X v ~ r 1.05 CDOSI
u n i R E X X C CJNTX , A I X I
Persona l REXX version 2 . 0

COS/3,, DOSI
AREXX C A m i g a I
TREXX C Tandem 1

O p e n R E X X C DOS , OS/2 MVS VMSI
_11....__1----

O S / 2 re lease 1.3, 2.0
Cowlishaw 1990 l::,c:,ok

S A A Procedures Larlquage J-evel.. 2
P e r s o n a l R E X X vers ion 3 . 0

C WINDOb4S OS/% , DCIS I
P o r t a b l e REXX V E Y 1.. 10 CDCISI
R E X X / W i n d o w s

-_--

There are REXX implementations for:

AIX

Amiga (interpreter/cornpiler)

DOS

ow2

QS/4QO

Tandem

TSO (interpreter/compiler)

UNIX

VM (interpreter/compiler)

VMS

WINDOWS

from 9 different sources.

@Copyright IBM Corporation 1991,1992 90 REXX-LSG

I REXX Implementations by year First Awailable I

Year

1983

1985

1987

1988

1989

1990

b-

1991

1992

New Platform

VM CIBMI
-.

PC-DOS [Mansfield)

Amiga C W . S. Hawesl

PC-DOS CKilowattI
TSO CIBM1

OS/2 (Mansfield1
VM Compiler CIBMI

JNIX/AIXCWorkstation Group1
Tandem C Kilowatt 3
OS/Z C IBMI
A S / 4 0 O CIBM1
- --
DEC/VMS C Works ta t ion G r o u p I
VM Compiler C Systems Centev 3

370 compiler C IEM1
Rmiga Compiler

C Dineen Edwards G.~roup 3
I”._..__

Windows C Kilowatt 1
Windows C Q u e r c u s 3
MS-DOS CTritusl
os/2 C Tritus 1
UNIX/AIX [Becket Group1

-I

I

@Copyright IBM Corporatiorr 1991, 1992 91
---I -I_--

R EXX-LSG

I" -1
I ---. A REXX Curiosities

- --
@Copyright IBM Corporation 1991, 1992 92

-C-"-.-l.l".-..I.---I

REXX-LSG

r ..-__I I I Name of a REXX Entity I

What is the name of a REXX entity??? Is it:

+ Program

+ Exec

+ Macro

+ Procedure

+ Shell

+ Script

-...---

@Copyright ISM Corporation 1991, 1992 93
I--C-..- I-..--I.

REXX-LSG

P--- -"I___.-- 1 1 Name of a REXX Entity 4 . m I

Term definitions are:

Program: A sequence of instructions suitable for processing
by a computer. Processing may include the use of
an assembler, a compiler, an interpreter, or a
translator to prepare the program for execution, as
well as to execute it.

Exec procedure: In VM, a CMS function that allows users to
create new commands by setting up frequently
used sequences of CP conmands, CMS
commands, or both, together with conditional
branching facilities, into special procedures to
eliminate the repetitious rekeying of those
command sequences.

Macro instruction: An instruction that when executed causes the
execution of a predefined sequence of instructions
in the same source language.

Procedure: A set of related control, statements that cause one
or more programs to be performed.

I Name of a REXX Entity I

shell: A software interface between a user and the
operating system of a computer. Shell programs
interpret commands and user illteractisns on
devices such as keyboards, pointing devices, and
touch-sensitive screens and cornmmicate them to
the operating system.

script: In artificial intelligence, a data structure pertaining
to a particular area of knowledge and consisting of
slots which represent a set of events which can
occur under a given situation.

Note: definitions come from the ISM ”Dictionary off Computing”.

~~ ~~ ~ ~

@Copyright IBM Corporation 1991, 1992 95 R EXX-LSG
~. ~~~~

+ Programming language

+ Exec language

+ Macro language

+ Procedure language

+ Command procedures language

8 Extension language

+ System Extension language

+ Glue language

+ Shell language

+ Batch language

+ Scripting language

@)Copyright IBM Corporation 1991, 1992 9G
--...-----I---

REXX-LSG

I

I Cowlishaw Book Cover I

The 1990 edition of the Cowlishaw book has a new cover which
includes the following changes:

+ King now matches the playing cards King of Spades
meaning

King faces the opposite way

King holds the sward differently

King was chosen because REX is Latin for King!

@)Copyright IBM Corporation 1991,1992
----...----..-------

9 i
-.

R EXX-LSG

REXXbits Summary

- I--------....- --.----
@Copyright ISM Corporation 1991,1992 98 R EXX-LSG

I REXXbits Summary I

+ REXX is an international language

+ REXX is growing in numbers of

implementers

different platforms available

users

books/articles.

+ REXX is in the process of being formally standardized.

+ REXX usage is in the "eyes of the beholder"!

~ ~~~

@Copyright IBM Corporation 1991, 1992 99 REXX-LSG

COMMUNICATIONS AND EVENT HANDLING WITH RDO<

RAINER F. HA US^
I BM

100

Communications
and

Event Handling
with REXX

Rainer F. Hauser

May 1992

Communications and Event Handling with REXX

Rainer F. Hauser 101 May 1992

Some Questions
REXX is a sequential procedure (macro, control or glue) lan-
guage. Is it really, or could it be that it is actually a programming
language? What about REXX and concurrency?

Communications:

Is REXX the right choice for programming communications soft-
ware? Does it provide the necessary constructs for such pro-
grams? What about the performance?

Event Handling:

Is REXX suitable for general event handling? What is missing
today for writing such programs? What are the events which fit
the paradigm of REXX?

Three REXX Extension Packages:

A kind of answer ”by doing” to some of these questions:

REXXIUCV: REXX Interface to IUCV

REXXSOCK: REXX Interface to TCP/IP Socket Calls

REXXWAIT REXX General Purpose Event Handling with
a Central Wait Function

Communications and Event Handling with REXX

Rainer E Hauser 102 May 1992

I = = T = Zurich Research Laboratory I I -111
I L.L -a

REXX and Concurrency Today
A REXX program can process events sequentially. To do so, it
needs the possibility to find out when an event has occurred,
but has not yet been consumed.

The following REXX statements determine whether a console event is
pending:

i f e x t e r n a l s () >O t h e n . . .
When no event is currently pending, it needs the possibility to
wait for an event.

The following REXX statements wait for a console event:

s a y ' E n t e r y o u r name, p l e a s e . '
parse e x t e r n a l name

To avoid being blocked despite a pending event which could be
processed, it needs the possibility to wait for one event within a
given list of events.

Today, a REXX program can

sometimes not determine whether a specific event is
pending

often not wait for a specific event

not wait for one event within a given list of events

Communications and Event Handling with REXX

Rainer F. Hauser 103 May 1992

REXX and Communications
One system facility and the two REXX extension packages
REXXIUCV and REXXSOCK provide communications in REXX:

APPC:

APPC is available via the SAA Common Programming Interface
Communications (CPI-C) and the Callable Service Library
(CSL).

IUCV:

IUCV is a communications facility available on VM systems.
The REXXIUCV program provides access to it from REXX on
VM/CMS. Therefore, it is a system-dependent communications
extension for REXX.

TCP/IP:

TCP/IP is a communications facility available on various differ-
ent platforms. The REXXSOCK program provides access to it
(Le. to the socket calls) from REXX on VM/CMS. Therefore;it
has been designed as a system-independent communications
extension for REXX.

Communiczltions and Event Handling with REXX

. ' Raiher F. Hauser 104 May 1992

i ==>-
I = = T = Zurich Research Laboratory - - 111 I-"."

REXXIUCV:

Syntax: resu l t = IUCV(subfunction, argl , ...? arg,)

Subfunctions:
0 INIT, TERM, QUERY, WAIT, ...

0 CONNECT, ACCEPT, SEVER, ...
0 SEND, RECEIVE, ...

Examples:
tempdata = IUCV('CONNECT','RFH',Z55,'No')
parse var tempdata p a t h i d msglim .
i n t t y p e = IUCV('WAIT', 600, 'NOWAIT')
n e x t i n t = IUCV (QUERY' , ' NEXT')
parse var n e x t b u f . b u f t y p e b u f p a t h i d rest
...

Problems:

Assembler Paradigm vs. REXX Paradigm

Special Purpose Wait Subfunction

Rainer F. Hauser

Communications and Event Handling with REXX

105 May 1992

c ..FZ GYZ Zurich Research Laboratory In ylrr ---
. . .

REXXSOCK: _,. I . , :
,..

i .I! ' .. '

Syntax: result = TCPIP (subfunction, argl, ..., aq,)

Subfu.nctions:

INIT, TERM, QUERY, GETHOSTID, ...

SOCKET, BIND, CONNECT, ACCEPT, CLOSE, ...

0' WRITE, READ, SEND, RECV, ...

Examples:
. ,

inetaddr = 'AF I N E T 1291 9.4.3.2'
socket id = T C P I P (' SOCKET')
tempdata = T C P I P ('CONNECT' , socke t id , i ne t addr)
...

a Problems:

0 C Paradigm vs. REXX Paradigm

Functions such as CONNECT and READ block the caller

Data can be encoded as ASCII or EBCDIC

Communications and Event Handling with REXX

Rainer F. Hauser
. I

106 May 1992

Common Design Decisions
Both packages are based on the following design decisions:

The status of the communications facility is kept by the
REXX extension package and can be determined by the
REXX program.

The status of the communications facility should not be
destroyed when the REXX program terminates.

Individual IUCV primitives or TCP/IP socket calls should
be provided as individual function calls to REXX. In other
words; there should be a one-to-one mapping between
REXX functions and IUCV primitives or TCP/IP socket
calls, respectively.

A REXX program should be allowed to process events
selectively as appropriate to the program (and the pro-
grammer).

Return codes are presented to the REXX program in the
REXX variable RC.

Limits such as the maximum length of messages are nec-
essary, but should be easy to change. (Such limits should
also make sense to human beings and not to computers.
Therefore, values such as 1000 are a better choice than
values such as 1024).

Communications and Event Handling with REXX

Rainer F. Hauser 107 May 1992

3
I - = = =y= Zurich Research Laboratory I - -

Experiences
REXX as a programming language is well suited for commu-
nications software, but with the current language features, there
are some limitations and inconveniencies:

Conversions:

REXX does not provide functions to convert ASCII strings to
EBCDIC strings and vice versa.

astring = TCPIP ('READ' , socket id)
e s t r i n g = A2E (astring)
...

Event Handling:

REXX does not provide functions to wait for one of several ex-
pected events. Assume that a REXX program needs to wait for
either an IUCV or a TCP/IP event.

event = WAIT (' IUCV PATH 5', ' TIME 10MIN')
event = WAIT('TCP/IP READ 4',' TIME 10MIN')
event = WAIT (I IUCV PATH 5'' 'TCPIIP READ 4')
...

Communications and Event Handling with REXX

Rainer F. Hauser 108 May 1992

I

REXX and Event Handling
The REXX extension package REXXWAIT on VM/CMS pro-
vides basic and advanced event handling in REXX through a
central wait function for REXX programs and a low-level inter-
face for REXX extension programs.

State of the Art (The REXX Handbook):

Amiga REXX: IPC (waiting on message port)

REXX for Tandem: DELAY function and TACLIO IPC

REXX for Unix: Plan for IPC (SOCKETS, STREAMS)

REXXIUCV: IUCV(’WAIT’,seconds)

0 .. .

Common Events:

Keyboard and Mouse: Character Oriented, Block Mode,
Window Applications ...

0 Time: Relative and Absolute Time, Time Events in Files ...

Mail: Messages, Notes ...

0 Synchronization: Inter-Process Communication, Locks,
Semaphores .. .

Communications and Event Handling with REXX

Rainer F. Hauser 109 May 1992

, ' , REXXWAIT

WAIT Function Syntax:
e v e n t = WAIT (e v e n t l argsl, ...' even t , args,)

Additional Events: IUCV, TCP/IP

Examples:
e v e n t = WAIT (' CONS NOREAD' , ' TIME 10MIN')
e v e n t = WAIT ('CONS', 'MSG', 'FILE MY TIMEFILE A6')
e v e n t = WAIT('T1ME ==:=O:OO','ALL')
e v e n t = WAIT ('IUCV TYPE 3 PATH 15')
e v e n t = WAIT('TCP/IP READ 15 WRITE 20 21','CONS')
e v e n t = WAIT('T1ME 10S','TIME 10:30:15','TIME')
...

, . SETVALUE Function Syntax:
r e s u l t = SETVALUE (even t args)

QUERYVALUE Function Syntax:
r e s u l t = QUERYVALUE (e v e n t args)

Communications and Event Handling with REXX

Rainer F. Hauser 110 May 1992

= = T = Zurich Research Laboratory I .. - _-- _- _1 --

REXXWAIT REXXTRY Sample Session
Sample session with REXXTRY, the facility to interactively
execute REXX instructions:

s a y s e t v a l u e (' M A 1 L C L A S S * NOHOLD')
OFF
R; <REXXTRY> ...
s a y w a i t (' M A I L ' , 'CONS')

RDR F I L E 0 0 5 0 SENT FROM NET P U N WAS 1 9 9 1 RECS 0022 ...
F i l e (2 4 0 4) spooled to HAUSER -- o r i g i n ZURLVMl (RFH) ...
M A I L 0 0 5 0
R; <REXXTRY> ...
say queryval ('MAIL 50')
1 9 9 2 / 0 4 / 1 6 0 5 : 3 9 : 4 1 Z U R L V M l (R F H) NOHOLD A 0 0 PROFILE EXEC
R; <REXXTRY> ...
s a y que ryva l (' M A I L 5 0 TAG')

2 NetData
R; <REXXTRY> ...
s a y queryval ('MAIL 5 0 NETDATA')

2 ZURLVMl (RFH) ALMVMD (HAUSER) 1 9 9 2 0 4 1 6 1 3 3 9 3 6 4 9 9 5 8 8 Ack
R; <REXXTRY> ...
s a y queryval ('MAIL 5 0 NETDATA 1')
Note
R; <REXXTRY> ...
s a y q u e r y v a l (' M A 1 L 5 0 NETDATA 2 ')
F i l e A 2 . P R O F I L E . E X E C
R; <REXXTRY> ...

Communications and Event Handling with REXX

Rainer F. Hauser 111 May 1992

- - - . - Zurich Research Laboratory I rwf -5%

REXXWAIT REXX Sample Program

Sample program using REXXWAIT and REXXSOCK (without
the necessary error testing):

...
address command ‘RXSOCKFN LOAD‘
call TCPIP ‘INITIALIZE’, ’TCPIP‘
if r c o 0 then exit rc
s = TCPIP (‘ SOCKET‘)
call TCPIP ’BIND‘, s, ’AF INET 1952 9.4.3.2’
call TCPIP ‘LISTEN’, s, 5
call SETVALUE ‘TCPIIP SOCKET’ s ‘NON-BLOCKING’
do forever

-

status = TCPIP (‘QUERY’, ‘ STATUS’)
parse var status init iucvstate reason
if iucvstate<>’Connected’ then exit 3000
eventd = WAIT(’TCP/IP READ‘ s, ‘CONS’, ‘TIME 1H’)
parse upper var eventd handler rest
select
when handler=‘TCP/IP‘ then do

desc = TCPIP (‘ACCEPT‘, s)
parse var desc d caf cport cipaddr

Communications and Event Handling with REXX

Rainer F. Hauser 112

...
call TCPIP ‘CLOSE‘, d

end
when handler=‘CONS’ then leave
otherwise nop

end
end
call TCPIP ‘ TERMINATE‘
address command ‘NUCXDROP RXSOCKFN’
...

May 1992

- ---_I - - . I Zurich Kesearch Laboratory - I I 1-1
. . .-

REXXWAIT Low-Level Interface

Through the low-level interface provided by REXXWAIT, other
programs (such as REXXIUCV and REXXSOCK) can export an
event name (such as IUCV and TCP/IP) and some branch ad-
dresses for communicating with the REXX programs using the

' functions provided by REXXWAIT.

Communications and Event Handling with REXX

Rainer F. Hauser 113 May 1992

I - - = = Zurich Research Laboratory 1 I) L &I-

. .~

REXXWAIT. Assembler Sample
.The following /370 Assembler code shows the code to register
an event handier:

LA R1, RXWPLIST R1 -> PLIST
svc 202 Call CMS
DC AL4 (1) Error

...
RXWPLIST
~.RXWCMD-

RXWNAME
RXWWTECB
RXWWAIT
RXWWAITE
RXWSETV
RXWQRYV

DS
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

OF
CL8 ' RXWAITFN'
CL4 ' SET'
XL4'00000000'
CL8'TCPIIP'
F'-1'
F ' -1 '
F ' - l '
F'-1'
F' -1'
F'-1'
F'-1'
F' -1'

Alignment
CMS command
RXW command
Special fence
Registered name
Address of ECB
BAL address WAIT
BAL address WAIT-E
BAL address SETV
BAL address QRYV
Not used yet
Not used yet
Not used yet

...
The program registers the event handier name 'TCP/IP' and
provides . , the following BAL or ECB addresses (or F'4'):

0 For WAIT: Wait ECB, WAIT and WAIT-E

For SETVALUE: SETV

f: : , .

I* .:; > . - 1(g . . ,

For QUERYVALUE: QRYV

Communications and Event Handling with REXX

- I Rainer F. Hauser 114 May 1992

REXXWAIT Register Conventions
When REXXWAIT passes the control to an event handler, the
following registers are used:

RO l e n g t h of a r g u m e n t s
R1 p o i n t e r t o a r g u m e n t s
R2 c a l l s e q u e n c e f l a g (f o r WAIT o n l y)
R 1 2 address of e x i t r o u t i n e (base regis ter)
R 1 3 save area f o r g e n e r a l p u r p o s e registers
R 1 4 r e t u r n address
R 1 5 same as R 1 2

The event handler passes the following data in the registers
back to REXXWAIT

RO l e n g t h of r e s u l t s t r i n g
R1 p o i n t e r t o r e s u l t s t r i n g
R 1 5 r e t u r n code (0, 1 o r error r e t u r n code)

Example:

Event Handler 'ABCD':

WAIT('ABCD T h i s i s t h e a r g u m e n t s t r i n g ')
-- _- 'ABCD T h i s i s t h e r e s u l t s t r i n g '

The event handler sees the arguments 'This is the argument
string' and returns the result 'This is the result string' to the
REXXWAIT program which subtracts or adds the event handler
name 'ABCD', respectively.

Communications and Event Handling with REXX

Rainer F. Hauser 115 May 1992

I - - --
I - I --I
c E = I = Zurich Research Laboratory

Considerations

Portability:

Some of the basic events are generally available on all operat-
ing system platforms on which REXX is implemented. Other
events require different arguments. Again others may not be
available at all.

WAIT (' TIME 10 : 30 : 15')
WAIT (' TIME ZHOURS 15MINUTES')
WAIT ('CONS READ')
WAIT('F1LE MY TIMEFILE A6')
WAIT('F1LE C:\REXXSYS\MY.TIM')
WAIT ('FILE' mytimefile)
SETVALUE ('MSG ON')
SETVALUE (' SMSG VMCF')

Operating System Support vs. REXX Support:

The same functions can be provided to a REXX program either
as Operating System facilities or as REXX built-in functions:

EXECIO vs. linein() and lineout() etc.

WAKEUP vs. wait() etc.

The WAKEUP program (version 5.5) has strongly influenced the
design and implementation of REXXWAIT!

Communications and Event Handling with REXX

Rainer F. Hauser 116 May 1992

RuoCrOOLS/MVS

EARL D. HODIL
CHICAGO-SOFT

117

s

I

1

Q

REXXTOOLS/MVS
A Toolkit for MVS Programmers

RWX Symposium
Annapolis, Maryland

May 5,1992

Earl D. Hodil
Chicago-Soft, Lfd.

45 Lyme Road, #307
Hanover, New Hampshire 03755

Phone: (603) 643-4002
FAX: (603) 643-4571
MCIMAIL: CHISOFT

II Introduction
What Is RWXTOOLSIMVS?

REXXTOOLS is a collection of assembler-based
functions and utlllties designed to help the REXX
programmer be more productive.

Who will use REXXTOOLSIMVS?

Application programmers - ISPF Dialogs, batch jobs,

System programmers -function packages, utilities
for themselves and application programmers.

etc. for end-users.

RDOCTOOLS Components (REXX perspective):

REXX function package - 29 new functions

REXX host command environment - ADDRESS RE=

REXX compiler - encapsulates REXX programs in
standalone load modules

Sample applications - TSO utilities, programming
examples

RDO(Functions:

- ABC = MYFUNC (ARG1 , ARG2)

- ARG1& ARG2 are arguments passed to the function

- MYFUNC returns a value

- MYFUNC could have side-effects (1% set other variables
In the caller's variable pool)

II - J
m introduction=

0 copyrim I SW , Chicago-*& ud. 4

REXX Subroutines:
- CALL MYFUNC ARG1 ARG2

- Arguments have the same meaning as for functions
- Can optionally return a value (RESULT special variable)

119

How are functions and subroutines developed?
R U O (- Internal and external subroutines and functions

* Complled/assembled languages (a la REXXTOOLS)

Search order

* Function packages

- Groups related functions together
- Pre-loaded at environment initialization

- Can't be developed In REXX (unless you have R W (
compilerl)

REXX Host Commands: I
any expression not ldentlfied as a language construct

"VGET (ZUSER) SHARED"
expression is evaluated and string is passed to host
command environment routlne.

ADDRESS instruction is used to switch host command
environments.

ADDRESS TSO "LISTA ST H'
Each REXX environment has a default host command
environment

Parameters module host command environment table maps
environment names to routines.

120

Why VSAM?
* Lots of existing VSAM files
* Better for multi-user applications than ISPF Tables

What is supported?
All VSAM dataset organizations

- KeySequenced Data Set

- Entry-Sequenced Data Set

- Relative Record Data Set

- Unear Dataset (sort of)
* Interface is patterned after DFP macros

Ld 1
v VSAM Functions I

r

II -
I VSAM Functions IL

Opening and Closing VSAM Datasets:

CALL OPEN 'VSAM', ddname Lacboptions]

* CALL CLOSE 'VSAM', ddname

* ACB options string
"(ADR,SEQ,NDF)'

Reading and Writing Records:

* CALL GET ddname Lkey] [,rploptions]

CALL PUT ddname, record [,key] [,rploptions]
* RPL options string

"(KEY,DIR,GEN)'

Deleting Records:
* CALL ERASE ddname

121

r t

Other VSAM Functions
* CALL ENDREQ ddname
* CALL POINT ddname [,key] [,rploptions]
* CALL VERIFW ddname

VSAM Functions
ACB Options:

Most ACB options are supported:

ADR, CNV, KEY, DIR, SEQ, SKP, IN, OUT, DFR, NDF,
NIS, SIS, NRM, AIX, NRS, RST

* Stay in effect from OPEN to CLOSE

RPL Options:
* Most RPL options are supported:

ADR, CNV, KEY, DIR, SEQ, SKP, ARD, LRD, FWD,
BWD, NSP, NUP, UPD, KEQ, KGE, FKS, GEN

Shared between calls for each ddname.
* Stay In effect until changed

122

E
J VSAM Functions

Special Variables:
Used to return information from functions
RC and REASON - usually straight irom VSAM
OPEN:
- SRXTTYPE
- SRXTLRCL
- SRXTCNM
- SRXTKEYO
- SRXTKEYL
- SRXTRECS
- SRXTHRBA
- SRXTERBA

L

I -I- L

., .
I
J VSAM Functions

Special Variables (contlnued)
GET/PUT: - SRXTKEY
- SRXTRBA
- SRXTRECL

L

-h

123

Sample R W (program:
I * REXX * I

ADDRESS TSO 'ALLOC FI(RXTKSDS) DA(RXTKSDS.DATA) SHR REU'

CALL OPEN ' V S A M ' , 'RXTKSDS', ' (KEY,DIR,IN)'

CALL TPUT 'ENTER KEY OR 'END':', ' A S I S '

KEY = TRANSLATE(TGET(, ' W A I T '))

Do WHILE KEY <> 'END'

CALL GET 'RXTKSDS', KEY, '(DIR,GEN,KEY)'

I F RC 0 THEN
SAY 'No WTCH FOR KEY='KEY' FOUND.'

ELSE

SAY 'RECORD='RESULT
CALL TPUT "ENTER KEY OR 'END': ' , 'ASIS'

KEY = TRANSLATE(TGET(, ' W A I T '))

END
CALL CLOSE ' V S A " , 'RXTKSDS'

ADDRESS TSO "FREE FI(RXTKSDS)'

E X I T

Access to System Services
* Patterned after and Interfaces to applkatlon macros

Problem state only
* All are task related
* Functional areas:

- Virtual Storage Management
- Resource Control
- Security
- Operator Communication and logging

I1 -
I MVS Supervisor Services

I - b, CoWrlgM 1892, Chicago-Soft, ud. 14

121

Virtual Storage Management:

STGAD = GETMAIN(amount [,subpool] Lloc] Lbndry] [,fill])

CALL FREEMAIN addr, amount [,subpool])

uses:
Communicating with non-function asm programs

* Multi-tasking REXX application inter-task communication

J MVS Supervisor Services
Resource Control

Problem: How to share a resource between asynchronous
processes?
Resewing and freeing an arbitrary resource:

CALL ENQ major, minor [,control] Lscope] Lreqtype]

CALL DEQ major, minor [,scope] Lreqtype]

Halting execution until conditions are right:

CALL WAIT 'ECB, ecbad [,longwalt]
CALL WAIT 'ECBLIST', ecblad [,eventno] [,longwait]

CALL WAIT SEC', seconds

Signaling event completion:

CALL POST ecbad [,compcode]

125

i l f MVS Supervisor Services
Securing a resource:

* System Authorization Faciltiy (SAF)
- Works with major security packages (RACF, ACF2, etc.)

- Router Table must be set up
- SAF must be active

* Problem state only - can't counterfeit userld

* Modelled after RACROUTE macro:

CALL RACROUTE 'AUTH, entity, [,class] [,attr] [,dstype]
[,volser] Loldvol] Lappl] Lowner] [,acclv] [,racflnd]
[,generic] Lreqstor] Lsubsys]

I I I - li
MVS Supervisor Services

Operator Communication and Event Logging:

* Single and Multl-line console messages:

Wold = WTO(msgtext [,msgcount] [,route] [,descl)
- msgcount > 0 uses multi-line format

- no direct control of routing and highlighting

CALL DOM wtoid
- removes non-scrollable messages

- not an error if message is already gone

Two-way communication:

CALL WTOR msgtext [,waitsecs] [,route]

- Does wait Internally

- Handy for batch jobs
I - 1 o Copyrlgm 1 9 8 2 , Chicago-%& Ltd. 10

i

12G

I

MVS Supervisor Services
Operator Communication and Event Logging (continued):
* Logging events:

CALL W L msgtext

- Fast way to keep track of program execution

1

TSO Services
lnput/Output Functions:

REXX SAY instruction Is limited

- PUTLINE only
- No formattlng control

R W (PULL instruction:

- GETLINE only

- Does have nice parsing

- Complicates matters when using the data stack

ISPF Dialog Manager

- Must be under ISPF command to use
- Can't use In certain environments like TEST

F

REXXTOOLS TPUT
* CALL TPUT string Ltptype] Ltpwait] [,tphold] Ltpbreak]
* Line mode:

- tptype: 'ASIS' or 'EDIT'
- ASIS like CLlST WRITENR:

CALL TPUT ' E n t e r Your Name:', 'AS
- No echo prompting:

CALL TPUT 'Enter Your Password:'!
'ASIS'

I S '

I ' 2 4 ' X , ,

I I I

TSO Services &
REXXTOOLS TPUT
* Fullacreen mode:

- tptype: 'NOEDIT or 'FULLSCR'
- string argument contains 3270 data Stream:

DS = 'F5C3'XIISBA(1,1,80)II'IDFB'XII'ENTER YOUR NAME ===>'I(,
' 1CCB13 'X I ISBA(1,40) I I '1DFB'X

CALL TPUT DS, 'FULLSCR'

I - 1 8 mpyriM 1982, Chicago-Soft, LW. 22
11

128

r Miscellaneous Services 'TI
Stem Handling Functions

RUO(stem variables - i.e., variables with a dot

I I * Sorting arrays (stems) with numeric subscripts: II
CALL STEMSORT stemname [,startsub] [,stemcount]

- sortfields like DFSORT or SYNCSORT
[,sorttields]

*(start,length,type,directjon)"
- Uses Heapsort algorithm (see Wirth)

* Displaying arrays with numeric subscripts:

CALL STEMDISP 'BROWSE', stemname Lstartsub]

- Uses BRlF service for display (no dataset)

[,stemcount] [,title] Lpanel]

nI 4 n I . -
I Miscellaneous Services

II String Handling Functions:

* DltRcult parsing

II - Parsing where the location and frequency of the
delimiters is dltRcult to predict.

- Example:

DSN('abc.efg(one)') KEYWORDP(two)

- CALL PARSETOK string, stemname [,nbd] [,blankopt]
[,dropopt1

129

I1 PARSETOK Example:

STRING = 'DSN(ABC) NONAME'
CALL PARSETOK STRING, "TOK.', " () " , "BLANKS'
/ * TOK.0 = 6; TOK.1 = 'DSN'; TOK.2 = ' (I ;

TOK.3 = 'ABC'; TOK.4 = I) ' ; TOK.5 = ' I ;

TOK.6 = 'NONAME' */

String Handling Functions (continued):
Sorting words

- CALL WORDSORT string Ldiropt]
- diropt - Asending or Descending
- Useful for sorting indexes into arrays:

A.C = 5

A.A = 1

A.6 = 2
INDEX = 'C A 8'

INDEX = WORDSORT(1NDEX)

I* INDEX = ' A €3 C ' */
W I = 1 TO WORDS(1NDEX)

SAY VALUE('A. 'WRD(INDEX,I))

END

Miscellaneous Services

Y

130

I

MVS/Quick-Ref Function:
CALL QWIKREF fastpath, stemname Lmaxlines] [dropopt]
- fastpath just like QW command:

topic= item
"M=IEF4501"

- Possible use: trouble ticket automation

L

Miscellaneous Services

Useful when working with existing VSAM files
370 Packed decimal to REXX decimal
CALL P2D packnum Lscale]

PACKNUM = '1020000C'X

PRINTNUM = PPD(PACKNUM,P)

/ * PRINTNUM = 10200.00 * /

REXX decimal to Packed decimal
CALL D2P printnum Ln]

PACKNUM = D2P(100.45,5)

/ * PACKNUM = '000010042C'X * /

1

131

I I -
I ADDRESSREXX

* Issuing a command:

ADDRESS REXX
“THIS IS A HOST COMMAND”

* RXTADDRX R U M program

I* REXX *I
SAY ARG(1)

RETURN 4
* Argument: host command string

* Must return numeric return code

* Limitation: no way to access calling program’s variables

I I - RE==- J

* Compiles RUO(programs into standalone, 31 bit, load

* Full REXX language supported (including INTERPRET)

* No transient library, and no licensing for object modules

* Load modules can be used for:

modules.

- R U M functions (function packages)

- TSO commands

- Batch programs
Parmlist type is determined dynamically

* Program source is included in the load module:

- Source can be compressed (50-80+% compression)

- Source can be encoded (renders it unreadable)

- 1 0 CoWr!ggM 1 8 8 2 , Chicago-&@ Lfd, 30
I 1

132

J
REXX Compiler

Compilation Process:
RXTRXPRE
Run4lme

PmRx Module
I

I

dled REXX Program

System
Linkage

Module Editor

;Load Module)
1. Decode R W (

SOUTCO

2. Convelt
paramsler lid

3. Build REXX
EWitUllment

4. -11 system
interpreter

5. Converl
returned
value

6. Clean up

7. Return

I u s O U ~ .

os
Load
Module

I I I I
-
I REXX Compiler

Relatlonshlp of compiled REXX programs to system Interpreter:

Comp

I
-

I 71 o ~ o p y r i g ~ 1982, Chicago-*% w. 32
I I

IRXMEC
1. Execllteth. BALR 14,15

2. Return

133

Compiler Listing
1

ORXC 01 .02.01 DSN=BI22EDH.USER.EXEC NAME=SAMPREXX

0
REXXTOOLS/MVS REXX COMPILER V01.02.01 18 Jan 1992 12:11:48

COMPILING FROM BI22EDH.USER.EXEC ON VOLUME 780091 (3390)

CURRENT USERID IS BI22EDH

OPTIONS ME: COMPRESS XREF VERSION(O1.Ol.01) NAME(SAMPREXX)

Compller Ueting (continued)
1

ORXC 01 .02.01 - A sample REXX program
0 SOURCE LISTING

0 L INE

1 / * REXX - A sample REXX program * I
2 AWRESS TSO / * e s t a b l i s h h o s t command env i ron . * /
3 / * Get the cu r ren t da te and
4 w r i t e i t t o t h e t e r m i n a l */
5 today = da te ()
6 say 'today i s ' t o d a y

7 / * now loop f o r awhi le * /
8 Do i = 1 t o 30

134

I

Compiler Usting (continued)

9 Say 'The time i s now: ' t ime()

10 Select

1 1 When (i = 10) Then

12 Say 'going.. .'
13 When (i = 20) Then

14 Say 'going ..:
15 When (i = 30) Then

16 Say 'gone.'

17 Otherwise

18 NOP

19 End / * end o f Select * I
20 End / * end o f do i = 1 t o 30 * I
21 / * r e t u r n t o o u r c a l l e r * I
22 exi t

- A sample REXX program

COMPRESSED SOURCE LISTING

ADDRESS TSO

today-date ()

say 'today i s 'today

Do i = l t o 30

Say 'The t ime is now: ' t ime()

Select

When (i=lO) Then

Say 'going ...'

135

1
J REXX Compiler

Compiler Listing (continued)

9

10

11

12

13

14

15

16

17

When (i = 2 0) T h e n

Say " g o i n g . . . I'
When (i = 3 0) T h e n

Say

O t h e r w i s e

NOP

End

End

e x i t 0

L

m
U

e
REXX Compiler

Complier Listing (continued)
1

ORXC 01 .02.01 - A sample REXX program

0 SYMBOL CROSS-REFERENCE LISTING

0 SYMBOL REFERENCES

ADDRESS 2

DATE 5
DO 8

END 19 2 0

EXIT 22

I 8 11 13 15

NOP 18

136

17

6 9 12 14 16

10

1 1 13 15

9

8

5 6

2

1 1 13 15

Compiler Listing (continued)

1

ORXC 01 .02.01 - A sample REXX p r o g r a m

0

COMPILATION FINISHED

ELAPSED TIME: 0.938795 (SEC) CPU TIME: 0.60 (SEC)

COMPRESSION: 523 BYTES COMPRESSED TO 204 BYTES. 60.99%
COMPRESSION

SOURCE RECORDS READ 22

OBJECT RECORDS WRITTEN 12

L I S T RECORDS WRITTEN 88

137

II

REXX Compiler
Compiler Benefits:

Prevents unauthorized modifications to distributed RUO(
programs

Saves DASD space

Reduces run times

Load time reductions of 70+% (100% for function
packages)

Execution time reductions 10-15%

Best profile for reducing time:

+ medium-to-large REXX program

+ executed frequently

+ short executlon path

L
J

1 I! I I t
REXX Compiler

PROCTSO EXEC

L

Utility function for parsing arguments like CLIST PROC
statement
Before and after compilation comparison:

ITEM BEFORE AFTER COMMENT

Bytes of code 21 349 4578 (78.56% compression)

CPU secs/cail 0.08 0.02 (0.06 sec. saved; %75

Executed approx. 1000/day (savings of 60 seconds)

Assuming $lOW.OO/hour CPU time:

reduction)

- Saves $16.00/day
- Saves $6080.00/year

J

1

138

RD~(~OOI--CHOSEN LANGUAGE OF MAN AND MACHINE

MARC VINCENT (RVIN
MANAGEMENT VISIONS INSTITUTE

139

SPEAKER:

FROM :

EVENT :

DATE :

OBJECTIVE:

TITLE :

THESIS:

PREMISE:

Marc Vincent irvin

Management Visions Institute

REXX Symposium 1992 (May 4th and 5th)

Copyright 5/92

Show NL reality, and power NL can give REXX

REXX2001 - Chosen Language of Man and Machine
Subtle adjustments to REXX could make it the
premier language f o r intelligent systems
and occasional programmers.

If science fiction is any barometer, we are
heading toward computers able to understand
what we say, and say what they understand.
Many feel that day is far away because any
system that smart requires human
intelligence; true human intelligence,
according to AI experts, won't be in our life
times. Those experts are wrong. A language
that needs no programming class, and responds
coherently to English could, according to my
experiments with REXX, Expert Systems (ES),
and Natural Language (NL) , be on Personal
Computers (PCs) in no time. The secret to
achieving the goal ahead of schedule lies in
purging all the unnecessary baggage left over
from the evolution of computers.

When computers were first conceived they
were expected to handle the same kinds of
information people do: words, numbers, and
symbols. After their invention reality set
in with bits and bytes, disks and tapes,
sequential and random files, relative and
hierarchical databases, and on and on and
on... REXX and cover functions can do away
with most of the junk that waste programming
time. Once purged REXX, ES, and NL can work
together to produce a language that
occasional programmers will love, and
professional programmers can build
intelligent systems with.

140

EMPOWERING CODERS FOR THE 21ST CENTURY

Hardware computing power has grown geometrically over the
past twenty five years. Software computing power has grown
very little. It is easy to see why this is. The hard
problems in hardware have been bridged and standardized
because hardware is directed by a predictable element -
computer programs. On the other hand, software has no such
luxury. The hard problems in software are precipitous and
transient because software is directed by an unpredictable
element - human programmers. Achieving similar gains is not
impossible, however. The hard problems in software can be
bridged and standardized if software is directed by
predictable elements that cultivate the unpredictable
natures of human programmers. Below is a list of road
blocks programmers face, a proposed set of solutions, and a
some recent experiments devoted to empowering programmers.

Road blocks to empowering programmers for the 21st Century.

1. Differing data, field, and integer types.
2. Differing call formats and complex command syntax.
3 . Differing sub-system interfaces and data access methods.
4. Lack of real-time development and run-time features.
5. Lack of interactive and friendly development methods.
6. Lack of cognitive psych, decision support, and AI models.

Solutions to empowering programmers for the 21st Century.

1. Dynamic data typing by use on words, numbers and symbols.
2. Common call methods with toggling for special syntax use.
3 . Cover functions whose inputs look the same to all users.
4 . Add date/time based initiators and scripts.
5. Workspaces, smart debug features, and natural language.
6. Intergrate Rule, Case, Genetic, Object, & Neural Models.

My experiments with empowering programmers for 21st Century.

1. Using REXX as a platform gets around first road block.
2. RUN() uses interpret not CALL, and ES/NL options toggle.
3 . FILECHNG, REXXRDR, and REXXWRTR will standardize all I / O .
4. CLKQUEUE gives temporal power needed for smart programs.
5. REXXCALC w/APL's online tools and PARACODE NL syntax ANS.
6. All empowerments put in CLKRULES' leave room f o r more.

141 (C)Copyright 05/92 By Marc Vincent lrvin

I

FILECHNG is a file copy utility with options that:

1. Finds fields and replaces them with other fields.
2. Selects portions of a file or its records to work on.
3 . Input can be from disk, reader, or VM command.
4. Sequence checks, purges dupes, and writes change reports.
5. Replace field can be used to select, purge, insert data.
6. One powerful option puts code wherever FINDS occur.

One problem, involving RACF based MVS security, required a
list to be made of TSO users that were given IDS, but had
never used their IDS. Only two passes of file change were
done on an input file that contained all the multi-record
RACF reports of the TSO IDS not used in the last 60 days. A
sample set of records from RACF ID report follows ...
USER=TSOUSR NAME=TED BUNDY OWNER=SYSTEM CREATED=88.289
DEFAULT-GROUP=SYSl PASSDATE=00.000 PASS-INTERVAL=60
ATTRIBUTES=NONE
REVOKE DATE=NONE RESUME DATE=NONE

NO-MODEL-NAME
LOGON ALLOWED (DAYS) (TIME)

...

Below is REXX code that 1) selects the records, and 2)
formats them into single lines for examination and display.

/ * MVI */
IFILECHNG LISTUSER ASOF0392 A PASSDATE WORK A',

I*PICKRECSl, / * IF REPLACE FIELD = // THEN PICK REC */
'USER=(l 15) //I, / * PICK RECORDS WITH USER'S ID */
'SSDATE=OO / / I , / * PICK RECS FOR NEVER USED IDS */
'NO-MODEL / / I , / * PICK REC THAT WILL ACT AS RPT END */

IF RC 0 THEN EXIT 100
'FILECHNG PASSDATE WORK A = = = I ,

I *RECDLM(NO-MODEL) ' , / * MAKE ONE REC OF MANY RECS */
'*PICKRECS', / * IF REPLACE FIELD // THEN WRITE REC */
ISSDATE=00.000 / / I , / * PICK NEVER USED RECORDS ONLY */
/ * NOTE, // CAN BE FOLLOWED BY AN EXITNAME TOO */
'*OUTEXIT(PASDAT:)I / * TELL FILECHNG NAME OF CHK LGC*/

IF RC 0 THEN EXIT 200
EXIT 000

PASDAT: / * THIS ROUTINE IS READ/INTERPRETED BY FILECHNG */
PARSE VAR $REC 1 'USER=' UID I ' ,

1 'CREATED=' ADDAT I I ,

1 'SSDATE=' PASDAT ' I ,
1 'INTERVAL=' PWINT ' '

IF PASDAT = '00.000' & ADDAT <= '92.004' 61 PWINT = ' 6 0 ' ,

/ * TO CHG O/P REC PUT VAL IN $REC, TO DEL PUT IN $REC */
DOC :
SAY I REXXNAME : PASSDATE 1

EXIT 000

THEN SAY 'USERID (IUIDI) NEVER USED SINCE ADD ON' ADDAT

142 (C X o p y r i g h t 05/92 by Marc V i n c e n t l r v i n

CLKQUEUE is a scheduling utility with options that:

1. Run VM commands based on "date" and/or 11time81 requested.
2 . Requests may be run once or requeued every n days.
3. Commands can be rerun every n hours, minutes, or seconds.
4 . Time scripts are possible as CLKQUEUE can call itself.
5. Runs have return codes useable by later clock requests.
6. Its powerful options execute all kinds of REXX code.

Below is a ad-hoc sampling of the many ways that REXX code
can be invoked on a date and time basis.

CHKRTC: 9 2 / 0 3 / 2 2 1 . . 0 I F L I B S F N D O THEN 'ERASE U I D L I B '
LOVE: 93/02/13 0 9 : O O : O O l . H 1 * 1 7 : 0 0 . 9 3 / 0 2 / 1 4 0 0 0 ,

MSG * DON'T FORGET THE VALENTINES DAY FLOWERS.
VMUSERID 9 2 / 0 3 / 2 2 0 3 : O O : O O 1 . . 0,

RUN(VMUSER1D:) / * execute the command beneath EOF */
I F RC = 0 THEN DO

'STATE VMUSERID DATA A '
I F RC *= 0

THEN SAY 'ERROR BUILDING VM U S E R I D F I L E . '
ELSE SAY 'VM U S E R I D F I L E BUILT OK. '

END * RUN NEXT COMMAND ONCE EVERY WEEK...
GRPPRTADMBKT: 9 2 / 0 4 / 3 0 1 O : O O : O O 07 9 2 / 0 4 / 2 3 1 0 : 0 4 : 3 4 0 ,

I F GRPRPTADMBKT = 0 ,
THEN DO

'CMSQ RACFMVS GRPRPORT GRP ADMBKT'
I F RC*=O THEN SAY 'CLKQUEUE ERROR RUNNING RACF R P T '
END

ELSE SAY 'CLKQUEUE ERROR RUNNING GRPPRTADMBKT AT' ,
RUNTIME' . '

* CHECK THE NETWORK EVERY 10 MINUTES. . .
CHKNET: 9 2 / 0 4 / 2 8 1 3 : l O : O O 01.M10 9 2 / 0 4 / 2 8 13:00:09 0 CHKNET
CMDl 9 2 / 0 1 / 2 2 1 4 : 3 0 : 0 0 1 0 0 0 DIRLOG RSCS
CMD2RC 9 2 / 0 1 / 2 2 2 3 : 5 9 : 0 0 01.M10 0 0 0 C P QUERY RSCS

9 2 / 0 1 / 2 2 2 3 : 5 9 : 0 0 01.M10 0 0 0 ,
I F CMD2RC = 4 5 THEN MSG O P *** RSCS IS DOWN! ***

CMDX: 9 2 / 0 1 / 2 2 2 3 : 5 9 : 0 0 01.M10 0 0 0 ,
I F CMDl A = 0 & CMD2RC *= 0 THEN DO

IfMSG Op * ' I

"MSG OP UNABLE T O RECOVER RSCS. . . 'I
END

* RUN S P E C I A L S E T O F CLOCK COMMANDS ON NEW YEARS DAY.
ENDOFYEAR: 93/01/01 20:OO:OO 0 0 0 CLKQ EOYCYCLE
EOF
VMUSERID:
/ * BUILD THE VM DIRECTORY FROM DIRMAINT SEGMENTS */
' D I R B U I L D '
'STATE USER DIRECT A'
I F RC = 0 THEN RUNRC = 0 ; ELSE RUNRC = RC

REXXCALC is a calculator/memory utility with options that:

1. Calculate variables in adding machine or formula modes.
2. Manages workspaces via SAVE, LOAD, DROP, & LIST commands.
3. Passes commands to VM when they are not calculations.
4. Executes REXX code from command line or saved variables.
5. Keyboard assistant via CLKQUEUE's intelligent scheduling.
6. Many powerful options give APL like capabilities to REXX.

Below is a sample session where the user has to:

1) Figure number of cylinders required for a new file.
2) Test how the SUBWORD command works as they are

3) Edit a function named BENEFITS, change some of the
developing a new REXX program.

formulas, and execute it.

