SLAC-401
CONF-9205149
UC-405

(M)

PROCEEDINGS OF THE REXX SYMPOSIUM
FOR DEVELOPERS AND USERS

May 3-5, 1992
Annapolis, Maryland

Sponsored by
STANFORD LINEAR ACCELERATOR CENTER
STANFORD UNIVERSITY, STANFORD, CALIFORNIA 94309

Program Committee

Cathie Dager of SLAC, Convener
Forrest Garnett of IBM

Jim Weissman of Failure Analysis
Bebo White of SLAC

Prepared for the Department of Energy
under Contract number DE-AC03-76SF00515

Printed in the United States of America. Available from the National Technical information Service,
U.S. Department of Commerce, 5285 Port Royal road, springfield, Virginia 22161.

PROCEEDINGS OF THE REXX SYMPOSIUM
FOR DEVELOPERS AND USERS

TABLE OF CONTENTS

~ A. Summary
B. Presentations

Anders Christensen:

Mike Cowlishaw
Charles Daney and :
Stan Murawski

Carl Feinberg:

Eric Giguere and:

Linda Suskind Green:

Rainer F. Hauser:

Earl D. Hodil:
Marc Vincent Irvin:

Pat Meehan:
and Paul Heaney

Neil Milsted:
Walter Pachi

Stephen G. Price

Anthony Rudd
David |. Shriver
Michael Sinz

Ed Spire
Melinda Varian
- P. Joseph Vertucci

Bebo White
Pete Zybrick

C. Attendees
D. Announcement of 1993 Symposium

Announcement of the Regina REXX
interpreter

REXX—The Future

WInREXX, Presonal REXX

for Windows

Relational Architects
Programming with Objects:

a REXX-Based Approch
REXXbits

Communications and Event
Handling with REXX
REXXTOOLS/MVS
REXX2001—Chosen Language of
Man and Machine

Performance Engineering/
Management of a Large

REXX Application

ANSI X3J18 Report:

The REXX Standard

IBM Compiler and Library for
REXX/370

0S/2 Procedures Language 2/REXX
“A Practical Approach to
Programming” and “Adding REXX
Power to Applications”

Interfacing with REXX

REXX in the CICS Environment
REXX Technical Issues, Today
and Tomorrow

Uni-REXX

Plunging into PIPES

The Implications of Multimedia
for Training in the '90s

REXX, Perl, and Visual Basic
REXX Applications in

Automated Operations

14
29

46
55

100
117

139

163
169

184

216
231
249

. 298

307
325

350
362

374
397
401

SUMMARY

The third annual REXX Symposium for Developers and Users was held on May
3-5, 1992 in Annapolis, Maryland. Ninety-one people attended, representing
eight countries and nineteen American States.

There was a great deal of interest regarding REXX in the UNIX world. Alberto
Villarica and Anders Christensen announced two free versions of REXX for
UNIX. Also, the Workstation Group announced a free run-time version of their
Uni-REXX available to any educational institution.

Two flavors of REXX under MS/Windows were presented by Eric Giguere and
Charles Daney. Both implementations demonstrated the ease in which REXX
was able to create GUI applications. This prompted some discussion of REXX
under the Macintosh, probably the last frontier for REXX.

Along with his usual informed opinions, Mike Cowlishaw described some of his
current research efforts. He also wowed us with some statistics demonstrating
the incredible penetration REXX has made internationally as measured by the
number of books published about it and the millions of users with access to it.

Prompted, in part, by Lotus’ announcement of a REXX interface to 1-2-3, there
was much discussion of ways that REXX could be promoted as a universal
scripting and macro language. In this context, REXX was compared both to
PERL and to Visual BASIC, which appears to be Microsoft's attempt to cover
some of the deficiencies of BASIC.

Next year's symposium will be held in San Diego, California on May 18-20.
Because of the great success of this year's symposium, we are expanding to
three days next year and look to you, the REXX community, to help us fill these
days with interesting and useful presentations.

Signed,

1992 Program Committee:

Cathie Dager (SLAC)

Forrest Garnett (IBM)

Jim Weissman (Failure Analysis Associates)
Bebo White (SLAC)

ANNOUNCEMENT OF THE REGINA REXX INTERPRETER

ANDERS CHRISTENSEN, UNIVERSITY OF TRONDHEIM

Announcement of the Regina REXX Interpreter

Anders Christensen <anders®@solan.unit.no>

Annapolis, May 5, 1992

Summary

Regina is a REXX interpreter for Unix systems, written in ANSI C, lex and yacc. The source
code for Regina is available by anonymous ftp on Internet. Reginais “free” software, mean-
ing that you don't have to pay for it.

Platforms

Regina has been built on several systems, under the following environments:

e GCC v2.1, flex and bison, on several OS architectures.
¢ ¢89 (unbundled) on Decstation 5000, under Ultrix 4.2
e cc on Irix Indigo, under IRIX 4.0

e acc 1.1 (unbundled) on Sun Sparc, under Sunos 4.2

e cc on Decstation 3100, under OSF/1

e ¢89 on HP 9000, under HP/UX 8.05

The lex and yacc code included in Regina is fairly standard, and can easily be processed by
the standard yacc and lex utilities under all the systems named above.

The C code is ANSI C and uses POSIX, when interfacing to the operating system. On
several machines where the standard setup of the C compiler is not completely ANSI C and
POSIX, you might have to set compiler options to force the compiler to use these standards.

At a few places in the source, where POSIX is not powerful enough, non-POSIX code
has been included. Alternative POSIX-compliant source is also present, and may be chosen
instead through the setting of C preprocessor flags.

What is Included in Regina

Regina follows the 3.50 version of REXX, as described by the first edition of “The REXX
Language” by Mike Cowlishaw. The areas where it is not according to that description are:

¢ The SIGNAL ON command is missing

e Arithmetics are done using C-functions, so anything related to the NUMERIC command
will not work. In fact, conversion of numbers might even be dependent on the C-
compiler you are using. This also effects the results of the FORMAT() builtin function.

e There are some problems connected with tracing.

e For (external) commands, there is not a persistent shell in the background to which
commands are sent. Instead, a shell is started up each time (ADDRESS SYSTEM), or the
command is run directly (ADDRESS PATH and ADDRESS COMMAND).

Other Parts of the Regina Package

Regina comes with more than just the source code for the interpreter itself. A set of docu-
ments that describe the functionality of the interpreter, both the standard REXX function-
ality, and the extra functionality of Regina, in particular the parts interfacing to the Unix
system. The documentation is located in the “doc” subdirectory of the Regina distribution.

Also included is a test consisting of a set of REXX programs that check various parts of the
REXX language, in particular the more obscure features, border-conditions and limits, Both
this “trip-test” and the documentation are under construction, and are far from complete in
the current version.

In the “code” subdirectory are various small REXX programs included, that demonstrate
features and programming techniques in REXX. I have no intention of writing all these my-
self. 1 hope to be able to include small REXX-programs written by other people, in this
demo-directory, in order to gather a nice collection of instructive programming pearls.

In the Future ...

I intend to continue developing Regina, improvements and new features include:

o The remaining parts of the 3.50 REXX standard will be implemented. In particular,
true string arithmetics will be added.

o The interpreter will be made compatible to the 4.00 version of REXX, as defined in the
second edition of “The REXX Language”.

o A mechanism for dynamically adding external function packages, during execution time.
These packages may be written in compiled languages (e.g. C). This will allow Regina
to use numerous functions as if they were builtin, without having to link in the code for
these functions into the executable of the interpreter at compile time.

o Using this library mechanism, some libraries will be added to Regina, including a wrap-
per library to curses (for fullscreen manipulation of ASCII graphics), a math library, an
interface to Unix system services and an interface to TCP/IP,

o 1 will port Regina other Unix systems, and to some non-Unix systems, in particular
MS-DOS and VAX/VMS. Support for other systems will depend on what access 1 have
to those systems.

o Tools for program development will be added, such as syntax-checking, pretty-printing,
crossreferences etc.

Still in Beta Version

Please note that Regina is still in beta-version. The code will be released as version 1.00
when full REXX 4.00 functionality has been implemented, and most of the known bugs have
been removed.

Where to Get Regina
If you have access to anonymous ftp on Internet, you can get it from the server:

flipper.pvv.unit.no (129.241.36.200)

Use ftp to log in to the account "£tp”, and use you electronic mail address as password
(that is the normal etiquette of the Net.) If you do not have access to the anonymous ftp
service, you will have to get Regina from another source. Hopefully other people will redis-
tribute the code to places to which you have access.

Note that flipper is located in Norway, so if you are located outside Europe and can get
the Regina from a site closer to you, please try to do so.

Copyright and Distribution

As long as the code is released as beta-version, the copyright for the interpreter generally
says: “You can use it for whatever you want, as long as you don’t use it for commercial
purposes.”. More details on these is included in the “README” file that accompanies the
source distribution.

When Regina is released as version 1.00, it will most likely have the copyright notice
generally known as the “Gnu General Public License” (GPL). It (generally) says: “You can
(re)distribute the program as you wish, including selling it, but you have to provide the full
source for it when you distribute it. Including the source for any modifications you might
have done to the program.” More information about this is available in files contained in
the distribution.

Bugreports

If you use Regina, and you find a bug in it, | would be very glad to hear about it. Although |
do not guarantee that [will fix anything that is broken (after all it is free software), I generally
fix anything that I too consider broken, and which is within my capasity to fix.

The interpreter in its current version has bugs and missing features, some of them are
listed in the accompanying documentation. If you report a bug, the easiest method (at least
for me) is to use electronic mail with a description of the bug. Preferably, such a bugreport
should contain:

e Description of what equipment you used, i.e. hardware-platform, operating system,
compiler version, compiler options used, version of Regina etc.

o A description of the buggy behavior that you saw (and the behavior that you expected
to see.)

o Preferably a piece of REXX code that demonstrates the behavior, it should be as small
as possible, preferably not more than about 10 lines.

o 1f you have already fixed the bug, please append a context diff of the changes you made
to the source, then | won't need to redo the same work to track down the bug.

Please make sure that the bug is really a bug in the interpreter, not a bug in your pro-
gram or a peculiar behavior of your machine. If possible, run your program on other REXX
interpreters to see how they behave, and check with a REXX manual if you have access to
one.

Where to Send Electronic Mail

If you have questions concerning Regina, feel free to contact me at my electronic mail address
listed below. 1 will gladly accept comments, bugreports, wishes or cries for help. But since |
do this on my spare time, and since | don't charge any money for it, | can’t guarantee bugfixes
and help in advance.

Anders Christensen
Norwegian Institute of Technology
University of Trondheim

email: anders@solan.unit.no snail: Stud.post. 31
or: anders@pvv.unit.no N-7034 Trondheim-NTH
Norway

REXX—THE FUTURE

MiKE COWLISHAW
IBM

REXX—The Future

Mike Cowlishaw

IBM UK Laboratories
Hursley

29

>

pr 1992

The Future of REXX

+ Where are we now?
4+ REXX assets

4+ Trends and directions
4+ Discussion

29 Apr 1992

Mike Cowlishaw

Where are we how?

+ 17 implementations, on most significant plattorms

+ 35 published books and manuals

(Over 50, if service guides, second editions, and
translations are included.)

4+ Accessible to over ten million users
+ Widely used, with an international following
4+ ANSI standard work well under way.

29 Apr 1992 Mike Cowlishaw

Which assets are most important for the
future?

4+ Simplicity:
— A small, readable, language
_ Just one data type—the string
— Decimal arithmetic
— Few limits

+ Flexible and extendible

— Existing and future system interfaces

29 Apr 1992 Mike Cowlishaw

01

More assets...

+ Designed as a multi-purpose extension language
— Highly system and hardware independent

Keywords reserved only in context, SO macros in
source form are resistant to breakage

Adds value to almost all platforms and applications

+ Skills reuse between platforms

29 Apr 1992

Reduced education costs.

Mike Cowlishaw

I1

Trends and directions

+ Mainframe interactive applications continue to move
to workstations and PCs

+ Networking of workstations and PCs encourages
standardization of applications and languages

+ Increasing complexity of applications, and
sophistication of users, demands extensive subsetting

and customization.

29 Apr 1992 Mike Cowlishaw

ol

29 Apr 1992

20 -

15+

10

0- v Y T ' v T ' T v
1983 1984 1985 1986 1987 1988 1989 1990 1991 Year

REXX Books and Manuals

—p-

-6- Mike Cowlishaw

€1

REXX Language Products Available

Products T
20 +

15 1

101

1983 1984 1985 1986 1987 1988 1989 1990 1991 Year

29 Apr 1992 Mike Cowlishaw

WINREXX: PERSONAL REXX FOR WINDOWS

CHARLES DANEY AND STAN MURAWSKI
QUERCUS SYSTEMS

14

WinREXX
Personal REXX for Windows

. Background

—

. Current Product and Capabilities

. Market Needs and Opportunities

By Stan Murawski
(408) 288-6759, or CIS Mail 70444,55

91

QUERCUS SYSTEMS
(408) 867-REXX

The REXX Language

Created by Michael Cowlishaw.

Originally for IBM mainframe timesharing users
(VM/CMS replacement for EXEC II).

Conceived as a "Command Language'' running in a
hosted environment (embedded).

Not an IBM product development - grass roots.

Easy to learn and use, designed to be extensible.

Keep it Small and Simple philosophy.

WinREXX
Personal REXX for Windows Slide 1

LT

QUERCUS SYSTEMS
(408) 867-REXX

Becoming a Standard Language

IBM Systems had disparate Command Languages:
Mainframe - MVS/TSO and VM/CMS.
Mini - 0S/400.
Desktop - OS/2 (CMD/BAT).

Quercus (Mansfield) delivers Personal REXX.

IBM Chose REXX for all their platforms.

ANSI chose REXX as its newest standard language.
Commodore embedded AREXX into AMIGA DOS.
The Workstation Group publishes UNIREXX.
Quercus publishes WinREXX.

WinREXX
Personal REXX for Windows Slide 2

81

QUERCUS SYSTEMS
(408) 867-REXX

Personal REXX (DOS and 0S/2)

Originally developed as a macro language for
KEDIT, an IBM VM XEDIT compatible editor.

A REXX 4.0 compliant language for DOS & OS/2 -
the REXX for PC's.

A powerful alternative to DOS BAT files and OS/2
CMD files.

A good language for developing simple utility
applications - some useful extensions.

Comprehensive extensions for DOS disk and file
manipulations, e.g. file attributes, free space.

WinREXX
Personal REXX for Windows Slide 3

61

QUERCUS SYSTEMS
(408) 867-REXX

WinREXX 1.x

A REXX 4.0 compliant language processor in a
Windows DLL. |

A comprehensive API -
(compatible with the IBM 0S/2 REXX API).

A window for editing and running REXX programs.
A window for REXX program Input and Qutput.
The DOS REXX extensions, €.2. file management.
Windows REXX extensions, €.g. MessageBox.

The heart of a command language for Windows.

WinREXX
Personal REXX for Windows Slide 4

0%

QUERCUS SYSTEMS
(408) 867-REXX

The WIinREXX Windows

N e RNDOA.R

Help

File Edit Bun
LEARNDOA.REX — concatenate tw
irst_half = ""Cow"
fast_half = "lishaw
SAY "REXX was designe
END LEARNO4.REX ™
ey REXX |}0 Window

| g

o variables without space *!

dby M. F.” first_half || last_half""

WinREXX
Personal REXX for Windows Slide 5

QUERCUS SYSTEMS
(408) 867-REXX

WinREXX's Executable Structure

WiIinREXX

Program edit
Program execution

WInREXX.EXE
L WinREXX.DLL
ST T T T N
— N — | User 1
REXX Program ————! Extensions !
w SR | [romromen | TR |
it External Functions AP! Support J I/,_.d_;____\l
-—\ 3rd Party ! “.EXE
. R \ WREXX.DLL E Extensions |
| Isv*.oLL |

e e o

nline Commands

Windows Programs
DOS Programs
DOS Commands

* EXE

Only WREXX.DLL is needed for embedded REXX.

WinREXX
Personal REXX for Windows Slide 6

(44

QUERCUS SYSTEMS
(408) 867-REXX

Some WIinREXX Features

Several sets of Windows HELP
Using WinREXX
Learning REXX
Messages Explanations
The WinREXX AP1

User Input Alternatives to SAY/PULL
Message/Question/CancelBox

PromptBox
ChoiceBox

Automatic PARSE ARG prompting
Get/Set "INI" file strings

WinREXX
Personal REXX for Windows

Slide 7

144

QUERCUS SYSTEMS
(408) 867-REXX

WinREXX API Capabilities

Run REXX programs.

Create Subcommand environments.

Add External Functions.

Interrogate & Change REXX variables.
REXX Processing Exits, e.g. 1/0 or Trace.

Support multiple concurrent threads of execution

(from multiple windows tasks)!

WinREXX
Personal REXX for Windows Slide 8

ve

QUERCUS SYSTEMS
(408) 867-REXX

A Command Language for
Windows Applications

Windows does not have any command language.

Each vendor must write its own command language
processor.

Each Windows product has its own proprietary
command language.

The user must learn many languages, each different
in structure, syntax and commands.

User still can't do what can easily be done in DOS,
e.g. directory traversal and file manipulation.

WinREXX
Personal REXX for Windows : Slide 9

1'té

QUERCUS SYSTEMS
(408) 867-REXX

The User Market Need

Users need a single consistent command language:

Macros.
Scripting.
DDE control.
OLE control.

Vendors need a standard embedded language -
without writing their own language processor.

The market needs a central point of control - not a
macro in every applications.

There needs to be one powerful "glue' to bind
applications together! |

WinREXX
Personal REXX for Windows Slide 10

QUERCUS SYSTEMS
(408) 867-REXX

REXX Based Possibilities

REXX extensions for generic DDE and OLE.

A window that "knows" DDE and OLE to popular
Windows applications, so users can "link"
applications from one "REXX'" place.

REXX based control of multi-application OLE - a
"cross-application” command language.

WinREXX as a generic OLE Server, with REXX
program created Objects (embedded output).

Cross-network support for applications on other
platforms, e.g. UNIX, MAC?

s,

WinREXX
Personal REXX for Windows Slide 11

QUERCUS SYSTEMS
(408) 867-REXX

Command Language Competition

Microsoft is variously promoting "System Basic"

Will this be part of NT? |
Is Word Basic a prototype for all MS apps.?

(BASIC has a special place in the heart of Bill Gates).
REXX vs. BASIC was part of the IBM - Microsoft
"divorce''.

IBM could be an ally, and may be important
depending on the success of OS/2 version 2.

Bridge Batchis a probable competitor
Softbridge promoting as a "'common language''.

SoftSCRIPT?, WinBatch?

WinREXX
Personal REXX for Windows Slide 12

8¢

QUERCUS SYSTEMS
(408) 867-REXX

WinREXX

Positioned to become the industry
standard embedded command
language for Windows!

WinREXX
Personal REXX for Windows Slide 13

RELATIONAL ARCHITECTS PRODUCT FAMILY

CARL FEINBERG
RELATIONAL ARCHITECTS

29

0€

Relational Architects Product Family

Presented at

REXX Symposium
Annapolis, MD -- May 1992
by

Carl Feinberg

Director of Development
Relational Architects Intl

i€

Some of our clients

—

American Hospital Association
American President Lines
Australian Telecom

Bank of Liechtenstein

Blue Cross Blue Shield

British Columbia Telephone
British Telecom

CalFarm Insurance

Ciba - Geigy

Credit Suisse (Switzerland)
Daimler Benz (Germany)
Depository Trust Company (NY)

Dow Corning

Dresdner Bank (Germany)

Ericsson (Sweden)

The Equitable Life Assurance Soc.
Federal Government Agencies
Fireman's Fund Insurance Co.
The Franklin Mint

G E Information Services
Glaxo, Inc.

The Home Depot

1B M Corporation

lowa Public Service

Los Alamos National Labs
Los Angeles Water and Power
MCI / Telecom*USA

Mead Corporation

National Westminster Bancorp
Norwegian Telecom

NYNEX

PARS

The Pillsbury Company

State Bank of Sweden

Tandy Corporation

United States Fidelity & Guaranty
University of California

USAA

VISA International

(c) Copyright 1992 Relational Avrchitects Intl 2

A3

Product groups

DB2 Productivity Series

O RLX/REXX

O RLX/ISPF

O RLX/CLIST

O RLX/Compile

0 RLX/Net

0 AcceleREXX

Smart Jobstréam Series

O Smart/CAF
0 Smart/Restart

0 -Smart/QBF

O Multi/CAF

£g

RLX Product Family

[0 Extends embedded SQL support to REXX EXECs and TSO CLISTs
[0 Exactly the same embedded SQL used with COBOL and PL/1

OO0 Fully supports IBM's RXSQL syntax

O Full host and indicator variable support

O RLX parser validates SQL statements, assigns "best fit" data types
O Full support for SQLCA and SQLDA fields

0 Extensive full screen diagnostics

OO Multi/CAF supports concurrently active DB2 plans

0 Quasi-static SQL

(c) Copyright 1992 Relational Architects Intl 4

RLX/ISPF

0] Extends SQL's set processing facilities
OO0 Powerful composite functions
00 Load SQL query results directly into ISPF tables
. O Display and process those results on scrollable ISPF panels

] Creates an ISPF table containing columns selected from a DB2 table

O Encapsulated object to manipulate table

ce

How can we use RLX?

(] Build DB2/ISPF based tools quickly and easily (DBA utilities and developer workbenches)

O Prototype high volume applications for CICS, IMS and batch

] Develop decision support, individual and departmental applications

[] Develop production applications for the DB2/ISPF environment

(] Testing tool for performance analysis and problem resolution (one time fixes)

[] Teaching tool - Learn SQL with immediate feedback, extensive diagnostics and context
sensitive help |

[] NetView automation procedures

0 Automated console operations for system administration

(c) Copyright 1992 Relational Architects Intl 6

9¢

O O o O O

Why Interpretive?

Quick and easy development

O ‘glue’ to integrate diverse componenté like DB2, ISPF REXX and Netview into cohesive

application solutions. Combines SQL, ISPF dialog services and procedural logic into a
functional unit

Edit and test RLX dialogs directly within PDF/Edit
No preprocess, compile, link edit or bind steps are required
Reduce application size and complexity by at least 50%

Reduce development, maintenance and enhancement time by at least 50%

Increase application functionality by 100%

18

Developers can

0 Apply their SQL skills immediately

[0 Quickly prototype applications

[0 Copy RLX SQL statements directly into théir COBOL and PL/1 programs
[0 Ignore data declarations and data conversion and concentrate on algorithms
[0 Skip Preprocess, Compile, Link Edit and Bind steps entirely

[0 Quick trial and error development approach

(c) Copyright 1992 Relational Architects Intl 8

8¢

Sample RLX/REXX dialog

RLXS TOWNER SYSIBM

(
—————————————————————————— Tables Created by SYSIBM ~---—-—--~-—= ROW 1 OF 30
Command === Scroll ===> HALF
Table Name owner Type DB Name TS Name DB ID Colcount
SYSCOPY SYSIBM T DSNDBO6 SYSCOPY 6 14
SYSFIELDS SYSIBM T DSNDBO6 SYSDBAS 6 13
SYSTABLESPACE SYSIBM T DSNDBO6 SYSDBAS 6 23
SYSTABLES SYSIBM T DSNDBO6 SYSDBAS 6 31
SYSTABLEPART SYSIBM T DSNDBO6 SYSDBAS 6 21
SYSTABAUTH SYSIBM T DSNDBO6 SYSDBAS 6 21
SYSSYNONYMS SYSIBM T DSNDBO6 SYSDBAS 6 6
SYSRELS SYSIBM T DSNDBO6 SYSDBAS 6 11
SYSLINKS SYSIBM T DSNDBO6 SYSDBAS 6 12
SYSKEYS SYSIBM T DSNDBO6 SYSDBAS 6 7
SYSINDEXPART SYSIBM T DSNDBO6 SYSDBAS 6 16
SYSINDEXES SYSIBM T DSNDBO6 SYSDBAS 6 26
SYSFOREIGNKEYS SYSIBM T DSNDBO6 SYSDBAS 6 7
SYSCOLUMNS SYSIBM T DSNDBO6 SYSDBAS 6 19
SYSCOLAUTH SYSIBM T DSNDBO6 SYSDBAS 6 10

TcAmA ™

Implementation of TOWNER
Using RLX/REXX

/* RLX REXX EXEC TOWNER -- using embedded SQL and ISPF services */
arg createdby /* Obtain the creator's name as a parameter */
address RLX /* Route host commands to RLX for execution */

/* You denote REXX host variables with the standard colon prefix.*/
"rlx declare tblnames cursor for
select name, creator, type, dbname, tsname, dbid, colcount
from sysibm.systables
where createdby = :createdby"”

/* Address RLX recognizes all ISPF dialog service names */
"TBCREATE TBLNAMES
NAMES (NAME, CREATOR, TYPE, DENAME, TSNAME, DBID, COLCOUNT)

NOWRITE"
"rlx open tblnames" /* Produce SQL query result */
/* RLX FETCHes values directly thru memory into 'host'’ */
/* variables which RLX, ISPF and the REXX interpreter share. */

"rlx fetch tbhlnames into
name, :creator, :type, :dbname, :tsname, :dbid, :colcount”

/* RLX updates all the host variables comprising the SQLCA */
Do while sqlcode = 0O /* While FETCHes are successful */
"TBADD TBLNAMES"

/* RLX recognizes statements it's already processed to further*/
/* 1improve performance. A reexecuted RLX SQL statement runs */
/* at 'static' S5QL speed. , */

"rlx fetch tblnames into

name, :creator, :type, :dbname, :tsname, :dbid, :colcount”
END

"rlx close tblnames" /* close the cursor * [/

"TBTOP TBLNAMES"

Do while rc = 0 /* until user signals end or return */
"TBDISPL TBLNAMES PANEL (TBLNAMES)"

End

"TBEND TBLNAMES"

exit rc

39

Implementation of TOWNER
Using RLX/ISPF

arg createdby /* Obtain the creator's name as a parameter */
address RLX /* Route host commands to RLX for execution */
/* Flow the SQL query result into an ISPF table -- with a single */
/* statement -- using the DECLARE ISPFTABLE service */

"rlx declare tblnames ispftable for
select name, creator, type, dbname, tsname, dbid, colcount
from sysibm.systables
where createdby = :createdby”

Do while rc = 0
"rlx tbdispl tblnames panel(rlx)"

end

Exit rc

40

187

O 0O o 0o

Oo-0 O O

"RLX Feature Summary

NULLs and host variables fully supported
Automatic conversion between internal and external data formats
SET and ROW oriented processing

SQL Communications Area feedback after each RLX SQL statement

Human engineered

Interactive diagnostic facilities pinpoint errors and speed their correction
Profile facilities customize RLX operation
ISPF split screen is fully supported

RLX can run concurrently in both screens

(c) Copyright 1992 Relational Atchitects Intl 13

44

Syntax errors detected by the RLX semantic parser:

PSQO011 - Null indicator variable reference invalid within search condition -

SQL statement location
Exec containing statement ==
RLX module detecting error ==

> EXAMPLE
> PSQLSC

SELECT CN1 , CN2 , CN3 , CN4 FROM RLXTBL WHERE CN1l = :HV1:IV1 ORDER BY CN1
*

DEsSC

*** Press END or RETURN key to resume RLX dialog execution / termination ***

———————————————————— RLX SQL Parser Detected an Error —-———————=-= ROW 1 OF 4
Command === Scroll ===> HALF

44

Data errors:

For example: Date value inconsistent with specified date format

—————————————————————————— pata Error Recognized —---—-————--—-== ROW 1 OF 6
Command === Scroll ===> HALF
PSR032 - Expected dash - between ISO/JIS date components

SOL statement location
Exec containing statement =

=> RLXSINS3
RLX module detecting error =

> PSQFDTC

Host Variable / SQL Variable Profile

Host Variable Name ===> DATE

Host Variable Value ===> 12/04/1991

Host datatype origin ===> DATE

SQL Data Type ===> DATE Nulls ===> Y

SQL Data Length ===> 10 (Precision when Decimal)

SQL Data Scale ===> 0 (0 when not Decimal)

Date or Time format name ===> IS0 {Blank when not date or time)
Date or Time format ===> YYYY-MM-DD (Blank when not date or time)

Statement executing when the Data Error was detected

INSERT INTO RLXREL3 (INTEGER , DATE , TIME , TIMESTAMP , FLOAT VALUES (:DV1
:IV1 , :DV2 :Iv2 , :DV3 :IV3 , :DV4 :IV4 , :DV5 :IV5)

PSQ105 - No row inserted because column value was invalid for its datatype

(c) Copyright 1992 Relational Atchitects Intl 15

RLX Administration

11 Profiles 1 -
12 Profile2 2 -~
13 Extra Copies-

14 Tools -
X Exit -

Enter END to exit

Copyright (c) Relat

—
V2.3 —mmmmmmmm e RLX Administrative Facility ----=-=-———--—-==-rm———-——==
Option ===
Userid - RAI4
1 RLX Libs - Update RLX target libraries ISPF Ver - 3.2
2 RLX Libs2 - Update RLX target libraries Op System- MVS/ESA
3 IBM Libs - Update IBM supplied load libraries CPU ID - 2123
4 Job Parms - Update tailored jobstream parameters CPU Model- 3090
5 Defaults - Update RLX/DB2 subsystem defaults)
6 Plans _— Tailor and bind RLX application plan(s)
7 Passwords - Update RLX product passwords
8 Create - RLX Demonstration tables
9 Load _ RLX Demonstration tables from sequential files
10 Demo - Conduct RLX Installation Verification Procedures

pDefine RLX Session Profiles for shared usage

RLX Shared Profile Maintainence Facility (REXX dialog)
Install additional RLX copies

(on the same or different DB2 subsystem)

Portfolio of RLX tools for developers and DBAs

Leave RLX Administration Menu

ional Architects, Inc. - 1987,1992 - All rights reserved

14

RLX Profile Defaults

Command ===

RLX068 -~ Your RLX Session Profile was updated successfully
CONTROL service settings

When RLX Error ===> F (C - cancel F - Filter R - Return)

Error Panel ===> D (D - Display N - No Display)

When ISPF Error ===> C (C - cancel R - Return)

Cursor Scope ===> L (L - Local G - Global)

vVariable Scope ===> L (L - Local G - Global)

Statement Scope ===> L (L - Local G -~ Global)

Maximum Digits ===> 9 (Before using scientific notation)

Tracing Option ===> 0 (Integer value between 0 and 255)

RC/LASTCC value ===> § (S - SQLCODE, N - Nonzero, Z -~ Zero)
-

———————————————————————— RLX User Profile Facility 1 ———ce—m—mmmme e
Command ==

U
v

RLX068 - Your RLX Session Profile was updated successfully

Environmental Parameters

DB2 Subsystem ===> DSN (DB2 subsystem with which to connect)
Retry Count ===> 0 (Connection retries if DB2 is not active)
Max CPU Time ===> ((in seconds before work is suspended)
Max Idle Time ===> 0 (in minutes before thread is terminated)

Application Plan Selection

Max Cursors ===> 50 (Maximum number of cursors referenced)

CSRs WITH HOLD ===> 00 (Max cursors maintained across COMMITSs)
Max Update ===> 50 (Max DELETE, INSERT, and UPDATE statements)
Isolation Lvl ===> C (C - Cursor Stability R - Repeatable Read)

Data Format Preferences

Numeric Format ===> E (I - Integer E - Edited Decimal)
Date format ===> T (I - Iso0,U - USA,E - EUR,J - JIS,L - Local)
Time format ===> I (I - IsO,U - USA,E - EUR,J - JIS,L - Local)

() Copyright 1992 Relational Atchitects Intl 17

PROGRAMMING WiTH OBJECTS: A REXX-BASED APPROACH

Er.C GIGUERE AND ROB VEITCH
LNIVERSITY OF WATERLOO

46

Programming With Objects:
A REXX-Based Approach

Eric Giguere
Rob Veitch

Computer Systems Group
University of Waterloo
Waterloo, Ontario, Canada
N2L 3G1

giguere@csg.uvaterloo.ca
rgv@csg.uwaterloo.ca

Introduction

The emergence of graphically-oriented user interfaces (GUIs) on a variety of multitasking platforms gives
rise to a whole new set of problems for REXX language implementors. What do you do when a console-
oriented language like REXX is to be ported to an environment like Microsoft Windows that lacks any
kind of command-line environment? How does a user access the GUI from REXX to create dialogs?
What changes are required to a REXX interpreter for it to function in a multitasking environment?

These are some of the issues we tackled in implementing a REXX interpreter, WRexx, for use in the
Microsoft Windows environment. This paper discusses our approaches to solving these problems, con-
centrating for the most part on the REXX-to-GUI interface, where we feel the interesting and original
work of this implementation lies. (Readers with no Windows programining experience may wish to read
the appendix for a quick overview of Windows.)

Note: Throughout this paper, Windows refers to the Microsoft Windows envixonment,‘ X11 refers to
the base X Window System, Xt refers to the X Tooclkit and DOS refers to MS-DOS/PC-DOS.

1. Adapting The REXX Console Model

The REXX language assumes the existence of a console through which it can interact with a user. The
SAY instruction is the most obvious example:

say "Please enter your name:"
pull name

47

Programming With Objects: A REXX-Based Approach

This model works well on systems like DOS, CMS, Unix (text mode) and OS/2 (text mode), where a
console is the normal mode of operation. It also works well on hybrid systems like X11 and the Amiga,
where virtual consoles coexist within the GUI environment. Systems like the Macintosh and Windows,

however, do not provide operating system support for consoles. Consoles become the responsibility of
the REXX environment.

WRexx uses a virtual console to handle user interaction and tracing, and a separate virtual console for
displaying error messages. The consoles are windows that can be moved and resized like any conventional
window. Users can also scroll through the console’s contents using the cursor keys or the scrollbars.
Neither console is displayed until input or output occurs, and once visible remains onscreen until explicitly
closed.

WRexx also adds a virtual console stream type to the REXX I/O model:
call lineout ’con:My Window’, ’Hello, world’

The consoles can be used with any of the stream-based functions.

2. UI Options for REXX

While virtual console support allows a REXX interpreter to function in a GUI environment, the inter-
preter will be more useful if it can also use the environment. Instead of consoles, REXX programs can
use windows, buttons, edit fields and other user interface objects to interact with the user.

When designing WRexx we considered three options for adding GUI access to REXX:

1. Language extensions. Extending the REXX language to include new instructions and program-
ming structures for building dialogs, menus and so on.

2. Ul-oriented functions. Adding functions like CreateMenu(), CreatePushButton(),
ShowWindow(), etc., as BIFs or through an external function library.

3. Object-oriented functions. Adding functions like UICreate(), UISet(), UIGet (), etc. These
functions work on generic user interface objects.

There are advantages and disadvantages to each approach. Language extensions make it éasy to connect
individual objects and events with REXX code:

menu “File"
item "Open..."
call OpenFile
item "Exit"
exit
endmenu

But such extensions are also completely non-portable and may require other changes to the REXX

language. We rejected this approach because we wanted to remain faithful to the language as defined
by Cowlishaw’s book [Cowlishaw 90].

48

Programming With Objects: A REXX-Based Approach

Once the function-based approach was chosen, it became a matter of choosing between the two kinds of
function libraries: very specific, Ul-oriented functions, or more generic, object-oriented functions. We
eventually settled on the object-oriented approach {described in the next section) because we felt it
would be a more consistent and extensible interface, even though Ul-oriented functions are the more
traditional approach for REXX extensions.

3. The OOUI Library

The WRexx GUI library is known simply as the “O0OUI” (object-oriented user interface, pronouced oo-
ee) library. It is implemented as a Windows dynamic link library (DLL) and is only needed by REXX
programs that wish to access the Windows GUI.

3.1 Objects and Classes

The OOUI library implements a hierarchical class structure of window objects such as edit fields, but-
tons and various containers. Each object has a set of properties that determines its current state and
behaviour, as well as a set of methods to alter that state. The properties, methods and behaviour of an
object are defined by its class. The library is hierarchical in the sense that each class inherits properties,
methods and behaviour from a parent class or superclass. The subclass usually adds new properties or
methods to those of the superclass. The current QQUI class hierarchy is shown in Figure 1. It is based
for the most part on the window types defined by Microsoft Windows.

C programmers can also use the facilities provided by the OOUI DLL to write their own DLLs to
implement new classes and subclasses.

3.2 Object Manipulation

Objects are manipulated from within WRexx using five functions. UICreate() creates an object of a
given class and UIDestroy() destroys an object. UISet() and UIGet() are used to set and retrieve
property values, while UIMethod() invokes a method. Objects are identified by handle (returned by
UICreate()) or by name (assigned by the user).

. Objects are also created hierarchically. Except for objects called Forms, each object has a parent object
on the screen which affects the child’s positioning and other properties. Each object tree is rooted on a
Form, which is a top-level (application or dialog) window.

For example, the following code creates a blank Form on the screen and immediately centers it:
f = UICreate(’’, ’Form’, ’visible’, ’'true’, ,
’height’, 100, ’width’, 200)
call UIMethod f, ’centerwindow’

This example attaches some text and a button to the Form:

f = UICreate(’’, ’Form’, ’visible’, ’false’)

49

Programming With Objects: A REXX-Based Approach

. 00U| Class Browser

File Yiew
Classes _ Sample Object
Primitive 4+ PushButton
CheckBox]

ImageRadioButton
EditField

EditBox
TextBox
ListBox

FileBox
SelectionBox

Manager

GroupBox

Form +

(] show Boxed

Figure 1: Viewing the OOUI Class Hierarchy

t = UICreate(f, ’TextBox’, ’caption’, ’This is some text’)
P = UICreate(f, 'PushButton’, ’caption’, ’Press Me!’)
call UISet f, ’visible’, ’true’

Because the Form is the parent object for both the TextBox and the PushButton, neither child object
will be shown until the Form itself is made visible.

Note: Form and GroupBox objects include behaviour (which may be turned off) for automatically
resizing and positioning their children, thus freeing the programmer from having to specify absolute
coordinates when positioning objects.

When finished with an object, a call to UIDestroy () recursively destroys an object and all of its childzen.

3.3 Events and REXX

Objects will generate events whenever something interesting occurs; for example, when a pushbutton is
clicked. These events must be passed to the REXX program that created the objects so that the program
can respond to the user. This is done using event strings for each object’s events. The event string is
merely a string that is associated with a specific event. The string will be returned to the REXX program
whenever that event occurs. The REXX program checks for pending events by calling the UIEvent()
function, which will return the next event string. For example, the PushBution object has a “click”

50

Programming With Objects: A REXX-Based Approach

Click Example

You pressed me 7 times

CQuit

Figure 2: Running ‘click.rex’

event signifying that the user has clicked on the button. The following program demonstrates the use
of event strings:

/* click.rex */

f = UICreate(’’, ’Form’, ’caption’, ’Click Example’)

p = UICreate(f, ’PushButton’, ’caption’, "You haven’t pressed me!",
r¢lick?’, ’call FirstPress’) .

e = UICreate(f, ’PushButton’, ’caption’, ’Quit’, ,

'click?, ’exit 0’)

do forever
interpret UIEvent()

end
FirstPress:
call UISet p, ’caption’, ’You pressed me once!’
count = 1
call UISet p, ’click’, ’call NextPress’
return
NextPress:

count = count + 1
call UISet p, ’caption’, ’You pressed me’ count ’times!’
return

The program creates a form with two pushbuttons and then enters an event loop, waiting for user events
to occur. When the user presses a button, an event string is returned to the program and the program
executes it using the interpret statement.

Notice that no language modifications or extensions were necessary to add GUI support to
REXX, only clever use of the interpret instruction.

In some cases it may not be obvious to which object an event belongs. The UIInfo() function can be
used to obtain this and other information on the string most recently returned by UIEvent ().

51

4.

Programming With Objects: A REXX-Based Approach

=|"/"" Graphical REXX Application Devel
File Edit Tools Code
RS Bl @ |malea

Figure 3: The GRAD Tool

Programming With OOUI

After using the OOUI library and REXX, three things become apparent:

1

. The traditional REXX program structure is no longer suitable. REXX programs typically
consist of a single file, augmented with external (and independent) functions. However, even the
simplest REXX application under Windows may display several Forms with numerous objects on
each form. The single-file approach in this case leads to monolithic programs that take longer to
load and are harder to debug. Performance is improved and debugging made simpler (and code
reuse encouraged) if an OQUI-based program is split across multiple small REXX files.

2. Exposing variables across files is extremely useful. Splitting a program into several files is

much more tolerable if variables can be exposed across files. WRexx has been extended so that
procedure expose will expose variables across file boundaries. (This feature becomes invaluable
to the programmer in a very short time.)