REXXCALC / * X; prompts the user for a response. */
REXXCALC - RELOADED 9 VARIABLES FROM PROFILE.
REXX IS ACTIVATED INTERACTIVELY.. .
X; vars
/ * INIT VARIABLES FOR REXXCALC EXEC */
$RSCS = 'CP SMSG RSCS'
$SMART = 'CP VMC SMART'
$AUTOLOG = 'CP SMSG AUTOLOGl AUTOLOG'
$ULOG = $SMART ' D ULOG'
FMTDATE = TRANSLATE('34756812',910522'//','12345678')

UTC-BFRTX = 3746 + 530 + 0 + 0 + 242 + 36 + 1015
BEN ALLOW = 4112
PER-CHECK - = (UTC-BFRTX - BEN_ALLOW)/24
X; Sop Peter please mount tape 3003 on 580, Thx mvi.
X; $rscs q sysprtx q
X; ben-allow / * ask what co paid beny portion is? */
4112
X; rexx say subword('a b c1,4)

sop = 'CP MSGNOH OP'

X; rexx say subword('a b c1,2)
B C
X; * next line does calculation within another workspace.
X; rexxcalc ofcspace my area = (deska+grade6space-isle)
442
X; weekhours = 8.5 + 9.0 + 8.0 + 8 . 0 + 9.5
43
X; reccnt = 327000
X; blksize = 4096 / * no. of bytes per block */
X; bpc = 180 / * blocks per cylinder */
X; reqcyls = forrnat(((reccnt*132)/blksize/bpc)*2,1,0)
X; save / * will save prior 5 variable. */
X; xedit benefits calcrexx
X; run(benefits 5050 ben - allow)
X; quit
INTERACTIVE REXX IS CANCELLED BY USER.

-

REXXCALC - SAVED 14 VARIABLES IN PROFILE WORKSPACE.

144 C)Copyright 05/92 By Marc V i n c e n t l r v i n

NODELOAD is a tool for building natural language code that:

1
2
3

.. Compensates for user spelling errors based on context. . Maps input vocabulary and loads them into node words. . Values that follow keywords are put in its node word.
4. Node words once set are useable by REXX based rules.
5. REXX based rules can be coded as pseudo English.
6. After registration first node word represents call tag.

Below is a sample of the NODELOAD catagories, keywords, and
basic vocabulary used in mapping pseudo English grammar. It
was inspired by an article written by Richard Brooks titled
''A Natural Language Interface to MVSfl published in the
October 1991 issue of the TECHNICAL SUPPORT JOURNAL.

INITQUES: / * node type = node names allowed to follow it. */
TYP.START = CMND NOISE
TYP. CMND = PREP TYPE ORD TGT
TY P . PREP = 'CHK ADDR: ORD TGT ADDR NOISE'
TYP.TYPE = TYPE-PREP TGT NOISE
TY P . ADDR = PREP
TY P . TGT = 'CHK ADDR: PREP ADDR TGT'
CHK. CMND = SHOWME SHOW LIST GIVE PRINT DISPLAY
CHK . PREP = AT ON IN TO FROM FOR OF
CHK . TYPE = TAPE ALLOCATION RECORD UR UNIT ONLINE TSO
CHK. TGT = DISK CPU TAPE STORAGE MEMORY PATH DRIVE
CHK.NOISE = ME ADDRESS PLEASE THE A INFORMATION FOR AN
CHK ADDR:
PARSE VAR RUNSTR $PS $ST
IF VER1FY(WORD($ST,$PS) , ' 0123456789ABCDEF1) > 0

THEN RUNRSPNS = I

ELSE RUNRSPNS = 'ADDR' / * TELL LGC WORD IS AN ADDRESS */
WHEN FIND(ITAPE DISK DRIVE',TGT) > 0 THEN RUN(D0DU:)
WHEN FIND('MEM0RY CPU PATH',TGT) > 0 THEN RUN(D0DM:)
OTHERWISE SAY TGT 'NOT RECOGNIZED AS A TARGET.
END

CMND: SELECT

RUN (ISSUECMD:)

Sample user input follows with diagnosis options turned on.
PLS SHOW ME THE ALLOC INFO ON DISK 6C1 TO 6C4!
(PLS) miswritten, (PLEASE) set instead.
(ALLOC) abbreviated, (ALLOCATION) set instead.
(INFO) abbreviated, (INFORMATION) set instead.
Attribute (NOISE) automatically set to (PLEASE).
Attribute (CMND) automatically set to (SHOW).
Attribute (TYPE) automatically set to (ALLOCATION).
Attribute (NOISE) automatically set to (INFORMATION).
Attribute (PREP) automatically set to (ON) .
Attribute (TGT) automatically set to (DISK).
Attribute (ADDR) automatically set to (6C1) .
Attribute (PREP) automatically set to (TO).
Attribute (ADDR) automatically set to (6C4).
FINALCMD = D U, DASD, ALLOCATION, 6C1,4

145 (C)Copyright 05/92 By Marc Vincent l rv in

NL THEORY FOR NODELOAD

The directed graph SHOW-ME grammar explained by Richard Brooks
for developing natural language commands published in the October
1991 issue of the TECHNICAL SUPPORT JOURNAL has been automated.

Below are a list of sentences that the experimental NODELOAD
logic can handle and the a sample grammar graph.
G l A f l t l A R
mAPH Lst a1 usrs. Dsply tape 001.

Gv usx dxsk 7al for 16.
P l s print me the cpu memory,
starting at address e000.

s in building the llMissouri, Show
Me" natural language command parser. When working with rule
based PARACODE all of the following steps are automatic, and
require no direct coding by the user. The NODELOAD example shows
how natural language is done without resorting to rule based
code.
1.

2 .

3 .

4 .

5 .

6 .

A Grammar Graph is made to depict how the parts of each
sentence will interact. For example, what type of word can
begin the sentence. The basic words in the vocabulary are
going to be loaded into these words so they should be
descriptive. Nouns, verbs, and modifiers are basic parts of
speech common in SVO grammars. TYP variables are used to
fully represent grammar graphs like the one shown above.

TYP.attribute = attribute names that can follow
A Vocabulary Definition is done using the CHK variable
where each attribute get attached to it all the valid words
that may be loaded into it.

CHK.attribute = list of valid words or symbols.
Spelling Verification is done first by context then
against all attributes. For example, if the unrecognized
word follows a verb and then only the attributes.valid after
verbs are checked f o r transposed letter and the like.
Registration, when a parsed word is successfully found
in a valid CHK.attribute list and the word is loaded into
its corresponding attribute for later use.
Construction, when all the words have been successfully
registered into attributes the name of the first attribute
registered is used in a RUN() statement. Thus if a VERB
like llShowll was the first word in the NL command then the
user would code get control via routine called:

VERB: / * process all registered words via REXX */
Execution, when the user has fully constructed the command
he must then execute it in such a way that the user may
customize or override its use.

PARACODE is a natural language programming system that:

1. Allows users to code ES rules using pseudo English code.
2. Uses multi-word synonyms to give English flexibility.
3 . Allows grammatical use of probabilities and fuzzy logic.
4. Allows user to converse logically with knowledge bases.
5. Has frame attributes like ask, why, how, check, & doc.
6. Many powerful options put code wherever users need it.

Below is a sample Expert System (ES) rule written in Paracode.

VCRADVSR: / * This rule advises what model VCR to purchase */
If the VCR type is VHS and heads is over three and FX wanted

then the best purchase is probably a super VCX 1000
else the best buy is likely to be a dumb Recora-Mate99

INITGOAL: The maingoal is best buy and a three is a 3
INITQUES: / * These entries set synonyms and frame values. */

syn(FX FX:is 'specia1:effects special-effects')
syn(VCR CAM 'video:machine video:recorder')
syn(buy purchase); syn(type model); and syn(heads tracks)
syn(FX-wanted 'FX:wanted FX:neededI) and syn(: super dumb)
syn(VCR-type 'VCR:type') and syn(best-buy Ibest:buyl)

The ask.mainexit is 'The VCRADVSR says buy a' best buy'.'
The ask.VCR-type is 'Enter preference: VHS or BETA.'
The chk.VCR-type is VHS BETA / * check allowed values */
The dft.VCR type is VHS / * default value is VHS */
The chk. FX-wanted is "CHK YESNO:" / * a dynamic call */
The chk.heads is 2 3 4 5
The fmt-heads is 1 1 numeric / * one byte numeric only */
The why-heads is "Because better VCR's have 4 or more.ut

Below is a sample dialog with VCRADVSR... (R; is user reply.)

-

Enter preference: VHS or BETA.
R; VHS
Please enter value for (HEADS) .
R ; which
Your input options are 2 3 4 5.
R; 4
Please enter value for (FX-wanted).
R; yes
BEST BUY = CNF(0.80) VCX 1000
The VCRADVSR says buy a VCX-1000.
R; video machine model
VCR TYPE = VHS
R; special effects needed
FX-WANTED = 1
R; reset
Enter preference: VHS or BETA.
R; The CAM model is VHS; tracks is 4; and FX needed is not true
BEST-BUY = CNF(0.70) Record-Mate99
The VCRADVSR says buy a Record - Mate99.

-

14i

NL THEORY FOR PARACODE
'$

The Subject, Verb, and Object AI paradigm works well with REXX.

REXX it could be expanded to enter NL mode if a switch is set.

RULENAME: / * basic clauses: I F antecedent THEN consequent */
[I F s v o [conj s v o etc.. .] THEN] s v o [conj s v o etc.. . 3

V

0

[I Means fields within are optional. Only s v o required.

s v o Subject, verb, object can be represented by a single

S Subject can be up to three distinct words if the

IF Valid conditionals are IF and WHEN.

symbolic such as with true/false values and task()
executions, or as separate multi-word phrases beneath.

Computer Oriented Dialog SYN() synonyms have specified
a single root word. They are the equivalent to nouns
or noun phrases (NP) in English and basic ATN theory.
Verbs can be up to three distinct symbols and/or words
if the S Y N O synonyms have specified a root word. They
imply the action to take against its subject and
object, and are referred to as verb phrases in basic
ATN theory. Normally verbs are compare symbols, but in
advanced NL may be called tasks that have boolean RCs.
Objects can be a literal or symbol, or a phrase up to
three words if the S Y N O synonym's root is defined. It
represents a noun and may be preceded or followed by a
fuzzy logic or confidence factor (Ie. big/little or
probably/definitely). If the object value, after
synonym substitution is found to be unknown translation
is interrupted, and the object is put into a queue for
resolution. Resolution occurs by first looking for a
RULE that has a consequent clause that sets the value.
Next, framed variables are checked to see if their is a
defined procedure to solve the rule. For example,
doing a database retrieval. Finally, a previously
specified text is used or a text is manufactured that
asks the user to supply the value or choose the
default.

their character equivalents. They can be three word
phrases, but no logical use has been found for using
multi-word phrases as conjunctions.

con j Conjunctions are limited to and, or, exclusive or, and

NOTES : 1. Advanced synonym substitution can handle antecedents

2 . Rules can have any number of consequent or

3 . The RUN() can dynamically invoke any task at will.
4. REXX and its NL equivalent can coexistent in

PARACODE.
5. All s and o values, otherwise known as, nouns can

be easily updated using NODELOAD directed graph
substitution.

separately from consequents.

antecedent consequent combinations.

148
(CICopyright 05/92 By Marc Vincent I r v i n

I

PARATALK is a natural way to show properties and relationships,

1. Users can easily encode semantic net diagrams of knowledge.
2. Encoding may consist of pseudo English facts, rules, and acts.
3 . Acts invoke scripts, models, and step by step operations.
4. Backward reasoning will try to resolve unmatched phrases.
5. PROLOG deep structure sample: does well in(Student,Discipline)
6. Conditionals (ie. =<>) can now be relationals or operationals.

Below is a sample expert system rule written in Paratalk.

MAJORADV: / * This rule advises student in selecting a major */
If a student is interested in a specific discipline,

and student does well in the subject,
and the subject is important in discipline,
and the discipline is in demand,
then student should major in the discipline

else student should not major in the discipline
and forward student transcript to Dean of discipline

INITGOAL: The maingoal is student should major in discipline / * Examples below show how facts may be initially entered. */
John does well in math and John is interested in business
Math is important in business and business is in demand
Bill does well in math and Bill is not interested in business
INITQUES: / * These entries set synonym and frame values. */

syn(is interested-in 'is:interested:inI)
syn(does-well-in 'does:well:in') and syn(is in 'is:in')
syn(is-important in 1is:important:in')
syn(shou1d-major-in 'shou1d:major:in')
syn(not:should sEould not) and syn(student 'name:of:student')
syn(send transfer mail forward) / * keyword for action logic */
syn(discip1ine 'specific:discipline')

-

The unknowns are 'student discipline subject'
The variables are 'student' / * if symbol not set than infer it */
The relations are 'is interested-in does-well-in is in'
The relations are relations 'is important in should-major-in'
The actions are 'send'
The ask.student is "Please enter the student's first name."
The ask.mainexit is "Enter 'reset' to get some fresh advice."
SEND: say "Transcript is being forwarded to" discipline lIDean.'l

- - -

Below is a sample dialog with MAJORADV... (R ; is user's reply.)

Please enter the student's first name.
R ; John
student should major in discipline = JOHN should major-in BUSINESS
Transcript is being forwarded to BUSINESS Dean.
Enter 'reset' to get some fresh advice.
R; reset
Please enter the student's first name.
R; Bill
student should major-in discipline = BILL should-major-in BUSINESS
Enter 'reset' to get some fresh advice.
R; quit

-

- not

ADVANCED NL THEORY IN PARATALK

In PARACODE a NL syntax was demonstrated that allowed a user
to write conventional programming code in subject, verb, and
object (SVO) based pseudo English. In NODELOAD a NL syntax
was shown that facillitated the building of context free
grammars. Using PARACODE and NODELOAD together it was
suggested that pseudo English code and dialogs could be
achieved as a side affect of Expert System development.

PARATALK takes the expression of NL code and queries to a
higher plain by incorporating pattern matching, dynamic verb
manipulation and execution, and dynamic variable entry and
assignment.

Wherever, SVO phrases are allowed, so too are SRO (subject,
relation, object) clauses and ARC (action request commands).

SRO Subject relation object clauses put pseudo English
consequents into a pattern table for interrogation a s
antecedents. "John likes sodav1 is a typical SRO
clause. Unlike PARACODE the central word does not have
to get converted to I (= > <I1 symbols. In PARATALK
anything goes, just tell the interpreter how to
recognize your SRO clauses by loading its relational
word or predicate into a variable named RELATIONS. For
example, to be able to say "If John likes soda then
soda tastes good11 you do the following in the
INITQUES: section.

SRO clauses may be any length. When S R O s are in an
IF/WHEN (eg. antecedent) statement the associated
symbols get looked up in a clause table. If found
the IF/WHEN condition is set to true, otherwise it's
set to false. If not part of an IF/WHEN condition the
clause is put into a table. Matching clauses with
previously stored clauses is called pattern matching.
In the clause "John likes sodall all the words are taken
literally. Now imagine having 10 lllikes sodall clauses
in the table, but for different people. To refer to
all those people the following can be done in PARATALK.

RULE: Unknowns = 'Who'; and Relations = 'likes'
If who likes soda then do x is 1 for words(who)

In the above example all 10 names of people who like
soda would be put into WHO. Sometimes a simple
variable, set elsewhere in the logic, needs to be used.
In that case enter the word within quotes. For
instance, if soda were a variable filled with words
like PEPS1 or COKE then the PARATALK way to express it
would be.. . "If anyone likes 'soda' then go buy sodan1.

RELATIONS = 'likes tastes'

say word (who, x) I likes soda ; end

150
(C)Copyright 05/92 By Marc Vincent lrvin

I

ADVANCED NL THEORY IN PARATALK

In SRO PARATALK we were shown how to enter pseudo English
assertions and interrogations like those that follow:

John likes soda
If John likes soda then soda tastes good
If who likes soda then do x is 1 for words(who)

say word (who,x) I likes soda' ; end
If anyone likes 'soda' then go buy soda.

I n addition to writing programmable code in English, and
interrogating stored English clauses for truth there is another
option. You can invoke special AI functions that carry out
scripts or models of various scenes, events, speech, manual
operations, and/or machine components. For instance, the
consequent clause Itgo buy soda" is an imperative statement that
requires a direct action.

ARC Action request command clauses have two parts. The first is
the action part which corresponds to the program name used
during CALLS from normal procedural code. The second is
the request part which corresponds to the variables passed
during normal procedural calls. However, for scene or
model invokations to occur using pseudo English statements
something must tell the PARATALK interpreter that this is
an ARC phrase, rather than an SVO or SRO one. That
something way is to load the primary action word (ie. verb)
into a variable named ACTIONS. Since actions speak louder
than words below is a sample of what I'm talking about,
full blown PARATALK.

ACTIONS are 'go walk get fasten drive'
RELATIONS are 1 ikes'; and soda is PEPS1
GOBUYSODA: If anyone likes 'soda' then go buy soda
additional backward or forward chaining rules...
/ * Basic script follows for going to the store */
GO: Parse var runstring whattodo withwhat .
If whattodo is 'buy' then do

Item is withwhat / * comments are allowed too */
Walk to car; get in car; and fasten seat belt
Drive to store and exit from car
Walk into store and purchase store 'item'
Drive back home
end

/ * The actions below can be external programs too. */
WALK: etc.. .
EXIT: etc...
DRIVE: etc...
FASTEN: etc ...

Basically, the above example neatly mixes all three NL methods:
SVO, SRO, and ARC. It's pretty natural, wouldn't you say?

ADVANCED NL THEORY IN PARATALK

In SVO, SRO, and ARC we were shown how well PARATALK armed
the Knowledge Engineer (KE) with the tools needed for
building Conventional and Expert Systems using Pseudo
English. Command clauses and phrases could be easily
constructed that were declarative, interrogative, and
imperative without requireing the KE to resort to arcane
coding artifices. And there is much more...

External file data can handled be handled dynamicly using
the LITERALIZER concept peculiar to the data driven pattern
matching protocols of OPS5. With it files, sensors, and
knowledge bases can be processed with 5th generation
granularity using something resembling the well known object
oriented paradigm. For instance, the clause "If cat weight
is high and finickiness is extreme then type is Cheshireg1 is
valid PARATALK terminology using LITERALIZERS.

OAV Object attribute value conditions can be employed in
conjuction with SVO clause rules to provide name tags
to fields in records. An example below builds a
literizer for the CAT clause shown above. The basic
format for entering a literalizer follows...
OPS(filename,objectname,attributel attribute2 etc ...)

Note, full power of the parse command is available.

OPS('RACF DATA A',PROFILE, ' 2 4 PW 32 1 'DATE=' DATE)

Also, some basic assumptions are now possible
pertaining to context. For example, that CAT is the
object for the attributes weight, finickiness, or type
is easily implied. What's more cases of ambiguity
(more than one literalized ''objectt1 contains the same
attribute name) are easily resolved to most KE
satisfaction by understanding that ununique attributes
will get the object from one
most recently used. Next, pronoun usages like IIit" or

again with the most recently used object with a
matching context definition (TYP.) An example of that
kind of clause is shown beneath.

are possible and can be substituted, easily

CAT - TYPE: If its weight is high and finickiness is
extreme then its type is a Cheshire

In the above rule the value of IIits'I will be taken from
whatever the last object happened to be that contained
the attribute 'Iweight1'.