3. OOUI programming is ugly, so automated tools are needed. Adding object-oriented con-

cepts to a procedural language almost always seems to lead to ugly code, and REXX is no exception
to the rule. Writing the REXX programs to display complicated dialogs is itself a complicated
process if all the programmer has is a text editor to work with. Tools such as the class browser
(Figure 1) and GRAD! (Graphical REXX Application Development, Figure 3) can be of immense
help.

An issue that also comes up when using the OOUI library is that of multiple independent (i.e., modeless)
Forms. There is only one call to UIEvent() active at any time (because there is only a single thread

of

execution within a REXX program), and it may be in a different file or procedure. Problems can

then arise due to scoping issues. Luckily, there are few situations where modeless Forms are required.
(Problems do not arise with modal Forms because the previously active Form is always disabled before
the new one is made active.)

1The reader may find it interesting to note that both the browser and the GRAD tool are themselves written in REXX.

52

Programming With Objects: A REXX-Based Approach

5. Conclusions

Virtual consoles and the OOUI function library allow WRexx to thrive in the Windows environment.
With them, REXX can be used both as a general-purpose scripting language (which Windows lacks) or
for implementing real applications.

Appendix A. A Crash Course on Windows Programming

Readers with no GUI programming experience will discover that there is a substantial learning curve
involved in developing for systems such as Microsoft Windows. This section is intended to provide you
with enough information to understand the rest of the paper, but for more complete treatments of GUI
programming models please refer to the bibliography. (Note: The Windows programming model is
almost identical to the model used by the OS/2 Presentation Manager. Readers with PM experience
should have little trouble understanding the terminology used throughout this paper.)

What is Microsoft Windows?

Windows is a multitasking environment built on top of DOS. It provides a windowing environment,
device-independent graphics and inter-application communication (IAC) facilities. Windows applications
will not run under DOS, as they use a completely different application programming interface (API) and
a different programming model. Windows can emulate a DOS environment (the so-called “DOS box”)
in which to run DOS programs, but such programs cannot take advantage of Windows’ features.

The multitasking model used by Windows is often termed cooperative multitasking: each Windows
application will run until it voluntarily releases control of the CPU, at which time Windows will switch
control to another application. Well-behaved applications must ensure that they give up the CPU at
small time intervals. Unlike OS/2, Windows is not a preemptive system, nor does it support threads
(ightweight processes). Because of this there are no semaphores or other means of task synchronization.

Programs and User Interaction

~ Like other GUI platforms, Windows uses an event-driven programming model. Applications create one
or more windows, to which are attached user interface objects such as buttons and menus. The programs
then wait for user events (such as clicking on a button or pressing a key) to occur. When an event occurs,
Windows sends a message to the application that “owns” the event. The message is added to the end
of a queue which the application continually checks for new messages. Each Windows application has a
loop in it to do this (in pseudo-code):

do forever
get next event
process event
end

53

Programming With Objects: A REXX-Based Approach

The same type of loop is used in Macintosh, Amiga and X11 applications. In Windows (and PM) the loop
serves mainly to demultiplex the application message queue, dispatching messages to the appropriate
window procedure. When you create a window (or more accurately, a window class) you register a
window procedure to handle that window’s events, including those that bypass the application message
queue.

do forever
get next event
dispatch event
end

window procedure:
case message is BUTTONDOWN

etc.
end procedure

Note that Xt applications (this includes Motif applications) take this demultiplexing one step further by
registering callback routines for each event of interest.

Dynamic Link Libraries

The Dynamic Link Library (DLL) is a method for sharing code and resources between Windows appli-
cations. (Windows itself is implemented as a set of DLLs.) A DLL is a run-time library that is loaded
into memory on demand and dynamically linked to an application. Applications can call DLL routines
Jjust like normal (statically-linked) library routines.

One important feature of a DLL is that it has its own dataspace, shared by all tasks using the DLL.
(Note: OS/2 has DLLs as well, but OS/2 DLLs have a separate dataspace for each process.)

Dynamic Data Exchange

Dynamic Data Exchange (DDE) is a form of inter-application communication. Applications communi-
cate by setting up DDE “conversations” using invisible windows and a well-defined protocol. Communi-
cation is done by sending messages to these windows. The DDE protocol includes facilities for sending
commands and for maintaining data links.

References

[Cowlishaw 90] M. F. Cowlishaw. The REXX Language: A Practical Approach to Programming, 2nd
‘edition, Prentice-Hall, 1990.

54

REXXBITS

LINDA SUSKIND GREEN
IBM

55

REXXbits

Linda Suskind Green
SAA Procedures Language Interface Owner

IBM
Endicott Programming l.ab
G93/6C12
PO Box 6
Endicott, NY 13760

INTERNET: greenis@gdivm7.vnetl.ibm.com
Phone: 607-752-1172

May, 1992

© Copyright IBM Corporation 1991, 1992

56

Contents

e REXX History

REX becomes REXXttt ittt ittt e et e e et e ettt enenannns 2
REXX FIrstS . i ittt it it it ettt et s s e et n et a st aana s s eseanens 3
Jeopardy: REXX for $1000 ittt ettt 4
Jeopardy: REXX for 8800 ittt ittt 5
Jeopardy: REXX for 8600ttt ittt iie s annenanes 6
Jeopardy: REXX for 8400 ittt ittt ittt e e e 7
Jeopardy: REXX for 8200 ittt teriner i enans 8
Jeopardy: REXX for $500 ittt ettt 9
Jeopardy: REXX for $3400 ittt it ittt et 10
Jeopardy: REXX for 8300 i it i e 1
Jeopardy: REXX for $200 e e 12
Jeopardy: REXX for 83100 i ittt it ... 13
REXX BUtfons0ttt iiiis et itneeennnnnnnanoeneenens 14
Textof the REXX Buttons ittt rrnnnnnnnns 17
e REXX Excitements
REXX Excitement! ittt i it 19
2 1 20
REXX Symposium ittt i ittt 21
SHARE Interest in REXX i i it i it i teeneraanann 22
Publicationsttt it i e et e e e 23
REXX Books as of 3/92 i it ittt i i ettt rnaneannnens 24
REXX is International i ittt e e 25
REXX is International - Part 2 i it 26
REXX Trade Press Article Titles it eennnennns 27
REXX Language Level i ittt ittt 30
Implementations e e et e e 32
REXX Implementations by year First Available 33
e REXX Curiosities
Name of a REXX Entityttt t e et ien i 35
IS REXX B..i? ittt it ittt e et ittt e et e e e e 38
Cowlishaw Book Cover ittt it ittt et ennns 39

©Copyright IBM Corporation 1991, 1992 - REXX-LSG

Contents

® REXXbits Summary

REXXDbDits SUmMMaAry ittt ittt onsennensnannnnnanas 1

© Copyright IBM Corporation 1991, 1992

58

REXX-LSG

REXX History

©Copyright IBM Corporation 1991, 1992 59 REXX-LSG

REX becomes REXX"|

In the beginning, there was
REX (REformed eXecutor)

which eventually became

REXX (REstructured eXtended eXecutor)

©Copyright IBM Corporation 1991, 1992 60 REXX-LSG

REXX Firsts

1979 - Mike Cowlishaw (MFC) starts work on REX

1981 - First SHARE presentation on REX by Mike

1982 - First non-IBM location to get REX is SLLAC

1983 - First REXX interpreter shipped by IBM for VM

1985 - First non-IBM implementation of REXX shipped

1985 - First REXX trade press hook published

1987 - IBM Selects REXX as the SAA Procedures Language
1989 - First REXX compiler shipped by IBM for VM

1990 - SHARE REXX committee becomes a project

1990 - First SHARE presentation on Object Oriénted REXX

1990 - First Annual REXX symposium held (organized by
SLACs Cathie Dager)

1991 - First REXX ANSI committee meeting held

©Copyright IBM Corpofation 1991, 1992 61 ' REXX-LSG

Jeopardy: REXX for $1000

Answer is:

19

Question is:

What are the number of official members of X3J18
(ANSI REXX committee)?

© Copyright IBM Corporation 1991, 1992 62 REXX-LSG

Jeopardy: REXX for $800

Answer is:

118

Question is:

How many people attended the first annual REXX
symposium in 1990 (as listed in the proceedings)?

©Copyright IBM Corporation 1991, 1992 63 REXX-LSG

Jeopardy: REXX for $600

Answer is:

203

Question is:

What is the number of pages in the second
edition of TRL (The REXX l.Language) book by
Mike Cowlishaw? |

©Qopyright IBM Corpaoration 1991, 1992 64 REXX-LSG

Jeopardy: REXX for $400

Answer is:

646

Question is:

What are the number of pages in TRH (The REXX
Handbook) written by many people in this room?

©Copyright IBM Corporation 1991, 1992 65 REXX-LSG

Jeopardy: REXX for $200

Answer is:

4794

Question is:

How many days has it been since REXX was
started on March 20, 1979? (13 years, 45 days)

© Copyright IBM Corporation 1991, 1992 66 REXX-LSG

Jeopardy: REXX for $500

Answer is;:

Question is:

How many programming languages has MFC
designed?
Note that REXX is his latest!!!!

©Copyright IBM Corporation 1991, 1992 67 REXX-LSG

Jeopardy: REXX for $400

Answer is:

350

Question is:

What is the peak amount of REXX electronic mail
MFC received per working day?

© Copyright IBM Corporation 1991, 1992 68 REXX-LSG

Jeopardy: REXX for $300

Answer is:

4000

Question is:

What is the approximate number of hours
MFC spent on REXX before the first product
shipped?

© Copyright IBM Corporation 1991, 1992 69 REXX-LSG

Jeopardy: REXX for $200

Answer is:

500,000

Question is:

What are the approximate number of REXX related
electronic mail MFC has read since REXX started?

©Copyright IBM Corporation 1991, 1992 70 REXX-LSG

Jeopardy: REXX for $100

Answer is:

over 6,000,000

Question is:

What is the largest known total number of lines
of REXX code used in any one company?

© Copyright IBM Corporation 1991, 1992 7 REXX-LSG

"REXX Buttons-

Customer Crealed:

T i
o Ry / \
o - y 4,.’,' - ;:‘)'{\)g\,
E&EI%(;tX | o (’_{___M___‘k ' %‘%?; n()‘

phgic/, — / wileb

| /////‘Y’J\

has

(-
r (.

(vgj’y s
P S
) |

e ya

' A’.. * VY
|)”,lﬁ,. Y

APPEAL

©Copyright IBM Corporation 1991, 1992 79 REXX-LSG

REXX Buttons

Customer Created:

) /v ANy, e I

. 'A.',."" TV v
rS O/E : RANNOSAURUS

/

{omexx (REXX

RATED
| . ISOEVY

1've been

“RENN.
like it!l

© Copyright IBM Corporation 1991, 1992 73 REXX-LSG

REXX Buttons ...

IBM Created:

" SAA Procedures -
- Language/REXX

©Copyright IBM Corporation 1991, 1992 74 REXX-LSG

Text of the REXX Buttons

General

e REX is not BASIC

e REXX is not BASIC

e The beginning /* of the end

e REXX RX for the future

e ['ve been REXX’'d and | like it
e REXXis nota ..

e REXX Havoc

e REXX, Libs and Video Displays

e [* Best Language of the Year */ VM SHARE AWARD
e VM/SP has REXX Appeal

e RXSQL good medicine!

e Programming Power-CUA 2001-REXX

SAA
e SAA Procedures Language/REXX

TSO/E

e | practice safe REXX (TSO/E v2)
e TSOJ/E is REXX rated!

e Tyrannosaurus REXX TSO/E v2
e TSOJ/E Puttin” on the REXX

Copyright IBM Corporation 1991, 1992 75 REXX-LSG

REXX Excitements

©_Copyright IBM Corporation 1991, 1992 REXX-LSG

76

REXX Excitement!

ANSI committee started

» REXX Users start a yearly REXX Symposium in 1990

» SHARE elevated REXX to a Project

» Increasing number of books and arficles on REXX

» Increasing number of REXX Implementations on different
platforms by increasing number of companies

)Copyright IBM Corporation 1991, 1992 77 REXX-LSG

ANSI

REXX is one of 15 languages to be worked on as an ANSI
standardized language. Others are:

APL
APT
BASIC

C

C++
COBOL
DATABUS
DIBOL
FORTH
FORTRAN
LISP
PASCAL
PL/I
PROLOG

L 2R 2R 2R 2K 2R 2R 2R 25 25 25 2% 2R BN 4

Note that the languages listed are at different levels of
standardization.

© Copyright IBM Corporation 1991, 1992 78 REXX-LSG

REXX Symposium

Annual event started in 1990
Run by Users of REXX

Attended by all vendors of REXX implementations and their
users

includes presentations, demos, panel discussions, etc
Initiated by Cathie Dager of SLAC in 1990

1990: 118 attendees for a single day
1991: expanded to 2 days
- 1992: planned for May 3-5, 1992 in Annapolis, MD

Purpose: "a gathering where REXX users and developers
could meet each other, exchange ideas, and information
about the language and discuss future plans.”

Copyright IBM Corporation 1991, 1992 79 REXX-LSG

SHARE Interest in Rexx]

SHARE Meeting Number of REXX Sessions
72 (3/89) 9

73 (8/89) 13

T4 (3/90) 23

4.5 (5/90) REXX Project approved
75 (8/30) 25

76 (3/91) 20

77 (8/91) 28

78 (3/92) 4]

Note that the sessions are in the REXX Project, MVS Project, and
CMS Project.

© Copyright IBM Corporation 1991, 1992 80 REXX-LSG

Publications

s of 12/90, REXX has been the subject of:

4 books (plus 4 in the works)

40 User Group Presentations

40 product manuals

40 articles

Copyright IBM Corporation 1991, 1992 81 REXX-LSG

REXX Books as of 3/92

Published:

*

The REXX Language, A Practical Approach to Programming
by Mike Cowlishaw (1985, 1990)

¢ Modern Programming Using REXX by Bob O’Hara and Dave
Gomberg (1985,1988)

¢ REXX in the TSO Environment by Gabriel F. Gargiulo (1990)

¢ Practical Usage of REXX by Anthony Rudd (1990)

¢ Using ARexx on the Amiga by Chris Zamara and Nick
Sullivan (1991)

¢ Amiga Programmers Guide to AREXX by Eric Giguere (1991)

¢ REXX Handbook edited by Gabe Goldberg and Phil Smith
(1992)

¢ Programming in REXX by Charles Daney (1992)

Planned:

¢ 3 others being worked on

©Copyright IBM Corporation 1991, 1992 82 REXX-LSG

REXX is International

REXX books and manuals have been translated into many

languages, including:

¢ Chinese

¢ French

¢ German

¢ Japanese

¢ Portuguese

¢ Spanish

© Copyright IBM Corporation 1991, 1992 83

REXX-L.SG

REXX is International - Part 2

REXX presentations have been given in the following countries:
Austria
Australia
Belgium
Canada
England
France
Germany
Holland
Japan
Jersey
Scotland
Spain

United States

® & & 6 5 6 & 6 & O > > o

Wales

As of 1982, MFC had received mail from over 30 countries!

©Copyright IBM Corporation 1991, 1992 84 REXX-LSG

REXX Trade Press Article Titles |.

EXOTIC LANGUAGE
OF THE MONTH CLUB

- REXX: A begmner s ollel ncllve

L]

e W pepxso

REXX-—-PorTran‘ of a
| New Procedures Language

Capture cross-system capab:lmes with REXX

"— e .
. ————
e manrve e

©Copyr gfllBMC rporation 1991 85 REXX

REXX Trade Press Article Titles |.
AR j\im\" l' ; .

Lotus Makes a Case for RIEXX

To FFoil Microsolt's BASIC Plan

analysis \ Power.ful REXX vs. Popular BASTC |

XX

LA - : . ' '/)/(Zp(,//(’\\
\ USER'S DREAM IN A T— /

YSTEM PROGRAMMER'S WORLD

© Copyright IBM Corporation 1991 86 REXX

REXX Trade Press Article Titles |

Uhhze The

[‘he system iapphcatlon
wwchitecture connection

© Copyright IBM Corporation 1991 87 REXX

REXX Language Level

REXX Level Usage
3.20 CMS release 3
3.40 CMS release 4, 5, 5.5

MUSIC/SP version 2.2

3.45 CMS release 6
TSO/E version 2. release |

©Copyright IBM Corporation 1991, 1992 &8 REXX-LSG

REXX Language Level ...

3.46 CMS release 6 with SPE
TSO/E wver 2, rel 1 with APAR
370 compiler
SAA Procedures Language level 1
3.48 0S/400 rel 1.3
3.50 Cowlishaw 1985 hook
Portable REXX ver 1.05 (DOS)
uniREXX C(UNIX, AIX)
Personal REXX version 2.0
(0s/72, DOS)
AREXX (Amiga)
TREXX (Tandem)
Open REXX (DOS, 0S/72 MVS, VMS)
4.00 0S/72 release 1.3, 2.0
Cowlishaw 138380 hook
SAA Procedures Language level 2
Personal REXX version 3.0
(WINDOWS, 0sS/72, DOS)
Portable REXX ver 1.10 (DOS)
REXX/Windows

© Copyright IBM Corporation 1991, 1992 89

REXX-LSG

Implementations

There are REXX implementations for:

*

*

¢

¢

AIX

Amiga (interpreter/compiler)
DOS

0S/2

0S/400

Tandem

TSO (interpreter/compiler)

UNIX

VM (interpreter/compiler)
VMS

WINDOWS

from 9 different sources.

©Copyright IBM Corporation 1991, 1992 90

REXX-LSG

REXX Implementations by year First Available

Year New Platform
1983 VM (IBM)
1885 PC—DOS (Manstield)
1887 Amiga (W. S. Hawes)
1988 PC—DOS (Kilowatt)
TSO (IBM)
19889 0s/72 (Manstield)
VM Compiler (IBM)
1980 UNIX/AIX(Workstation Group)
Tandem (Kilowatt)
0s/72 (IBM)
AS/400 (IBM)
1991v DEC/VMS (Workstation Group)
VM Compiler(Systems Center)
370 compiler (IBM)
Amiga Compiler
(Dineen Edwards Group)
1992 Windows (Kilowatt)

Windows (Quercus)
MS—DO0S (Tritus)

0s/2 (Tritus)
UNIX/AIX (Becket Group]l

©Copyright IBM Corporation 1991, 1992 91

REXX-LSG

REXX Curiosities

©Copyright IBM Corporation 1991, 1992 92 REXX-LSG

Name of a REXX Entity

What is the name of a REXX entity??? Is it:

* Program

¢ Exec

¢ Macro

¢ Procedure

¢ Shell

¢ Script

© Copyright IBM Corporation 1991, 1992 93

REXX-LSG

Name of a REXX Entity ...

Term definitions are:

Program:

A sequence of instructions suitable for processing
by a computer. Processing may include the use of
an assembler, a compiler, an interpreter, or a
translator to prepare the program for execution, as
well as to execute it.

Exec procedure: In VM, a CMS function that allows users to

create new commands by setting up frequently
used sequences of CP commands, CMS
commands, or both, together with conditional
branching facilities, into special procedures to
eliminate the repetitious rekeying of those
command sequences.

Macro instruction: An instruction that when executed causes the

execution of a predefined sequence of instructions
in the same source language.

Procedure: A set of related control statements that cause one

or more programs to be performed.

©Copyright IBM Corporation 1991, 1992 94 REXX-LSG

Name of a REXX Entity ...

shell: A software interface between a user and the
operating system of a computer. Shell programs
interpret commands and user interactions on
devices such as keyboards, pointing devices, and
touch-sensitive screens and communicate them to
the operating system.

script: In artificial intelligence, a data structure pertaining
to a particular area of knowledge and consisting of
slots which represent a set of events which can
occur under a given situation.

Note: definitions come from the IBM "Dictionary of Computing”.

©Copyright IBM Corporation 1991, 1952 95 REXX-LSG

Is REXX a....?

¢ Programming language

¢ Exec language

¢ Macro language

¢ Procedure language

¢ Command procedures language
¢ Extension language

¢ System Extension language

¢ Glue language

¢ Shell language

¢ Batch language

¢ Scripting language

© Copyright IBM Corporation 1991, 1992 96 REXX-LSG

Cowlishaw Bookwcdger

The 1990 edition of the Cowlishaw book has a new cover which
includes the following changes:

¢ King now matches the playing cards King of Spades
meaning

s King faces the opposite way

s King holds the sword differently

King was chosen because REX is Latin for King!

©Copyright IBM Corporation 1991, 1992 97 REXX-LSG

REXXbits Summary

©Copyright IBM Corporation 1991, 1992 og REXX-LSG

REXXbits Summary

¢ REXX is an international language

¢ REXX is growing in numbers of

implementers

different platforms available

users

books/articles.

¢ REXX is in the process of being formally standardized.

¢ REXX usage is in the "eyes of the beholder”!

© Copyright IBM Corporation 1991, 1992 99 REXX-LSG

COMMUNICATIONS AND EVENT HANDLING WITH REXX

RAINER F. HAUSER
IBM

100

Communications
and
Event Handling
with REXX

Rainer F. Hauser

May 1992

Communications and Event Handling with REXX

Rainer F. Hauser 101 May 1992

====7= Ziirich Research Laboratory

Some Questions

REXX is a sequential procedure (macro, control or glue) lan-
guage. Is it really, or could it be that it is actually a programming
language? What about REXX and concurrency?

Communications:

Is REXX the right choice for programming communications soft-
ware? Does it provide the necessary constructs for such pro-
grams? What about the performance?

Event Handling:

Is REXX suitable for general event handling? What is missing
today for writing such programs? What are the events which fit
the paradigm of REXX?

Three REXX Extension Packages:

A kind of answer "by doing” to some of these questions:

e REXXIUCV: REXX Interface to IUCV
o REXXSOCK: REXX Interface to TCP/IP Socket Calls

o REXXWAIT: REXX General Purpose Event Handling with
a Central Wait Function

Communications and Event Handling with REXX

Rainer F. Hauser 102 May 1992

i—‘l——-»‘
=

= == =7= Ziirich Research Laboratory

REXX and Concurrency Today

A REXX program can process events sequentially. To do so, it
needs the possibility to find out when an event has occurred,
but has not yet been consumed.

The following REXX statements determine whether a console event is
pending:

if externals()>0 then ...

When no event is currently pending, it needs the possibility to
wait for an event.

The following REXX statements wait for a console event:

say ’'Enter your name, please.’
parse external name

To avoid being blocked despite a pending event which could be
processed, it needs the possibility to wait for one event within a
given list of events.

Today, a REXX program can

e sometimes not determine whether a specific event is
pending

e often not wait for a specific event

e not wait for one event within a given list of events

Communications and Event Handling with REXX

Rainer F. Hauser 103 May 1992

I
i

=%= Ziirich Research Laboratory

| [

REXX and Communications

One system facility and the two REXX extension packages
- REXXIUCV and REXXSOCK provide communications in REXX:

APPC:

APPC is available via the SAA Common Programming Interface
Communications (CPI-C) and the Callable Service Library
(CSL).

IUCV:

IUCV is a communications facility available on VM systems.
The REXXIUCV program provides access to it from REXX on
VM/CMS. Therefore, it is a system—dependent communications
extension for REXX.

TCP/IP:

TCP/IP is a communications facility available on various differ-
ent platforms. The REXXSOCK program provides access to it
(i.e. to the socket calls) from REXX on VM/CMS. Therefore, it
has been designed as a system—independent communications
extension for REXX.

- Communications and Event Handling with REXX

-~ Rainer F. Hauser 104 May 1992

)
|

=7= Ziirich Research Laboratory

|
1y
!

REXXIUCV:

Syntax: result = IUCV(subfundtion, argi, .., ardgp)

Subfunctions:

o INIT, TERM, QUERY, WAIT, ...

e CONNECT, ACCEPT, SEVER, ...
o SEND, RECEIVE, ...

Examples:
tempdata = IUCV(’CONNECT’,’'RFH’,255,’No’)
parse var tempdata pathid msglim .
inttype = IUCV('WAIT’, 600, " NOWAIT’)

nextint = IUCV(’/QUERY’,"NEXT’)
parse var nextbuf . buftype bufpathid rest

Problems:
e Assembler Paradigm vs. REXX Paradigm

e Special Purpose Wait Subfunction

Communications and Event Handling with REXX

Rainer F. Hauser 105 May 1992

.

== =%= Ziirich Research Laboratory

REXXSOCK:

| Syntax: result = TCPIP (subfunction, arg;, ..., argn)

Subfunctions:
e INIT, TERM, QUERY, GETHOSTID, ...

. ‘S"O'CKET, BIND, CONNECT, ACCEPT, CLOSE, ...
e« WRITE, READ, SEND, RECYV, ...

Examples:
inetaddr = ’AF INET 1291 9.4.3.27
socketid = TCPIP (' SOCKET’)
tempdata = TCPIP (' CONNECT’, socketid, inetaddr)
- Problems:

e C Paradigm vs. REXX Paradigm
) Functions such as CONNECT and READ block the caller

o Data can be encoded as ASCII or EBCDIC

Communications and Event Handling with REXX

Rainer F. Hauser 106 May 1992

== =7z Ziirich Research Laboratory

Common Design Decisions

Both packages are based on the following design decisions:

The status of the communications facility is kept by the
REXX extension package and can be determined by the
REXX program.

The status of the communications facility should not be
destroyed when the REXX program terminates.

Individual IUCV primitives or TCP/IP socket calls should
be provided as individual function calls to REXX. In other
words; there should be a one-to—one mapping between
REXX functions and IUCV primitives or TCP/IP socket
calls, respectively. |

A REXX program should be allowed to process events
selectively as appropriate to the program (and the pro-
grammer).

Return codes are presented to the REXX program in the
REXX variable RC.

Limits such as the maximum length of messages are nec-
essary, but should be easy to change. (Such limits should
also make sense to human beings and not to computers.
Therefore, values such as 1000 are a better choice than
values such as 1024).

Communications and Event Handling with REXX

Rainer F. Hauser 107 May 1992

L M Caerinis
- — -

====7= Ziirich Research Laboratory

Experiences

REXX as a programming language is well suited for commu-
nications software, but with the current language features, there
are some limitations and inconveniencies:

Conversions:

REXX does not provide functions to convert ASCII strings to
EBCDIC strings and vice versa.

astring = TCPIP (’'READ’,socketid)
estring = A2E (astring)

Event Handling:

REXX does not provide functions to wait for one of several ex-
pected events. Assume that a REXX program needs to wait for
either an IUCV or a TCP/IP event.

event = WAIT(’IUCV PATH 5’,’/TIME 10MIN’)
event = WAIT("TCP/IP READ 4’,’'TIME 10MIN’)
event WAIT (fIUCV PATH 57,’TCP/IP READ 47)

i

Communications and Event Handling with REXX

Rainer F. Hauser 108 May 1992

=== =7= /urich Kesearch Laboratory

REXX and Event Handling

The REXX extension package REXXWAIT on VM/CMS pro-
vides basic and advanced event handling in REXX through a
central wait function for REXX programs and a low—level inter-
face for REXX extension programs.

State of the Art (The REXX Handbook):

e Amiga REXX: IPC (waiting on message port)

o REXX for Tandem: DELAY function and TACLIO IPC
e REXX for Unix: Plan for IPC (SOCKETS, STREAMS)
o REXXIUCV: IUCV(WAIT ,seconds)

Common Events:

o Keyboard and Mouse: Character Oriented, Block Mode,
Window Applications ...

° Time: Relative and Absolute Time, Time Events in Files ...
o Mail: Messages, Notes ...

e Synchronization: Inter-Process Communication, Locks,
Semaphores ...

Communications and Event Handling with REXX

Rainer F. Hauser 109 May 1992

=7= Ziirich Research Laboratory

- REXXWAIT

WAIT Function Syntax:

event = WAIT (event, args,, .., event, argsy)

Events:

o Basic Events: CONS, WNG, MSQG, ..., MAIL, FILE, TIME
e, Additional Events: IUCV, TCP/IP

'Examples:

event = WAIT(’CONS NOREAD’,’TIME 10MIN’)

event = WAIT(’CONS’,’MSG’,’FILE MY TIMEFILE A6’)
event = WAIT('TIME ==:=0:00","ALL")

event = WAIT(’/IUCV TYPE 3 PATH 157)

event = WAIT(’TCP/IP READ 15 WRITE 20 21’,’CONS’)
event = WAIT ('TIME 10S’,’TIME 10:30:15’,’ TIME’)

- SETVALUE Function Syntax:
result = SETVALUE (event args)

QUERYVALUE Function Syntax:
~result = QUERYVALUE (event args)

Communications and Event Handling with REXX

Rainer F. Hauser 110 May 1992

———— i Nt T
. e e wew o

= == =%z Ziirich Research Laboratory

REXXWAIT REXXTRY Sample Session

Sample session with REXXTRY, the facility to interactively
execute REXX instructions:

say setvalue ('MAIL CLASS * NOHOLD')

OFF

R} <REXXTRY > 'ttt teeveroseesstennasasssssessnssssssassnsnnnss
say wait ('MAIL’,’CONS’)

RDR FILE (0050 SENT FROM NET PUN WAS 1991 RECS 0022
File (2404) spooled to HAUSER -- origin ZURLVMI1 (RFH)
MAIL 0050

R; SREXXTRY > it eeeeescoaecsssssossossssosnsnsscsocssosossss
say queryval ('MAIL 507)

1992/04/16 05:39:41 ZURLVMI1 (RFH) NOHOLD A 0 O PROFILE EXEC
R; SREXXTRY> 4 vtieeeeeeneeasessseeeeeosanasnseaassssnonsss
say queryval ('MAIL 50 TAG’)

2 NetData

R; <REXXTRY> ittt nunesessessesssssesessssnssnossonsnssssssas
say queryval ('MAIL 50 NETDATA')

2 ZURLVM1 (RFH) ALMVMD (HAUSER) 19920416133936499588 Ack
R; SREXXTRY> ittt eteenoeerorsssonocsssessncsvessossos .
say queryval ('MAIL 50 NETDATA 1')

Note

R; CREXXTRY > ittt ieesonesnnsesosssossossssssnsocsocnsnsseans
say queryval ('MAIL 50 NETDATA 2')

File A2 .PROFILE.EXEC

R; SREXXTRY > ittt tiveroessosccesnscsonssssssssessssascsosscsnssses

Communications and Event Handling with REXX

Rainer F. Hauser 111 May 1992

= =3 =7z Ziirich Research Laboratory

REXXWAIT REXX Sample Program

Sample program using REXXWAIT and REXXSOCK (without
the necessary error testing):

address command "RXSOCKFN LOAD’
call TCPIP ’INITIALIZE’, ’'TCPIP’
1if rc<>0 then exit rc
s = TCPIP (" SOCKET’)
call TCPIP ’"BIND’, s, 'AF INET 1952 9.4.3.2’
call TCPIP ’'LISTEN’, s, 5
call SETVALUE ’TCP/IP SOCKET’ s ’NON-BLOCKING’
do forever
status = TCPIP ('QUERY’, ’STATUS’)
parse var status init iucvstate reason
if iucvstate<>’Connected’ then exit 3000
eventd = WAIT(’TCP/IP READ’ s, ’'CONS’, 'TIME 1H’)
parse upper var eventd handler rest
select
when handler='TCP/IP’ then do
desc = TCPIP(’'ACCEPT’, s)
parse var desc d caf cport cipaddr

call TCPIP 'CLOSE’, d
end
when handler=’CONS’ then leave
otherwise nop
end

end

call TCPIP ’'TERMINATE’

address command ’NUCXDROP RXSOCKEN’

Communications and Event Handling with REXX

“Rainer F. Hauser 112 May 1992

====7= Ziirich Research Laboratory

REXXWAIT Low-Level Interface

Through the low-level interface provided by REXXWAIT, other
programs (such as REXXIUCV and REXXSOCK) can export an
event name (such as IUCV and TCP/IP) and some branch ad-
dresses for communicating with the REXX programs using the
“functions provided by REXXWAIT.

Communications and Event Handling with REXX

Rainer F. Hauser 113 May 1992

2.
W te 7
PR

Ziirich Research Laboratory

REXXWAIT Assembler Sample

- The following /370 Assembler code shows the code to register
an event handler:

or

RXWPLIST
“RXWCMD

RXWNAME
RXWWTECB
RXWWAIT
RXWWAITE
RXWSETV
RXWQORYV

LA R1,RXWPLIST R1 —> PLIST
SVC 202 Call CMS
DC AL4 (1) Error

CMSCALL PLIST=RXWPLIST,CALLTYP=PROGRAM, ...

DS OF Alignment

DC CL8’ RXWAITFN' CMS command

"DC < "~ CL4’SET’ RXW command

DC XL4700000000" Special fence

DC CL8"TCP/IP’ Registered name
DC Fr-1’ Address of ECB
DC Fr-1r BAL address WAIT
DC Fr-1 BAL address WAIT-E
DC Fr-1’ BAL address SETV
DC Fr-1 BAL address QRYV
DC Fr-1’ Not used yet

DC Fr-1 Not used yet

DC Fr-1 Not used yet

The program registers the event handler name "TCP/IP" and
prowdes the followmg BAL or ECB addresses (or F'-1’):

e For WAIT Walt ECB WAIT and WAIT-E

$i L

. For SETVALUE SETV

- o For QUERYVALUE: QRYV

Communications and Event Handling with REXX

....Rainer F. Hauser 114 May 1992

== =7= Zlrich Research Laboratory

REXXWAIT Register Conventions

When REXXWAIT passes the control to an event handler, the
following registers are used:

RO length of arguments

R1 pointer to arguments

R2 call sequence flag (for WAIT only)

R12 address of exit routine (base register)
R13 save area for general purpose registers
R14 return address

R15 same as R12

The event handler passes the following data in the registers
back to REXXWAIT:

RO length of result string
R1 pointer to result string
R15 return code (0, 1 or error return code)

Example:

Event Handler 'ABCD’:

WAIT(’ABCD This is the argument string’)
== ’'ABCD This is the result string’

The event handler sees the arguments 'This is the argument
string’ and returns the result 'This is the result string’ to the
REXXWAIT program which subtracts or adds the event handler
name 'ABCD’, respectively.

Communications and Event Handling with REXX

Rainer F. Hauser 115 May 1992

= == =%= Ziirich Research Laboratory

Considerations

Portability:

Some of the basic events are generally available on all operat-
ing system platforms on which REXX is implemented. Other
events require different arguments. Again others may not be
available at all.

WAIT (' TIME 10:30:15")
WAIT (/ TIME 2HOURS 15MINUTES’)
WATT (' CONS READ’)

WAIT ('FILE MY TIMEFILE A6')
WAIT ('FILE C:\REXXSYS\MY.TIM’)
WAIT ('FILE’ mytimefile)
SETVALUE (' MSG ON’)
SETVALUE (’ SMSG VMCF')

Operating System Support vs. REXX Support:

The same functions can be provided to a REXX program either
as Operating System facilities or as REXX built-in functions:

e EXECIO vs. linein() and lineout() etc.
e WAKEUP vs. wait() etc.

The WAKEUP program (version 5.5) has strongly influenced the
design and implementation of REXXWAIT!

Communications and Event Handling with REXX

Rainer F. Hauser 116 May 1992

REXXTOOLS/MVS

EARL D. HODIL
CHICAGO-SOFT

117

[

REXXTOOLS/MVS

A Toolkit for MVS Programmers

REXX Symposium
Annapolis, Maryiand
May 5, 1992

Eari D. Hodil
Chicago-Soft, Ltd.

45 Lyme Road, #307
Hanover, New Hampshire 03755
Phone: (603) 643-4002
FAX: (603) 643-4571
MCIMAIL: CHISOFT

© Copyright 1982, Chicago-Soft, Ltd.

Introduction

What Is REXXTOOLS/MVS?

* REXXTOOLS is a collection of assembler-based
functions and utilities designed to help the REXX
programmer be more productive.

Who will use REXXTOOLS/MVS?

* Application programmers - ISPF Dialogs, batch jobs,
etc. for end-users.

System programmers - function packages, utilities
for themselves and application programmers.

© Copyright 1992, Chicago-Soft, Ltd.

4

Introduction

REXXTOOLS Components (REXX perspective):
* REXX function package - 29 new functions
* REXX host command environment - ADDRESS REXX

* REXX compiler - encapsulates REXX programs in
standalone load modules

* Sample applications - TSO utilities, programming
examples

© Copyright 1962, Chicago-Soft, Lid.

Introduction

REXX Functions:
- ABC = MYFUNC(ARG1, ARG2)
- ARG1 & ARG2 are arguments passed to the function
- MYFUNC returns a value

- MYFUNC could have side-effects (l.e., set other variables
in the calier's variable pool)

REXX Subroutines:
- CALL MYFUNC ARGT1 ARG2
- Arguments have the same meaning as for functions

- Can optionalily return a vaiue (RESULT special variable)

© Copyright 1992, Chicago-Soff, Lid.

119

Introduction

How are functions and subroutines developed?

*

REXX - internal and external subroutines and functions
Compiled/assembled languages (a la REXXTOOLS)
Search order
Function packages

- Groups related functions together

- Pre-loaded at environment initialization

- Can' be developed in REXX (uniess you have REXX
compilert)

© Copyright 1962, Chicago-Soft, Lid.

Introduction

REXX Host Commands:

*

any expression not identified as a language construct
"VGET (ZUSER) SHARED"

expression is evaluated and string is passed to host
command environment routine.

ADDRESS instruction is used to switch host command
environments,

ADDRESS TSO "LISTA ST H"

Each REXX environment has a default host command
environment

Parameters module host command environment table maps
environment names to routines.

© Copyright 1992, Chicago-Soft, Lid.

120

VSAM Functions

Why VSAM?
* Lots of existing VSAM files
* Better for multi-user applications than ISPF Tables
What is supported?
» All VSAM dataset organizations
- Key-Sequenced Data Set
- Entry-Sequenced Data Set
- Relative Record Data Set
- Linear Dataset (sort of)
* interface is patterned after DFP macros

© Copyright 1902, Chicago-Soft, Lid.

VSAM Functions

Opening and Closing VSAM Datasets:
*» CALL OPEN 'VSAM, ddname [,acboptions]
* CALL CLOSE 'VSAM/, ddname
* ACB options string
*(ADR,SEQ,NDF)"
Reading and Writing Records:
* CALL GET ddname [,key] [,rploptions]
*» CALL PUT ddname, record [,key] [,rploptions]
* RPL options string
"(KEY,DIR,GEN)"
Deleting Records:
* CALL ERASE ddname

© Copyright 1952, Chicago-Soft, Lid.

i

121

VSAM Functions

Other VSAM Functions

* CALL ENDREQ ddname

* CALL POINT ddname [,key] [,rploptions]
* CALL VERIFYV ddname

© Copyright 1962, Chicago-Soft, Lid. 9

15

VSAM Functions

ACB Options:
® Most ACB options are supported:

ADR, CNV, KEY, DIR, SEQ, SKP, IN, OUT, DFR, NDF,
NIS, SIS, NRM, AIX, NRS, RST

* Stay in effect from OPEN to CLOSE

RPL Options:
* Most RPL options are supported:

ADR, CNV, KEY, DIR, SEQ, SKP, ARD, LRD, FWD,
BWD, NSP, NUP, UPD, KEQ, KGE, FKS, GEN

® Shared between calls for each ddname.
* Stay in effect until changed

© Copyright 1982, Chicago-Soft, Lid. 10 e

122

VSAM Functions

Special Variables:

* Used to return information from functions
* RC and REASON - usually straight from VSAM
* OPEN:

- SRXTTYPE

- SRXTLRCL

- S$RXTCNVL

- S$RXTKEYO

- S$RXTKEYL

- S$RXTRECS

- $RXTHRBA

- $RXTERBA

_o Copyright 1992 , Chicago-Soft, Lid. 11

- VSAM Functions

Special Variables (continued)
* GET/PUT:
- S$RXTKEY
-~ S$RXTRBA
- $RXTRECL

© Copyright 1992, Chicago-Soft, Lid. 12

123

1=

VSAM Functions

Sample REXX program:
I* REXX */ .
ADDRESS TS0 *ALLOC FI{RXTKSDS) DA(RXTKSDS.DATA) SHR REU"
CALL OPEN 'VSAM', 'RXTKSDS', *'(KEY,DIR,IN)’
CALL TPUT "ENTER KEY OR 'END':", 'ASIS'
KEY = TRANSLATE(TGET{, ‘WAIT'})
DO WHILE KEY <> ‘END®
CALL GET 'RXTKSDS', KEY, '(DIR,GEN,KEY}’
IF RC <> 0 THEN
SAY 'NO MATCH FOR KEY='KEY' FOUND.'
ELSE
SAY °'RECORD='RESULT
CALL TPUT "ENTER KEY OR 'END':", 'ASIS’
KEY = TRANSLATE(TGET(, 'WAIT'))
END
CALL CLOSE 'VSAM', 'RXTKSDS'
ADDRESS TSO "FREE FI{RXTKSDS})"
EXIT

© Copyright 1982 , Chicago-Soft, Lid. 13

MVS Supervisor Services

Access to System Services
* Patterned after and Interfaces to application macros
® Problem state only
* All are task related
* Functional areas:
- Virtual Storage Management
- Resource Control
- Security

- Operator Communication and logging

© Copyright 1992, Chicago-Soft, Lid. 14

124

MVS Supervisor Services

Virtual Storage Management:
STGAD = GETMAIN(amount {,subpool] [,loc] [,bndry] [,fill])
CALL FREEMAIN addr, amount [,subpool])

Uses:
® Communicating with non-function asm programs

* Multi-tasking REXX application inter-task communication

© Copyright 1992, Chicago-Soft, Lid.

15

51

MVS Supervisor Services

Resource Control

* Problem: How to share a resource between asynchronous
processes?

* Reserving and freeing an arbitrary resource:
CALL ENQ major, minor [,control] [,scope] [,reqtype]
CALL DEQ major, minor [,scope] [,reqtype]

* Halting execution until conditions are right:
CALL WAIT 'ECB, ecbad [,longwait]
CALL WAIT 'ECBLIST, ecblad [,eventno] [,longwait]
CALL WAIT ‘SEC', seconds

* Signaling event completion:
CALL POST ecbad [,compcode]

© Copyright 1882, Chicago-Soft, Lid.

16

=1

MVS Supervisor Services

Securing a resource:

* System Authorization Faciltiy (SAF)
- Works with major security packages (RACF, ACF2, etc.)
- Router Table must be set up
- SAF must be active

* Problem state only - can't counterfeit userid

* Modelled after RACROUTE macro:

CALL RACROUTE ‘AUTH, entity, [,class] [,attr] [,dstype]
[.volser] [,oldvol] [,appl] [,owner] [acclv] [,racfind]
[.generic] [reqstor] [,subsys]

© Copyright 1902, Chicago-Soft, L.

17

MVS Supervisor Services

Operator Communication and Event Logging:
* Single and Multi-line console messages:
wtold = WTO(msgtext [,msgcount] [,route] [,desc])
- msgcount > 0 uses muiti-line format
- no direct control of routing and highlighting
CALL DOM wtoid
- removes non-scrollable messages
- not an error if message is already gone
*e Two-way communication:
CALL WTOR msgtext [,waitsecs] [,route]
- Does wait internally

- Handy for batch jobs
© Copyright 1992, Chicago-Soft, Ltd.

18

126

MVS Supervisor Services

Operator Communication and Event Logging (continued):
* Logging events:

CALL WTL msgtext

- Fast way to keep track of program execution

© Copyright 1962, Chicago-Soft, Lid.

19

TSO Services

Input/Output Functions:
* RBEXX SAY instruction is limited
- PUTLINE only
- No formatting control
* REXX PULL instruction:
- GETLINE only
- Does have nice parsing
- Complicates matters when using the data stack
* ISPF Dialog Manager
- Must be under ISPF command to use
- Can't use in certain environments like TEST

© Copyright 1992, Chicago-Soft, Ltd.

20

TSO Services

REXXTOOLS TPUT
* CALL TPUT string [tptype] [,tpwait] [,tphold] [tpbreak]
* Line mode:
- tptype: ‘ASIS' or 'EDIT
- ASIS like CLIST WRITENR:
CALL TPUT 'Enter Your Name:', 'ASIS’

- No echo prompting:

CALL TPUT 'Enter Your Password:'|]|'24'X,,
'ASIS!
- © Copyright 1962, Chicago-Soft, Lid. 21
B U

TSO Services

REXXTOOLS TPUT
* Full-screen mode:
- tptype: 'NOEDIT or 'FULLSCR'
- string argument contains 3270 data stream:

DS = 'F5C3'X||SBA(1,1,80) | '1DF8'X|| ENTER YOUR NAME ===>'||,
‘1DC813'X| | SBA(1,40) || ' 1DF8'X
CALL TPUT DS, 'FULLSCR'

© Copyright 1992, Chicago-Soff, Ltd. 22

128

Miscellaneous Services

Stem Handling Functions
® REXX stem variables - i.e., variables with a dot
* Sorting arrays (stems) with numeric subscripts:

CALL STEMSORT stemname [,startsub] [,stemcount}
[,sortfields]

- sortfields like DFSORT or SYNCSORT
*(start,length,type,direction)"
- Uses Heapsort algorithm (see Wirth)
* Displaying arrays with numeric subscripts:

CALL STEMDISP 'BROWSE/, stemname [,startsub]
[,stemcount] [,titie] [,panel]

- Uses BRIF service for display {(no dataset)

© Copyright 1992, Chicago-Soft, Lid.

1—

Miscellaneous Services

String Handling Functions:
* Ditficult parsing

- Parsing where the location and frequency of the
delimiters is difficult to predict.

- Example:
DSN(abc.efg(one)’) KEYWORD2(two)

- CALL PARSETOK string, stemname [,nbd] [,blankopt])
[.dropopt]

© Copyright 1992, Chicago-Soft, Lid.

24

=0

129

Miscellaneous Services

PARSETOK Example:

STRING = ‘DSN(ABC) NONAME'

CALL PARSETOK STRING, "TOK.", "()", "BLANKS"
/* TOK.0 = 6; TOK.1 = 'DSN'; TOK.2 = '(*;
TOK.3 = 'ABC'; TOK.4 = ')'; TOK.5 = ' *;
TOK.6 = 'NONAME' */

© Copyright 1902, Chicago-Soft, Lid. 25

11

Miscellaneous Services

String Handling Functions (continued):
* Sorting words
- CALL WORDSORT string [diropt]
- diropt - Asending or Descending
- Useful for sorting indexes into arrays:

A.C =5
A.A =1
A.B =2
INDEX = 'C A B’

INDEX = WORDSORT (INDEX)
/* INDEX = 'AB C' */
DO I = 1 TO WORDS({INDEX)
SAY VALUE("A.*WORD(INDEX,I))
END

© Copyright 1982, Chicago-Soft, Ltd.

130

Miscellaneous Services

MVS/Quick-Ref Function:
CALL QWIKREF fastpath, steamname [,maxiines] [dropopt]
~ fastpath just like QW command:
topic=item
"M=IEF4501"

- Possible use: trouble ticket automation

© Copyright 1962, Chicago-Soft, Lid. 27

15

Miscellaneous Services

Conversions:
- Useful when working with existing VSAM files
- 370 Packed decimal to REXX decimal

CALL P2D packnum [,scale]

PACKNUM = '1020000C'X
PRINTNUM = P2D(PACKNUM,2)
/* PRINTNUM = 10200.00 */

- REXX decimal to Packed decimal

CALL D2P printnum [,n}

PACKNUM = D2P(100.45,5)
/* PACKNUM = '000010042C'X */

© Copyright 1992, Chicago-Soft, Lid. 28

131

1
1

ADDRESS REXX

Issuing a command:

ADDRESS REXX

“THIS IS A HOST COMMAND"
RXTADDRX REXX program

/* REXX */

SAY ARG(1)

RETURN 4
Argument: host command string
Must return numeric return code

Limitation: no way to access calling program's variables

© Copyright 1862, Chicago-Soft, Lid.

(4

REXX Compiler

Compiles REXX programs into standalone, 31 bit, load
modules.

Full REXX language supported (including INTERPRET)
No transient library, and no licensing for object modules
Load modules can be used for:
- REXX functions (function packages)
- TSO commands
- Batch programs
Parmlist type is determined dynamically
Program source Is included in the load module:
- Source can be compressed (50-80+% compression)
- Source can be encoded (renders it unreadable)

© Copyright 1992, Chicago-Soft, Lid.

132

© Copyright 1902, Chicago-Soft, Ltd.

_] N
REXX Compiler
Compilation Process: mi
Prefix Module
REXXTOOLS System
REXX o8 os
Source ——~{ REXX | Object —| Linkage | o 50
Module Compller Module Editor Module
(SYSIN) (SYSLIN)
REXX
Compiler
Listing
(SYSPRINT)

31

E]

REXX Compiler

Relationship of compiled REXX programs to system Interpreter:

Compiled REXX Program

_(Load Moduie)

© Copyright 1992, Chicago-Soft, Ltd.

1. Decode REXX
source
2. Convert
parameter list
3. Build REXX
Environment IRXEXEC
4. Call system BALR 14,15 | 1. Execite the
Interpreter program.
5 C n BR 14 2. Retumn
retumed
value
6. Clean up
resources
7. Retum

32

133

f
— — L]
REXX Compiler
Compiler Listing
;
ORXC 01.02.01 DSN=BI22EDH.USER.EXEC NAME=SAMPREXX
0

CURRENT USERID IS BI22EDH

REXXTOOLS/MVS REXX COMPILER V01.02.01 18 Jan 1992 12:11:48
COMPILING FROM BI22EDH.USER.EXEC ON VOLUME 780091 (3390)

OPTIONS ARE: COMPRESS XREF VERSION(O1.01.01) NAME(SAMPREXX)

=

['—,'—l © Copyright 1902, Chicago-Soft, L. 33
== \
REXX Compiler
Compilier Listing (continued)
y
ORXC 01.02.01 - A sample REXX program
0 SOURCE LISTING
0 LINE
1 /* REXX - A sample REXX program */
2 ADDRESS TS0 /* establish host command environ.*/
3 /* Get the current date and
4 write it to the terminal */
5 today = date()
6 say 'today is 'today
7 /* now loop for awhile */
8 Do i=1 to 30
© Copyright 1992, Chicago-Soft, Ltd. 34 In

134

o —

REXX Compiler

Compiler Listing (continued)

9 Say 'The time is now: ‘time(}
10 Select

11 When (i = 10) Then

12 Say "going..."

13 When (i = 20) Then

14 Say “going..."

15 When (i = 30) Then

16 Say "gone."

17 Otherwise

18 NOP

18 End /* end of Select */

20 End /* end of do i =1 to 30 */
21 /* return to our caller */

22 exit

© Copyright 1992, Chicago-Soft, Lid.

1

Q
0

REXX Compiler

Compiler Listing (continued)

0RXC 01.02.01 - A sample REXX program

COMPRESSED SOURCE LISTING
LINE
ADDRESS TSO
today=date()
say 'today is 'today
Do i=1 to 30
Say 'The time is now: 'time ()
Select
When (i=10) Then
Say "going..."

® N O o d NN

© Copyright 1992, Chicago-Soft, Lid.

—— L]
REXX Compiler
Compiler Listing (continued)
9 When (i=20) Then
10 Say “going..."
1 when (1=30) Then
12 say "gone.”
18 Otherwise
14 NOP
15 End
16 End
17 exit 0O
M © Copyright 1992, Chicago-Soft, Ltd. 37
- L
REXX Compiler
Compiler Listing (continued)
1
ORXC 01.02.01 - A sample REXX program
0 SYMBOL CROSS-REFERENCE LISTING
0 SYMBOL REFERENCES
ADDRESS 2
DATE 4]
Do 8
END 19 20
EXIT 22
I 8 11 13 15
NOP 18
© Copyright 1992, Chicago-Soft, Lid. a8

136

REXX Compiler

Compiler Listing (continued)

OTHERWISE 17

SAY 6 9 12 14 16
SELECT 10

THEN 11 13 15
TIME 9

70 8

TODAY 56

TS0 2

WHEN 11 13 15

© Copyright 1982, Chicago-Soft, Lid.

39

]

REXX Compiler

Compiler Listing (continued)

1
ORXC 01.02.01 - A sample REXX program
0

COMPILATION FINISHED

ELAPSED TIME: 0.938795 (SEC) CPU TIME: 0.60 (SEC)

COMPRESSION: 523 BYTES COMPRESSED TO 204 BYTES. 60.99%
COMPRESSION

SOURCE RECORDS READ 22
OBJECT RECORDS WRITTEN 12
LIST RECORDS WRITTEN 88

© Copyright 1992, Chicago-Soft, Ld.

40

137

[

REXX Compiler

Compiler Benefits:

* Prevents unauthorized modifications to distributed REXX
programs

* Saves DASD space
* Reduces run times

- Load time reductions of 70+ % (100% for function
packages)

- Execution time reductions 10-15%

- Best profite for reducing time:
+ medium-to-large REXX program
+ axecuted frequently
+ short execution path

© Copyright 1962, Chicago-Soff, Lid. 41

REXX Compiler

PROCTSOQ EXEC

* Utility function for parsing arguments like CLIST PROC
statement

* Before and after compilation comparison:

ITEM BEFORE AFTER COMMENT

Bytes of code 21349 4578 (78.56% compression)

CPU secs/call 0.08 0.02 (0.06 sec. saved; %75
reduction)

* Executed approx. 1000/day (savings of 60 seconds)
* Assuming $1000.00/hour CPU time:

- Saves $16.00/day

- Saves $6080.00/year

© Copyright 1992, Chicago-Soft, Lid. 42

138

REXX2001—CHOSEN LANGUAGE OF MAN AND MACHINE

MARGC VINCENT IRVIN
MANAGEMENT VISIONS INSTITUTE

139

SPEAKER:

FROM:

EVENT:

DATE:

OBJECTIVE:

TITLE:

THESIS:

PREMISE:

Marc Vincent irvin

Management Visions Institute

REXX Symposium 1992 (May 4th and 5th)
Copyright 5/92

Show NL reality, and power NL can give REXX
REXX2001 - Chosen Language of Man and Machine

Subtle adjustments to REXX could make it the
premier language for intelligent systems
and occasional programmers.

If science fiction is any barometer, we are
heading toward computers able to understand
what we say, and say what they understand.
Many feel that day is far away because any
system that smart requires human
intelligence; true human intelligence,
according to AI experts, won't be in our life
times. Those experts are wrong. A language
that needs no programming class, and responds
coherently to English could, according to my
experiments with REXX, Expert Systems (ES),
and Natural Language (NL), be on Personal
Computers (PCs) in no time. The secret to
achieving the goal ahead of schedule lies in
purging all the unnecessary baggage left over
from the evolution of computers.

When computers were first conceived they
were expected to handle the same kinds of
information people do: words, numbers, and
symbols. After their invention reality set
in with bits and bytes, disks and tapes,
sequential and random files, relative and
hierarchical databases, and on and on and
on... REXX and cover functions can do away
with most of the junk that waste programming
time. Once purged REXX, ES, and NL can work
together to produce a language that
occasional programmers will love, and
professional programmers can build
intelligent systems with.

140

EMPOWERING CODERS FOR THE 21ST CENTURY

Hardware computing power has grown geometrically over the
past twenty five years. Software computing power has grown
very little. It is easy to see why this is. The hard
problems in hardware have been bridged and standardized
because hardware is directed by a predictable element -
computer programs. On the other hand, software has no such
luxury. The hard problems in software are precipitous and
transient because software is directed by an unpredictable
element - human programmers. Achieving similar gains is not
impossible, however. The hard problems in software can be
bridged and standardized if software is directed by
predictable elements that cultivate the unpredictable
natures of human programmers. Below is a list of road
blocks programmers face, a proposed set of solutions, and a
some recent experiments devoted to empowering programmers.

Road blocks to empowering programmers for the 21st Century.

1. Differing data, field, and integer types.

2. Differing call formats and complex command syntax.

3. Differing sub-system interfaces and data access methods.
4. Lack of real-time development and run-time features.

5. Lack of interactive and friendly development methods.

6. Lack of cognitive psych, decision support, and AI models.

Solutions to empowering programmers for the 21st Century.

Dynamic data typing by use on words, numbers and symbols.
Common call methods with toggling for special syntax use.
Cover functions whose inputs look the same to all users.
Add date/time based initiators and scripts.

Workspaces, smart debug features, and natural language.

. Intergrate Rule, Case, Genetic, Object, & Neural Models.

Ol W

My experiments with empowering programmers for 21st Century.

Using REXX as a platform gets around first road block.
RUN() uses interpret not CALL, and ES/NL options toggle.
FILECHNG, REXXRDR, and REXXWRTR will standardize all I/O.
CLKQUEUE gives temporal power needed for smart programs.
. REXXCALC w/APL's online tools and PARACODE NL syntax ANS.
All empowerments put in CLKRULES' leave room for more.

O W

141 (C)Copyright 05/92 By Marc Vincent lrvin

FILECHNG is a file copy utility with options that:

Finds fields and replaces them with other fields.

. Selects portions of a file or its records to work on.
Input can be from disk, reader, or VM command.

Sequence checks, purges dupes, and writes change reports.
Replace field can be used to select, purge, insert data.
One powerful option puts code wherever FINDS occur.

Ul W

One problem, involving RACF based MVS security, required a
list to be made of TSO users that were given IDs, but had
never used their IDs. Only two passes of file change were
done on an input file that contained all the multi-record
RACF reports of the TSO IDs not used in the last 60 days. A
sample set of records from RACF ID report follows...

USER=TSOUSR NAME=TED BUNDY OWNER=SYSTEM CREATED=88.289
DEFAULT-GROUP=5YS1 PASSDATE=00.000 PASS-INTERVAL=60
ATTRIBUTES=NONE
REVOKE DATE=NONE RESUME DATE=NONE

NO-MODEL~-NAME
LOGON ALLOWED (DAYS) (TIME)

Below is REXX code that 1) selects the records, and 2)
formats them into single lines for examination and display.

/* MVI %/

'FILECHNG LISTUSER ASOF0392 A PASSDATE WORK A',
'*PICKRECS', /* IF REPLACE FIELD = // THEN PICK REC */
'USER=(1 15) //', /% PICK RECORDS WITH USER'S ID #/

1SSDATE=00 //',/* PICK RECS FOR NEVER USED IDS */
'NO~MODEL //', /% PICK REC THAT WILL ACT AS RPT END */
IF RC ~= 0 THEN EXIT 100
'FILECHNG PASSDATE WORK A = = =1,
' *RECDLM (NO-MODEL) ', /* MAKE ONE REC OF MANY RECS #*/
'*PICKRECS', /* IF REPLACE FIELD // THEN WRITE REC */
'SSDATE=00.000 //', /* PICK NEVER USED RECORDS ONLY */
/% NOTE, // CAN BE FOLLOWED BY AN EXITNAME TOO */
' *xOUTEXIT (PASDAT:)' /* TELL FILECHNG NAME OF CHK LGC%*/
IF RC ~= 0 THEN EXIT 200 :
EXIT 000

PASDAT: /% THIS ROUTINE IS READ/INTERPRETED BY FILECHNG */
PARSE VAR S$REC 1 'USER=' UID ' ',

1 'CREATED=' ADDAT ' ',

1 'SSDATE=' PASDAT ' ',

1 'INTERVAL=' PWINT ' '
IF PASDAT = '00.000' & ADDAT <= '92.004' & PWINT = '60',

THEN SAY 'USERID ('UID') NEVER USED SINCE ADD ON' ADDAT

/* TO CHG O/P REC PUT VAL IN $REC, TO DEL PUT '‘' IN SREC */
DOC:
SAY 'REXXNAME: PASSDATE !
EXIT 000

142 (C)Copyright 05/92 By Marc Vincent lrvin

CLKQUEUE 1is a scheduling utility with options that:

. Run VM commands based on '"date" and/or "time" requested.
Requests may be run once or requeued every n days.
Commands can be rerun every n hours, minutes, or seconds.
Time scripts are possible as CLKQUEUE can call itself.
Runs have return codes useable by later clock requests.
Its powerful options execute all kinds of REXX code.

OO W

Below is a ad-hoc sampling of the many ways that REXX code
can be invoked on a date and time basis.

CHKRTC: 92/063/22 1 . . 0 IF LIBSFND() THEN ‘'ERASE UID LIB'
ILOVE: 93/02/13 (09:00:00 1.H1*%17:00.93/02/14 0 0 O,
MSG % DON'T FORGET THE VALENTINES DAY FLOWERS.
VMUSERID 92/03/22 03:00:00 1 . . 0O,
RUN (VMUSERID:) /* execute the command beneath EOF */
IF RC = 0 THEN DO
'STATE VMUSERID DATA A'!
IF RC *= 0
THEN SAY 'ERROR BUILDING VM USERID FILE.'!
ELSE SAY 'VM USERID FILE BUILT OK.'
END
* RUN NEXT COMMAND ONCE EVERY WEEK...
GRPPRTADMBKT: 92/04/30 10:00:00 07 92/04/23 10:04:34 O,
IF GRPRPTADMBKT = O,
THEN DO
'CMSQ RACFMVS GRPRPORT GRP ADMBKT'
IF RC~=0 THEN SAY 'CLKQUEUE ERROR RUNNING RACF RPT'
END
ELSE SAY 'CLKQUEUE ERROR RUNNING GRPPRTADMBKT AT',
RUNTIME'.!
* CHECK THE NETWORK EVERY 10 MINUTES...
CHKNET: 92/04/28 13:10:00 01.M10 92/04/28 13:00:09 0 CHKNET
CMD1 92/01/22 14:30:00 1 0 0 O DIRLOG RSCS
CMD2RC 92/01/22 23:59:00 01.M10 O 0 0 CP QUERY RSCS
92/01/22 23:59:00 01.M10 0 0 O,
IF CMD2RC = 45 THEN MSG OP *#**% RSCS IS DOWN! *#*x*
CMDX: 92/01/22 23:59:00 01.M10 0 0 O ,
IF CMD1 = 0 & CMD2RC ~= 0 THEN DO
NMSG OP **ddhkdkdhhhhhdradbrddddddhandar
"MSG OP UNABLE TO RECOVER RSCS...Y
END
* RUN SPECIAL SET OF CLOCK COMMANDS ON NEW YEARS DAY.
ENDOFYEAR: 93/01/01 20:00:00 0 0 O CLKQ EQYCYCLE
EOF
VMUSERID:
/* BUILD THE VM DIRECTORY FROM DIRMAINT SEGMENTS #*/
'DIRBUILD'
'STATE USER DIRECT A'
IF RC = 0 THEN RUNRC = 0; ELSE RUNRC = RC

143 (C)Copyright G5/92 By Marc Vincent Irvin

REXXCALC is a calculator/memory utility with options that:

. Calculate variables in adding machine or formula modes.
Manages workspaces via SAVE, LOAD, DROP, & LIST commands.
. Passes commands to VM when they are not calculations.
Executes REXX code from command line or saved variables.
Keyboard assistant via CLKQUEUE's intelligent scheduling.
Many powerful options give APL like capabilities to REXX.

ONd W=

Below is a sample session where the user has to:

1) Figure number of cylinders required for a new file.

2) Test how the SUBWORD command works as they are
developing a new REXX program.

3) Edit a function named BENEFITS, change some of the
formulas, and execute it.

REXXCALC /% X; prompts the user for a response. */
REXXCALC - RELOADED 9 VARIABLES FROM PROFILE.
REXX IS ACTIVATED INTERACTIVELY...

X; vars

/% INIT VARIABLES FOR REXXCALC EXEC %/

SRSCS = 'CP SMSG RSCS'

SSMART = 'CP VMC SMART'

SAUTOLOG = 'CP SMSG AUTOLOG1 AUTOLOG'

SULOG = $SMART 'D ULOG'

FMTDATE = TRANSLATE('34756812',910522'//','12345678")
SOP = 'CP MSGNOH OP'

UTC_BFRTX = 3746 + 530 + 0 + 0 + 242 + 36 + 1015
BEN ALLOW = 4112

PER_CHECK = (UTC BFRTX - BEN_ALLOW)/24

X; $op Peter please mount tape 3003 on 580, Thx mvi.

X; Srscs g sysprtx g

X; ben _allow /* ask what co paid beny portion is? */
4112

X; rexx say subword('a b c',4)

X; rexx say subword('a b c',2)

B C

X; * next line does calculation within another workspace.
X; rexxcalc ofcspace my area = (deskatgradeéspace-isle)
442

X; weekhours = 8.5 + 9.0 + 8.0 + 8.0 + 9.5

43

X; reccnt = 327000

X; blksize = 4096 /* no. of bytes per block */

X; bpc = 180 /% blocks per cylinder */

X; reqcyls = format(((reccnt*132)/blksize/bpc)#*2,1,0)
X; save /* will save prior 5 variable. */

REXXCALC - SAVED 14 VARIABLES IN PROFILE WORKSPACE.
X; xedit benefits calcrexx

X; run(benefits 5050 ben _allow)

X; quit

INTERACTIVE REXX IS CANCELLED BY USER.

144 C)Copyright G5/92 8y Marc Vincent Irvin

NODELOAD is a tool for building natural language code that:

1. Compensates for user spelling errors based on context.

2. Maps input vocabulary and loads them into node words.

3. Values that follow keywords are put in its node word.

4. Node words once set are useable by REXX based rules.

5. REXX based rules can be coded as pseudo English.

6. After registration first node word represents call tag.
Below is a sample of the NODELOAD catagories, keywords, and
basic vocabulary used in mapping pseudo English grammar. It

was inspired by an article written by Richard Brooks titled
"A Natural Language Interface to MVS" published in the
October 1991 issue of the TECHNICAL SUPPORT JOURNAL.

INITQUES: /* node type = node names allowed to follow it. */
TYP.START = CMND NOISE

TYP.CMND = PREP TYPE ORD TGT

TYP.PREP = 'CHK ADDR: ORD TGT ADDR NOISE'

TYP.TYPE = TYPE PREP TGT NOISE

TYP.ADDR = PREP

TYP.TGT = 'CHK ADDR: PREP ADDR TGT'

CHK.CMND = SHOWME SHOW LIST GIVE PRINT DISPLAY

CHK. PREP = AT ON IN TO FROM FOR OF

CHK.TYPE = TAPE ALLOCATION RECORD UR UNIT ONLINE TSO
CHK.TGT = DISK CPU TAPE STORAGE MEMORY PATH DRIVE
CHK.NOISE = ME ADDRESS PLEASE THE A INFORMATION FOR AN
CHK ADDR:

PARSE VAR RUNSTR $PS $ST
IF VERIFY (WORD($ST,$PS), '0123456789ABCDEF') > 0

THEN

CMND:

END

RUNRSPNS = '!
ELSE RUNRSPNS =
SELECT

WHEN FIND('TAPE DISK DRIVE'
WHEN FIND('MEMORY CPU PATH',TGT) > O THEN RUN(DODM:)
OTHERWISE SAY TGT

'ADDR'

'NOT RECOGNIZED AS A TARGET.

RUN (ISSUECMD:)

Sample user input follows with diagnosis options turned on.

PLS SHOW ME THE ALLOC INFO ON DISK 6Cl TO 6C4!

(PLS) miswritten,
(ALLOC) abbreviated,
(INFO) abbreviated,

Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
FINALCMD

(PLEASE) set instead.
(ALLOCATION) set instead.
(INFORMATION) set instead.
(NOISE) automatically set to (PLEASE).
(CMND) automatically set to (SHOW).
(TYPE) automatically set to (ALLOCATION).
(NOISE) automatically set to (INFORMATION).
(PREP) automatically set to (ON).

(TGT) automatically set to (DISK).
(ADDR) automatically set to (6Cl).
(PREP) automatically set to (TO).

(ADDR) automatically set to (6C4).

D U,DASD,ALLOCATION, 6C1, 4

145

(C)Copyright 05/92 By Marc Vincent Irvin

/* TELL LGC WORD IS AN ADDRESS #*/

,TGT) > 0 THEN RUN(DODU:)

NL THEORY FOR NODELOAD

The directed graph SHOW-ME grammar explained by Richard Brooks
for developing natural language commands published in the October
1991 issue of the TECHNICAL SUPPORT JOURNAL has been automated.

Below are a list of sentences that the experimental NODELOAD
logic can handle and the a sample grammar graph.

RAMMAR
RAPH Lst al usrs. Dsply tape 001.
Gv usx dxsk 7al for 16.

Pls print me the cpu memory,
starting at address e000.

There are five-major components in building the "Missouri, Show
Me" natural language command parser. When working with rule
based PARACODE all of the following steps are automatic, and
require no direct coding by the user. The NODELOAD example shows
how natural language is done without resorting to rule based
code.

1. A Grammar Graph is made to depict how the parts of each
sentence will interact. For example, what type of word can
begin the sentence. The basic words in the vocabulary are
going to be loaded into these words so they should be
descriptive. Nouns, verbs, and modifiers are basic parts of
speech common in SVO grammars. TYP variables are used to
fully represent grammar graphs like the one shown above.

TYP.attribute = attribute names that can follow

2. A Vocabulary Definition is done using the CHK variable
where each attribute get attached to it all the valid words
that may be loaded into it.

CHK.attribute = list of valid words or symbols.

3. Spelling Verification is done first by context then
against all attributes. For example, if the unrecognized
word follows a verb and then only the attributes .valid after
verbs are checked for transposed letter and the like.

4. Registration, when a parsed word is successfully found
in a valid CHK.attribute list and the word is loaded into
its corresponding attribute for later use.

5. Construction, when all the words have been successfully
registered into attributes the name of the first attribute
registered is used in a RUN() statement. Thus if a VERB
like "sShow" was the first word in the NL command then the
user would code get control via routine called:

VERB: /* process all registered words via REXX #*/

6. Execution, when the user has fully constructed the command
he must then execute it in such a way that the user may
customize or override its use.

146 (C)Copyright 05/92 By Marc Vincent lrvin

PARACODE is a natural language programming system that:

O WN

Bel

Allows users to code ES rules using pseudo English code.
Uses multi-word synonyms to give English flexibility.
Allows grammatical use of probabilities and fuzzy logic.
Allows user to converse logically with knowledge bases.
Has frame attributes like ask, why, how, check, & doc.
Many powerful options put code wherever users need it.

ow is a sample Expert System (ES) rule written in Paracode.

VCRADVSR: /* This rule advises what model VCR to purchase */

If

INT
INI

The
The
The
The
The
The
The
The

Bel

Ent
R;
Ple
R;
You
R;
Ple
R;
BES
The
R;
VCR
R;
FX
R;
Ent
R;
BES
The

the VCR type is VHS and heads is over three and FX wanted
then the best purchase is probably a super VCX 1000

else the best buy is likely to be a dumb Record Mate99

TGOAL: The maingoal is best buy and a three is a 3

TQUES: /* These entries set synonyms and frame values. */
syn(FX FX:is 'special:effects special effects')

syn(VCR CAM 'video:machine video:recorder')

syn(buy purchase); syn(type model); and syn(heads tracks)
syn(FX wanted 'FX:wanted FX:needed') and syn(: super dumb)
syn(VCR_type 'VCR:type') and syn{(best buy 'best:buy')
ask.mainexit is 'The VCRADVSR says buy a' best buy'.'
ask.VCR type is 'Enter preference: VHS or BETA.'

chk.VCR type is VHS BETA /* check allowed values #/
dft.VCR type is VHS /* default value is VHS #/
chk.FX wanted is “CHK_YESNO:" /* a dynamic call */
chk.heads is 2 3 ¢4 5

fmt.heads is 1 1 numeric /* one byte numeric only */
why.heads is "Because better VCR's have 4 or more."
ow is a sample dialog with VCRADVSR... (R; is user reply.)
er preference: VHS or BETA.
VHS
ase enter value for (HEADS).
which
r input options are 2 3 4 5.
4
ase enter value for (FX wanted).
yes
T BUY = CNF(0.80) VCX 1000

VCRADVSR says buy a VCX_1000.
video machine model
_TYPE = VHS
special effects needed
WANTED = 1
reset

er preference: VHS or BETA.
The CAM model is VHS; tracks is 4; and FX needed is not true
T _BUY = CNF(0.70) Record Mate99
VCRADVSR says buy a Record Mate99.

147 (C)Copyright 03/92 By Marc Vincent Irvin

NIL. THEORY FOR PARACODE

;
The Subject, Verb, and Object AI paradigm works well with REXX.

REXX it could be expanded to enter NL mode if a switch is set.

RULENAME:

/* basic clauses: IF antecedent THEN consequent */

{ IF s vo [conjsvVvoetc...] THEN] s v o [conj s v o etc...]

[]
IF

S V O

conj

NOTES:

Means fields within are optional. Only s v o required.
Valid conditionals are IF and WHEN.

Subject, verb, object can be represented by a single
symbolic such as with true/false values and task()
executions, or as separate multi-word phrases beneath.
Subject can be up to three distinct words if the
Computer Oriented Dialog SYN() synonyms have specified
a single root word. They are the equivalent to nouns
or noun phrases (NP) in English and basic ATN theory.
Verbs can be up to three distinct symbols and/or words
if the SYN() synonyms have specified a root word. They
imply the action to take against its subject and
object, and are referred to as verb phrases in basic
ATN theory. Normally verbs are compare symbols, but in
advanced NL may be called tasks that have boolean RCs.
Objects can be a literal or symbol, or a phrase up to
three words if the SYN() synonym's root is defined. It
represents a noun and may be preceded or followed by a
fuzzy logic or confidence factor (Ie. big/little or
probably/definitely). If the object value, after
synonym substitution is found to be unknown translation
is interrupted, and the object is put into a queue for
resolution. Resolution occurs by first looking for a
RULE that has a consequent clause that sets the value.
Next, framed variables are checked to see if their is a
defined procedure to solve the rule. For example,
doing a database retrieval. Finally, a previously
specified text is used or a text is manufactured that
asks the user to supply the value or choose the
default.

Conjunctions are limited to and, or, exclusive or, and
their character equivalents. They can be three word
phrases, but no logical use has been found for using
multi-word phrases as conjunctions.

1. Advanced synonym substitution can handle antecedents
separately from consequents.

2. Rules can have any number of consequent or
antecedent consequent combinations.

3. The RUN() can dynamically invoke any task at will.

4. REXX and its NL equivalent can coexistent in
PARACODE.

5. All s and o values, otherwise known as, nouns can
be easily updated using NODELOAD directed graph
substitution.

148
(C)Copyright 05/92 By Marc Vincent Irvin

PARATALK is a natural way to show properties and relationships.

1. Users can easily encode semantic net diagrams of knowledge.

2. Encoding may consist of pseudo English facts, rules, and acts.
3. Acts invoke scripts, models, and step by step operations.

4. Backward reasoning will try to resolve unmatched phrases.

5. PROLOG deep structure sample: does well in(Student,Discipline)
6. Conditionals (ie. =<>) can now be relationals or operationals.

Below is a sample expert system rule written in Paratalk.

MAJORADV: /#* This rule advises student in selecting a major #*/
If a student is interested in a specific discipline,
and student does well in the subject,
and the subject is important in discipline,
and the discipline is in demand,
then student should major in the discipline
and forward student transcript to Dean of discipline
else student should not major in the discipline
INITGOAL: The maingoal is student should major in discipline
/* Examples below show how facts may be initially entered. */
John does well in math and John is interested in business
Math is important in business and business is in demand
Bill does well in math and Bill is not interested in business
INITQUES: /* These entries set synonym and frame values. %/
syn(is_interested_in 'is:interested:in')
syn(does well in ‘'does:well:in') and syn(is_in ‘is:in')
syn(is_important in 'is:important:in')
syn(should major in ‘should:major:in')
syn(not:should should not) and syn(student 'name:of:student')
syn(send transfer mail forward) /* keyword for action logic */
syn(discipline ‘'specific:discipline')
The unknowns are ‘'student discipline subject!'
The variables are ‘student' /* if symbol not set than infer it #*/
The relations are 'is interested in does_well in is in'
The relations are relations 'is_important_in should major_in'
The actions are 'send'
The ask.student is "Please enter the student's first name."
The ask.mainexit is "Enter 'reset' to get some fresh advice.®
SEND: say "Transcript is being forwarded to" discipline "Dean."

Below is a sample dialog with MAJORADV... (R; is user's reply.)

Please enter the student's first name.

R; John

student should major in discipline = JOHN should major_in BUSINESS
Transcript is being forwarded to BUSINESS Dean.

Enter 'reset' to get some fresh advice.

R; reset
Please enter the student's first name.
R; Bill

student should major in discipline = BILL should major_ in BUSINESS not
Enter 'reset' to get some fresh advice.
R; quit

149 .
(C)Copyright 05/92 By Marc Vincent Irvin

ADVANCED NL THEORY IN PARATALK

In PARACODE a NL syntax was demonstrated that allowed a user
to write conventional programming code in subject, verb, and
object (SVO) based pseuda English. In NODELOAD a NL syntax
was shown that facillitated the building of context free
grammars. Using PARACODE and NODELOAD together it was
suggested that pseudo English code and dialogs could be
achieved as a side affect of Expert System development.

PARATALK takes the expression of NL code and queries to a
higher plain by incorporating pattern matching, dynamic verb
manipulation and execution, and dynamic variable entry and
assignment.

Wherever, SVO phrases are allowed, so too are SRO (subject,
relation, object) clauses and ARC (action regquest commands).

SRO Subject relation object clauses put pseudo English
consequents into a pattern table for interrogation as
antecedents. "“John likes soda" is a typical SRO
clause. Unlike PARACODE the central word does not have
to get converted to "= > <" symbols. In PARATALK
anything goes, just tell the interpreter how to
recognize your SRO clauses by loading its relational
word or predicate into a variable named RELATIONS. For
example, to be able to say "If John likes soda then
soda tastes good" you do the following in the
INITQUES: section.

RELATIONS = 'likes tastes!'
SRO clauses may be any length. When SROs are in an
IF/WHEN (eg. antecedent) statement the associated
symbols get looked up in a clause table. If found
the IF/WHEN condition is set to true, otherwise it's
set to false. If not part of an IF/WHEN condition the
clause is put into a table. Matching clauses with
previously stored clauses is called pattern matching.
In the clause "John likes soda" all the words are taken
literally. Now imagine having 10 "likes soda" clauses
in the table, but for different people. To refer to
all those people the following can be done in PARATALK.

RULE: Unknowns = 'Who'; and Relations = 'likes'

If who likes soda then do x is 1 for words(who)

say word(who,x) 'likes soda'; end

In the above example all 10 names of people who like
soda would be put into WHO. Sometimes a simple
variable, set elsewhere in the logic, needs to be used.
In that case enter the word within quotes. For
instance, if soda were a variable filled with words
like PEPSI or COKE then the PARATALK way to express it
would be... "If anyone likes 'soda’ then go buy soda".

150
(C)Copyright 05/92 By Marc Vincent Irvin

ADVANCED NL THEORY IN PARATALK

In SRO PARATALK we were shown how to enter pseudo English
assertions and interrogations like those that follow:

John likes soda

If John likes soda then soda tastes good

If who likes soda then do x is 1 for words(who)
say word(who,x) 'likes soda'; end

If anyone likes 'soda' then go buy soda.

In addition to writing programmable code in English, and
interrogating stored English clauses for truth there is another
option. You can invoke special AI functions that carry out
scripts or models of various scenes, events, speech, manual
operations, and/or machine components. For instance, the
consequent clause "go buy soda” is an imperative statement that
requires a direct action.

ARC Action request command clauses have two parts. The first is
the action part which corresponds to the program name used
during CALLs from normal procedural code. The second is
the request part which corresponds to the variables passed
during normal procedural calls. However, for scene or
model invokations to occur using pseudo English statements
something must tell the PARATALK interpreter that this is
an ARC phrase, rather than an SVO or SRO one. That
something way is to load the primary action word (ie. verb)
into a variable named ACTIONS. Since actions speak louder
than words below is a sample of what I'm talking about,
full blown PARATALK.

ACTIONS are 'go walk get fasten drive!
RELATIONS are '\iKOS§ and soda is PEPSI
GOBUYSODA: If anyone likes 'soda' then go buy soda
additional backward or forward chaining rules...
/* Basic script follows for going to the store */
GO: Parse var runstring whattodo withwhat .
If whattodo is 'buy' then do
Item is withwhat /* comments are allowed too #*/
Walk to car; get in car; and fasten seat belt
Drive to store and exit from car
Walk into store and purchase store 'item'
Drive back home
end
/* The actions below can be external programs too. */
WALK: etc...
EXIT: etc...
DRIVE: etc...
FASTEN: etc...

Basically, the above example neatly mixes all three NL methods:
SVO, SRO, and ARC. 1It's pretty natural, wouldn't you say?

151
(C)Copyright 05/92 By Marc Vincent Irvin

ADVANCED NL THEORY IN PARATALK

In SVO, SRO, and ARC we were shown how well PARATALK armed
the Knowledge Engineer (KE) with the tools needed for
building Conventional and Expert Systems using Pseudo
English. Command clauses and phrases could be easily
constructed that were declarative, interrogative, and
imperative without requireing the KE to resort to arcane
coding artifices. And there is much more...