152 (C)Copyright 05/92 By Marc Vincent lrvin

PEWORMANCE ENGINE~INGMNAGENENT OF
A LARGE RUO(APPUCAlI0N

PAT MEEM AND PAUL HEANN
IBM

153

iii
154

iV I<clrasc 3 S P J 1 I’crformancr Rcport

Performaw- %x#wering/Management of a Large REXX
~~~ ~ 

.\. ( '1'1 1 consumption  and excessive l / O  demands 

' I ' h c x  issues hccame the driving force  behind the 
prrtortnancc effort. 

.~ 

Approach 

Xfoct pcxformance  methodologies  advocate  (cor- 
reel Iy ) the application of performance  engineering 
t o  systrms in their early  developmental stages. 'They 
c.-onccntratc largely on  new systems and  not  on 
rxisting  systems. 

1\11 cx:rmple o f  such a methodology is that of Soft- 
\\tar(. I'ctformance lhgineering [ 1 ] (Sl'lli). Closer 
cxalnitntion of the  mrthods  encapsulated in this 
tnctllodology highlighted a considerable  degree of 
npplicahility to cxiqting  systems also. For  this 
rc:~son, S W ,  together with our own methods 
fornxd the basis o f  our  approach to the perform- 
: I I ~  r fTort  . 

I'ffort Allocation 

Wl;. Mrthods 

S1'1; is a methodology which  advocates t.hc applica- 
tion of performance atxdysis in the  devclopment of 
.;oftware  systcms.  It  provides a sensihle  method for 
t he production of software that will meet certain 



I 

I .  

2.  

3 .  

4. 

5. 

Adoptcd Iknchmark 

. Singlc  uscr on a singlc  processor.  ’[’his  has 
bwn cxtcndcd  recently to include  two 
proccssors communicating  with each othcr  for 
;I  subset  of  transactions. 

’ 1 ’ 1 ~  twnchmark is an evolving  experiment under- 
going  changc as the softwarc  undergoes  modificn- 
fjons : m t  the user workloads  shift. 

Application of thc SPK principles 

‘I’hr SPI: Iksign Principles  are  a  formalization of 
~hr pcrlormancc  knowlcdgc of  expcrienccd  per- 
fi)rnmnncr. engineers. 

‘ l ‘hc principles  of SPE were intcnded primarily for 
soffuf:rrc cwation,  hut we have found sornc of them 
t o  br cqually  applicahlc t o  a project  which has 
Imtlcrgcwc significant  dcvcloprnent  work. I Iowevcr, 
i t  is conccded that  thc  application of the principles 
i s  :I mort painful  cxcrcise at  the  later stages o f  a 
pt-odtlct’s cvolution. 

‘I’hc design  principlcs have since formed the basis of 
o u r  pcrformancc guidclincs which we providc to 
ollr o\vn and  other  dcvclopment groups in thc  lah. 

Wc n o w  dcscrihe thosc  adopted principlcs that 
\vcrc pnrticularly applicable to the existing  systcrn 
:l!lci cxntnplcs of that applicability. 

I ,  ’I’hc Iixinp-Point principle states  that  the  con- 
nection  hc.twwn the data and the requircd  rcsult 
should bc established as early as possible in the 
prc.cssing providd  that  the cost of rctaining 
that connection  ran hc justified. 

‘ l l ~ e  product uses  flat files as its file system. 
\lie found scvcral cases where the  product 
\v:~s accessing thtr same  control files, several 
tirncs in the  samc  transaction  sometimes 
for  thc  samc  inform, ‘1 t‘  ion. 

According to the principle,  it  made  morc 
performance  scnsc to read  selected files or 
scctions of files into  storage  at  initisliza- 
tion.  Data was storcd in a REXX array o f  
thr form x.y,  whcre y was the  kcy.  Subsc- 
qucnt retrieval of information was then 
done  from  storage with  great  efficiency. 

Application  of  this  principle  was  morc 
appropriate to the service  machincs  whcrc 
initia1iz:ltion timc was not a concern. 



I 

I 

. _ ............. .. -. . ____. .. ......... 1 

1 ...... ..... 
...... ..... ...... 

which associates it logically with thc 
cnntrol fiir. 

'l'his  means  that  thc recciving nodc has thc 
duplicate  ovcrhrnd of proccssing  two spool 
lilcs for cxch form  data filc and o f  cstnh- 



3 .  'Ihc (:cntcring principle advocatrs  the idctltifi- 
cation of thc  dominant workload fttnctions ~ n r l  
the minimization of thtbir  procrssing 

A further  application of  tht: centering p i n -  
ciplc is of course  within  cach of the  domi- 
nant  transact.ions.  This  pcrfnrmancc 
relincmcnt  idmtificd the clomin:tnt proc- 
csscs within  the dominant  transactions. 



r ~ . . ... , . 

I 

server in a scrial fashion.  Thc  authori- 
zation scrvcr is architected to a largc cxtent 
o n  thc basis that  the  data server has com- 
pletcd its proccssing successfully. 

‘ 1 . 0  involve  the  data servcr i n  somc s o r t  of 
parallcl proccssing  with  the client was not 
considcrcd feasible because  of  the  major 
architectural difficulties. 

Ilowcvcr, in thc  case  of  thc  client-to- 
authorization  servcr,  a  change  has bcen 
prototypcd whcre control is handed back 
t o  lhe clicnt at  a  much earlier stage after 
come  prcliminary  processing for appro- 
priate  transactions  (Approval  and J;inal 
Approval) as shown in Figurc 3 on 
pngc 1. 



I 

t I I I !  I 
T1 R TO Tl+T2-TCI 

I -  1 
T1 

CLIENT 

: '  ii 
I 1  
To 

CLIENT 

I t r J n  

'I'hc server continues  processing  asynchro- 
nously to the clicnt. 7'hc  ultimate  outcome 
of the transaction is recorded, as I I S I I ~ I ~  in :I 

clicnt log file. 

Iirom a client point of view, this reduces 
the  transaction time very significantly 
(1'1-'1'0) with little architectural  impact on 
thc server. iVaturdly, thr  improvrment is 
mnximiscd whcrr  there is no qucllc t o  thr 
server and is diminished  according t o  tlw 
nrlrnher of rcqursts in the queur.  

5 .  The lnstrrlmcnting principle encourages  the 
instrumentation of the  system XF the  means of 
measuring and controlling  prrfnrmanrc. 

'I-his is a control  principle which does not 
directly improve  software  performancc 

'I'his  principle was originally not part of the 
SPF, methodology but was subscqucntly 
includctl because of its cssential role in thc per- 
formance effort 

Further  discussion of this  principlc and  ihe 
entire  mcasuremcnt  process is contintled Iatcr 

o the r  important  lessons  were  lcamed  which wcrc 
ph:rscd into  thc  approach at different stages  across 
thr  cntirc cffort. 

i\lrastlrmwnts 

I,'or cxisting  systems,  measurements  are  thc  key to 
S I I C ' C ~ S S .  They provided  us  with  an  execution know- 
Ictlgc o f  the system  enabling us to model  thc 
y t r m .  'I'his model in turn  allowed us to decide on 
t11r typcs of  change  rcquircd.  Measurements  wcrc 
also thc kry  t o  undcrstanding  the  success  or  failure 
o r  l h r  1:hnngcs. 

I;,xprricmcc and  results  have  illustrated  a  number of 
important  lessons: 

1 ,  I;irstly, the  importance of a proper measurc- 
mcnt system is apparently  not  obvious  to  most 
pcople.  Oftcn  developers  express a sense of 
incredulity  when asked if the system  they  had 
developed  had  been  measured [SI. 

2. \Vherc  a  satisfactory  measurement proccss is 
not part o f  the  approach, succcss is very 
dcpcndent on intuition  and  luck  and this is not 
:I \'cry scientific way t o  proceed. 



' I ' h c  rncasurement  process should usr as many 
performance  indicators as i5  prxti(~t1 t o  vcrify :I 

pcrformancc  prediction. A singlc irdicator of 
performance (likc rttcponsc time) can he w r y  
misleading. 

l?arly  measurements of lcss than  complctc 
efforts are imperative. I7,ven though thcsc will 
often t x  contested on the grounds that  further 
pcrformance funiqg w i l l  follow, they providc a n  
early warning  system which i s  often well- 
foundcd. 

'I'he mcasurement  proccss itsrlf is dcscrihctl later. 

1,ang:uagc 

Most of  the prociuct was writtcn i n  I I I .XX, thc 
remainder in C .  An important guiding  principlr 
which \vc adopted (and not just for languagc con- 
siderations) was that of hcncfit /cost  maximization. 

It's important  to maximize thc bcncfit/cost  ratio 
where the benefit is the  cstimated  improvcrncnt i n  
performance to  thc  customer, rneasuretl by the 
benchmark  and  the cost is the rcsourcc necdctl l o  
develop  and  maintain  that  change. 

In general, the Cl' and (:MS commands and other 
external  modules and  not the RI7XX instructions 
were responsible  for thr substantial part of the 
product.  Sample  transactions  show  that thc 
R I X X  instructions accorlnt for lcss than 2010 o f  
the total. I n  addition,  poor  pcrformancc was n o f  
caused hy poor RlSXX coding hut by  lack o f  pcr- 
formancc sensitivity in the original dcsign stages 
with some  notahlc  exceptions. 'I'his was also horn(* 
out by informal  discussions in the area of R I i X X  
performnncc with Mikc  ("owlishaw. 

'The main  exceptions  wrrc  thc use o f  keyed array,  
which is a vcry slick  way of searching  for data, 
rather  than  the traditional hin:try search tcchniqrw 
and  the removal of Interpret  stntemrnts to makr 
the  codc  compilahlc. 

Conversion of thc C code to Rl:,XX made good 
pcrform:mce scnsc bccalusc of the way that the t w o  
languages interact diffcrcntly with (:I' and ('MS 
and some of this  task has already hecn accom- 
plished in  l'ffort 1 .  'l'his  change  from <. to RIJXX 
has the  :dditional benefit of easier maintainability. 

Othcr  improvements within R I I X X  wcrc hcttrr 
mnnngrmcnt of storage and i n  particular thc tlrop- 

ping of storage  when  appropriate  togethcr w i t h  the 
cornpletc specification of CP and CMS commands 
without  ambiguity. 

('hanging IIT;,XX variablc  and  procedure names, 
positioning  of  routines within the program, the use 
of onc particular RI'XX built-in  function over 
anothcr were found  to be examples o f  high cost - 
l o w  hrncfit  changes. 

Ixploratory Prototyping 

We scized thc opportunity to deviate from the 
standard  practice of a documcntcd low lcvel design 
13) prototyping  the tlcsigned performance changcs. 
'Illis approach allowcd  us to  measure  progress  at  a 
ct:rgt- milch carlier than would have bccn possible 
w i t 1 1  the  traditional  phased  approach. 

I t  :tlso appears, based on a causal analysis  of  soft- 
\I::lrc dcfccts found so far,  that  the  prototyping 
madc a very positive impact on the quality  of the 
soft ware shipped. 

We strongly  advocate prototyping as the hcst way 
t o  managc  performance  engineering of an cxisting 
systcm. 

Othcr ltcms 

I:or the first effort and  hecause of resource con- 
ctraints, measurements were confined to  a 4381 
processor  running VMISP.5. This was rcstrictivc 
and n o t  very representative. 'I'he second cffort has 
cxtcndcd the  mcasurement  proccss to  a 3083 
rllnninp VMIXA and a 3090 running VMjFSA.  

A comprehensive  report [4] was  created of thc 
rrctllts o f  the first effort. 'I'his formcd the hasis of 
tliccussions which were held  with the Pcrforrnance 
team in the I J 3 M  VM l ~ h o r a t o r y  in Fmdicott,  who 
rcactcd vcry positively t o  the  depth of analysis  and 
ovrrall  approach. 'I'hc report  has  also hccn sent to 
a l l  internal  product sites to  inform  and  encourage 
them t o  upgrade to  the latest release. 

'l'hc  hrnchmark  continucs  to be based on a single 
tlscr and on a singlc processor  for  most of its ttans- 
xtions.  The  authors believe that  some  modeling  of 
multiple uscrs is a kcy arca  for  the  futurc which will 
help particularly in the area of capacity  planning  for 
our  customers. 

1 ~unctionnl  Jcvelopment work of the  product has 
continucd  alongside the performance effort.  J3ot.h 



Measurement Process 
__ - -. . . 

ITor this reason, the  modeling effort is reduced  and 
the measurement effort increased. 

I .  Performance Refinement 

The initial stagcs  of thc measuremcnt process 
involvcd a breakdown of the  dominant  trans- 
actions  into  their  suh-components. ’l’hcsc sllh- 
components  then became thc subject of‘ 
analysis through a limitcd set o f  unsophisti- 
cated measurements of virtual (”.I’ll time, Start 
1 / 0  and  response  time. ’I’his provided (IS with 
important initial cxccution data of the system. 

Of course, the  lIl;,XX language with its rich 
tracing  functions  and its end-user friencilincss, 
lends itself  very wvell t o  this  type of appronch. 

\ v i t h  ~ h c  othcr guiding  principles (Sl’lt nnd 
Ilcrlcfit/(:ost)  alrcady referred to, hccarne the 
Iwsis of the  performance design changcs. 

2. Prototyping 

’l‘hc  main  features o f  the  proposed dcsign 
changcs werc prototyped  at a very high level 
and a new sct of measurements  obtained. ‘I’hcse 
tnrnsmcmcnts  formed  the basis of the target. 
ohjectivcs for each  transaction  within thc 
hcmchmark which together with the dcsign 
ch:rngcs constituted  the initial dcsigrl document. 
‘I‘his  was  subsequently  approvcd by a sclcctcd 
list of cxtcrnnl and  internal reviewers. 

’I‘his nllowcd our  customers  an early indication 
of thr  ~nagnitude of the performance  improvc- 
lncnt s that  could be anticipated  and  an  inccn- 
t i v c  t o  agree t o  the resource  investment. 

I n  this fashion,  the rcfinement and limitcd pro- 
totyping  provided us to a large extcnt with thc 
ncccssary data t o  dciine the pcrformancc SPCC- 

ification. ‘I’hc same  type of data collection is 
also advocated  under  the S I T  methodology, 
although  the  manner of collection is n a t u d y  
tliffcrcnt for ncw  software  systems. 

As part o f  the second design stage (refcrrccl to  
in the IBM phased approach  as  low level 
dcsign) the  prototyping exercise was  continucd 
at a lower lcvel with the  prototype being more 
closcly aligned to  the ultimate implemcntahn. 

‘l‘hr  prototyping excrcise was really a prc- 
rrquisitc to  the mc;wuremcnt  process and  they 
eomplcmentcd each other very successfully. 

I n  :t fcw instances  predictions were madc for 
sotnc of the  performance  metrics bawd solcly 
o n  the  software  execution  graphs of thc  trans- 
:tctions. ‘I’hcsc predictions were then  comparcd 
\ v i t h  actual  results from  the  prototyping cxer- 
cisc and were used as a theoretical  validation  of 
thr prototyping  results. 

13nsic rncasurcments  were periodically taken 
during  the  prototyping  and modifications made 
whcrc there were any  deviations  from  the 
objectives.  This design stage bccarne a highly 
itcrativc  process and  emphasised  the cngi- 
nccring approach  to  the  whole  problem. 

3.  l h t a  Collection 

Itvcn though  the  instrumentation was an  ink- 
g a l  part of the cntirc performance  devclopmcnt 
cyclc, it wasn’t until thc changcs had hcen 



designed and  implemented  that  the  more  con- 
trolled mcasurcrnent  cxperimcnts werc con- 
ducted using acquirrct customer  data. 

‘I’hc entire  mcasurcmcnt proccss is a complex 
onc where thcrc are so many  contributing 
factors. We adoptcd a numhcr of approxhcs t o  
makc it as realistic; a s  possible  within the 
working  constraints. We conccde  that  further 
enhancements arc hoth dcsirablc and necessary. 

Probes wcrc inserted at appropriatc part.; 01’ 
the  end-user  and service machines t o  track 
the  metrics which  included  Virtual (11’1 I 
time,  Start I / O  , Response  time, free 
Virtual  Storage  and  System 1,oad. ‘I’hcsc 
probes were positioned to  capture the 
mctrics  for 

a. ‘T’he ‘I’otal 1;nd-1 Jscr Component 
which  includes  thc  waiting  for a scrvicr 
machinc  to respond (a) 

b. ’I’he ‘I’otal Service machinc Compo- 
nent  for both servers (b) 

c. ‘]‘he Intcrface  part of the ‘I’otal Ilnd- 
IJser Component  (c, c i a,  a-c .’: h) 

The system was triggered once certain 
initial conditions  had  heen set up. ‘I’hesc 
conditions were based on varied customcr 
input,  Thcy included  directory size, number 
of forms in progrcss, sizcs of critical control 
files which were typiad of a customrr 
installation. 

a. An old  and ncw installation was sct up 
on  the same C P 1 1  and  both were trig- 
gercd simultaneously  for a givcn  sct 0 1  
benchmark  mcasurements 

b. On othcr  occasions,  mcasuremcnts o f  
the o l d  and ncw irnplcmentations  wcrr 
interwoven in the following manncr - 
(old,  new, o l d ,  new, old, nrw) 

c. All controlled  measurements were run 
at  off-pcak  times 

4. lntcrpretation and Evaluation 

Existing  tools were used and new ones dcvel- 
oped to  enhance  thc measurement process. 

KF,YPI,AY is an IRM internal usc t o o l  
which  runs on OS/2 and  executes x sct of 

pre-defincd  keystrokes on a host  machine. 
KRYI’IAY has  been  used to execute the 
defined benchmark usually at a dcferred 
point in time  (off-peak), switch  betwcen 
different  systems  (old and  new)  dynam- 
ically,  collect the results and invoke the 
othcr developed  tools to  analysc the results. 

KTIYP1,AY has  been  instrumental in pro- 
viding a fully automated  measurcmcnt 
process  where it can  he triggered during 
off-pcak  working  hours  and  thc following 
morning a summary of the rcsults taken  at 
off-pcak is available on  the disk of the 
requestor. The interpretation of and  judgc- 
mcnts  about  these results is still an  impor- 
tant  and necessary follow-up  step. 

We  have also developed  extensive IXT;,XX 
tools to analysc the collected  results. 

The results  over a number of runs of the 
benchmark  arc  treated as follows 

- The lowest and highest 10% of the 
runs are  ignored  leaving thc middle 
80% for  interpretation in  order to weed 
out extreme  results. 

- T’his remainder is averaged and a com- 
parison  made  between  the old and new 
implementation. 

- Occasionally, we measure a control 
which is identical  within both  thc old 
and  thc ncw  implementations  and  nor- 
malize the results with respect t o  this 
control.  Both  the  normalized  and  the 
unnormalized  results  are  thcn  intcr- 
preted  and  compared. 

Interpretation of measurement  data is 
something  which  improves with  perform- 
ance analysis  cxperience,  familiarity  with 
the  actual task of data  interpretation  and 
knowledge  of the software under investi- 
gation. ’T’he key  is to  treat  results  with 
caution  and respect and  the goal is t o  try to 
get reasonable  consistency  in  your  results. 

An  important  point  to  look  out  for is per- 
turbation  of  the results  by the  mcasurc- 
ment system itself. This is best checked by 
comparing  the results of the  probed system 
with the system without  any  probes. 

Management of the vast amounts of  mcas- 
urement  data is important.  We used a 
summary file to reference the  data 



'I'hc  targcts  prototypcd for thc  the original pcrform- 
ance cffort (I 'ffort I )  werc hascd on  the  thrce 
rnctrics of clapscd  tirnc, virtual CJ'IJ tirnc  and start. 
I / ( ) .  'J'hcsc mctrics  wcrc  used  for all thc 
lxnchmark  transactions  throughout  hoth  pcrform- 
:mcc efforts as a mcans o f  gauging out succcss. 

Wc havc  reprcscnted a summary of the  rcsults i n  
thc  following  diagram  (plcasc rcfcr to  I?gurc 4 011 

page xvi and  Figure 5 on page xvi) for  hoth  thc 
cnd  uscr and the scrvicc machines as follows: 

1.  Prototypcd  targct  results  for llffort 1 .  

2. Actual achieved  results for I l f f o r t  1. 

3.  Prototypcd  results for I'ffort 2 + actud 
achievcd  results for I'ffort 1. 

A morc  dctailed  account of the  actual  rcsults  from 
I ' f f o r t  1 is contained in a scparatc  report [4 J. 

'l'he  rcsults  arc  prcscnted as a "!" reduction  on  the 
hase at thc  start  of Ilffort 1 .  

Conclusion 

'I'hc rnairl c:onclusions o f  the  approach  arc : 

I .  

2. 

3.  

4. 

A number of SPT: methods  can  be  applied. 
with significant succcss, to existing softwarc 
products.  'I'his is particularly  true of a REX>( 
product which lends itself to in-depth  analysis. 

I'rototyping is v c y  necessary in  predicting  pcr- 
formancc rcsults.  I'rototyping  also  had a signif- 
icant impact  on  the  quality  of  the  softwarc 
shipped. 

Wc can not over emphasize  the  importance of 
measuring  results  from  an  early stage in  the 
development cycle. ('onstant  re-measuring of 
rcsults cnsures  that  performance  degradation is 
n o t  allowcd to creep  into  the  project at any 
stage. RF.XX m).ths Lvhich had  been  presented 
to 11s as ways to improve  performance. eg. 
('odc  tuning, were  discarded by the measure- 
ment  approach. 

'I'hc kc? to finding  what  works on !-our 
product is through  study of the SPF methodol- 
ogics, analysis of the  areas  of  your  product 
\vllcrc the)- can  he  applied  and  then  measurc- 
mcnt of  the  results  that  can  be achieved t o  
tlcterminc  their cost effectiveness. 

Apart from  the significant performance  improvc- 
mcnt I hc driw for  imprnvcd  product  perfomlnncc 
h:19 also produced  the  folloning : 

I .  

7. 

. .  1 



I 
4. Pcrlbrmancc  cnginecring, as part of thc dcvc.1- 

opmcnt cycle, highlightcd  within the group : t n d  
the I ,ahoratory. 

In retrospect,  thc kcy t o  stmcss has  bcrn i n  thc 
overall approach.  ’I’hc t l s c  o f  SI’E principlcs :is :I 

guiding  force,  the adoption of an cxploratory  proto- 
typing  approach  togcthcr  with a significant invccl- 
ment in thc  measuremcmt process h:tve hccn thc 

crit ic.:ll s~lcccss factors. ‘I’hc enginccring conwpts or  
dcsign, measurement. and  assessmcnt i n  an iterative 
faqllion, haw been thc kernel  of the cntirc 
approach. 

I n  conclusion, wc have proven that the usc (11‘SI’E 
mcthodologics togcthcr with our own  methods  to 
irnprovc  the pcrformanncc of an existing I i l lXX 
prot11lr.t wcre both worthwhile and practical. 



. 



I 

References 
~~ 

[.?](hnnic IJ. Smith, "Who uscs SI'II?", ('MG 
'l'rans.,  Spring  1988,  69-75 

(iordon li. Anderson, "'I'he Chordinatcd  lJse of 
I :ivc I'crformancc Evaluation  Methodologics", 
('AC'M, 27,2 I'eh 1984, 1 19- 125 

(~.'l'.Alcxandcr, "Performance  Fnginccring:  Various 
trchniyues  and Tools," Proc. CMG I)cc 1986, 
264-267 

I'..I..Ialics, "Improving Performance the I:asy Way", 
Iht;rmation, 23,4, Apr 1977, 135- 148 

('onnic I I .  Smith, '<;cneral Principlcs for T'erform- 
nnrr Oricntcd-Design',  Proceedings CMG 87, 
Orlando,  Th-ida,  Ilcccmber 1987, pp 138-  144 

(iu.rn A.  Morrison, 113M Corporation, 'I'erform- 
m e r  for  a large,  complcx  application', I'roc C M G  
86, Ilcc., 1986, 316-320 Proceedings C M G  87, 
Orlando, Iilorida, December 1987, pp 138- 144 

168 



NEIL MISTED 
IX CoRPownoN 

169 



170 



L
 



E Q
) 

6 0
 

Iz 
0
 

D
m

 

. cd 

rn 
rn 

4
 

v
) 
3
 

0
 

L
 

a> 
3
 

CI 

L
 

.
 

a
 

172 



E 

173 



C
 

cd 
E L 

S
 

cn 
cd 

cd 
I
 

E
 L 

m- 

cd 
0

.
 

0
 

U
 

W
 
6
 

cd 
a, 
1
 

I
 

cd 
a, 
0
 

>
 

c
 

I 
0
 

>
 

0
 
a
 

0
 

I 

cn 
x

 cd 
L
 

I 

U
 

a, 
cn 
1
 

U
l I 

a, 
L
 
3 

m- Q
 

12 
S

 
U

l 
cd 
a, 

cd 
a, 

U
 

n
 

m
 
z
 

u
u
 

W
 174 



Q
) 

E m
 

0
 

> Q
) 

E O
 

0
 

Q
) 

Q
 

23) 
I= 
a, 
a, 

m- . E
 a, 

> 3
 

0
 

a, 

m- 1
 

cn S
 
0
 

0
 
0
 

s . 
U
 

S
 

cn 
a, 
3
 

U
 

S
 
0
 

m- 

175 



b
 

CD 

O
n
 

L
I) 
0
 

a
 

b
 

m
m

 

cn 

E 0 0 E c S
 

'c
. 

.
 

m
m

 

a, 
S

 
L
 

a, 

I 

n
 

c\1 

m
m

 

S
 
0
 

c
 0
 

176 



a, 
0

 
3
 

0
 

S
 

0
 

z 
U
 

r: 
cd 
cn 
a, 

a
 
I
 

u> 
.- 

X
 

Q
) 
e
 

L
 

$
--r 
3
 

cd 
0
 

113 
0
)
 
u
u
 
a, 
+- 3
 

a, 
c
 

m- 113 
L
 

m 
'23 

0
0
 

~m 
c W

 

177 



C
 

in 
0
 

I
.
 

B L S
 
3
 

P 

cn 
a, 

L
 

cd 
> 
U
 

S
 

cd 
cn 
w

 
s a, E 

$
0

 
S

 

C
 

cn 
w

 
m- 

W
 

H
 

cn 
a, 
0
 

cd 
cn 
cn 
2 W

 

a, 
cn 

0
 

U
 

E 
I
 

W
 

178 



in 
cn 
(d

 
0
 

S
 
0
 

-
 

- 
0
 

I
.
 

.
I
 

w
 

0
 

S
 
3
 

LL 
C

 
0
 

ob 
a, 
0
 

S
 
0
 
0
 
3
 

.- c,
 

v, 
c
 

~ 

0
 
.
I
 

- (d
 
t
 

Y
 

i> 
3
 

cn 
S

 
.c.r 
L
 

cn 
t: 
0
 

U
 
0
 

S
 

c
,
 

L
 

-
 

0
 
.
I
 

0
 

w
 

v, 
U
 

t: 
cn S

 
0
 

.- .- w 
U
 

cd 
U
 

S
 

cd 

L
 

iij 

U
 
L
 

(d
 

E E 
8 

L
 

(d
 

U
 

S
 

(d
 

i;; 

cn 
c
,
 
.
I
 

E 
'1
 

U
 

S
 

8 
b
 

0
 

(d
 

.c.r 
cn 

179 



Information Processing - Programming 
Languages - The REXX Language 

1 Scope 

1 . 1  

This Standard specifies the semantics and syntax  of  the  computer 
programming language RFXX by specifying requirements for a processor and 
for a conforming  program.  The  scope  of this standard includes 

the representation of REXX programs; 

the syntax and conswaints of the REXX language; 

' the semantic rules for interpreting REXX programs; 

O the representation of input data to be processed by REXX programs; 

' the representation of output produced by REXX programs; 

O the restrictions and limitations imposed  by a conforming 
implementation of REXX; 

O the behavior  of environmental interfaces. 

1.2  

This Standard does  not  specifjl: 

the mechanism  by  which REXX programs are transformed for use by a 
data-processing  system; 

the mechanism  by  which REXX programs are invoked for use by a 
data-processipg  system; 

O the mechanism  by  which input data  are transformed for use  by a 
program; 

O the mechanism  by  which output  data are transformed after being 
produced by a REXX program; 

a the size or complexity of a program and its data that will exceed the 
capacity of any specific  data-processing  system or the capacity of a 
particular processor; 

all minimal requirements of a data-processing  system that is  capable 
of supporting a conforming  implementation; 

180 



> whitespace 

i forever 

assignment  t 1 
$toexp H b y e x p H f o r e x p k  
4 t o e x p   H f o r e x p m b y e x p  
4 b y e x p M  t o e x p   H f o r e x p k  

- 

d b y e x p  - M f o r e x p H t o e r x p b  
1 I ,-, 

4 f o r e x p H t o e x p   H b y e x p k  
i - ,-, 

q b y e x p  4 toexp I 
'f> toerxp - 

9 b Y e x P I  
d f o  rex p 1 

181 

I 

b 



cn 
U
 
L
 

L
 

1
 

L
 

0
 

cd 
a
 

Q
) 

cn cn 3 
0
 

cn 

8 

0
 
e
 

- n m
 

0
 

LIJ 
S

 
.- J
 

cn 
a 

a, 
c1, 
0
 

C
 
0
 

cn 
m- m- 

S
 

.- J
 

cd 
a
 
a
 

cd 
a
 
1
 

I-
 

- 
A 

V 
L
 

0
 

a
 

CD 
1
 

a, 
1
 

cn Q
) 

S
 

cn cn 
- 

V 
A 

a, 
>

 
0
 

a, 
a
 

1
 

a
 
1
 

cn 
cd 

A 
V 

C
 

a, 
X

 
I
 

E L 0 
cd 

cd 
a, 
1
 

cb 
Lm 
I
 
a
 
a
 

z
 

W
 

I 182 



I 

0
 

cd 

0
 

0
 

U
 

S
 
0
 

> 

183 



IBM COMI ILER AND LIBRARY FOR REW370 

WALTER PACHL 
I BM 

184 



I 

IBM Compiler and Library for 
REXX1370 

Walter Pachl 

IBM Vienna Software  Development  Lab 
c/o IBM Austria, Dept 00/705 

Obere Donaustrasse 95 
A-I 020 Austria 

May 1, 1992 

3rd Annual REXX Symposlum for Developers  and Users 

185 



I 

Agenda REXX 

What’s  new? 

User  Interfaces, CMS and TSO 

Performance Comparisons 

Building a Standalone Program 

0 Building REXX External  Functions 

Packaging  an Application Using REXX 

SLAC 92 (C) Copyright IBM Corporation 1992 
186 

5/ 1 I92 



a = Notes REXX 

In August 1991 two new IBM products were made generally available: the  IBM  Compiler  and 
Library for RUW370. The major news coming  with these products will be covered in the  first 
part of this presentation. 

As the author has a close affiliation  with user interfaces for invoking  the  compiler,  a little 
description of these interfaces will  be glven - the  nearly  unchanged CMS invocation  dialog 
and  the new MVS foreground  compilation panel. 

Apart from  other benefits, performance is a  major aspect in compiling  Rem. The 
performance expectations and  the results of a  running  a  few  benchmark  programs  will  be 
shown. 

Finally the new products offer new possibilities for packaging applications. The presentation 
will close  by demonstrating how these possibilities can be  used  and what advantages can be 
expected. 

SLAC 92 (C) Copyright IBM  Corporation 1992 
187 

51 1 I92 



What’s New? 

Product Improvements 

Support MVWESA 

Smaller,  Faster,  Less  Expensive 

Smaller  compiler  and  compiled  programs 
Faster  compilation  and  program  execution 
Lower  price, in particular for smaller  processors 

CONDENSE option to get  significantly smaller compiled 
code 

DLINK option to allow for  new  packaging 

Support different parameter passing conventions on MVS 

Tolerate Interpret 

SLAC  92 (C) Copyright IBM Corporation 1992 
188 

51 1 I92 



Support MVS/ESA REXX 

Cross Compiler 
Programs compiled on one  system can be  run on either 
system 

Gives enterprise  the  ability to purchase a single compiler 

0 .  Library for REXX/370 is system dependent 

Programs compiled with  the predecessor product 
(CMS/Rexx Compiler) can be run without recompilation. 

SLAC 92 (C) Copyright IBM Corporation 1992 51 1 I92 
189 



Support MWS/ESA - Notes REXX 

Compiler produces  on  either system 
A compiled EXEC that can be  used instead of the source program.  (Moving  from  one 
system to another or from  one  library to another  on MVS may require  conversion  from 
one record  format to a  different one - a utility  is  provided  for  performing  this task.) 
An object module that can be  turned  Into  an executable load  module or that  can be 
link-edited  with  other  programs. 

The compiler’s system interfaces, the user interface, and  the  run-time  support are, of course, 
system dependent. Ordered by  product  number  with  feature for CMS or MVS. Packaging in 
predecessor product was Compiler  and  Runtime  Library or (on  customer  request)  Runtime 
Library alone.  The  new products  are  Compiler  alone  and  Runtime  Library. User must order 
both  products for  compiling  and  executing  programs. 

Upward compatibility  is maintained: Programs  compiled  with  predecessor  product can be 
run with  the new Library. However, no downward  compatibility - we move fonnrard. 
Predecessor product is now withdrawn  from  marketing. 

SLAC 92 (C)  Copyright IBM  Corporation 1992 
190 

5/ 1/92 

I 



I 

SE Option REXX 

I Customer Complaint: I 
“Compiled programs are (much) larger  than source code” 

A new compiler option is offered that allows to condense the 
object code. 

Compiled program uses less disk space 

Literal strings  (and  source  lines) become illegible 

Unpacking the program for  execution takes a little time. 

Consider 

Machine bottleneck 

Program 1 oca t i on 

Program si ze 

Program execut i on 

Program i nvoca t i  on 

Other 

should use CONDENSE should not use CONDENSE 

1 /o c PU Storage 

Disk  Storage  Storage 
(single use) (shared use) 

1 arge medi um small 

1 ong-runni ng short-running 

sel doml y frequent 1 y 

source/constant DLINK required 
protection 

SLAC  92 (C) Copyright IBM CorDoration 1992 
191 

51 1 I92 



I 
DLINK Option REXX 

knother Performance Boost I ~~ ~ 

Significant  (search) time is spent  when external programs are 
invoked.  CMS/Rexx Compiler allowed to create TEXT and 
MODULE for a Rexx  program. A new compiler option, DLINK, 
generates  weak external references for external functions and 
subroutines in compiled object modules. 

These  can be resolved by combining caller and callees,  using 
the linkage editor. 

Under MVS, modules  must be pre-linked using  an appropriate 
stub to accommodate the different parameter passing 
conventions. 

Use  of  DLINK can make  an application self-contained: No 
name  clashes with user’s environment. 

SLAC 92 (C) Copyright IBM Corporation 1992 
192 

51 1 192 



I 
MVS Parameter Passing  Conventions REXX 

MVS has  many different parameter passing conventions 

REXX programs understand arguments 

These arguments are passed in a table 

Compiler for REXX/370 supports four types of parameters 

MVS type, used in PARM=  on JCL 

CALL  type,  used in the TSO/E CALL command 

CPPL type,  used in TSO/E commands 

EFPL type, used in REXX external functions  and function 
packages 

Source of "stubs" is provided as examples 

Can be modified for other parameter passing conventions 

~ ~ 

SLAC 92 (C) Copyriaht IBM Corooration 1992 
193 

51 1/92 



MVS Parameter Passing Conventions - NotesREXX 

The MVS type  and  CALL type are very similar. The CALL type is limited to a single 
parameter,  and it will have an address  less than 16 Meg.  The PARM= on JCL is a single 
parameter,  but other programs that use this convention may have more than one parameter. 

Register 1 points  at a list of addresses, the last of which  has the high  order  bit on. 
Addresses  point  at the individual argument strings each  of which consists of a length field 
followed  by  the  actual  data. 

The  CPPL is a four word construct  mapped  by the macro IKJCPPL. 
The  DSECT for this macro is: 

* THE COMMAND  PROCESSOR  PARAMETER L IST  (CPPL) IS A L IST  OF 
* ADDRESSES  PASSED  FROH  THE  TMP  TO  THE  CP VIA REGISTER 1 ..................................................................... 
CPPL  DSECT 
CPPLCBUF  DS A PTR TO COMMAND BUFFER 
CPPLUPT  DS A PTR  TO UPT 
CPPLPSCB  DS A PTR TO PSCB 
CPPLECT  DS A PTR TO ECT 

The  EFPL is a six word construct  mapped  by  the  macro IRXEFPL. 
The  DSECT for this macro is: 

EFPL DSECT 
EFPLCOM  DS A * RESERVED 
EFPLBARG  DS A * RESERVED 
EFPLEARG  DS A * RESERVED 
EFPLFB DS A * RESERVED 
EFPLARG  DS A * POINTER TO  ARGUMENTS TABLE 
EFPLEVAL DS A * POINTER TO  ADDRESS OF EVALBLOCK 

Stubs transform what  comes in to what is expected. Under CMS, the compiled Rexx program 
is “self-adjusting.” 

I 

SLAC  92  (C) Copyright IBM Corporation 1992 51 1 I92 
194 



I 

Tolerate  Interpret REXX 

Closer  to Thee I 

Interpret was  flagged as SEVERE error by CMS/Rexx 
Compiler 
No compiled  code  was  generated. 

Interpret is now  flagged  as ERROR 
Code is generated  and  causes  a  run-time  error  when  the 
Interpret  instruction is actually  encountered. 

This can  be  avoided  by: 

Parse  Version v 
If left(v,5)*>*REXXC’ Then 
Interpret  instruction 

/* running  compiled  program */ 
/* we  can  interpret *I 

0 Support of Interpret is now  an  “Accepted  Requirement” 

SLAC 92 
~~ 

(C)  Copyright IBM Corporation  1992 
195 

51 1 192 



REXXD = Compiler Invocation Dialog REXX 

Specify 
Then se 

Program 

Action 

IBH Compiler for REXX/370 
a program.  licensed Materials - Property o f  IBM 
ect an action. 5695-813 (C) Copyright IBH Corp. 1989, 1991 

A1 1 rights  reserved. . . . TEST EXEC A Output disk: I 
. . . .  Source  act i ve  Comp i 1 ed - 1 Compi  le TEST  EXEC  A  into  TEST  CEXEC A 

2 Switch  (rename) source  and  compiled  exec 

3 Run active (source)  program 
4 Edit source  program 
5 Inspect  compiler  listing 
6 Print  source  program 
7 Print  compiler  listing 

8 Specify  compiler  options 

Argument  string: 

Comnand ===> 
Enter  Fl=Help  FZ=Filelist  F3=Exit 

F12=Cancel 

SLAC 92 (C)  Copyright IBM Corporation 1992 
19G 

51 1 I92 



I 

REXXD - Compiler  Invocation  Dialog = Notes REXX 

The compiler invocation dialog is intended to support ail tasks involved in compiling for 
programmers as well as for casual  users. 

To  use the  compiler-invocation dialog under CMS enter the  command: 

rexxd test exec a 

The panel  appears  as  shown in the previous foil. 

You  may  now  select Actions: 
1. Select Action 1 to compile  the  source  program. 
2. Select Action 2 to rename the source program and the compiled program. 
3. Select Action 3 to  run the currently active  program. . 

If you need more information, refer to the online help by pressing the F1 key. 

The  name  of the program to be  compiled is carried over from the REXXD invocation or from 
the  last  Invocation of this dialog. The  name  can,  however,  be  changed on this panel.  The 
panel is identical to that of the  predecessor product, with one addition: the possibility to 
specify  an  output  disk. 

The panel indicates whether  the  source program or the compiled EXEC is currently active. 
The  effect of switching  between the two is reflected  by appropriate highlighting. 

Compiler  options in effect  can  be  displayed,  changed,  saved, and reset  by  selecting Action 8. 

SLAC 92 
~~ 

(C) Copyright IBM Corporation 1992 
197 

51 1 192 



The Compiler Options  Specification Panel REXX 

REXX  Comp i 1 er  Opt i ons  Spec i f i cat  ions 

Specify  which  -output  files  you  want,  and  their  File-IDs 

File  identifiers 
Program  name  ROULETTE  EXEC 61 

Y  Compiler  listing Y/N/P) = LISTING = 
Y  Compiled  EXEC [Y/N) = C* = 
Y  TEXT  file (Y/N) = TEXT = 

Spec 
I 
n 
N 

Spec v 
Y 
W 

ify compiler  messages to be  issued 
FLAG  Minimum  severity o f  messages to be  shown (I/W/E/S/T/Y) 
TERM  Display  messages at the terminal (Y/N) 
SAA SAA-compl  iance checking (Y/N) 

ify contents  of  compiler  listing 
SOURCE  Include  source  listing (Y/H) 
XREF  Include  cross-reference 1 ist  ing  (Y/S/N) 
LC Number o f  lines  per  page (16-99 or, for no page  headings, 8 or W) 

Additional  options 
W SL Support  SOURCELINE built-in function (Y/n) 
Y TH Support HI imnediate  comnand (Y/N) 
S WOC Error level to suppress  compilation (*/W/E/S) 
N COWD Condense  compiled  program (Y/W) 
Y  DLINK Include  ESD and RLD in TEXT  output (Y/N) 

W DUMP  Produce  diagnostic  output (8-2047,  Y, or H) 
Special  compiler  diagnostics 

Comnand ==* 
Enter  Fl=Help  FZ=Filel ist  F3=Exit F4=Save  F5=Refresh  F6=Reset 

F124ancel 

The  options in effect  are  shown.  Using entry fields  and PF 
keys, the  user  can 

Change  each  compiler  option  individually  (user  input is 

Save the  options in effect (in LASTING  GLOBALV) 
Refresh  the  options  (from LASTING GLOBALV) 

checked  and errors are  diagnosed top down, field by  field) 

0 Reset the  options  to  the  installation  defaults  (taken  from 
REXXC) 

Help  panels  explain  the  available  options  and their meaning. 
SLAC 92 (C) Copyright IBM Corporation 1992 

198 
51 1/92 



Foreground REXX Compile REXX 

MVS Compiler Invocation I 

Under MVS, the usual methods of compiler  invocation  are 
supported: 

Foreground Compilation 

Background Compilation 

Cataloged Procedures 

FOREGROUND  REXX COMPILE 
COMMAND =-* 
ISPF LIBRARY: 

PROJECT -=E* TEST 
6ROUP =+=> LIB1  =-* LIB2  -* L I B 3  r-0, 

TYPE -* REXX 
FlEMBER =-> (Blank or pattern for member selection  l ist)  

OTHER PARTITIONED OR SEQUENTIAL DATA SET: 
DATASET NAME E==> 

L I S T   I D  -=> 

COHPILER  OPTIONS: (extended REXXC options can be used) 
e?-> 
-e> 

SLAC 92 (C)  Copyright IBM Corporation  1992 
-~ ~~~ 

199 
51 1 I92 



Foreground REXX Compile = Notes REXX 

Invoking  the Compiler with ISPF Panels (MVWESA) 

Under  ISPF, you can  invoke the Compiler from the Foreground REXX Compile  panel  and  the 
Batch REXX Compile  panel.  The  panels are similar to those for other high-level language 
compilers. 

To use the Foreground REXX Compile  panel: 
1. Select FOREGROUND on the ISPF/PDF Primary Option Menu. 
2. Select REXX Compiler. 
3. Enter  the appropriate data  set names and (extended) compiler options.  Extended 

compiler options allow to  specify  data  set  names  where compiler output is  to be  stored. 

From  data  entered on the panel,  a  command is built that  allocates  data  sets  as appropriate 
and  that  invokes  the compiler with the appropriate compiler options.  This  command  is, of 
course,  implemented  as  a  Rexx EXEC. 

Rather  unconventionally,  background compilation does not employ file  tailoring but  uses  also 
this REXXC command - albeit in batch. 

SLAC  92 (C) Copyright IBM Corporation 1992 
200 

5/ 1 /92 



I 

Performance REXX 

1 Run-Time Performance  Improvements I 

Programs  with a lot of m m m  

I- 
Arithmetic  operations 
with  default  precision 

Arithmetic  operations 
with  other  precision 

Assignments 

Changes to variables’  values 

Constants  and  simple  variables 

Reuse of  compound variables 

I Host  commands 

TIMES 
faster  than 
Interpreter 

6 - I O +  

4 - 25 
6 - I O  

4 -  6 

4 -  6 

2 -  4 

1 -  

Performance 
Category 

VERY HIGH 

HIGH 

(C) Copyright IBM Corporation 1992 
201 

5/1/92 



Performance - Notes REXX 

The performance  improvements  that  you  can  expect  when you run compiled RWX programs 
depend  on the type of program. A program  that performs large numbers of arithmetic 
operations of default precision shows the greatest improvement. A program that mainly 
issues  commands to  the host shows limited improvement  because REXX cannot  decrease the 
time taken  by the host to process the commands. 

Up to 30% CPU-load reduction have  been reported on a heavily REXX-loaded  machine. 
” ... better than last CPU upgrade. On  average 10-15% reduction  are reported. 

SLAC 92 (C) Copyright IBM Corporation 1992 
202 

51 1 I92 



Performance Comparison = April 1992 REXX 

BENCHMAR EXEC 

SPI-XA VM/XA System  Product  Interpreter  Re1 5.6 
REXX-378 IBH Conrpi ler  and  Library for REXX/378 Re1 1.8 

TOTAL CPU TIME RATIO 

nagnif ier 

forloop 

whi leloop 

repeat 1 oop 

literalassign 

memoryaccess 

realarithmetic 

realalgebra 

vector 

equal i f  

unequa 1 i f 

noparameters 

values 

reference 

wordscan408 

comnand 

SPI-XA 

8.76538 

7.97983 

13.58915 

13.89567 

10.34849 

18.  78418 

3.29728 

2.69790 

18.78649 

16.77867 

16.74953 

13.53182 

11.98723 

19.90034 

21.16818 

8.68720 

REM-378 

0.03749 

8.42967 

8.57711 

0.54219 

0.53132 

8.56278 

1.02355 

0.39428 

1.89689 

0.91997 

8.91375 

1.29613 

2.49335 

2.51308 

0.78951 

8.61554 

SPI/378 

28.42 

18.57 

23.55 

24.15 

19.48 

19.82 

3.22 

6.84 

9.86 

18.24 

18.33 

16.44 

4.81 

7.92 

29.82 

1.12 

SLAC 92 (C)  Copyright IBM Corporation 1992 
~~ ~~~~~~ 

51 1 192 
203 



I 

Building a Standalone Program REXX 

0 Compile the program  using  the OBJECT compiler  option 

Turn it into a load module 

- Under  MVS,  by  link-editing  with the MVSstub specified 
- Under  CMS,  by LOADEENMOD 

Place the load module 

- into  an  accessible library 
- onto an  accessed  minidisk 

Invoke it 

- from REXX (under MVS using Address LINKMVS) 
- from other languages,  e.g., PUI: 

DCL REXPGM  ENTRY  EXTERNAL  OPTIONS(ASSEMBLER, INTER) ; 

k i C H  REXPGM; /* Bring it into  storage */ 
RELEASE REXPGM; /* Release  it from storage */ 
CALL REXPGM(VARSTRING) ; /* C a l l  the REXX program */ 

SLAC 92 (C) Copyright IBM Corporation 1992 
204 

511 192 



I 

Building REXX External  Functions REXX 

I Perfomance opportunities I 

External  functions  in  load  libraries generally found  quicker 
( M W  

Function  packages are first  in the search order (Rexx 
search  order) 

1 Easy transition to load  module I 

Proceed as for standalone program 

but  use EFPL stub instead of MVS 

SLAC 92 (C) Copyright IBM Corporation  1992 
205 

51 1/92 



Buildina REXX External Functions m m m  REXX 

Essentially  a  collection of external functions 

Each external  Rexx function needs EFPL STUB (under 
MVS) 

When building  package,  naming  convention  consideration 
is important 

Description of packages  in  Rexx Reference manuals 
(system  dependent). 

SLAC  92  (C)  Copyright IBM Corporation  1992 5/ 1 /92 
206 



I 

Packaging an  Application REXX 

1 Packaging Concept I 
Can write an entire  application  in REXX 

0 External  routines are directly  LINKed 

Enabled  through  the  use of DLINK  compiler  option 

I DLINK advantages. I 
Tremendous  performance  improvements  from  interpreted 

Mostly by eliminating search time 

Also due to inherent better performance in compiled REXX 

.* Functional  isolation 

Each  function can be in an external routine 

No name clashes  with  other  system execs or commands 

No maintenance  problems  due to inadvertent  modification of 
the exec 

SLAC 92 (C)  Copyright IBM CorDoration 1992 511 I92 
207 



Packaging  an  Application ... REXX 

I Packaging  Considerations for MVS I 

Naming  convention  unique to seven  characters 

Use the DLINK option  with all OBJECTS created  by  the 
Compiler  for  the  application  package 

All external  functions  use EFPL stub 

Main  program  may  have  different type of STUB 

All programs  need to have  a STUB created  using a 
catalogued  procedure 

Link  edit  all  created  programs  together to create  package 

SLAC 92 (C) Copyright IBM Corporation  1992 
208 

5/ 1/92 



Packaging an Application ... REXX 

I Example (for MVS) I 
Begin  with  the  following  three  execs 

DLT to drive  the  process 

CPUTIME to get the CPU time 

INCR simply  returns  the  passed  argument 

/* REXX DLT ............................................................... 
* Performance  Test for DLIWK  opt ion: 
* Invoke  external routine IWCR 58 times and tell how long it took ........................................................................ 
n='DLT' 
Parse  Version v /* Use  Parse  Version to see if compiled */ 
If left(v,5)='REXXC' Then what-n  'compiled' 

Say  what 
n w 5 8  

Else what=n 'interpreted' 

tO=cput ime () 
Call time 'R' 
Say num ' invocations o f  IWCR  will  be  measured' 
Do i=1  To num 
Call  incr i 
End 

Say  'This took  me ' (cputime0-te) CPU-seconds. ' 
'(elapsed:'  time('E')')' 

I 

i 

SLAC 92 (C) Copyright IBM CorDoration 1992 
209 

51 1 I92 
1 



I 

Packaging an Application - Notes REXX 

One of the  aspects of RWX that  makes it an  easy to use  language is the ease with which it 
can  concatenate  strings. This is observed in the if statement,  where the name  of  the  exec in 
the variable n is concatenated with the string indicating whether the exec is compiled or 
interpreted. 

Also note  that the PARSE  VERSION gives the programmer the ability to determine if the exec 
is running compiled or interpreted. If needed,  different logic paths  can be followed, 
depending on whether  the  exec is being interpreted or run as compiled program. 

Similarly Parse  Source lets you determine  how the exec  was invoked and  on which  system. 

(C) Copyright IBM Corporation 1992 
210 

511 I92 



Packaging  an  Application m m m  REXX 

Parse  Var s sys 

Select /* Figure out which  system we are on */ 
When sys='CMS'  Then Do 

qt="DIAG"(S, 'Q TIME') 
Parse  Var q t  . *VIRTCPU=' rn . I:' +1 ss +6 
cpuslm*60+ss 
End 

When  sys='TSO'  Then Do 
cpu=sysvar( 'SYSCPU') 
End 

When word  os(sys, PCODS OS/2')*0 Then Do 
t=Time( P 
Parse  Var t hh : I m : I ss 
cpu=(hh*6B+nn)*60+ss 
End 

Say  'System'  sys ' i s  unknown t o  CPUTIME' 
cpu* 
End 

O t  hemi se Do 

End 
I f  nord(s,2)='COmAWD'  Then 

Say 'CPU t ime used so far: I cpu 
Else /* When  an external  routine *I 

Return  cpu /* Return the CPU t ime *I 

SLAC  92  (C) Copyright IBM Corporation 1992  511 I92 
211 



Packaging  an  Application ... REXX 

Building this package 

Interpreted Case 

Normally all three execs  reside in SYSEXEC 

Invoked by entering DLT from TSO command  line 

CPUTIME and  INCR are  external  routines 

Hence, DLT will need CPPL STUB 

CPUTIME  and  INCR  need EFPL STUB 

All OBJECTS are  created  with  DUNK  option 

Catalogued  procedure  used  for  each  one 

SLAC 92 (C) Copyright IBM Corporation 1992 
212 

51 1 I92 



Creating  the  final  module 
1 

Link  edit all load  modules  together 

After each has its STUB added 

Using INCLUDE and NAME control cards 

In this  example,  BJVLIB  is  the DDNAME of the library 
containing the programs 

Control  cards  would  be 

INCLUDE  BJVLIB(D1T) 
INCLUDE  BJVLIB(1WCR) 
INCLUDE  BJVLIB(CPUT1ME) 
ENTRY DLT 

NAME DLT(R) 

Under CMS, simply 

LOAD DLT INCR CPUTIME 
GENMOD DLT 

SLAC 92 (C)  Copyright IBM Corporation  1992 51 1 I92 
213 



I 

Packaging an Application m m m  REXX 

I Output  Comparison I 
When Interpreted 

DLT  interpreted 
50 invocations of IWCR will be  measured 
This took me 1.30 CPU-seconds.  (elapsed: 11.14) 

When Compiled  using OBJECT and DLlNK 

DLT  comp i 1 ed 
50 invocations o f  IWCR  will be measured 
This took  me 0.74 CPU-seconds.  (elapsed: 0.89) 

Under CMS 

This took me 0.23 CPU-seconds.  (elapsed: 1.891623) 

This took me 0.06 CPU-seconds.  (elapsed: 0.142837) 
vs . 

Significant Performance Improvement 
L 

Interpreted  uses 75 YO more CPU 

Interpreted  is 12.5 times  slower in elapsed time 

SLAC 92 
~ ~~ ~~ ~ ~~ 

(C) Copyright IBM Corporation 1992 
214 

Sf 1/92 



I 

In Closing REXX 

he IBM Compiler and Library for REXX/370 I 

Open  new  programming  possibilities 

Support both  function  and  application  packaging 

Give you more time on  your own CPU! 

And we did not even touch 

- Program Documentation 

- Plug-compatibility 

- .31-Bit Capability (VM/XA) 

- New language  on old systems 

SLAC 92 (C) Copyright IBM Corporation  1992 
215 

51 1 I92 



RICHARD K MCGUIRE AND STEPHEN G. PRICE 
IBM 

216 



OS/2 Procedures Language 
2IREXX 

”A Practical Approach 
Programming” 

and X ’  

”Adding REXX Power 
Applications” 

to 

to 

Richard K. McGuire 
Stephen G. Price 

IBM Corporation 
609120M 

P.O. Box fi 
Endicott, NY 137630 

I... 

(C) Copyright IBM Corp 1989, 1992 

217 



OS2 Procedures 
Language 

2lREXX 
A 

Practical 
Approach  to 
Programming 

os12 

os12 

Rexx 

What is REXX? 

Powerful end-user programming language 
= Easy to learn,  easy  to remember 

Can powerfully extend any application 
= Common language available on all SAA systems 

Becoming an ANSI standard (X3J18 Committee) 

Rexx 
21s 



Why REXX? 

Small,  easy  to  use, yet'powerful language 
Programming  interfaces  for  application  extension 

= Rapid development of  an interpreter, performance boost 
of compiler  technology 

os12 

Keep the Language Small 
Friendlier to new  users 
Documentation is smaller and simpler 
Few exceptions or special  cases (low "astonishment 

Users can "embrace"  the  entire  language 
factor") 

os12 

R e x -  

Rexx 
219 



Natural  Datatyping 

No internal or  machine 
representation is exposed 
to the user . Single number  concept 

r 

Say "The interest is  a*b'%' 

Say 5 + 1 .O + 0.54 + 
1.23e-2 

os12 

No Defined  Size or Shape Limits 
Data sizes limited only  by available memory 

= Limits are set using "human readable" values 
SmallTalk-like dynamic data-typing 

os12 

Rexx 

Rexx 
220 



Powerful  Symbol Manipulation 

Natural concatenation 
9 Powerful string parsing 

ability 
Many functions for  string 
and  word manipulation 

os12 

Parse Arg first initial last 
Say "Hello" first'.' 

pos = wordpos(first, list) 
if pos C> 0 then 

nickname = word(list, pos) 

Rexx 

System Independence 

os12 Rexx 
22 1 



REXX Uses 
Tailoring user commands (".CMD" files) 

= End-user problem solving 
= Universal macro or scripting language 

Prototyping Applications 
Education 

os12 

Universal  Macro  Language 
Editors 
Spreadsheets 
Language preprocessors 

= Communication programs 
= Rexx  can  be the macro 

language for any 
application 

os12 

Rexx 

P 

R e m  
222 



REXX is a Good introduction  to  Programming 

Easy to learn 
Easy  to program 
Few  new concepts 

= Powerful debugging 

No separate  compile or 

required 

features 

link step 

os12 

What's New in OS/2 2.0? 

Interpreter runs in 32-bit 
mode 

performance 
m Dramatically improved 

m New 32-bit interfaces 
= 16-bit interfaces still 

On-line REXX  reference 

= OS/2 utility  functions 

supported 

manual 

Rexx 

New 32-bit sample 
programs in toolkit 
On-line programming 
interfaces reference 
RXHLLAPI interface 
SAA Communications 

w Communications Manger 

LAN utilities 

interface 

configuration 

os12 Rexx 
223 



More  than  a  Fancy  .CMD  Language 
Fill multiple  roles on 0 9 2  
Places more power in the 

= Powerful  automation of 
hands of users 

0 9 2  operations 

os12 

os12 
Procedures  Language 

21REXX 

Adding REXX Power 
to Applications 

os12 

Rexx 

Rexx 
224 



Creating New REXX  Functions 

os12 

Function  Registration 

Rexx 

REXX external functions 
are registered with 
RxFuncAdd 

linkage 
Acts as a form of program 

os12 

Call RxFuncAdd 'SysCls',, 
'REXXUTIL', 'SysCls' 

Rexx 
225 



RXSTRINGs 

External functions are 
passed arguments as 
RXSTRlNGs 

Call SysFileTree IC:\*.*', 'List.',  'F' 

Defined as a pointer and .......................................................... 

length pair defining a ii&lSneftr$? ~~~~~~~~:~~~ 
REXX character string ... ...sicptr;:;;:,.;~.~ :.._:.>:. :;;; 2 ;y.<:z:;;:;:;${:i:< c:\*.*\o 

.............................................. 

$ ; : y ,  ?&>+ ~ ~ , . ' ~ : . ~ ~ ~ , ~ : ~ ; ~ ~ ~ ~ : i ~ ~ : ~  .,.., 1. :.... ;:.. :.:...:.: . ..:.:.:.:.:: .:::..fi ......... ..,.:.: :<:: ............................... 
....................................................... 

os12 Rexx 

RXSTRING Return Values 
m External functions pass an 

' External  Function 
............... REXX ~~~~~ ............ 

os12 
226 

Rexx 



Function  Packages 

REXX external functions 
can be registered from C 
code also RexxRegisterFunctionDll( 

"SysCls", "REXXUTIL", 
"SysCls") ; 

os12 

Accessing REXX Variables 

Rexx 

Function 
DLL 

os12 

REXX Program 

R e n  
227 



Using REXX for Macros 

An application  can  call  the 
REXX  interpreter to  run 
any  REXX program 

\ 

os12 

Invoking REXX 

Rexx 

9 An application can call I 

use the  REXX  interpreter : rc = RexxStart(argc, argv, 
with the  RexxStart ~ 

"FACTOR.CAL", 
I programming interface 

os12 

NULL, NULL, 
RXFUNCTION, 
NULL, 
&return, 
&retstr); 

Rexx 



Application  External  Functions 

os12 Rexx 

Subcommand  Handlers 

..  . . . .  i, 

os12 Rexx 
229 



And Still More ... 
Exits  to  tailor  REXX Halting a running REXX 

. REXX programs executed Tracing a running REXX 

Macro Space  repository Subcommand handlers as 

program behavior program 

directly from  storage program 

for REXX' programs dynamic link libraries 

os12 

REXX 
The  Universal  Macro  Language 

Same language used for 
all applications 

m Places control into  user 
hands, making people 
more  productive 
Easily added to  any 
application 

os12 

Rexx 

Rexx 
230 



INTERFACING w m  RDO( 

23 I 



Interfacing with REXX 

ABSTRACT 
This aim of this paper is to give an  overview of the interfaces  available  in REXX, and to show  how these 
interfaces can be used.  This paper deals  only  with the MVS environment - however,  most other 
environments  (e.g. OS/2) offer  similar  facilities. 

Although REXX is a  powerful  language  in  its own right  (especially  now that REXX compilers are 
available), there are certain features missing  (for  example,  processing of VSAM files, direct SQL 
processing). Furthermore, there are REXX features (e.g. parsing) that can simplify the processing of 
programs  written in conventional  languages  (Assembler, PLD, COBOL, etc). 

REXX caters for  both  these  situations by providing  interfaces. There are two forms of  interface: 
high  level 
low  level. 

High-level interfaces are invoked  directly  from  a REXX exec. Low-level interfaces are those routines 
(services)  provided by the REXX processor. 

There  are three forms of high-level  interface: 
function 
(address) environment 
program invocation. 

A function can be written in either REXX or a  conventional  programming  language. To improve 
performance functions  can be physically grouped together as a function  package. A function is  invoked 
by its name, and serves to extend the standard functions  provided  with REXX (e.g. WORD, WORDINDEX). A 
function may be passed  arguments,  and may return a  value (the function  return value). 
An address environment can only be written in a  conventional  programming  language.  High-level 
interfaces may (and  normally will) make  use of low-level REXX interfaces. R E X  as an address 
environment  processes any non-REXX  statements. A user-address-environment  extends the standard 
REXX environments  (e.g. MVS, TSO). 
A program  invocation is made  with the LINK or ATTACH command. 

1. INTRODUCTION 
REXX implementations  offer many interfaces  for  using REXX services from. programs  written  in 
conventional  programming  languages.  This paper describes only those interfaces of interest to the 
applications  developer - there are a  number of other  interfaces  which can be used by systems  specialists 
to customise the system. 

The interfaces can be grouped into the following  categories: 
program  invocation of a REXX exec 
programs  as REXX functions  (and  the  grouping of such  programs into function  packages) 
program  access to REXX variables 
stack operations 
general service  routines. 

232 

Interfacing with REXX 1 



1.1 High-level REXX interfaces 
High-level REXX interfaces are invoked  directly  from REXX execs.  Such interfaces can be regarded as 
being  extensions to the REXX language. 

Standard address environments: 
ISPEXEC (ISPF Dialog  Manager) 
ISREDIT (ISPFPDF Edit Macro) 

0 DB2 (program that runs in the DB2  environment) 
QMF. 

Typical  user  environments: 
REXXDBZ process SQL query 
REXXVSAM process VSAM dataset. 

Representative examples of user  functions: 
SHIFT function (perform bit-shift on REXX variable) 
SIN function  (calculate  trigonometric  sine  value). 

1.2 Low-level REXX interfaces 
The most  useful  low-level REXX interface routines: 

IRXEXCOM access REXX variables 
IRXEXEC invoke REXX exec 
IRXINIT process REXX environment 
IRXJCL invoke REXX exec (batch mode) 
IRXLOAD load  exec 
IRXRLT get  result 
IRXSTK access  REXX  stack. 

REXX programs (i.e.  programs that make  use of REXX services) can access certain REXX control 
blocks: 

Argument  List (AL). The Argument  List  describes the input  arguments  passed to a function. Each 
argument  passed to the function  has one Argument List entry (consisting of two words) in the 
Argument  List. The Argument  List is terminated with two words each containing  binary -1 

External Functions Parameter List (EFPL). The EFPL describes the external  arguments for a 
function; the pointer to the input  arguments  and  to the result  field. The input arguments are defined 
in the Argument  List. The result is defined in the Evaluation Block (EVALBLOCK). 

Environment Block (ENVBLOCK). The ENVBLOCK  describes the REXX operating environment. 
An ENVBLOCK is automatically created when the REXX environment is initiated. The 
ENVBLOCK is principally  used by the application  developer to obtain error messages. 

(x'F.. f l ) .  

Evaluation  Block  (EVALBLOCK). The EVALBLOCK  describes the result  passed  back  from  a 

Execution  Block  (EXECBLK). The EXECBLK  specifies the information  necessary to locate an 

In-Storage Control Block  (INSTBLK). The INSTBLK  describes (address and length) the individual 
records (lines) of a REXX exec  contained in main-storage. The IRXLOAD service  can be used  to  build 
the INSTBLK. 

Shared Variable (Request) Block (SHVBLOCK). The SHVBLOCK describes the variable to be 

function. 

external  exec. 

accessed  from  the  variable  pool.  SHVBLOCKs  can be chained  together. 

233 
,,; : Interfacing with REXX 2 



Vector of External Entry  Points (VEEP). The VEEP contains the addresses of the external REXX 
service  routines. 

Most of these control blocks are read-only,  although  some can be altered (INSTBLK, SHVBLOCK). 

2. HIGH-LEVEL INTERFACES 

2.1 MVS-TSO/E implementation 
The  MVS-TSOE implementation  allows  a REXX exec to run in  several  environments, both dialogue 
and batch. From within  this  invoking  environment the ADDRESS instruction can be used to select  a  sub- 
environment for non-REXX statements.  This  sub-environment is the interface to other components, for 
example, the ISPEXEC sub-environment  for ISPF Dialog Manager services. 

2.1.1 Invocation 
A REXX exec  can be invoked  from: 

TSO/ISPF dialogue 
TSO batch 
MVS batch. 

The  REXX exec  is stored as  member of a partitioned dataset (library). The name of this dataset must be 
made  available to the REXX interpreter. 

2.1.2 Linkage to host (MVS-TSO/E) environment 
A REXX exec  can  link to components  from the host  environment. The ADDRESS instruction is used to set 
the host  environment. 

Example: 
ADDRESS  TSO "TIME";  

invokes the TSO T I M E  command. 

2.13 Linkage to programs 
A REXX exec can pass control to a  program  written  in  a  conventional  programming  language, The 
program is invoked  with either the ATTACH or L I N K  host  command. The ATTACH command  invokes the 
program asynchronously  (i.e. as a separate task),  the L I N K  command  invokes the program synchronously. 
The program is loaded from the program (load) library  assigned to  the environment. 

The program may be passed  a  single parameter, which  may contain subparameters. The invoked 
program  receives two parameters on entry: 

the address of the parameter string; 
the length of the parameter string (full-word). 

Note: This is not the standard MVS program  linkage  convention. TSOPE V2R3.1  offers new  facilities: 
LINKMVS, ATTCHMVS, LINKPGM, ATTCHPGM. These  pass  multiple parameters according to MVS conventions. 

234 

Interfacing  with REXX 3 



2.1.4  Interface  with  ISPEXEC  (ISPF  Dialog  Manager) 
REXX execs  invoked  from the TSO/ISPF environment can use the ADDRESS ISPEXEC instruction to access 
ISPEXEC (ISPF Dialog  Manager)  services. The parameters for the ISPEXEC service are passed as a 
normal REXX string,  i.e. may be a  literal,  symbol  or  mixture.  However, ISPEXEC accepts only upper-case 
characters. The return code from the ISPEXEC service  is  set into the RC special variable. 
REXX execs and ISPF Dialog Manager share the same function  pool, with two restrictions: 

variable  names  longer than 8 characters cannot be used  in  ISPF; 
the VGET and VPUT services cannot be used with stem  variables. 

Example: 
panname = "PAN1"; 
ADDRESS ISPEXEC  "DISPLAY  PANEL( "panname")" ; 
SAY RC; 

uses ISPEXEC to display  panel PAN1, the return code from the service  is  displayed. 

2.1.5  Interface with ISREDIT  (ISPFIPDF Edit macro) 
The ISPFPDF Editor can  invoke  a procedure to perform  processing on a dataset - this procedure is 
called  an Edit macro  and  can be a REXX exec. The ADDRESS I S R E D I T  instruction invokes Edit macro 
services. The parameters for the I S R E D I T  service are passed as a  normal REXX string,  i.e. may be a 
literal, symbol  or  mixture. The return code from the I S R E D I T  service is set into the RC special  variable. 

Edit macros  can  make  full  use of REXX facilities. The powerful string processing features of REXX 
make it an  ideal  language  for  the  implementation of Edit macros. 

Example: 
/* REXX Edit macro */ 
ADDRESS I S R E D I T :  
"MACRO (STRING)"  
"F IND" string "NEXT" 
IF RC <> 0 THEN SAY "search argument not  found"; 
"END" /* terminate  macro */ 

2.1.6  Interface  with DB2 (Database 2) 
The TSO DSN command is used  in  initiate  the  DB2  session. The DB2 RUN subcommand is used to invoke  a 
program  which  is to run in the DB2  environment. 

The DB2 subcommands to invoke the program,  and to terminate the DB2  session, RUN and END, 
respectively, are set into the stack in the required order before the DB2  session  is  initiated. 

Note: The subcommands  cannot be passed  directly,  as is the case  with  CLISTs. 

Example: 
QUEUE "RUN PROGRAM(TDB2PGM) PLAN(TDB2PLN) LIB(   'USER.RUNLI6.LOAD')";  
QUEUE "END"; 
ADDRESS  TSO " IDSN";  /* invoke DE2 */ 

ADDRESS ISPEXEC  "SELECT  CMD(%DSN)"; /* invoke DE2 with I S P F  services */ 
or 

2.1.7  Interface  with  QMF  (Query  Management  Facility) 
With QMF Version 3 Release 1 the S A A  Callable Interface (DSQCIX) is now available for REXX. This 
means that there are now two methods of invoking Q M F  

Callable Interface 
Command Interface. 

Interfacing with REXX 

235 

4 



The Callable Interface: 
ISPF not required 
QMF does not  need to be active. 

The Command  Interface: 
requires ISPF 
requires QMF to be  active. 

The Command Interface invocation of QMF is more involved; two steps are  required 
initiate the QMF session  (program DSQQMFE), and execute  a QMF procedure;. 
this QMF procedure passes  control  to a REXX exec,  which in turn uses the QMF Command 
Interface (CI,  program DSQCCI) to process  a QMF command. 

The following three QMF examples  all perform the same function: run the QMF query Ql . 
21.7.1 cauable Interjke - Vkrsion 1 
Example: 

/* REXX - QMF Callable Interface */ 
ADDRESS "TSO" ; 
/*  allocate QMF files */ 
"ALLOC F(DSQDEBUG) DUMMY REUS" 
"ALLOC  F(DSQPNLE) DSN( 'qmf.test.dsqpn1e') SHR REUS" 
"ALLOC F(ADMGGMAP) DSN( 'qmf  .test.dsqmape') SHR REUS" 

CALL TESTRC; 
CALL OSQCIX "RUN  QUERY 01"; /* run query */ 
CALL TESTRC; 
CALL  DSQCIX  "EXIT"; /* terminate QMF */ 
CALL TESTRC; 
EXIT;  /*  terminate exec */ 
TESTRC: 

CALL  DSQCIX "START (DSQSSUBS=DB2T,DSQSMODE-INTERACTIVE"; /* Start QMF */ 

IF DSQ-RETURN-CODE > 4 THEN DO; 
SAY "QMF  RC : " DSQ-RETURN-CODE ; 
SAY DSQ-MESSAGE-TEXT; 

END; 
RETURN; 

236 

Interfacing  with REXX 5 



2 1.7.2 Gallable Inte@ace - Version 2 
Example: 

/ *  REXX - QMF Callable Interface */ 
ADDRESS "TSO"; 
"ALLOC F(DSQDEBUG) DUMMY REUS" 
"ALLOC  F(DSQPNLE) DSN( 'qmf.  test.dsqpnle') SHR REUS" 
"ALLOC F(ADMGGMAP) DSN( 'qmf .test.dsqmpe') SHR REUS" 

CALL TESTRC; 
ADDRESS "QRW"; / *  QMF environment */ 
"RUN  QUERY 91" /*  run query */ 
CALL TESTRC; 
"EXIT"  / *  terminate QMF */ 
CALL TESTRC; 
EXIT;  / *  terminate exec */ 
TESTRC: 

CALL  DSQCIX  "START (OSQSSUES=DB2T,DSQSMODE=INTERACTIVE"; /* start QMF */ 

I F  DSQ-RETURN-CODE > 4 THEN DO: 
SAY "QMF  RC: " DSQ-RETURN-CODE; 
SAY OSQ-MESSAGE-TEXT; 

END; 
RETURN ; 

Version 2 is  basically the same  as  version 1, except that the  QMF environment QRW is used. 

21.7.3 Command Interjkce 
Example: 

Phase 1 - Initiate QMF session (DSQQMFE program). The following  exec allocates the (minumum) QMF 
files,  initiates QMF session  and  invokes  the QMF procedure QP1: 

/* REXX - QMF  COMMAND INTERFACE * /  
ADDRESS "TSO"; 
"ALLOC  F(DSQDEBUG) DUMMY REUS" 
"ALLOC  F(DSQPNLE) DSN( 'qmf  .test.dsqpnle') SHR REUS" 
"ALLOC F(ADMGGMAP) DSN( 'qmf  .test .dsqmape' ) SHR REUS" 
ADDRESS "ISPEXEC"; 
"SELECT PGM(DSQQMFE) NEWAPPL(0SQE) PARM(S=DBZT,I=USER.QPl)" 

Phase 2 - The QMF procedure QP1 passes control to the TSO procedure (REXX exec) QR2: 

TSO %QR2 

Phase 3 - The QR2 exec  invokes the QMF Command Interface (DSQCCI program) to process the specified 
QMF commands (this REXX exec  actually  causes the QMF query (91) to be run): 

/*  REXX */ 
ADDRESS "ISPEXEC"; 
"SELECT PGM(DSQCC1) PARM(RUN Q I ) "  
"SELECT PGM(DSQCC1) PARM( INTERACT)" 
"SELECT PGM(DSQCC1) PARM(EX1T)" /* terminate QMF */ 

23 7 

Interfacing with REXX 6 



Fig. 1 illustrates the use of the QMF Command Interface. 

Fig. 1 -Schematic use of QMF Command Interface 

2.2 User interfaces 
User programs can be invoked as: 

function (e.g. x - f u n c t ( p l , p 2 , .  ..): ) 
host command (e.g. ADDRESS userenv: "and p l  p2 . . ."; ) 
program (e.g. LINK "pgm pl   p2 .. ."; ). 

The most  suitable  interface depends on such aspects as: 
the form of the arguments to be  passed (a natural  calling sequence); 
the form of the results to be returned; 
the programming  language  used. 

2.2.1 Function  interface 
A user function receives zero or  more parameters (parsed in the Argument  List), and must return  a 
function result (in the Evaluation Block). Fig. 2 illustrates the function interface. 

Example: 
y - SIN(x); 

Interfacing with REXX 

238 

7 



r e g i s t e r  1 
External  Function Parameter L i s t  (EFPL) 

EFPLARG T - - EFPLEVAL T 

Argument L i s t  (ARGSTRING. .) 

X'FF.. .FF' 

[X'FF ... FF ' I  

I Evaluation  Block (EVALBLOCK) 

u 
Fig. 2 -Function interface 

2.2.2 Host  command interface 
A host  command is processed by the currently  active  environment, i.e. the environment  activated  with 
the ADDRESS command. All non-REXX commands are passed to the host  command  environment. A host 
command  cannot  directly return any data (other than a return code for  the command) - data can be 
passed  back  in the stack or as (stem)  variables.  Fig. 3 illustrates the host  command interface. 

Many installations  have  a single router program  that  passes control to the  appropriate processing 
program. 

Example: 
ADDRESS USER; 
"REXXVSAM READ DDNAME GE ALPHA(STEM A. ": 

parameter 1 i s t  T-v] 
T - F l  - 
T - F c o d e j  l----16----1 

T 

T .  

Fig. 3 - Host Command  Environment  Interface 

239 

Interfacing with RfXX 8 



2.2.3 Program invocation  interface 
A program  can be  directly  invoked  with  the ATTACH (asynchronous) or L I N K  (synchronous)  command. This 
is the only  way of invoking a CJ370 Version 1 program. Note: The  parameters passed to a program do 
not  conform  to the MVS calling  convention.  Fig. 4 illustrates the program  invocation interface. 

Example: 
ADDRESS LINK "ALPHA  BETA GAMMA"; 

parameter 1 ist 

I 
invocation string 

1 TFF] 
Fig. 4 - Program invocation (via LINK, ATTACH) 

3. LOW-LEVEL INTERFACES 

3.1 General  conditions 
The low-level interfaces are subject to the following  conditions: 

Programs  can  be  written in Assembler,  COBOL,  PL/I,  and  C/370  Version 2 (to a limited  extent 
Version 1). Not all high-level  programming  languages  provide  full support for all the required 
facilities. 

Programs  using REXX services  must  use  31-bit addressing (AMODE 31). 
Numeric  fields are in  binary format, either fullword (4 bytes) or halfword (2 bytes). 
Standard  calling  conventions are used 
. register 15 - entry point address; 
- register 14 - return address; 

The  return code is  passed  back in register 15 (PL/I: PLIRETV variable, COBOL RETURN-CODE special 
register, C: function return value).  Many routines also set an error message  in the Environment 
Block. 

Parameter address lists  passed in register 1 must  have the high-order bit set in the last address word. 
Standard  macros  (in the SYS1.MACLIB system  macro  library) are available for use  by Assembler 
programs  to  map the more important control blocks.  Programs written in  high-level  programming 
languages  (e.g.  COBOL,  PL/I)  must  themselves  define the required control block structures - Fig. 5 
shows the equivalent  field  types  in  various  programming  languages. 

register  13 - address of save-area. 

type C COBOL vs I 1  P L / I  Assembler 

address * POINTER PTR A 
character string CLn 

ox X '  ... ' B I T ( 8 )  X hexadec ima 1 
short P I C  S9(4) COMP FIXED BIN(15) H halfword 
int P I C  S9(9) COMP FIXED  B IN(31)  F fullword 
char [ntl] P I C   X ( n )  CHAR( n) 

Fig. 5 -Equivalent field types 

240 

Interfacing with REXX 9 



Notes: 
1. Only the most important information  for  the interfaces is described in this paper - the appropriate 

manual should be consulted if a more detailed description is required. 
2. The entry symbol.. in  diagrams denotes that symbol is  used as prefut to the field  names  in the 

corresponding block. The diagrams  show only the significant  fields.  Any  fillers  at the  end of field 
layout  figures are omitted. 

Sample PL/I program: 
BETA: PROC OPTIONS(MA1N); 
DCL  IRXSTK EXTERNAL  OPTIONS(RETCODE,  INTER,ASSEMBLER) ; 
DCL PLIRETV  BUILTIN;  
DCL 1 FC  CHAR(8) ; / *  function code */ 
DCL 1 ADDR-ELEM PTR; / *  pointer  to data */ 
DCL 1 LEN-ELEM FIXED  B IN(31) ;  / *  length  of  data */ 
DCL 1 FRC F IXED  B IN(31 ) ;  / *  function  return  code */ 
DCL 1 ELEM CHAR(256) BASED(ADDR-ELEM); /* data */ 

FETCH IRXSTK; /* load address  of entry point */ 
CALL  IRXSTK( FC ,ADDR-ELEM ,LEN-ELEM, FRC) ; 

END; 

FC = 'PULL ' ;  /* function * /  

I F  PLIRETV = 0 THEN PUT S K I P   L I S T  (SUBSTR(ELEM,l,LEN-ELEM)); 

This PL/I program retrieves and  displays the next  element  from the data stack. 

3.2 Invocation of a REXX exec 
There  are three ways  of  an application  program  to  invoke a REXX exec: 

using the IRXJCL program; 
using  the TSO Service  Facility (IJKEFTSR program); 
using the IRXEXEC program. 

These three methods are listed in order of ease of  use. This is also the  order of increasing  flexibility,  e.g. 
the IRXEXEC program interface offers  more  flexibility than the IRXJCL program interface but is more 
difficult  to use. 

32.1 Interface  from  programs to batch REXX (IRXJCL) 
Programs written in a conventional  language  can  use IRXJCL to  invoke a REXX exec.  Fig. 6 shows the 
form of the parameter as passed  from  the  invoking  program. 

0 2 n+2 

Fig. 6 - Format of parameter passed to IRXJCL 

3.2.2 Invocation of a REXX exec  using  the TSO Service  Facility (IJKEFTSR) 
REXX execs  can also be  invoked  from the TSO  environment (either dialogue or batch) with the TSO 
Service  Facility (I JKEFTSR program) - the TSO  Service  Facility  has the alias TSOLNK. 

323 Interface  from program to REXX processor (IRXEXEC) 
The IRXEXEC routine is the most  flexible  method of invoking a REXX exec: 

it can  invoke either an internal or external  exec; 
it can pass more than one parameter. 

24 1 

Interfacing with RE% 10 



If the INSTBLK address is zero, an internal exec is invoked, otherwise an external exec is loaded using 
the information in the EXECBLK (EXEC-BLK-DDNAME - library  ddname, EXEC-BLK-MEMBER - member  name). 
Fig. 7 illustrates the IRXEXEC service. 

parameter 1 ist 
EXECBLK* 

T--i--1 
T 

flags 
INSTBLK* 

2-- CPPL 
T 

T 

EVALBLOCK* 

ddD work area  ptr 
work area 

user field I1 T-E I 
Detailed diagram follows (in part 2) 

Pig. 7 - IRXEXEC interface @art 1 of 2) 

3.3 Program  access to REXX variables (IRXEXCOM service) 
Programs running in a REXX environment can use the IRXEXCOM service to access variables in the 
environment  pool.  Fig. 8 illustrates the IRXEXCOM service. The following functions are available: 

copy  value 
set variable 
drop variable 
retrieve symbolic  name 
set symbolic  name 
drop symbolic  name 
fetch next variable 
fetch user data. 

Interfacing with REXX 

242 

11 



INSTBLK  (INSTBLK-. .) p - q  

I 

record  vector 
record 1 

last record 

I1 ---- 
! F l  

EXECELK (EXEC-ELK-. . ) 
' IRXEXECB' 

LENGTH 

MEMBER 

WNAME 
I >- 

r - - - --> library 

I I 

- - implicit (only informative) 
Fig. 7 - IRXEXEC interface @art 2 of 2) 

243 

Interfacing with REXX 12 



I ' IRXEXCOM' 1 
parameter 1 i st 

IRXEXCOM 
mdu le 

1 SHVBLOCK 

I SHVCOOE -IS1 (SHVSTORE 

SHVNAMA 

SHVNAML 

SHVVALA 

l-----i 
variable pool 
m 
varname 

u - data - control 
Fig. 8 - IRXEXCOM service to store a variable 

3.4 Stack  processing (IRXSTK service) 
Programs can use the IRXSTK service to perform  processing on the current  stack. The operations: 

OELSTACK 
DROPBUF 
MAKEBUF 
NEWSTACK 

9 PULL 
PUSH 
QELEM 

9 QSTACK 
9 QUEUE 
9 QUEUED 

have  their  standard function. 

244 

Interfacing with REXX 13 



The two operations: 
DROPTERM 
MAKETERM 

are used by  system routines to coordinate stack access  from  TSO and ISPF. These operations should not 
be  used by application programs. 

3.5 Function  interface 

3.5.1 Function  package 
For reasons of efficiency,  functions  can  be  grouped together as a function  package - function  packages 
are searched before the other libraries. Three classes of function  package  can  be  defined: 

user function package 
local  function  package 
system  function  package. 

The system support personnel will usually be  responsible  for the local and system  function  packages,  and 
so they  will not be  discussed  in this paper, although the general logic  is the same as for the user function 
package. 

A function package  consists of a function package  directory and functions. The function package 
directory is a load  module contained in the load  library - IRXFUSER is the  standard name  for the load 
module  defining the user  function  package.  Fig. 9 shows the diagrammatic representation of a function 
package. 

The function  package directory contains the names of the functions (subroutines) as  invoked  from a 
REXX exec  and a pointer to the appropriate load  module. This pointer can  have  one of two forms: 

The address of a load  module  which  has  been  linkage edited together with the function  package 

The name of a load  module  which will be  loaded  from the specified load library. 
directory - such load modules  must  be  serially reusable, as  they are loaded only  once. 

3.5.1.1 Function directory 
The Function Directory defines the functions  contained  in a function package. The Function Directory 
consists of a header  and  one  entry  for  each  function contained in the Function Directory. 

245 

Interfacing with REXX 14 



load 1 i brary ' function package 
(FPCKDIR-. . ) 

IRXFUSER ' IRXFPACK' 

HEADER-LENGTH 

entry 1 FUNCTIONS (=n) 

ENTRY-LENGTH 

load 1 i brary 
I< 

- 
Fig. 9 -Diagrammatic representation of a function  package 

Sample Function Package Directory: 
IRXFUSER CSECT 

DC CL8'  IRXFPACK' 
DC  AL4(  SOD-IRXFUSER) 
DC  AL4(ND) 
DC F L 4 ' 0 '  
DC AL4(LDE) 

DC C L B ' F D I G I T '  
DC V L 4 ( F D I G I T )  
DC F L 4 ' 0 '  
DC C L 8 '  ' 
DC C L 8 '  I 

LDE EQU *-SOD 
* next entry 

SOD EQU * 

DC C L 8 '  FGEDATE ' 
DC A L 4 ( 0 )  
DC F L 4 ' 0 '  
DC CL8'FGEDATE' 
DC C L B ' I S P L L I B '  

EOD EQU * 
ND EQU (EOD-SOD)/LDE 

END 

identlf ier 
length of header 
no. of entries in directory 
zero 
entry length 
start of directory  (first  entry) 
function name 
address, reserved 
reserved 
name of entry point 
DD-name of load library 
length  of directory entry 

function name 
address, 0 - load from 1 i brary 
reserved 
name of entry point 
DD-name of  load library 
end of directory 
no.  of directory  entries 

246 

Interfacing with REXX 15 



This sample Function Package Directory contains two functions: 
F D I G I T  - l i i age  edited with the Function  Package Directory; 
FGEDATE - to  be loaded from the I S P L L I E  library. 

3.6 Load routine - IRXLOAD service 
The load routine (IRXLOAD) can be used in several ways: 

load an exec  into main-storage - this  creates the In-Storage Control Block  for the exec; 
check  whether an exec is currently loaded in main-storage; 
free an exec; 
close a file  from  which  execs  have  been loaded. 

IRXLOAD is also used  when the language processor environment  is  initialised and terminated. Fig. 10 
illustrates the IRXLOAD service (load function). 

EXECELK (EXEC-BLK-. . ) 

t-l ' IRXEXECB' 

- LENGTH 

MEMBER 

DDNAME >- 

~ r - - - - - -  - -> 1 i brary 

I I 

I 

L- -1- - - - - - ' 
+length--( . 

INSTBLK  (INSTBLK-. .) [GiiiGFI 
- 

ADDRESS f 
USEDLEN 

record  vector 

- - implicit (only informative) 
Fig. 10 - IRXLOAD interface 

module - 

247 

Interfacing with REXX 16 



3.7 Initialisation routine - IRXlNlT service 
The initialisation routine (IRXINIT) can  be  used in two ways: 

initialise  a  new  environment; 
obtain the address of the current Environment  Block. 

The first function  is  normally  only  used by  system specialists. The second function is used principally to 
access  an error message  which  has  been set by a  service routine. Fig. 11 illustrates the ENVBLOCK. 

F E N V E L O c r l  
NVELOCK 

PARMELOCK 

error  message 

rIRXPARMS* 
Parameter Block 

Module  Name 
Table 

Host Comnand 
Environment Table 

Function  Package 
Table 

parameters module 

L 

Fig. 11 - ENVBLOCK 

3.8. Get  result - IRXRLT service 
The get  result routine (IRXRLT) can  be  used  in two ways: 

fetch result set by an exec  invoked with the IRXEXEC service; 
allocate an Evaluation  Block of the specified  size. 

This paper is adapted from my book 

published in 1990 by Ellis  Horwood  Limited,  Chichester. 
Practical  Usage of REXX 

Anthony  Rudd, April 1992. 

248 

Interfacing with REXX 17 



DAVID I SHRIVER 
IBM 

249 



REXX in the ClCS Environment 

May 5, 1992 

David 1. Shriver 

IBM 
Maiistop 01-03-50 

5 West Kirkwood Blvd. 
Roanoke, TX 76299-0001 

(817) 962-4142 

Third REXX Symposium, Anapolis,  Maryland  (C) Copyright IBM Corporation 1991,1992 

ABSTRACT: 

CICSlREXX is an IBM internal implementation of REXX, the IBM S A A  Procedures Language, under 
CICSjMVS and CICS/ESA. Specifically,  it  provides REXX environment support under CICS for  both  the 
TSO/E Version 2 REXX interpreter and the REXX/370 compiler. This environment support includes inter- 
face routines  for storage management, l/O handling and  other miscellaneous REXX facilities.  It also includes 
providing a command-level interface to CICS from REXX, and also provides interfaces to other CICS based 
products, such as IBM’s OficeVision/MVS. 

250 



Third REXX Symposium, Anapolis, Maryland (c) Copyright IBM Corporation 1991,1992 

25 1 



Third REXX Symposium, Anapolis,  Maryland (C) Copyright IBM Corporation 1991,1992 

Contents 

CICS/REXX Ovewiew 1 

Trademarks 1 
Disclaimer 1 
Purpose  of this paper 1 
Function/Feature Highlights 1 

copyright 1 

Full REXX language support under M V S  CICS 2 
Support for both compiled and interpreted EXECs 2 

* CICS based text editor for REXX EXECs and data 2 
VSAM  based  fde  system for REXX EXECs and data 2 
Support for popular EXEC CICS commands (not complete yet) 2 
Support for Subcommands  written in REXX 2 
Support for application macros, written in REXX 3 
High-level clientlserver architecture support 3 
Command definition of REXX Subcommands 3 
FlatlUniversal default REXX Subcommand  space 3 
Transparent CICS Pseudo-conversational tefininal support 3 
Support for system  and  user  profile EXECS 3 
Shared EXECs in virtual storage 4 
Nested ISCLUDE support in EXEC Loader 4 
EXEC Suspend/Resume support 4 
REXX interface to OfflceVisioniMVS  and ASF Version 2 4 
Compatibility support for several popular  VM/CMS commands 4 

CICS,’REXX  Benefits 5 
Business Solutions 5 
Investment Protection 7 
User Productivity 7 
Growth Enablement 7 
Systems  Management 8 

ClCSlREXX General Arehitecture/Implementation 9 
General Design Goals 9 
Basic structure of REXX running under CICS 9 
REXX EXEC invocation 10 
Where EXECs execute  10 
How EXECs are located  and loaded 10 
How EXECs are edited  10 
Control of EXEC execution search order 10 
REXX EXEC File  System structure 11 
Support  of standard REXX features 11 

SAY  and TRACE statements 11 
PULL and PARSE EXTERSAL statements 11 
REXX stack support 11 
REXX function support 11 
REXX Function Packages  12 

Invoking another EXEC as a  subcommand 12 
Invoking CICS load  modules as user  provided  subcommands  12 
Adding REXX host subcommand  environments 12 

CICS mapped 1/0 support 12 

REXX Subcommand  Environment Support 12 

Support  of standard ClCS featuresifacilities  12 

252 

Contents 3 



Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Chrporation 1991, 1992 

Dataset 1/0 Services I2 
Interfaces to  ClCS Facilities  and  Services 12 a 

invoking user applications from EXECS 13 
REXX interfaces to CICS temporary & transient  storage queues 13 
Pseudo-conversational transaction support 13 

REXX  EXEC  Suspend/Resume support 13 
interfaces to other programming languages 13 
Security 14 
Perfonnance discussion 14 
Miscellaneous features 14 
Supported Environments  and prerequisites 14 
National language and DBCS support 15 
Building  block S/W development - Common Interface Routine 15 

CICS/REXX Client/Server  Architecture 17 
High-level  Client  /Server support 17 

ClientlSener Design goals 17 
Current ClientlServer Implementation 18 

CICS/REXX  Office\’ision/MVS Environment Supporl 
REXX EXECS  for Application Integration 19 
REXX  EXECS as exits 19 

19 

CICS/REXX Interfaces to other  products 21 
Description of interface to DB2 21 
Description of interface to GDD,M 21 

CICS/REXX ChlS Environment  Compatibility/Emulation 23 

Summary 25 
Prototype development experience 25 
Much more  than just another language for  ClCS 25 

Appendix - Sample  CICS/REXX screens 27 
Sample FILELIST screen 27 
Sample KEDIT Screen 28 
DEMO  EXEC 28 

Source  listing 28 
Execution with trace off 32 
Execution with trace on 36 

REX EXEC 41 
Source listing 41 
Execution 42 

253 

4 REXX in the ClCS Environment 



Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991,1992 

ClCSlREXX Overview 

Copyright 

(C) Copyright IB,M Corporation 1991 

Trademarks 

The following terms used in this paper, are trademarks or sewice marks of IBM Corporation in the United 
States or  other countries: 

AIX,  CICSjESA,  CICS/MVS, DB2,  GDDM, IBM, QMF, MVS/ESA, OfficeVision, OS/2, PROFS,  REXX 

Disclaimer 

This discussion of REXX under CICS does not imply that IBM either does, or does not, have plans to 
incorporate all, or part of, this function into a product. 

Purpose of this paper 

The purpose of this paper is to share information on an internal IBM  implementation of REXX under 
CICS so as to  promote technical  discussion  and  generate customer feedback. 

Function/Feature Highlights 

As  follows are some of the highlight features of CICS/REXX: 

Full REXX language support under MVS CICS 

Support for both compiled and interpnted  EXECs 

CICS based  text editor for REXX  EXECs and data 
VSAM  based  file  system for  REXX  EXECs and data . 

Support for popular EXEC  CICS  commands (not complete yet) 
Support  for  Subcommands written in REXX 

Support  for application macros, written  in REXX 

High-level  clientlserver architecture support 

Command definition of REXX Subcominands 

Flat/Universal default REXX Subcommand space 

Transparent CICS Psuedo-conversational  terminal support 

Support  for system  and  user  profile EXECs 

Shared EXECs in virtual  storage 

254 

CICS.'REXX Overview 1 



I 

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991,  1992 

Nested IXCLUDE support  in EXEC Loader 

EXEC SuspendiResume support 

REXX interface to Of€iceVision/MVS 

Compatibility  support  for  several  popular VM/CMS commands 

Full REXX language support  under MVS CICS 

CICS/REXX is currently  at REXX language  level 3.46 and supports all REXX language  statements and 
built-in  functions,  as  described for MVS in the SAA Common Programming InterJace Procedures  Language 
Reference, SC26-4358. 

Support for both  compiled and interpreted EXECs 

CICS/REXX includes  support  for both interpreted  and  compiled EXECs. Compiled and interpreted EXECs 
can  be  freely  intermixed.  Such a combination  is  powerful  because the use  of the interpreter  provides a very 
productive  development  environment  (quick  development  cycle,  source  level  interactive  debug, CICS based 
development)  whereas  the  compiler  allows the developed REXX code to be later  optimized for the perform- 
ance  requirements of  critical production  systems.  Since  compiled and interpreted REXX EXECs  can  be 
intermixed  transparently,  compilation  can be done selectively on those modules that need  it most, and the 
replacement  of  interpreted REXX EXECs can  be done gradually, without affecting  system  function. 

ClCS  based  text  editor for REXX  EXECs  and data 

KEDIT, a full  function  text  editor, similar to the VM/CMS  XEDIT and TSO ISPF/PDF editors  is  provided 
as part of CICSIREXX, so EXECs  can be written and modified  directly  under CICS, and  from CICS based 
application  platforms,  such as OfiiceVision/MVS. 

VSAM based file system for REXX  EXECs and data 

CICS,'REXX  includes a REXX file  system that is  hierarchically  structured (similar to OSj2, AIX  and the 
VM Shared  File  System),  and  automatically  provides  each REXX user  with a file  system in which to store 
EXECs and data. There  is a FILELIST utility to facilitate  working  with this fie system, the KEDIT editor 
will support editing  members of this file system, and EXECs to be run are loaded  from this fie system. This 
library  (file)  system  is VSAM RRDS based  for  performance,  security and portabiiity  reasons. 

Support for popular  EXEC  ClCS  commands  (not  complete yet) 

Support for  several EXEC CICS commands  is  already  included in CICS/REXX,  and support  for all popular 
CICS Command Level  commands is planned. 

Support for Subcommands written in REXX 

CICSIREXX supports the ability  for  users to write  new  REXX  subcommands in REXX. These  subcom- 
m a d s  do  not function as nested REXX EXECs, and  unlike  nested REXX EXECs will have  the  abihty to 
get and  set the values of REXX variables in the user EXEC that invoked them. Thus subcommands  written 
in REXX can  have  similar  capabilities  as  subcommands  written  in  Assembler or other languages.  Therefore 
subcommands can  be  quickly  written  in REXX to speed systems  development (in a building block  struc- 
ture), and then can  selectively  be  rewritten  in  Assembler,  for  example,  at a later date, as  performance  require- 
ments  dictate. Or they may  simply be compiled  with  the REXX compiler. 

'255 



Third REXX Symposium, Anapolis,  Maryland (C) Copyright IBM Corporation 1991,  1992 

Support for application macros, written in REXX 

One of the strongest  uses  for REXX is to support the extension  of  existing  applications  via  Application 
Macros. This provides a natural  mechanism for the extension of product or application  capability,  and  does 
so in a natural building  block  fashion.  Since REXX Application  Macros  are  separate from application code, 
this means they can be effectively  created by application  users,  with  little  chance  of  causing  application 
failure. 

High-level client/server architecture support 

CICS/REXX includes  built-in  clientlserver  architecture support to facilitate the use of this important new 
, technology in systems  development and to help  enable  a  higher  level of host involvement  in  Enterprise-wide 
computing solutions. 

Command definition of REXX  Subcommands 

CICS/REXX includes as one of  its  basic  facilities, the ability  for  systems  administrators and users to easily 
and dynamically defrne new REXX subcommands,  either on a system-wide or user-by-user  basis.  One of the 
greatest  strengths of REXX is  its  ability to be interfaced  cleanly  with other products,  applications and system 
services. The goal  for  providing  a  command  definition  facility  for  new or existing subcommands is to facili- .’ 

tate the rapid and consistent  high-level  integration of various  products and services  together  through the use 
of REXX.  REXX subcommand  definition  is  accomplished though the CICSlREXX DEFCMD and 
DEFSCMD subcommands. 

Flat/Universal default  REXX  Subcommand  space 

The CICS/REXX subcommand  definition  facility also optionally supports the use  of  a  flat  (or  universal) 
REXX subcommand space. This would  be  consistent  with the REXX goal of maintaining  simplicity and 
naturalness. With this support, all REXX subcommands  (which  might span interfaces  for  multiple  applica- 
tions)  would be mapped into one default  subcommand  environment. This would allow one global and con- 
sistent subcommand set to be provided and documented,  and  would free programmers  from  having to 
understand  which  subcommand  environment  a  subcommand  exists in, and it  would  remove the need to be 
constantly  switching  subcommand  environments  (switching  environments  is  accomplished  with  the 
ADDRESS statement). 

Transparent  ClCS  Pseudo-conversational terminal support 

CICS/REXX supports both conversation and pseudo-conversational  terminal I/O in REXX based  trans- 
actions. Transparent, underlying  pseudo-conversational support is  provided if the PSEUDO OS subcom- 
mand  is  specified in an EXEC. This means  that  a  program  written  in REXX can be  switched  between 
conversational and pseudo-conversational  without  changing the program  structure.. 

Support for system  and  user profile EXECs 

To facilitate CICS!REXX system  and  user  environment  tailoring, CICSiREXX will attempt to execute  a 
SYSPROF  EXEC and  user PROFILE EXECs if they  exist. The SYSPROF EXEC must exist in the system 
base  directory  and is invoked before the first  user EXEC runs after  a CICS system  restart. A user’s 
PROFILE  EXEC (if it exists  in that user’s  base  directory)  will be invoked  before the first EXEC is invoked 
for  this  user  (after  a ClCS system  restart). 

256 

CICS:’REXX Overview 3 



Third R E W  Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991,  1992 

Shared EXECs in virtual storage 

CICSIREXX supports both shared  and  unshared  copies  of REXX EXECs residing in virtual  storage. Pre- 
loaded  shared EXECs improve  interactive  response  time of REXX applications, and sharing reduces the 
total virtual  storage  requirement. 

Nested INCLUDE support in EXEC Loader 

Often in real world REXX programming,  a  programmer is tom between making a  function or subroutine 
written in REXX, internal or external to a REXX application.  There are sigtllficant  performance  and vari- 
able  sharing  advantages to making  a  subroutine  internal.  But  there  is  a major drawback if this  subroutine  is 
to be  shared by several REXX EXECs.  Duplicate  copies must be placed in all programs that use the sub- 
routine and it  is  a  nightmare  trying to update all of these  copies  and to keep  them the same,  whenever  a 
change  is  made to a  subroutine. CICS/REXX nested INCLUDE support  improves  this  situation  by 
allowing one or more INCLUDE statements to be  placed in REXX source  fdes so that subroutines can be 
maintained  as  separate  external files but be included  as  internal  routines  at EXEC load  time. An additional 
opportunity is that only one copy  of  the  source  for a particular  subroutine  needs to be loaded into virtual 
storage, no matter how  maqy  EXECs are using  it  as an internal  routine. 

EXEC SuspendlResume  support 

When CICSiREXX is used as a  Procedures  Language  under CICS, there are times  that EXECs are  used to 
contain  command  lists  of  CICS  commands  (applications) to be STARTed. Since  these  CICS  transactions 
often  require  a  terminal to be available  before  they  can run, a way is need to cause the transaction the 
EXEC is running  under to end to free  up  the  terminal,  causing  the EXEC  to be temporarily  suspended so it 
can be resumed  later  at the point  after it  was  suspended. The  ClCSiREXX  SUSPEND subcommand pro- 
vides  this  capability. 

REXX interface to  OfficeVisionlMVS  and ASF Version 2 

OficeVisionlMVS and ASF Version 2 provide  CICS  based  Application  Integration  platforms.  Applications 
may  be  integrated  with  each  other or with  Office  functions,  for  added  value. CICSlREXX has  special 
support to facilitate REXX EXECs  being  invoked  from  OficeVisionlMVS (or from ASF Version 2) and/or 
OffceVision/MVS services  being  invoked  from REXX EXECs in  a CICS environment. 

Compatibility support  for  several  popular VMlCMS commands 

Compatibility support for  several  important VM/CMS commands  has been provided in CICS/REXX to 
make  it  easier to port or migrate VM based  EXECs to a CICS environment. This helps  preserve  customer 
investments  in VM/CMS EXECs when  such  a  migration  is  necessary,  it  helps  facilitate  the  porting  of  a con- 
siderable amount of VM/CMS REXX based  software to the CICS environment,, and helps  preserve  invest- 
ments in VM/CMS training  and allows ViM/CMS  users to come up  to speed  more  quickly  in the 
CICSiREXX environment. 

4 REXX in the ClCS Environment 

257 



Third REXX Symposium,  Anapolis,  Maryland (C) Copyright IBM Corporation 1991, 1992 

CICS/REXX Benefits 

Business Solutions 

CICS/REXX is an ideal  system to use to deliver  superior,  valuable,  and appropriate business solutions, in a 
much more timely and cost  effective  manner. 

CICS/REXX is an excellent  platform for the delivery of CICS based business  solutions for the following 
reasons: 

CICSIREXX is a simpler, uniform, self contained  deveropment  environment 

To use CICSIREXX, a new programmer no longer  has to learn TSO, ISPF, JCL, COBOL and  much 
of the technical  detail of CICS (such as the proper use the translator). 

For  both new and experienced  programmers,  there  is no longer the need to constantly  switch  back and 
forth bctween TSO and CICS, all the while  flipping  between  several  manuals  for  needcd  system and 
development  information. 

CICS/REXX is  a  uniform, self contained  system that supports development directly under CICS and 
provides  everything the average CICS developer  needs in one manageable  package. 

CICSIREXX d o w s  solutions to be delivered  sooner 

There is  a combination of  benefits that CICS/REXX delivers to cause major gains in application pro- 
ductivity and reduced  delivery  time. The REXX language  alone has proven to be a major boost to appli- 
cation  productivity  because of its  high  level,  simplicity,  strong  parsing and naturalness. On top of that, 
the synergy  of an interpreterlcompiler  combination  is  a  strong  addition. The interpreter  provides  a  very 
quick  development  cycle  and  provides  excellent  source-level  interactive  debugging  capability.  Experience 
has proven a ten-fold  improvement  in  productivity,  when  using REXX over  conventional  languages and 
techniques, to be  a  conservative  figure. The ability to deliver  business  solutions  more  quickly  is an 
important advantage in today's  competitive  marketplace. 

CICS/REXX makes  practical AighIy incremental  development 

One of the biggest  advantages of the fact that CICS/REXX includes support for a REXX interpreter as 
well as a  compiler,  is that the interpreter,  with  its  quick,  natural  development  cycle and excellent  source- 
based  interactive  debugging  make  it  feasible to switch to an  Incremental  Development  Methodology. 
This is  also  sometimes  called  a  Prototyping  Development  Methodology. 

REXX is  of  a  sufficiently  high  level to be  a  powerful  language for quick and expressive prototyping, and 
because of the compiler and the robustness of the language, is also  suitable for serious application  devel- 
opment. This provides an ideal  situation  where  prototypes can be quickly  developed to test  system  feasi- 
bility, to gather  requirements, to get customer  involvement, and can then be 'grown" into useful 
production systems. 

This approach bypasses the nasty  surprises of finding late in the deveiopment  cycle that the project  isn't 
technically  feasible, of delivering  a  system that isn't  what the customers  want (or even  what  they thought 
they  were going to get), or of major schedule  overruns  without  any  deliverables.  And  a frnal nice benefit 
of incremental  development  is that it  has the tendency to test the code much more thoroughly  during 
development, usually  resulting  in  much  higher  quality  code. 

8 CICSlREXX applications are easier to maintain  and  support 

REXX based  applications,  being  high-level in nature, are usually  smaller than comparable  applications 
in other languages  (in  lines of code)  and  are  easier to read.  And the interactive  source  level  debug capa- 
bility of the REXX interpreter  makes  it  easier to locate  and fix problems, and to deliver  enhancements. 
This equates to a  cheaper,  more  effective  support  of REXX based  applications. 

258 

ClCS 'REXX Overview 5 



Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991,1992 

CICSlREXX is useable by business people 

Quite often  business  people  who  best understand the business and  their needed solutions have  ideas as to 
ways to modify, customize, or enhance applications that they use.  But  when they discover the difficulty 
involved and the investment in education required, they often give up in frustration. But those  who have 
persevered  have often delivered  some of the most timely and  on-target  solutions. One of the greatest 
strengths of REXX is  its  simplicity  and  naturalness on one  hand,  and  its powerful capability, on the 
other hand. CICS/REXX will make  it  possible for  ClCS  application users  to more extensively customize 
and even  extend their applications, without requiring a programmer. This will  provide more timely, on- 
target solutions,  and will  free real programmers up for involvement in more strategic projects. 

This is in line with  what  many industry analysts  believe  is a  fundamental shift happening in the model 
for application development within Fortune 1000 companies. Busiiess is organizing into  more  auton- 
omous  units, competitive pressures  have  increased (demanding quicker  solutions), and new technology 
such as workstations and Client/Server computing, have made it  feasible for  much application develop- 
ment to be moved  from  central MIS to line-of-business organizations. 

CICSIREXX makes complex system manageable 

One of the design  goals of REXX has always  been to bend over backwards to make progamming 
simple  and natural for the REXX programmer, even if this makes things complicated for  the  REXX 
implementer. The simplistic  power  of  REXX  makes it a good candidate  for today’s complex business 
systems,  because  it  simplities  them and thus makes them more manageable. 

CICS/REXX organizes  (breaks down) complex  systems in several  related  ways to make them  more 
manageable. One is that it promotes a natural building  block approach made up of EXECS,  application 
macros, and subcommands transparently implemented  in a variety  of  languages.  In  close relationship to 
these, is built-in Client/Server computing support that encourages  greater host involvement in the 
Enterprise-wide ClientiServer  Distributed Computing  model, with all of the many benefits this entails. 
Another strength of CICSjREXX in this arena, is the facilities  it has  for integrating multiple applica- 
tions,  products,  and system  facilities  together into  one seamless package, from a user  perspective,  which 
greatly  simplifies  systems  development  efforts. 

The KEDIT story: The  KEDIT text editor was written so as to be  externally similar to the IBM XEDIT 
and ISPFIPDF  editors, so as to minimize  user  retraining  needs. 

KEDIT is an excellent  example of the sophistication that is  possible with  REXX based applications under 
CICS/REXX. And  it  it  is a good  example of the  development productivity improvements that are possible. 

KEDIT was  written  completely in REXX (except for some  general purpose primitives  it uses that are 
written in Assembler, as will be the case  with  most REXX applications) by  Kevin Wriston, who was  new to 
REXX. Kevin wrote a useable editor (which  he used for his own REXX development) in three weeks, and 
has spent a  total of about three person months, developing KEDIT. And the finished product is only about 
1000  lines  of REXX code,  a mere fraction of the XEDIT Assembler code. 

The  other nice thing is the quickness  with  which  Kevin can respond to requests ,for  changes or enhance- 
ments  to  KEDIT (often quicker than the average programmer can go get a  cup of  coffee). 

Kevin  recently  added REXX macro support to  KEDIT, a demonstration  that  under  CICS/REXX, applica- 
tions written  in REXX, can also support application macros, written in  REXX,  an  important new capa- 
bility. 

259 

6 REXX in the ClCS Environment 



Third REXX Symposium, hapol i s ,  Maryland (C) Copyright IBM Corporation 1991, 1992 

Investment Protection 
The IBM MVS CICS computing environment has  one  of, if not the, largest concentration of customer pro- 
duction applications  and  data, in the world. There has  been tremendous customer investment in CICS based 
mainframe systems, CICS based application development, data collection for CICS based  systems, and 
employee education relating to the use and support of CICS based  systems. CICS/REXX helps to preserve 
and enhance the usefulness of this investment. 

Not  only does CICS/REXX enhance the delivery  of traditional CICS based production applications, it 
makes the CICS environment suitable for  a broader range  of information processing activities.  With 
CICS/REXX, it  is  now  practical to also perform end-user computing, prototyping, and application develop- 
ment, directly within the CICS environment. 

Also, CICS/REXX, which  currently runs under M V S  CICS, was designed so it can be later ported to 
provide REXX support  for CICS running under OS/2, AIX, VSE and OS/400. One goal  is to provide con- 
sistent REXX support across these environments, so as to preserve customer investments. Another is to 
facilitate the use of cooperative processing,  between  these environments. 

User Productivity 

C1CS;REXX can enhance CICS user  productivity in several  ways: 

Allows simpler, but more flexible application customization by typical users. This allows them to more 
effectively tailor these applications to their individual  business  needs. . Advanced  users will be able to make application enhancements that normally would  have  been  reserved 
for professional application developers. This has the effect of providing solutions necded to improve pro- 
ductivity and satisfy  business  needs  more  quickly.  It  also  reduces the demand on application developers 
for  application changes and frees them to work on more  signtficant long range  efforts. 

Facilitates the use  of a  prototyping methodology. This means that  the users of an application in develop- 
ment participate very  closely in the application development  process (if they do  not own the process 
outright).  Thc end  result is that the users,  who  have the best understanding of the busincss  and  their 
needs can better ensure that the application solution delivered matches their needs. This close  involve- 
ment will also have the added  benefit that the human factor  needs (useability) of the user  audience will 
also tend to be addressed  in the application, enhancing  their productivity. 

Growth Enablement 

Because CICS/REXX reduces the complexity of application development and maintenance, it  makes  it  fea- 
sible to develop and support larger and more complex  systems. This is true because: 

REXX is a high  level  language  whose. major emphasis has been to be natural to use  and to free its user 
(the programmer) from any unnecessary  detail. Thus REXX programs tend to be shorter and easier to 
follow. 

REXX encourages the use of a  more manageable  building  block approach to systems development. The 
integrated Client,’Senw and dynamic subcommand dcfition capabilities of CICS,’REXX ewn further 
enhance this. 

Major productivity improvements achieved by using the powerful interactive source level debugging 
capability and the quick  development cycle  of the REXX interpreter will make  larger,  more  sophisticated 
development efforts  feasible. 

260 

CICS ‘REXX Overview 7 



Third REXX Symposium, Anapolis, Maryland (C) Copyright I B M  (=arparation 1991.1992 

Systems Management 

One of the  major strengths of REXX is its usefulness  as a Procedures  Language.  When  used in this way,  it 
can automate sequences of ClCS system  and  application  Systems  Management activities, providing  greater 
productivity and reliability. 

A l s o ,  since CICS/REXX supports application development (and testing) directly under CICS, systems man- 
agement can be greatly  simplified. For example, the need for many CICS developers to have a TSO userid, 
could be removed, in many situations. Reducing the volume of TSO userids that need to be administered ’ 

and managed would equate to an overall reduction in systems management  activities. 

8 REXX in the ClCS Environment 



Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992 

CICWREXX General Architecture/lmplementation 

General  Design Goals 

Some  specific  design  goalslobjectives  for this project were: 

Provide the CICS or OfficeVision/MVS  user or application developer/integrator with a simple but pow- 
erful self contained REXX based environment with the necessary  interfaces to productively accomplish 
application development, application integration and customization. 

Provide a high-level,  easy to use, REXX interface to the existing CICS  command level  facilities so as to 
improve the productivity of existing,  experienced CICS developers. 

Provide a high-level, easy to use alternative programming environment  that removes the need for casual 
programmers (or users) to learn the CICS environment. 

Bring product interfaces together, in one, self contained place for  both ease  of use and added  synergy. 

Provide a flexible CICS REXX implementation that can be easily customized, tailored or extended by 
customers for their own unique needs. 

Capitalize on new REXX/370 compiler, C/370 Version 2 and  other  products 

Provide an environment conducive to  the building block approach  to code development. One of impor- . 
tant needs in t h i s  area  is to allow administrators and users to replace one  type of building block or prim- 
itive  with one written in a different  language or with a different name without having to change the 
programs that reference it.  Support interfaces to multiple programming languages. 

Provide an architecture capable of supporting large complex systems 

Perfonn acceptably for use in  large production CICS environments 

Provide  security  sufficient for CICS production environments 

Exploit CICS/ESA and MVS/ESA  when  available 

Basic structure of REXX running  under CICS 

CICS/REXX  support provides a program  called REXX which  is  used to load and invoke  REXX  EXECS 
within a CICS region. This program uses the Clearly  Difierentiated Programming Interfaces (CDPI) of 
TSO/E Version 2 REXX to define a new CICS specific REXX language processor environment  for  the user 
EXEC, and then invokes the  EXEC.  The  REXX program  also contains several REXX replaceable routines 
to handle all REXX storage requests, line-mode 1/0 and  various other  functions.  On  the very fust invoca- 
tion of the REXX program within a CICS region, a REXX system servg is automatically  started, under its 
own REXX environment control block. Thereafter, the REXX system  server  receives notification before the 
invocation and after the  termination of each  user EXEC invoked by the  REXX  program. The REXX 
system  servcr  is a shared xrver that all REXX user  exccs can route requests to, by ADDRESSing  the  sub- 
command environment SYSTEM. The GLOBALV global variable command  support  that is provided is  an 
example  of  using the system  server to add additional subcommands to  REXX. 

262 

CICS,'REXX General Architecture Implementation 9 



Third REXX Symposium, Anapolis. Maryland (C) Copyright IBM Corporation 1991. 1992 

REXX  EXEC  invocation 
EXECs invoked from a terminal 

REXX EXECs are invoked  by a CICS/REXX program named REXX: A CICS transaction id must be 
defrned for  this program. If the  tran id  is REXX then  the name of the EXECs and its arguments follow 
on  the  command line. For example: REXX MYEX,EC ABC will invoke the REXX  EXEC ,MYEXEC 
and pass it the string ABC as  an argument. If a transaction id other  than REXX is associated with the 
REXX program, the name of the EXEC that is  invoked  is the same as the  transaction id. 

EXECs invoked  by a START command 

The REXX transaction associated  with the REXX program may be invoked  with the EXEC CICS 
START command. If start data is provided, that is passed to the EXEC as an argument. The name of 
the EXEC to invoke is normally  expected to be provided in the start data. 

EXECs invoked by a LINK or XCTL 
The REXX program, when  invoked by a LISK or XCTL, will attempt to frnd the  naine of the REXX 
EXEC to invoke in the CO.MMAREA, if one is available. The entire COXMAREA will also be passed 
to the EXEC as an argument. 

Where EXECs execute 

CICS/REXX  EXECs are executed as part of the CICS task that invokes them, within the CICS region. The 
REXX interpreter  is fully  reentrant and runs above  the 16 MB line (AMODE=  31,RMODE=ASY). 

How EXECs are located and loaded 

The directories of specified REXX libraries are  searched, in concatenation sequence in an  attempt to locate 
an EXEC. If it  is located, it is read into storage  and control is given to  the REXX interpreter to invoke it. 
Before REXX libraries are  searched, there is fust a check to see if the EXEC is already  loaded in storage, 
and if so, since REXX EXECS are re-entrant, control is  given  immediately to the REXX interpreter. 

How EXECs are edited 

CICS/REXX includes a CICS-based text editor, wich is similar to  the IBM XEDIT and ISPFjPDF editors, 
to edit EXECs and  data files,  directly under CICS. 

Control of EXEC execution  search  order 

A PATH subcommand is  provided to  control the search order of REXX File  System  directories. The direc- 
tories specified in the PATH command are searched  after the current directory (specSed by the CD 
command). 

263 

10 REXX in  the ClCS Environment 



Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991,1992 

REXX EXEC File System  structure - 

Hierarchical  Directory structure (like OS/2, AIX, VM SFS) 

No need to register  new  users 

Xo need to register  individual EXECS 

Basic support without an External  Security  Manager 

ImportlExport to M V S  Partitioned Datasets 

Management functions for members (COPY,  DELETE,  RENAME) 

FILELIST file  directory  interface  utility 

An EXEC10-like 1 / 0  utility (FSIO) 

Supports insertion of  records in middle of  files 

Maximum records per member is approx. 2**32 minus 2 
Maximum record  length is 2**32 minus 2 
Maximum VSAM datasets per a  RFS filepool is 51 1 

h'umber of filepools  is  limited by system  storage 

Execute-only support by  library  and  by member 

Support  for authorized REXX  libraries  (for authorized primitives) 

Support  of  standard REXX features 

SAY and TRACE statements 

The  REXX SAY and TRACE terminal 1 / 0  output statements use CICS Terminal Control  Support to 
provide simulated line-mode output. 

PULL and PARSE  EXTERNAL  statements 

The  REXX  PULL and PARSE EXTERNAL terminal I/O input  statements use CICS Terminal Control 
Support to provide simulated line-mode input. 

REXX stack  support 

Same as TSO/E Version 2 REXX 

REXX function  support 

CICS/REXX  supports  the same built-in function set as TSO/E Version 2 REXX with the following 
exceptions. The  USERID function will return a 1 to 8 character CICS userid if the user is signed on, other- 
wise it will return blanks. The  STORAGE  function, which  allows a  REXX user to k l y  display and/or 
modify the virtual storage of the CICS region will be disabled or restricted. 

264 

ClCS 'REXX General Architecture 'Implementation 1 1 



Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991,1992 

REXX  Function  Packages 

The function  packages  provided  with TSO/E REXX that are not TSO specific, are provided and system 
administrators  will  have the ability to defineladd  additional function packages  using  standard  documented 
interfaces. 

REXX  Subcommand  Environment  Support 
REXX subcommand environments that are currently  available (to use with the REXX  ADDRESS 
command) are CICS, COMMAND, MVS and SYSTEM. 

Invoking another EXEC  as a subcommand 

EXECS may  be  invoked as subcommands using the  new  cljent/server support (described  later in this docu- 
ment). 

Invoking CICS load modules  as  user  provided  subcommands 

Support is  provided for site  provided  subcommands,  in  the form of CICS LOAD modules  (loaded  using an 
EXEC CICS LISK) to be  defined using the DEFCMD and DEFSCMD commands. 

Adding REXX host  subcommand  environments 

Support is provided to allow  new CICS/REXX host subcommand environments to be added and supported 
in a  variety of languages,  including REXX. This is done using the DEFCMD and DEFSCMD subcom- 
mands, or by using the standard  documented TSO/E REXX interfaces. 

Support of standard ClCS featuredfacilities 

ClCS mapped I 1 0  support 

Support is not yet available  for CICS BMS 1/0 commands as REXX subcommands in the CICS subcom- 
mand environment. 

Dataset 110 Services 

Verbs  for  standard CICS dataset I/O services  commands are planned as REXX subcommands. 

Interfaces to ClCS Facilities and Services 

From within the ADDRESS CICS subcommand  environment, support is planned  for  most popular CICS 
commands  (as  defined in the CICS Application  Programmer’s  Reference Guide). Currently support is pro- 
vided for the function provided by the following CICS Command Level commands: 

EXEC CICS SEXD 
EXEC CICS SEND TEXT 
EXEC CICS RECEIVE 

EXEC CICS READQ TS 

12 REXX in the ClCS Environment 



Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991,1992 
. - 

EXEC  CICS  WRITEQ TS 
EXEC  CICS  DELETEQ TS 
EXEC  CICS ASSIGN USERID 

EXEC  CICS  READ  RRN 

EXEC  CICS  WRITE RRW 

EXEC  CICS  REWRITE RRN 

EXEC  CICS  DELETE  RRN 

EXEC  CICS  UKLOCK 

EXEC  CICS START 
EXEC  CICS  LINK 

EXEC  CICS  XCTL 

EXEC  CICS SUSPEND 

Invoking user applications from EXECs 
EXEC  CICS START, LISK and  XCTL  commands are currently supported. 

REXX interfaces to CICS temporary & transient storage queues 

Currently subcommand  support exist for reading, writing and deleting CICS  temporary storage queues from 
REXX. 

Pseudo-conversational transaction  support 

CICS pseudo-conversational support for REXX  EXECs is provided. If this  support is enabled, an EXEC, 
CICS RETURS  TRANSID could is automatically issued  before  each CICS  RECEIVE,  the execution state 
of the  EXEC preserved and the REXX transaction ended. The the next terminal 1/0 event  would  cause the 
REXX  transaction to be  re-invoked and the  EXEC to be resumed  at the next statement after the 
RECEIVE. 

REXX EXEC Suspend/Resume  support 

CICSlREXX  support includes a plimitive (subcommand) to suspend the execution of the  EXEC and 
causes the invoking transaction to end, allowing another transaction to run,  attaching  the terminal. The next 
time the  REXX program is invoked, the suspended transaction will resume the suspended EXEC. Any start 
data passed is  placed in the reserved REXX variable SDATA. 

Interfaces to  other  programming  languages . 

The goal is to provide interfaces to  COBOL, C/370, Assembler, and maybe PL/I. 

266 

ClcS REXX General Architecture  !Implementation 13 



Third REXX Symposium, Anapolis, Maryland (C) Copyright  IBM  Corporation 1991,1992 

Security 

Xormal CICS interfaces to the MVS System Authorization Facility (SAF) will create the framework for 
CICS/REXX security. Advanced  security  needs for REXX subcommand and client/server  security is 
expected to be provided under ClCS/ESA using the EXEC  ClCS QUERY SECURITY command. 

PerfoGance discussion 

Because  of the  production  nature of CICS, much emphasis is being placed on performance. There are many 
desigq choices that can affect  security. These include  how REXX environments arc defined, how  the REXX 
fde system structure is implemented, how security  interfaces are implemented, how much virtual storage is 
given to an EXEC at invocation. 

REXX is an excellent performer, especially  for an interpreter, because  it internally uses  many sophisticated 
techniques, such as look-aside tables, for good  performance. REXX has proven itself to be a reasonable 
performer in the VM arena as much of PROFS code  is  written in REXX. Many PROFS systems today 
support thousands of usws in  production. Another point to  note, is that although REXX  EXECS an inter- 
preted, most of the actual processing for the typical application is spent executing REXX subcommands 
which do most of the actual work. These primitives can be and usuaUy are written in a compiled  language, 
when performance is an important consideration. Usually, for the majority of small to medium d e  CICS 
applications the productivity benefits of using REXX far outweigh the performance  penalty  of  using REXX. 
A similar analogy is customers using DB2 vs M S .  DB2 often requires more resources, but  the benefits more 
than outweigh the added  processing cost. The net  result  is that DB2 users  are happy because they are more 
productive. 

The best  news from a performance perspective, is that  the IBM REXX/370 compiler will  work  with 
CICS/REXX, whenever  performance  critical applications need it. 

Miscellaneous  features 

A TERMID subcommand has been provided to return the  four character terminal  identifier of a CICS user. 

A RETRIEVE  PF key has been setup to retrieve the last input line enter using line-mode I/O. 

Supported  Environments and prerequisites 

CICS/REXX currently runs under CICS/MVS and CICS/ESA.  CICS/REXX r e q u i r e s  that TSO/E V2.0 or 
later be installed and, if the REXX/370 compiler is used, in addition to the interpreter, then TS0,'E V2.3.1 
or later must be  installed. Certain advanced functions, such as the planned REXX interface  utilizing the 
programming interface of CICS 3.2 for Resource D c f ~ t i o n  Online, will only supported under CICSjESA. 

267 

14 REXX in the ClCS Environment 



Third REXX Symposium,  Anapolis, Maryland (C) Copyright 1BM Corporation 1991.1992 

National  language  and DBCS suppod 

The full  range  of DBCS functions and handling techniques that are included in TSOiE Version 2 REXX are 
available to the  CICS/REXX user. 

It  is  expected that  the national languages supported for  CICSlREXX will match those supported for TS0,’E 
Version 2. Refer to announcement 288-694, dated  December 6, 1988. The  support  for  national languages will 
likely  lag the initial American/English language support. 

Building  block S/W development - Common Interface Routine 

One of  the  foundation  architectun pieces  of the CICS/REXX  support code is a  routine called the Common 
Interface Routine  (CIR). 

The purpose of this routine is to allow  transparency and flexibility as to the implementation method  and 
language  of programs that make up software  systems  under CICSIREXX.  That is, systems implcmcntcrs 
should be free to create  systems  comprised  of a mixture of traditional and clientlservcr interpreted REXX . 
EXECs, compiled REXX EXECs, COBOL, C and  Assembler  language  programs.  And they should be later 
free to change the language or implementation method of a program without affecting the correct functioning 
of the system as a whole. 

This is accomplished  by  having REXX and  all other programs that wish to participate in this system, to call 
the  Common Interface Routine whenever control  (or  a  clientlsenw request) needs to be passed to another 
program. The CIR  then determines  from a table or data dictionary, the type and language  of the target 
program, x) it can invoke  it (or pass the request to  it) properly. 

All programs that use the  Common Interface Routine must  use a consistent format for the passing of 
parameters (or requests) to the target  and for the returning of any  resulting data. 

The use of the  Common Interface Routine does not require the use  of client/server computing,  but is a 
closely  related technique. 

268 

ClCS ‘REXX General Architecture/lmplementation 15 



269 

16 REXX in the CICS Envir0nmen.t 



Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991,1992 

CICWREXX Client/Server  Architecture 

High-level ClienVServer support 

A major new thrust of data processing is in the area of clientlserver processing. Many realize that  this 
method of computing holds much promise for accomplishing their  computing needs in  a more responsive 
and cost-effective manner, especially in today’s  ever more increasingly work station based computing envi- 
ronments. However, many realize the promise and recognize the  opportunity,  but lack the  tools to effectively 
accomplish their goals. The goal here  is to augment the general CICS/REXX  environment with a high-level, 

implement clientjserver processing applications that they could have never before considered, better utilizing 
mainframe and  workstation resources. 

. easy to use,  REXX-based client/server processing support  that will make it  feasible for  customers to easily 

Client/Server Design goals 
M o w  REXX servers to service  multiple REXX clients, which  may be located on a variety of remote 
systems (long-term) 

Provide an identity service to dynamically  track and route  requests and responses between  servers and 
rtquestors on multiple systems  by  server  name.  It should support  the concept of local and  global 
resource management (long-term) . Provide security interfaces to effectively and efficiently control  authorization of access and communi- 
cation between servers  and requestors. 

Support  both  synchronous  and asynchronous communication between  servers and requestors 

Very  high level, easy to use but flexible REXX interface to this  sewer/requestor  support 

Support parallel communication activities  between a client and  a server, at  least separate command  and 
data sockets,%essions (long term) 

Provide syncpoint and recovery  capability 

Good performance through use of efficient techniques 

General enough in design to have a wide  variety of uses 

270 

ClCS ‘REXX Client Server Architecture 17 



Third REXX Symposium, Anapolis, Maryland (c) Copyright 1BM Corporation 1991,1992 

Current Client/Server Implementation 
Provides client/server support within a CICS region 
High-level REXX based 

Provides a common shared REXX system  server 

Supports requests from both REXX and assembler clients 

Supports  automatic server initiation 

Requests are sent from a REXX client to a server as follows: 

ADDRESS serverid  ‘request’ 

The server  waits on and receives requests from a client  by  issuing the WAITREQ’ subcommand. The server 
is suspended until a client  request  arrives  (which  is  placed in the reserved REXX variable REQUEST). 

There are subcommands available to REXX servers to get or replace the contents of client REXX variables, 
by name. 

The security characteristicslauthority level of a client are automatically inherited by the server while it is 
processing the request from that client. 

27 1 

18 REXX in the CICS Environment 



Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991,1992 

ClCSlREXX OfficeVision/MVS Environment Support 
- ~~~~ 