External file data can handled be handled dynamicly using
the LITERALIZER concept peculiar to the data driven pattern
matching protocols of OPS5. With it files, sensors, and
knowledge bases can be processed with 5th generation
granularity using something resembling the well known object
oriented paradigm. For instance, the clause "If cat weight
is high and finickiness is extreme then type is Cheshire" is
valid PARATALK terminology using LITERALIZERS.

OAV Object attribute value conditions can be employed in
conjuction with SVO clause rules to provide name tags
to fields in records. An example below builds a
literizer for the CAT clause shown above. The basic
format for entering a literalizer follows...
OPS (filename,objectname, attributel attribute2 etc...)

Actual sample...
OPS ('FELINE DAT',CAT, 'WEIGHT FINICKINESS TYPE')

Note, full power of the parse command is available.
OPS ('RACF DATA A',PROFILE,'24 PW 32 1 'DATE=' DATE)

Also, some basic assumptions are now possible
pertaining to context. For example, that CAT is the
object for the attributes weight, finickiness, or type
is easily implied. What's more cases of ambiguity
(more than one literalized "object" contains the same
attribute name) are easily resolved to most KE
satisfaction by understanding that ununigue attributes
will get the object from one

most recently used. Next, pronoun usages like "it" or
"they" are possible and can be substituted, easily
again with the most recently used object with a
matching context definition (TYP.) An example of that
kind of clause is shown beneath.

CAT TYPE: If its weight is high and finickiness is
extreme then its type is a Cheshire

In the above rule the value of "its" will be taken from

whatever the last object happened to be that contained
the attribute "weight®.

152 (C)Copyright 05/92 By Marc Vincent lrvin

PERFORMANCE ENGINEERING/MANAGEMENT OF
A LARGE REXXX APPLICATION

PAT MEEHAN AND PAUL HEANEY
IBM

153

Performance Engincering/Management of a T arge REXX application.

Pat Mcechan, Paul Fleaney

ECFORMS! Development Team
IBM TISI, Programming Systems baboratory and Delphi Software Fimited
Dublin, Treland

Abstract

‘This paper addresses the performance engincering/management of o large RIFXX product (100 Kloc). This
was in response to a market driven reguirement to improve product responsiveness. The Software Perform-
ance Ungincering methodology in conjunction with our own developed processes were used throughout. A
number of Software Performance Fngineering processes were adopted and became the basis for the drive
towards performance improvement. A benchmark was developed with customer input. "Targets for represen-
fative transactions were defined for onr three main metrics, end-user response time, virtual CPU time and
start 1/0. Various REXX performance ideas/myths were validatedirejected on the basis of measurements.
Measurement and analysis tools written in RIFXX were used to automate and assist in the continuous
tracking of the targeted performance improvements. Bottle-necks in the code were identified by tracing and
measuring some/all of cach target transaction. 'The main performance engineering principles that were used
were Fixing Point, Parallel Processing, Centering, Processing versus Fregnencey and Instrumenting. Follow
up meetings with the IBM VM Taboratory’s performance team in Fadicott, discussions with Mike
Cowlishaw and consultation with other REXX development sites has resulted in a pool of knowledge being
built up on Performance methodologics and REXX performance rules guidelines. Fducation of the develop-
ment team resulted in REXX performance rules becoming instilled in the day to day design/coding of
product changes. The product has a separate performance development team and cighteen months down the
line focusing on performance has resulted in major improvements. Thronghput in the two key service
machines has been doubled and end-user response time has been reduced by o quarter. Purther improve-
ments have been prototyped which indicate we will be able to improve the throughput again on the service
machines and significantly reduce the end-user response fime.

Author Information

Pat Mechan B.I., M.Ting.Sc. joined IBM lIreland in 1984, e spent fwo years on assignment in 1BM
Netherlands where he worked on the performance of FOVM (EMEPA Common VM) REFXX applications.
Te then spent two years working on the design and implementation of a data extractor generator on MVK.
Subsequent work included working on the future strategy of @ program product, SAA/DM. In the last eigh-
teen months, he has been responsible for the performance work being carried out on the REEXX product
offering, ECTORMS together with working as a consultant on performance to the rest of the development
group.

Paul Heancy works with Delphi Software and is a RIIXX development consultant to IBM 1IST, Taboratory.
Fie has been closely involved with the FCIORMS Product Offering over the past two years. e has con-

centrated his effort on the application of performance engincering techniques to the application over the past
cighteen months . As a key member of the performance team, he alsa acts as a consultant to the rest of the

T FCEFORMS is an clectronic forms management system which is an IBM product offering and is a irademark of
IBM.

154

development team. He has developed tools in REEXX o assist in the measurement and analysis of the devel-
opment cffort.

iv Reclease 3 SPE 1 Performance Report

Performan~= Enginzering/Management of a Large REXX

Applicauc..

Flectronic FForms Management System
(FCTFORMS) is an IBM licenced program
(5785-MCB) extensively used within IBM by many
diverse applications and marketed in the US.
Furope and Japan. It has three main functions,
Forms Processing, I'orms Design and Tforms
Administration running on the VM operating
system.

The major features of FCFORMS Torms Proc-
cssing are ¢

1. Filling in online forms (Origination).

2. Routing forms clectronieally.

3. Using electronic signature to :
« Approve and 'inal Approve a form.
* Reject a form.

« (Cancel a form.

Some of the main BECTORMS transactions (c.g.
Iilling in a form) involves communications via
[UCV with two service machines in a serial
fashion. There would be data validation by a data
service machine followed by control checking and
routing by an authorization service machine. In a
mulii-node situation. these service machines com-
municate with their peers through the use of spool
files.

All of the three major functional arcas are written,
almost exclusively, in the REXX language.

This paper focuses on the performance engineering
cffort of the FCFORMS Porms Processing fune-
tion.

Background

The market driven requirement o improse per-
formance was identified by direct communication
with our customers. 'T'he main performance 18sues
were:

1. Response times [rom an end-user’s point of
view.

2. Throughput on the two key service machines.

3. CPU consumption and excessive 1/0) demands

These issucs became the driving force behind the
performance effort.

Kﬁ)roach

Most performance methodologies advocate (cor-
rectly) the application of performance enginecring
1o systems in their carly developmental stages. They
concentrate largely on new systems and not on
existing svstems.

An cxample of such a methodology is that of Soft-
ware Performance Pngineering [1] (SPE). Closer
examination of the methods encapsulated in this
mcthodology highlighted a considerable degree of
applicability to existing systems also. For this
reason, SPU together with our own methods
formed the basis of our approach to the perform-
ance cffort.

Fffort Allocation

The resource to improve the performance of the
product has been spread over two different efforts.
The initial effort (Fffort 1) used three different
development locations. Our own laboratory was
one of these locations and also acted as the focal
point for the other 2. The subsequent cffort (Effort
2), currently ongoing, was concentrated in our own
development laboratory and involved the sctting up
of a performance team for the group.

This paper focuses to a large extent on the per-
formance work carried out in our own laboratory
over the two efforts, although it draws on signif-
icant cxperiences from working with the other two
locations.

SPE Methods

SPlis a methodology which advocates the applica-
tion of performance analysis in the development of
softwarce systems. It provides a sensible method for
the production of software that will meet certain

Performance Fingincering/Management of a Large REXX Application V

156

performance objectives. SPH encompasses the fol-
lowing methods [2]:

1. Design Principles which are an abstraction of
the expert knowledge of performance specialists

2. Data collection is the means of acquiring the
data necessary to describe the performance
specifications

3. Modeling techniques uses execution graphing
and analysis algorithms to predict performance

4. Proposal Fvaluation

5. Instrumentation of the softwarc system.

Sceveral examples can be found in the literature of
successful SPTY usage [3]

SPL in is entirety was not appropriate for an
existing product; we used those aspects of the SPE
methodology which we found suitable for the task.

Adopted Benchmark

SPE reccommends the use of a benchmark as an
experiment for collecting performance data. The
benchmark should be a good representation of the
way the software is used by customers and should
be easily reproducible.

The first step was to develop a benchmark to
gather pertinent performance metrics. Compromises
between representativeness and reproducibility had
10 be made due to resource and time constraints.

The main feature of the benchmark [4] were as
follows:

* A set of transactions that were representative of
the typical user workload scenarios based on a
considerable depth of knowledge within the
laboratory’s support and development groups
together with feedback from a subset of cus-
tomers. A typical transaction would be to
approve an FCFORMS form sent by an origi-
nator or for a scrvice machine to process that
approval request.

* A representative DCTORMS form

« Software operating conditions like compiled
service machines at given priorities running on
selected hardware. Due to resource constraints,
the initial hardware was a 4381 running
VM/SP3 but this has since been extended to

Vi Performance Fngincering/Management of T arge REXX

157

include VM/XA on a 3083 and VM/EISA on a
2090,

+ Single user on a single processor. This has
been extended recently to include two
processors communicating with each other for
a subset of transactions.

T'he benchmark is an evolving experiment under-
going change as the software undergoes modifica-
fions and the user workloads shift.

Application of the SPE principles

T'he SPIE Design Principles are a formalization of
the performance knowledge of experienced per-
formance engineers.

‘The principles of SPT were intended primarily for
software creation, but we have found some of them
1o be cqually applicable to a project which has
undergone significant development work. However,
it is conceded that the application of the principles
is o more painful exercise at the later stages of a
product’s evolution.

"The design principles have since formed the basis of
our performance guidelines which we provide to
our own and other development groups in the lah.

We now describe those adopted principles that
were particularly applicable to the existing system
and examples of that applicability.

1. The Fixing-Point principle states that the con-
nection between the data and the required result
should be established as early as possible in the
processing provided that the cost of retaining
that connection can be justified.

*» 'The product uses flat files as its file system.
We found several cases where the product
was accessing the same control files, several
times in the same transaction sometimes
for the same information,

According to the principle, it made morc
performance sense to read selected files or
scctions of files into storage at initializa-
tion. Data was stored in a REXX array of
the form x.y, where y was the key. Subse-
quent retrieval of information was then
done from storage with great efficiency.

Application of this principle was more
appropriate to the service machines where
initialization time was not a concern.

[However, one of the constraints was that mation, during the time window, is then
both service machines should still be able done from storage,

to run with 3meg of memory. . . .
® ‘ In this way we can allow the installation

T'or some large files, the cost of retaining control the cost of holding the information
the connection for the entire file could not in storage by changing the time window.,
be justificd because of the storage con-

2. 'The Processing versus Frequency Tradeoff prin-

stramts. ciple, says that we should consider the proc-
T'he largest file used by the service essing time of a transaction and the number of
machines is the organizational directory times that transaction is executed and minimize
typically of the order of thousands of the product

records. » This principle can be satisfied in a number
Client information is retrieved by one of of ways. Onc of the less obvious ways is to
the service machines from this directory for cxpand the processing within a particular
auditing purposes. Here, we have proto- transaction to include another transaction
typed the concept of a time window, where ensuring that the new transaction is faster
participating client information is extracted than the sum of the two old transactions.

once from the directorv within the time
window and held in storage. Subscquent
attempts 1o retrieve the same client’s infor-

‘This can often be achicved by making
maximum usc of the overhead involved.

Process Time
N pt
METHOD - ‘
‘* | p2
NEw =
METHOD } ’ p
Al ‘
| i
p {(p1 +p2)
Figurc 1. Processing-v | requency Tradeofl Principle - o
The diagram (please refer to Figure 1) which associates it logically with the
shows a typical application of this prin- control file.

ciple. Currently, when data is transmitted
to participating nodes. a control file is sent
and is followed by the form data file. The
form data file has header information

This means that the receiving node has the
duplicate overhead of processing two spool
files for cach form data file and of cstab-

Performance Fngineering Management of a 1 arge REXX Application Vil

158

lishing a logical association between the
files received.

A change has been prototyped to make
maximum usc of this overhead, where the
form data file is chained directly to the
control file and a single file transmitted.
'The receiving server has only to process the
one spool file thus ensuring that the
product of the processing time multiplied
by the frequency is reduced significantly.

Changes of this nature present significant
architectural and migrational difficultics
and underlines some of the headaches of
performance engincering of developed
systems.

3. The Centering principle advocates the identifi-

=.

cation of the dominant workload functions and
the minimization of their processing

* 'The transactions of form origination,

approval and final approval were clearly
the dominant workload functions and a
Jarge proportion of the effort was focused
on these transactions.

A further application of the centering prin-
ciple is of course within cach of the domi-
nant transactions. This performance
refinement identified the dominant proc-
esses within the dominant transactions.

Validation of form data is a typical
example of a dominant sub-process. 'The

Performance Engincering Management of 1 arge REXX

159

form data 1s defined as a set of fields and
associated values. Validation of form data
accurs for all three dominant workload
functions.

Previously, during approval and final
approval of cach form instance, this vali-
dation process was again applied to the
entire form data. A significant processing
reduction was achicved on two dominant
transactions by applying the validation
process to the changed form data only.

As an indirect extension 1o the last point, it
was realised from customer contact that
form data approval and final approval
often occurred without any changes to the
data. When this occurred and was detected
a large proportion of redundant processing
was bypassed.

Fven more substantial improvements have
been prototyped for this change in the
multi-node scenario. Currently, the data is
transmitted to participating nodes cven if it
is unchanged and the receiving nodes have
to go through a lot of unnecessary proc-
essing to handle the large amount of spool
files.

A change has been prototyped where the
form data is only transmitted when 1t is
changed resulting in significant savings to
the handling of remote requests by the
service machine as illustrated by the
diagram, Figure 2 on page ix.

1‘“ | T
|

Figure 2. Centering Principle and remote requests.

A further application of the centering prin-
ciple within cach transaction is the parti-
tioning of the processes within a
transaction into normal and exception pay-
titions. Partitioning identifies the normal
paths through the process and the unusnal
paths (exception partition) and focuses on
the former from a performance point of
view.

4. The Parallcl Processing principle states that
processing should be partitioned into real or
apparent concurrent processes provided that the
benefit outweighs the communications and
resonrce contention overheads.

» Some of the dominant transactions require
the client to communicate via ITUCV with a
data server followed by an authorization

Performance Fogineering Management of a Large REXX Application

160

server in a serial fashion. The authori-
7ation scrver is architected to a large extent
on the basis that the data server has com-
pleted its processing successfully.

T'o involve the data server in some sort of
parallel processing with the client was not
considered feasible because of the major
architectural difficulties.

ITowever, in the case of the client-to-
authorization server, a change has been
prototyped where control is handed back
to the clicnt at a much earlier stage after
some preliminary processing for appro-
priate transactions (Approval and Final
Approval) as shown in Figure 3 on

page x.

ix

T

e

M

T

Tligure 3. Parallel Processing Principle and Asynchronovs request handling

S.

X

The server continues processing asynchro-
nously fo the client. The ultimate outcome
of the transaction is recorded, as nsual, in a
client log file.

Iirom a client point of view, this reduces
the transaction fime very significantly
(T'1-T0) with little architectural impact on
the server. Naturally, the improvement is
maximiscd where there is no queue to the
server and is diminished according to the
number of requests in the queue.

The Instrumenting principle encourages the
instrumentation of the system as the means of
measuring and controlling performance.

This is a control principle which does not
directly improve software performance

This principle was originally not part of the
SPE methodology but was subsequently
included because of its essential role in the per-
formance effort

Further discussion of this principle and the
entire measurement process is continued later

Performance Engineering:Management of | arge REXX

161

Other important lessons were learned which were
phased into the approach at different stages across
the entire effort.

Mecasurements

For existing systems, measurements are the key to
success. They provided us with an execution know-
ledge of the system enabling us to model the
system. ‘This model in turn allowed us to decide on
the types of change required. Measurements were
also the key to understanding the success or failure
of the changes.

lixperience and results have illustrated a number of
important lessons:

1. Virstly, the importance of a proper measure-
ment system is apparently not obvious to most
people. Often developers express a sense of
incredulity when asked if the system they had
developed had been measured [S].

2. Where a satisfactory measurement process is
not part of the approach, success is very
dependent on intuition and fuck and this is not
a very scientific way to proceed.

3. 'The measurcment process should use as many
performance indicators as is practical to verify o
performance prediction. A single indicator of
performance (like response time) can be very
mislcading.

4. Tarly measurements of less than complete
efforts are imperative. Even though these will
often be contested on the grounds that further
performance tuning will follow, they provide an
early warning system which is often well-
founded.

The measurement process itself is described later.
Language

Most of the product was written in REXX, the
remainder in C. An important guiding principle
which we adopted (and not just for language con-
siderations) was that of benefit/cost maximization.

It’s important to maximizc the bencfit/cost ratio
where the benefit is the estimated improvement in
performance to the customer, measured by the
benchmark and the cost is the resource necded to
develop and maintain that change.

In general, the CP and CMS commands and other
external modules and not the REXX instructions
were responsible for the substantial part of the
product. Sample transactions show that the
REXX instructions account for less than 20% of
the total. In addition, poor performance was not
caused by poor REXX coding but by lack of per-
formance sensitivity in the original design stages
with sotne notable exceptions. This was also borne
out by informal discussions in the area of RFXX
petrformance with Mike Cowlishaw.

The main exceptions were the use of keyed arravs,
which is a very slick way of searching for data,
rather than the traditional binary scarch technique
and the removal of Interpret statements to make
the code compilable.

Conversion of the C code to RI'XX made good
performance sense because of the way that the two
languages interact differently with CP and CMS
and some of this task has already been accom-
plished in Effort 1. "This change from C to RIEXX
has the additional benefit of easier maintainability,

Other improvements within REXX werce better
management of storage and in particular the drop-

ping of storage when appropriate together with the
complete specification of CP and CMS commands
without ambiguity.

Changing REXX variable and procedure names,
positioning of routines within the program, the use
of one particular REXX built-in function over
another were found to be examples of high cost -
low benefit changes.

Exploratory Prototyping

We seized the opportunity to deviate from the
standard practice of a documented low level design
by prototyping the designed performance changes.
I'his approach allowed us 1o measure progress at a
stage much carlier than would have been possible
with the traditional phased approach.

It also appears, based on a causal analysis of soft-
ware defects found so far, that the prototyping
made a very positive impact on the quality of the
software shipped.

We strongly advocate prototyping as the best way
to manage performance engineering of an cxisting
system.

Other ltems

For the first effort and because of resource con-
straints, measurements were confined to a 4381
processor running VM/SP5. This was restrictive
and not very representative. The second cffort has
extended the measurement process to a 3083
running VM/XA and a 3090 running VM/IISA.

A comprehensive report [4] was created of the
results of the first effort. This formed the basis of
discussions which were held with the Performance
team in the IBM VM laboratory in Indicott, who
reacted very positively to the depth of analysis and
overall approach. 'The report has also been sent to
all internal product sites to inform and encourage
them to upgrade to the latest release.

The benchmark continues to be based on a single
user and on a single processor for most of its trans-
actions. The authors believe that some modeling of
multiple users is a key area for the futurc which will
help particularly in the area of capacity planning for
our customers.

Functional development work of the product has
continued alongside the performance effort. Both

Performance Pngincering /Management of a T.arge REXX Application xi

162

teams have worked closely together with the per-
formance team acting in an advisory role on the
functional enhancements from a performance point
of view. 'This close collaboration has been critical
in the management of the performance work and
has resulted in much greater sensitivity to perform-
ance within the entire group.

Measurement Process

The measurement process and its findings were
both the guiding force behind the performance
analysis along with being the ultimate arbiter on
the success of the effort.

The adoption of the instrumenting principle at the
very early stages of analysis, enabled us to isolate
the major arcas for cach of the SPT? design princi-
ples. The instrumenting principle is of greater sig-
nificance for products that have been developed so
far without the use of SPF and in a sense replaces
the type of modeling, advocated within SPI for
new products.

For this rcason, the modcling effort is reduced and
the measurement effort increased.

In this way, SPT is still very applicable to existing
products but with shifts in emphasis when com-
pared to new products.

1. Performance Refinement

The initial stages of the measurement process
involved a breakdown of the dominant trans-
actions into their sub-components. ‘FThese sub-
components then became the subject of
analysis through a limited set of unsophisti-
cated measurements of virtual CPU time, Start
1/0 and response time. This provided us with
important initial execution data of the system.

In this way, the refinement provided us with a
type of informal softwarce execution graph of
gach of the transactions, a form of analysis
advised under SPF,

Of course, the REXX language with its rich
tracing functions and its end-user {riendlincss,
lends itself very well to this type of approach.

This refinement pointed to those areas that
should be concentrated on | which together

Xl Performance nginecring/Management of Farge RIIXX

163

[

with the other guiding principles (SPI1 and
Benefit/Cost) already referred to, became the
basis of the performance design changes.

Prototyping

The main features of the proposed design
changes were prototyped at a very high level
and a new sct of measurements obtained. These
measurements formed the basis of the target
objectives for cach transaction within the
benchmark which together with the design
changes constituted the initial design document.
‘This was subsequently approved by a selected
fist of external and internal reviewers.

This allowed our customers an early indication
of the magnitude of the performance improve-
ments that could be anticipated and an incen-

tive to agree to the resource investment.

In this fashion, the refinement and limited pro-
totyping provided us to a large extent with the
necessary data to define the performance spec-
ification. The same type of data collection is
also advocated under the SPE methodology,
although the manner of collection is naturally
different for new software systems.

As part of the second design stage (referred to
in the IBM phased approach as low level
design) the prototyping exercise was continucd
at a lower level with the prototype being more
closely aligned to the ultimate implementation.

The prototyping exercise was really a pre-
requisite to the measurement process and they
complemented each other very successfully.

In a few instances predictions were made for
some of the performance metrics based solely
on the software exccution graphs of the trans-
actions. These predictions were then compared
with actual results from the prototyping cxer-
cise and were used as a theoretical validation of
the prototyping results,

Basic measurements were periodically taken
during the prototyping and modifications made
where there were any deviations from the
objectives. This design stage became a highly
iterative process and emphasised the engi-
neering approach to the whole problem.

. Data Collection

Iiven though the instrumentation was an inte-
gral part of the cntire performance development
cvele, it wasn’t until the changes had been

designed and implemented that the more con-
trolled measurement experiments were con-
ducted using acquired customer data.

pre-defined keystrokes on a host machine.
KEYPIAY has been used to execute the
defined benchmark usually at a deferred
point in time (off-peak), switch betwcen
different systems (old and new) dynam-
ically, collect the results and invoke the
other developed tools to analyse the results.

The entire measurement process is a complex
one where there are so many contributing
factors. We adopted a number of approaches to
make it as realistic as possible within the
working constraints. We concede that further
enhancements arc both desirable and necessary.

KEYPILAY has been instrumental in pro-
viding a fully automated measurement

. . . rocess where it can be triggered durin
», Probes werce inserted at appropriate parts of p ge &

the end-user and service machines to track
the metrics which included Virtual CPUJ
time, Start 1/O) , Response time, free
Virtual Storage and System I.oad. These
probes were positioned to capture the
metrics for

a. The Total Fnd-User Component
which includes the waiting for a service
machine to respond (a)

b. The T'otal Service machine Compo-
nent for both servers (b)

c. The Interface part of the Total Iind-
User Component (c,c < a,a-¢c <= b)

The system was triggered once certain
initial conditions had been set up. These
conditions were based on varied customer
input. They included directory size, number
of forms in progress, sizes of critical control
files which were typical of a customer
installation.

Measurements were always conducted on
both the new and old implementations in a
number of ways:

a. An old and ncew installation was sct up
on the same CPU and both were trig-
gered simultaneously for a given set of
benchimark measurements

b. On other occasions, measurements of
the old and new implementations were
interwoven in the following manner -
{old, new, old, new, old, new)

¢. All controlled measurements were run
at off-peak times

off-peak working hours and the folowing
morning a summary of the results taken at
off-peak is available on the disk of the
requestor. The interpretation of and judge-
ments about these results 1s still an impor-
tant and necessary follow-up step.

We have also developed extensive REXX
tools to analyse the collected results.

The results over a number of runs of the
benchmark are treated as follows

- The lowest and highest 10% of the
runs are ignored leaving the middle
80% for interpretation in order to weed
out extreme results.

- This remainder is averaged and a com-
parison made between the old and new
implementation.

- Occasionally, we measure a control
which is identical within both the old
and the ncw implementations and nor-
malize the results with respect to this
control. Both the normalized and the
unnormalized results are then inter-
preted and compared.

Interpretation of measurement data is
something which improves with perform-
ance analysis cxpetience, familiarity with
the actual task of data interpretation and
knowledge of the software under investi-
gation. The key is to treat results with
caution and respect and the goal is to try to
get reasonable consistency in your results.

An important point to look out for is per-
turbation of the results by the measure-
ment system itself. This is best checked by

4. Interpretation and Evaluation comparing the results of the probed system
Iixisting tools were used and new ones devel- with the system without any probes.

oped to enhance the measurement process.

o, KEYPLAY is an IBM internal usc tool
which tuns on OS/2 and executes a set of

*e Management of the vast amounts of meas-
urement data is important. We used a
summary file to reference the data

Performance I'ngincering/Management of a Large REXX Application xiii
164

belonging to a particular run of measure-
ments which hekd key information about
that run.

Results

The targets prototyped for the the original perform-

ance effort (Fffort 1) werc based on the three
metrics of clapsed time, virtual CPU time and start
1/0. These metrics were used for all the
benchmark transactions throughout both perform-
ance efforts as a means of gauging our success.

We have represented a summary of the results in
the following diagram (pleasc refer to Figure 4 on
page xvi and Figure 5 on page xvi) for both the
end user and the service machines as follows:

1. Prototyped target results for Effort 1.
2. Actual achieved results for FEffort 1.

3. Prototyped results for Iiffort 2 + actual
achieved results for Lffort 1.

A more detailed account of the actual results from
Iiffort 1 is contained in a scparate report {4 .

‘The results are presented as a % reduction on the
base at the start of Liffort 1.

Our approach has led us to target a subset of the
benchmark transactions. However the charts show
the percentage reduction, in cach metric, over the
cntire benchmark and not just over the targeted
transactions. 'The reductions in the targeted trans-
actions had to be higher to achicve this overall
result. Tor example, the targeted transactions on
the service machines had to achieve a 34"
reduction in order to achieve the 31% overall
reduction.

The main features of the resufts are that

1. Eind-User Response time over the enfire
benchmark has been reduced by 24 %4 and
further prototyping indicates that we can
achteve an overall reduction of ncarly 50%.

2. We have achicved over 50% reduction for the
service machine transactions and carly proto-
typing has indicated that this reduction could

he close to 70% when we have concluded the
cnrrent effort (1T ORT2).

Conclusion

The main conclusions of the approach arc :

. A number of SPI"” methods can be applied,
with significant success, to existing software
products. This is particularly true of a REXX
product which lends itself to in-depth analysis.

b

Protlotyping is very necessary in predicting per-
formance results. Prototyping also had a signif-
icant impact on the quality of the software
shipped.

3. We can not over emphasize the importance of
measuring results from an early stage in the
development cycle. Constant re-measuring of
results ensures that performance degradation is
not allowed to creep into the project at any
stage. REXX myths which had been presented
to us as ways to improve performance, eg.
Code tuning., were discarded by the measure-
ment approach.

4. The key to finding what works on vour
product is through study of the SPE methodol-
ogics, analysis of the areas of vour product
where they can be applied and then measure-
ment of the results that can be achieved to
determine their cost effectiveness.

Apart from the significant performance improve-
ment, the drive for improved product performance
has also produced the following :

1. Performance culture established in the develop-
ment group. It is important to recognisc that
alongside the performance work, functional
developrent of the product has continued
often in similar arcas. It is testimony to the
change in perfformance culture within the entire
group. that this has been a relatively smooth
collaboration.

2. Initial feedback from customers has shown a
marked improvement in satisfaction with the
performance of the product.

L Performance guidelines established for the Tab-
oratory.

X1V Performance Vngineering: Management of T arge RFXX

165

4. Performance engincering, as part of the devel-
opment cycle, highlighted within the group and
the [.aboratory.

In retrospect, the key to success has been in the
overall approach. The use of SPE principles as a

guiding force, the adoption of an exploratory proto-

typing approach together with a significant invest-
ment in the measurement process have becn the

critical success factors. The enginecring concepts of
design, measurement and assessment in an iterative
fashion, have been the kernel of the entire
approach.

In conclusion, we have proven that the use of SPE
methodologies together with our own methods to
improve the performance of an existing RIEXX
product were both worthwhile and practical.

Performance Engincering/Management of a Large REXX Application XV

166

[St

50—
Z Z
o E g
-~ [
[]
[[
L] L
c 7z -~
O 30 [~ z
- L~
= o >
7] [~
2 Z
])
X 20
»e
10
0 e I_ i
Virtual CPU Timse Start 1/0

Respousa Time

N~
% Effortt Prototyped - Effort! Actuct

Figure 4. Summary of End User Results

=7 Effort2 Prototyped
é + Effortt Actual

70

60

40

30

% Reduction

20

.
Time Virtuel CPU TIme

7R

— R
Figure 5. Summary of Service Machine Results

XVi Perfermance Tngincering \Management of Farge RIENX

167

Eftort Prototyped . Effortt Actual

Start 1/0

7 Efort2 Prototyped
“Z7 + Etfort] Actudl

References

[1]Connic U. Smith, "Software Performance I'ngi-
necring”, Proc. Computer Measurement Group
Conference X1, Dec 1981, 5-14

[2]Connic U.Smith, "Performance lingineering of
Software Systems”, Addison-Wesley, 1990

[3]Connic U. Smith, "Who uses SPE?”, CMG
Trans., Spring 1988, 69-75

[41P. Mcchan, IBM Internal Use documemnt,
ECFORMS Release 3.0 SPE 1 Performance
Report, June 1991

[57F.E. Bell and A.M. Talk, “Performance Vingi-

neering: Some 1 essons from the Trenches”, Proc.
CMG 87, Orlando, Florida, Dec 1987

Other References

168

Gordon [0, Anderson, “T'he Coordinated Use of
live Performance Evaluation Methodologies”,
CACM, 27,2 F'eb 1984, 119-125

C.'T. Alexander, "Performance Fngincering: Various
techniques and Tools,” Proc. CMG Dec 1986,
264-267

P.1.Jalics, “Improving Performance the Fasy Way”,
Datamation, 23,4, Apr 1977, 135-148

Connie U. Smith, ‘General Principles for Perform-
ance Oriented-Design’, Proceedings CMG 87,
Orlando, Tlorida, Dcecember 1987, pp 138-144

Gwen A. Morrison, IBM Corporation, ‘Perform-
ance for a large, complex application’, Proc CMG
R6, Dec., 1986, 316-320 Proceedings CMG 87,
Orlando, Flonda, December 1987, pp 13R8-144

References XVil

X3J18—THE REXX STANDARD

NEIL MILSTED
X CORPORATION

169

- X3J18 - The REXX standard

L1

Organizational Chart for X3

JTC1 TAG

ISO/IEC Joint Technical Committee 1
Information Technology

JTCH

Standards
Planning & Requirements
\ Committee

—
Database’
Systems
LSmdy Group

Ermor MesSage
Study Group

American National Standards Institute

ANSI

|

[Accredited Standards Committee

CBEMA

Secretariat
Management

X3
Information Processing Systems
General
Consumer Interest Producer
Members Members Members

L Committee

Strategic

Planning

Committee

X3 Technical Committees

X3A1

X3BS
X3B6
X387
X3B8
X389

X3B10

X3B11
X3H2
X3H3
X3H4

Optical Character
Recoghnition

Digital Magnetic Tape

instrumentation Tape

Magnetic Disks

Flexible Disk Cartridges

Paper/Forms Layout

Credit/identification Cards

Optical Digital Data Disks

Database

Computer Graphics

Information Resource
Dictionary System

X3H5

X3H6
X3J1
X3J2
X3J3
X3J4
X3J7
X3J9
X3J10
X3J11
X3J12
X3J13

Parallel Processing
Constructs for High
Level Programming
Languages

CIS

PL/

Basic

FORTRAN

COBOL

APT

PASCAL

APL

Cc

DIBOL

LISP

X3J14 FORTH

X3J15 DATABUS

X3J16 C++

X3J17 Prolog

X3J18 REXX

X3K5 Vocabulary

X3L2 Codes & Character
Sets

Audio/Picture Coding
Data Representation
Data Communications
Data Interchange
Open Distributed
Processing

X3L3
X3L8
X3S3
X3T2
X313

X374 Security
Techniques
Open Systems
interconnection
Non-Contact Info.
Systems intertaces
internationalization
/O Intertace
Text: Office & Pub
Systems
X3W1 Oftice Machines
SC21 TAG - Information
Retrieval, Transfer &
Management for ISO
SC22 TAG - Languages

8

X315
X316
X317

X379
X3v1

(AA

Current Members - Vendors

= [BM

B Kilowatt

B The Workstation Group
B Quercus

m Commodore

m Wishful Thinking

| X

m System Center '

Current Members - Users

B Amdahl

m SHARE

m SLAC

B Computer Associates

m [ritus

Officers

B Brian Marks - Chairman

Neil Milsted - Vice Chairman
Ed Spire - Secretary

Dean Williams - Editor

Reed Meseck - Vocabulary
Representative

QL1

‘To become a voting member:

m Attend two consecutive meetings

m Pay $250 in dues

9.1

To become an interested party, simply ask Neil Milsted

m CIS: 76050,3673
m Internet: nfnm@wrkgrp.com

m Phone: (312) 902-2149

The REXX standard is being done in two parts:

m Part one: Codify "The REXX Language”
by Mike Cowlishaw (TRL).

B Part two: Define new features and
extensions. _

B Completion of the first part is
scheduled for March 1994.

‘Work underway for standard:

B Syntax

m Assignments and variables
m Messages

m Parse

m /O

B Arithmetic

6L1

Work to be done for standard:

m Commands
m Keyword Instructions & Function calls
m Builtin functions

® Trace

m Conditions

® Environment Interface

m Limits

m Standard Outline

m Standard Introduction

m Standard Rational

Information Processing - Programming
Languages - The REXX Language

1 Scope

1.1

This Standard specifies the semantics and syntax of the computer
programming language REXX by specifying requirements for a processor and
for a conforming program. The scope of this standard includes

° the representation of REXX programs;

° the syntax and constraints of the REXX language;

° the semantic rules for interpreting REXX programs;

° the representation of input data to be processed by REXX programs;
° the representation of output produced by REXX programs;

° the restrictions and limitations imposed by a conforming
implementation of REXX;

° the behavior of environmental interfaces.
1.2

This Standard does not specify:

° the mechanism by which REXX programs are transformed for use by a
data-processing system,; ‘

° the mechanism by which REXX programs are invoked for use by a
data-processipg system;

° the mechanism by which input data are transformed for use by a REXX
program;

° the mechanism by which output data are transformed after being
produced by a REXX program,;

° the size or complexity of a program and its data that will exceed the
capacity of any specific data-processing system or the capacity of a
particular processor;

° all minimal requirements of a data-processing system that is capable
of supporting a conforming implementation;

180

xp > by S{exp > forexp>ifor exp >
‘Lwhitespacej whitespace
toexp > to exp >
l>whitespaceJd>
s —D>lexp \
L —Diforever—————\
| Djuntil
(V\—thile-:}.{> =F F‘;
di]—DdOJ—Dassignment S “> D>leol [~

> toexp Dlbyexp [Plforexp— v
> toexp >{forexpbyexp] nstrls!
> byexp B> toexp [{forexp—]
> byexp pforexp>itoerxp
> forexp > toexp [byexp] endﬁ-J
—>forexp >byexp > toexp | v
>{byexp B{forexpr—— symbol
> forexp > byexp o J;Q—J
> toexp ~l>forexp—————)
LDforexpatoerxp-——-———)
> toexp Hbyexp ———
> byexp P toexp 4
~D>itoerxp g
~>ibyexp —
—>iforexp /

181

781

Issues discussed

m Normal comparision operator Is
intransitive

— 9ea > 1e1 > 9e0 > 9ea (in EBCDIC).
'~ {ea < 9e0 < 1el < 1ea (in ASCII).

m Extensibility within the standard

€81

X3J18 will not:
_ Create a test suite |

m Police vendors

IBM COMt ILER AND LIBRARY FOR REXX/370

WALTER PACHL
IBM

184

IBM Compiler and Library for
REXX/370

Walter Pachl

IBM Vienna Software Development Lab
c/o IBM Austria, Dept 00/705
Obere Donaustrasse 95
A-1020 Austria

May 1, 1992

3rd Annual REXX Symposium for Developers and Users

185

Agenda REXX

I An Overview I

e What’s new?

e User Interfaces, CMS and TSO

e Performance Combarisons

e Building a Standalone Program

¢ Building REXX External Functions

® Packaging an Application Using REXX

SLAC 92 (C) Copyright IBM Corporation 1992 5/1/92
186

Agenda - Notes REXX

In August 1991 two new IBM products were made generally available: the IBM Compiler and
Library for REXX/370. The major news coming with these products will be covered in the first
part of this presentation.

As the author has a close affiliation with user interfaces for invoking the compiler, a littie
description of these interfaces will be given — the nearly unchanged CMS invocation dialog
and the new MVS foreground compilation panel.

Apart from other benefits, performance is a major aspect in compiling Rexx. The
performance expectations and the results of a running a few benchmark programs will be
shown.

Finally the new products offer new possibilities for packaging applications. The presentation
will ciose by demonstrating how these possibilities can be used and what advantages can be
expected.

SLAC 92 (C) Copyright IBM Corporation 1992 5/1/92
187

What's New? REXX

I Product Improvements I

& Support MVS/ESA

¢ Smaller, Faster, Less Expensive

Smaller compiler and compiled programs
Faster compilation and program execution
Lower price, in particular for smaller processors

o CONDENSE option to get significantly smaller compiled
code

¢ DLINK option to allow for new packaging
& Support different parameter passing conventions on MVS

e Tolerate Interpret

L R
SLAC 92 (C) Copyright IBM Corporation 1992 5/1/92
188

Support MVS/ESA | REXX

| One Product I

% Cross Compiler |
Programs compiled on one system can be run on either
system

% Gives enterprise the ability to purchase a single compiler
e Library for REXX/370 is system dependent

% Programs compiled with the predecessor product
(CMS/Rexx Compiler) can be run without recompilation.

e ——— e —
SLAC 92 (C) Copyright IBM Corporation 1992 5/1/92
189

Support MVS/ESA - Notes REXX

Compiler produces on either system

s A compiled EXEC that can be used instead of the source program. (Moving from one
system to another or from one library to another on MVS may require conversion from
one record format to a different one — a utility is provided for performing this task.)

s An object module that can be turned into an executable ioad module or that can be
link-edited with other programs.

The compiler’s system interfaces, the user interface, and the run-time support are, of course,
system dependent. Ordered by product number with feature for CMS or MVS. Packaging in
predecessor product was Compiler and Runtime Library or (on customer request) Runtime
Library alone. The new products are Compiler alone and Runtime Library. User must order
both products for compiling and executing programs.

Upward compatibility is maintained: Programs compiled with predecessor product can be
run with the new Library. However, no downward compatibility — we move forward.
Predecessor product is nhow withdrawn from marketing.

]
SLAC 92 (C) Copyright 1BM Corporation 1992 5/1/92

196

CONDENSE Option REXX

| Customer Complaint: I

“Compiled programs are (much) larger than source code”

A new compiler option is offered that allows to condense the
object code.

e Compiled program uses less disk space
e |iteral strings (and source lines) become illegible

e Unpacking the program for execution takes a little time.

Consider should use CONDENSE should not use CONDENSE
Machine bottleneck|{ 1/0 CPU Storage
Program location Disk Storage Storage
(single use) (shared use)
Program size large medium small
Program execution | long—running short-running -
Program invocation| seldomly frequently
Other source/constant DLINK required
protection

SLAC 92 (C) Copyright IBM Corporation 1992 5/1/92
191

DLINK Option REXX

I Another Performance Boost I

Significant (search) time is spent when external programs are
invoked. CMS/Rexx Compiler allowed to create TEXT and
MODULE for a Rexx program. A new compiler option, DLINK,
generates weak external references for external functions and
subroutines in compiled object modules.

These can be resolved by combining caller and callees, using
the linkage editor.

Under MVS, modules must be pre-linked using an appropriate
stub to accommodate the different parameter passmg
conventions.

Use of DLINK can make an application self-contained: No
name clashes with user’s environment.

SLAC 92 (C) Copyright IBM Corporation 1992 5/1/92
192

MVS Parameter Passing Conventions REXX

¢ MVS has many different parameter passing conventions
e REXX programs understand arguments
¢ These arguments are passed in a table

o Compiler for REXX/370 supports four types of parameters
MVS type, used ih PARM= on JCL
CALL type, used in the TSO/E CALL command
CPPL type, used in TSO/E commands

EFPL type, used in REXX external functions and function
packages

¢ Source of “stubs” is provided as examples

e Can be modified for other parameter passing conventions

SLAC 92 (C) Copyriaht IBM Cornoration 1992 5/1/92
193

MVS Parameter Passing Conventions - NotesREXX

The MVS type and CALL type are very similar. The CALL type is limited to a single
parameter, and it will have an address less than 16 Meg. The PARM= on JCL is a single
parameter, but other programs that use this convention may have more than one parameter.