REXX  EXECS for Application  Integration 

Currently OfficeVision/MVS  provides the capability for  the user to add new menu items or commands along 
with their associated CICS applications to their OfkeVision/MVS desktop. This is done using the Applica- 
tion Services component online administration utility to define  new applications (represented by Application 
Type Descriptor (ATD) definitions). 

. Since REXX  EXECs are invoked as  a normal CICS program or transaction,  REXX  EXECs can easily be 
invoked from the OficeVision/MVS desktop. 

REXX EXECs under CICS/REXX are enabled to use the  OficeVision/MVS System  Interface  Block (SIB). 
The REXX program (or transaction) can be STARTed or XCTLed with a SIB passed to indicate what 
EXEC to invoke and also where to transfer control to when the EXEC has finished its processing. REXX 
EXECS can also pass an  outbound SIB to  OficeVision/MVS or another SIB enabled application. This 
should greatly  facilitate OfficeVisionlMVS based Application Integration. 

For security reasons, CICS/REXX will not allow a user EXEC to pass a SIB to  OficeVision/MVS unless 
that user  is  already  signed on. 

REXX  EXECS as  exits 

It is planned to support the use  of REXX EXECs as exit  programs for  OficeVision/MVS and other  CICS 
based applications. It  is the exit implementer's  responsibility to determine if a  REXX exit  would be suitable 
as  an  exit (for performance reasons, especially  when an interpreted EXEC is used). However,  it should be 
noted that REXX EXECs are successfully  being  used to  code  exits routines for production applications 
running under VM/CMS. 

272 

CIG,'REXX Ofice\'ision;'MVS  Environment Support 19 



273 

20 REXX in the ClCS Environment 



I 
Third REXX Symposium, Anapolis, Maryland (C) Copyfight IBhd Grporation 1991,1992 

ClCSlREXX Interfaces to other  products 

One of the  strengths of REXX is the ease with which high-level interfacts to other  products  can be provided. 
It seems a logical next step to add  interfaces from ClCS REXX to DB2, GDDM and  other  products, on an 
as needed basis. 

Description of interface to DB2 

This interface would be similar to the REXX to SQL interf'ace  available under VM but  would use the CICS 
* dynamic SQL interfa to DB2. 

Description of interface to GDDM 

This interface  would function essentially  the  same as the existing GDDW'REXX product  under VM. 

274 

CICS,'REXX Interfaces to other products 21 



Third REXX Symposium,  Anapolis, Maryland (C) Capydght IBM Corporation 1991, 1992 

CICWREXX CMS Environment  CompatibilitylEmulation 

To facilitate  the migrating of systems  and  the  porting of software from VM/CMS to MVS CICS, the fol- 
lowing VM/CMS capabilities are provided: 

Global  variable  support  compatible  with  the V,M/C,MS GLOBALV command  has  been  provided. 

Full-screen terminal 1/0 support,  compatible with the VM/CMS WAITREAD command has been pro- 
vided. 
EXEC10 command  is  supported for 1/0 to sequential  datasets 

' Xedit  editor  limited  compatibility 



Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991.1992 

277 

24 R F Y Y  in ?ha CICS F n w i r n n m m n t  



Third REXX Symposium,  Anapolis, Maryland (C) Copyright IBM Corporation 1991,1992 

-~ 

Summary 

Prototype  development  experience 

My prototype development  experience  has  led  me to the conclusion that it is feasible to  do a  good  imple- 
mentation of REXX under CICS. However  what will do more to guarantee a good  implementation of 
REXX under CICS, more than anything else, is the feedback, input and participation of IBM customers in 
this effort. 

Much more than  just  another  language  for CICS 

I hope that by now  you  have  come to the  conclusion that CICS/REXX is much more than just another 
CICS language. That it  is  rather  the beginning of a new environment  with the potential to dramatically 
improve the way that we work. 

278 

Summarv 25 I 



279 

26 REXX in the ClCS Environment 



Third REXX Symposium, Anapolis. Maryland (C) Copyright IBM Corporation 1991,1992 

Appendix - Sample ClCSrREXX screens 

Sample FILELIST screen 

USER=WRISJON  DIRECTORY=/ 
CMD FILENAME FILETYPE ATTRIBUTES RECORDS  BLOCKS  DATE TIME 

Top O f  F i l e  * * 
TEST2 EXEC F I L E  5 1 83/27/92 10:31: 
TEST1 EXEC FILE 11 1 03/27/92 10: 30: 
GENID EXEC F ILE  7 1 03/13/92  09:OO: 
SECURITY  EXEC F I L E  21 1 83/13/92  08:59: 
TEST  EXEC F I L E  14 1 83/11/92  15:06: 
FSIO L I B  F ILE  493 3  03/11/92  08:42: 
U I  NDObIS  EXEC F I L E  58 8  03/18/92  10:  46: 
KEDIT EXEC F ILE  1278 5 03/10/92  08:49: 
USERS D I R  1 1 03/10/92  08:49: 

* r n d  O f  F i l e  

04 
29 
37 
31 
53 
04 
19 
14 
10 

280 

Aooendix - Samole ClCS!REXX screens 27 



Third REXX Symposium, Anapolis. Maryland (c) Copyright IBM Csrporation 1991, 1992 

Sample KEDIT Screen 

K E D I T  1.1.9 - CICS E d i t o r  

00000 Top O f  File 
00001 End Of File 

DEMO EXEC 

Source listing 

28 1 

28 REXX in the ClCS Environment 



Third R E X X  Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991,1992 

EDIT _ -_ -  SHRIVER.REXX(DEM0) - 81-08 _____---_---_-_--_------- COLUMNS 001 072 
COMf4AND SCROLL ==E> PAGE 
000218 /* exan;ple o f  n e s t i n g  */ 
000219  address mvs 
000220 'demo2 x x x '  
000221 
000222 /* example o f  C ICS subcommands */ 
000223  address   c ics  
000224 'TERMID' /* g e t  my C I C S  t e r m i n a l   i d  */ 
000225  outbuf = sba(22  12) 1 ( ' T h i s   i s   f u l l s c r e e n   o u t p u t   t o   t e r m i n a l  I t e r m i d  
000226 
000227 /* pe r fo rm C I C S  f u l l s c r e e n   o u t p u t  */ 
000228 'SEND' ou tbu f  /* do a C ICS EXEC CICS SEND */ 
000229  outbuf  = sba(23 12) 1 1  INOW t r y  some f u l l s c r e e n   i n p u t '  
000230 'SEND' o u t b u f  
000231 
000232 /* per fo rm C I C S  f u l l s c r e e n   i n p u t  */ 
800233 #WAITREAD'  /* do  an EXEC C I C S  RECEIVE a n d   p a r s e   i n t o   v a r s  */ 
000234  say  'The A I D  k e y   t h a t  was pressed =' waitread.1 
000235  say  'The  cursor was a t  (Row Col): '  subword(Waitread.2,2,2) 
000236  say  'The  data  that  was en te red  (Row C o l   D a t a ) : '   s u b ~ o r d ( w a i t r e a d . 3 ~ 2 )  
000237  say 
F13=HELP F14=SPLIT F15=END  F16=RETURN F17eRFIND FlBLRCHANGE 
F19=UP F20=DO\,!N  F21=S\nJAP F22zLEFT  F23=RIGHT  F24=RETRIEVE 

282 

AoDendix - Samnle CIC! 'REXX screens 29 



Third REMX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992 

1 

EDIT ---- SHRIVER.REXX(DEM0) - 01.08 ......................... COLUMNS 001 072 
COMMAND ==E> SCROLL ===> PAGE 
000238 
800239 ,P example o f  using the system  server */ 
000240 say 'send a GLOBALV SET and GET commands  to  the  system server' 
000241 address  system 
000242 'GLOBALV  SELECT GROUPl SET VARl  test  data' 
800243 'GLOBALV  SELECT  GROUPl GET V A R I '  
000244 say 'The contents o f  V A R l  --I varl 
000245 say 
000246 
000247 trace ' 0 '  ,P don't want to  trace 
800248 ,P example o f  stand REXX 1 ine-mode 
000249 do i = 1 t o  20 
000250 do j = 1 to 1000 
000251 a = 5 
COD252 end 

large loop */ 
output  with  more  than 1 screen */ 

000253 say  i*1000  'assignment  statements  have  been  executed' 
000254 end 
000255 
000256 say 
000257 /* show  that bui 1 t-in REXX functions  are  available */ 
F13=HELP F14=SPLIT F15-END  F16=RETURN F17=RFIND F18ZRCHANGE 
F19=UP F20=DOI,JN F2l=SVAP F22=LEFT  F23=RIGHT  F24zRETRIEVE 

EDIT ---- SHRIVER.REXX(DEM0) - 01.08 ......................... COLUMNS 081 072 
COt.lMAND x==> SCROLL E==' PAGE 
000258 say "Today's date i s "  date('w') date() 
000260 say 'The time i s '  time() 
000400 EXIT 
* *****  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  BOTTOr.1 OF DATA *t**tt**t*t***********t*t*lt 

f l3=HELP F 1 4 4 P L I T  F15=END F16=RETURN F17zRFIND F18=RCHANGE 
F19=UP F2@DO!tjN F21=S\jAP F22zLEFT F23zRIGHT F24=RETRIEVE 

283 

30 REXX in the CICS Environment 



Third REXX Symposium,  Anapolis, Maryland (C) Copyright IBM Corporation 199 1, 1992 

IT FlS=END F16=RETURN F17zRFIND  FlbRCHANGE 
F19=UP F20=DOWN  F21=SWAP F22=LEFT  F23=RIGHT  F24sRETRIEVE 

d 

F13=HELP F14=SPLIT F35=END F16=RETURN F17=RFIND FlS=RCHANGE 
F19=UP F2O=DO\JN F21=SMAP F22=LEFT F23=RIGHT FZGRETRIEVE 

284 



I 

Third REXX Symposium, Anapolis, Maryland (C) Capyright I B M  Corporation 1991.1992 

Fl3=HELP FlQ=SPLIT F15=END F16=RETURN F17zRFIND F18-RCHANGE 
F19=UP F20=DO\alN F21=S\nJAP F22=LEFT F23=RIGHT F24sRETRIEVE 

Execution with trace off 

285 

32 REXX in the CICS Environment 



Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991,1992 

r 

***DFH2312 WELCOME TO CICS/ESA *** 17:54:50 

**e***\ ******\ ******\ ******\ *\ ******** \ ******\ ****\ *****It** \ *+****\ ******** \ ******** \ **\ ******** \ *e******\ ******\ 
**\\\\**\ **\\\ **\\\\**\ **\\\\**\ **\ **\\\\\\\ **\\\v*\ **\\\v*\ 
**\ \\ **\ **\ \\ **\ \\ **\ **\ **\ . \\ **\. **\ 
**\ **\ **\ \ ******+* \ \ 
**\ **\ **\ \ **\ +***** \ ******* \ ******** \ 
**\ +*\ **\ \\\\**\ **\ **\\\\\ \\\\**\ **\\\v*\ 

\ ********\ ******** \ **\ ******** \ ********\ **\ **\ 
****** \\ *e****\ ******\\  ******\\ *\ ******** \ ******\\ **\ **\ 
\\\\\\ \\\\\\ \\\\\\ \\\\\\ \ \\\\\\\\ \\\\\\ \\ \\ 

***+*** +e\  *e****\ 81***tt 

******* 

**\ 8*\ **\ **\ e*\ e*\ e*\ *e\ **\ **\ **\ **\ **\ 
******** \ +***** 

r 
rexx demo parml parm2 

286 



Third REXX Symposium, Anapolis. Maryland (C) Copyright 1BM Corporation 1991,1992 

The arguments  passed were: PARMl PAW2 

What i s  your name? 

Dave READ 

Y 

***------,----__-_,,__,_,_,,__,,_,,_,_,,----------------- *** 
*** Th is  i s  a t e s t  REXX program r u n n i n g  under MVS CICS *** 
***----,,-_,,,,,,,_,,,_,_,_,_,,,,,,,,,,,--,--------------*8* 

The arguments passed were: P A R M 1  FARM2 

What i s  your name? 
Dave 

Uelcome t o  MVS CICS REXX, Dave 

3 *-*  say 'you  entered demo2 exec' 
>>> "you entered demo2 exec' 

you entered demo2 exec 
4 *-* address mvs 
5 *-• 'demo3 y y y '  

you entered demo3 exec 
you entered demo4 exec 
you entered demo5 exec 

>>> 'demo3 yyy' 

6 *-* exi t  
T h i s  i s  fullscreen o u t p u t  t o  terminal 84G1 
Now t r y  some fullscreen  input 

287 

34 REXX in the ClCS Environment 



Third REXX Symposium,  Anapolis, Maryland (C) Copyright I B M  Corporation 1991, 1992 

* * * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ - , ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ * * *  
*** This is a  test REXX program  running  under MVS CICS *** 
* * * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - . ~ *  

The arguments  passed were: PARI41 PAM2 

What i s  your  name? 
Dave 

Welcome  to MVS CICS REXX, Dave 

3 *-* say 'you entered  demo2 exec' 
>>> 'you entered  demo2 exec.' 

you  entered  demo2  exec 
4 *-* address  mvs 
5 *-* 'demo3  yyy' 

you  entered  demo3  exec 
you  entered  demo4  exec 
you  entered  demo5  exec 

The AID key that  was  pressed = ENTER 

test  input MORE 

'demo3 yyy" 

6 *-* exit 

Now try  some  fullscreen input 

I 

The  cursor  was at (Row Col): 24 16 
The  data  that  was  entered (Row Col Data): 24  2  test  input 

send  a  GLOBALV SET and GET  commands  to  the  system  server 
The  contents o f  VARl = test  data 

1000 assignment  statements have  been executed 
2000  assignment  statements have  been executed 
3000 assignment  statements have  been executed 
4000  assignment  statements have  been executed 
5000 assignment  statements have  been executed 
6000 assignment  statements have  been executed 
7000 assignment  statements have  been executed 
8000 assignment  statements have  been executed 
9000 assignment  statements have  been executed 
10000 assignment  statements  have been executed 
11000 assignment  statements  have been executed 
12000 assignment  statements  have been executed 
13000 assignment  statements  have been executed 
14000 assignment  statements have  been executed 
15000 assignment  statements  have been executed 
16000 assignment  statements have  been executed 

MORE 

288 

Appendix - Sample CICS,'REXX screens 35 



Third REXX Symposium, Anapolis. Maryland (C) Copyright iBM Corporation 1991, 1992 

17000  assignment  statements  have been executed 
18000  assignment  statements  have been executed 
19088 assignment  statements  have been executed 
20000  assignment  statements have  been executed 

Today's date i s  Tuesday 20 Aug 1991 
The time i s  17:59:31 
Ready; (5.232298) 

Execution with trace on 

rexx  demo  parml  parm2 . 

289 

36 RF.XX in the CICS Fnvironment 



Third RLXX Symposrum, Anapolis, Maryland (C] Capynght lEM ~ r p o r a u o n  1 9 9 1 ,  r992 

MORE 

I 
10 *-• say  'The  arguments  passed  were: I parms 

>>> 'The arguments  passed  were: P A R M l  PARM2' 
The arguments  passed  were: PARMl   PARM2 

11 *-• say 

13 *-* /* example o f  REXX s tandard   l i ne -mode   i npu t  */ 
14 *-* say  'Uhat i s  your name?' 

>>> W h a t  i s  your name?' 

290 

Appendix - Sample CICS!REXX screens 37 



Third REXX Symposium, Anapolis, Maryland (0 Copyright IBM Corporation 1991.1992 

10 *-* say  'The  arguments  passed were:' parms 
>>> "The  arguments  passed were: PARMl PARM2" 

The  arguments  passed were: PARMl  PARM2 
11 *-• say 

13 *-• ," example o f  REXX standard 1 ine-mode  input */ 
14 *-* say 'Uhat i s  your name?' 

'What is your name?" 
What is your  name? 

15 *-• parse pull name 

David Shri ver READ 

10 *-*  say 'The arguments  passed were: ' parms 
"The  arguments passed were: PARMl PARM2" 

The  arguments  passed were: PARMl  PARM2 
11 +-• say 

13 *-* /* example o f  REXX standard line-mode  input */ 
14 *-• say  'What is your  name?' 

>>> W h a t  i s  your name?" 
What is your  name? 

Davi d Shri  ver 
15 *-• parse pull name 

>>> "David Shri ver" 
16 *-• say 

17 *-• say  'Welcome to' environm ' R E X X , '  name 
>>> "Welcome  to MVS CICS REXX, David Shr 

Melcome t o  MVS CICS REXX, David  Shriver 
18 *-* say 

20 *-* ," example o f  nesting */ 
21 *-* address  mvs 
22 *-• 'demo2 x x x '  

iver' 

. HORE 
\ 

\ 

J 

\ 

J 

29 I 

38 REXX in the ClCS Environment 



Third REXX Syq-osium, Anapolis, Malyiand (C) Copyright IBM Corporation 1991, 1992 

7 - . -.- - 
>>> "demo2  xxx" 

3 * - *  say 'you entered demo2 e x e c '  
>>' "you entered demo2 exec. 

y ~ u  cnt :  - , :  dtiuo2 exec 
4 I-' xidress mvs 

! 5 *--* 'demo3 yyy' 
>=+ "demo3  yyy" 

.L;U S i i t r i  :-;; demo3 exec 
y c d  cr , ie red  den104 exec 
* x * .  - , l t e x L '  den105 exec 1 :  

I 0 *-* exit 
21: *-*  /* example o f  CICS subcommands */ 
25 *-• address c i c s  

7>> "TERMID" 

>>> "?!$This i s  fullscreen output to terminal 04G1' 

20 *-• 'TERMID' get my CICS terminal i d  */ 

27 *-* outbuf = sba(22 12)l  \'This is fullscreen output t o  terminal' tennid 

25 *-*  /* perfom CICS fullscreen output */ i 
I 38 * - *  'SEND' outbuf /* do a CICS EXEC CICS SEND */ 

>>= "SEND ?!$This is fullscreen output to terminal 04G1' 
31 * -*  outbuf = sba(23  12) I \  'NOM try some fullscreen input' 

>,>- "?$,Now try some fullscreen input" 

MORE 

I 
1 

1- c-* 
J' 'SEND' outbuf 

>>> 'SEND ?$,Now try some fullscreen i npu t '  
34 *-*  /* perfop CICS ful lscreen input */ 
35 * - *  'WAITHEAD' /" do an EXEC CICS RECEIVE and parse i n t o  vars */ 

>>> "VAITREAD" 
I 

how try some f u l  lscreen inpQt 

i 

292 

Aonendix - Samole CICSREXX screens 39 



Third REXX Symposium, Anapolis. Maryland (C) Copyright I B M  Corgpration 1991,  1992 

32 *-* 'SEND' outbuf 

34 *-* /* perform CICS fullscreen input */ 
35 *-*  'WAITREAD' /* do an EXEC CICS RECEIVE and parse into vars */ 

>>> "SEND ?$,Now try some fullscreen input" 

>>> "WAITREAD" 

Now try some fullscreen input 
test input 

- 
32 *-• 'SEND' outbuf 

34 *-* /* perform CICS fullscreen input */ 
35 *-• 'WAITREAD' ' /* d o  an EXEC CICS RECEIVE and parse into vars */ 

36 * -*  say 'The A I D  key that was  pressed = I  waitread.3 

>>> "SEND ?$,Now try some fullscreen input" 

"VAITREAD" 

'The AID key that was pressed = ENTER ' 
The AID key that was pressed = ENTER 

37 *-* say 'The cursor was at  (Row Col):' subword(Waitread.2,2,2) 
"The  cursor was at  (Row Col): 24 12" 

The cursor  was at (Row Col): 24 12 
38 *-*  say 'The data that was entered (Row  Col Data):' subword(waitread.3,2 

'>> "The  data that was entered (Row  Col  Data): 24 2 test input' 
The data that was entered (Row  Col  Data): 24 2 test input 

39 *-* say 

41 *-* /* example  of using the system server * /  
42 *-* say 'send a GLOBALV SET and GET commands t o  the system server' 

"send a GLOBALV SET and GET comnands to the  system server., 
send a GLOBALV SET and GET commands to the system server 

43 *-• address  system 
44 *-* 'GLOBALV SELECT GROUP1 SET VARl test data' 

Now try some fullscreen input 
test input 1.10 RE 

293 

40 REXX in the CICS Environment 



Third REXX Svmposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991,1992 

4 

>>' 'GLOBALV  SELECT  GROUPl SET VARl test data' 

>>> "GLOBALV  SELECT  GROUPl  GET VARI'  

>=+ 'The contents o f  VARl = test data' 

45 *-• 'GLOBALV  SELECT  GROUP1  GET VA21' 

46 * - T  say  'The  contents o f  V A R l  =' varl 

The  contents o f  V A R l  = test  data 
47 T - t  say 

49 *-*  trace '0' /* don't want to trace  large loop */ 
1000 assignment  statements  have  been  executed 
2000 assignment  statements  have  been  executed 
3000 assignment  statements  have  been  executed 
4000 assignment  statements have been  executed 
5000 assignment  statements have been  executed 
6000 assignment  statements  have  been  executed 
7000 assignment  statements  have  been  executed 
8000 assignment  statements  have  been  executed 
9000 assignment  statements  have  been  executed 
10000 assignment  statements  have  been  executed 
11000 assignment  statements  have  been  executed 
12000 assignment  statements  have  been  executed 
13000 assignment  statements  have  been  executed 

MORE 

14000 assignment  statements  have  been  executed 
15000 assignment  statements  have  been  executed 
16000 assignment  statements  have  been  executed 
17000 assignment  statements  have  been  executed 
18000 assignment  statements  have  been  executed 
19000 assignment  statements  have been executed 
20000 assignment  statements  have  been  executed 

Today's  date i s  Tuesday 20 Aug 1991 
The  time is 18:02:03 
Ready; (9.924010) 

REX EXEC 

Appendix - Sample CIC5 'REXX screens 41 



Third REXX Symposium, Anapolis, Maryland (C) Copyright 1B.U Corporation 1991. 1992 

Source listing 

EDIT ---- SHRIVER.REXX(REX) - 01.08 ----------------------*-- WEMBER  REX  SAVED 
COMMAND ===> SCROLL --> PAGE 

000001 /* interpret ive  execut ion o f  REXX statements from the terminal */ 
900002 TRACE '0' 
000003 parse  arg  arg 
000004 signal on e r r o r  
(300005 s igna l  on syntax 
000006 SAY "Enter a REXX statement or 'EXIT' t o  end' 
00e007 r e s t a r t :  
000008 DO FOREVER 
000009 parse  external i n p u t  
000010 i f  i n p u t  = I '  then SAY .Enter a REXX statement or 'EXIT' t o  end. 
000011 INTERPRET i n p u t  
000012 i f  subs t r ( inpu t , l , l )  = . I n  then  say 'RC = I  rc'; ' 
000013 END 
000014 EXIT 
000015 e r ro r :  
000016 say ' R C  = I  rc 
000017 s i g n a l  on e r ro r  
000018 s igna l   r e s t a r t  
000019 syntax: 
F13=HELP F14=SPLIT F15zEND  F16eRETURN  F17=RFINO  FlS=RCHANGE 
F19=UP F20=DOUIN F21=S\JAP F22=LEFT  F23zRIGHT  F24zRETRIEVE 

***e** **t*******t*t*t***t****tt***t Top OF DATA **+t+ttttt*+**t*t+**t*t*,t+*+* 

d 

F13-HELP F14=SPLIT F15=END F16=RETURN F17=RFIND FIBERCHANGE 
F19=UP F2O=DObJN F2lzSbJAP . F22=LEFT F23zRIGHT F24=RETRIEVE 

Execution 
295 

42 R E X X  in the CIC! Environment 



Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991,1992 

rex 

\ 
Enter a REXX statement or 'EXIT' to end 
say 1/3 
8.333333333 

e x i t  READ 

296 

I 

Appendix - Sample CICS,!REXX screens 43 



Third REXX Symposium, Anapolis, Maryland (c) Copyright IBM Corporation 1991, 1992 

~~ _ _  

Enter  a REXX statement or 'EXIT' to end 
say 1/3 
0.333333333 
e x i t  
Ready; (19.632339) 

297 

44 REXX in h e  CICS Environment 



R W :  TECHNICAL ISSUES, TODAY ANDTOMORROW 

MICHAEL SlNZ 
coMMoDoRE 

298 



R EXX 
Technical Issues 
Today and Tomorrow 

Michael Sinz 
Senior  Systems  Engineer 

Commodore  International - Technology Group 
299 



Today 
The Good 

REXX is a computer language 
REXX is a easy language to learn do to the  non-typed,  non-declared  nature  of the 
language. MFC did a very  good job in thinking  about  what  the  user of REXX needed 
rather than  how  languages are normally  written. 

REXX is becoming a standard 
The  X3J18 group is currently  working  on  a draft ANSI standard for REXX. 

REXX is available across platforms 
REXX is now a standard part of a number  of  operating systems and  is available in flavors 
for  most others. 

REXX is part of solutions 
REXX is now  seen as a  standard  tool in environments  where REXX is installed. It has 
not only become part of the  environment but has proven  itself to be  very useful. A great 
many example of this can be  seen  in  the  Amiga environment, where REXX has become 
the tool of choice for systems  integration by VAFb in many  vertical  markets. 

300 



Todav 
The Good 

REXX is very  flexible 
Due to the  design of REXX, it has  turned out to be very flexible in adapting to more 
complex systems. For example, on  the  Amiga, REXX can communicate with any 
number of applications  that have support  for  REXX. This makes it possible for users  and 
systems integrators to pull  together  very  powerful  tools into what looks and  acts like one 
very customized application.  This  makes  the  migration into vertical  markets  much easier 
and reduces the tum-around  time to meet  the  demands of the changing markets. 

REXX has many good points 
After all, it took  me two pages just to skim  over  the  key  points ... 

301 



Today 
The Bad 

REXX is a computer- language 
While REXX is a easy  language  to learn, it is  still a "computer language" and that is 
keeping some people  from  using it. Many  users  would easily be  able to use REXX for 
"programming" if it did  not feel like  programming. A good example of this is the Lotus 
1-2-3 macros  which  business  people  used  all  the  time but did not  realized that they  were 
programming. (And if  told it was programming,  they  suddenly stopped) 

REXX is a not up to date 
While REXX has  many  good  points, it is currently  not up  to  the  task of some  of  the  issues 
in today's computing  environments. It is  not so much that REXX can  not  be since any 
implementor of the language  can  choose  to  extend  it in some ways;.rather it is a problem 
of choosing a model  that fits into the  REXX  model as well as addressing the requirements 
of complex multi-tasking,  multi-user,  multi-processor,  networked, graphical, object 
oriented environments. (What a mouth full) 

REXX is not  vet a standard 
J 

While X3J18 is working  hard on getting  the  standard done, it is not done yet and  the 
various  implementations of REXX are not  fully  interchangeable. 

REXX support in applications 
This will happen  more as the  market starts to demand it and as the  utility of REXX 
becomes a major  feature in products. A good  example  of  this  happening  already  is in the 
Amiga computer where  productivity  applications  are almost required to support REXX 
due to public demand and feature requirements. 

302 



Today 
The Ugly 

REXX is NEVER ugly... 

0 
0 . .  almost never, 
The implementation of a good REXX on  many platforms is not as simple as the  language 
seems. Part of this  is  due to the specification of the language and part of it is due to the 
way REXX is designed to interact  with  the operating environment of the system. 
Hopefully the specification of the  language  will help out, but the close interaction with 
the system will  always be there for the developer to deal with. In addition, without work 
at  getting REXX into new computing  technologies  such as GUIs, it can be rather "ugly" 
to code in REXX for such environments. 

303 



1-ornorrow 
REXX and  the future 
In order  for REXX to grow, the  direction of the growth needs to be identified first. If the 
goal is to make REXX  into  the "user's'' programming language, it is important that that 
goal is what drives development of  the language. 

Multi-Tasking, Multi-User, & Networks 
The current REXX  model  works  great in simple environments. The fact that YO is very 
simplistic make it easier for users to learn  and  use. However, this has also made a 
number of things  rather difficult (if  not impossible) to do in complex environments. 
Issues such as synchronization,  semaphores,  and  shared access are all currently outside of 
the REXX model. While it would  be  simple  to just use the models of other computer 
languages, it would  be  counter to the  main goal of REXX: simplicity for the user. This 
means that a new  model for such  things as file locking, access control, and 
synchronization will  be  needed. 

Graphical User  Interfaces 
The world is moving  into GUI environments.  The reason for the growth of this interface 
model is due partly to the fact that  computers are more powerful and that users find GUIs 
easier to learn and use. REXX, as a language, does not address any of these issue 
directly. External function  libraries exist for a number of different GUIs but not having 
the language contain some fundamental support for GUI opemtion makes life more 
difficult  for the  person  writing  the REXX program that deals with  the GUI. Research at  a 
number of places, most  notably IBM, have shown how REXX can be gracefully 
enhanced to gain  these features. However,  the  amount of work involved for the 
implementor of the  language  processor is high. 

304 



1-ornorrovv 
REXX and Objects 
As operating environments  become  more object oriented, REXX  will  need to learn about 
objects in order to fit in  with  the  environments it is operating in. Last yea,  IBM showed 
some of their ideas  on  how  this  could  be done. Work  such as that  will  need to continue 
and  will  need to  become  standardized  such that REXX continues to be a cross-platform 
language. 

REXX as a  visual  language 
This is one of my goals for REXX.  REXX  has  become a user's language. However, it is 
still very  much like a computer  language.  With  the  Amiga (and soon to be  the  many 
OW2 2.0 users) REXX  has  become a staple of application features. On the  Amiga, over 
140 REXX supporting  applications are available  with  every  new  application  having 
REXX support due to user demands.  REXX has become  both a systems integrators best 
friend and the  advanced  users  power-tool.  The  next step would  be to give this power to 
users who  do not "program" a computer in  the  traditional sense. A visual interface to 
REXX programming  that  can be mastered by  the  business  man  and  home computer user 
would  be  the  ultimate goal. In a mature,  REXX  supporting platfolm, such a tool  would 
give more users  the  power to combine  their  creativity  along  with the applications they 
have bought to produce  something  that is "what they  want."  Such a tool does not have to 
replace REXX but  would just have  to  be  able to sit on  top of REXX. However, such a 
tool would require more  standardization of the  way applications support REXX and of 
the REXX language itself. (I am  assuming  that due to the complexity of such a tool that 
it would be "ported" to all the  platforms  that support REXX in such a way.) 

0 REXX in the future ... 
With  the current growth of REXX as a user's tool and its inclusion as a standard part of a 
number of operating environments,  the  future for REXX looks bright. (And REXX 
developers can  be  assured of a number of tough  problems that will  need to be addressed.) 

305 



R EXX 
Going Strong 

Into the 
Future. 

306 



UNI-REXX:  REXX  FOR THE UNIX & VMS  ENVIRONMENTS 
3RD  ANNUAL  REXX  SYMPOSIUM 

ANNAf?OL I S J  MARYLAND 
MAY 5 J  1992 

PRESENTATION  OUTLINE 
PART 1. "MARKETING"  REXX FOR UNIX 

THE UNIX  MARKET 
MACRO  LANGUAGES FOR U N I X  
OUR EXPERIENCE So FAR 
PERL 
RECENT  WORK O N  UNI-REXX 
PLANS TO IMPROVE ACCEPTANCE 
OTHER PLANS 

M I S  AND UNIX 

UNI -REXX 

PART 2. OTHER REXX RELATED I T E M S  
COMBINED REXX AND C DEVELOPMENT  PROJECT 
RELATIONSHIP TO PUBLIC D O M A I N  REXX's 

307 



"MARKETING" REXX 
. . . NOT IN THE "GRUBBY" SENSE OF "HAWKING" REXX 
- . . BUT I N  THE SENSE OF "MAKING REXX VALUARLE", THROUGH 

IMPROVEMENT, 

APPLICATION, 

EDUCATION, 

ETC. 

THE UNIX COMMUNITY 

ORIGINALLY ACADEMIC AND ENGINEERING ORIENTED USAGE 

FIRST COMMERCIALIZATION INVOLVED SMALL EIISINESS APPLICATIONS 
(I- E -  J XENIX) 

RISC PRICE/PERFORMANCE  IMPROVEMENTS ARE ATTRACTING  TRADITIONAL 
COMMERCIAL M I S  APPLICATIONS 

LATELY, THE  INTEL  PRICE/PERFORMANCE  CURVE.IS  APPROACHING  THAT OF THE 
LOW END R I S C  SYSTEMS, FURTHER ACCELERATING WIDER INTEREST IN UNIX. 

TRADITIONAL COMMERCIAL M I S  ORGANIZATIONS AND UNXX 
RISC PRICE/PERFORMANCE HAS BECOME UNAVOIMBLY ATTRACTIVE 

UNIX IS THE ONLY CURRENTLY AVAILABLE OS F O R  THESE PLATFORMS. 
( O W  AND WINDOWS/NT WILL CHANGE THIS SITIJATION) 

UNIX MAY CONTINUE TO BE THE ONLY TRULY PORTABLE ENVIRONMENT 

(OW2 AND WINDOWS/NT ARE PROPRIETARY TECHNOLOGY) 
FOR THOSE WHO SEEK  THE F L E X I B I L I T Y  OF OPEN  SYSTEMS. 

THE UNIX LEARNING CIJRVE IS LARGE F O R  EXISTING COMMERCIAL M I S  STAFFERS 

THESE FACTORS ARE THE RASIS FOR TWG's PRODIICT LINE OF MAINFRAME UTILITY 
SOFTWARE FOR UNIX. 

308 



MACRO LANGUAGES FOR U N I X  

U N I X  INCLUDES MANY "STANDARD" UTILITIES: 

- A LARGE NUMBER OF COMMANDS THAT PROVIDE INFORMATION, ACCESS, AND 

- REUSABLE "FILTERS" USED VIA "PIPES" 

CONTROL  AT A VERY  LOW  LEVEL 

- 1/0 REDIRECTION 
. . .MAKING FOR A VERY FLEXIBLE (ALBFTT DAUNTING) ENVIRONMENT- 

GIVEN THIS LEVEL OF COMPLEXITY, THERE I S  CERTAINLY A NEED FOR MACRO 
FACILITIES. A S  AN  EXAMPLE,  TAKE THE CASF OF ROUTINE.DISK  SPACE 
SPACE  MANAGEMENT  AT  THE  END-USER  LEVEL- 

STANDARD UN I X  REALLY ONLY PROVIDES THE 'w' COMMAND, WHICH PROVIDES 
VERY  LOW  LEVEL D A T A . . .  

(OUTPUT OF U N I X  COMMAND DU /USR/EXPORT/HOME/ETS" FOLLOWS.. . ) I t  

1668 / U S R / E X P O R T / H O M E / E T S / P D R / R E X X ~  

1316 / U S R / E X P O R T / H O M E / E T S / P D R / R E X X ~  
3018 /USR/EXPORT/HOME/ETS/PDR 
197 /USR/EXPORT/HOME/ETS/UTIL 
5 /USR/EXPORT/HOME/ETS/LOCALTERM/A 
2 /USR/EXPORT/HOME/ETS/LOCALTERM/D 
9 /USR/EXPORT/HOME/ETS/LOCALTERM/H 
69 /USR/EXPORT/HOME/ETS/LOCALTERM/I 
5 /USR/EXPORT/HOME/ETS/LOCALTERM/J 
3 /USR/EXPORT/HOME/ETS/LOCALTERM/S 
2 /USR/EXPORT/HOME/ETS/LOCALTERM/U 
5 /USR/EXPORT/HOME/ETS/LOCALTERM/V 
13 /USR/EXPORT/HOME/ETS/LOCALTERM/W 
114 /USR/EXPORT/HOME/ETS/LOCALTERM 
1 /USR/EXPORT/HOME/ETS/. WASTEBASKET 
432 /USR/EXPORT/HOME/ETS/REXX 
42 /USR/EXPORT/HOME/ETS/XEDIT 
24 /USR/EXPORT/HOME/ETS/TERMINFO 
3 /USR/EXPORT/HOME/ETS/RXF 
133 /USR/EXPORT/HOME/ETS/LANG/SC~.  O/MAN/MAN~ 
398 /USR/EXPORT/HOME/ETS/LANG/SCL O/MAN/MAN~ 
541 /USR/EXPORT/HOME/ETS/LANG/SCL O/HAN 
9 /USR/EXPORT/HOME/ETS/LANG/SC~.  O/INCLUDE/CC/ARPA 
9 /USR/EXPORT/HOME/ETS/LANG/SC~.  O/INCLUDE/CC/DEBUG 
14 /USR/EXPORT/HOME/ETS/LANG/SC~-O/INCLUDE/CC/HSFS 
3 /USR/EXPORT/HOME/ETS/LANG/SC~. O/INCLUDE/CC/LOFS 
12 /USR/EXPORT/HOME/ETS/LANG/SC~. O/INCLUDE/CC/LWP 
29 /USR/EXPORT/HOME/ETS/LANG/SC~. O/INCLUDE/CC/MON 
29 /USR/EXPORT/HOME/ETS/LANG/SC~.  O/INCLUDE/CC/NET 

56 /USR/EXPORT/HOME/ETS/PDR/REXX2/TRI P 
5 /USR/EXPORT/HOME/ETS/PDR/REXX2/CODE 

4 /USR/EXPORT/HOME/ETS/LANG/sc1- O/MAN/MAN5 



59 /USR/EXPORT/HOME/ETS/LANG/SC~. O/INCLUDE/CC/NETINET 
15 /USR/EXPORT/HOME/ETS/LANG/SCL O/INCLUDE/CC/NFS 
158 /USR/EXPORT/HOME/ETS/LANG/SC~.  O/INCLUDE/CC/PIXRECT 
13 /USR/EXPORT/HOME/ETS/LANG/SCL O/INCLUDE/CC/PROTOCOLS 
28 /USR/EXPORT/HOME/ETS/LANG/SC~. O/INCLUDE/CC/RFS 
56 /USR/EXPORT/HOME/ETS/LANG/SC~. O/INCLUDE/CC/RPC 
58 /USR/EXPORT/HOME/ETS/LANG/SC~. O/INCLUDE/CC/RPCSVC 
14 /USR/EXPORT/HOME/ETS/LANG/SC~.  O/INCLUDE/CC/SBUSDEV 
20 /USR/EXPORT/HOME/ETS/LANG/SC~.  O/INCLUDE/CC/SUN 

9 /USR/EXPORT/HOME/ETS/LANG/scl-  O/INCLUDE/CC/NETTLI 

9 /USR/EXPORT/HOME/ETS/LANG/sc~-  O/INCLUDE/CC/SUN3 
3 /USR/EXPORT/HOME/ETS/LANG/sc1- O/INCLUDE/CC/SUN3X 
3 /USR/EXPORT/HOME/ETS/LANG/scl~ O/INCLUDE/CC/SUN4 
3 /USR/EXPORT/HOME/ETS/LANG/scl- O/INCLUDE/CC/SUN4C 
59 /USR/EXPORT/HOME/ETS/LANG/SCL O/INCLUDE/CC/SUNDEV 
153 /USR/EXPORT/HOME/ETS/LANG/SC~.  O/INCLUDE/CC/SUNTOOL 
142 /USR/EXPORT/HOME/ETS/LANG/SCL O/INCLUDE/CC/SUNWINDOW 
210 /USR/EXPORT/HOME/ETS/LANG/SC~. O/INCLUDE/CC/SY s 
3 /USR/EXPORT/HOME/ETS/LANG/SC~. O/INCLUDE/CC/TFS 
6 /USR/EXPORT/HOME/ETS/LANG/SC~. O/INCLUDE/CC/UFS 
3 /USR/EXPORT/HOME/ETS/LANG/SC~. O/INCLUDE/CC/VM 
1430 /USR/EXPORT/HOME/ETS/LANG/SCL O/INCLUDE/CC 
1436 /USR/EXPORT/HOME/ETS/LANG/SC~. O / I N C L U ~ F  
1001 /USR/EXPORT/HOME/ETS/LANG/SC~.  O h 8 7  
1003 /USR/EXPORT/HOME/ETS/LANG/SC~.  O / c ~ 8 9  
12 /USR/EXPORT/HOME/ETS/LANG/SC~- O/MI SALIGV 
52 /USR/EXPORT/HOME/ETS/LANG/SCL O/README 
9793 /USR/EXPORT/HOME/ETS/LANG/SC~.  0 
133 /USR/EXPORT/HOME/ETS/LANG/MAN/MAN~ 

541 /USR/EXPORT/HOME/ETS/LANG/MAN 
12537 /USR/EXPORT/HOME/ETS/LANG 
219 /USR/EXPORT/HOME/ETS/DOC 
49 /USR/EXPORT/HOME/ETS/SYMP 
16725 /USR/EXPORT/HOMF/ETS 

398 /USR/EXPORT/HOME/ETS/LANG/MAN/MAN3 
4 /USR/EXPORT/HOME/ETS/LANG/MAN/MAN5 

310 



MACRO LANGUAGES FOR UNIX 
A TYPICAL MACRO PROGRAM WOULD PROVIDE T H I S  L O W  I-EVEL  INFORMATION I N  A 
MORE MANAGEABLE  FORM... 

(OUTPUT OF U N I X  COMMAND "SPACE  /lJSR/EXPORT/HOME/ETS"  FOLLOWS- - .  ) 

FILESYSTEM KBYTES USED AVAIL CAPACITY MOUNTED ON 
/DEV/SDOG 186414  141068 2670rl 84% /USR 
NUM SIZE(K) X NODE XFILESYS ITEM 
1 3018  18.041  2.139 /USR/EXPORT/HOME/ETS/PDR 
2 
3 

197  1.178  0.140 /USR/EXPORT/HOME/ETS/UTIL 
114 0- 681 0.081 /USR/EXPORT/HOME/ETS/LOCALTERM 

4 1 0.006  0.001 /USR/EXPORT/HOME/ETS/.  WASTEBASKET 
5 432 2.582 0.306 /USR/EXPORT/HOME/ETS/REXX 
6 
7 

42  0.251 0.030 /USR/EXPORT/HOME/ETS/XEDIT 

8 
24  0.143  0.017 /USR/EXPORT/HOME/ETS/TERMINFO 

3 0.018 0.002 /USR/EXPORT/HOME/ETS/RXF 

10 
9 12537  74.942  8.887 /USR/EXPORT/HOME/ETS/LANG 

11 
219  1.309 0.155 /USR/EXPORT/HOME/ETS/DOC 
53 0.317  0.038 /USR/EXPORT/HOME/ETS/SYMP 

12  16729  100.000  11.859 /USR/EXPORT/HOME/ETS 
SELECT NODE NUMBER FOR R E D I S P L A Y  (" F O R  SAMF) AND OPTIONAL LEVEI- 
OR ' X '  TO E X I T  

1 
FILESYSTEM KBYTES USED AVAIL CAPACITY MOUNTED ON 
/DEV/SDOG 186414  141068  26704  8496 /USR 
NUM SIZE(K)  X NODE XFILESYS ITEM 
1 1668 55.268 1.182 / U S R / E X P O R T / H O M E / E T S / P D R / R E X X ~  
2 1316 43.605 0- 933 /USR/EXPORT/HOME/ETS/PDR/REXX~ 
3 3018 100.000 2.139 /USR/EXPORT/HOME/ETS/PDR 

SELECT NODE NUMBER FOR REDISPLAV (" F O R  S A W  ANn OPTIONAL L E V E L  
OR '0' TO GO BACK UP ONE NODE 
OR ' X '  TO E X I T  

0 

31 1 



FILESYSTEM KBYTES USED AVAIL CAPACITY MOUNTED ON 
/DEV/SDOG 186414  141069  267113  84% /USR 
NUM SIZE(K) Z NODE ZFILESYS ITEM 

2 
1 3018  18.041  2.139 /USR/EXPORT/HOME/ETS/PDR 

3 
197 1- 178 0.140 /USR/EXPORT/HOME/ETS/UTIL 
114 0.681 0.081 /USR/EXPORT/HOME/ETS/LOCALTERM 

4 1 0.006 0.001 /USR/EXPORT/HOME/ETS/. WASTEBASKET 
5 432 2.582 0,306 /USR/EXPORT/HOME/ETS/REXX 
6 42 0.251 0.030 /USR/EXPORT/HOME/ETS/XEDIT 
7 24 0.143 0.017 /USR/EXPORT/HOME/ETS/TERMINFO 
8 3 0.018 0.002 /USR/EXPORT/HOME/ETS/RXF 
9 12537 74.942 8.887 /USR/EXPORT/HOME/ETS/LANG 
10 219 1.309 0.155 /USR/EXPORT/HOME/ETS/DOC 
11 53 0.317 0.038 /USR/EXPORT/HOME/ETS/SYMP 
12  16729 100.000 11.859 /USR/EXPORT/HOME/ETS 

SELECT NODE NUMBER FOR REDISPLAY (* FOR SAME) AND OPTIONAL  LEVEL 
OR ' X '  TO EXIT 

9 

FILESYSTEM KBYTES USED AVAIL CAPACITY MOUNTED ON 
/DEV/SDOG 186414 141070  26702 84% / U S R  
NOM SIZE(K) NODE XFILESYS ITEM 
1 9793 78-  113 6.942 /USR/EXPORT/HOME/ETS/LANG/SC~. 0 
2 541 4.  315 0.384 /USR/EXPORT/HOME/ETS/LANG/MAN 
3 12537 100.000 8.887 /USR/EXPORT/HOME/ETS/LANG 

SELECT NODE NUMBER FOR REDISPLAY (* FOR SAMF) AND OPTIONAL LEVEL 
OR '0' TO GO BACK  UP ONE NODE 
OR ' X '  TO EXIT 

FILESYSTEM 
/DEV/SDOG 
N U M  SI ZE(K) % NODE 
1 541 4.315 
2 1436 11.454 
3 1001 7.984 
4 1003 8.000 
5 12 0.096 
6 52 0.415 
7 9793 78.113 

9 398 3 -  175 
10 4 0.032 
11  541  4.315 
12  12537 100.000 

SELECT NODE NUMBER 
OR '0' TO GO BACK 
OR ' X '  TO EXIT 

a 133  1.061 

K B Y T E S  USED AVAIL CAPACITY MOUNTED ON 
186414  141070 26702 8 4 %  /USR 

X F I L E S Y S  ITEM 
0.384 / U S R / E X P O R T / H O M E / E T S / L A : G / S C ~ .  O/MAN 
I- 018 /USR/EXPORT/HOME/ETS/LANG/SC~.  O/INCLUDE 
0.710 /USR/EXPORT/HOME/ETS/LANG/SC~. O / c ~ 8 7  
0.711 /USR/EXPORT/HOME/ETS/LANG/SC~. O / c ~ 8 9  
0.009 /USR/EXPORT/HOME/ETS/LANG/SC~.  O/MISALIGN 
0.037 / U S R / E X P O R T / H O M E / E T S / L A N G / S C ~ .  O/README 
6.942 /USR/EXPORT/HOME/ETS/LANG/SC~, 0 
0.094 /USR/EXPORT/HOME/ETS/LANG/MAN/MAN~ 

0.384 /USR/EXPORT/HOME/ETS/LANG/MAN 
8.887 /USR/EXPORT/HOME/ETS/LANG 

0.282 /USR/EXPORT/HOME/ETS/LANG/MAN/MAN3 
0.003 /USR/EXPORT/HOME/ETS/LANG/MAN/MAN5 

FOR REDISPLAY (* F O R  SAMF)  AND OPTIONAL LEVEL 
UP ONE NODE 

X 

312 



MACRO LANGUAGES FOR UNIX 
PERL IS FAST BECOMING THE DE FACTO  STANDARD MACRO LANGUAGE FOR UNIX, 
EVEN THOUGH REXX I S  CLEARLY  SUPERIOR I N  MANY WAYS- . .  

- REXX HAS BETTER PROGRAMMING STRUCTUREq 

- STRINGS AND A R R A Y S  START AT 0, NOT I 
- No WAY TO SPECIFY THE DEFAULT  VALUE o r  AN ASSOCIATIVE ARRAY (STEM) 

- RELATIONSHIP BETWEEN OPERATORS, FUNCTIONS, AND  PRECEDENCE IS VERY 
CONFUSING. FOR EXAMPLE: 

PRINTS "2" AND THROWS "3" AWAV A S  AN UNUSED SIDE EFFECT! 

- SEMICOLONS  REQUIRED (JUST LIKE c )  
- ARRAYS, L I S T S ,  AND SCALARS BEGIN WITH SPECIAL  CHARACTERS (a,$,. - - ) 

- BRACKETS REQUIRED T N  COMPOUND INSTRUCTIONS, I -  E -  J 

WCI I L E  
NOT STMT; 

- THE SYNTAX  HAS FAR TOO MANY SPECIAL  CHARACTERS AND IDEOSYNCRACIES- 

313 



MACRO LANGUAGES FOR U N I X  
REXX-PERL COMPARISON 1 

/* 
*/  

BRING I N  PARMS,  HANDLE DEFAULTS 

PARSE ARG NODE LEVEL TRACEOPT 
TRACE  VALUE  TRACEOPT 
I F NODE="" i? NODE=". It 

THEN DO 
CALL  POPEN 'PWD' 
PARSE  PULL NODE 
END 

I F  LEVEL- - II It 
THEN  LEVEL=^ 

# 
# 
$NODE = SHIFT @ARGV; 
# BRING I N  PARMS, HANDI-F: DEFAIJI-TS 

C H O P ( $ N O D E  = WD 
I F  ($NODE EQ - I m M O D E  EQ I ); 

$LEVEL = SHIFT @ARGV; 
$LEVEL = 1 

IF ($LEVEL EQ ' I  ); 

3 14 



MACRO LANGUAGES FOR UNIX 
REXX-PERL COMPARISON 3 

/* 

CALL POPEN ' D F '  
DO WHILE Q U E U E D O > O  

4b 

*/ 
FIND  APPLICABLE F I L F  SYSTEM AND S I Z E  

PARSE PULL L 
TEST=WORD(L,DFNAMEWORD. UNAME ) 
I F TEST="/"  
THEN DO 

FSNAME=TEST 
FSSIZE=WORD(L~DFSPACEWORD. UNAME) 
IF DFFREEWORD-UNAME-O 
THEN FSSIZE=FSSTZE-WORD(L~ ,DFFREEWORD-  IJNAME) 
END 

THEN DO 
ELSE IF LEFT(NODE,LENGTH(TEST))==TEST 

FSNAME=TEST 
FSSIZE=WORD(L,DFSPACEWORD. IJNAME) 
IF DFFREEWORD.UNAME-~ 
THEN FSSIZE=FSSIZE-WORII(L,DFFREEWORP- UNAME) 
DO WHILE QUEUEIIO>O 

PARSE  PULL 1 .  
END 

LEAVE 
END 

END 
I F  DFBLOCKS..UNAME THEN F S S I Z E = F S S I Z E " R C O C K ~ T Z E . I ~ N A M E  

315 



I 

MACRO LANGUAGES FOR U N T X  
REXX-PERL COMPARISON 2 
# 
# FIND  APPLICABLE  F1I .F  qYSTEM AND S T Z F  
# 
OPEN (DF, 'DF 3 ' ) ;  

WHILE (<DF>> 
31 

CHOP; 
@DF = S P L I T ;  
$TEST = @DF$$DFNAMEWORD:~$UNAME~-~ I ; 
IF ($TEST EQ ' / ' )  
% 

BFSNAME = '/'; 
$FSSIZE = @ D F C $ D F S P A C E W O R D ~ $ U N A M E ~ - ~ ~  ; 
$FSSIZE = $FSSIZE - @DF@$DFFREEWORD&UNAMES-~. I 

IF ( ~ ~ I D F ~ $ D F F R E E W O R D ~ $ U N A M E S - ~  I != O h  
31 

ELSE 
# 

IF ($NODE = O  / - $ T E S T / )  
35 

$FSNAME = $TEST; 
$FSSIZE = @ D F C $ D F S P A C E W O R D ~ $ U N A M E ~ - ~ ~ ;  
$FSSIZE = $FSSIZE - @DF$$DFFREEWORD~$UNAME:::-~~ 

IF (@DFC$DFFREEWCIRD~$UNAME~-~I != 0 ); 
LAST; 

w ;  
CLOSE (<DF> >; 
~ F S S I Z E  $ F S S I Z E  * $BLOCKSI:ZE:.:$IJNAM~:.. 

IF ($DFBLOCKS~$UNAME.-)  : 

316 



MACRO LANGUAGES FOR UNIX 
REXX-PERL COMPARISON 3 

/* * DO A  DUJ  BUFFER UP THE LINES, AND GET TIIF NODE TOTAL 
*/ 

CALL POPEN 'DU' NODE 
DO  LINE=^ WHILE QUEUEDO>O 

PARSE  PULL L 
PARSE VAR L COUNT NAME 
NODECOUNTS-NAMEZCOUNT 
L INES.   L INE 'L  
END 

LINE=LINE-~ 
NODECOUNT=WORD(LINES. I J N E , ~ )  

# 
# DO A DU, BUFFER UP THE L INES,  AND GET THF NODE TOTAL 
# 
OPEN (DU,  "DU $NODE $3'' ) !  
$LINE = 1; 
WHILE (<DU>> 
R 

CHOP; 
9DU = SPLIT;  
( S C O U N T ~  $NAME 1 = @ D U ~ O .  - 1  I ; 
SNODECOUNTS~SNAME~ = $COUNT; 
SLINESMLINEI = 8-j  
++$LINE; 

Y 
--$LINE; 
$NODECOUNT = SHIFT(@DII): 
CLOSE (<DU> ); 

317 



OUR EXPERIENCE so FAR 

A S  OF T H I S  T I M E  

APPLICATIONS THAT EMRED REXX ARE WELL RECFrVEn R Y  COMMERCIAL M I S  
TRANSITING  TO UNIX 

- X E D I T  
- ISPF 

- - . R E X X  IJSAGE WJTHIN  THESE  SPECIFIC  FNVIRONMENTS I S  IIIGHI-Y  PORTABLE 

HOWEVER- - - 

REXX HAS N O T  BEEN WELL R E C E I V E D  A S  A MACRO F A C I L I T Y  FOR UNIX. 

- WHY 

- WHAT ARE WE GOlNG TO DO ABOUT TT 

318 



PER1 
- FAMILIAR TO CURRENT UNIX  SYSTEM  ADMINIqTRATORSJ WHO ARE ALSO 

SOFTWARE SELECTORS- 

- REGULAR EXPRESSION SUPPORT 

- MANY UNIX  SPECIFIC  FUNCTIONS  BUI I . .T - IN.  

-- EASE OF IMPLEMENTATION 
-- PORTABILITY 

- FREE, IN SOURCE FORM 

- QUESTIONABLE SUPPORT 

UNI -REXX 
- FAMILIAR TO COMMERCIAL MIS,  UNFAMILIAR TO U N I X  SYSTEM  nDMINISTRATORS 

- LITTLE SPECIFIC UNIX SUPPORT:  

-- NO'REGULAR EXPRESSION SUPPORT 

- COMMERCIAL PRODUCT, WHEREAS MOST R E X X  I A N G ~ A G F  P R O C E S S O R S  ARE 
BUNDLED  INTO  THE  IlNDERLVlNG 0s- 

319 



IECENT WORK ON UNI-REXX 
THE RECENT IMPROVEMENTS TO UNI-REXX HAVE "PLAYED TO IT'S STRENGTHS", 

- ADDITIONAL A P I s  
IMPROVING I T ' S  USEFIII-NESS FOR EMBEDDED APPI.ICAT1ONS 

- COMPLETION OF STANDARD REXX FACILITIES 

- IMPROVED PERFORMANCE 

RECENT WORK ON UNI-REXX 
ADDITIONAL A P I ' s  

- SYMBOL TABLE ACCESS E X I T S  
-- READ, WRITE, AND DROP 
-- TAKEN ONLY WHEN AN U N I N I T I A L I Z E D   V A R I A B L E  I S  REFERENCED -- EXIT CAN SUPPLY/ACCEPT A VALUE OR ALLOW DEFAULT PROCESSING 
-- SUPPLIED/ACCEPTED VALUES MAKE FJI) REXX SYMBOL TABLE ENTRY 

- COMPILER  EXITS -- SUPPORT  LANGUAGE EXTENSIONS  BY EMBEDDED APPLICATION -- COULD SUPPORT A PREPROCESSOR 

- MULTI-THREADING SUPPORT 

RECENT WORK ON UNI-REXX 
COMPLETION OF STANDARD REXX FACILITIES 

- FULL REXX MATH 

- LANGUAGE LEVEL '1.00 FEATURES 

NOTE THAT THIS WORK HAS NOT IMPROVED REX)('? POSITION WITH RESPECT TO UNIX 

320 



PLANS TO IMPROVE ACCEPTANCE OF REXX F O R  UNW 
LOTS MORE BUILT-IN F~JNCTIONS 

- UNIX SPECIFIC, ALA PERL ETC.  (EXPOSF: ENTIRE STANDARD C LIBRARY?) 

- REGULAR EXPRESSION SUPPORT 

- PROCESS MANAGEMENT 8, COMMUNICATION 

- USER INTERFACES: C U R S E S  FOR SURE, POSSIBLY X AS WELL 

- DATABASE ACCESS 

PLANS TO IMPROVE ACCEPTANCE OF REXX F O R  U N T X  

PROCESS MANAGEMENT 8 COMMUNICATION 

W E  ARE CURRENTLY  EXPERIMENTING  WITH FUNCTIONS THAT WILL ALLOW REXX 
TO CONTROL ONE OR MORE ASYNCHRONOUS PROCESSES V I A  STDIN AND STDOUT- 

HANDLE=PIPE(COMMAND) -- INITIATES AN ASYNCHRONOUS PROCESSJ WITH BOTH 
STDIN AND STDOUT P I P E D  BACK TO THE  PARENT- 

RC=PIPEIN(HANDLE,DATA) - RECEIVES RAW DATA FROM A P R O C E S S ' S  STDOUT 
RC=PIPEOUT(HANDLE,DATA) - SENDS RAW DATA TO A P R O C E S S ' S  STDIN 
R C = P I P E S E L ( H A N D L F ~ J H A N D L E ~ J H A N D L E ~ )  ' -  RLOCKS UNTIL   DATA I S  

AVAILABLE ON A CONTROLLED P R O C E S S ' S  STDOUT, 
O R  ON THE PARENT T A S K ' S  STDIN. 

"RAW" DATA CAN BE A BIT CUMBERSOME (CONTROL CHARACTERS ARE PRESENT,) 
BUT T H I S  APPROACH  ALLOWS FULL CONTROL OF  ANY APPLICATION  WITHOUT 
I T ' S   I N C L U S I O N  OF A "REXX MESSAGE PORT'' FTC- 

CURRENT IMPLEMENTATION U S E S  S O C K F T C  e P R O D ~ I C T ~ O N  QIJACITY WILL REQUIRE 
PSEUDO-TTY'S INSTEAB- 

32 1 



PLANS TO IMPROVE ACCEPTANCE OF REXX F O R  U N T X  
BASE TECHNOLOGY F R E E  T O  ACADEMIA 

- EXECUTABLE ONLY 

-- NO SOURCE LEVEL  PORTABIL ITY 

-- NO EMBEDDED  USE (GIVEN CURRENT  TECHNOLOGY) 

- N O  SUPPORT, VERY I - I M I T E D  DOCUMENTATIOPI 

OTHER PLANS 

IMPROVED PROGRAM DOCUMENTATXDN ( T . F .  PRnGRAM I T S T I N G   F A C I L I T I E S )  

IPC FOR THE REXX A P T ' S  
- E X P O S E  A P I s  TO INVOKED UNIX COMMANDS 

- EXTERNALIZE EMBEDDED LANGUAGE PROCESSING 

REXX SHELL 
- BETTER  INTEGRATF THE EXTERNAL  DATA t 3 f l F l l E  R IJNIX COMMAND FROCFSSING 

- ALLOW REXX CONTROI OVER THE PFRST STFFI1. SHFI.1- ENVIRONliiENT 

ADDITIONAL EMBE.DDED APPLICATIONS 

LOTS OF WORK I N  THE ABOVE PLANS, MORE 'THAN \.IF CAN FUND I N  THE NEAR TERM. 

EFFECTIVENESS OF THESF FFFORTS AT INCREASTNG ACCEPTANCE I S  UNSURE- 

PRIORITIZATION WILL RF: AN T S S U E . ,  COMMENTS A R F  WELCOME. 

322 



OTHER  ITEMS OF INTEREST  FROM TWG 
COMBINED REXX AND C DEVELOPMENT P R O J E C T F O R  UNI-SPF 
RELATIONSHIP WITH P I m x  DOMAIN REXX IMPI.EMENTATIONS 

COMBINED REXX AND C DEVELOPMENT PROJECT FOR IJNI-SPF 
GOAL - BUILDING UPON O U R  BASE OF UNI-REXX AND UNI-XEDIT, 

ADD  DIALOG  MANAGEMENT  FACILITlES, "PDF", AND  THE SPF EDITOR 
WORKS BEGINS ON DIALOG MANAGEMENT (IN "C") I N  APRIL, 1991.- 
PROTOTYPE DIALOG MANAGEMENT AVAILABLE 3Q91.- 
I N T E N S I V E  P E R I O D  OF W O R K  D U R I N G  4Q9J.: 

-- "PDF" CREATED U S I N G  DIALOG MANAGEMENT & REXX 

PROBUCTION RELEASE 1492 

COMBINED REXX A N D  C DFVFLOPMENT P R o . m r  FOR IJNT--SPF 

SPF PROJECT  CONSUMED 12 MAN-MONTHS  OF C CODING 
4 MAN-MONTHS OF REXX CODING 

PRODUCED 829K BYTES OF c CODE 
612K BYTES OF REXX CODE 

HIGHLY PRODUCTIVE REXX PROGRAMMING ENVIRONMENT WAS INVALUABLE TO 
RAPID  PROTOTYPING  AND  QUICK  DELIVERY- 

CERTAIN REXX CODE SEGMENTS EXHIBIT PERFORMANCE PROBLEMS 
(MITIGATED BY RISC PRICE/PERFORMANCE CHARACTERISTICS. ) 
MOST R E X X  CODE WILI PROBABLY RE RE-WRITTEN I N  C EVENTUALLY. 

323 



RELATIONSHIP W I T H  PUBLIC DOMAIN REXX I M P L E M E N T A T I O N S  
ADDITIONAL IMPROVEMENTS A R E  FXPECTED I N  ' r w  ACCEPTANCE OF REXX FOR UNIX 
COMMERCIAL IMPLEMENTATION WILL HAVE IT'S ADVANTAGES: 

- COMPLETENESS 
- STABILITY 
- PERFORMANCE 
- DOCUMENTATION - SUPPORT 

T w G  & I x  WILL  COOPERATE  IN  ESTABLISHING  STANDARDS  WHERE  POSSIBLE 

- API INTERFACE  DEFINITIONS 
- BUILT-IN FUNCTION DEFINITIONS 

ANY OTHER POSITION WOULD R E  FUTILE, ANYWAY! 

COMMENTS, PLEASE. 

THANKS ! 

324 



PLUNGING INTO PIPES 

MELINDA VARIAN 
PRINCETON  UNNERSW 

325 



PLUNGING INTO PIPES 

Melinda  Varian 

Office  of  Computing  and  Information  Technology 
Princeton  University 
87 Prospect  Avenue 

Princeton, NJ 08544 USA 

BITNET:  MAINT@PUCC 
Internet: maint@pucc.princeton.edu 

Telephone: (609) 258-6016 

-- 

REXX  Symposium 
May 5,1992 

1. INTRODUCTION 

CMS Pipelines' is the most  significant  enhancement  to  CMS since REXX.  It  introduces  into 
CMS the powerful data flow  model  of  programming that was popularized by  UNIX2  pipes. 
UNIX pipes  were  built to work  with a byte-oriented file system, but CMS Pipelines has so 
successfully  met the challenge  of  making  the  pipeline  concept  work well with a record-oriented 
file  system that CMS Pipelines is now  being  used in MVS,  GCS,  and  MUSIC, as well  as in CMS. 

There are two  primary  reasons for discussing CMS Pipelines at a REXX  Symposium. First, 
REXX  and CMS Pipelines work so well  together that the  example of their synergy  may inspire 
advances in other REXX  environments.  When CMS PipeZines was first being developed, the 
author of FEXX, Mike  Cowlishaw,  graciously  made a critical change to REXX  to facilitate the 
implementation of Pipes. The  author  of CMS Pipelines, John Hartmann, has  himself said that 
there would be very little point to CMS Pipelines without  REXX.  Although CMS Pipelines does 
run at the command level (or even with EXEC 2). its real  power  comes  when it is used in 
conjunction with  REXX.  Conversely, CMS Pipelines magnifies  the  power of REXX,  and  that is 
the second reason for discussing it here. CMS Pipelines brings to REXX  many  of the capabilities 
that are the subjects of user group requirements for REXX enhancements, and  it  also  augments 
REXX in other important ways,  such as by giving it device independence. I will try today to give 
you a glimpse of the ways in which  REXX  and Pipes complement one another and  of the reasons 
why CMS  REXX  users are so excited  about Pipes. 

CMS Pipelines is part  of  CMS 8 in V m S A  1.1.  Customers  who are not  yet  running  CMS 8 
can order CMS Pipelines as a program offering, 5785-RAC.  except in the United States, where 
CMS Pipelines is a Programming RPQ (P81059,  5799-DKF). The PRPQ, which includes 
Mike  Cowlishaw's  LEXX editor, is  in  Higher  Education Software Consortium  Group  I-A1. 

UNIX is a trademark of  AT&T  Bell  Laboratories. 

326 

mailto:maint@pucc.princeton.edu


Page 2 Plunging into  Pipes 

The  Pipeline Concept 

A pipeline is simply  a  series of programs  through  which data flow, just as water flows through 
the sections of a water pipe. In a  pipeline,  a  complex  task is performed  by processing data 
through several simple programs in an appropriate  sequence. 

The programs that are hooked together to form  a pipeline are called “stages”. Each stage in a 
pipeline reads data from the pipeline,  processes  them  in  some way, and  writes the transformed 
data back to the pipeline. Those data are then  automatically  presented as input to the next stage 
in the pipeline.  The  individual  programs  in the pipeline  are  independent  of one another, they 
need not know or care which other programs  are in the pipeline.  They are also device 
independent; each of  them does its own job without concern for where the data came  from or for 
where  they are going.  The output of any  program can be connected to the input of  any other 
program; thus, the programs  used  to  perform  one task can be hooked together in a different order 
to perform  a different task.  Whenever  a  new  pipeline stage is written, it can immediately be used 
in conjunction with any previously existing stage. 

Pipeline programming  involves  applying “pipethink” to  break  a  problem into a  number  of  small 
steps, each of  which can then be performed  by  a simple program.  Wherever possible, a pipeline 
programmer  uses existing programs as the stages in a  pipeline. Traditionally, programs  that  run 
in pipelines are small  and have one  very  well-defined function, but  they  should  also be as 
general-purpose as possible, to allow  re-use.  Because  they  are so small  and  well-defined, it is 
possible to make  them  very  reliable. In other words,  programs that run  in pipelines should  be 
“little gems”. CMS Pipelines comes  with  a  very  rich collection of such gems, well over a 
hundred built-in programs. CMS Pipelines users  typically find that most  of their applications can 
be written using only the built-in  programs,  but  if  they  have  a  need that is not  addressed  by  a 
built-in program,  they can easily craft their own little gems, preferably in REXX. 

II. A CMS PIPELINES PRIMER 

The Pipe  Command 

The pipeline concept has  not  been  integrated  into  command  parsing in C M S ,  as it has in UNIX. 
Instead, CMS  Pipelines adds the new CMS command,  PIPE: 

pipe  pipeline-specification 

The argument to PIPE is a  “pipeline  specification”. A pipeline specification is a string listing the 
stages to be run. The  stages are separated  by the “stage separator character”, which is usually  a 
vertical bar (“I”): 

pipe  stage-1 I stage-2 I stage-3 I stage4 

When CMS sees this PIPE  command  (whether in an EXEC or typed  on the command line), it 
passes control to the PIPE  module,  which  interprets the argument string as a  pipeline  containing 
four stages. The  pipeline  parser  locates the four programs  and  checks for correct syntax in the 
invocations of  any that are built-in  programs. If all the stages are specified correctly, the pipeline 
is executed; otherwise, the  pipeline  parser  issues  useful error messages  and exits. 

327 



Plunging into Pipes Page 3 

Device  Drivers 

In UNIX, a program can do I/O to a device in exactly the same  way it does 1/0 to a file. Under 
the covers, the system  has “device drivers” to  make this work.  Because CMS does not provide 
such device transparency, CMS Pipelines has its own device drivers, pipeline stages that connect 
the pipeline to host interfaces, thus allowing other pipeline stages to  be completely independent 
of host interfaces. 

CMS Pipelines provides a large number  of device drivers. A very simple pipeline might contain 
only device drivers. We may as well be traditional and start with this one: 

pipe literal Hello, World! 1 console 

Here, the device driver literal inserts a record containing the phrase “Hello, World! ” into  the 
pipeline. The device driver console then  receives that record  and displays it on the console. 

This pipeline reads lines from  the  console  and  writes  them to the punch: 

pipe  console I punch 

(It continues reading from the console  and  writing  to the punch until it reaches end-of-file, i x . ,  
until it receives a null line as input.) 

As the use of console in these two examples shows, some device drivers can be used for either 
reading or writing.  If  they  are the first stage in the pipeline, they read from the host interface. If 
they come later in the pipeline,  they write to the host interface. This pipeline performs a simple 
echo operation: 

pipe  console I console 

It just reads lines from the console and  writes  them  back to the console. A similar pipeline 
performs a more useful task; it copies a file from one tape to another: 

pipe  tape I tape  tap2 wtm 

The first tape stage knows  to  read,  because it can sense that it is the first stage in the pipeline; the 
second tape stage knows to write, because it can sense that it is not the first stage in the pipeline. 
tap2 and wtrn are arguments  to the second tape stage.  When the pipeline dispatcher invokes the 
second tape stage, it passes  along  those  arguments,  which tape recognizes as instructions to  use 
the CMS device TAP;? and to  write a tapemark  at the end  of the data. 

There are several device drivers to read  and  write CMS files. Some of  them  will look familiar to 
you  if  you  know UNIX, but  may look rather strange if  you do  not: 

The c (“disk read”)  device driver reads a CMS file and inserts the records  from the 
file into the pipeline. Thus, this pipeline copies a file from  disk  to tape: 

pipe e fn ft fm I tape 

> (“disk replace”)  writes  records  from  the pipeline to the CMS file specified by its 
arguments, replacing  any existing file of the same  name, so this pipeline copies a file 
from tape to disk: 

328 



Page 4 Plunging into Pipes 

pipe tape I > fn ft frn 

>> (“disk  append”) is the same  as >, except that it appends an existing file of the 
specified name, if any, rather  than  replacing it. Thus, this pipeline also copies a file 
from tape to disk, but if the named file already exists, it is  appended,  not  replaced: 

pipe  tape I >> fnft frn 

(Note that although <,  >, and >> look like the UNIX redirection operators, they are actually the 
names of programs; like other CMS  program  names,  they  must be delimited  by a blank.) 

An output device driver is not  necessarily  the last stage of a pipeline.  Output  device  drivers  write 
the records they  receive  from  the  pipeline to their host interface, but  they also pass  those  records 
back to the pipeline, which  then  presents  them  as input to the following stage, if there is  one. For 
example, this pipeline  reads a CMS file and writes the records to a CMS file, to the  console, to 
the punch, and to a tape: 

pipe fn f t f rn  I > outfn  outft  outfrn I console I punch I tape wtm 

If  you  wanted to include that PIPE command in a REXX EXEC, you  would  need to keep in mind 
that the entire command is a string, only portions  of  which  should  have variables substituted. 
Thus, in  an EXEC you  would  write that PIPE  command something like this: 

‘PIPE c’ infn inft  infrn ‘1 >’ outfn outft  outfrn ‘1 console I punch I tape wtrn’ 

That  is, you  would quote the parts that are not variable, while  allowing REXX to substitute the 
correct values for the variable fields, the filenames. 

As PIPE commands  grow longer, using  the linear form in EXECS becomes  somewhat  awkward. 
Most  experienced  “plumbers” prefer to put longer pipelines into “portrait format”, with one stage 
per line, thus: 

‘PIPE (name DRIVERS) ’, 
infn  inft  infrn I I ,  

outfn  outft outfm I ’, 
‘console I ’ , 
‘punch I I ,  

‘tape wtm’ 

You can use the FMTP XEDIT macro,  which comes with CMS Pipelines, to reformat a PIPE 
command into portrait format,  Note the commas  at the ends of the lines; those are REXX 
continuation characters. This pipeline specification will still be a single string once REXX has 
interpreted it, 

Note also the “global option” name in parentheses  immediately  following the PIPE command. 
This gives the pipeline a name  by  which it can be referenced in a traceback,  should  an error occur 
while the pipe is running.  (There  are a number of other global options, but this is the  only  one  we 
will meet in this session.) 

329 



Plunging into Pipes Page 5 

Once  you have the pipeline in portrait format, you can key in comments on each line and  then 
invoke the SC XEDlT macro,  which  comes  with CMS Pipelines, to line them  up  nicely for you: 

I 
'PIPE  (name  DRIVERS) I ,  /* N- for tracing */ 

infn  inft  infm I ', /* Read CMS file */ 
'>I outfn  outft  outfm ' I ', /* Copy to CMS file */ 
'console I I ,  /* And to console */ 
'punch I I ,  /* And to punch */ 
'tape wtm' /* And to tape *I 

You will notice that all the device drivers observe  the rule that a  program that runs in a pipeline 
should be able to connect to any  other  program.  Although the device drivers are specialized on 
the side that connects to the host, they are standard on the side that connects  to the pipeline. 

There are four very useful device drivers to connect a  pipeline to the REXX  environment: 

var, which  reads  a REXX variable into the pipeline or sets a variable to the contents 

stem, which  retrieves or sets the values in a  REXX  stemmed  array; . rexxvars,  which  retrieves the names  and  values  of  REXX  Variables;  and 
varload, which sets the values of the REXX variables whose  names  and  values are 

of the first record in the pipeline; 

defrned by the records in the pipeline. 

All four of these stages allow  you  to specify which  REXX environment is to be accessed. If you 
do not specify the environment, then the variables  you set or retrieve are from the EXEC that 
contains your PIPE command.  But  you  may  instead specify that the variables are to be set in or 
retrieved from the EXEC that called  the EXEC that contains your  PIPE  command or another 
EXEC further up the chain, to any depth. For example, this pipeline: 

'PIPE stem parms. 1 I stem parms.' 

retrieves the stemmed  array  "parms"  from the environment one level back  (that is, from the 
EXEC that called this EXEC)  and stores it in the  stemmed  array  "parms" in this EXEC. (If  these 
two stages are reversed,  then  the  array is copied in the opposite direction.) 

rexxvars retrieves the names and  values  of all exposed  REXX variables from the  specified  REXX 
environment and  writes  them  into the pipeline, starting with the source string: 
c 

'PIPE  reutvars 1 I var  sourcel' /* Get  caller's  source. *I 
'PIPE  rexxvars  2 I var  source2' /*  And his  caller's. *I 

Parse Var source1 . . . fnl . 
Parse Vas source2 . . . fn2 . 
Say 'I was  called from'  fnl', which  was  called f r o m '  fn2'.' 

330 



Page 6 Plunging into  Pipes 

In this example, rexxvars is used twice, once to retrieve the variables from the EXEC that called 
this one  and once to retrieve the variables from the EXEC that called that one. In each case, a var 
stage is then used to store  the first record  produced  by rexxvars (the source string) in a  variable  in 
this EXEC,  where it can be used like any other REXX  variable. 

Another very useful group of  stages issue host  commands  and  route the responses into the 
pipeline. Among these “host command  processors”  are: 

cp, which  issues CP commands; 
cms, which issues CMS  commands  with full command resolution through the CMS 
subcommand environment, just as REXX does for the Address CMS instruction; and 
command, which issues CMS  commands using a program call with an  extended 
parameter list, just as REXX does for the Address  Command instruction. 

Each of these stages issues its argument string as a  command  and  then  reads  any  records  from  its 
input stream  and issues those as commands,  too. The command responses are captured, and  each 
response line becomes  a  record in the pipeline. For example, in this pipeline: 

‘PIPE cp query  dasd I stem  dasd.’ 

the cp stage issues a CP QUERY DASD  command  and writes the response into the pipeline, 
where the stem stage receives it and  writes  it into the stemmed  array  “DASD’, setting “DASD.0” 
to the count of the lines in the response. 

There are a great variety  of other device drivers, for example: 

xedit, which  writes  records  from an XEDIT  session to the  pipeline or vice  versa; 
stack, which  reads or writes the C M S  program  stack; 
sql and ispf, which interface to SQL and  ISPF; 
qsam, which  reads W S  files (and  writes  them under MVS); 
storage, which reads or writes  virtual  machine storage; and 
subcom, which  sends  commands to a subcommand  environment. 

The list of device drivers goes  on  and on, and it continues to grow. 

Other Built-in Programs 

Pipelines built only of device drivers  do  not  really  show the power of CMS Pipelines (although 
they may be quite useful,  especially as they often out-perform the equivalent native CMS 
commands).  There  are  dozens  of other CMS Pipelines built-in programs.  Most of these are 
“filters”, programs that can be put  into  a  pipeline to perform  some transformation on the records 
flowing through the pipeline. 

Using  Pipeline  Filters: A simple  pipeline  consisting  of  a couple of device drivers wrapped 
around  a  few filter stages  provides  an instant enhancement to the CMS command  set.  Once  you 
have  had  some practice, you  will  find  yourself typing lots of little “throwaway”  pipes  right on the 
command line. 

Many CMS Pipelines filters are self-explanatory  (especially  as  many  of  them behave just like the 
XEDIT subcommand  of the same  name). For example, this pipeline displays the DIRECTORY 
statement from  a CP directory: 

33 1 



I 

Plunging into Pipes Page 7 

pipe < user  direct I find DIRECTORY I console 

The find filter selects records  using the same logic as the E D I T  FIND subcommand. 

This pipeline displays all the occurrences of the string “GCS” in the CMS Pipelines help library: 

pipe < pipeline  helpin I unpack I locate /GCS/ I console 

The unpack filter checks whether its input is a  packed file and, if it is, does the same  unpack 
operation that the CMS COPYFILE and  XEDIT  commands  do. The locate filter selects records 
using the same logic as the XEDIT LOCATE subcommand. 

This pipeline tells you  how  many  words  there are in one of your CMS files: 

pipe < plunge  script a I count  words I console 

A slightly more elaborate pipeline tells you  how  many difleerenr words there are in that same file: 

pipe plunge  script a I split I sort unique I count  lines I console 

split writes one output record for every blank-delimited  word in its input; sort unique then sorts 
those one-word  records  and  discards the duplicates, passing the unique records on to count  lines 
to count. count writes  a single record containing the count to its output stream. console reads 
that record  and displays it on the  console. 

This pipeline writes a C M S  file containing fixed-format, 80-byte records to a tape, blocking it in 
a format suitable to be read by other systems: 

pipe  gqopt  fortran a I block 16000 I tape 

This pipeliie writes  a list of the commands  used  with “SMART” (RTM) to a CMS file: 

pipe  literal  next1 vmc smart help( strip  trailing I > smart commands a 

literal writes a record containing the word “next”. The vmc device driver sends a help command 
to the SMART service machine via VMCF and  writes the response to the pipeline. It then reads 
the single record  from its input and  sends  a next command to  the SMART service machine, again 
writing the response to the pipeline. strip  trailing removes trailing blanks  from the records that 
pass through it, thus turning the blank lines in the response from SMART into null records. > 
reads records from its input, discards those that are null, and writes the others to the file SMART 
COMMANDS A. 

And here is a pipeline I especially like; it would be typed on the  XEDIT  command line: 

pipe crns  query  search I change //INPUT / I subcom  xedit 

In this pipeline, the crns device driver  issues the CMS QUERY SEARCH command  and  routes 
the response into the pipeline;  the change filter (which  works like the  XEDIT CHANGE 
subcommand) changes each line of the response into an XEDIT INPUT subcommand; and then 
subcorn sends each line to  XEDIT,  which executes it  as a  command. This is a very easy  way to 
incorporate the response from  a  command  into the text of a file you are editing. 

332 



Page 8 Plunging into  Pipes 

The Specs Filter: Now, let’s look at one of the less obvious filters, specs.  specs selects 
pieces of  an input record  and  puts  them into an  output  record. It is very useful and  not  really as 
complex as it  looks  at first. Its syntax  was  derived  from  the  syntax for  the SPECS option of the 
CMS  COPYFILE  command,  but it has long since expanded far beyond the capabilities of that 
option: 

The basic  syntax of specs is: 

specs input-location  output-location 

with as many  input/output pairs as you need. 

The input location may  be a column  range,  such as “10-14”.  “10.5”  means the same 
thing as “10-14”. “l-*’* means  the  whole  record.  “words 1 4 ”  means the first four 
blank-delimited  words. The input  may also be a literal field, expressed as a 
delimited string, such as “/MSGr’, or  it may be “number”, to get a record  number. 

The output location may be a starting column  number, or “next”,  which  means the 
next column, or “nextword”, which leaves one  blank before the output field. 

A conversion  routine,  such as “c2d”,  may be specified between the input location 
and the  output  location. The specs conversion  routines are similar to the REXX 
conversion  functions  and  are  applied to the value  from  the input field before it is 
moved into the output  field. 

A placement option, “left”, “center”, or “right”, may  be  specified following the 
output location; for example,  “number  76.4  right” puts a 4-digit record  number 
right-aligned starting in column  76. 

/* PIPEDS EXEC: Find lrecl of an OS dataset */ 

Parse U p p e r  Arg dsname fm 

‘PIPE (name PIPEDS) I ,  

‘command LISTDS’ fm ’ (  FORMAT I ’ ,  /*  Issue  LISTDS. */ 
‘locate / ’  dsname ’ /  I ’ ,  /* Locate  file we want. */ 
‘specs word 2 1 I /* Lrecl  is second word. */ 
‘console /* Display lrecl. */ 

PIPEDS  EXEC is a simple  example of using specs. PIPEDS displays the logical record length of 
an OS dataset. The command stage issues a CMS  LISTDS  command  with the FORMAT option 
and mutes the response  into  the  pipeline,  where  locate selects the line that describes the specified 
dataset, e.g.: 

U 6447 PO 02/25/80  RES342 B SYS5.SNOBOL 

specs selects only  the  second  word of that line, the logical record length (“6447”),  and  moves it 
to column 1 of its output  record,  which console then  reads  and  displays. 