Register 1 points at a list of addresses, the last of which has the high order bit on.
Addresses point at the individual argument strings each of which consists of a length field
followed by the actual data.

The CPPL is a four word construct mapped by the macro IKJCPPL.
The DSECT for this macro is:

ek R dek B Rk d ke Rk kR AR R AR W R TR R R R R R R FEEREREEREERERERREREERTEERRRRRRRRRR R R RD

* THE COMMAND PROCESSOR PARAMETER LIST (CPPL) IS A LIST OF
* ADDRESSES PASSED FROM THE TMP TO THE CP VIA REGISTER 1

P e de e v oo e A oo A W 3 o o b 3 o o e e ok o o e o o o e ok e e S e e s de e e e de e e e e e ke R kR ke Rk ke Rk ddk de ke dd

CPPL DSECT

CPPLCBUF DS A PTR TO COMMAND BUFFER
CPPLUPT DS A PTR TO UPT

CPPLPSCB DS A PTR TO PSCB

CPPLECT DS A PTR T0 ECT

The EFPL is a six word construct mapped by the macro IRXEFPL.
The DSECT for this macro is:

EFPL DSECT

EFPLCOM DS A * RESERVED

EFPLBARG DS A * RESERVED

EFPLEARG DS A * RESERVED

EFPLFB DS A * RESERVED

EFPLARG DS A * POINTER TO ARGUMENTS TABLE
EFPLEVAL DS A * POINTER TO ADDRESS OF EVALBLOCK

Stubs transform what comes in to what is expected. Under CMS, the compiled Rexx program
is “self-adjusting.”

SLAC 92 (C) Copyright IBM Corporation 1992 5/1/92
194

Tolerate Interpret | REXX

| Closer to Thee I

e |[nterpret was flagged as SEVERE error by CMS/Rexx

Compiler
No compiled code was generated.

e Interpret is now flagged as ERROR
Code is generated and causes a run-time error when the
Interpret instruction is actually encountered.

This can be avoided by:

Parse Version v
If left(v,5)<>'REXXC' Then /* running compiled program */
Interpret instruction /* we can interpret */

¢ Support of Interpret is now an “Accepted Requirement”

SLAC 92 (C) Copyright IBM Corporation 1992 5/1/92
195

REXXD - Compiler invocation Dialog REXX

| CMS Compiler Invocation I

IBM Compiler for REXX/370

Specify a progranm. Licensed Materials — Property of IBM
Then select an action. 5695-613 (C) Copyright IBM Corp. 1989, 1991
A1l rights reserved.

Program JEST EXEC A Output disk: Z
Action - Source active Compiled

1 Compile TEST EXEC A into TEST CEXEC A

2 Switch (rename) source and compiled exec

3 Run active (source) program

4 Edit source program

5 Inspect compiler listing

6 Print source program

7 Print compiler listing

8 Specify compiler options

Argument string:

Command ===>

Enter Fl=Help F2=Filelist F3=Exit

Fl2=Cancel

A N S

SLAC 92 (C) Copyright IBM Corporation 1992 5/1/92
196

REXXD - Compiler Invocation Dialog - Notes REXX

The compiler invocation dialog is intended to support all tasks involved in compiling for
programmers as well as for casual users.

To use the compiler-invocation dialog under CMS enter the command:
rexxd test exec a
The panel appears as shown in the previous foil.

You may now select Actions:

1. Select Action 1 to compile the source program.
2. Select Action 2 to rename the source program and the compiled program.
3. Select Action 3 to run the currently active program.

If you need more information, refer to the online help by pressing the F1 key.

The name of the program to be compiled is carried over from the REXXD invocation or from
the last invocation of this dialog. The name can, however, be changed on this panel. The
panel Is identical to that of the predecessor product, with one addition: the possibility to
specify an output disk.

The panel indicates whether the source program or the compiled EXEC is currently active.
The effect of switching between the two is reflected by appropriate highlighting.

Compiler options in effect can be displayed, changed, saved, and reset by selecting Action 8.

SLAC 92 (C) Copyright IBM Corporation 1992 5/1/92
197

The Compiler Options Specification Panel = REXX

5 REXX Compiler Options Specifications
Specify which output files you want, and their File-IDs

File identifiers

Program name ROULETTE EXEC Gl
Y Compiler listing iY/N/P) = LISTING =
Y Compiled EXEC Y/N) = c* =
Y TEXT file (Y/N) = TEXT =

Specify compiler messages to be issued
I FLAG Minimum severity of messages to be shown (I/W/E/S/T/N)
N TERM Display messages at the terminal (Y/N)
N SAA SAA—-compliance checking (Y/N)

Specify contents of compiler listing
Y SOURCE Include source listing (Y/N)
Y XREF Include cross—reference listing (Y/S/N)
N LC Number of lines per page (16-99 or, for no page headings, 6 or N)

Additional options
N SL Support SOURCELINE built—in function (Y/N)
Y TH Support HI immediate command (Y/N)
S NOC Error level to suppress compilation (*/W/E/S)
N COND Condense compiled program (Y/N)
Y DLINK Include ESD and RLD in TEXT output (Y/N)
Special compiler diagnostics
N DUMP Produce diagnostic output (6-2047, Y, or N)

Command ==
Enter Fl=Help F2=Filelist F3=Exit F4=Save F5=Refresh Fb6=Reset
F12=Cancel

The options in effect are shown. Using entry fields and PF
keys, the user can |

e Change each compiler option individually (user input is
checked and errors are diagnhosed top down, field by field)

e Save the options in effect (in LASTING GLOBALY)
¢ Refresh the options (from LASTING GLOBALYV)

® Reset the options to the installation defaults (taken from
REXXC)

Help panels expiain the available options and their meaning.

SLAC 92 (C) Copyright IBM Corporation 1992 5/1/92
198

Foreground REXX Compile REXX

l MVS Compiler Invocation I

Under MVS, the usual methods of compiler invocation are
supported:

e Foreground Compilation
e Background Compilation

¢ Cataloged Procedures

FOREGROUKD REXX COMPILE
COMMAND ===>

ISPF LIBRARY:
PROJECT ===> TEST

GROUP ===> |IB1 ===> |IB2 ===> LIB3 ===
TYPE e==> REXX
MEMBER ===> (Blank or pattern for member selection list)

OTHER PARTITIONED OR SEQUENTIAL DATA SET:
DATASET NAME ===>

LIST ID ===>
COMPILER OPTIONS: (extended REXXC options can be used)

mo=D

=x=>

IR e

SLAC 92 (C) Copyright IBM Corporation 1992 5/1/92
199

Foreground REXX Compile - Notes REXX

Invoking the Compiler with ISPF Panels (MVS/ESA)

Under ISPF, you can invoke the Compiler from the Foreground REXX Compile panel and the
Batch REXX Compile panel. The panels are similar to those for other high-level ianguage
compilers.

To use the Foreground REXX Compile panel:
1. Select FOREGROUND on the ISPF/PDF Primary Option Menu.
2. Select REXX Compiler.
3. Enter the appropriate data set names and (extended) compiler options. Extended
compiler options allow to specify data set names where compiler output is to be stored.

From data entered on the panel, a command is built that allocates data sets as appropriate
and that invokes the compiler with the appropriate compiler options. This command is, of
course, implemented as a Rexx EXEC.

Rather unconventionally, background compilation does not employ file tailoring but uses also
this REXXC command — albeit in batch. '

R

SLAC 92 (C) Copyright IBM Corporation 1992 5/1/92
200

Performance REXX

l Run-Time Performance Improvements I

TIMES | Performance
. faster than| Category
Programs with a ot of ... Interpreter

Arithmetic operations

with default precision 6-10+
Arithmetic operations VERY HIGH
with other precision 4 -25
Assighments 6-10
Changes to variables’ values 4- 6

HIGH
Constants and simple variables| 4- 6
Reuse of compound variables | 2- 4 MEDIUM
Host commands 1- LOW

SLAC 92 (C) Copyright IBM Corporation 1992 5/1/92
201

Performance - Notes REXX

The performance improvements that you can expect when you run compiled REXX programs
depend on the type of program. A program that performs large numbers of arithmetic
operations of default precision shows the greatest improvement. A program that mainly
issues commands to the host shows limited improvement because REXX cannot decrease the

time taken by the host to process the commands.

Up to 30% CPU-load reduction have been reported on a heavily REXX-loaded machine.
” ... better than last CPU upgrade. On average 10-15% reduction are reported.

L " _ S .]
SLAC 92 (C) Copyright IBM Corporation 1992 5/1/92
202

Performance Comparison - April 1992

REXX

BENCHMAR EXEC

SPI-XA
REXX-370

magnifier
forloop
whileloop
repeatloop
literalassign
memoryaccess
realarithmetic
realalgebra
vector
equalif
unequalif
noparameters
values
reference
wordscan460

command

YM/XA System Product Interpreter Rel 5.6
IBM Compiler and Library for REXX/370 Rel 1.0

TOTAL CPU TIME

SPI-XA

0.76538
7.97983
13.58915
13.09567
'10.34849
16.76416
3.29728
2.69790
18.76649
16.77867
16.74953
13.53182
11.98723
19.96034
21.16018
0.68720

REXX-376

0.63749
0.42967
0.57711
0.54219
0.53132
0.56278
1.62355
0.39426
1.89689
0.91997
0.91375
1.29613
2.49335
2.51308
0.70951
0.61554

RATIO

SP1/376

20.42
18.57
23.55
24.15
19.48
19.02
3.22
6.84
9.86
18.24
18.33
10.44
4.81
7.92
29.82
1.12

SLAC 92

(C) Copyright IBM Corporation 1992

203

5/1/92

Building a Standalone Program REXX

I An Example l

e Compile the program using the OBJECT compiler option

e Turn it into a load module

— Under MVS, by link-editing with the MVS-stub specified
— Under CMS, by LOAD/GENMOD

e Place the load module

— into an accessible library
— onto an accessed minidisk

® |nvoke it

— from REXX (under MVS using Address LINKMVS)
— from other languages, e.g., PL/L

DCL REXPGM ENTRY EXTERNAL OPTIONS(ASSEMBLER,INTER);

FETCH REXPGM; /* Bring it into storage */
CALL REXPGM(VARSTRING); /* Call the REXX program */
RELEASE REXPGM; /* Release it from storage */

L A N

SLAC 92 (C) Copyright IBM Corporation 1992 5/1/92
: 204

Building REXX External Functions REXX

I Performance opportunities I

e External functions in load libraries generally found quicker
(MVS)

e Function packages are first in the search order (Rexx
search order) '

| Easy transition to load module I

® Proceed as for standalone program

® but use EFPL stub instead of MVS

m
SLAC 92 (C) Copyright IBM Corporation 1992 5/1/92
205

Building REXX External Functions ... @™ REXX

I Building function packages I

e Essentially a collection of external functions

e Each external Rexx function needs EFPL STUB (under
MVS)

¢ When building package, naming convention consideration
is important

e Description of packages in Rexx Reference manuals
(system dependent).

SLAC 92 (C) Copyright IBM Corporation 1992 5/1/92
206

Packaging an Application REXX

l Packaging Concept I

e Can write an entire application in REXX

e External routines are directly LINKed

¢ Enabled through the use of DLINK cbmpiler option

| DLINK advantages I

¢ Tremendous performance improvements from interpreted

Mostly by eliminating search time

Also due to inherent better performance in compiled REXX

o Functional isolation
Each function can be in an external routine
No name clashes with other system execs or commands

No maintenance problems due to inadvertent modification of
~ the exec

R — L A U

SLAC 92 (C) Copyright IBM Corporation 1992 5/1/92
207

Packaging an Application ... REXX

| Packaging Considerations for MVS |

e Naming convention unique to seven characters

e Use the DLINK option with all OBJECTs created by the
Compiler for the application package .

¢ All external functions use EFPL stub
e Main program may have different type of STUB

e All programs need to have a STUB created using a
catalogued procedure

e Link edit all created programs together to create package

SLAC 92 (C) Copyright IBM Corporation 1992 5/1/92
208

Packaging an Application ... REXX

I Example (for MVS) I

e Begin with the following three execs

DLT to drive the process
CPUTIME to get the CPU time

INCR simply returns the passed argument

DLT

/* REXX *DLT Rkl A N e e Ak e s e A R R R R AR KA R KRR R AR RR TR R RERRRRR TR R AR xhdkdkdhd

* performance Test for DLINK option:
* Invoke external routine INCR 56 times and tell how long it took
***/
n='DLT'
Parse Version v /* Use Parse Version to see if compiled */
If left(v,5)="REXXC' Then what=n 'compiled’
Else what=n 'interpreted’
Say what
num=560

to=cputime()
Call time 'R’
Say num 'invocations of INCR will be measured’
Do i=1 To num

Call incr i

End
Say 'This took me' (cputime()-t®) 'CPU-seconds.’,

"(elapsed:' time('E')')’

SLAC 92 (C) Copyright IBM Corporation 1992 5/1/92
209

Packaging an Application - Notes ~ REXX

One of the aspects of REXX that makes it an easy to use language is the ease with which it
can concatenate strings. This is observed in the if statement, where the name of the exec in
the variable n is concatenated with the string indicating whether the exec is compiled or
interpreted.

Also note that the PARSE VERSION gives the programmer the ability to determine if the exec
is running compiled or interpreted. If needed, different logic paths can be followed,
depending on whether the exec is being interpreted or run as compiied program.

Similarly Parse Source lets you determine how the exec was invoked and on which system.

SLAC 92 (C) Copyright IBM Corporation 1892 5/1/92
210

Packaging an Application ... REXX

[CPUTIME I

l* REXX * CPUTIHE e e e e de e e e e v e s o i o e e o e ok o 3 S v e e e e e e 3 e o e S e e e e e o e e e e e o e de ok o e e ok

* Return the cpu-time used up so far
***/

Parse Version v
,Parse Source s

Parse Var s sys .,

Select /* Figure out which system we are on */
When sys='CMS' Then Do
qt="DIAG"(8,'Q TIME')
Parse Var gt . 'VIRTCPU=" mm . ':' +1 ss +6
cpu=mm*60+ss
End
When sys="'TS0' Then Do
cpu=sysvar('SYSCPU')
End
When wordpos(sys, 'PCODS 0s/2')>0 Then Do
t=Time(
Parse Var t hh ':' mm ':' ss
cpu=(hh*66+mm)*66+ss
End
Otherwise Do
Say 'System' sys 'is unknown to CPUTIME’
cpu=0
End
End
If word(s,2)="COMMAND' Then
Say 'CPU time used so far:' cpu
Else /* When an external routine */
Return cpu /* Return the CPU time */

/* REXX * I"CR A e e e b sk e v e o 3 3 e e v 9 S e v v e e gk o o o e o I ok e o e Ak o e o o ok e g e o de e de e o v ok e ok sk e e e

* Performance Test for DLINK option:

* Return the argument
***/

Return arg(l)

-~ .~ BT A
SLAC 92 (C) Copyright IBM Corporation 1992 5/1/92
211

Packaging an Application ... REXX

l Building this package I

& Interpreted Case
Normally all three execs reside in SYSEXEC
Invoked by entering DLT from TSO command line

CPUTIME and INCR are external routines
& Hence, DLT will need CPPL STUB
& CPUTIME and INCR need EFPL STUB

& All OBJECTs are created with DLINK option

& Catalogued procedure used for each one

R

SLAC 92 (C) Copyright IBM Corporation 1992 5/1/92
212

Packaging an Application ...

REXX

|_ Creating the final module l

e Link edit all load modules together
After each has its STUB added

Using INCLUDE and NAME control cards

¢ In this example, BJVLIB is the DDNAME of the Ilbrary

containing the programs

e Control cards would be

INCLUDE BJVLIB(DLT)
INCLUDE BJVLIB(INCR)
INCLUDE BJVLIB(CPUTIME)
ENTRY OLT

NAME DLT(R)

Under CMS, simply

LOAD DLT INCR CPUTIME
GENMOD DLT

L B
SLAC 92 (C) Copyright IBM Corporation 1992
213

5/1/92

Packaging an Application ... REXX

l Output Comparison I

e When Interpreted

DLT interpreted
50 invocations of INCR will be measured
This took me 1.36 CPU-seconds. (elapsed: 11.14)

e When Compiled using OBJECT and DLINK

DLT compiled
50 invocations of INCR will be measured
This took me 0.74 CPU-seconds. (elapsed: ©.89)

Under CMS

This took me .23 CPU-seconds. (elapsed: 1.891623)
VS.
This took me 6.86 CPU-seconds. (elapsed: 6.142637)

l Significant Performance Improvement I

¢ |nterpreted uses 75 % more CPU

¢ |[nterpreted is 12.5 times slower in elapsed time

SLAC 92 (C) Copyright IBM Corporation 1992 5/1/92
214

In Closing REXX

l The IBM Compiler and Library for REXX/370 I

e Open new programming possibilities
e Support both function and application packaging
e Give you more time on your own CPU!

e And we did not even touch
— Program Documentation
— Plug-compatibility
— - 31-Bit Capability (VM/XA)

— New language on old systems

SLAC 92 (C) Copyright IBM Corporation 1992 5/1/92
215

0S/2 PROCEDURES LANGUAGE 2/REXX

RICHARD K. MCGUIRE AND STEPHEN G. PRICE
IBM

216

e

0S/2 Procedures Language
2/REXX
“A Practical Approach to
Programming”
- and
"Adding REXX Power to
Applications”

Richard K. McGuire
Stephen G. Price

IBM Corporation
G09/20M
P.O. Box 6
Endicott, NY 13760

(C) Copyright IBM Corp 1989, 1992

217

0S/2 Procedures
Language
2/REXX

A
Practical
Approach to
Programming

0S/2 Rexx

What is REXX?

= Powerful end-user programming language

= Easy to learn, easy to remember

= Can powerfully extend any application

= Common language available on all SAA systems
= Becoming an ANSI standard (X3J18 Committee)

0S/2 Rexx

218

Why REXX?

= Small, easy to use, yet powerful language
= Programming interfaces for application extension

= Rapid development of an interpreter, performance boost
of compiler technology

OS/Z Rexx

Keep the Language Small

= Friendlier to new users
w Documentation is smaller and simpler

= Few exceptions or special cases (low "astonishment
factor")

w Users can "embrace" the entire language

0S/2 Rexx

219

Natural Datatyping

= No internal or machine

representation is exposed Say "The interest is a*b'%
to the user

= Single number concept

Say5+1.0+0.54 +
1.23e-2

0S/2 Rexx

No Defined Size or Shape Limits

= Data sizes limited only by available memory
= Limits are set using "human readable” values
= SmallTalk-like dynamic data-typing

0S/2 Rexx

220

Powerful Symbol Manipulation

= Natural concatenation Parse Arg first initial last
= Powerful string parsing Say "Hello" first".’
ability
» Many functions for string pos = wordpos(first, list)
and word manipulation if pos <> 0 then

nickname = word(list, pos)

0S/2 Rexx

System Independence

= The REXX language is
independent of both
operating system and
hardware

= Suitable for any system or
application environment

= Part of the IBM Systems
Application Architecture

0S/2 Rexx

221

REXX Uses

= Tailoring user commands (".CMD" files)
» End-user problem solving

= Universal macro or scripting language
= Prototyping Applications

= Education

0S/2 Rexx

Universal Macro Language

= Editors

= Spreadsheets

= Language preprocessors
= Communication programs

= Rexx can be the macro
language for any
application

/N

0S/2 Rexx

222

REXX is a Good Introduction to Programming

= Easy to learn

= Easy to program

= Few new concepts
required

= Powerful debugging
features

= No separate compile or
link step

0S/2 Rexx

What's New in OS/2 2.07?

= Interpreter runs in 32-bit = New 32-bit sample
mode programs in toolkit

= Dramatically improved = On-line programming
performance interfaces reference

=« New 32-bit interfaces = RXHLLAPI interface

= 16-bit interfaces still = SAA Communications
supported interface

= On-line REXX reference « Communications Manger
manual configuration

= OS/2 utility functions = LAN utilities

OS/Z_ Rexx

223

More than a Fancy .CMD Language

» Fill multiple roles on OS/2

a Places more power in the
hands of users

= Powerful automation of
OS/2 operations

= Powerful extensions to
OS/2 applications

0S/2 Rexx

0S/2
Procedures Language
2/REXX

Adding REXX Power
to Applications

0S/2 Rexx

224

Creating New REXX Functions

REXX Program

Function
DLL

0S/2 Rexx

Function Registration

= REXX external functions
are registered with

RxFuncAdd Call RxFuncAdd 'SysCls',,
= Acts as a form of program 'REXXUTIL', 'SysCls’
linkage

0S/2 Rexx

225

RXSTRINGs

s External functions are

passed arguments as : AR E] et O
RXSTRINGS Call SysFileTree 'C:\"."", 'List.", 'F
= Defined as a pointer and
length pair defining a
REXX character string o CANAO

SR I A0

0S/2 Rexx

RXSTRING Return Values

= External functions pass an
RXSTRING value back to
REXX

« The function can use the
buffer provided by REXX
or create a new one

External Function
REXX

0S/2 Rexx

226

Function Packages

= REXX external functions
can be registered from C
code also RexxRegisterFunctionDII(
"SysCls", "REXXUTIL",
"SysCls");
0S/2 Rexx

Accessing REXX Variables

REXX Program

Function
DLL

0S/2 Rexx

227

Using REXX for Macros

DEJDDEI‘I
DOCI00

= An application can call the
REXX interpreter to run
any REXX program

0S/2

oo o
b s g v 20|
L3

Ll
jSls w5

sl

Rexx

Invoking REXX

= An application can call
use the REXX interpreter
with the RexxStart
programming interface

0S/2

rc = RexxStart(argc, argy,
"FACTOR.CAL",
NULL, NULL,
RXFUNCTION,

NULL,

. &return,

&retstr);

Rexx

228

Application External Functions

0S/2 Rexx

Subcommand Handlers

0S/2 Rexx

229

And Still More...

= Exits to tailor REXX . = Halting a running REXX
program behavior program

= REXX programs executed = Tracing a running REXX
directly from storage program

= Macro Space repository = Subcommand handlers as
for REXX programs dynamic link libraries

0S/2 | Rexx

REXX
The Universal Macro Language

= Same language used for
all applications
= Places control into user
hands, making people
more productive
» Easily added to any
application

0S/2 '_ Rexx

230

INTERFACING WITH REXX

ANTHONY RuDD
DATEV

231

interfacing with REXX

ABSTRACT

This aim of this paper is to give an overview of the interfaces available in REXX, and to show how these
interfaces can be used. This paper deals only with the MVS environment — however, most other
environments (e.g. OS/2) offer similar facilities.

Although REXX is a powerful language in its own right (especially now that REXX compilers are
available), there are certain features missing (for example, processing of VSAM files, direct SQL
processing). Furthermore, there are REXX features (e.g. parsing) that can simplify the processing of
programs written in conventional languages (Assembler, PL/I, COBOL, etc).

REXX caters for both these situations by providing interfaces. There are two forms of interface:

« high level
~ low level.

High-level interfaces are invoked directly from a REXX exec. Low-level interfaces are those routines
(services) provided by the REXX processor.

There are three forms of high-level interface:

«~ function
» (address) environment
» program invocation.

A function can be written in either REXX or a conventional programming language. To improve
performance functions can be physically grouped together as a function package. A function is invoked
by its name, and serves to extend the standard functions provided with REXX (e.g. WORD, WORDINDEX). A
function may be passed arguments, and may return a value (the function return value).

An address environment can only be written in a conventional programming ianguage. High-level
interfaces may (and normally will) make use of low-level REXX interfaces. REXX as an address
environment processes any non-REXX statements. A user-address-environment extends the standard
REXX environments (e.g. MVS, TS0).

A program invocation is made with the LINK or ATTACH command.

1. INTRODUCTION

REXX implementations offer many interfaces for using REXX services from. programs written in
conventional programming languages. This paper describes only those interfaces of interest to the
applications developer ~ there are a number of other interfaces which can be used by systems specialists
to customise the system.

The interfaces can be grouped into the following categories:

» program invocation of a REXX exec

~ programs as REXX functions (and the grouping of such programs into function packages)
» program access to REXX variables

~ stack operations

» general service routines.

232

Interfacing with REXX 1

1.1 High-level REXX interfaces

High-level REXX interfaces are invoked directly from REXX execs. Such interfaces can be regarded as
being extensions to the REXX language.

Standard address environments:

» ISPEXEC (ISPF Dialog Manager)
« ISREDIT (ISPF/PDF Edit Macro)

+ DB2 (program that runs in the DB2 environment)
« QMF.

Typical user environments:

s REXXDB2 process SQL query

o REXXVSAM process VSAM dataset.
Representative examples of user functions:

 SHIFT function (perform bit-shift on REXX variable)
« SIN function (calculate trigonometric sine value).

1.2 Low-level REXX interfaces

The most useful low-level REXX interface routines:

o IRXEXCOM access REXX variables

o IRXEXEC invoke REXX exec

& IRXINIT process REXX environment

* IRXJCL invoke REXX exec (batch mode)
« IRXLOAD load exec

« IRXRLT get result

o IRXSTK access REXX stack.

REXX programs (i.e. programs that make use of REXX services) can access certain REXX control
blocks:

s Argument List (AL). The Argument List describes the input arguments passed to a function. Each
argument passed to the function has one Argument List entry (consisting of two words) in the
Argument List. The Argument List is terminated with two words each containing binary -1
(X'F...FY). ,

« External Functions Parameter List (EFPL). The EFPL describes the external arguments for a
function; the pointer to the input arguments and to the result field. The input arguments are defined
in the Argument List. The result is defined in the Evaluation Block (EVALBLOCK).

» Environment Block (ENVBLOCK). The ENVBLOCK describes the REXX operafing environment.
An ENVBLOCK is automatically created when the REXX environment is initiated. The
ENVBLOCK is principally used by the application developer to obtain error messages.

« Evaluation Block (EVALBLOCK). The EVALBLOCK describes the result passed back from a
function.

» Execution Block (EXECBLK). The EXECBLK specifies the information necessary to locate an
external exec.

« In-Storage Control Block (INSTBLK). The INSTBLK describes (address and length) the individual

records (lines) of a REXX exec contained in main-storage. The IRXLOAD service can be used to build
the INSTBLK.

+ Shared Variable (Request) Block (SHVBLOCK). The SHVBLOCK describes the variable to be
accessed from the variable pool. SHVBLOCKSs can be chained together.

233
Interfacing with REXX 2

* Vector of External Entry Points (VEEP). The VEEP contains the addresses -of the external REXX
service routines.

Most of these control blocks are read-only, although some can be altered (INSTBLK, SHVBLOCK).
2. HIGH-LEVEL INTERFACES

2.1 MVS-TSO/E implementation

The MVS-TSO/E implementation allows a REXX exec to run in several environments, both dialogue
and batch. From within this invoking environment the ADDRESS instruction can be used to select a sub-
environment for non-REXX statements. This sub-environment is the interface to other components, for
example, the ISPEXEC sub-environment for ISPF Dialog Manager services.

2.1.1 Invocation
A REXX exec can be invoked from:

» TSO/ISPF dialogue
* TSO batch
e MVS batch.

The REXX exec is stored as member of a partitioned dataset (library). The name of this dataset must be
made available to the REXX interpreter.

2.1.2 Linkage to host (MVS-TSO/E) environment
A REXX exec can link to components from the host environment. The ADDRESS instruction is used to set
the host environment.

Example:
ADDRESS TSO "TIME";
invokes the TSO TIME command.

2.1.3 Linkage to programs

A REXX exec can pass control to a program written in a conventional programming language. The
program is invoked with either the ATTACH or LINK host command. The ATTACH command invokes the
program asynchronously (i.e. as a separate task), the LINK command invokes the program synchronously.
The program is loaded from the program (load) library assigned to the environment.

The program may be passed a single parameter, which may contain subparameters. The invoked
program receives two parameters on entry:

» the address of the parameter string;

« the length of the parameter string (full-word).

Note: This is not the standard MVS program linkage convention. TSO/E V2R3.1 offers new facilities:
LINKMVS, ATTCHMVS, LINKPGM, ATTCHPGM. These pass multiple parameters according to MVS conventions.

234

Interfacing with REXX 3

2.1.4 Interface with ISPEXEC (ISPF Dialog Manager)

REXX execs invoked from the TSO/ISPF environment can use the ADDRESS ISPEXEC instruction to access
ISPEXEC (ISPF Dialog Manager) services. The parameters for the ISPEXEC service are passed as a
normal REXX string, i.e. may be a literal, symbol or mixture. However, ISPEXEC accepts only upper-case
characters. The return code from the ISPEXEC service is set into the RC special variable,

REXX execs and ISPF Dialog Manager share the same function pool, with two restrictions:

« variable names longer than 8 characters cannot be used in ISPF;
« the VGET and VPUT services cannot be used with stem variables.

Example:
panname = "PAN1";
ADDRESS ISPEXEC "DISPLAY PANEL("panname")";
SAY RC;
uses ISPEXEC to display panel PAN1, the return code from the service is displayed.

2.1.5 Intertace with ISREDIT (ISPF/PDF Edit macro)

The ISPF/PDF Editor can invoke a procedure to perform processing on a dataset — this procedure is

called an Edit macro and can be a REXX exec. The ADDRESS ISREDIT imstruction invokes Edit macro

services. The parameters for the ISREDIT service are passed as a normal REXX string, i.e. may be a

literal, symbol or mixture. The return code from the ISREDIT service is set into the RC special variable.
Edit macros can make full use of REXX facilities. The powerful string processing features of REXX

make it an ideal language for the implementation of Edit macros.

Example:
/* REXX Edit macro */
ADDRESS ISREDIT;
"MACRO (STRING)"
"FIND" string "NEXT®
IF RC <> 0 THEN SAY "search argument not found”;
"END™ /* terminate macro */

2.1.6 Interface with DB2 (Database 2)
The TSO DSN command is used in initiate the DB2 session. The DB2 RUN subcommand is used to invoke a
program which is to run in the DB2 environment.

The DB2 subcommands to invoke the program, and to terminate the DB2 session, RUN and END,
respectively, are set into the stack in the required order before the DB2 session is initiated.

Note: The subcommands cannot be passed directly, as is the case with CLISTSs.

Example:
QUEUE "RUN PROGRAM(TDB2PGM) PLAN(TDB2PLN) LIB('USER.RUNLIB.LOAD'}";
QUEUE "END";
ADDRESS TSO "%DSN"; /* invoke DB2 */
or
ADDRESS ISPEXEC “SELECT CMD(%DSN)"; /* invoke DB2 with ISPF services */

2.1.7 Interface with QMF (Query Management Facility)
With QMF Version 3 Release 1 the SAA Callable Interface (DSQCIX) is now available for REXX., This
means that there are now two methods of invoking QMF:

e Callable Interface
e« Command Interface.

235

Interfacing with REXX 4

The Callable Interface:

o ISPF not required
o QMF does not need to be active.

The Command Interface:

* requires ISPF
* requires QMF to be active.

The Command Interface invocation of QMF is more involved; two steps are required:

« initiate the QMF session (program DSQQMFE), and execute a QMF procedure;
o this QMF procedure passes control to a REXX exec, which in turn uses the QMF Command
Interface (CI, program DSQCCI) to process a QMF command.

The following three QMF examples all perform the same function: run the QMF query Q1.

2.1.7.1 Callable Interface - Version 1
Example:
/* REXX - QMF Callable Interface */
ADDRESS "TSO0";
/* allocate QMF files */
"ALLOC F(DSQDEBUG) DUMMY REUS”"
"ALLOC F(DSQPNLE) DSN('qmf.test.dsgpnle') SHR REUS"
"ALLOC F(ADMGGMAP) DSN('qmf.test.dsqmape') SHR REUS"
CALL DSQCIX "START (DSQSSUBS=DB2T,DSQSMODE=INTERACTIVE"; /* start QMF */
CALL TESTRC; '
CALL DSQCIX "RUN QUERY Qi"; /* run query */
CALL TESTRC;
CALL DSQCIX "EXIT"; /* terminate QMF */
CALL TESTRC;
EXIT; /* terminate exec */
TESTRC:
IF DSQ_RETURN_CODE > 4 THEN DO;
SAY "QMF RC:™ DSQ_RETURN_CODE;
SAY DSQ_MESSAGE_TEXT;
END;
RETURN;

236

Interfacing with REXX 5

2.1.7.2 Callable Interface - Version 2
Example:
/* REXX - QMF Callable Interface */
ADDRESS "TSO";
"ALLOC F(DSQDEBUG) DUMMY REUS"
"ALLOC F{DSQPNLE) DSN('qmf.test.dsgpnie') SHR REUS"
"ALLOC F(ADMGGMAP) DSN('qgmf.test.dsqmape') SHR REUS®
CALL DSQCIX "START (0SQSSUBS=DB2T,DSQSMODE=INTERACTIVE"; /* start QMF */
CALL TESTRC; ’
ADDRESS "QRW"; /* QMF environment */
"RUN QUERY Q1" /* run query */
CALL TESTRC;
"EXIT® /* terminate QMF */
CALL TESTRC;
EXIT; /* terminate exec */
TESTRC:
If DSQ_RETURN_CODE > 4 THEN DO;
SAY "QMF RC:" DSQ _RETURN_CODE;
SAY DSQ MESSAGE_TEXT;
END;

RETURN;

Version 2 is basically the same as version 1, except that the QMF environment QR is used.

2.1.7.3 Command Interface
Example:

Phase 1 - Initiate QMF session (DSQQMFE program). The following exec allocates the (minumum) QMF
files, initiates QMF session and invokes the QMF procedure QP1:

/* REXX - QMF COMMAND INTERFACE */

ADDRESS "TS0";

"ALLOC F(DSQDEBUG) DUMMY REUS"

"ALLOC F{DSQPNLE) DSN{'gmf.test.dsgpnle') SHR REUS"

"ALLOC F(ADMGGMAP) DSN('qmf.test.dsqmape’) SHR REUS"
ADDRESS "ISPEXEC";

"SELECT PGM(DSQQMFE) NEWAPPL(DSQE) PARM(S=DB2T,I=USER.QP1)"

Phase 2 - The QMF procedure QP1 passes control to the TSO procedure (REXX exec) QR2:
TSO %QR2

Phase 3 - The QR2 exec invokes the QMF Command Interface (DSQCCI program) to process the specified
QMF commands (this REXX exec actually causes the QMF query (Q1) to be run):

/* REXX */

ADDRESS "ISPEXEC";

"SELECT PGM(DSQCCI) PARM(RUN Q1)"

"SELECT PGM(DSQCCI) PARM(INTERACT)"

"SELECT PGM(DSQCCI) PARM(EXIT)" /* terminate QMF */

237

interfacing with REXX 6

Fig, 1 illustrates the use of the QMF Command Interface.

—REXX-exec—
(Qr1) _— FDSQQMFE

QMF procedure
—REXX-exec— (QrP1

(Qr2)

SQCCI
r‘D gHF command

(query, etc.)

Fig. 1 ~ Schematic use of QMF Command Interface

2.2 User interfaces

User programs can be invoked as:

* function (e.g. x = funct(pl,p2,...):)

¢ host command (e.g. ADDRESS userenv; "cmd pl p2 ...";)
o program (e.g. LINK "pgm pl p2 ...";).

The most suitable interface depends on such aspects as:

o the form of the arguments to be passed (a natural calling sequence);
« the form of the results to be returned;

o the programming language used.
2.2.1 Function interface

A user function receives zero or more parameters (parsed in the Argument List), and must return a
function result (in the Evaluation Block). Fig. 2 illustrates the function interface.

Example:
y = SIN(x):

238

Interfacing with REXX

register 1
External Function Parameter List (EFPL)

[e—

Argument List (ARGSTRING..)

+

EFPLARG |

p EFPLEVAL |
1 _LENGTH f— |

_PTR TH—— arg(1)

X'FF...FF*

X'FF...FF!

Evaiuation Block (EVALBLOCK)

—_—

.)
EVLEN]
EVDATA B it result
[T

Fig. 2 — Function interface

2.2.2 Host command interface

A host command is processed by the currently active environment, i.e. the environment activated with
the ADDRESS command. All non-REXX commands are passed to the host command environment. A host
command cannot directly return any data (other than a return code for the command) - data can be
passed back in the stack or as (stem) variables. Fig. 3 illustrates the host command interface.

Many installations have a single router program that passes control to the appropriate processing
program.

Example:

ADDRESS USER;
"REXXVSAM READ DDNAME GE ALPHA(STEM A.";

parameter list

Tf——r|environment name

1 - 71— invocation string
Tl——| length } —
I » T{—— user token
TF——{return code 16—

Fig. 3 — Host Command Environment Interface

239

Interfacing with REXX 8

2.2.3 Program invocation interface

A program can be directly invoked with the ATTACH (asynchronous) or LINK (synchronous) command. This
is the only way of invoking a C/370 Version 1 program. Note: The parameters passed to a program do
not conform to the MVS calling convention. Fig. 4 illustrates the program invocation interface.

Example:
ADDRESS LINK "ALPHA BETA GAMMA";

parameter list . :
invocation string

! N (= —

T——| length } !

—

Fig. 4 — Program invocation (via LINK, ATTACH)
3. LOW-LEVEL INTERFACES

3.1 General conditions
The low-level interfaces are subject to the following conditions:

» Programs can be written in Assembler, COBOL, PL/1, and C/370 Version 2 (to a limited extent
Version 1). Not all high-level programming languages provide full support for all the required
facilities.

* Programs using REXX services must use 31-bit addressing (AMODE 31).

 Numeric fields are in binary format, either fullword (4 bytes) or halfword (2 bytes).

+ Standard calling conventions are used:

register 15 — entry point address;
register 14 — return address;
register 13 - address of save-area.

» The return code is passed back in register 15 (PL/I: PLIRETV variable, COBOL: RETURN-CODE special
register, C: function return value). Many routines also set an error message in the Environment
Block.

« Parameter address lists passed in register 1 must have the high-order bit set in the last address word.

» Standard macros (in the SYS1.MACLIB system macro library) are available for use by Assembler
programs to map the more important control blocks. Programs written in high-level programming
languages (e.g. COBOL, PL/I) must themselves define the required control block structures — Fig. 5
shows the equivalent field types in various programming languages.

type Assembler | PL/I COBOL VS 11 ¢

address A PTR POINTER *
character string | CLn CHAR(n) PIC X(n) char [n+1]
fullword F FIXED BIN(31) | PIC S9{9) COMP | int
halfword H FIXED BIN(15) | PIC S9(4) COMP | short
hexadecimal X BIT(8)) SR 0X

Fig. 5 — Equivalent field types

240

Interfacing with REXX 9

Notes:
1. Only the most important information for the interfaces is described in this paper ~ the appropriate
manual should be consulted if a more detailed description is required.

2. The entry symbol.. in diagrams denotes that symbol is used as prefix to the field names in the
corresponding block. The diagrams show only the significant ficlds. Any fillers at the end of field
layout figures are omitted.

Sample P1L/I program:
BETA: PROC OPTIONS{MAIN);
DCL IRXSTK EXTERNAL OPTIONS(RETCODE,INTER,ASSEMBLER);
DCL PLIRETV BUILTIN;

DCL 1 FC CHAR(8); /* function code */

DCL 1 ADDR_ELEM PTR; /* pointer to data */

DCL 1 LEN _ELEM FIXED BIN(31); /* length of data */

DCL 1 FRC FIXED BIN(31); /* function return code */

DCL 1 ELEM CHAR(256) BASED(ADDR ELEM); /* data */

FC = 'PULL'; /* function */

FETCH IRXSTK; /* load address of entry point */

CALL IRXSTK(FC,ADDR_ELEM,LEN ELEM,FRC);
IF PLIRETV = O THEN PUT SKIP LIST (SUBSTR(ELEM,1,LEN ELEM));
END;

This PL/I program retrieves and displays the next element from the data stack.

3.2 invocation of a REXX exec

There are three ways of an application program to invoke a REXX exec:

* using the IRXJCL program;
* using the TSO Service Facility (1JKEFTSR program);
* using the IRXEXEC program.

These three methods are listed in order of ease of use. This is also the order of increasing flexibility, e.g.
the IRXEXEC program interface offers more flexibility than the IRXJCL program interface but is more
difficult to use.

3.2.1 Interface from programs to batch REXX (IRXJCL)

Programs written in a conventional language can use IRXJCL to invoke a REXX exec. Fig. 6 shows the
form of the parameter as passed from the invoking program.