333 



Plunging into pipes Page 9 

pipe .C crns exec a I specs 1-27 1 8-27 nextword I > crns exec a 

This is another simple  example of using specs. The arguments to specs here  are two pairs of 
input-output specifications. The first input-output  pair  (“1-27  1”)  copies the data from columns 
1-27 of the input record to columns  1-27 of the output  record. The second  input-output  pair 
(“8-27  nextword”)  copies the data from columns  8-27 of the input record  to  columns  29-48 of the 
output  record; that is, a blank is left between the first output  field  and  the  second  output  field. So, 
this pipeline would  be  used  to  duplicate the filenames  in a CMS  EXEC created by the EXEC 
option of the CMS LISTFILE command. (This pipeline is almost 500 times  as  fast  as the XEDIT 
macro I used to use to do this same  thing.) 

Augmenting REXX: People often start in  gradually  using CMS Pipelines in EXECS, first just 
taking  advantage of the built-in programs  that  supply  function that is missing or awkward in 
REXX. Here is a function that has  been  implemented a zillion times  in REXX or Assembler: 

‘PIPE stem bananas. I sort I stem bunch.’ 

That sorts the values  in  the  stemmed  array  “bananas”  and  puts  them  into  the  array  “bunch”. 

Here is an example of using specs to  augment REXX (which  has  no “c2f’ function): 

’PIPE var cpu2busy I specs 1-” c2f 1 I var  cpu2busy’ 

The device driver var  picks  up  the REXX variable  “cpu2busy”,  which contains a floating-point 
number stored in the  Systeml370  internal  representation (e.g., ‘4419B600’x),  and  writes it to  the 
pipeline. specs reads the record  passed from var  and  converts  it to the external representation of 
the floating-point number (6.582E+03), and  then  the  second  var  stage stores the new 
representation  back  into the same REXX variable,  allowing it to be  used  in  arithmetic  operations. 

Another function CMS Pipelines brings  to REXX programmers is an easy  way to process all the 
variables that have a given  stem. In the  example  below,  rexxvars  writes  two  records into the 
pipeline for  each exposed  variable.  One record starts with  “n ” and contains  the  variable’s  name; 
the other starts with “v ” and contains its value. The find stage selects only  the  name  records  for 
variables with  the  stem “THINGS”. specs removes the “n ”, and stem puts the  names of the 
“THINGS” variables into the  stemmed  array “vats”, where  they can be accessed  with a numeric 
index.  (The buffer stage  prevents the stem stage from creating  new  variables  while  rexxvars  is 
still loading the existing  variables.) 

I 
‘PIPE’ ,  /* Discover  stemmed  variables: */ 

‘rexxvars I I ,  /* Get all  variables. */ 
‘find n THINGS.I’, /* Select names of THINGS. */ 
’apecs 3-* 1 I I ,  /*  Remove  record type prefix. */ 
‘buffer I I ,  /* Hold  all records. */ 
’ stem Tars. ’ /* Names o f  THINGS i n to  stem. */ 

Do i = 1 to vars.0 

End 
Say  vars.i I = ’  Value(vars.i) 

334 



I 

Page 10 Plunging into Pipes 

rexxvars has many other uses; for example,  you might wish to use it  in a  syntax error routine  to 
dump all exposed  variables to a file for debugging. The combination of rexxvars and varload 
provides such capabilities as saving  the state of an  EXEC  and later restoring it. 

varload uses the information in its input records  to set REXX variables. The input to varload 
consists of  records that contain  a  delimited string specifying a variable name,  followed  by the 
value to which the variable is to be set.  The  canonical  example  of  using varload and rexxvars is a 
pair of EXECS written  by  Jim  Colten,  of the University  of Minnesota, with contributions by 
Chuck  Boeheim  and  Michael Friendly. The first one is called to save all CP settings: 

/* CPQSET EXEC: Load CP SET values  into REXX stem. */ 
'PIPE 

I 

' I  
' I  
1 

I 

1 

' I  

(name CPQSET) I 

cp  query set , /* Get QUERY SET output. */ 
s p l i t  I , /*  Spl i t   i n to   s e t t i ngs .  */ 

word 1 next'  I /*  delimiters, and */ 
/=/ next'  I /* value for VARtOAD. */ 
word 2-* nextword' I 

varload 1' / *  Create  vars for c a l l e r .  */ 

specs /=cPvAR./ 1' , /* Build up stem name, */ 

The cp stage issues a CP QUERY SET command  and  routes the response into the pipeline, where 
the split stage splits the  records  at  the  commas,  thus  producing  one  record for each CP setting. 
The specs stage converts  these  records  into  the  format  required by varload: a  delimited string 
containing the name (in this case, of the  form "=CPVAR.xxx="), followed by the  value. 
varload 1 receives these records  and loads the  specified variables into  the caller's environment. 
The companion EXEC performs the inverse  operation: 

I /* CPR~SET EXEC: Restore CP variables from REXX stem. */ 
'PIPE (name CPRESET) ' I 

rexxvars 1' I / *  Get cal le r ' s   var iab les .  
' I  drop 1' , /*  Drop source  l ine.  
' I  spec 3-* 1' I /* Join name & value, 
1 read 3-* nextword' I /* removing type pref ix .  
' I  f ind  CPVAR.' I I I /* Only our stem. 
' I nfind CPVAR.0' / *  Discard the counter. 
' I  nlocate /ECMODE/' , /* SET ECMODE is BAD! 
' 1  Spec /CP SET/ 1' I /* Make in to  CP command, 

7-* nextword' / *  removing stem name. 

' I console' / *  Display any messages. 

1 

' I cp' I /* Let CP do reSET.  

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

335 



Plunging into Pipes Page 11 

Replacing EXECIO: EXECIO is usually the first thing to go  when  one learns CMS Pipelines. 
Anything that can be done  with  EXECIO can be done with CMS Pipelines, generally faster and 
always  more straightforwardly. (And  replacing  EXECIO with a pipeline makes it easier to port 
an  EXEC  between C M S  and M V S . )  Let’s  look  at  a  few  EXECIO  examples  from  various  IBM 
manuals, along with the equivalent pipelines: 

These both read the first three records  of  a  CMS file into the stemmed  array “X” and 
set the value of “X.0” to 3: 

‘EXECIO 3 DlSKR MYFILE DATA 1 ( STEM X.’ 

‘PIPE < myfile data I take 3 I stem x.’ 

These both issue a CP QUERY USER command in order to set a return code 
(without saving the response): 

‘EXECIO 0 CP ( STRING QUERY USER GLORP‘ 
+++ RC(  1045) +++ 

‘PIPE cp  query  user glorp’ 
+++ RC(45) +++ 

These both put a  blank-delimited list of the user’s virtual disk addresses into the 
REXX variable “used”: 

Signal O f f  Error 
‘MAICEBUF’ 
Signal O n  Error 
their8 = Queued ( )  
‘EXEC10 * CP ( STRING Q DASD ’ 
used = ’ ’ 
Do While Queued() > their8 

Pull . cuu . 
used = used cuu 

End 
‘DROPBUF 

‘PIPE cpq dasd I specs  word 2 1 I join * / / I var  used‘ 

The EXECIO case comes  from  the REXX User’s Guide. Admittedly, it is rather 
old-fashioned code;  nevertheless,  its  eleven lines make up an all too familiar 
example of manipulating the CMS  stack. In the pipeline, the cp device driver issues 
the CP QUERY DASD command  and  routes the response into the pipeline. specs 
selects the second word  from each input record  and  makes it the first (and only) 
word in an output record. join joins all these records together into one record, 
inserting the delimited string in  its  argument  (a blank) between the values from the 
individual input records. And var stores this single record  into the variable “used”. 

Pipeline  Programs: After a  while,  you will find  yourself  not just augmenting  your  EXECs 
with small pipes, but also writing  EXECs  that are predominantly pipes, such as REACCMSG 
EXEC: 

336 



Page 12 Plunging into Pipes 

I 
/* REACCMSG EXEC: Notify  users t o  re-ACCESS a changed disk */ 

Parse  Arg.vaddr . 
‘PIPE (name REACCMSG) , 

‘cp q l inks’  vaddr ‘ 1  I ,  /* Issue CP QUERY LINKS */ 
’ s p l i t   a t  , I I , /* Get one user  per  line */ 
‘ s t r ip  I / *  Remove leading  blanks */ 
‘sort unique 1-8 I I ,  /* Discard  duplicates */ 
‘specs /MSG/ l’, /* Make into MSG commands */ 

‘word 1 nextword’, /* F i l l  in  userid */ 
‘/Please re-ACCESS your/ nextword’, 
‘word 2 nextword’, /* F i l l  in   v ir tual  address */ 
‘ / d i s k . /  nextword I’, 

‘cp’ /* Issue MSG coxnrnands */ 

REACCMSG is used to send  a  message  to all the users linked to a particular CMS disk to let them 
know that they  should  re-ACCESS  the disk because it has been changed. It uses built-in 
programs we have seen before,  but in a slightly more sophisticated manner:  split  receives the ‘ 

response from the CP QUERY  LINKS  command: 

PIPMAINT 320 R/O, MAINT 420 R/O, TDTRUE 113 R/O, 40606 320 R/O 
40606 113 R/O, SERGE 420 R/O 

and splits those records into  multiple  records  by  breaking  them  up  at the commas  between  items; 
strip  removes the leading blanks;  and sort unique sorts the records on the userid field in the first 
eight c o l u m n s  and discards any duplicates, so that each user will be sent only one message. This 
example  shows  a  more elaborate use  of specs than before, but it  is not difficult to understand  if 
you keep in mind that specs’s arguments are always pairs of definitions for input and output. 
This specs stage has been  written in portrait format with each input-output pair on a separate line. 
You will note that the input definitions in three of the five pairs here are for literals. The first 
input-output pair puts the literal “MSG”  into  columns 1-3 of the output record; the second pair 
puts the userid  from the first word  of the input record  (“word 1”) into columns 5-12 of the output 
record;  and so on.  Then as each record flows from the specs stage to the cp stage, cp issues  it as 
a CP MSG command. 

The next example is a simple service machine that uses the starrnsg device driver to connect to 
the CP *ACCOUNT  system service, so that it can monitor attempts to LOGON  to the system 
with an invalid password.  Each  time CP produces an accounting record, this starrnsg stage 
receives that record  via IUCV and  writes it to the pipeline  (prefacing it with an 8-byte header). 
The  locate stage discards all but the ‘Type 4” records,  which are the ones that CP produces  when 
the limit of invalid LOGON  passwords is reached. specs formats a  message containing a literal 
and three fields from the accounting  record,  which console then displays. (Note the stage 
separators on the left side here. This is a  widely  used alternative portrait format.) 

This pipeline runs until you stop it by using the haccount immediate command,  which CMS 
Pipelines sets up  for you  when  it  establishes the connection to the *ACCOUNT  system sewice. 
s t a n s g  can also be used to connect  to several other CP system services, including *MSG  and 
*MSGAL,L. 

337 



Plunging into pipes Page 13 

/* HACKER EXEC: Display Type  4 Accounting  Records. */ 
'CP RECORDING ACCOUNT ON LIMIT 20' 

'PIPE (name STARMSG) , 
' 1  starmsg  *account', /* Connect t o  *ACCOUNT. */ 
' 1  locate  88 / 4 / ' ,  / *  Only Type 4 records. */ 
' I specs', / *  Format warning  message: */ 
I /Hacker afoot? / 1' , /* l i t e r a l ,  */ 
I 9 . 8  next ' ,  / * ACOUSER, */ 
1 37 .4  nextword' , /* ACOTERMQ, */ 
1 79 .8  nextword' , /*  ACOLUNAM . */ 
' 1  console' / *  Display on console. */ 

If   Userid() <> 'OPERACCT' 
Then 'CP RECORDING ACCOUNT OFF PURGE Q I D '  U s e r i d 0  

I 
The next example  may be a bit arcane, but it can be very useful; it reads a file containing textual 
material of arbitrary content and  record length and  produces  a file containing the same  text 
formatted as Assembler DC instructions for use, say, as messages: 

/* MAKEDC EXEC: Reformat t e x t   i n t o  Assembler DC statements */ 
Parse Arg fn  f t  fm . /* File t o  be processed. */ 
"PIPE (name WAKEDC) 'I, 

11<11 f n  f t  fm I' I 'I, 
"change / & / 6 L /  I " ,  
"change / ' / I   I /  I", 

/DC/ lo", 
" / C 1 /  16", 
'I 1-* next", 

/ I  / next I 'I, 
"asmrpnd I , 
'I>" fn  "assemble a', 

"SpBC8", 

/*  Read the  f i le.  
/* Double the ampersands. 
/* Double the  single  quotes.  
/ *  Reformat t o  DC statement : 
/* l i t e r a l  "DC" i n   c o l  10; 
/* l i t e r a l  "C'" i n   c o l  16; 
/* ent i re   record ne*; and 
/* terminate w i t h  quote. 
/* Spli t   to   cont inuat ions.  
/* Write t h e  new f i l e .  

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

The  two change filters double any ampersands or quotes in the text. For each input record, specs 
builds an output record that has "DC" in  column 10 and "C" in  column 16, followed  by the input 
record  enclosed in single quotes. asmxpnd then  examines each record to determine  whether it 
extends beyond  column 71; if so, it breaks the record  up  into two or more  records  formatted in 
accordance with the Assembler's  rules for continuations.  And finally, > writes  the  reformatted 
records to a CMS file. Thus, if the input  file  were to contain  the line: 

The PACKAGE  file  records  have ' &1 &2 ' in columns 1-7 and a filename, 

338 



Page 14 Plunging into Pipes 

then these two  records  would appear in the output file: 

DC C ’ T h e  PACKAGE f i le  records have &&l &&2 I ’  i n  columns* 
1-7 and a f i l e n a m e , ’  

Selection Filters: There are  many  more CMS Pipelines filters to learn, but I want  to  mention 
one class in particular, the selection  filters: 

between  frlabel 
drop  inside 
find  locate 

nf  ind  outside  unique 
nlocate  take  whilelab 
notinside  tolabel 

The selection filters are used  to  select certain records  from  among those passing through the 
pipeline, while  discarding  all others. A cascade of selection filters can quickly select the desired 
subset of even a very large file. I routinely  use pipelines to filter files containing tens (or even 
hundreds) of thousands of records to select the records I need for some  purpose. 

One simple example is a filter I use  with the NETSTAT CLIENTS command.  NETSTAT 
CLIENTS produces hundreds of lines of output, several lines for each user who  has  used  TCP/IP 
since the last IPL.  The first line of the  response for each user begins  with the string “Client:” 
followed by the userid;  and one of the other lines begins with the string “Last Touched:”. 
Usually,  when I issue a NETSTAT CLIENTS command, I need to see only these two lines for 
each of four servers. The eight lines I want are easily  isolated  using  two selection filters: 

I /* STATPIPE EXEC: D i s p l a y   “ L a s t   T o u c h e d ”  for BITFTPn. */ 

‘PIPE ’ , 
‘coannand NETSTAT CLIENTS I I ,  

‘ b e t w e e n   / C l i e n t :  BITFTP/ /Last T o u c h e d : /  I t ,  
‘notinside / C l i e n t :  BITFTP/ / L a s t   T o u c h e d : /  I ’ ,  
‘console 

The command stage issues a NETSTAT CLIENTS command  and routes the response into the 
pipeline. The between filter selects groups of records; its arguments are two  delimited strings, 
describing the first and last records  to be selected for each group. So, the between stage here 
selects groups of records that begin  with a record that begins  “Client: BITFI’P” and that  end  with 
a record that begins “Last Touched:”. notinside then further refines the data by selecting only 
those records that are not between a record that begins with “Client: BITFTP” and a record  that 
begins  with “Last Touched:”. That leaves us with only those  two lines for each client I am 
interested in, the ones whose  userids  start “BITFTP”. 

You will likely find that many  of  your  pipelines  process the output  of CP or CMS commands  or 
CMS or MVS programs.  The  output  from UNIX commands  and programs is generally  designed 
to be processed  by a pipe, so it  tends  to  be  essentially “pure data”,  with  few  headers and trailers. 
With CP, C M S ,  and M V S  output, however,  you  generally  need  to  winnow out the  chaff  to  get 
down  to the data. Although I cannot go  over the selection  filters  in detail today, they are easy  to 
use  and quite powerful, so you  should  not hesitate to process listing files that were  designed  to be 
read  by humans  and that have  complicated  headers  and trailers and camage control.  It is very 
easy to write a pipe that reads  such a file and  pares it down  to the bare data. 

339 



Plunging into pipes Page 15 

LIST2SRC  EXEC is an example of really using the selection filters; I will  leave the detailed 
interpretation of LIST2SRC as an exercise for you. Basically, LIST2SRC reads a LISTING file 
produced  by  Assembler H and passes  it  through a series of selection filters, winnowing  out the 
chaff in order to reconstruct the original source file.  Although this is a "quick & dirty"  program 
(and  not quite complete),  it is a good  example of "pipethink", of solving a complex  problem  by 
breaking it  up into simple steps: 

/* LISTPSRC EXEC: &-create the source from a  LISTING file */ 
Signal On Novalue 

Parse Arg fn . 
'PIPE (name LISTPSRC) ', 

I <' fn 'listing * I ,  /* Read the LISTING file */ 
I mctoasa' , /*  Machine carriage ctl => ASA */ 

' I frlabel - LOC', /* Discard to start of program */ 

' I tolabel - POS.ID', /* Keep  only  up to relocation */ 

' 1  tolabel OTHE  FOLLOWING STATEMENTS', /*  Or diagnostics */ 
I I outside  /1/ 2', /* Drop 1st 2 lines  on  each pg */ 
' I  nlocate 5-7 / I E V / ' ,  /* Discard error messages */ 
I I nlocate 41 / + / I ,  / *  Discard macro expansions */ 
I nlocate 40 / / I ,  /* Discard blank lines */ 

' I  specs 42.80  la, /* pick out source "card" */ 
I >' fn 'assemble a fixed' /* Write new source (RECFM F) */ 

' I  drop 11, /* Drop that ' -  LOC' line too */ 

' I tolabel -SYMBOL', /* dictionary or cross-ref */ 

Once you have been  using CMS Pipelines for a while, you  may find that there are  Some 
sequences of stages that you use  often: 

pipe stage-a I stage-b I stage-c I s taged I stage-e 

pipe  stage-x I stage-b I stage-c I s taged I stage-y 

In that case, it is time to move  those  stages  into a subroutine pipeline, polish them a bit, 
generalize them a bit, and  create  your own little gem: 

/* MYSUB REXX */ 

'CALLPIPE *: I stage-b I stage-c I stage-d I *: 

340 



Page 16 Plunging into pipes 

Then whenever  you need the function performed  by  your  subroutine,  you  simply  use its name as 
a stage name  (“mysub” in this case): 

pipe stage-a 1 mysub I stage-e 

pipe  stage-x I mysub I stage-y 

The subroutine may look a bit mysterious,  but it  is simply a pipeline stage written in REXX. If 
we look at it again in portrait format, it  can be demystified  quickly: 

/* MYSUB REIM: 
‘callpipe’, 

I * :  I’, 
‘stage-b I I ,  

’ stage-c I ’ , 
‘stage-d I I ,  

I * :  ’ 

Exit RC 

Generic  subroutine  pipeline */ 
/* Invoke  pipeline */ 
/* Connect  input  stream */ 

/* Connect  output stream */ 

There are just a few things one  needs to understand  about subroutine pipelines: 

1. The CMS Pipelines command callpipe says to run a subroutine  pipeline; callpipe has the same 
syntax and  the  same  options as the PIPE command itself. 

2. Those “*:” sequences are called  “connectors”. The connector at the beginning tells the 
pipeline dispatcher to connect  the ourput from the previous  stage of the calling pipeline to the 
input of the first stage of this subroutine  pipeline, stage-b. The connector at the  end says to 
connect the output from  the last stage of this subroutine  pipeline, stage-d, to  the input of the 
next stage in the  calling  pipeline. 

3. When you use REXX to  write an XEDIT subroutine, the  default  subcommand  environment is 
XEDIT. Similarly, when  you  use REXX to write a CMS Pipelines subroutine, the default 
subcommand  environment  executes CMS  Pipelines commands. Thus, if  you wish to issue  CP 
or C M S  commands in your  subroutine,  you  will  need to use the REXX Address instruction. 

4. When you use REXX to write an XEDIT  subroutine, the subroutine has a filetype of XEDIT, 
but  when you use REXX to write a CMS Pipelines subroutine, the filetype is not PIPE. It is 
REXX. 

5 .  Arguments  passed to a subroutine are available to  the REXX Parse Arg instruction. 

Let’s  look  at an example of a real subroutine  pipeline, HEXSORT, which sorts hexadecimal 
numbers. An ordinary sort does  not  work for hexadecimal  numbers (Le.. base lis numbers, 
expressed  with the “numeraIs” 0-9, A-F), because the EBCDIC collating sequence sorts A-F 
before 0-9. This handy little subroutine  pipeline sorts hexadecimal  data  correctly  by  using  the 
trick of temporarily translating  A-F  to  characters  higher in the collating sequence than 0-9 (which 
are FO-F9 in hexadecimal): 

34 1 



Plunging into Pipes Page  17 

/* HEXSORT REXX: Hexadecimal sort, 0123456789ABCDEF */ 
Parse Arg sortparms /* Get pa-, i f  any */ 

callpipe (name HEXSORT) ' , /* Invoke pipeline */ 
'xlate  1-* A-F fa-ff   fa-ff  A-F I ' ,  /* Transform for sort */ 
'sort' sortparms ' I 1 ,  /* Sort  w/caller's pa- */ 
'x late  1-* A-F fa-ff   fa-ff  A-F I ' ,  /*  Restore */ 

'*: I', /* Connect input  stream */ 

I 
I * :  1 /* Connect output stream */ 

E x i t  RC 

The arguments to the xlate stages here are a  column  range, "l-*", which  means the entire record, 
followed  by pairs of character ranges  specifying  "to"  and  "from"  translations. Records flow in 
from the calling pipeline through the beginning connector, they are processed  through the xlate, 
sort, and xlate stages; and  then they flow out through the end connector back into the calling 
pipeline. If the caller specifies an argument, that argument is passed  to the sort stage to define a 
non-default sort operation.  Here is a  typical  invocation: 

'PIPE stem rndisk. I hexsort 7.3 I stem mdisk.' 

That sorts an array of minidisk  records  from  a CP directory into device address order. (The 
device addresses are hexadecimal  numbers in columns 7-9 of the minidisk  records.) 

Of course, it is not necessary to put these  operations  into  a  subroutine.  You  could simply use the 
xiate-sort-xlate sequence in all your pipelines, whenever  you  need to do a hexadecimal sort, but  it 
is much better to hide such complexity.  Once  you  have this subroutine built, you can invoke it by 
name from any  number of  pipelines  and  need never think about the problem  again. 

Furthermore, by  building  the  subroutine  with a simple, well-defined interface and  at the same 
time making its function as generic as possible,  you create a piece of code that can be used over 
and over again.  Here is another  example  of  invoking HEXSORT: 

'PIPE cp q nss map I drop 1 I hexsort 33-44 I > nss map  a' 

That issues a CP QUERY NSS command,  drops the header line from the response,  and sorts the 
remaining lines to produce a list of  saved  systems in memory address order.  (The virtual memory 
addresses are hexadecimal  numbers  starting in column 33 of the response  lines.) 

A subroutine pipeline is often  the  cleanest  way  to  package  a function that you  have  implemented 
with CMS Pipelines. If you  make it a subroutine pipeline, then the people  you give it to can 
easily invoke it from their own  pipes. 

342 



Page  18 Plunging into Pipes 

Writing REXX Filters 

The time will come  when  you  have  a  problem that cannot be  solved  by  any  reasonable 
combination of CMS Pipelines built-in  programs.  You  will  need to write a filter of  your own, 
preferably in REXX. A REXX filter is similar to the simple subroutine pipelines we  have just 
been looking at.  It  has  a filetype of REXX; its subcommand environment executes CMS 
Pipelines commands; it is invoked by using its name as a stage in a pipeline; and  it can receive 
passed  arguments. 

You will find writing  your  own  pipeline filters in REXX  to be very  easy once you  understand the 
basics.  When  I am writing  a fdter, I always start with this dummy  filter that does nothing at all 
except pass records through  unchanged: 

/* NULL REXX: Dummy pipeline f i lter */ 
Signal On Error 

Do Forever /* Do unt i l  EOF */ 
' readto  record' /* Read from pipe */ 
'output'  record /*  Write t o  pipe */ 

End 

Error: E x i t  RC* (RC<>12) /* RC = 0 i f  EOF */ 

There are only a  few  new things one  needs to learn to  understand this REXX  filter: 

1. The CMS Pipelines command readto reads the next  record  from the pipeline into the specified 
REXX variable ("record" in this case). 

2. The CMS Pipelines command output writes  a  record to the pipeline.  The contents of the 
record are the results of  evaluating the expression  following the output command  (again, in 
this case, the value of the REXX  variable  "record"). 

3. The pipeline dispatcher  sets  return code 12 to indicate end-of-file. A readto command 
completes with a  return  code  of 12 when the stage before it in the pipeline has  no  more 
records to pass on to it. An output command  completes  with  a  return code of 12 when the 
stage following it in the pipeline has decided to accept  no  more input records. 

So, this filter, NULL, reads  a  record  from the pipeline and  writes it back to the pipeline 
unchanged.  It  keeps on doing  that until an error is signalled, i.e., until a non-zero return code is 
set. That causes a  transfer  to  the label "Error" in the last line of the EXEC. The  most  likely 
non-zero  return code would be a  return  code  12  from the readto command,  which  would  indicate 
end-of-file on the input stream, but the output command could get return code 12 instead, or there 
could be a  real  error. If the return  code  is  12,  then before exiting the filter sets its own return 
code to 0 to indicate  normal  completion. Any other return code is passed  back  to  the  caller. 

The effect of including the NULL fdter in a  pipeline: 

pipe stage-a I null I stage-b I stage-c 

343 



Plunging into pipes Page 19 

is simply to make the pipeline run a bit slower. But once you  understand NULL, you can quickly 
go  on to writing useful filters, such as REVERSE, which reverses the contents of the records that 
pass through it: 

/* REVERSE REXX: Filter that  reverses  records */ 
Signal On Error 

Do Forever /*  Do unt i l  EOF */ 
‘readto  record’ /* Read from pipe */ 
output  Reverse (record) / *  Write to  pipe */ 

End 

Error:  Exit RC* (RC-012) /* RC = 0 i f  EOF */ 

We  can  make that example  slightly  more  complex, to illustrate one more concept that you  will 
need  when writing filters. This filter reverses only the even-numbered lines passing through it: 

/* BOUSTRO REXX: Filter that writes records boustrophedon */ 
Signal On Error 

Do recno = 1 by 1 /* Do unt i l  EOF */ 
‘ readto  record’ /* Read from pipe */ 
If recno / /  2 = 0 /* If even-numbered */ 

Then record = Reverse (record) /* line,  reverse */ 
’ output ’ record /* Write to pipe */ 

End 

Error: Exit RC* (Rc<>12) /* RC = 0 i f  EOF */ 

Each stage in a pipeline runs as a “co-routine”, which  means that it runs concurrently with the 
other stages in the pipeline. It is invoked  once,  when the pipeline is initiated, and  remains 
resident. So, when BOUSTRO is ready for another record, it calls upon the pipeline dispatcher by 
doing  a readto. The dispatcher may  then decide to dispatch some other co-routine, but  it  will 
eventually return control to  this  one,  which will continue reading and  writing  records  until an 
error is signalled. Thus, when  you are writing  a CMS Pipelines filter, you  need not worry (as I 
did at first) about where to save local variables, such as “recno” here,  between “calls” to your 
filter. Your filter is called only once and then runs concurrently with the other stages in the 
pipeline. There  is nothing special that your filter needs  to  do in order to run concurrently with the 
other stages; the pipeline dispatcher takes  care of all that for you. 

I would like to show one more  example of a simple REXX filter, AVERAGE, which illustrates the 
point that your filter can decide not  to  write  a  record  back to the pipeline for every record it reads 
from the pipeline. AVERAGE first reads  all the input  records; then, when it gets end-of-fde on its 
input, it calculates the contents of  a single output record  and  writes that to the pipeline: 

344 



Page 20 Plunging into Pipes 

Differences from UNIX Pipes 

/ *  AVERAGE REXX: 
Signal On Error 

Filter that  averages  input */ 

acum = 0 /* In i t ia l i ze  */ 
Do nobs = 0 by 1 

‘readto  record’ 
Parse Var record number . 
acum = acum + number 

End 

/* D o  until EOF */ 
/* Read from pipe */ 
/* Get number */ 
/* Accumulate */ 

Error: If RC = 12 /* If EOF, then */ 
Then ‘output’ Format(acum/nobs,,P) /* write average */ 

Exit RC* (RC<>12) /* RC = 0 i f  EOF */ 

That is as many  examples of using  pipelines in CMS as we have  time for right  now. I have ’ 

pointed out some of the differences  between the UNIX and CMS implementations of pipelines. 
You  may  have  noticed  some of the others: 

As you  would expect, CMS Pipelines is record-oriented,  rather  than  character-oriented. 

CMS Pipelines implements  asynchronous input, immediate  commands,  and  dynamic 
reconfiguration  of  pipeline  topology. 

CMS Pipelines implements  multi-stream  pipelines. These networks of  interconnected 
pipelines allow selection frlters to split a file into  streams that are processed  in different ways. 
The streams can then be recombined for further processing. 

Most CMS Pipelines stages run unbuffered; that is, they  process each input record as soon as it 
is received and pass it on to the following stage  immediately.  (Of course, some  pipeline 
stages, such as sort, must,  by  their nature, be  buffered.)  Running the stages  unbuffered is 
necessary to allow  records  flowing  through a multi-stream pipeline to arrive at the end  in a 
predictable order. It can have the advantage  of  greatly  reducing the virtual memory 
requirements. Thus, CMS Pipelines can often be  used to perform operations that cannot be 
done with XEDIT because of virtual memory  constraints. 

CMS Pipelines runs a pipeline  only after all its stages  have  been specified correctly. 

CMS Pipelines programs  can  co-ordinate  their  progress  via “commit levels’’ and can stop the 
pipeline when a program  encounters  an  error. 

When the CMS Pipelines PIPE command  completes, it sets its return code to the  worst  of  the 
return codes set by the stages in the pipeline. 

345 



Plunging into Pipes Page 21 

To sum up the differences between UNIX pipes  and CMS Pipelines, let me quote a  colleague  of 
mine who  said  recently,  “You  know  what I really miss in UNIX? CMS Pipelines!” 

Advanced Topics 

I have had time to give  you  only  a flavor of CMS Pipelines. I have  barely  alluded  to  multi-stream 
pipelines, a very powerfd  extension to the basic pipeline concept with  which YOU will  want to 
become familiar. I also have  not  mentioned that CMS Pipelines can be run under GCS, TSO. and 
MUSIC. CMS Pipelines can now be ordered  with MUSIC, and although it is not officially 
supported for TSO and GCS, it contains device drivers developed specifically for those 
environments. 

111. WHY YOU  SHOULD  TAKE  THE  PLUNGE  NOW 

I have become  convinced that any C M S  user  who  writes REXX programs  should learn to use 
CMS Pipelines as soon as possible. By the time I had  been using CMS Pipelines for a  few 
months, it had  “saved  my life” twice. In one  case, I almost  missed  my  plane  to SHARE, due to a 
last-minute problem, but I was  able to write  a  pipe to solve that problem before dashing out the 
door just  in time. Then, a  few  weeks later, the systems in our SSI complex  went  into “yo-yo 
mode” after a service machine  went  into  a loop creating  spool files; I was finally able to get out 
of the problem  by  quickly  keying in a  command-line  pipe to purge those files before the systems 
crashed again. CMS Pipelines can do the same sorts of things for you. 

CMS Pipelines  is a Powerful Application Enabler 

CMS Pipelines makes CMS programmers  more  productive, so programs get written that would 
not get written without CMS Pipelines. (And  programs that use CMS Pipelines are often much 
faster than if they had  been  written  some other way.) 

To give you a feeling for the  variety of ways CMS  Pipelines can be used, I will list a  few of the 
ways I have used it so far myself: 

346 



Page 22 Plunging into Pipes 

To analyze many  kinds  of  data, including system accounting data, system  performance data, 
and logs from  service  machines.  Because CMS Pipelines is such a powerful tool,  I  find 
myself doing more  thorough  analyses  and  getting the answer down to a single page  more  often 
than  I  used to. 

To  mend our system  accounting data (more times than I care to admit). 

To charge for the use of our UNIX systems. This required  writing  a couple of 
Assembler-language filters, which  turned out to be easy to do. 

To merge M V S  RMF data into my  VMAP  ACUM files, so that I  could plot the CPU 
utilization of our SPMODE  native  processor along with the utilization of the processors that 
the CP monitor knows  about. 

To implement  a  full-blown  service  machine, with timer, IUCV,  and I/O interrupts all handled 
without  a line of Assembler  code. 

To write a simple image  enhancement  program. 

To merge  a PC database  with  a  mainframe  database. 

To augment  and  circumvent  SES. (This seems to be a  rapidly  growing trend.) 

To build  numerous  tools  to help me in my  daily  work, such as an XEDIT macro  that 
understands  CMS  UPDATE control files and can pipe the next  update onto the current file in 
the E D I T  ring. 

I  reached  some sort of  new  plateau the first time  I  used CMS Pipelines to write  a pipe to write a 
pipe. To celebrate that, I  used CMS Pipelines to do this: 

// EXEC PGM=PIPE, 
// PARM=’literal Hello, World I change MlorldlMoml I console’ 

(If  you  put CMS Pipelines into  an  MVS loadlib, it figures out  where it is and struggles on. In this 
case, when the console stage finds no console to write to, it uses  a WTP macro.) 

You Can Get  Lots of Help In Learning CMS Pipelines 

There are several good  sources for learning CMS Pipelines and for getting assistance  if  you  have 
questions: 

CMS Pipelines  Tutorial (GG66-3158): This Washington Systems Center  Bulletin  provides 
an excellent introduction to CMS Pipelines, and I strongly recommend it to anyone  who  wants  to 
plunge into “Pipes”. My  advice is to read this manual  and  work  the exercises at the end of each 
section.  Then  make  a  conscious effort to use CMS Pipelines in your daily work.  Before long, 
you will  find that “pipethink”  has  become  second  nature. 

CMS Pipelines  User’s  Guide (SL26-0018): This is a  rather  awe-inspiring  manual-300 
pages without  an ounce of fat on  it. It contains  a  good tutorial and is also the reference  manual 
and the messages manual for CMS Pipelines. Read the “Syntax  Notation”  chapter  before  using  it 
as a  reference  manual.  (The  same  information can be obtained  by typing the command pipe  help 

347 



Plunging into Pipes Page 23 

syntax.) Incidentally, if  you  have  only the “-00” version of this manual, you  should order the 
“-01” version, which is substantially  expanded  and  improved. 

“Pipe  help”: CMS Pipelines provides help files that can be used  with the CMS  HELP 
command,  but  using the pipe  help command is less painful. One especially nice feature of the 
pipe help command is that if  you  issue it with  no arguments, it gives you help for the last error 
message that CMS Pipelines issued, while pipe  help 1 gives you help for the one before that, and 
so on. 

VMSHARE: The VMSHARE electronic conference has several active files dealing with CMS 
Pipelines, notably  Memo Pipeline and Prob Pipeline.  If  you ask a CMS Pipelines question on 
VMSHARE, you will  almost  certainly get it answered within hours. (Inside IBM, Pipeline 
Forum on IBMVM is another  good  place to get help with CMS Pipelines.) 

CMSPIP-L: The BITNET  discussion list for CMS Pipelines, CMSPIP-L, is a  good  place for 
asking questions if  you do  not  have  access to VMSHARE. Several “master plumbers”  participate 
in the list. CMSPIP-L is housed at Marist College (MAlUST on BITNET or vm.marist.edu on 
the Internet) and  at  the  Institute for Medical Computer Science of the University of Vienna 
(AWIIMC12 on EARN or awiimc12.imc.univie.ac.at on the Internet). If  you  can contrive to get 
electronic mail into BITNETEARN or the Internet, you can subscribe to this list by sending mail 
to LISTSERV at one of these two sites. The  body of your mail should contain the command: 

SUBSCRIBE CMSPIP-L  your  name 

The LISTSERVs at Marist and  Vienna maintain archives of  the discussions from the list, as well 
as an archive of useful pipes.  You can get a list of  what the nearest archive has  available  by 
sending its LISTSERV  mail  containing the command: 

GET  CMSPIP-L  FILELIST 

Pipedemo: Chuck  Boeheim, of SLAC, has written a wonderful  program  called  Pipedemo 
which “animates” a pipeline to illustrate the flow of data from stage to stage. You can download 
Pipedemo  from  Note  Pipedemo  on  VMSHARE or order it from  LISTSERV.  Pipedemo is also 
available on the VM  Workshop Tools Tape for 1991. 

To use Pipedemo, you  simply  write a normal  pipeline specification but change PIPE  commands 
to pipedemo and  change callpipe commands  to rexx pdcall. Running  a  few CMS Pipelines 
examples through Pipedemo is an excellent way to get a deeper understanding of how pipelines 
work.  Pipedemo can also be a big help in understanding why  one  of  your pipelines is not 
working.  Pipedemo is itself a  pipeline, of course, and is well  worth  reading as an  example of 
skillful use of CMS Pipelines. 

CMS Pipelines  Explained This new paper by John Hamnann, the author of CMS Pipelines, 
provides many extremely useful insights  into  how “Pipes” works. I strongly recommend  it. 

ESA Manuals: New CMS Pipelines manuals  will  soon  be  issued for ESA  1.1.  The  new 
Pipelines  User’s  Guide (SC24-5609) is essentially an  updated version of the Tutorial; it reflects 
the changes in message  numbers  and the HELP facility that were required when “Pipes” was 
incorporated into CMS 8. There is also  a  completely  new CMS Pipelines reference manual for 
CMS 8, Pipelines  Reference (SC24-5592).  However,  I cannot recommend that book for any  but 
the most casual users of CMS Pipelines. Even  if  you are running CMS 8, I suggest that you order 
the PRPQ  manual. (Unfortunately, if  you are on  CMS 8, you will be stuck with help files  based 
on the new Reference, unless  you  also order the PRPQ  and  load the help files from  there.) 

http://vm.marist.edu


Page 24 Plunging into Pipes 

CMS Pipelines  Pays  Back Your Investment  Quickly 

CMS Pipelines is an  extremely  powerful facility with  very  rich function. There is a lot to learn. 
After not quite two  years of using CMS Pipelines, I still frequently  find  myself saying, “Wow! I 
didn’t know  that!” or “I never  thought of using it that way!” Although I am still a long way  from 
having completely mastered CMS Pipelines, it has, nevertheless, been making my life easier since 
the day I installed it. 

You do not  have to understand all of CMS Pipelines to benefit  from  using it. The learning curve, 
though long, is not  steep. You do not  need to read  the entire User’s  Guide before starting to use 
CMS Pipelines; indeed, you do not  need to read the entire Tutorial before starting. I can 
guarantee that if you spend  two or three  hours  reading the first few sections of  the Tutorial and 
working the exercises, you will learn enough  about CMS Pipelines that you  will  never  again  need 
to use EXECIO. 

I recall that when I started leaming REXX, there  were several pleasant surprises: 

Programming  in REXX was  more fun than  programming  in other languages I had 
used. 

Because the REXX language was so powerfd, I could  write  more  programs  and I 
could go further with  them  than I would  have  had the time for otherwise, so I ended 
up providing richer  function  and  handling error conditions better. 

Even  more  pleasant was finding that my REXX programs  tended  to  work  correctly 
once I got  them  correct  syntactically (or soon after that), which  had  seldom been my 
experience with  programs I had  written  in other languages. The structure of the 
REXX language  was  disciplining my thinking so that I was  programming  not  only 
more easily but also better. 

I see these same effects even  more  strongly  when I combine REXX with CMS Pipelines: 

Programming with “Pipes” is even  more fun. It has restored my delight in CMS. I 
cannot  imagine  going  back to not  having CMS Pipelines. As  my colleague Serge 
Goldstein was  heard to exclaim a few  weeks after we got it, “I can’t do anything 
without Pipes!” 

The power of CMS Pipelines allows  me to write  programs that I would not have 
found the time (or  the  stamina) to write  before. I am writing more  programs  and 
giving  them  richer  function. 

My CMS Pipelines programs  have fewer bugs. The processes  of  applying 
“pipethink” and  of visualizing  the  flow  of  data  through my pipelines  make  me a 
better programmer. 

If  you will  give it a try, I think you will find,  as I have, that CMS Pipelines is a tool for 
unclogging the brain. 

349 



THE lMPLlCATlONS OF MULTIMEDIA FOR TRAINING IN THE '90s 

P. JOSEPH VERTUCCI 
THE ALIVE CENTER OF AMERICA 

350 



Session: 

Page 1 of  11 

The Implications  of Multimedia for Training in the '90's 

Dr. P. Joseph  Vertucci 

Chief  Executive Officer 

ALIVE Centers of America, Inc. 

Fairlawn, Ohio 

IASA Annual Conference 

Dallas, Texas 

May 31 -June  3,1992 

35 1 



I 

Television  has had a  dramatic  impact  on  the  adult  population. By the  time a person  graduates 

from high school,  they  have  been  exposed  to  over 20,OOO hours of television,  that is high  impact  visuals 

and  audio. In contrast,  that  same  person has been  exposed  to  approximately 14,000 hours of classroom 

instruction.  Multimedia  brings  the  impact of television  to  the  training  environment. 

.While  motivating  adult  learners  is  a  very  complex  issue,  part of the solution resides in the 

application of adult learning principles to multimedia  instruction.  Documented  research  shows  that  when 

interactive rnultimeda is employed  over  every  other  style, stand up instruction,  computer  based training 

(CBT), or video based training,  learners  prefer  interactive  multimedia  in 97% of the  cases. That means 

almost 33 to 1 prefer  interactive  multimedia  to  other training approaches.  Preference of learning  approach 

also equates to increased  performance  and  results.  Documented  studies  show  that as more  senses  are 

incorporated  into  the  learning  environment,  retention  increases  dramatically.  Traditional  computer  based 

training;that is reading a  computer screen, is very similar in task to reading a book. Documented  research 

shows  that aperson  remembers  only 10% of what  is  read, 20%  of what  is  heard, 30% of what is seen, 

50% of what is Seen and heard and 80% of what is experienced  Interactive multimedia simulates 

experience to such  an extent  that it has  been dcmmentd. in over thrty research  studies to rrtdace the 

actual experience. 

While  the  issue of individual  motivation is complex,  multimedia has demonstrated through numerous 

studies to be a major factor for increased  performance,  reduced  time on task and increased employee 

productivity.  Multimedia programs ensm student  motivation and successful program completion.  Well- 

known Adult  Learning  Principles  enhance  and  complement  multimedia in this respect 

352 



Adult Learning Principles 

The Adult Learning Principles  include  the following: 

Project vs. subject  centered focus 

Immediate  application of leaming 

Capitalizing on learner’s  previous  experience 

Learner  vs  instructor  centered  focus 

S e l f k t e d  vs  dependent focus 

Active  participation in the  learning  process 

Whole-part-whole  sequence of learning 

Association of material 

f .Integrated thinking 

* Recoption of individual  learning rates and styles 

e Maximidng time on task 

Regular checking of undemanding 

Appropriate and meaningful instructional cues 

353 



Feedback  on results with positive  reinforcement 

The  following  examples illustrate how  these  principles  can  be  incorporated into training applications. 

lect vs. subject  centered focus 

Adults are problem  oriented,  thus  training  must  be  problem  centered.  Classroom  training is 

predominantly  subject centered By  focusing  on  problems,  adults are challenged to use their  experience 

in  finding  solutions to problems. 

We  have  created mining programs to teach high school  coaches how to accurately  diagnose knee 

injuries; to teach sales  representatives for orthoped~c implant manufacturers how to enter  product orders 

into the  company’s  computerized  order-enny  system;  and  to  teach retail store  employees how to 

recognize potential  shoplifters.  These are just  a few examples that illustrate  how  multimedia  learning 

applications are being  used  today. 

Immediate audication of learning 

Training programs can  allow  immediate  application to the  learner’s work enviroNnent. In this 

respect,  the programs may be regarded as a modern  approach to the  older  but  successful  on-the-job- 

training  concept.  Whether  the  training  is aimed at teaching  product  knowledge  of  caskets or 0rthoped.1~ 

implants7  the  learner  can  employ  the skill and knowledge just acquired to enhance  job perfarmance. 

> 
By employing  pretest  and  branching  techniques, training programs  recognize  the  value of the 

learner’s previous  experience.  Such programs are designed to permit  learners to progress  at  their own 
354 



pace, to focus on  material  they do not  know  and to bypass  material  which is already known. 

Learner vs. instnctor centered focus 

Training programs can be designed to focus on the  learner.  The  leamer  can select the  subject,  topics 

within tile  subject and pace. By using built-in  navigational  controls,  the  learner  can  move forward or 

backward,  access  a glossary or bibliography or =view come maps. 

Self-directed  vs.  dependant focus 

Learning is self-directed The  learner is not  &pendent  on  a pup pace, but controls his own pace. 

We  have  developed  a  proprietary  menu  system  which  allows  the  learner  to  access  information  quickly 

and  effortlessly. 

, .  Actwe  uarticiuation 111 the l m n ~ m e s g  

Training,programs can  involve  the user. The lemer is an  active  participant  in  the  learning  process. 

Regardless of whether  the  subject deals with executive,  management,  sales, industrial or medical 

training, the  leamer  makes decisions and is branched to different sections of the  course based on these 

decisions. 

Whole-Dart-whole sauence of le- 

Programs can  relate  information  into  context.  The  learner  is  introduced  to  concepts using whole- 

part-whole sequencing. The  learner’s  ability to quickly  grasp  the  material  is  substantially  increased by 

first learning  a small concept,  then  relating  that  concept  to  the  whole. 