0 2 ‘ n+2

length of parameter data (=n)|parameter data

. .

1
=

Fig. 6 — Format of parameter passed to IRXJCL

322 Invocation of a REXX exec using the TSO Service Facility (IJKEFTSR)
REXX execs can also be invoked from the TSO environment (either dialogue or batch) with the TSO
Service Facility (IJKEFTSR program) — the TSO Service Facility has the alias TSOLNK.

3.2.3 Interface from program to REXX processor (IRXEXEC)
The IRXEXEC routine is the most flexible method of invoking a REXX exec:

« it can invoke either an internal or external exec;
* it can pass more than one parameter.
241

Interfacing with REXX 10

If the INSTBLK address is zero, an internal exec is invoked, otherwise an external exec is loaded using
the information in the EXECBLK (EXEC_BLK_DDNAME — library ddname, EXEC_BLK_MEMBER — member name).
Fig. 7 illustrates the IRXEXEC service.

parameter list

T EXECBLK*

il] Argument List(ARGSTRING ..)
]’ N ARG(1)

R ———*[——— —ﬁ
flags il

T INSTBLK* LENGTH f !
: T | CPPL
T EVALBLOCK*] X'FF...FF"

o] work area ptr
T — work area
T user field T *vr]

T 1 length ; {

*Detailed diagram follows (in part 2)
Fig. 7— IRXEXEC interface (part 1 of 2)

3.3 Program access to REXX variables (IRXEXCOM service)

Programs running in a REXX environment can use the IRXEXCOM service to access variables in the
environment pool. Fig. 8 illustrates the IRXEXCOM service. The following functions are available:

+ copy value

* set variable

« drop variable

+ retrieve symbolic name
* set symbolic name

¢ drop symbolic name

+ fetch next variable

» fetch user data.

242

Interfacing with REXX 1

INSTBLK (INSTBLK_..)

'IRXINSTB'
ADDRESS |
USEDLEN —
DSNLEN
DSNAME
l—————J record vector
T record 1
STHT@ T'——“r—— :]
STMTLEN | fp———]
last record
= —
L ; i
EXECBLK (EXEC_BLK_..)
-
*IRXEXECB'
—1LENGTH
MEMBER
¢ - =|- = Tibrary
DDNAME —
oL
exec
DSNPTR T-—O[: : - - mdu]e
DSNLEN } — .

~— - implicit (only informative)
Fig. 7— IRXEXEC interface (part 2 of 2)

243

Interfacing with REXX

+| ' IRXEXCOM'

»|dunmy parameter

parameter list

1 I | I
SHVBLOCK
IRXEXCOM SHUNEXT |
module
SHVCODE +——'S' (SHVSTORE)
== varname . SHUNAMA |
} | | SHVNAML
———|data +——————-—-—l—-SHVVALA 1
| | | SHVVALL
variable pool I——o next SHVBLOCK
™
varname
——ee—s | data
| —
——data

—— control
Fig. 8 — IRKEXCOM service to store a variable

3.4 Stack processing (IRXSTK service)

Programs can use the IRXSTK service to perform processing on the current stack. The operations:

* DELSTACK
= DROPBUF
* MAKEBUF
* NEWSTACK
s PULL

* PUSH

o QELEM

» QSTACK

* QUEUE

¢ QUEUED

have their standard function.

244
interfacing with REXX

The two operations:

% DROPTERM
% MAKETERM

are used by system routines to coordinate stack access from TSO and ISPF. These operations should not
be used by application programs.

3.5 Function interface

Programs written in a conventional programming language and stored as a load module in a library can
be invoked as external REXX functions or subroutines. A function differs from a a subroutine in that it
must return a value.

3.5.1 Function package
For reasons of efficiency, functions can be grouped together as a function package — function packages
are searched before the other libraries. Three classes of function package can be defined:

= user function package
« local function package
» system function package.

The system support personnel will usually be responsible for the local and system function packages, and
s0 they will not be discussed in this paper, although the general logic is the same as for the user function
package.

A function package consists of a function package directory and functions. The function package
directory is a load module contained in the load library - IRXFUSER is the standard name for the load
module defining the user function package. Fig, 9 shows the diagrammatic representation of a function
package.

The function package directory contains the names of the functions (subroutines) as invoked from a
REXX exec and a pointer to the appropriate load module. This pointer can have one of two forms:

» The address of a load module which has been linkage edited together with the function package
directory — such load modules must be serially reusable, as they are loaded only once.
+ The name of a load module which will be loaded from the specified load library.

3.5.1.1 Function directory
The Function Directory defines the functions contained in a function package. The Function Directory
consists of a header and one entry for each function contained in the Function Directory.

245

Interfacing with REXX 14

load library

function package
(FPCKDIR_..)
IRXFUSER header *IRXFPACK'
module
HEADER_LENGTH |
directory
I] entry 1 FUNCTIONS (=n)
ENTRY_LENGTH |-
-
directory FUNCNAME
entry n
— | FUNCADDR
[-T— SYSNAME
———| SYSDD

load library

r 1<

<

Joad module

load module in

main-storage

Fig. 9 - Diagrammatic representation of a function package

Sample Function Package Directory:
IRXFUSER CSECT
DC CL8' IRXFPACK'
DC AL4(SOD-IRXFUSER)

DC AL4(ND)
oc FL4'0'
OC ALA(LDE)
S0D EQU >
DC CL8'FDIGIT!
0C VLA(FDIGIT)
DC FL4'0"
DC cLe' !
DC cLg' !
LDE EQU *-SOD

* next entry
DC CL8'FGEDATE'
DC AL4(0)
DC FL4'0'
BC CL8'FGEDATE®
DC CL8'ISPLLIB!
EQD EQU *
ND EQU (EOD-SOD)/LDE
END

Interfacing with REXX

jdentifier

length of header

no. of entries in directory
zero

entry length

start of directory (first entry)
function name

address, reserved

reserved

name of entry point

DD-name of load library
length of directory entry

function name

address, 0 = load from library
reserved

name of entry point

DD-name of load library

end of directory

no. of directory entries

246

18

This sample Function Package Directory contains two functions:

~ FDIGIT — linkage edited with the Function Package Directory;
& FGEDATE — to be loaded from the ISPLLIB library.

3.6 Load routine — IRXLOAD service

The load routine (IRXLOAD) can be used in several ways:

« load an exec into main-storage — this creates the In-Storage Control Block for the exec;
~ check whether an exec is currently loaded in main-storage;

» free an exec;

~ close a file from which execs have been loaded.

IRXLOAD is also used when the language processor environment is initialised and terminated. Fig. 10
illustrates the IRXLOAD service (load function).

EXECBLK (EXEC BLK ..)

'IRXEXECB*
—LENGTH
MEMBER
F-—~-=--- l— -> library
DDNAME > 1
| >
o exec
DSNPTR I——-—+l—— —- - 4 module
1 DSKLEN ~———}—1length—| ‘ -
INSTBLK (INSTBLK_..)
'IRXINSTB®
ADDRESS 1
USEDLEN —
DSNLEN
DSNAME
L———J record vector
T record 1
sme T—r— —37
STMTLEN } |
. Sl
last record
I—r— —
| ' '

~ ~ implicit (only informative)
Fig. 10 - IRXLOAD interface

247
interfacing with REXX 16

3.7 initialisation routine — IRXINIT service
The initialisation routine (IRXINIT) can be used in two ways:
« initialise a new environment;

e obtain the address of the current Environment Block.

The first function is normally only used by system specialists. The second function is used principally to
access an error message which has been set by a service routine. Fig. 11 illustrates the ENVBLOCK.

NVBLOCK
"ENVBLOCK" l

——| PARMBLOCK 1
IRXEXTE 1 +»—VEEP
error message {-

T IRXPARMS *——————
Parameter Block

Module Name
Table

parameters module
Host Command
Environment Table

Function Package
Table

Fig. 11 - ENVBLOCK

3.8. Get result - IRXRLT service

The get result routine (IRXRLT) can be used in two ways:

« fetch result set by an exec invoked with the IRXEXEC service;
» allocate an Evaluation Block of the specified size.

This paper is adapted from my book:
Practical Usage of REXX
published in 1990 by Ellis Horwood Limited, Chichester.

Anthony Rudd, April 1992.

248

Interfacing with REXX 17

REXX IN THE CICS ENVIRONMENT

DAVID | SHRIVER
IBM

249

REXX in the CICS Environment

May 5, 1992

David I. Shriver

iBM
Mailstop 01-03-50
S West Kirkwood Bivd.
Roanoke, TX 76299-0001
(817) 962-4142

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

ABSTRACT:

CICS/REXX is an IBM internal implementation of REXX, the IBM SAA Procedures Language, under
CICS/MVS and CICS/ESA. Specifically, it provides REXX environment support under CICS for both the
TSO/E Version 2 REXX interpreter and the REXX/370 compiler. This environment support includes inter-
face routines for storage management, 1/O handling and other miscellaneous REXX facilities. It also includes
providing a command-level interface to CICS from REXX, and also provides interfaces to other CICS based
products, such as IBM’s OfficeVision/MVS.

250

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

251

[N ad V4 VAN RN of ¥ el A aIUUC e

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporaﬁon 1991, 1992

Contents

CICS/REXX Overview 1
Copynight 1
Trademarks 1
Disclaimer 1
Purpose of this paper 1
Function/Feature Highlights 1
Full REXX language support under MVS CICS 2
Support for both compiled and interpreted EXECs 2
CICS based text editor for REXX EXECs and data 2
VSAM based file system for REXX EXECs and data 2
Support for popular EXEC CICS commands (not complete yet)
Support for Subcommands written in REXX 2
Support for application macros, written in REXX 3
High-level client/server architecture support 3
Command definition of REXX Subcommands 3
Flat/Universal default REXX Subcommand space 3
Transparent CICS Pseudo-conversational terminal support 3
Support for system and user profile EXECs 3
Shared EXECs in virtual storage 4
Nested INCLUDE support in EXEC Loader 4
EXEC Suspend/Resume support 4
REXX interface to OfficeVision/MVS and ASF Version2 4
Compatibility support for several popular VM/CMS commands
CICS/REXX Benefits 5
Business Solutions 5
Investment Protection 7
User Productivity 7
Growth Enablement 7
Systems Management 8

CICS/REXX General Architecture/Implementation 9
General Design Goals 9
Basic structure of REXX running under CICS 9
REXX EXEC invocation 10
Where EXECs execute 10
How EXEC:s are located and loaded 10
How EXECs are edited 10
Control of EXEC execution search order 10
REXX EXEC File System structure 11
Support of standard REXX features 11
SAY and TRACE statements 11}
PULL and PARSE EXTERNAL statements 11
REXX stack support 11
REXX function support 11
REXX Function Packages 12
REXX Subcommand Environment Support 12
Invoking another EXEC as a subcommand 12
Invoking CICS load modules as user provided subcommands 12
Adding REXX host subcommand environments 12
Support of standard CICS features/facilities 12
CICS mapped 1/O support 12
252

2

4

Contents 3

Third REXX Symposium, Anapolis, Maryland

Dataset 1/O Services 12
Interfaces to CICS Facilities and Services 12
* Invoking user applications from EXECs 13

REXX interfaces to CICS temporary & transient storage queues
Pseudo-conversational transaction support 13

REXX EXEC Suspend/Resume support 13

Interfaces to other programming languages 13

Security 14

Performance discussion 14

Miscellaneous features 14

Supported Environments and prerequisites 14

National language and DBCS support 15

Building block S/W development - Common Interface Routine 15

CICS/REXX Client/Server Architecture 17
High-level Client/Server support 17
Client/Server Design goals 17
Current Client/Server Implementation 18 .

CICS/REXX OfficeVision/MVS Environment Support 19
REXX EXECS for Application Integration 19
REXX EXECS as exits 19

CICS/REXX Interfaces to other products 21
Description of interface to DB2 21
Description of interface to GDDM 21

CICS/REXX CMS Environment Compatibility/Emulation 23

Summary 25
Prototype development experience 25
Much more than just another language for CICS 25

Appendix - Sample CICS/REXX screens 27
Sampie FILELIST screen 27
Sample KEDIT Screen 28
DEMO EXEC 28
Source listing 28
Execution with trace off 32
Execution with trace on 36
REX EXEC 41
Source listing 41
Execution 42

253

4 REXX in the CICS Environment

(C) Copyright IBM Corporation 1991, 1992

13

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

CICS/REXX Overvie

Copyright

(C) Copyright IBM Corporation 1991

Trademarks

" The following terms used in this paper, are trademarks or service marks of IBM Corporation in the United
States or other countries:

AIX, CICS/ESA, CICS/MVS, DB2, GDDM, IBM, QMF, MVS/ESA, OfficeVision, 08/2, PROFS, REXX

Disclaimer

This discussion of REXX under CICS does not imply that IBM either does, or does not, have plans to
incorporate all, or part of, this function into a product.

Purpose of this paper

The purpose of this paper is to share information on an internal IBM implementation of REXX under
CICS so as to promote technical discussion and generate customer feedback.

Function/Feature Highlights

As follows are some of the highlight features of CICS/REXX:
« Full REXX language support under MVS CICS
* Support for both compiled and interpreted EXECs
» CICS based text editor for REXX EXECs and data
* VSAM based file system for REXX EXECs and data
* Support for popular EXEC CICS commands (not complete yet)
» Support for Subcommands written in REXX
+ Support for application macros, written in REXX
« High-level client/server architecture support
* Command definition of REXX Subcommands
* Flat/Universal default REXX Subcommand space
* Transparent CICS Psuedo-conversational terminal support
+ Support for system and user profile EXECs
« Shared EXECs in virtual storage
254

CICS/REXX Overview 1

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

Nested INCLUDE support in EXEC Loader
EXEC Suspend/Resume support
REXX interface to OfficeVision/MVS

Compatibility support for several popular VM/CMS commands

Full REXX language support under MVS CICS

CICS/REXX is currently at REXX language level 3.46 and supports all REXX language statements and
built-in functions, as described for MVS in the SAA Common Programuning Interface Procedures Language
Reference, SC26-4358.

Support for both compiled and interpreted EXECs

CICS/REXX includes support for both interpreted and compiled EXECs. Compiled and interpreted EXECs
can be freely intermixed. Such a combination is powerful because the use of the interpreter provides a very
productive development environment (quick development cycle, source level interactive debug, CICS based
development) whereas the compiler allows the developed REXX code to be later optimized for the perform-
ance requirements of critical production systems. Since compiled and interpreted REXX EXECs can be
intermixed transparently, compilation can be done selectively on those modules that need it most, and the
replacement of interpreted REXX EXECs can be done gradually, without affecting system function.

CICS based text editor for REXX EXECs and data

KEDIT, a full function text editor, similar to the VM/CMS XEDIT and TSO ISPF/PDF editors is provided
as part of CICS/REXX, so EXECs can be written and modified directly under CICS, and from CICS based
application platforms, such as OfficeVision/MVS.

VSAM based file system for REXX EXECs and data

CICS/REXX includes a REXX file system that is hierarchically structured (similar to OS2, AIX and the
VM Shared File System), and automatically provides each REXX user with a file system in which to store
EXECs and data. There 1s a FILELIST utility to facilitate working with this file system, the KEDIT editor
will support editing members of this file system, and EXECs to be run are loaded from this file system. This
library (file) system is VSAM RRDS based for performance, security and portability reasons.

Support for popular EXEC CICS commands (not complete yet)

Support for several EXEC CICS commands is already included in CICS/REXX, and support for all popular
CICS Command Level commands is planned.

Support for Subcommands written in REXX

CICS/REXX supports the ability for users to write new REXX subcommands in REXX. These subcom-
mands do not function as nested REXX EXECs, and unlike nested REXX EXECs will have the ability to
get and set the values of REXX varables in the user EXEC that invoked them. Thus subcommands written
in REXX can have similar capabilities as subcommands written in Assembler or other languages. Therefore
subcommands can be quickly wrtten in REXX to speed systems development (in a building block struc-
ture), and then can selectively be rewritten in Assembler, for example, at a later date, as performance require-
ments dictate. Or they may simply be compiled with the REXX compiler.

255

7 RFEYYX in the ('10€ Favieanmans

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

Support for application macros, written in REXX

One of the strongest uses for REXX is to support the extension of existing applications via Application
Macros. This provides a natural mechanism for the extension of product or application capability, and does
so in a natural building block fashion. Since REXX Application Macros are separate from application code,
this means they can be effectively created by application users, with little chance of causing application
failure.

High-level client/server architecture support

CICS/REXX includes built-in client/server architecture support to facilitate the use of this important new
_technology in systems development and to help enable a higher level of host involvement in Enterprise-wide
computing solutions.

Command definition of REXX Subcommands

CICS/REXX includes as one of its basic facilities, the ability for systems administrators and users to easily
and dynamically define new REXX subcommands, either on a system-wide or user-by-user basis. One of the
greatest strengths of REXX is its ability to be interfaced cleanly with other products, applications and system
services. The goal for providing a command definition facility for new or existing subcommands is to facili- =
tate the rapid and consistent high-level integration of various products and services together through the use
of REXX. REXX subcommand definition is accomplished though the CICS/REXX DEFCMD and
DEFSCMD subcommands. ’

Flat/Universal default REXX Subcommand space

The CICS/REXX subcommand definition facility also optionally supports the use of a flat (or universal)
REXX subcommand space. This would be consistent with the REXX goal of maintaining simplicity and
naturalness. With this support, all REXX subcommands (which might span interfaces for multiple applica-
tions) would be mapped into one default subcommand environment. This would allow one global and con-
sistent subcommand set to be provided and documented, and would free programmers from having to
understand which subcommand environment a subcommand exists in, and it would remove the need to be
constantly switching subcommand environments (switching environments is accomplished with the
ADDRESS statement). :

Transparent CICS Pseudo-conversational terminal support

CICS/REXX supports both conversation and pseudo-conversational terminal I/O in REXX based trans-
actions. Transparent, underlying pseudo-conversational support is provided if the PSEUDQO ON subcom-
mand is specified in an EXEC. This means that a program written in REXX can be switched between
conversational and pseudo-conversational without changing the program structure..

Support for system and user profile EXECs

To facilitate CICS/REXX system and user environment tailoring, CICS/REXX will attempt to execute a
SYSPROF EXEC and user PROFILE EXEC:s if they exist. The SYSPROF EXEC must exist in the system
base directory and is invoked before the first user EXEC runs after a CICS system restart. A user’s
PROFILE EXEC (if it exists in that user’s base directory) will be invoked before the first EXEC is invoked
for this user (after a CICS system restart).

256

CICS/REXX Overview 3

Third REXX Symposium. Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

Shared EXECs in virtual storage

CICS/REXX supports both shared and unshared copies of REXX EXECs: residing in virtual storage. Pre-
loaded shared EXECs improve interactive response time of REXX applications, and sharing reduces the
total virtual storage requirement.

Nested INCLUDE support in EXEC Loader

Often in real world REXX programming, a programmer is torn between making a function or subroutine
written in REXX, internal or external to a REXX application. There are significant performance and varni-
able sharing advantages to making a subroutine internal. But there is a major drawback if this subroutine is
to be shared by several REXX EXECs. Duplicate copies must be placed in all programs that use the sub-
routine and it is a nightmare trying to update all of these copies and to keep them the same, whenever a
change is made to a subroutine. CICS/REXX nested INCLUDE support improves this situation by
allowing one or more INCLUDE statements to be placed in REXX source files so that subroutines can be
maintained as separate external files but be included as internal routines at EXEC load time. An additional
opportunity is that only one copy of the source for a particular subroutine needs to be loaded into virtual
storage, no matter how many EXECs are using it as an internal routine.

EXEC Suspend/Resume support

When CICS/REXX is used as a Procedures Language under CICS, there are times that EXECs are used to
contain command lists of CICS commands (applications) to be STARTed. Since these CICS transactions
often require a terminal to be available before they can run, a way is need to cause the transaction the
EXEC is running under to end to free up the terminal, causing the EXEC to be temporarily suspended so it
can be resumed later at the point after it was suspended. The CICS/REXX SUSPEND subcommand pro-
vides this capability.

REXX interface to OfficeVision/MVS and ASF Version 2

OfficeVision/MVS and ASF Version 2 provide CICS based Application Integration platforms. Applications
may be integrated with each other or with Office functions, for added value. CICS/REXX has special
support to facilitate REXX EXECs being invoked from OfficeVision/MVS (or from ASF Version 2) and/or
OfficeVision/MVS services being invoked from REXX EXECs in a CICS environment.

Compatibility support for several popular VM/CMS commands

Compatibility support for several important VM/CMS commands has been provided in CICS/REXX to
make it easier to port or migrate VM based EXECs to a CICS environment. This helps preserve customer
investments in VM/CMS EXECs when such a migration is necessary, it helps facilitate the porting of a con-
siderable amount of VM/CMS REXX based software to the CICS environment, and helps preserve invest-
ments in VM/CMS training and allows VM/CMS users to come up to speed more quickly in the
CICS/REXX environment.

257

4 REXX in the CICS Environment

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

CICS/REXX Benefits

Business Solutions

CICS/REXX is an ideal system to use to deliver superior, valuable, and appropriate business solutions, in a
much more timely and cost effective manner.

CICS/REXX is an excellent platform for the delivery of CICS based business solutions for the following
reasons:

o CICS/REXX is a simpler, uniform, self contained development environment

To use CICS/REXX, a new programmer no longer has to leam TSO, ISPF, JCL, COBOL and much
of the technical detail of CICS (such as the proper use the translator).

For both new and experienced programmers, there is no longer the need to constantly switch back and
forth between TSO and CICS, all the while flipping between several manuals for needed system and
development information.

CICS/REXX is a uniform, self contained system that supports development directly under CICS and
provides everything the average CICS developer needs in one manageable package.

o CICS/REXX allows solutions to be delivered sooner

There is a combination of benefits that CICS/REXX delivers to cause major gains in application pro-
ductivity and reduced delivery time. The REXX language alone has proven to be a major boost to appli-
cation productivity because of its high level, simplicity, strong parsing and naturalness. On top of that,
the synergy of an interpreter/compiler combination is a strong addition. The interpreter provides a very
quick development cycle and provides excellent source-level interactive debugging capability. Experience
has proven a ten-fold improvement in productivity, when using REXX over conventional languages and
techniques, to be a conservative figure. The ability to deliver business solutions more quickly is an
important advantage in today’s competitive marketplace.

s CICS/REXX makes practical highly incremental development

One of the biggest advantages of the fact that CICS/REXX includes support for a REXX interpreter as
well as a compiler, is that the interpreter, with its quick, natural development cycle and excellent source-
based interactive debugging make it feasible to switch to an Incremental Development Methodology.
This is also sometimes called a Prototyping Development Methodology.

REXX is of a sufficiently high level to be a powerful language for quick and expressive prototyping, and
because of the compiler and the robustness of the language, is also suitable for serious application devel-
opment. This provides an ideal situation where prototypes can be quickly developed to test system feasi-
bility, to gather requirements, to get customer involvement, and can then be “grown” into useful
production systems.

This approach bypasses the nasty surprises of finding late in the development cycle that the project isn't
technically feasible, of delivering a system that isn’t what the customers want (or even what they thought
they were going to get), or of major schedule overruns without any deliverables. And a final nice benefit
of incremental development is that it has the tendency to test the code much more thoroughly during
development, usually resulting in much higher quality code.

» CICS/REXX applications are easier to maintain and support

REXX based applications, being high-level in nature, are usually smaller than comparable applications
in other languages (in lines of code) and are easier to read. And the interactive source level debug capa-
bility of the REXX interpreter makes it easier to locate and fix problems, and to deliver enhancements.
This equates to a cheaper, more effective support of REXX based applications.

258

CICS/REXX Overview 5

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

o CICS/REXX is useable by business people

Quite often business people who best understand the business and their needed solutions have ideas as to
ways to modify, customize, or enhance applications that they use. But when they discover the difficulty
involved and the investment in education required, they often give up in frustration. But those who have
persevered have often delivered some of the most timely and on-target solutions. One of the greatest
strengths of REXX is its simplicity and naturalness on one hand, and its powerful capability, on the
other hand. CICS/REXX will make it possible for CICS application users to more extensively customize
and even extend their applications, without requiring a programmer. This will provide more timely, on-
target solutions, and will free real programmers up for involvement in more strategic projects.

This is in line with what many industry analysts believe is a fundamental shift happening in the model

for application development within Fortune 1000 companies. Business is organizing into more auton-

omous units, competitive pressures have increased (demanding quicker solutions), and new technology

such as workstations and Client/Server computing, have made it feasible for much application develop-
ment to be moved from central MIS to line-of-business organizations.

s CICS[REXX makes complex systems manageable

One of the design goals of REXX has always been to bend over backwards to make programming
simple and natural for the REXX programmer, even if this makes things complicated for the REXX
implementer. The simplistic power of REXX makes it a good candidate for today’s complex business
systems, because it simplifies them and thus makes them more manageable.

CICS/REXX organizes (breaks down) complex systems in several related ways to make them more
manageable. One is that it promotes a natural building block approach made up of EXECs, application
macros, and subcommands transparently implemented in a variety of languages. In close relationship to
these, is built-in Client/Server computing support that encourages greater host involvement in the
Enterprise-wide Client/Server Distributed Computing model, with all of the many benefits this entails.
Another strength of CICS/REXX in this arena, is the facilities it has for integrating multiple applica-
tions, products, and system facilities together into one seamless package, from a user perspective, which
greatly simplifies systems development efforts.

The KEDIT story: The KEDIT text editor was wntten so as to be externally similar to the IBM XEDIT
and ISPF/PDF editors, so as to minimnize user retraining needs.

KEDIT is an excellent example of the sophistication that is possible with REXX based applications under
CICS/REXX. And it it is a good example of the development productivity improvements that are possible.

KEDIT was written completely in REXX (except for some general purpose primitives it uses that are
written in Assembler, as will be the case with most REXX applications) by Kevin Wriston, who was new to
REXX. Kevin wrote a useable editor (which he used for his own REXX development) in three weeks, and
has spent a total of about three person months, developing KEDIT. And the fimished product is only about
1000 Lines of REXX code, a mere fraction of the XEDIT Assembler code.

The other nice thing is the quickness with which Kevin can respond to requests for changes or enhance-
ments to KEDIT (often quicker than the average programmer can go get a cup of coffee).

Kevin recently added REXX macro support to KEDIT, a demonstration that under CICS/REXX, applica-
tions written in REXX, can also support application macros, written in REXX, an important new capa-
bility.

259

6 REXX in the CICS Environment

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

investment Protection

The IBM MVS CICS computing environment has one of, if not the, largest concentration of customer pro-
duction applications and data, in the world. There has been tremendous customer investment in CICS based
mainframe systems, CICS based application development, data collection for CICS based systems, and
employee education relating to the use and support of CICS based systems. CICS/REXX helps to preserve
and enhance the usefulness of this investment.

Not only does CICS/REXX enhance the delivery of traditional CICS based production applications, it
makes the CICS environment suitable for a broader range of information processing activities. With
CICS/REXX, it is now practical to also perform end-user computing, prototyping, and application develop-
ment, directly within the CICS environment.

" Also, CICS/REXX, which currently runs under MVS CICS, was designed so it can be later ported to
provide REXX support for CICS running under 0S/2, AIX, VSE and OS/400. One goal is to provide con-
sistent REXX support across these environments, so as to preserve customer investments. Another is to
facilitate the use of cooperative processing, between these environments.

User Productivity

CICS/REXX can enhance CICS user productivity in several ways:

o Allows simpler, but more flexible application customization by typical users. This allows them to more
effectively tailor these applications to their individual business needs.

» Advanced users will be able to make application enhancements that normally would have been reserved
for professional application developers. This has the effect of providing solutions needed to improve pro-
ductivity and satisfy business needs more quickly. It also reduces the demand on application developers
for application changes and frees them to work on more significant long range efforts.

« Facilitates the use of a prototyping methodology. This means that the users of an application in develop-
ment participate very closely in the application development process (if they do not own the process
outright). The end result is that the users, who have the best understanding of the business and their
needs can better ensure that the application solution delivered matches their needs. This close involve-
ment will also have the added benefit that the human factor needs (useability) of the user audience will
also tend to be addressed in the application, enhancing their productivity.

Growth Enablement

Because CICS/REXX reduces the complexity of application development and maintenance, it makes it fea-
sible to develop and support larger and more complex systems. This is true because: '

* REXX is a high level language whose major emphasis has been to be natural to use and to free its user
(the programmer) from any unnecessary detail. Thus REXX programs tend to be shorter and easier to
follow. ‘ -

* REXX encourages the use of a more manageable building block approach to systems development. The
integrated Client/Server and dynamic subcommand definition capabilities of CICS;REXX even further
enhance this.

* Major productivity improvements achieved by using the powerful interactive source level debugging
capability and the quick development cycle of the REXX interpreter will make larger, more sophisticated
development efforts feasible.

260

CICS REXX Overview 7

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Cearporation 1991, 1992

Systems Management

One of the major strengths of REXX is its usefulness as a Procedures Language. When used in this way, it
can automate sequences of CICS system and application Systems Management activities, providing gmater
productivity and reliability.

Also, since CICS/REXX supports application development (and testing) directly under CICS, systems man-
agement can be greatly simplified. For example, the need for many CICS developers to have a TSO userid,

could be removed, in many situations. Reducing the volume of TSO userids that need to be administered
and managed would equate to an overall reduction in systems management activities.

261

8 REXX in the CICS Environment

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

CICS/REXX General Architecture/Implementation

General Design Goals

Some specific design goals/objectives for this project were:

* Provide the CICS or OfficeVision/MVS user or application developer/integrator with a simple but pow-
erful self contained REXX based environment with the necessary interfaces to productively accomplish
application development, application integration and customization.

* Provide a high-level, easy to use, REXX interface to the existing CICS command level facilities so as to
improve the productivity of existing, experienced CICS developers.

* Provide a high-level, easy to use alternative programming environment that removes the need for casual
programmers (or users) to learn the CICS environment.

* Bring product interfaces together, in one, self contained place for both ease of use and added synergy.

* Provide a flexible CICS REXX implementation that can be easily customized, tailored or extended by
customers for their own unique needs.

« Capitalize on new REXX/370 compiler, C/370 Version 2 and other products

* Provide an environment conducive to the building block approach to code development. One of impor- -
tant needs in this area is to allow administrators and users to replace one type of building block or prim-
itive with one written in a different language or with a different name without having to change the
programs that reference it. Support interfaces to multiple programming languages.

* Provide an architecture capable of supporting large complex systems
* Perform acceptably for use in large production CICS environments
* Provide security sufficient for CICS production environments

¢ Exploit CICS/ESA and MVS/ESA when available

Basic structure of REXX running under CICS

CICS/REXX support provides a program called REXX which is used to load and invoke REXX EXECs
within a CICS region. This program uses the Clearly Differentiated Programming Interfaces (CDPI) of
TSOJ/E Version 2 REXX to define a new CICS specific REXX language processor environment for the user
EXEC, and then invokes the EXEC. The REXX program also contains several REXX replaceable routines
to handle all REXX storage requests, line-mode 1/0 and various other functions. On the very first invoca-
tion of the REXX program within a CICS region, a REXX system server is automatically started, under its
own REXX environment control block. Thereafter, the REXX system server receives notification before the
invocation and after the termination of each user EXEC invoked by the REXX program. The REXX
system scrver is a shared server that all REXX user exccs can route requests to, by ADDRESSing the sub-
command environment SYSTEM. The GLOBALYV global variable command support that is provided is an
example of using the system server to add additional subcommands to REXX. ,

262

» CICS;REXX General Architecture Implementation 9

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

REXX EXEC invocation

» EXECs invoked from a terminal

REXX EXEC:s are invoked by a CICS/REXX program named REXX. A CICS transaction id must be
defined for this program. If the tran id is REXX then the name of the EXECs and its arguments follow
on the command line. For example: REXX MYEXEC ABC will invoke the REXX EXEC MYEXEC
and pass it the string ABC as an argument. If a transaction id other than REXX is associated with the
REXX program, the name of the EXEC that is invoked is the same as the transaction id.

s EXECs invoked by a START command

The REXX transaction associated with the REXX program may be invoked with the EXEC CICS
START command. If start data is provided, that is passed to the EXEC as an argument. The name of
the EXEC to invoke is normally expected to be provided in the start data.

s EXECs invoked by a LINK or XCTL

The REXX program, when invoked by a LINK or XCTL, will attempt to find the name of the REXX
EXEC to invoke in the COMMAREA, if one is available. The entire COMMAREA will also be passed
to the EXEC as an argument.

Where EXECs execute

CICS/REXX EXEC:s are executed as part of the CICS task that invokes them, within the CICS region. The
REXX interpreter is fully reentrant and runs above the 16 MB line (AMODE =31, RMODE = ANY).

How EXECs are located and loaded

The directories of specified REXX libraries are searched, in concatenation sequence in an attempt to locate
an EXEC. Ifitis located, it is read into storage and control is given to the REXX interpreter to invoke it.
Before REXX libraries are searched, there is first a check to see if the EXEC is already loaded in storage,
and if so, since REXX EXECs are re-entrant, control is given immediately to the REXX interpreter.

How EXECs are edited

CICS/REXX includes a CICS-based text editor, wich is similar to the IBM XEDIT and ISPF/PDF editors,
to edit EXECs and data files, directly under CICS.

Control of EXEC execution search order

A PATH subcommand is provided to control the search order of REXX File System directories. The direc-
tories specified in the PATH command are searched after the current directory (specified by the CD
command).

263

10 REXX in the CICS Environment

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

REXX EXEC File System structure -

Execs are currently stored as members a VSAM-based REXX file system. Some features of the REXX File
System are: are:

« Hierarchical Directory structure (like 0S/2, AIX, VM SFS)
* No need to register new users
* No need to register individual EXECs
» Basic support without an External Security Manager
. * Import/Export to MVS Partitioned Datasets
e Management functions for members (COPY, DELETE, RENAME)
e FILELIST file directory interface utility
* An EXECIO-like 1/O utility (FSIO)
 Supports insertion of records in middle of files
» Maximum records per member is approx. 2**32 minus 2
e Maximum record length is 2**32 minus 2
e Maximum VSAM datasets per a RFS filepool is 511
« Number of filepools is limited by system storage
« Execute-only support by library and by member
« Support for authorized REXX libraries (for authorized primitives)

Support of standard REXX features

SAY and TRACE statements

The REXX SAY and TRACE terminal I/O output statements use CICS Terminal Control St.xpport to
provide simulated line-mode output.

PULL and PARSE EXTERNAL statements

The REXX PULL and PARSE EXTERNAL terminal 1/0 input statements use CICS Terminal Control
Support to provide simulated line-mode input.

REXX stack support

Same as TSO/E Version 2 REXX

REXX function support

CICS/REXX supports the same built-in function set as TSO/E Version 2 REXX with the following
exceptions. The USERID function will return a 1 to 8 character CICS userid if the user is signed on, other-
wise it will return blanks. The STORAGE function, which allows a REXX user to freely display and/or
modify the virtual storage of the CICS region will be disabled or restricted.

264

CICS REXX General Architecture Implementation 11

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

REXX Function Packages

The function packages provided with TSO/E REXX that are not TSO specific, are provided and system
administrators will have the ability to define/add additional function packages using standard documented
interfaces.

REXX Subcommand Environment Support

REXX subcommand environments that are currently available (to use with the REXX ADDRESS
command) are CICS, COMMAND, MVS and SYSTEM.

Invoking another EXEC as a subcommand

EXECs may be invoked as subcommands using the new client/server support (described later in this docu;
ment).

Invoking CICS load modules as user provided subcommands

Support is provided for site provided subcommands, in the form of CICS LOAD modules (loaded using an
EXEC CICS LINK) 1o be defined using the DEFCMD and DEFSCMD commands.

Adding REXX host subcommand environments

Support is provided to allow new CICS/REXX host subcommand environments to be added and supported
in a variety of languages, including REXX. This is done using the DEFCMD and DEFSCMD subcom-
mands, or by using the standard documented TSO/E REXX interfaces.

Support of standard CICS features/facilities

CICS mapped 1/0 support

Support is not yet available for CICS BMS 1/O commands as REXX subcommands in the CICS subcom-
mand environment.

Dataset 1/O Services

Verbs for standard CICS dataset 1/O services commands are planned as REXX subcommands.

Interfaces to CICS Facilities and Services

From within the ADDRESS CICS subcommand environment, support is planned for most popular CICS
commands (as defined in the CICS Application Programmer’s Reference Guide). Currently support is pro-
vided for the function provided by the following CICS Command Level commands:

« EXEC CICS SEND
* EXEC CICS SEND TEXT
« EXEC CICS RECEIVE

« EXEC CICS READQ TS
265

12 REXX in the CICS Environment

'ﬁlird REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

+ EXEC CICS WRITEQ TS
s EXEC CICS DELETEQ TS
« EXEC CICS ASSIGN USERID
s EXEC CICS READ RRN
s EXEC CICS WRITE RRN
« EXEC CICS REWRITE RRN
» EXEC CICS DELETE RRN
s EXEC CICS UNLOCK
* « EXEC CICS START
« EXEC CICS LINK
« EXEC CICS XCTL
s EXEC CICS SUSPEND

Invoking user applications from EXECs
EXEC CICS START, LINK and XCTL commands are currently supported.

REXX interfaces to CICS temporary & transient storage queues

Currently subcommand support exist for reading, writing and deleting CICS temporary storage queues from
REXX.

Pseudo-conversational transaction support

CICS pseudo-conversational support for REXX EXECs is provided. If this support is enabled, an EXEC
CICS RETURN TRANSID could is automatically issued before each CICS RECEIVE, the execution state
of the EXEC preserved and the REXX transaction ended. The the next terminal 1/O event would cause the
REXX transaction to be re-invoked and the EXEC to be resumed at the next statement after the
RECEIVE.

REXX EXEC Suspend/Resume support

CICS/REXX support includes a primitive (subcommand) to suspend the execution of the EXEC and
causes the invoking transaction to end, allowing another transaction to run, attaching the terminal. The next
time the REXX program is invoked, the suspended transaction will resume the suspended EXEC. Any start
data passed is placed in the reserved REXX variable SDATA.

Interfaces to other programming languages

The goal is to provide interfaces to COBOL, C/370, Assembler, and maybe PL/I.

266

CICS REXX General Architecture Implementation 13

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

Security

Normal CICS interfaces to the MVS System Authorization Facility (SAF) will create the framework for
CICS/REXX security. Advanced security needs for REXX subcommand and client/server security is
expected to be provided under CICS/ESA using the EXEC CICS QUERY SECURITY command.

Performance discussion

Because of the production nature of CICS, much empbhasis is being placed on performance. There are many
design choices that can affect security. These include how REXX environments are defined, how the REXX
file system structure is implemented, how security interfaces are implemented, how much virtual storage is
given to an EXEC at invocation.

REXX is an excellent performer, especially for an interpreter, because it internally uses many sophisticated
techniques, such as look-aside tables, for good performance. REXX has proven itself to be a reasonable
performer in the VM arena as much of PROFS code is written in REXX. Many PROFS systems today
support thousands of users in production. Another point to note, is that although REXX EXECs are inter-
preted, most of the actual processing for the typical application is spent executing REXX subcommands
which do most of the actual work. These primitives can be and usually are written in a compiled language,
when performance is an important consideration. Usually, for the majority of small to medium scale CICS
applications the productivity benefits of using REXX far outweigh the performance penalty of using REXX.
A similar analogy is customers using DB2 vs IMS. DB2 often requires more resources, but the benefits more
than outweigh the added processing cost. The net result is that DB2 users are happy because they are more
productive.

The best news from a performance perspective, is that the IBM REXX/370 compiler will work with
CICS/REXX, whenever performance critical applications need it.

Miscellaneous features

A TERMID subcommand has been provided to return the four character terminal identifier of a CICS user.

A RETRIEVE PF key has been setup to retrieve the last input line enter using line-mode 1/0.

Supported Environments and prerequisites

CICS/REXX currently runs under CICS/MVS and CICS/ESA. CICS/REXX requires that TSO/E V2.0 or
later be installed and, if the REXX/370 compiler is used, in addition to the interpreter, then TSO/E V2.3.1
or later must be installed. Certain advanced functions, such as the planned REXX interface utilizing the

" programming interface of CICS 3.2 for Resource Definition Online, will only supported under CICS/ESA.

267

14 REXX in the CICS Environment

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

National language and DBCS support

The full range of DBCS functions and handling techniques that are mcluded in TSO/E Version 2 REXX are
available to the CICS/REXX user.

It is expected that the national languages supported for CICS/REXX will match those supported for TSO/E
Version 2. Refer to announcement 288-694, dated December 6, 1988. The support for national languages will
likely lag the initial American/English language support.

_Building block S/W development - Common Interface Routine

One of the foundation architecture pieces of the CICS/REXX support code is a routine called the Common
Interface Routine (CIR).

The purpose of this routine is to allow transparency and flexibility as to the implementation method and
language of programs that make up software systems under CICS/REXX. That is, systems implementers
should be free to create systems comprised of a mixture of traditional and client/server interpreted REXX
EXECs, compiled REXX EXECs, COBOL, C and Assembler language programs. And they should be later
free to change the language or implementation method of a program without affecting the correct functioning
of the system as a whole.

This is accomplished by having REXX and all other programs that wish to participate in this system, to call
the Common Interface Routine whenever control (or a client/server request) needs to be passed to another
program. The CIR then determines from a table or data dictionary, the type and language of the target
program, so it can invoke it (or pass the request to it) properly.

All programs that use the Common Interface Routine must use a consistent format for the passing of
parameters (or requests) to the target and for the retuming of any resulting data.

The use of the Common Interface Routine does not require the use of client/server computing, but is a
closely related technique.

268

CICS 'REXX General Architecture/Implementation 15

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

269

16 REXX in the CICS Environment

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

CICSIREXX_ Client/Server Architecture

High-level Client/Server support

A major new thrust of data processing is in the area of client/server processing. Many realize that this
method of computing holds much promise for accomplishing their computing needs in a more responsive
and cost-effective manner, especially in today’s ever more increasingly work station based computing envi-
ronments. However, many realize the promise and recognize the opportunity, but lack the tools to effectively
accomplish their goals. The goal here is to augment the general CICS/REXX environment with a high-level,

- easy to use, REXX-based client/server processing support that will make it feasible for customers to easily
implement client/server processing applications that they could have never before considered, better utilizing
mainframe and workstation resources.

Client/Server Design goals

s Allow REXX servers to service multiple REXX clients, which may be located on a variety of remote
systems (long-term)

~ Provide an identity service to dynamically track and route requests and responses between servers and
requestors on multiple systems by server name. It should support the concept of local and global
resource management (long-term)

» Provide security interfaces to effectively and efficiently control authorization of access and communi-
cation between servers and requestors.

~ Support both synchronous and asynchronous communication between servers and requestors
s Very high level, easy to use but flexible REXX interface to this server/requestor support

» Support parallel communication activities between a client and a server, at least separate command and
data sockets, sessions (long term)

s Provide syncpoint and recovery capability
s Good performance through use of efficient techniques

s General enough in design to have a wide variety of uses

270

CICS REXX Qlient ‘Server Architecture 17

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporaﬁén 1991, 1992

Current Client/Server Implementation

Provides client/server support within a CICS region
High-level REXX based

Provides a common shared REXX system server

L4

s Supports requests from both REXX and assembler clients

» Supports automatic server initiation
Requests are sent from a REXX client to a server as follows:

ADDRESS serverid ‘request’

The server waits on and receives requests from a client by issuing the ' WAITREQ' subcommand. The server
is suspended until a client request arrives (which is placed in the reserved REXX variable REQUEST).

There are subcommands available to REXX servers to get or replace the contents of client REXX variables,
by name.

The security characteristics/authority level of a client are automatically inherited by the server while it is
processing the request from that client.

n

18 REXX in the CICS Environment

Third REXX Symposium, Anapolis, Maryland (C) Copyright 1BM Corporation 1991, 1992

CICS/REXX OfficeVision/MVS Environment Support

REXX EXECS for Application Integration

Currently OfficeVision/MVS provides the capability for the user to add new menu items or commands along
with their associated CICS applications to their Office Vision/MVS desktop. This is done using the Applica-
tion Services component online administration utility to define new applications (represented by Application
Type Descriptor (ATD) definitions).

- Since REXX EXEC:s are invoked as a normal CICS program or transaction, REXX EXECs can easily be
invoked from the OfficeVision/MVS desktop.

REXX EXECs under CICS/REXX are enabled to use the OfficeVision/MVS System Interface Block (SIB).
The REXX program (or transaction) can be STARTed or XCTLed with a SIB passed to indicate what
EXEC to invoke and also where to transfer control to when the EXEC has finished its processing. REXX
EXECs can also pass an outbound SIB to OfficeVision/MVS or another SIB enabled application. This
should greatly facilitate OfficeVision/MVS based Application Integration.

For security reasons, CICS/REXX will not allow a user EXEC to pass a SIB to OfficeVision/MVS unless
that user is already signed on.

REXX EXECS as exits

It is planned to support the use of REXX EXECs as exit programs for OfficeVision/MVS and other CICS
based applications. It is the exit implementer’s responsibility to determine if a REXX exit would be suitable
as an exit (for performance reasons, especially when an interpreted EXEC is used). However, it should be
noted that REXX EXECs are successfully being used to code exits routines for production applications
running under VM/CMS,

272

CICS REXX OfficeVision;MVS Environment Support 19

Third REXX Symposium, Anay;blis,' Maryland (C) Copyright IBM Corpor:;tion 1991, 1992

273

20 REXX in the CICS Environment

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

CICS/REXX Interfaces to other products

One of the strengths of REXX is the ease with which high-level interfaces to other products can be provided.
It seems a logical next step to add interfaces from CICS REXX to DB2, GDDM and other products, on an
as needed basis.

Description of interface to DB2

This interface would be similar to the REXX to SQL interface available under VM but would use the CICS
- dynamic SQL interface to DB2.

Description of interface to GDDM

This interface would function essentially the same as the existing GDDM,/REXX product under VM.

274

CICS'REXX Interfaces to other products 21

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

CICS/REXX CMS Environment Compatibility/Emulation

To facilitate the migrating of systems and the porting of software from VM/CMS to MVS CICS, the fol-
lowing VM/CMS capabilities are provided:

» Global variable support compatible with the VM/CMS GLOBALYV command has been provided.

s Full-screen terminal 1/O support, compatible with the VM/CMS WAITREAD command has been pro-
vided.

» EXECIO command is supported for I/0O to sequential datasets
" » Xedit editor limited compatibility

276

CIFC BREYY MR Frviranmant Mameatikilitn Benlatinoe 23

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

277

24 RFXYX in the CICS Fruiranment

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

Summary

Prototype development experience

My prototype development experience has led me to the conclusion that it is feasible to do a good imple-
mentation of REXX under CICS. However what will do more to guarantee a good implementation of
REXX under CICS, more than anything else, is the feedback, input and participation of IBM customers in
this effort.

Much more than just another language for CICS

I hope that by now you have come to the conclusion that CICS/REXX is much more than just another
CICS language. That it is rather the beginning of a new environment with the potential to dramatically
improve the way that we work.

278

Summarv 28

Third REXX Symposium, Anapolis, Maryland () Copynight 18M Corporation 1991, 1992

279

26 REXX in the CICS Environment

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

Appendix - Sample CICS/REXX screens

Sample FILELIST screen

(USER=WRISTON DIRECTORY=/
CMD FILENAME FILETYPE ATTRIBUTES RECORDS BLOCKS DATE TIME
®®¢® Top Of File * * ¢

®* v [nd Of File®®e

COMMAND ===>
-

TEST2 EXEC FILE 5 1 03/27/92 10:31:
TEST] EXEC FILE 11 1 03/27/92 10:30:
GENID EXEC FILE 7 1 03/13/92 09:00:
SECURITY EXEC FILE 21 1 03/13/92 08:59:
TEST EXEC FILE 14 1 03/11/92 15:06:
FSI0 LIB FILE 493 3 03/11/92 08:42:
WINDOMS EXEC FILE 50 0 03/10/92 10:46:
KEDIT EXEC FILE 1278 5 03/10/92 08:49:
USERS DIR 1 1 03/10/92 08:49:

04
29
37
31
53
04
19
14
10

280

Appendix - Sample CICS 'REXX screens

27

Third REXX Symposium, Anapolis, Maryland (C) Copyright 1BM Corporation 1991, 1992

Sample KEDIT Screen

~
(WRISTON JUSERS/WRISTON NONAME SIZE=0 LINE=0 CHANGED=NO

KEDIT 1.1.9 - CICS Editor

60000 *e*e*eTop Of File *e*e™e

00001 *e*e*eEnd Of File *e*e™e

COMHAND ===>
. ./

DEMO EXEC

Source listing

281

28 REXX in the CICS Environment

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

COMHAND ===> SCROLL ===> PAGE
(222222222222 2222222233222 2222121 TOP OF DATA (2222222222223 224222332232 222]
006106 /* REXX */

000200 TRACE 'o!

000201 arg parms

000202 parse source environm

000203

000204 say '**¥eeeccccemmneccecececmememmmneeereccnarse e e wnx
000205 SAY '*** This is a test REXX program running under' environm '***!
000206 S8Y '*Frecmmcmemcceeemmcecencsmeccnedcscncmceresca—e e bl
000207 say

000208 say 'The arguments passed were:' parms

000209 say

000210

000211 /* example of REXX standard line-mode input */
000212 say 'What is your name?’
000213 parse pull name

(ﬁ EDIT ---- SHRIVER.REXX(DEMO) - 01.88 --cce-ccmcrmnrocmacnannns COLUMNS 001 072 AW

000218 /* example of nesting */

000219 address mvs

000220 ‘demoZ xxx'

0060221

000222 /* example of CICS subcommands */

000223 address cics

006224 'TERMID' /* get my CICS terminal id */

000225 cutbuf = sba(22 12)||'This is fullscreen output to terminal' termid
000226

000227 /* perform CICS fullscreen output */

000228 'SEND' outbuf /* do a CICS EXEC CICS SEND */

000229 outbuf = sba(23 12) || 'Now try some fullscreen input'

000230 'SEND' outbuf

060231

£60232 /* perform CICS fullscreen input */

000233 'WAITREAD' /* do an EXEC CICS RECEIVE and parse into vars */
000234 say 'The AID key that was pressed =' waitread.l

000235 say 'The cursor was at (Row Col):' subword(Waitread.2,2,2)

000236 say 'The data that was entered (Row Col Data):' subword(waitread.3,2)
000237 say

F13=HELP F14=SPLIT F15=END F16=RETURN F17=RFIND F1B=RCHANGE
F19=yP F20=DOUN F21=SWAP F22=LEFT F23=RIGHT F24=RETRIEVE

N

000214 say
000215 say ‘Welcome to' environm 'REXX,’ name
000216 say
060217
F13=HELP F14=SPLIT F15=END F16=RETURN F17=RFIND F18=RCHANGE
L F18=UP F20=DOWN F21=SuHAP F22=LEFT F23=RIGHT F24=RETRIEVEA4/
e p
EDIT ---- SHRIVER.REXX(DEMO) - 01.08 ~--voeocccmmmonanaacanna- COLUMNS 001 072
COMMAND ===> SCROLL ===> PAGE

282

Aopendix - Samnle CICS 'REXX screens

29

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

~ A
EDIT ---- SHRIVER.REXX(DEMO) - 61,08 w--cmvememccocmcccacenne COLUMNS 001 072
COMMAND ===> ‘ SCROLL ===> PAGE
000238
000239 /* example of using the system server */

000240 say 'send a GLOBALV SET and GET commands to the system server®
060241 address system

000242 'GLOBALV SELECT GROUP1 SET VAR test data'

006243 'GLOBALV SELECT GROUP1 GET VAR1'

000244 say 'The contents of VARl =' varl

000245 say

000246

960247 trace 'o' /* don't want to trace large loop */

000248 /* example of stand REXX line-mode output with more than 1 screen */
000248 do i = 1 to 20

000250 do j = 1 to 1008

000251 a=>5

€00252 end

000253 say i*1000 'assignment statements have been executed'

000254 end

000255

000256 say

006257 /* show that built-in REXX functions are available */

F13=HELP F14=SPLIT F15=END F16=RETURN F17=RFIND £18=RCHANGE

L F19=UpP F20=DOUN F21=SUAP F22=LEFT F23=RIGHT F24=RETRIEVE p

1 EDIT ---- SHRIVER.REXX(DEMO) - 01.08 ==-=-----cccomcemcmamavnn COLUMNS 801 0;;T
COMMAND ===> SCROLL ===> PAGE
000258 say "Today's date is”" date('w') date()

000260 say 'The time is' time()
000400 EXIT
KAKKXKXE ARAXAA AR I A I AT ARk ATk Nk d BOTTO” OF DATA KRR AR AR AR R AR R ARk
F13=HELP F14=SPLIT F15=END F16=RETURN F17=RFIND F18=RCHANGE
F19=UP F20=DOUN F21=SWAP F22=LEFT F23=RIGHT F24=RETRIEVE
— _J
283

30 REXX in the CICS Environment

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

-
EDIT ---- SHRIVER.REXX(DEM02) - 81.03 =wccmmovcrccccmmacannnns COLUMNS 001 872 A
COMMAND ===>) SCROLL ===> PAGE
L2223 2R XL 42222322222 2d22223 22 X2 222] Top OF DATA LT3 83233222 223222222222 X222% 24
000061 /* nest level 2 */

000010 trace 'r'

000100 say 'you entered demo? exec'

000110 address mvs

060200 'demo3 yyy'

000300 exit

L2232 BT ELT 222423222 2283222322222] BOTTOM OF DATA E2XTTIX2ISSER S22 22 32222222232
F13=HELP F14=SPLIT F15=END F16=RETURN F17=RFIND F18=RCHANGE

L F18=UP F20=DOWN F21=SWAP F22=LEFT F23=RIGHT F24=RETRIEVE44/

r ™
EDIT ---- SHRIVER.REXX(DEMO3) - 01.83 -c--cemcmmcumcmccmananas COLUMNS 001 €72
COMMAND ===> SCROLL ===> PAGE
ARERXEXEE RARRAAIAAR TR RETRA ARk kK TOP OF DATA PYYE2X22S 2233222222222 2 a2t h]
000016 /* next level 3 */

000020 address mvs
000100 say 'you entered demo3 exec'
000200 'demod’
EERKKE KRR AR R RRRRARRARAARRKRERRRARAN BOTTOM OF DATA Y22 2232233242222 223222
F13=HELP F14=SPLIT F15=END F16=RETURN F17=RFIND F18=RCHANGE
L F19=UP F20=DOuN F21=SUWAP F22=LEFT F23=RIGHT F24=RETRIEVE
284

Appendix - Sample CICS REXX screens

31

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

r» EDIT ---- SHRIVER.REXX(DEMO4) - 01.03 -----ececcccocccremmnna- COLUMNS 001 672 A
COMMAND ===> SCROLL ===> PAGE
[2SZT2I RIS ESES LS RSS2 222222222222 TOP OF DATA LT3 2232 3233222322222 22222222 23
000010 /* nest level 4 */

000100 say ‘'you entered demo4 exec’

000110 address mvs 'demo5’

KEKARRR FXRT KRN A AR ANN AR R AR T RN RN BOTTOM OF DATA AER KRR RERRERAREA R A AR AR R

FI3=HELP F14=SPLIT F15=END FI6=RETURN F17=RFIND FI1B=RCHANGE
| Flo=vP F20=DOWN F21=SWAP F22=LEFT F23=RIGHT F24=RETRIEVE
- 2

EDIT ---- SHRIVER.REXX(DEMOS) - 81,00 ==mmememrmmmmemcomcennns COLUMNS 001 072

COMMAND ===> SCROLL ===> PAGE

AREHRK KA RERNNARI KA RARRTIIARRRRARK TOP OF DATA AEARRE AR AN R KA RT TR AR AR RN RRK

000200 /* rexx */
000300 say 'you entered demo5 exec'’

FTAXRAAE AAET AR AR AR R AN RIS AR BOTTO” OF DATA KKK R R A AT RAREAREARARAKR R AT K kN

F13=HELP F14=SPLIT F15=END F16=RETURN F17=RFIND F18=RCHANGE
\‘7F19=UP F20=DOWN F21=SUAP F22=LEFT F23=RIGHT F24=RETRIEVE

Execution with trace off

285

32 REXX in the CICS Environment

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

rﬁ""*DFH2312’ WELCOME TO CICS/ESA *** 17:54:50 A
*t*tiw\ mntft*\ I’i’*!*i\ ****tt\ t\ i*f***t'h\ ttt*t*\ tt—t*\
*ttt*ﬁ*t\ tfttt.\ *ttttt*i\ L2222 sl tt\ t*tttttt\ L2 2122224 LA 22 21

AL S A A A S A N A ERAN A N AN A W i A S S
AR\ A A TR B T =\ VAT

tt\ Qt\ *ﬁ\ tﬁ"*i*\ *t\ tt'**t\ ti*'*i*\ t***t'it\

tt\ Q'l\ ﬁt\ i*'**ii\ tn\ ***ttt\ "Qi*t*\ ttt*tttt\

*\ =\ ™\ AN S S AN A A TR A N\ S Wi A A
t*\ tt\ *t\ 't\ t:\ *t\ tt\ tt\ **\ tf\ t'\ t*\ tt\
wtt**tw*\ g-.rnm\ tttitttt\ *i*t*t*'\ tt\ t*ttt*it\ '*tt**tt\ tt\ n*\

t'i*i'\\ t.tit*\ THRRAR \ AR ERkR \ .\ i't*ﬁ**'\ (22222} LA .*\

ANAAAA SR AAAAA R AN A U A M AN ANAAMANA SR AAAAN U AN

. -/

- N
rexx demo parml parm2 . ‘

286

Annendiv - Samnle F10S REXYX crreenc

R

Third REXX Symposium, Anapolis, Maryland

(C) Copyright 1BM Corporation 1991, 1992

4 M
BR ok e e e e a e~ -~ . = - - *k ¥
*** This is & test REXX program running under MVS CICS ***
R L e e m e - e~ e - - - - Lk 2
The arguments passed were: PARM1 PARM2
What is your name?
Dave READ
r)
RN e o e e m e et e e e, mm o m -, —————————-—— Th N
*** This is a test REXX program running under MVS CICS ***
R R e o - . " T - . - e = e *xK
The arguments passed were: PARM1 PARMZ
What is your name?
Dave
Welcome to MVS CICS REXX, Dave
3 *-* say 'you entered demo2 exec'
>>> “ypu entered demo2 exec"
you entered demol exec
4 *-* address mvs
5 *.* ‘demo3 yyy'
>>> "demo3 yyy"
you entered demo3 exec
you entered demod exec
you entered demo5 exec
6 *-* exit
This is fullscreen output to terminal 04G1
Now try some fullscreen input
_ S

287

34 REXX in the CICS Environment

Third REXX Symposium, Anapolis, Maryland

(C) Copyright IBM Corporation 1991, 1992

What is your name?
Dave

- Welcome to MVS CICS REXX, Dave

you entered demo2 exec

4 *-* address mvs

5 *-* 'demo3 yyy'

>>> "demo3 yyy"

you entered demo3 exec
you entered demod4 exec
you entered demo5 exec

6 *-* exit
The AID key that was pressed = ENTER

test input

- o e o o e - P o e

- o - . A . - - - -

The arguments passed were: PARM1 PARMZ2

3 *.* say 'you entered demo? exec'
>>> *you entered demo2 exec®

Now try some fullscreen input

MORE

The cursor was at (Row Col): 24 16

The contents of VARl = test data

The data that was entered {Row Col Data): 24 2 test input

send a GLOBALV SET and GET commands to the system server

1000
2000
3000
4000
5000
6000
7000
8000
9000

assignment
assignment
assignment
assignment
assignment
assignment
assignment
assignment
assignment

statements
statements
statements
statements
statements
statements
statements
statements
statements

have
have
have
have
have
have
have
have
have

been
been
been
been
been
been
been
been
been

executed
executed
executed
executed
executed
executed
executed
executed
executed

10000 assignment statements have been
11000 assignment statements have been
12000 assignment statements have been
13000 assignment statements have been
14000 assignment statements have been
15000 assignment statements have been
16000 assignment statements have been

executed
executed
executed
executed
executed
executed
executed

MORE

288

Appendix - Sample CICS/REXX screens

35

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

17000 assignment statements have been executed
18000 assignment statements have been executed
19000 assignment statements have been executed
200060 assignment statements have been executed

Today's date is Tuesday 20 Aug 1991
The time is 17:59:31
Ready; (5.232298)

\.. S

Execution with trace on

(>rexx demo parml parm2 -

289

36 REXX in the CICS Fnvironment

Third KEXX Symposium, Anapolis, Maryland (C) Copyright 18V Corporation 1¥9%, 1992

3 *.* arg parms
>>> “PARM1 PARM2*)
4 *-* parse source environm
> "TSO*
> *COMMAND®
> “DEMQO*
.> “"SYSEXEC®
> .?l
> *DEMo*
> *CICS
>>> *MVS CICS*

T Y L rawl

7 *-* SAY '*** This is a test REXX program running under' environm '***!
>»> **** Thig is a test REXX program running under MVS CICS ****
*** This is a test REXX program running under MVS CICS ***

- - . = - R S

>>> L e wkwy

--

MORE

10 *-* say 'The arguments passed were:' parms
>»>> *"The arguments passed were: PARM1 PARM2*
The arguments passed were: PARM]1 PARM2
11 *-* say

13 *-* /* example of REXX standard line-mode input */
14 *-> say 'What is your name?'
>>> *Yhat is your name?*
What is your name?
15 *-* parse pull name

READ

290

Appendix - Sample CICS/REXX screens

37

Third REXX Symposium, Anapolis, Maryland

(C) Copyright IBM Corporation 1991, 1992

e

()
10 *-* say 'The arguments passed were:' parms
>>> *The arguments passed were: PARM1 PARM2*®
The arguments passed were: PARM1 PARMZ
11 *-* say
13 *-* /* example of REXX standard line-mode input */
14 *-* say 'What is your name?'!
>>> *WYhat is your name?®
What is your name?
15 *.* parse pull name
L‘#Davwd Shriver READ D
: ™~
10 *-* say ‘The arguments passed were:' parms
>>> *The arguments passed were: PARM1 PARMZ2®
The arguments passed were: PARM] PARMZ
11 *-* say
13 *-* /* example of REXX standard line-mode input */
14 *-* say 'What is your name?'
>>> *What is your name?*®
What is your name?
15 *-* parse pull name
David Shriver
>>> *David Shriver®
16 *-* say
17 *-* say ‘tlelcome to’ environm 'REXX,' name
>>> *Welcome to MVS CICS REXX, David Shriver®
Welcome to MVS CICS REXX, David Shriver
18 *-* say
20 *-* /* example of nesting */
21 *-* address mvs
22 *-* 'demo2 xxx'
MORE

291

38 REXX in the CICS Environment

Third REXX Symnosium, Anapolis, Maryland

(C) Copyright IBM Corporation 1991, 1992

—\
sdemoZ xxx*
say 'you entered demol exec'
"you entered demo? exec®
vauoente Tn Cem0l exec
4 *-» sadress mvs
: § *.% 'demo3 yyy'
' >>> *demo3 yyy"
sul enfeisid demold exec
you entered demod exec
v atered denod exec
! 6 *-* exit
i 24 *.* /* example of CICS subcommands */
25 *-* address cics
26 *-* 'TERMID! /* get my CICS terminal id */
>>> “TERMID*
27 *-* outbuf = sba(22 12)]|'This is fullscreen output to terminal® termid
>>> »715This is fullscreen output to terminal 04G1®
29 *-* /* perform CICS fullscreen output */
30 *-* 'SEND' outbuf /* do & CICS EXEC CICS SEND */
>>> “SEND ?7!$This is fullscreen output to terminal 04G1*
31 *-* outbuf = sba(23 12) || 'Now try some fullscreen input'
>>> "7§ Now try some fullscreen input”
MORE
Neee A/
- . —
37 *.* ISEND' outbuf
>>> “SEND ?7%,Now try some fullscreen input®
34 *-* /* perform CICS fullscreen input */
35 *-* 'WAITREAD! /* do an EXEC CICS RECEIVE and parse into vars */
>>> “WATTREAD®
Now try some fullscreen input
L)

292

Annendix - Sample CICS ‘REXX screens

39

Third REXX Symposium, A:Iapolis, Maryland (C) Copyright IBM Corperation 1991, 1992

-~
32 *-* 'SEND' outbuf
>>> "SEND ?7$,Now try some fullscreen input®
34 *.* /* perform CICS fullscreen input */
35 *-* YWAITREAD® /* do an EXEC CICS RECEIVE and parse into vars */
>>> *WAITREAD"
Now try some fullscreen input
test input
9 est inpu D
s A

32 *-* 'SEND' outbuf
>>> "SEND 7%,Now try some fullscreen input®
34 *.* /* perform CICS fullscreen input */
35 *-* 'WAITREAD' - /* do an EXEC CICS RECEIVE and parse into vars */
>>> *AITREAD"
36 *-* say 'The AID key that was pressed =' waitread.l
>>> *The AID key that was pressed = ENTER ™
The AID key that was pressed = ENTER
37 *-* say 'The cursor was at (Row Col):' subword(Waitread.2,2,2)
>>> *The cursor was at (Row Col): 24 12"
The cursor was at {Row Col): 24 12
38 *-* say 'The data that was entered (Row Col Data):' subword(waitread.3,2
>>> *“The data that was entered (Row Co)} Data): 24 2 test input®
The data that was entered (Row Col Data): 24 2 test inputl
39 *-* say

41 *-* /* example of using the system server */
42 *-* say ‘send a GLOBALV SET and GET commands to the system server'
>>> “send a GLOBALV SET and GET commands to the system server®

send a GLOBALV SET and GET commands to the system server

43 *.* address system

44 *-* 'GLOBALV SELECT GROUP1 SET VARI test data’

Now try some fullscreen input

test input MORE

293

40 REXX in the CICS Environment

Third REXX Symposium, Anapolis, Maryland

(C) Copyright 1BM Corporation 1991, 1992

10000
11000
12000
13000

>>> *GLOBALV SELECT GROUP1 SET VAR] test data"
45 *-* 'GLOBALV SELECT GROUP1 GET VARL'

>>> *GLOBALV SELECT GROUP1 GET VAR]*®

49 *.* trace ‘o'
1000 assignment
2000 assignment
3000 assignment
4000 assignment
5000 assignment
6000 assignment
7000 assignment
8000 assignment
9000 assignment

assignment
assignment
assignment
assignment

statements
statements
statements
statements
statements
statements
statements
statements
statements
statements
statements
statements
statements

have
have
have
have
have
have
have
have
have
have
have
have
have

been
been
been
been
been
been
been
been
been
been
been
been
been

46 *-* say 'The contents of VAR =' varl

>>> *The contents of VARl = test data®

The contents of VARl = test data
47 *-* say

/* don't want to trace large loop */

executed
executed
executed
executed
executed
executed
executed
executed
executed
executed
executed
executed
executed

—

MORE D

14060
15060
16000
17600
18000
19000
20000

assignment
assignment
assignment
assignment
assignment
assignment
assignment

statements
statements
statements
statements
statements
statements
statements

have
have
have
have
have
have
have

been
been
been
been
been
been
been

Today's date is Tuesday 20 Aug 1991
The time is 18:02:03
Ready; (9.924610)

executed
executed
executed
executed
executed
executed
executed

REX EXEC

Appendix - Sample CICS REXX screens

41

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

Source listing

- ™
EDIT ---- SHRIVER.REXX(REX) - 01.08 ~-recmeccorammcaacnccaan- MEMBER REX SAVED

COMMAND ===> SCROLL ===> PAGE

PE XIS I 2RSSR S 222222222222 22 272 22 2% TOP OF DATA (222222 232222282 a2 2223223222232 23

000001 /* interpretive execution of REXX statements from the terminal */

600082 TRACE 'O

0600003 parse arg arg

060004 signal on error

00600605 signal on syntax

060006 SAY *Enter a REXX statement or 'EXIT' to end®

000007 restart:

000008 DO FOREVER

000009 parse external input

000010 if input = '* then SAY "Enter a REXX statement or 'EXIT' to end®

000911 INTERPRET input

000012 if substr{input,1,1) = *'* then say 'RC =' rc';'

000013 END

600614 EXIT

000015 error:

000016 say 'RC =% rc

000017 signal on error

oooe1s8 signal restart

000019 syntax:

F13=HELP F14=SPLIT F15=END F16=RETURN F17=RFIND F18=RCHANGE
L» F18=UP F20=DOUN F21=SWAP F22=LEFT F23=RIGHT F24=RETRIEVE
(A

EDIT ~--- SHRIVER.REXX(REX) - 01.08 -~cececacccncmcmmmoncaanns COLUMNS 001 072

COMMAND ===> SCROLL ===> PAGE

000020 Say 'Syntax error ---- re-enter'

000021 signal on syntax

000022 signal restart

(2SS L BELE SRSl 222222222 BOTTOM oF DATA ARRERRARRRER A AR AR AN AN RRRR

F13=HELP F14=SPLIT F15=END F16=RETURN F17=RFIND F1B=RCHANGE
L F19=UP F20=DOWN F21=SUAP - F22=LEFT F23=RIGHT F24=RETRIEVE)
Execution

295

42 RFEXX in the CICS Fnvironment

Third REXX Symposium, Anapolis, Maryland (C) Copyright IBM Corporation 1991, 1992

—
rex

- J

(Enter a REXX statement or ‘EXIT' to end
say 1/3
0.333333333

exit READ

296

Appendix - Sample CICS/REXX screens 43

Third REXX Symposium, Anapolis, Marytand (C) Copyright IBM Corporation 1991, 1992

Enter a REXX statement or 'EXIT' to end
say 1/3

0.333333333

exit

Ready; (19.632339)

297

44 REXX in the CICS Environment

REXX: TECHNICAL ISSUES, TODAY AND TOMORROW

MICHAEL SINZ
COMMODORE

298

REXX

Technical Issues
Today and Tomorrow

Michael Sinz
Senior Systems Engineer

Commodore International - Technology Group
299

Today

The Good

REXX is a computer language

REXX is a easy language to learn do to the non-typed, non-declared nature of the
language. MFC did a very good job in thinking about what the user of REXX needed
rather than how languages are normally written.

REXX is becoming a standard

The X3J18 group is currently working on a draft ANSI standard for REXX.

REXX is available across platforms

REXX is now a standard part of a number of operating systems and is available in flavors
for most others.

REXX is part of solutions

REXX is now seen as a standard tool in environments where REXX is installed. It has
not only become part of the environment but has proven itself to be very useful. A great
many example of this can be seen in the Amiga environment, where REXX has become
the tool of choice for systems integration by VARSs in many vertical markets.

300

Today

The Good

REXX 1s very flexible

Due to the design of REXX, it has turned out to be very flexible in adapting to more
complex systems. For example, on the Amiga, REXX can communicate with any
number of applications that have support for REXX. This makes it possible for users and
systems integrators to pull together very powerful tools into what looks and acts like one
very customized application. This makes the migration into vertical markets much easier
and reduces the turn-around time to meet the demands of the changing markets.

REXX has many good points

After all, it took me two pages just to skim over the key points...

301

Today

The Bad

REXX 1s a computer language

While REXX is a easy language to learn, it is still a "computer language" and that is
keeping some people from using it. Many users would easily be able to use REXX for
"programming" if it did not feel like programming. A good example of this is the Lotus
1-2-3 macros which business people used all the time but did not realized that they were
programming. (And if told it was programming, they suddenly stopped)

REXX is a not up to date

While REXX has many good points, it is currently not up to the task of some of the issues
in today's computing environments. It is not so much that REXX can not be since any
implementor of the language can choose to extend it in some ways; rather it is a problem
of choosing a model that fits into the REXX model as well as addressing the requirements
of complex multi-tasking, multi-user, multi-processor, networked, graphical, object
oriented environments. (What a mouth full)

REXX 1s not yet a standard

While X3J18 is working hard on getting the standard done, it is not done yet and the
various implementations of REXX are not fully interchangeable.

REXX support in applications

This will happen more as the market starts to demand it and as the utility of REXX
becomes a major feature in products. A good example of this happening already is in the
Amiga computer where productivity applications are almost required to support REXX
due to public demand and feature requirements.

302

Today

The Ugly
REXX 1s NEVER ugly...
Well...

...almost never...

The implementation of a good REXX on many platforms is not as simple as the language
seems. Part of this is due to the specification of the language and part of it is due to the
way REXX is designed to interact with the operating environment of the system.
Hopefully the specification of the language will help out, but the close interaction with
the system will always be there for the developer to deal with. In addition, without work
at getting REXX into new computing technologies such as GUISs, it can be rather "ugly"
to code in REXX for such environments.

303

Tomorrow

REXX and the future

In order for REXX to grow, the direction of the growth needs to be identified first. If the
goal is to make REXX into the "user's" programming language, it is important that that
goal is what drives development of the language.

Multi-Tasking, Multi-User, & Networks

The current REXX model works great in simple environments. The fact that I/O is very
simplistic make it easier for users to learn and use. However, this has also made a
number of things rather difficult (if not impossible) to do in complex environments.
Issues such as synchronization, semaphores, and shared access are all currently outside of
the REXX model. While it would be simple to just use the models of other computer
languages, it would be counter to the main goal of REXX: simplicity for the user. This
means that a new model for such things as file locking, access control, and
synchronization will be needed.

Graphical User Interfaces

The world is moving into GUI environments. The reason for the growth of this interface
model is due partly to the fact that computers are more powerful and that users find GUIs
easier to learn and use. REXX, as a language, does not address any of these issue
directly. External function libraries exist for a number of different GUIs but not having
the language contain some fundamental support for GUI operation makes life more
difficult for the person writing the REXX program that deals with the GUI. Research ata
number of places, most notably IBM, have shown how REXX can be gracefully
enhanced to gain these features. However, the amount of work involved for the
implementor of the language processor is high.

304

Tomorrow

REXX and Objects

As operating environments become more object oriented, REXX will need to learn about
objects in order to fit in with the environments it is operating in. Last year, IBM showed
some of their ideas on how this could be done. Work such as that will need to continue
and will need to become standardized such that REXX continues to be a cross-platform
language.

REXX as a visual language

This is one of my goals for REXX. REXX has become a user's language. However, it is
still very much like a computer language. With the Amiga (and soon to be the many
0S/2 2.0 users) REXX has become a staple of application features. On the Amiga, over
140 REXX supporting applications are available with every new application having
REXX support due to user demands. REXX has become both a systems integrators best
friend and the advanced users power-tool. The next step would be to give this power to
users who do not "program" a computer in the traditional sense. A visual interface to
REXX programming that can be mastered by the business man and home computer user
would be the ultimate goal. In a mature, REXX supporting platform, such a tool would
give more users the power to combine their creativity along with the applications they
have bought to produce something that is "what they want." Such a tool does not have to
replace REXX but would just have to be able to sit on top of REXX. However, such a
tool would require more standardization of the way applications support REXX and of
the REXX language itself. (I am assuming that due to the complexity of such a tool that
it would be "ported” to all the platforms that support REXX in such a way.)

REXX in the future...

With the current growth of REXX as a user's tool and its inclusion as a standard part of a
number of operating environments, the future for REXX looks bright. (And REXX
developers can be assured of a number of tough problems that will need to be addressed.)

305

REXX

Going Strong
Into the
Future.

UNI-REXX: REXX FOR THE UNIX & VMS ENVIRONMENTS

3RD ANNUAL REXX SYMPOSIUM
ANNAROLIS, MARYLAND
MAY 5, 1892

SPIRE
THE WO&K TION GROUP
ROSEMONT. ILLINOIS

IN

PRESENTATION OUTLINE
PART 1. "MARKETING"” REXX For UNIX

THE UNIx MARKET

MIS anp UNix

MAacro LANGUAGES FOR UNIXx
Qur ExPERIENCE So FAR

UNI-REXX

RECENT Work oN UNI-REXX
PLANS To IMPROVE ACCEPTANCE
OTHER PLANS

PArT 2. OtHER REXX RELATED ITEMS

CoMBINED REXX AND C DeEVELOPMENT PROJECT
RELATIONSHIP TO PusLic DoMain REXX's

307

"MARKETING"” REXX

.. -NoT IN THE "GRUBBY" SENSE OF "HAWKING” REXX

---But IN THE SENSE ofF "MAKING REXX VALUARLE”, THROUGH
IMPROVEMENT .,
APPLICATION,
EDUCATION,

ETC.

THe UNix CoMMuNITY
ORIGINALLY ACADEMIC AND ENGINEERING ORIENTED USAGE

FIRST COMMERCIALIZATION INVOLVED SMALL BUSINESS APPLICATIONS
(1-E-, XENIX)

RISC PRICE/PERFORMANCE IMPROVEMENTS ARE ATTRACTING TRADITIONAL
coMMERCIAL MIS APPLICATIONS

LATELY, THE INTEL PRICE/PERFORMANCE CURVE IS APPROACHING THAT OF THE
Low END RISC SYSTEMS, FURTHER ACCELERATING WIDER INTEREST IN UNIX-

TRADITIONAL COMMERCIAL MIS ORGANIZATIONS AND UNIX
RISC PRICE/PERFORMANCE HAS BECOME UNAVOIDABLY ATTRACTIVE

UNIX IS THE ONLY CURRENTLY AVAILABLE OS FOR THESE PLATFORMS-
(0S/2 AND Winpows/NT WILL CHANGE THIS SITUATION)

UNIX MAY CONTINUE TO BE THE ONLY TRULY PORTABLE ENVIRONMENT
FOR THOSE WHO SEEK THE FLEXIBILITY OF OPEN SYSTEMS.
(0S/2 AND WiNDOWS/NT ARE PROPRIETARY TECHNOLOGY)

THE UNIX LEARNING CURVE 1S LARGE FOR EXISTING COMMERCIAL MIS STAFFERS

THESE FACTORS ARE THE RASIS FOR TWG’S PRODUCT LINE OF MAINFRAME UTILITY
SOFTWARE FOR UNIX-

308

MAcro LANGUAGES FOR UN1x

UNIX INCLUDES MANY "STANDARD” UTILITIES:

- A LARGE NUMBER OF COMMANDS THAT PROVIDE INFORMATION.

CONTROL AT A VERY LOW LEVEL

~ REUSABLE "FILTERS” USED VvIA "pPiPES”

- [/0 REDIRECTION

ACCESS.,

AND

-MAKING FOR A VERY FLEXIBLE (ALBFTT DAUNTING) ENVIRONMENT-

GIVEN THIS LEVEL OF COMPLEXITY, THERE IS CERTAINLY A NEED FOR MACRO
FACILITIES: AS AN EXAMPLE, TAKE THE CASF OF ROUTINE DISK SPACE

SPACE MANAGEMENT AT THE END-USER LEVEL.-

STANDARD UNIX REALLY ONLY PROVIDES THE ‘DU’ COMMAND, WHICH PROVIDES

VERY LOW LEVEL DATA. ..

(OutpuTt oF UNIX COMMAND "DBU /USR/EXPORT/HOME/ETS” FOLLOWS- - -

1668 /usrR/ExPORT/HOME/ETS/PDR/REXX]

56 /usR/EXPORT/HOME/ETS/PDR/REXX2/TRIFP
/USR/EXPORT/HOME/ETS/PDR/REXX2/CODE

6 /uSR/EXPORT/HOME/ETS/PDR/REXX2
8 /usR/EXPORT/HOME/ETS/PDR
JUSR/EXPORT/HOME/ETS/UTIL
USR/EXPORT/HOME/ETS/LOCALTERM/A
USR/EXPORT/HOME/ETS/LOCALTERM/D
USR/EXPORT/HOME/ETS/LOCALTERM/H
JUSR/EXPORT/HOME/ETS/LOCALTERM/1
U
u
U
u

PO N U
WCON

g
SR/EXPORT/HOME/ETS/LOCALTERM/J
SR/EXPORT/HOME/ETS/LOCALTERM/S
SR/EXPORT/HOME/ETS/LOCALTERM/U
SR/EXPORT/HOME/ETS/LOCALTERM/Y

/USR/EXPORT/HOME/ETS/LOCALTERM/W
/USR/EXPORT/HOME/ETS/LOCALTERM

USR/EXPORT/HOME/ETS/ - WASTEBASKET
/USR/EXPORT/HOME/ETS/REXX

/USR/EXPORT/HOME/ETS/XEDIT

/USR/EXPORT/HOME/ETS/TERMINFO

USR/EXPORT/HOME/ETS/RXF

1
1
7
/
/
/
/
/
/
/
4
/
2

/
3
8 /usrR/EXPORT/HOME/ETS/LANG/SC
{USR/EXPORT/HOME/ETS/LANG/SC
/
/

=

/USR/EXPORT/HOME/ETS/LANG/SC
USR/EXPORT/HOME/ETS/LANG/S

Cl.
0
0,
USR/EXPORT/HOME/ETS/LANG/SC1. 0
0

= AN P= (O WD UT L5 N AN N 5 Bt st =t TN U OO
N & O RO =N

/USR/EXPORT/HOME/ETS/LANG/
29 /usrR/EXPORT/HOME/ETS/LANG/

1.
S
%
/USR/EXPORT/HOME/ETS/LANG/ i
‘
29 /usR/EXPORT/HOME/ETS/LANG/SC

/
C
SC
SC1.
/USR/EXPORT/HOME/ETS/LANG/Sg ;|
SC1.
SC1.