355 



Association of material 

L45arning generally does not exist  in  isolated settings and  frequently the  same  material  can be used for 

multiple  applications.  Product  knowledge is very  much related to both  sales  and  technical training. More 

often a  logical  association  exists  between  information and its use in various  other parrs of an enterprise. 

This information  is a valuable  corporate  asset. Our programs  recognize the  investment  involved in 

capturing  and  maintaining this information  by  organizing this material  modularly. Modularity minimizes 

the  expense of updating  information or of extracting th is infomation for use  in  other  applications. 

v g  
. .  

Training programs  can  employ  integrated/holistic thinking. Through  navigation  and  mapping, 

.individual  learners can determinetheir  current  position  and assess their progress throughout the course. 

Recomition of individual 1-r~ rates  and s e  

.. -.--.-..- "i-2 c ~ g r x ~ s  c s  % desim;:5 " m recognize that individds have  differem  !earning styles ?s well 

as learning rates. Programs offer visual,  audio, and conceptual  stimulus. Programs are designed to 

stimulate the  learner  by  rewarding  correct answers to exercises and quizzes. By the  same  token, a 

benevolent,  non-judgmental response is provided in response to incorrect  answers. 

Maximizing time on task 

Studies  have shown a 30% to 60% reduction of time on task using interactive  multimedia.  Learners 

proceed at their own pace  and  access  information as needed Learners move  forward  and  backward 

356 



through  the  material in accordance  with  their  personal  style and educational needs. 

Rermlar  checking:  of  understanding 

Our training progmns incorporate  periodic,  regular  checks of the  learner’s  comprehension. 

Programs can be cwmized  by the training administrator  to require 100% mastery, or any other  specified 

level of accomplishment. This can be accomplished  by  employing  remediation  techniques  that  return the 

learner  to m a t e d  not  mastered, feedback on  responses  to  reinforce  success,  and other appropriate 

learning  strategies. 

A -  umouriate - and meanindul instructional  cue5 

Adult  learners require appropriate  and  meaningful  instructional  cues. Our programs employ  icons, 

images  and  audio feedback  .appropriate  and  sensitive  to  the  audience. 

Feedback on nsults with,positive  reinforce- 

In addition to the audio  and visual feedback used to reinforce the lemer’s understanding of material, 

learners are remediated into appropriate  course  material to further  enhance  the  learning  experience. 

Overall Program Structure 

In addition to utilizing  the  Adult Learning principles in designing multimedia training applications, 

there are specific  overall  design  concerns  that  can  effect  learner  motivation and retention.  These  include: 

Skill and Drill: the  repetition  of  an  exercise  insuring  the lemer’s understanding and 

proficiency. This is usually  followed by a  self-test. 

Tutorial:  personalized  company  assistance  promoting  understanding  of  a  particular  concept; 

one-on-one is the  best  and  most  expedient  method. 

357 



I 

Gaming: Know Your Product  game, a method of involving competition under sped’ied rules; 

and, 

Simulation:  the  method of teaching allowing a leamer  to  manipulate a particular environment 

Multimedia  technology  uses  numerous  learning aids imbedded in programs to facilitate learn- 

These  include: 

Icons  and  buttons  to pennit the  student to navigate through the  course.  We  use  forward  and 

backward navigational mls, a looping  tool,  ability to rem to  the  main  menu,  help screens 

and  other  features as required by  the  content; 

Course maps  that permit the  leamer to assess  where  they are in the come; 

*.Glossary and bibliographies to permit  the  learner to access definition of terns; 

.Remediation programming to  loop  the  learner through material  that  has not been mastered; 

Randomized question  pools for mastery tests; 

Help  features  that  include how the  system operates; 

Pretests to assess  the  learner’s  current  level of understanding and  knowledge with branching on 

results  to permit the  learner  to  move  quickly through material  that they have previousl~ 

mastered; 

Periodic exercises  to  verify  learner  retention; 

Comprehensive post tests  to  measure  performance and mastery; 

Tracking of learner  progress through use  of a database  manager, 

Bookmarking capabilities to permit  the  learner  to  leave a program  and return at a later time  to 

exactly  where  they left; 

358 



Course objectives stated at  the begrnning of  the  course  and  at  the beghung of  each  new 

section; 

A s u m m a r y  screen  that  lets  the  leamer  review  material before taking the mastery t e s t  

Additional  features are added to courses  as  required.  Each multimedia come can be designed 

to employ  these  key concepts while  also  addressing  the  specific requirements of  the content In this 

respect,  content  can be made easy to understand  by  incorporating  the  following  features: 

High level of student  motivation by using graphics, digital effects,  audio  and  text in appropiate 

educational  strategies; 

Random visual  and  audio  accessibility; 

Consistency of instruction  that  guarantees all students  receive  a high quality  presentation; 

. Dual track, stereo audio with musicand.professional  voice  over as required; 

Subject mastery that  can be adjusted  by  the  instructor.  Mastery  levels  can be set at 100% if 

required and  can be modified by  the instructor as appropriate; 

Feedback  and  reinforcement using immediate  and  automatic  feedback  and  reinforcement 

including  visual,  graphic and audio; 

Zoom feature to let the learna examine  in  detail  material  and  concepts; 

Self-paced leaning permitting each  learner to master the  course  at  their own learning rate; and, 

Round  the clock  availability allowing the  learner  to  take  the  material on demand. 

Further  educational  concerns  include  graphic quality, testing  and  evaluation,  on-the-job  applicability 

and  obsolescence  issues. 

359 



Grauhics  Characteristics 

Multimedia  training  programs  employing AVC use VGA graphics  resolution, but with enhanced 

resolution to 8 bit  graphics with 256 colors.  The  resolution  is 320x480 lines of  resolution.  Picture  and 

image  clarity  and  quality is unmatched.  Even  though  the  images are superb,  the  image  size is 

approximately  one  tenth  of  the  size  of  comparable  industry standard images. Because of this, the  learning 

process  benefits in several  sigmficant  ways. First, we are able to provide  close  representation of a 

company’s  products  on  the  computer  image.  Because  of  the  high  image  quality,  the  learner  does not 

experience  a  believability  problem.  We are also able to provide  greater detal that  is  further  exploited  to 

enhance  the  learning  process.  Secondly,  because  we  can  support  stereo  audio,  the  learner  has  muiti- 

sensory  exposure  further  enhancing  the  learning  environment. The combination of high quality image 

and  low  memory  requirements  means  that  we  can  pack our programs with more  images  and  use  less 

memory.  We  use a  five.to.one ratio, that is five  images  for  one tiff or targa formatted  image.  More 

visuals means  greater  representation  of  products and enhanced  learning. 

Student Testing and  Evaluation  Procedures 

Students are tested  against  the  behavioral  learning  objectives  prescribed by  the program. We 

recommend  that mastery levels be set  at 100%. Because of the  inherent  capabilities of multimedia, 

mastery at 100% is still accomplished in less time than with  conventional  approaches.  We  employ 

several  testing  strategies  as previously documented  Student  performance is Wed by the  system.  The 

instructor  has  the  ability to review  student  performance  and  recommend  additional  strategies to assure 

success.  Testing is accomplished in a  variety of approaches.  These  include: 

Exercises  after  each  section,  chapter  or  major  content  function; 

Module tests from a  randomized  pool of questions;  and 

360 



Mastery test  covering all major  course  objectives. 

Final  mastery is compared to initial  pretest  results to measure  ovexall  program  effectiveness. 

On-the-Job  Amlication of Learninq 

Multimedia  training programs can  incorporate  not  only skill and drill and tutorial strategies, but also 

game  and  simulation  strategies. Our programs  can  challenge  the  learner to apply the principles, skills and 

concepts  that  have  been  learned in realistic  situations. This takes  the  multimedia user where CBT 

programs could  never take them, into the realm of experience.  Multimedia with realistic  image,  voice, 

noise  and  sound  offer  capabilities  that no other  methodology  can  approach.  The  difference between 

interactive  multimedia  and  computer  based  training  is  similar to being  in  the dnver’s seat of a race  car 

(interactive:multimedia) versus reading about  the  experience  (computer  based  training).  We  have known 

that  ,experience is the  beststeacher. Now with  interactive  multimedia,  we  can affod to put  the  learner in 

the driver’s seat! 

How  to Unmade Promsed Softwart; 

Images,  audio as well as story  files  can be upgraded  and  distributed on a  company’s  current  network 

When  an  image or audio file or  story is created, updated or modified, it can  be  automatically loaded onto 

the  distributed  system  via  modem,  network software or floppy disk The  file  is  copied  onto the local 

system.  The  new  file  replaces  the  old  one  and  the  user is virhdly shielded from the  process. There are 

no expensive  charges, no complicated  re-editing  problems  and no reliance  on outside production  services. 

Cost  for  upgrading  can be handled on an hourly rate or on an as needed  basis. 

361 



REXX, PERL, AND VISUAL BASIC 

BEB~WH~TE 
STANFORD UNEARACCELERATOR CEMER 

362 



R E xx 

and (not vs.) 

Per1 

Bebo White 
SLAC 

REXX Symposium 
Annapolis, MD 

May 4, 1992 

363 



M.F. COWLISHAW 
PRACTICAL 

APPROACH TO 
PROGRAMMING 

364 



UhJIX Programming 

Larry  Wall and  Randal L.  Schwartz 

O’Reilly & Associates, Inc. 

365 



Caveats 

O I am a REXX bigot,  but  the  cards 
weren't stacked  against  Perl; I am 
not a Per1 expert  (much  less  bigot); 

O the  most  important  thing  about 
comparing  these  languages is 
determining how well  they  support 
their  environment;  this  is  largely 
implementation-dependent; 

O I have  never  used REXX and Per1 on 
the same  system; 

O this  talk  started  out as "REXX vs. Perl" 
- but  they  really  aren't  competitors; 

O I - like Perl; it makes Unix  far  more 
"approachable"  for me; 

O I think  that  some of the  features of 
Per1 can  contribute  to  the  development 
of REXX; 

366 



REXX and Per1 Have a Similar 
Background 

BOTH- 
0 

0 

0 

0 

0 

0 

0 

0 

were  developed  largely  by  an 
single  individual; 

were  developed for a particular 
operating  system and strongly  utilize 
features of that  system; 

have  their  roots in a  "popular"  high 
level programming  language; 

have  "natural  typing"; 

emphasize  string  processing; 

emphasize readability and  an 
understandable  block  structure; 

have  useful  debugging  capabilities; 

367 



Per1 Names 

BLATZ - a filename or directory  "handle" 
$BLATZ - a scalar  variable 
QBLATZ - a normal  array 
%BLATZ = an  associative  array 
~~BLATZ - a subprogram 
*BLATZ - everything  named  BLATZ 

0 

0 

0 

0 

does not harken  back to EXEC,  EXEC2 
or Batch; 

does  increase the readability 
/understandability of a program; 

allows  program  entities to be 
associated  in a subtle  way; 

eliminates  part of a "style 
controversy"; 

368 



Per1 Lists 

O an ordered list of scalars; 

O can  be  like  an  array, or "user-defined 
types"; 

O can be fully dynamic; 

incorporates  some of the  capabilities 
of Parse; for example - 

O @ARGV consists of 
$ARGV[O] to $ARGV[$#ARGV] 

O ($name, $address) = 
s p l i t  ( /  : /,<NAMES>) 

369 



Per1 "Gotchas" 
(for REXX users) 

O the  default  value of a variable  is  the 
null  string; 

O a value  is TRUE if it  isn't the  null 
string, 0 or "0"; 

O there  are  different  comparison 
operators  for  numerics  and  strings; 

O some operators are borrowed  from 
sed, awk, and various  Unix  utilities; 

370 



0 

0 

0 

0 

0 

0 

0 

0 

Some  General  Conclusions 

REXX is easier  to  learn and  more 
readable; REXX is  more  accessible 
to a  greater  audience; 

P e r k  syntax is  harder  to  learn and 
read  (unless  you're a big C fan); 
appeals  to  "hackers"; 

Per1 is an excellent  interpreted  shell 
scriptkystems language, but  not a 
common  embedded  macro  language 
for Unix; 

Per1 is more consistent  with a "Unix 
mindset"  than REXX; 

Some Per1 operations  are  very  arcane 
(e.g., ++i,  i++); 

Per1 has  many  more redundancies  than 
REXX; 

Per!  has  better  support  for  aggregate 
types  than REXX; both  languages 
lack  support for non-trivial datatypes; 

Per1 is more  compact for  some  things 
(e.g., string  processing); 
compactness c----> safety? 

37 1 



O Perl  has  an  extensive  collection of 
pattern matching operators;  REXX 
relies  more  heavily  on  PARSE; 

O Per1 has built-in file feature  operators; 
where  REXX  relies  on OS; 

O Perl  has a package  mechanism which 
REXX lacks; 

O REXX  is  more  extensible  than  Perl; 

372 



Can REXX Learn From Perl? 

* Associative  arrays are very "CMS- 
like"; can be weakly  implemented  by 
the REXX ABBREV; 

O Per1 lists  allow for a for each construct; 

O Per1 makes  extensive  use of the 
<STDIN>, <STDOUT>, &TOERR> 
streams; REXX LINEIN, LINEOUT 
capabilities not always implemented; 

PIPELINES can add some Per1 
capabilities to REXX; 

373 



RDO( APPLGATIONS IN A~OMATED OPERATIONS 

PETE ZYBRlCK 
FUTURESYS, INC. 

374 



REXX 
Applications in 

Automated 
Operations 

Pete Zybrick 
FutureSys, lnc. 

20 Dogwood Trail 
Kinnelon, NJ 07405 

(201)  492-2777 

375 



I 

I Overview 

1. What  is  Automated  Operations?  The  progressive 
minimization  of  computer  operator  intervention by 

1 .  Replacing  the  need  for  intervention  whenever 
possible  by  the  design and implementation of 
hardwarelsoftware  problem  determination  and 
correction  processes. 

2. Increase  problem  determination and correction 
efficiency by filtering  and  combining only the 
critical  system  status  information,  eliminating 
redundant and trivial  information. 

2. Automation  Types 
1 ,  Reactive - Event/Response 
2. Proactive - Question/Answer 
3. Administrative/Management 

376 
2 



II. Why use REXX 

1. Good 
1 . PARSE instruction,  especially  Literal  String 
2. Relatively  simple to use/debug/maintain 
3. Relatively easy to  create  structured  code 
4. Function  libraries 

2. Bad 
1. Simplicity  has  been  oversold by vendors 
2. Unskilled  programmers  can  write  bad  code in 

3. Simplicity  masks  potential  errors 
4. CLIST programmers  rarely  take  advantage of 

REXX features 
5. Reliance on  environment for global  variables, 

poor  variable  sharing  between  procedures 

any language 

377 
3 



111. Features and A 0  Application 

1. Subcom  (Host  Command  Environment  Table) - 
Creating  an  Environment 

1. Advantages 
1 .  Speed - commands are directly  targeted 
2. No changes to  REXX itself are required 

2. Disadvantages 
1. Development - must  be  written in lower 

level language, initialization  exit  configured 
(MVS) or  DLL created (OS/2) 

ADDRESS both  initially  and  when  switching 
environments  (ie. ADDRESS MVS 
"EXEC10 ... " and ADDRESS NETVIEW 
"GETMLINE,.. 

2. Programmer must  remember t o  use 

11 

378 
4 



2. Shared  Variable  Interface 

1. Advantages 
I .  Large blocks  of  variables  can  be  created 

with one  command/function 
2. Same  basic  processing  sequence  and 

control  block  structure  on  different 
platforms 

2. Disadvantages 
1 .  Uses  more  storage than  the  stack 
2. Programmers  usually forget to DROP, 

possibly  causing  storage  problems 

379 
5 



3. Function Libraries 

1 .  Advantages 
1. Speed development  time  and  consistency 
2. Can  be written in lower  level  language for 

3. Can  accept  and  return  very  large  plists 
4. Third  party  vendors  and SHARE 

improved  performance 

2. Disadvantages 
1 .  Definition of requirements 
2. Someone  has to write/maintain  the 

3. Will  anyone  know  they are there? 
functions 

380 
' 6  



4. External  Programs 

1. Advantages 
1. Can  be REXX or  load  module.  Load 

modules  can  use  the  Shared  Variable 
Interface 

2. Interface to  external  products 
3. Command  response/screen  capture 

2. Disadvantages 
1. Search  time (for load  modules,  faster t o  use 

Subcom and ADDRESS) 
2. Poor global  variable  handling  forces  large 

values to be  passed/duplicated  between 
programs 

38 1 
7 



IV. Suggested  Methods 

Objectives: 
1 . Keep it simple 
2. Minimize  redundant  coding/maintenance 

1. Centralized  Routines 
1. Objectives 

1 . Maximize  the  capabilities  of  the  most  skilled 
programmers to produce  common  'black 
box'  routines to  simplify  the  most  difficult 
tasks 

2. Maintenance - if  the  program is broken, it is . 

fixed in one  place 

2. Example:  NetView  returns  command  responses 
asynchronously, if at all. Even  experienced 
programmers  can  have a conceptual  problem 
with async  events.  Create  an  external  function 
to  serialize command  execution/response  under 
NetView,  returning  the  responses  on  the  stack. 

382 
8 



/* REXX - LINKSTN */ 
call  stkrnsgs 

"D NET,lD = someappll E" 1 

"IS TO9 71 IS TO 751" "IS T3 1 41 ' I  

. . . read from stack  and  process  messages . - 
exit 

/* REXX - STKMSGS */ 
parse  arg  CrndText  TrapMsgs  EndMsg 
"TRAP AND SUPPRESS MESSAGES" TrapMsgs 
CmdText 
"WAIT 5 SECONDS FOR MESSAGES" 
"MSGREAD" 
getresps: do while 'EVENT'() = "M " 

"GETMSIZE MAXML  WTO" 
getrnlwto:  do  rnlcnt = 7 to  maxmlwto 

"GETMLINE CURML" mlcnt 
queue  currnl 
if 'WORD'(curml, 7) = EndMsg then leave 

end /* getrnlwto */ 
"WAIT CONTINUE" 
"MSGREAD ' I  

end /* getresps */ 
return /* stkrnsgs */ 

383 
9 



2. Literal  String Parsing 

Objectives: 
1 .  Parse messages  based on text  fields to 

extract  variable-length  values. 

Example:  The  NetView TSOUSER command 
describes  the  status of a  TSO user.  Display  the 
TSO  (application  name)  and LU of a  particular 
user. 

a. Command  Format: 
“TSOUSER tsologonid” 

b. Output: 
/ST09 71 DISPLA Y ACCEPTED 
/ST0751  VTAM DISPLAY - NODE TYPE = TSO USERID 
/ST4861  NAME= TSOPJZ, STA  TUS=ACTlV,DESIRED ... 
/ST5761 TSO TRACE= OFF 
/ST262/APPLNAME= TSOA, STATUS = ACTIV 
/ST2621 LUNAME=AO7T7234,  STATUS=ACTIV 
lST3 741 END 

384 
. 10 



c .  Program: 
/* REXX */ 
parse  upper  arg  tsoid . 
ca fl 'S TKMSGS ' ' I  TSOUSER ' tsoid "IS TO9 71 IS T075l': 

do queued0 
"IS T3 7 41 ' I  

parse  pull MsglD MsgText 
if MsglD = "IS T262l" then do 

parse  var MsgText  hdr"= "name", STA TUS = Watus 
if hdr = "A PPL NAME" then do 

TSOName = name 
TSOStatus = status 

end 

LUName = name 
LUStatus = status 

if hdr = "LUNAME" then do 

end 
end 

end 

385 
11 



3. Global  Variables - Logical/Stem/Associative Arrays 

Objectives: 
1. Simplify  the  status  setting  and 

determination  of a particular  subsystem 
2. Can  be  used to drive a graphic  status  panel 

(ie.  subsystem  name in green if up, yellow 
if brought  down cleanly,  red if crashed, 
etc.) 

Example:  Set  status  variables  for  group of CICS’s. . 

Retain  the  time  each CICS was  last  brought up 
or  down. There is  nothing  ’CICS-unique’  about 
this  example - any  subsystem on any platform 
can  be  substituted  (just  the  type  of  global 
variable  handling  would  have to  change). 

12 
386 



a. Executed  during  System  Initialization 
/" REXX */ 
AIICICS = "PROD0 I PRODO2 ... PRODXX 
"GLOBALV PUTC ALLCICS" 

do until AIICICS = 
ClCSUp. = 0 

11 I1 

parse  var  AIICICS  CurrCICS  AIICICS 
"GLOBAL  V PU  TC  CICSUP. "CurrCICS 
call 'S TR  TCICS ' CurrCICS 

end 

b. Start a  given CICS region  (ie. STRTCICS PRODOI) 
/" REXX "/ 
parse upper  arg  CurrCICS 

c .  Stop a  given CICS region (ie.  STOPCICS PRODOI) 
/" REXX */ 
parse upper  arg  CurrCICS 
. . .  

/* Current CICS brought down OK */ 
ClCSUp.  CurrCICS = 0 
CICSDt Tm. CurrCICS = 'DA TE'("U") 'TIME'O 
CICS Wh yDo wn. CurrCICS = "Stopped by " 'OP'O 
"GLOBAL V PUTC  CICSUP.  "CurrCICS  "CICSDTTM.  "CurrCICS 

"CICS WH YD 0 WN. "CurrCICS 

387 
13 



d. Restart CICS due to  some  error  (ie.  RSTCICS 
PROD01 , probably called from  NetView  Message 
Automation Table  after hit on  abend  message) 
/* REXX */ 
parse upper arg CurrCICS Abendlnfo 
ClCSUp. CurrCICS = 0 
ClCSDtTm. CurrCICS = 'DA TE'(YJ'7 'TIME'() 
CICS Wh yDown. CurrCICS = "Abended: " Abendlnfo 
"GLOBAL V PUTC  CICSUP. "CurrCICS "CICSD TTM. "CurrCICS , 

/* Restart Current CICS */ 
"CICS WH YD 0 WN.  "CurrCICS 

. . .  

e. Status of CICS regions 
"GLOBALV GETC ALLCICS" 
do until AIICICS = 

"GLOBAL V GETC CICSUP. "CurrCICS , 

select 
"CICSD TTM. "CurrCICS "CICS WH YDO WN. "CurrCICS 

when CICSUP. CurrCICS then 

when ̂ ClCSUp. CurrCICS & 
say "UP CurrCICS 

ClCSWh yDo wn. CurrCICS < > " ' I  then 
say  "DOWN " CurrCICS CJCS Wh yDo wn. CurrCICS 

when ̂ CICSUp.CurrCICS & 
CICS Wh yDo wn. CurrCICS = I"' then 

say  "DOWN " CurrCICS "Never Started" 
otherwise say "Unknown " CurrCICS 

end 
end 

388 
* 14 



4. Log  Processing 

Objectives: 
1. Perform  filtering  and  summary  information 

against  log  files  (ie.  MVS  system  log, VM 
operator  console log, NetView log, etc.). 

Example 1 : Create  a  subset  of  a  large log file. 
Scan  an  entire  log  and  write  only  VTAM 
messages to  another  dataset. 

/* REXX */ 
/* Scan a log and filter messages */ 
/* Delete/Erase the  Output File */ 
/* if MVS/NetView, ALLOCATE  here "/ 

ReadLoop: do until ExecioRC < > 0 
"EXECIO "nnnnn DJSKR < InputFie > ' I  
ExecioRC = rc 
PullLoop: do queued(. 

/* Message  ID starts  in 10 "/ 
/* Save only VTAM (ISTI  Messages */ 
parse pull . 70 MsglD 73 7 MsgRec 
if MsglD = "/ST" then queue MsgRec 

end /* PullLoop */ 
/* if any matches on IST then write "/ 
if queued0 > 0 then 

"EXECIO " queuedo "DISKW < OutputFile > ' I  
end /* ReadLoop */ 

/* Close files here */ 

389 
15 



Example 2: Display a summary of message 
occurances 

/* REXX */ 
/* Scan a  log and sum by message id */ 
/* if MVS/NetView, ALLOCATE  here */ 
UniqueMsg = 
GotMsg. = 0 
SumMsg. = 0 
TotMSgs = 0 
ReadLoop: do until ExecioRC C > 0 

I 1  I I  

"EXEC10 nnnnn DISKR . . . . 
ExecioRC = rc 
TotMsgs = TotMsgs + queued0 
PullLoop:  do  queued0 

I1 

/* Message  ID  is in cots IO- 19 */ 
parse pull 10 MsglD 20 . 
SumMsg.Msg1D = SumMsg.Msg1D + 1 
if ^GotMsg.MsglD  then do 

UniqueMsg = UniqueMsg I I MsglD" 
GotMsg.MsglD = I 

end 
end /* PullLoop */ 

end /* ReadLoop */ 
/* Close the log file here */ 
/* Display  Msgid # % */ 
do until UniqueMsg = I I  I I  

parse var  UniqueMsg MsglD UniqueMsg 
Pct = 100 * (SumMsg.MsglD~otMsgs) 
say  'LEFT'(MsgID, 12) 'RIGHT'(SumMsg.MsglD,8) , 

'FORMA T'fPct, 3,O) I I "% ' I  

end 

390 
16 



5. Screen  Image Parsing 

Objectives: 
1 . Parse screen  images to  isolate  critical 

information 

Example:  The  following  screen  image  was  trapped 
into  one variable, SCREEN. Extract  the CPU 
utilization  for  the  displayed  applications. 

/* REXX */ 
GotHdr = 0 
do while Screen < > If w 

parse  var  Screen I Line 8 I Screen 
parse  var  Line I Hdr 8 I SubSys 10 UtilCPU 15 * 

select 
when ^GotHdr & Hdr = '= = = = = = = = then 

GotHdr = I 

leave 
when GotHdr & Hdr = '= = = = = =: = = ' then 

when GotHdr then say SubSys UtiJCPU 
otherwise nop /* 'Before'stuff */ 

end 
end 

39 1 
17 



6. Table  Driven  Automation 

7. Testing  and  Simulation 

8 .  Selective/Blanket  Restart  Enable/Disable 

9. System/NCP/etc.  Generation File 
Scanning/Parsing/Comparing 

392 
18 



V. O W 2  CommMgr as an A 0  Tool 

1 .  REXX is  supplied with OW2 

2. CommMgr uses EHLLAPI to  allow  session 

1. Issuing  text  strings  to a 3270 session 
2. Retrieving 3270 screen  images 

management,  namely: 

3. REXX API's support  Environments,  Shared 
Variable  Interface,  Function  Libs 

4. REXX3270  tool: 

SCRDATA 
SCRAllR v 

393 
19 



VI. Indirect Benefits 

1 . Table  driven  status/recovery  routines  allow 
ownership  of  resources  to  be  rapidly  moved to 
alleviate  performance/failure  considerations 

2. Disaster  Recovery 
I .  

2. 

3. Job 

A  ‘disaster’  table  can  exist  which  contains 
only  critical  devices  mapped to the 
ownership  of  critical  systems 
A ‘snapshot’  program  can  display/query 
critical  system  cornponents/values on a 
periodic  basis  and save this info into a 
table.  After  and  disaster  and  recovery,  a 
display/query  job  can  be  run to verify 
critical  component  availability  and 
differences. 

Automation.  Experiencekonfidence  gained 
during A 0  implementation  can  be  extended to 
automating nightly job cycles,  replacing JCL 
with REXX to  allow for more  intelligent  and 
automatic job monitoring/restart/correction. 

394 
20 



I 

Vll. The Future.. . 
1 .  Dynamic  Configuration  Management.  Access 

external  matrix  switches  to  reconfigure  devices 
from  one  system  to  another  'on  the fly', both 
for  performance and failure  recovery  purposes. 

2. Enterprise  Automation 

3. DMS? 

4. NetWare? 

5. ??? 

395 
21 



The  programshdeas in this  document are in the  public 
domain.  Use  them in any  manner.  Most  were  written 
to  run under  NetView  and/or  MVS, but should, with 
minor  changes,  run  anywhere. Be careful - I either 
clipped  them out of larger  programs  or  wrote  them 
from  memory  based  on  projects I worked on in the  past 
- typos are  probable.  More  importantly, t o  keep  things 
concise, i removed all the error handling code. If you 
have  any  questions,  feel  free to  call/fax  me  at  (201 ) 
492-2777. I’m always willing to  help  and  curious t o  
hear how different  sites  implement  automated 
operations. 

Thanks, 
Pete  Zybrick 

22 
396 



Iebbie Audette Dean Chrk 
MS Arnerii Ltd. InFonet Cop. 
'lymouth  Meeting,  PA  19462-0905 11700  Montgomery  Rd. 
!15-834-4623 Beltsville, MD 20705 

301 -937-0500 

lirn  Babka 
BM G09/20 
'.O. Box 6 
fndicott, NY 13760 
$07-752-1613 
~abka6gdlvrn7.vnet.ibrn.com 

3ck Berge 
JMSG, INC. 
1604  Spring Hill Road 
ilienna, VA 221  82-2224 

fdbQalurnni.caltech.edu 
703-506-0500 

Surnie  Bowden 
2704  Loyola  Lane 
Austin,  TX  78727 

Gordon  Callan 
2040  Wooden  Glen  Way 
Los  Altos,  CA  94024 

Jerry  Campbell 
Arnoco  Corporation 
501  WestLake  Park  Blvd. 
P.O.  Box  3092 
Houston,  Texas  77253 

ZSLCIZ@  HOU.AMOCO.COM 

Steven  Carroll 
EBASCO 
89-20  55th  Ave.  Apt.  7A 
Elmherst, NY 11373 

71 3-556-7036 

71 8-446-8973 

Anders  Christensen 
University of Trondheim 
Computing  Center 
Trondheim,  Norway 

anders@lise.unit.no 
+47-7-593004 

Creswell  Cole 
Arndahl 
1350  East  Arques  Ave.MS205 
Sunnyvale,  CA 

chappy@pswd.amdahl.com 
408-746-4877 

Mike  Cowlishaw 
IBM  United  Kingdom  Labs.,  Ltd 
Hursley  Park 
Winchester,  Hampshire  SO21  2JN 
UK 

Cathie  Dager 
SLAC  MS97 
P.O.  Box  4349 
Stanford, CA  94309 

cathieQslacvm.slac.stanford.edu 
41 5-926-2904 

Charles  Daney 
Quercus  Systems 
P.O. Box  2157 
Saratoga, CA 95070-0157 

Chip  Davis 
Amdahl  Corp. 
10420 Little Patuxent  Parkway 
Columbia,  MD  21  044-3598 
CHIP.DAVIS@AMAIL.AMDAHL.COM. 

Steve  Dernion 
30  Sawmill  River  Rd. 
MS  HOB13 
Hawthorne,  NY  10532 

Kenneth R. Down 
ORACLE 
2075  Sutter St. #523 
San  Francisco, CA  941 15-31  31 

Kdown@ORACLE.COM 
41 5-506-2778 

397 

Deryl  Duncan 
IBM 
1902  Willowcrest 
Denton, TX  76205 
2  1 4-280-6739 

Larry  Dusold, 
Telecorn. & Sci.  Comp.  Support 
FDNC F.S.A.  N. 
200 c st. S.W. 
Washington,  DC  20204 
Bitnet:  LRD @ FDACFSAN 

Frank  Esposito 
P.O. Box 140125 
Brooklyn, NY 1  121  4-0002 

FPEOC2CUVMB 
718-946-6148 

Carl  Feinberg 
Relational  Architects 
33 Newark  Street 
Hoboken,  NJ  07030 
201-420-0400 

Janice  Fitch 
Electronic  Data  Systems 
3044  West  Grand  Boulevard 
GM Building Room 7-1 19 
Detroit,  MI  48202 
313-556-4451 

Bob  Flores 
CIA 
Rrn 2V29 
Washington, DC  20505 

RAF4QPSUVM.PSU.EDU 
703-874-51 74 

Nancy  Flynn 
Computer  Sciences  Corp. 
Applied  Technology  Division 
1651  1  Space  Center  Blvd. 
Houston,  TX  77058 
71  3-280-2434 

Dave  Fraatz 
3M  Center 

St.  Paul,  MN  55144 
Bldg.  220-3W-01 



Forrest  Garnett Paul  Heaney 
IBM Delphi  Software,  Ltd. 
2500  Huston  Court Fleming  Court,  Flemming  Place 
Morgan Hill, CA 95037 Mespil  Road 

Garnett@sisvm28.vnet.ibm.com. Ireland  602877 
408-997-461  9  Dublin 4, Ireland 

Kathleen  Garvey Earl  Hodil 
Borland Chicago-Soft,  Ltd. 
1800  Green  Hills  Road 420 S. Winsome  Ct. 
Scotts Valley,  CA  95067-0001 Lake  Mary,  FI  32746 

407-834-7530 

Eric  Giguere Marc  lrvin 
University  of  Waterloo MVI 
Computer  Systems  Group 100-01  Hope  Street 
Waterloo,  Ontario,  Canada  N2L  361 Stamford,  CT  06906 

203-327-4361 
498-9279pmcimail.com 

Gabe  Goldberg 
VM  Systems  Group,  Inc. 
1604  Spring  Road 
Vienna, VA 221  82-2224 

Anthony  Green 
Ruddock & Assoc. 
74  McGill  Street 
Toronto,  Ontario 
Canada  M5B 1 H2 

green 63 roboco.vocp 

Linda  Green 
IBM 
G93/6C12 
P.O.  Box  6 
Endicott,  NY  13760 

41 6-340-0887 

Billy  Guthrie 
SIDNEY 
5727  Holly  Hill  Circle 
Dallas,  TX  75231 
21  4-750-81  12 

Rainer  Hauser 
IBM  Research  Div.  Zurich 
Saumerstrasse 4 
CH-8803  Ruschlikon 
Switzerland 
rig@zyrucg.ibm.com 

Don  Jones 
IBM 
1902  Willowcrest 
Denton,  TX  76205 
21  4-280-6458 

Jeff  Karpinski 
Towers  Perrin 
Centre  Square  East 
1500  Market  St. 
Philadelphia,  Pa  191  02-4790 
21 5-246-6003 

Andrew J. Katz 
IBM 
13 Dufief  Ct. 
Gaithersburg,  MD  20878 
301 -571  -7842 

Thomas  W.  Kema 
Bell South  Telecom. 
Rm  S-304 
1876  Data  Drive 
Birmingham,  AL  35124 
205-988-1 504 

William  Kohlstrom 
Kohl  International 
400  N.  Fourth  St.,  Suite  1012 
St,  Louis,  MO  63102-2636 
41 0-664-1 961 
MC1333-IO02 

398 

Terry  Kong 
National  Library of Medicine 
Bldg.  38A Rm. BlW08G 
8600 Rockville  Pike 
Bethesda,  MD  20894 

Lee  Krystek 
Boole  and  Babbage 
8000  Commerce  Parkway 
Mount  Royal,  NJ  08054 

Jimmy  Lee 
Metropolitan Life 

One  Madison  Ave.  Area  9-C 
New  York,  NY  1001  0-3690 

Linda Littleton 
214  Computer Bldg. 
Penn  State  University 
Univ.  Park, PA 16802 

Terry  Masemore 
IBM 
800  N.  Frederick 
Gaithersburg,  MD  20879 
301 -240-7607 

David  McAnally 
Motorola,  Inc. 
Corporporate  Computer  Sewices 
8220 E. Roosevelt  R7142 
Scottsdale, AZ 85257 

ACUS02@WACCVM.CORP.MOT.COM 

Glenn  McPeters 
RD1,  Box  6390 

Underhill, VT 05489 

602-441  -5296 

Pat  Meehan 
IBM  Ireland 
ECFORMS  Dev.Team 
4  Burlington  Road 
Dublin 4, Ireland 

MEEHANP@DUBVMl .VNET.IBM.COM 
353-1  -603744 



John  Milburn 
IBM 
800  N.  Frederick 
Gaithersburg,  MD  20879 
301 -240-7275 

Neil  Milsted 
iX Corporation 
575  W.  Madison  St. NO. 3610 
Chicago, IL 60606 

NFNM@WRKGRPP.COM 
31 2-902-21 49 

Stan  Murawski 
635 S. 16th St. 
San  Jose,  CA  951  12-2372 

CISMAIL  70444.55 
408-288-6759 

Chuck  Nelson 
830  McCandless 
Wichita, KS 67230 

Edward G. Nilges 
P.O. Box 16 
Kingston,  NJ  08528 
egnilgesOpucc 

Eric  Nothrnan 
8417  Fenway Rd. 
West  Bethesda,  MD  20817 

Robert OHara 
Lotus  Development  Corp. 
One  Rogers  Street 
Cambridge,  MA  02142 

F.  Scott  Ophof 
Consultant 
269  Hall  Avenue 
Windsor,  Ontario 
Canada N9A 2L5 

ophof@server.uwindsor.ca 
51 9-253-7534 

Walter  Pachl Paul  Schobert 
IBM  Austria  IBM 
Lassallestrasse  1  1920  Willowcrest 
A-1020  Vienna,  Austria  Denton, TX 76205 
PACHL @ VABVMl .VNET.IBM.COM 

Steve  Price 
IBM 
G09/20M 
P.O.  Box 6 
Endicott,  NY  13760 

pricesgOgdlvm7.vnet.lbrn.com 
Brian Rodbe l l  
RMS  TECHNOLOGIES,  INC. 
NASA  GSFC  Code  520.9 
Greenbelt,  MD  20771 

Z8blrAsspa.gsfc.nasa.gov 

607-754-9653 

301 -286-2098 

Ed Root 111 
Motorola, I n c .  
Corporate  Computer  Services 
8220  East  Roosevelt  R7142 
Scottsdale. A 2  85257 

Roger  Root 
2953  Tillinghast  Trail 
Raleigh,  NC  27613 

compuserve? 
919-846-7014 

Anthony  Rudd 
Robert-Schumannstrase  IIA 
W-8510 Fuerth 
Germany 

Albert  Sayers 
MILBANK,  TWEED 
12  Woodland  Dr. 
Port  Washington,  NY  11050 
21 2-530-8920 

Kurt  D.  Scherer 
csc 
4522  Bennion  Rd. 
Silver  Spring,  MD  20906 
301 -794-1  030 

399 

Sally  Schor 
IBM 
1920  Willowcrest 
Denton TX  76205 

rnks@cbmvax.commodore.corn 
2 14-280-6487 

Gary  Schramm 
4912  Green  Road 
Raleigh,  NC  27604 

Colleen K. Seine 
IBM 
5601  Executive  Blvd. 
Irving, TX 75038 

David  Shriver 

5 W. Kirkwood Blvd. 
Roanoke,  TX  76299-0001 

IBM  MS  01  -03-50 

Michael  Sinz 
Cornmodore-Arniga,  Inc 
1200  Wilson  Drive 
West  Chester, PA 19380 

mksQcbrnvax.cornrnodore.com 
21  5-431  -9382 

Steve  Siperas 

100 Barnes  Road 
Wallingford,  CT06906 
SiperasQ  hsi.corn 

3M-HIS 

Phil  Smith 
VM  SYSTEMS  GROUP,  INC. 
1604  Spring  Hill  Road 
Vienna, VA 221  82-2224 
703-506-0500 



Ed  Spire 
The  Workstation  Group 
6300  River  Road 
Rosemont, IL 6001 8 

Joe Vertucci Bebo White 
The  Alive  Centers  of  America,  Inc. SLAC  MS97 
3250 W. Market St. ’ P.O.  Box  4349 
Suite  202 Stanford, CA 94309 
Fairiawn,  OH 44333 bebo@slacvm.slac.stanford.edu 

Tony  Stephenson AI  Vilhrica 
U. S. Dept of Agriculture SYRACUSE  UNIV. 
Econ  Mgmt.  Staff/Personnel  Division 104  Roney  Lane 
1301  New  YorkAve  NW Syracuse,  NY  1321 8 
Washington,  DC  20005 315-442-91 98 

MAINT3@  ERS.BITNET 
202-21  9-0573  RVlLLARl@CAT.SYR.EDU 

Bernie  Style 
Systems  Center 
1800  Alexander Bell Dr. 
Reston,  VA  22091 

Dave  Sutter 
4912  Green  Road 
Raleigh,  NC 27604 

Tony  Walsh 
Lotus  Development  Corp 
One  Rogers  Street 
Cambridge,  MA  021  42 

Chi-Ching  Wang 
1 041 3 Quietwood  Dr. 
North  Potomac,  MD  20878 

Michael  Wright 
Mobil  Room  4A-508 
3225  Gallows  Rd. 
Fairfax  VA  22037 
703-846-3930 

James  Youngdale 
IBM MA3  BO25 
10401  Fernwood Rd. 
Bethesda,  MD  20817 

JWYOUNG@BETASUM2 
301  -571  -7520 

Kathryn  Youngdale 
IBM M/D  DO72 
10401  Fernwood  Road 
Bethesda,  MD  20817 

KYOUNGQBETASUM2 
301  -571  -2872 

Philippe  Taymas Tom  Wassel Peter  Zybrick 
Westin  Ghost  Energy  Systems,  Inc. IMS  America  Ltd. Future  Systems 
73  Rue  De  Stalle Plymouth  Meeting, PA 19462-0905 20  Dogwood Trail 
B1180-Brussels,  Belgium 21 5-834-4447 Kinnelon,  NJ  07405 

201 -492-2777 

Anh  Te 
Towers  Perrin 
Centre  Square  East 
1500  Market  St. 
Philadelphia,  PA 191  02-4790 

Melinda  W.  Varian 
38 Gordon  Way 
Princeton, NJ 08540 

Paul Verba 
Relational  Architects 
33 Newark St. 
Hoboken, NJ 07030 

Howard  Weatherly 
Computer  Task  Group 
3347  Eastern  Ave. NE 
Grand  Rapids,  MI  49505-2576 

cis:71327,1575 
61  6-3263-7634 

James H. Weissman 
Failure  Analysis  Associates 
149  Commonwealth  Dr. 
P.O.  Box  3015 
Menlo  Park,  CA  94025 

JHW@cup.portal.com 

David  Wescott 
State of California 
Health & Welfare  Agency  Data  Center 
1651  Alhambra  Blvd. MS 710 
Sacramento,  CA  95816-7092 : 

HWJ.DWESCOTT@TS3.TEALLE.CA. 
GOV 

415-688-6737 

400 

mailto:bebo@slacvm.slac.stanford.edu
mailto:RVlLLARl@CAT.SYR.EDU
mailto:JHW@cup.portal.com


ANNOUNCING 
The  REXX  Symposium 

for  Developers and Users 

San Diego, CA 
May  18-20,1993 

0 Meet the developers of the REXX  implementations currently 
available on a wide  variety of computing platforms and operating 
systems 

Learn about current  research and development projects in REXX 

0 Be among the  first  to learn of new products developed for and in 
REXX 

0 Learn the latest  programmin tips and  techniques from the REXX 
pioneers and an internationa 9 body of  REXX enthusiasts 

For  further  information, or to participate as a speaker or panelist, 
contact: 

Cathie Burke  Dager Forrest Garnett 

cathie@slacvm.slac.stanford.edu garnett@sanjose.vnet.ibm.com 
(4  1 5) 926-2904 (408) 997-4089 

FAX: (41 5) 926-3329 FAX: (408) 997-4538 

Bebo White Jim Weissman 

bebo@slacvm.slac.stanford.edu jhw Q cup.portal.com 
(41 5) 926-2907 (41 5 688-6737 

FAX:  (41 5) 926-3329 FAX: (41 5) 688-7269 

Register and make  travel  arrangements by April 1 with: 

Villa e Travel 
(800 B 245-3260 
FAX:  (41 5) 326-0245 

401 

mailto:cathie@slacvm.slac.stanford.edu
mailto:garnett@sanjose.vnet.ibm.com
mailto:bebo@slacvm.slac.stanford.edu
http://cup.portal.com

	slac-r-401-Frontmatter
	rexx92-001
	rexx92-002
	rexx92-003
	rexx92-004
	rexx92-005
	rexx92-006
	Phone: 607-752-1 'I

	rexx92-007
	rexx92-008
	rexx92-009
	rexx92-010
	rexx92-011
	rexx92-012
	rexx92-013
	rexx92-014
	rexx92-015
	Support for application macros written in REXX
	High-level clientlserver architecture support
	Command definition of REXX Subcommands
	FlatlUniversal default REXX Subcommand space
	Transparent CICS Pseudo-conversational tefininal support
	Support for system and user profile EXECS
	Shared EXECs in virtual storage
	Nested ISCLUDE support in EXEC Loader
	EXEC Suspend/Resume support
	REXX interface to OfflceVisioniMVS and ASF Version
	Compatibility support for several popular VM/CMS commands
	CICS,™REXX Benefits
	Business Solutions
	Investment Protection
	User Productivity
	Growth Enablement
	Systems Management

	ClCSlREXX General Arehitecture/Implementation
	General Design Goals
	Basic structure of REXX running under CICS
	REXX EXEC invocation
	Where EXECs execute
	How EXECs are located and loaded
	How EXECs are edited
	Control of EXEC execution search order
	REXX EXEC File System structure
	Support of standard REXX features
	SAY and TRACE statements
	PULL and PARSE EXTERSAL statements
	REXX stack support
	REXX function support
	REXX Function Packages

	REXX Subcommand Environment Support
	Invoking another EXEC as a subcommand
	Invoking CICS load modules as user provided subcommands
	Adding REXX host subcommand environments

	Support of standard ClCS featuresifacilities
	CICS mapped 1/0 support
	invoking user applications from EXECS
	REXX interfaces to CICS temporary & transient storage queues
	Pseudo-conversational transaction support

	REXX EXEC Suspend/Resume support
	interfaces to other programming languages
	Security
	Perfonnance discussion
	Miscellaneous features
	Supported Environments and prerequisites
	National language and DBCS support
	Building block S/W development - Common Interface Routine
	CICS/REXX Client/Server Architecture
	High-level Client /Server support
	ClientlSener Design goals
	Current ClientlServer Implementation

	CICS/REXX Office\™ision/MVS Environment Supporl
	REXX EXECS for Application Integration
	REXX EXECS as exits
	CICS/REXX Interfaces to other products
	Description of interface to DB2
	Description of interface to GDD,M

	rexx92-016
	rexx92-017
	rexx92-018
	rexx92-019
	rexx92-020
	rexx92-021
	rexx92-022
	rexx92-023