/UsrR/EXPORT/HOME/ETS/LANG/SCL. 0/MAN/MAN]
0/MAN/MAN3
/MAN/MANS

0/MAN
/INCcLUDE/CC/ARPA
/INcLUDE/CC/DERUG
0/1NcLuDe/CC/HSFS
/INcLuDe/CC/LoOFS
0/1nNcLube/CC/Lwe
0/1ncLupe/CC/MoN
0/1NcLuDe/CC/NET

)

59 /usr/exporT/HoME/ETS/LANG/SCL. 0/1NcLupE/CC/NETINET
8 /usrR/EXPORT/HOME/ETS/LANG/SC1. 0/1NcLUDE/CC/NETTLI
15 /usr/exporT/HOME/ETS/LANG/SCL. O/ 1NcLuDe/CC/NFs
158 /usr/exporT/HOME/ETS/LANG/SC1. 0/1NcLUDE/CC/PIXRECT
13 /usr/exporT/HOME/ETS/LANG/SC1. 0/1NcLuDpe/CC/PROTOCOLS
28 /usr/ExPoORT/HOME/ETS/LANG/SCL. 0/ 1NcrLupe/CC/RFS
56 /usr/ExpoRT/HOME/ETS/LANG/SCL. O/1ncLune/CC/RPC
58 /usr/exporT/HOME/ETS/LANG/SCL. 0/1NcLuDE/CC/RPCSVYC
14 /usr/exPorT/HOME/ETS/LANG/SC1.0/1ncLupe/CC/SBUSDEY
20 /usr/ExpoRT/HOME/ETS/LANG/SC1. 0/1NncLuDE/CC/SUN
9 /usrR/ExPORT/HOME/ETS/LANG/SC1l. 0/ 1ncLupe/CC/suNn3
3 /usrR/ExPORT/HOME/ETS/LANG/SCI. 0/1ncLupe/CC/suN3x
3 /usr/ExporT/HOME/ETS/LANG/SCL. 0/ 1NcLuDE/CC/ sund
3 /usr/exporT/HOME/ETS/LANG/SCL.- 0/1NncLuDe/CC/sunbc
59 /usr/expoRT/HOME/ETS/LANG/SCL. 0/1ncLupe/CC/SUNDEY
153 /usr/exPoRT/HOME/ETS/LANG/SC1. 0/INcLupe/CL/suNToOL
142 /usr/exporT/HOME/ETS/LANG/SC1. 0/1NcLuDE/CC/SUNWINDOW
210 /usr/eExporT/HOME/ETS/LANG/SCL. O0/1nNcLUDE/CC/sYs
/usR/ExPORT/HOME/ETS/LANG/SC1. 0/1ncLuDpE/CC/TFS
/USR/EXPORT/HOME/ETS/LANG/SCI 0/1ncLupe/CC/uFs
JUSR/EXPORT/HOME/ETS/LANG/SC1. 0/1ncLUDE/CC/vM
30 /usr/exPORT/HOME/ETS/LANG/SC1. 0/ 1nNciupe/CC
36 /usr/ExPORT/HOME/ETS/LANG/SC1- 0/ INCLUDE
01 /usr/expPorRT/HOME/ETS/LANG/SC]1.0/cc87
03 /usr/expPoRT/HOME/ETs/LANG/SC1.0/cc89
/USR/EXPORT/HOME/ETS/LANG/SC1. O0/MISALIGHM
/USR/EXPORT/HOME/ETS/LANG/SC1. 0/README
3 /uSR/EXPORT/HOME/ETS/LANG/SCL. O

]
3 /USR/EXPORT/HOME/ETS/LANG/MAN/MAN]
8 /USR/EXPORT/HOME/ETS/LANG/MAN/MAN3
/USR/EXPORT/HOME/ETS/LANG/MAN/MANS

1 /USR/EXPORT/HOME/ETS/LANG/MAN

537 /USR/EXPORT/HOME/ETS/LANG

9 /usR/EXPORT/HOME/ETS/DOC
USR/EXPORT/HOME/ETS/SYMP

5 /usr/EXPORT/HOME/ETS

et 22 N bt U] 2 AN Bt (D) A7) ot b ot ot foemd AN CNVAN
ORI WOWWSNININOO .

/
/72

310

MAcCrRo LANGUAGES FOR UNIx

A TYPICAL MACRO PROGRAM WOULD PROVIDE THIS LOW IEVEL INFORMATION IN A
MORE MANAGEABLE FORM.

(Cutpur oF UNIx coMMAND "spPACE /USR/EXPORT/HOME/ETS" FOLLOWS-: .-)

FILESYSTEM KBYTES USED AVAIL CAPACITY MOUNTED oN
/DpEv/spl6 186414 141068 26704 847 /usR
NuM sIZECK) 7 NODE ZAFILESYS ITEM
3018 18.041 2.139 /usrR/EXPORT/HOME/ETS/PDR

2 197 1.178 0.140 /usrR/EXPORT/HOME/ETS/UTIL

3 114 0-681 0.081 /usr/EXPORT/HOME/ETS/LOCALTERM

I 1 0.006 0.001 /usrR/EXPORT/HOME/ETS/-WASTEBASKET

5 432 2.582 0-306 /usr/EXPORT/HOME/ETS/REXX

b6 42 0.251 0.030 /uSrR/EXPORT/HOME/ETS/XEDIT

7 24 0.143 0.017 /usrR/ExPORT/HOME/ETS/TERMINFO

8 3 0.018 0-002 /uSR/EXPORT/HOME/ETS/RXF

9 12537 74.942 8.887 /USR/EXPORT/HOME/ETS/LANG

10 219 1.309 0.155 /usr/ExPoORT/HOME/ETS/DOC

11 53 0-317 0.038 /usSR/EXPORT/HOME/ETS/SYMP

12 16729 100.000 11.859 /usr/EXPORT/HOME/ETS

SELECT NODE NUMBER FOR REDISPLAY (* FOR SAME) AND OPTIONAL LEVEL
OR X' TO EXIT

1

FILESYSTEM KBYTES USED AVAIL CAPACITY MounTED ON

/pEV/sp0e 186414 141068 26704 47 /USR
ZFILESYS ITEM

NuM s1ze(K) % NODE S
1 1668 55.268 l 182 /usr/ExPORT/HOME/ETS/PDR/REXX]
2 1316 43.605 0-833 /usrR/ExXPORT/HOME/ETS/PDR/REXX2
3 3018 100.000 2-139 /usrR/EXPORT/HOME/ETS/PDR
SELECT NODE NUMBER FOR REDISPLAY (™ FDR SAMF) AND OPTIONAL ILEVEL
oR '0’ TO GO BACK UP ONF NODE
OR 'x' TO EXIT

0

in

FILESYSTEM

/pev/sple

NuM s1ze(K) 7% NODE
1 3018 18.041
2 197 1.178
3 114 0.681
4 1 0. 006
5 432 2.582
6 42 (.251
7 24 0.143
8 3 0-018
g 12537 74.942
10 219 1.309
11 53 0.317
12 16729 100. 000

SELECT NODE NUMBER
OR ‘X’ TO EXIT

9

FILESYSTEM

/pev/sple

NUM s1ZE(K) 7% NODE
1 9793 78.113
2 541 4.315
3 12537 100. 000

SELECT NODE NUMBER

USED AVAIL CAPACITY MOUNTED ON
141069

26703 84% /UsSR
S ITEM

JUSR/EXPORT/HOME/ETS/PDR
JUSR/EXPORT/HOME/ETS/UTIL
JUSR/EXPORT/HOME/ETS/LOCALTERM
JUSR/EXPORT/HOME/ETS/- WASTEBASKET
JUSR/EXPORT/HOME/ETS/REXX
JUSR/EXPORT/HOME/ETS/XEDIT
JUSR/EXPORT/HOME/ETS/TERMINFO

CUT e R
» —m
< =

CSOWOOR - OO
FNCQ OO0 IS N ON
SNON == WM S~

/USR/EXPORT/HOME/ETS/RXF
JUSR/EXPORT/HOME/ETS/LANG
JUSR/EXPORT/HOME/ETS/DOC

: /USR/EXPORT/HOME/ETS/SYMP

.859 /usR/EXPORT/HOME/ETS

REDISPLAY (™ FOR SAME) AND OPTIONAL LEVEL

S—
HOOROOOOOOONNY
OO
WO
SO~

-
o]
-

KBYTES USED AVAIL CAPACITY MOUNTED oON
186414 141070 26702 347 JUSR
AFILESYS ITEM
6.942 /usr/ExPORT/HOME/ETS/LANG/SC1-0
0.384 /usr/EXPORT/HOME/ETS/LANG/MAN

8.887 /usr/EXPORT/HOME/ETS/LANG
FOR REDISPLAY (* FOR SAME) AND OPTIONAL LEVEL

orR ‘0’ TO GO BACK UP ONE NODE

orR "x' TO EXIT

* 2

FILESYSTEM

/peEv/sp06

NUM sI1ZECK) 7 NODE
1 541 4.315
2 1436 11.454
3 1001 7.984
4 1003 8.000
5 12 0.096
b 52 0.415
7 9793 78.113
8 133 1.061
9 398 3.175
10 4 0.032
11 541 4.315
12 12537 100.000

SELECT NODE NUMBER
orR '0
OR 'X' TO EXIT

X

KBYTES USED AVAIL CAPACITY MOUNTED ON
186414 141070 26702 347 JUSR
AFILESYS ITEM
0.384 /usr/exPoRT/HOME/ETS/LA..6/SC1. 0/MAN
1.018 JUSR/EXPORT/HOME/ETS/LANG/SC1. 0/ INCLUDE
0.710 /USR/EXPORT/HOME/ETS/LANG/SCI 0/ce
0.711 /usr/exporT/HOME/ETS/LANG/SCL. 0/cs89
0-009 /usr/expoRT/HOME/ETS/LANG/SCL. 0/MISALIGN
0.037 /usrR/ExPorT/HOME/ETS/LANG/SC1. 0/README
6.942 /usr/ExPORT/HOME/ETS/LANG/SCL. 0
0.094 /usrR/EXPORT/HOME/ETS/LANG/MAN/MAN]
0.282 /usrR/EXPORT/HOME/ETS/LANG/MAN/MAN3
0.003 /usrR/EXPORT/HOME/ETS/LANG/MAN/MANS
0.384 /usR/EXPORT/HOME/ETS/LANG/MAN
8.887 /usrR/EXPORT/HOME/ETS/LANG
FOR REDISPLAY (* FOR SAME) AND OPTIONAL LEVEL

' To GO BACK UP ONE NODE

312

MAcrRo LANGUAGES FOR UNIx

PERL 1s FAST BECOMING THE DE FACTO STANDARD MACRO LANGUAGE FOrR UNIX.
EVEN THOUGH REXX IS CLEARLY SUPERIOR IN MANY WAYS-

REXX HAS BETTER PROGRAMMING STRUCTURES
STRINGS AND ARRAYS START AT 0, noT 1

No WAY TO SPECIFY THE DEFAULT VALUE OF AN ASSOCIATIVE ARRAY (STEM)

RELATIONSHIP BETWEEN OPERATORS, FUNCTIONS, AND PRECEDENCE IS VERY
CONFUSING- FOR EXAMPLE:

PRINT (1+1) +1
PRINTS "2" AND THROWS “3” AWAY AS AN UNUSED SIDE EFFECT!
SEMICOLONS REQUIRED (JusT LIKE C)
ARRAYS, LISTS, AND SCALARS BEGIN WITH SPECTAL CHARACTERS (2.%,...)
BRACKETS REQUIREDM TN COMPOUND INSTRUCTTONS, I-E-,
WHILE

. WHILE
STMT ; NOT STMT

.
o

THE SYNTAX HAS FAR TOO MANY SPECTIAL CHARACTERS AND IDEOSYNCRACIES-

313

MAcro LANGUAGES FOR Unrx
REXX-PERL compARISON 1

/*
: BRING IN PARMS., HANDLE DEFAULTS

PARSE ARG NODE LEVEL TRACEOPT
TRACE VALUE TRACEOPT
IF NODE="" . NODE='
THEN DO

CALL POPEN 'PwD’

PARSE PULL NODE

END
IF LEVEL=
THEN LEVEL=1

nn

#
z BRING IN PARMS., HANDLE DEFAULTS

= SHIFT aARGV;
($NODE =
IF ($NODE EQ ".!' 4 SNODE EQ ''):
$LEVEL = SHIFT aARGV;
$LEVEL = 1
IF ($LEVEL EQ '');

314

MAcro LANGUAGES FOR Untx
REXX-PERL coMpARISON 7

/*
: FIND APPLICABLE FILF SYSTEM AND SIZE

CALL POPEN 'DF'’
DO WHILE QUEUED()>0
PARSE PULL L
TEST=WORD(L ., DFNAMEWORD- UNAME)
IF TEST="/"
THEN DO
FSNAME=TEST
FSSIZE=WORD{(L,DFSPACEWORD- UNAME)
IF DFFREEWORD- UNAME<>{
THEN FSSIZE=FSSIZE-WORD{(L ,DFFREEWORDN- UNAME)
END
ELSE IF LEFT(NODE,LENGTH(TEST))==TEST
THEN DO
FSNAME=TEST
FSSIZE=WORD (L ,DFSPACEWORD- UNAME)
IF DFFREEWORD.- UNAME<>0
THEN FSSIZE=SFSSIZE-WORD{(L,DFFREEWORD- UNAME)
DO WHILE QUEUED()>0
PARSE PULL 1.
END
LEAVE
END
END
IF DFBLOCKS- UNAME THEN FSSIZE=FSSIZE™BLOCKSTZE. UNAME

315

Macro LANGUAGES FOR UnTx
REXX-PERL compARISON 7

#
FIND APPLICABLE FILF SYSTEM AND STZF

#
OPEN (DF, 'DF =');
wHILE (<DF>)

CHOP;

ADF = SPLIT:

$TEST = 3DF¢$DFNAMEWORDv$UNAME -11:

IfF ($TEST E@ '

$FSNAME = '/’
$FSSIZE = 9DF¢$DFSPACEWORDx$UNAME¢—l|;
$FSSIZE =

$FSSIZE - ADFCSDFFREEWORDsSUNAME=-1]
1F (8DF¢SDFFREEWORDSSUNAME:-11 1= 0):

#
ELSE

1 ($NODE =° /-$TEST/)

%

$FSNAME = $TEST:
$FSSIZE = ADFCSDFSPACEWORDsSUNAME:-11;
$FSSIZE = $FSSIZE - ADFCSDFFREEWORDsSUNAME:-11
IF (3DF¢$DFFREEWORD«$UNAME ~11 1= 0);
LAST;
%
s
CLOSE(<DF>);

$FSSIZE = $FSSIZE * $BLOCKSIZE=SUNAME-
IF ($DFBLOCKS«SUNAME:):

316

MAcro LANGUAGES FOR UNIx
REXX-PERL coMmpARISON 3

» ,
:/DO A DU, BUFFER UP THE LINES, AND GET THF NODE TOTAL

CALL POPEN 'Du’ NODE

Do LINE=]1 WHILE Queuep()>>0
PARSE PULL L
PARSE VAR L COUNT NAME
NODECOUNTS- NAME=COUNT
LINES- LINE=L
END

LINE=LINE-]1

NODECOUNT=WORD(LINES-1.INE, 1)

DO A DU, BUFFER UP THE LINES, AND GET THF MODE TOTAL

OPEN(DU, "DU $NODE -"):
$LINE = 1;
wHILE (<DU>)

#

I3

CHOP;
apu = SPLIT]
($counT, $NAME) = 3pué0..11;
$NODECOUNTS#SNAMEs = $COUNT:
$LINESSCSLINEL = $_;
++3LINE;
#%
--$LINE;
$NODECOUNT

= SHIFT(Apu):
cLose (<DU>);

317

Our EXPERIENCE SO FAR
As OF THIS TIME

APPLICATIONS THAT EMRED REXX ARE WELIL RECFTVED BRY COMMERCIAL MIS
TRANSITING TO UNIX

- XEDIT
- ISPF

.. .REXX USAGE WITHIN THESE SPECIFIC FNVIRONMENTS IS HIGHLY PORTABLE

HowEVER. - -

REXX HAS NOT BEEN WELL RECEIVED AS A MACRO FACILITY FOR UNIXx.

-~ WHY

- WHAT ARE WE GOING TO DO ABOUT 17T

318

PERL

FAMILIAR TO CURRENT UNIX SYSTEM ADMINTSTRATORS, WHO ARE ALSO
SOFTWARE SELECTORS-

REGULAR EXPRESSION SupPORT

MANY UNIX SPECIFIC FUNCTIONS BUTLT-IN.

-- EASE OF IMPI.EMENTATION

-- PORTABILITY

!

FrRee, IN SourRce Form

LEARNING CURVE IS AS STEEP (OR STEEPER) THAN THE TYPICAL UNIx
ALTERNATIVES.

QUESTIONABLE SUPPORT

uN1-REXX
- FamiL1AR TO CoMMercIAL MIS., unFAMILIAR 70 UNIX SySTEM ADMINISTRATORS
- LitTLe speciFic UNIx suppoRrT:
-- NO REGULAR EXPRESSION SUPPORT
- VERY FEW UNTX-RELATED FUNCTTONS

- COMMERCIAL PRODUCT, WHEREAS MOST REXX 1 ANGUAGE PROCESSORS ARE
BUNDLED INTO THE UNDERLVING OS.

319

eceNT Work oN uNI-REXX

THE RECENT IMPROVEMENTS TO UNI- -REXX HAVE "PLAYED TO IT's STRENGTHS",
IMPROVING IT'S USEFIN.NESS FOR EMBEDDED APPI.ICATIONS

- AppiTioNAL APIs
- COMPLETION OF STANDARD REXX FACILITIES

- IMPROVED PERFORMANCE

REceNT Work on unI-REXX
AppiTioNAL API’s

- SYMBOL TABLE ACCESS EXITS
-- READ, WRITE, AND DROP
-- TAKEN ONLY WHEN AN UNINITIALIZED VARIABLE IS REFERENCED
-- EXIT CAN SUPPLY/ACCEPT A VALUE OR ALLOW DEFAULT PROCESSING
-- SUPPLIED/ACCEPTED VALUES MAKE Nn REXX sSyMBOL TABLE ENTRY

- COMPILER EXITS
~- SUPPORT LANGUAGE EXTENSIONS BY EMBEDDED APPLICATION
~- COULD SUPPORT A PREPROCESSOR

- MULTI-THREADING SUPPORT

Recent Work oN uNI-REXX
COMPLETION OF STANDARD REXX FACILITIES
- FuLL REXX MATH
- LANGUAGE LEVEL 1. 00 FEATURES

NOTE THAT THIS WORK HAS NoT IMPROVED REXX’< POSITION WITH RESPECT To UNIX

320

PLANs To IMprovE AccepTANce ofF REXX ror Untx

Lots More BuiLT-IN FuncTIONS

UNix speciFic, ALA PERL etc. (ExPoSF ENTIRE STANDARD (LIBRARY?)

REGULAR EXPRESSION SUPPORT

PROCESS MANAGEMENT & COMMUNICATION

User INTERFACES: CURSES FOR SURE., POSSIBLY X AS WELL

DATABASE ACCESS

PLANS To IMprove AccepTANCE oF REXX rFor UNTX
Process MANAGEMENT & COMMUNICATION

WE ARE CURRENTLY EXPERIMENTING WITH FUNCTIONS THAT WILL ALLOW_REXX
TO CONTROL ONE OR MORE ASYNCHRONOUS PROCFSSES VIA STDIN Anp STDOUT.

HANDLE=PIPE (COMMAND) -~ INITIATES AN ASYNCHRONOUS PROCESS, WITH BOTH
STDIN Anp STDOUT pPIPED BACK TO THE PARENT-

RC=PIPEIN{HANDLE,DATA) - RECEIVES RAW DATA FROM A PROCEss’'s STDOUT
RC=PIPEOUT (HANDLE,DATA) - SENDS RAW DATA To A PROCEsS’s STDIN
RC=PIPESEL (HANDLF1.HANDLEZ,HANDLE3) - BLOCKS UNTIL DATA IS
AVAILABLE ON A CONTROLLED process’'s STDOUT.
OR ON THE PARENT TAskx’'s STDIN.
"oAW” DATA CAN BE A BIT CUMBERSOME (CONTROL CHARACTERS ARE PRESENT,)
BUT THIS APPROACH ALLOWS FULL CONTROL OF ANY APPLICATION WITHOUT
IT's INCLUSION OF A "REXX MESSAGE PORT” FTC.

CURRENT IMPLEMENTATION USES SOCKETS. PRODICTION QUALITY WILL REQUIRE
PSEUDO-TTY'S INSTEAD.

321

PuANs To IMPROVE AccepTAnceE oF REXX For Unrx
BASE TECHNOLOGY FREE TO ACADEMIA
- EXECUTABLE ONLY
-- NO SOURCE I.LEVEL PORTABILITY
-- NO EMBEDDED USE (GIVEN CURRENT TECHNOLOGY)

- No SUPPORT, VERY LIMITED DOCUMENTATIOM

OTHER PLANS

IMPROVED PROGRAM DOCUMENTATION (I-F.. PRNGRAM | TSTING FACILITIES)

IPC For THE REXX API's
- EXPOSE APIs To TNVOKED UNIX COMMANDS

- EXTERNALIZE EMBEDDED LANGUAGE PROCESSING

REXX SHELL
- BETTER INTEGRATF THE EXTERNAL DATA aufFlE & UNIX COMMAND PROCESSING

- ALLOW REXX CONTROI OVER THE PERSTSTFMT SHFII. ENVIRONMENT

ADDITIONAL EMBEDDED APPLICATIONS

LoTs OF WORK IN THE ABOVE PLANS, MORE THAN WE CAN FUND IN THE NEAR TERM:
EFFECTIVENESS OF THESF EFFORTS AT INCREASING ACCEPTANCE IS UNSURE.

PRIORITIZATION WILL BF AM ISSUE. COMMENTS ARF WEI.COME.

322

OTHeER ITEMs oF INTEREST FrRoOM TWG
ComBINED REXX AND C DEVELOPMENT PROJECT FOR UNI-SPF

RELATIONSHIP WITH PunLtc DoMAIN REXX ImMPi EMENTATIONS

CoMBINED REXX AND C DEVELOPMENT PROJECT FOR UNI-SPF

GOAL - BUILDING UPON OUR BASE OF UNI-REXX"AND uNI-XEDIT,
ADD DIALOG MANAGEMENT FACILITTIES, "“PDF", AND THE SPF epr1toRr.

WORKS BEGINS ON DIALOG MANAGEMENT (In “C”) In Aprrr, 1991.
PROTOTYPE DIALOG MANAGEMENT AVAILABLE 3Q91.
INTENSIVE PERIOD OF WORK DURING 4Q9]:

- "pPpF" CREATED USING DIALOG MANAGEMFNT & REXX

-- XEDIT TURNED INTO THE SPF Eprtor witi REXX MACROS AND SUPPORTING
"C" CODE AS REQUIRED-

PropucTioN RELEASE 1Q92.

ComBiNED REXX AND C DEVEIL.OPMENT PROJECT FOR uNI-SPF
SPF PROJECT CONSUMED 12 MAN-MONTHS OF C CODING
Iy mMan-MONTHS oF REXX copine

Propucep 829K BYTES ofF C cobpE
612K BYTEs oF REXX cope

HicHLY PRoDUCTIVE REXX PROGRAMMING ENVIRONMENT WAS INVALUABLE TO
RAPID PROTOTYPING AND QUICK DELIVERY-

CeERTAIN REXX CODE SEGMENTS EXHIBIT PERFORMANCE PROBLEMS
(MITIGATED BY RISC PRICE/PERFORMANCE CHARACTERISTICS.)

MosT REXX CODE WIL! PROBABLY BE RE-WRITTEN IN [EVENTUALLY.

323

RELATIONSHIP WITH PuBi.ic DoMAIN REXX IMPLEMENTATIONS
ADDITIONAL IMPROVEMENTS ARE FXPECTED IN THF ACCEPTANCE OF REXX ror UNIX
COMMERCIAL IMPLEMENTATION WILL HAVE IT'S ADVANTAGES!
- COMPLETENESS
- STABILITY
- PERFORMANCE
- DOCUMENTATION
- SUPPORT
TW6G & IX WILL COOPERATE IN ESTABLISHING STANDARDS WHERE POSSIBLE

- API INTERFACE DEFINITIONS
- BuiLT-IN FUNCTION DEFINITIONS

ANY OTHER POSITION WOULD BE FUTILF, ANYWAY!

CoMMENTS, PLEASE.

THANKS!

324

PLUNGING INTO PIPES

MELINDA VARIAN
PRINCETON UNIVERSITY

325

PLUNGING INTO PIPES

Melinda Varian

Office of Computing and Information Technology
Princeton University
87 Prospect Avenue
Princeton, NJ 08544 USA

BITNET: MAINT@PUCC
Internet: maint@pucc.princeton.edu
Telephone: (609) 258-6016

REXX Symposium
May 5, 1992

. INTRODUCTION

CMS Pipelines! is the most significant enhancement to CMS since REXX. It introduces into
CMS the powerful data flow model of programming that was popularized by UNIX? pipes.
UNIX pipes were built to work with a byte-oriented file system, but CMS Pipelines has so
successfully met the challenge of making the pipeline concept work well with a record-oriented
file system that CMS Pipelines is now being used in MVS, GCS, and MUSIC, as well as in CMS.

There are two primary reasons for discussing CMS Pipelines at a REXX Symposium. First,
REXX and CMS Pipelines work so well together that the example of their synergy may inspire
advances in other REXX environments. When CMS Pipelines was first being developed, the
author of REXX, Mike Cowlishaw, graciously made a critical change to REXX to facilitate the
implementation of Pipes. The author of CMS Pipelines, John Hartmann, has himself said that
there would be very little point to CMS Pipelines without REXX. Although CMS Pipelines does
run at the command level (or even with EXEC 2), its real power comes when it is used in
conjunction with REXX. Conversely, CMS Pipelines magnifies the power of REXX, and that is
the second reason for discussing it here. CMS Pipelines brings to REXX many of the capabilities
that are the subjects of user group requirements for REXX enhancements, and it also augments
REXX in other important ways, such as by giving it device independence. I will try today to give
you a glimpse of the ways in which REXX and Pipes complement one another and of the reasons
why CMS REXX users are so excited about Pipes.

1 CMS Pipelines is part of CMS 8 in VM/ESA 1.1. Customers who are not yet running CMS 8
can order CMS Pipelines as a program offering, 5785-RAC, except in the United States, where
CMS Pipelines is a Programming RPQ (P81059, 5799-DKF). The PRPQ, which includes
Mike Cowlishaw’s LEXX editor, is in Higher Education Software Consortium Group I-Al.

2 UNIX is a trademark of AT&T Bell Laboratories.
326

mailto:maint@pucc.princeton.edu

Page 2 Plunging into Pipes

The Pipeline Concept

A pipeline is simply a series of programs through which data flow, just as water flows through
the sections of a water pipe. In a pipeline, a complex task is performed by processing data
through several simple programs in an appropriate sequence.

The programs that are hooked together to form a pipeline are called “stages”. Each stage in a
pipeline reads data from the pipeline, processes them in some way, and writes the transformed
data back to the pipeline. Those data are then automatically presented as input to the next stage
in the pipeline. The individual programs in the pipeline are independent of one another; they
need not know or care which other programs are in the pipeline. They are also device
independent; each of them does its own job without concern for where the data came from or for
where they are going. The output of any program can be connected to the input of any other
program; thus, the programs used to perform one task can be hooked together in a different order
to perform a different task. Whenever a new pipeline stage is written, it can immediately be used
in conjunction with any previously existing stage.

Pipeline programming involves applying “pipethink” to break a problem into a number of small
steps, each of which can then be performed by a simple program. Wherever possible, a pipeline
programmer uses existing programs as the stages in a pipeline. Traditionally, programs that run
in pipelines are small and have one very well-defined function, but they should also be as
general-purpose as possible, to allow re-use. Because they are so small and well-defined, it is
possible to make them very reliable. In other words, programs that run in pipelines should be
“little gems”. CMS Pipelines comes with a very rich collection of such gems, well over a
hundred built-in programs. CMS Pipelines users typically find that most of their applications can
be written using only the built-in programs, but if they have a need that is not addressed by a
built-in program, they can easily craft their own little gems, preferably in REXX.

Il. A CMS PIPELINES PRIMER
The Pipe Command

The pipeline concept has not been integrated into command parsing in CMS, as it has in UNIX.
Instead, CMS Pipelines adds the new CMS command, PIPE:

pipe pipeline-specification

The argument to PIPE is a “pipeline specification”. A pipeline specification is a string listing the
stages to be run. The stages are separated by the “stage separator character”, which is usually a
vertical bar (“I”’):

pipe stage-1 | stage-2 | stage-3 | stage-4

When CMS sees this PIPE command (whether in an EXEC or typed on the command line), it
passes control to the PIPE module, which interprets the argument string as a pipeline containing
four stages. The pipeline parser locates the four programs and checks for correct syntax in the
invocations of any that are built-in programs. If all the stages are specified correctly, the pipeline
is executed; otherwise, the pipeline parser issues useful error messages and exits.

327

Plunging into Pipes Page 3

Device Drivers

In UNIX, a program can do I/O to a device in exactly the same way it does I/O to a file. Under
the covers, the system has “device drivers” to make this work. Because CMS does not provide
such device transparency, CMS Pipelines has its own device drivers, pipeline stages that connect
the pipeline to host interfaces, thus allowing other pipeline stages to be completely independent
of host interfaces.

CMS Pipelines provides a large number of device drivers. A very simple pipeline might contain
only device drivers. We may as well be traditional and start with this one:

pipe literal Hello, World! | console

Here, the device driver literal inserts a record containing the phrase “Hello, World! ” into the
pipeline. The device driver console then receives that record and displays it on the console.

This pipeline reads lines from the console and writes them to the punch:
pipe console | punch

(It continues reading from the console and writing to the punch until it reaches end-of-file, i.e.,
until it receives a null line as input.)

As the use of console in these two examples shows, some device drivers can be used for either
reading or writing. If they are the first stage in the pipeline, they read from the host interface. If
they come later in the pipeline, they write to the host interface. This pipeline performs a simple
echo operation;

pipe console | console

It just reads lines from the console and writes them back to the console. A similar pipeline
performs a more useful task; it copies a file from one tape to another:

pipe tape | tape tap2 witm

The first tape stage knows to read, because it can sense that it is the first stage in the pipeline; the
second tape stage knows to write, because it can sense that it is not the first stage in the pipeline.
tap2 and wtm are arguments to the second tape stage. When the pipeline dispatcher invokes the
second tape stage, it passes along those arguments, which tape recognizes as instructions to use
the CMS device TAP2 and to write a tapemark at the end of the data.

There are several device drivers to read and write CMS files. Some of them will look familiar to
you if you know UNIX, but may look rather strange if you do not:

 The < (“disk read™) device driver reads a CMS file and inserts the records from the
file into the pipeline. Thus, this pipeline copies a file from disk to tape:

pipe < fnftfm | tape
* > (“disk replace”) writes records from the pipeline to the CMS file specified by its

arguments, replacing any existing file of the same name, so this pipeline copies a file
from tape to disk:

328

Page 4 Plunging into Pipes

pipe tape | > fnftfm

« >> (“disk append”) is the same as >, except that it appends an existing file of the
specified name, if any, rather than replacing it. Thus, this pipeline also copies a file
from tape to disk, but if the named file already exists, it is appended, not replaced:

pipe tape | >> fnftfm

(Note that although <, >, and >> look like the UNIX redirection operators, they are actually the
names of programs; like other CMS program names, they must be delimited by a blank.)

An output device driver is not necessarily the last stage of a pipeline. Output device drivers write
the records they receive from the pipeline to their host interface, but they also pass those records
back to the pipeline, which then presents them as input to the following stage, if there is one. For
example, this pipeline reads a CMS file and writes the records to a CMS file, to the console, to
the punch, and to a tape:

pipe < fnfttm | > outfn outft outfm | console | punch | tape wim
If you wanted to include that PIPE command in a REXX EXEC, you would need to keep in mind
that the entire command is a string, only portions of which should have variables substituted.
Thus, in an EXEC you would write that PIPE command something like this:

'PIPE <' infninftinfm '| >' outfn outft outfm '| console | punch | tape wtm'

That is, you would quote the parts that are not variable, while allowing REXX to substitute the
correct values for the variable fields, the filenames.

As PIPE commands grow longer, using the linear form in EXECs becomes somewhat awkward.
Most experienced “plumbers” prefer to put longer pipelines into “portrait format”, with one stage
per line, thus:

'PIPE (name DRIVERS)',
'<' infn inft infm '|’,
'>' outfn outft outfm '|°',
‘console |[°',
‘punch |,
‘tape wtm'

You can use the FMTP XEDIT macro, which comes with CMS Pipelines, to reformat a PIPE
command into portrait format. Note the commas at the ends of the lines; those are REXX
continuation characters. This pipeline specification will still be a single string once REXX has
interpreted it.

Note also the “global option” name in parentheses immediately following the PIPE command.
This gives the pipeline a name by which it can be referenced in a traceback, should an error occur
while the pipe is running. (There are a number of other global options, but this is the only one we
will meet in this session.)

329

Plunging into Pipes Page 5

Once you have the pipeline in portrait format, you can key in comments on each line and then
invoke the SC XEDIT macro, which comes with CMS Pipelines, 10 line them up nicely for you:

'PIPE (name DRIVERS) ', /* Name for tracing */
'<' infn inft infm '|°', /* Read CMS file */
'>' outfn outft outfm *|°, /* Copy to CMS file */
‘console (', /* And to console */
'‘punch |°', /* And to punch *x/
‘tape wtm' /* And to tape *x/

You will notice that all the device drivers observe the rule that a program that runs in a pipeline
should be able to connect to any other program. Although the device drivers are specialized on
the side that connects to the host, they are standard on the side that connects to the pipeline.

There are four very useful device drivers to connect a pipeline to the REXX environment:

« var, which reads a REXX variable into the pipeline or sets a variable to the contents
of the first record in the pipeline;

« stem, which retrieves or sets the values in a REXX stemmed array;
rexxvars, which retrieves the names and values of REXX variables; and

» varload, which sets the values of the REXX variables whose names and values are
defined by the records in the pipeline.

All four of these stages allow you to specify which REXX environment is to be accessed. If you
do not specify the environment, then the variables you set or retrieve are from the EXEC that
contains your PIPE command. But you may instead specify that the variables are to be set in or
retrieved from the EXEC that called the EXEC that contains your PIPE command or another
EXEC further up the chain, to any depth. For example, this pipeline:

'PIPE stem parms. 1 | stem parms.'
retrieves the stemmed array “parms” from the environment one level back (that is, from the
EXEC that called this EXEC) and stores it in the stemmed array “parms” in this EXEC. (If these
two stages are reversed, then the array is copied in the opposite direction.)

rexxvars retrieves the names and values of all exposed REXX variables from the specified REXX
environment and writes them into the pipeline, starting with the source string:

'PIPE rexxvars 1 | var sourcel’ /* Get caller's source. */
'PIPE rexxvars 2 | var source2’ /* And his caller's. */
Parse Var sourcel . . . £fnl .
Parse Var source2 . . . fn2 .

Say 'I was called from' fnl', which was called from' fn2'.'

330

Page 6 Plunging into Pipes

In this example, rexxvars is used twice, once to retrieve the variables from the EXEC that called
this one and once 1o retrieve the variables from the EXEC that called that one. In each case, a var
stage is then used to store the first record produced by rexxvars (the source string) in a variable in
this EXEC, where it can be used like any other REXX variable.

Another very useful group of stages issue host commands and route the responses into the
pipeline. Among these “host command processors” are:

s ¢p, which issues CP commands;

« cms, which issues CMS commands with full command resolution through the CMS
subcommand environment, just as REXX does for the Address CMS instruction; and

s« command, which issues CMS commands using a program call with an extended
parameter list, just as REXX does for the Address Command instruction.

Each of these stages issues its argument string as a command and then reads any records from its
input stream and issues those as commands, t0o. The command responses are captured, and each
response line becomes a record in the pipeline. For example, in this pipeline:

'PIPE cp query dasd | stem dasd.’

the ¢p stage issues a CP QUERY DASD command and writes the response into the pipeline,
where the stem stage receives it and writes it into the stemmed array “DASD”, setting “DASD.0”
to the count of the lines in the response.

There are a great variety of other device drivers, for example:

xedit, which writes records from an XEDIT session to the pipeline or vice versa;
stack, which reads or writes the CMS program stack;

sql and ispf, which interface to SQL and ISPF;

gsam, which reads MVS files (and writes them under MVS);

storage, which reads or writes virtual machine storage; and

subcom, which sends commands to a subcommand environment.

® & & ¢ o o

The list of device drivers goes on and on, and it continues to grow.

Other Built-in Programs

Pipelines built only of device drivers do not really show the power of CMS Pipelines (although
they may be quite useful, especially as they often out-perform the equivalent native CMS
commands). There are dozens of other CMS Pipelines built-in programs. Most of these are
“filters”, programs that can be put into a pipeline to perform some transformation on the records
flowing through the pipeline.

Using Pipeline Filters: A simple pipeline consisting of a couple of device drivers wrapped
around a few filter stages provides an instant enhancement to the CMS command set. Once you
have had some practice, you will find yourself typing lots of little “throwaway” pipes right on the
command line.

Many CMS Pipelines filters are self-explanatory (especially as many of them behave just like the
XEDIT subcommand of the same name). For example, this pipeline displays the DIRECTORY
statement from a CP directory:

331

Plunging into Pipes Page 7

pipe < userdirect | find DIRECTORY | console
The find filter selects records using the same logic as the XEDIT FIND subcommand.
This pipeline displays all the occurrences of the string “GCS” in the CMS Pipelines help library:

pipe < pipeline helpin | unpack | locate /GCS/ | console

The unpack filter checks whether its input is a packed file and, if it is, does the same unpack
operation that the CMS COPYFILE and XEDIT commands do. The locate filter selects records
using the same logic as the XEDIT LOCATE subcommand.
This pipeline tells you how many words there are in one of your CMS files:

pipe < plunge scripta | count words | console
A slightly more elaborate pipeline tells you how many different words there are in that same file:

pipe < plunge script a | split | sort unique | count lines | console

split writes one output record for every blank-delimited word in its input; sort unique then sorts
those one-word records and discards the duplicates, passing the unique records on to count lines
to count. count writes a single record containing the count to its output stream. console reads

that record and displays it on the console.

This pipeline writes a CMS file containing fixed-format, 80-byte records to a tape, blocking it in
a format suitable to be read by other systems:

pipe < gqopt fortran a | block 16000 | tape
This pipeline writes a list of the commands used with “SMART” (RTM) to a CMS file:
pipe fiteral next] vmc smart help| strip trailing | > smart commands a

literal writes a record containing the word “next”. The vmc device driver sends a help command
to the SMART service machine via VMCF and writes the response to the pipeline. It then reads
the single record from its input and sends a next command to the SMART service machine, again
writing the response to the pipeline. strip trailing removes trailing blanks from the records that
pass through it, thus tumning the blank lines in the response from SMART into null records. >
reads records from its input, discards those that are null, and writes the others to the file SMART
COMMANDS A.

And here is a pipeline I especially like; it would be typed on the XEDIT command line:

pipe cms query search | change /INPUT / | subcom xedit
In this pipeline, the cms device driver issues the CMS QUERY SEARCH command and routes
the response into the pipeline; the change filter (which works like the XEDIT CHANGE
subcommand) changes each line of the response into an XEDIT INPUT subcommand; and then

subcom sends each line to XEDIT, which executes it as a command. This is a very easy way to
incorporate the response from a command into the text of a file you are editing.

332

Page 8 Plunging into Pipes

The Specs Fliter: Now, let’s look at one of the less obvious filters, specs. specs selects
pieces of an input record and puts them into an output record. It is very useful and not really as
complex as it looks at first. Its syntax was derived from the syntax for the SPECS option of the
CMS COPYFILE command, but it has long since expanded far beyond the capabilities of that
option:

» The basic syntax of specs is:
specs input-location output-location
with as many input/output pairs as you need.

« The input location may be a column range, such as “10-14”. “10.5” means the same
thing as “10-14”. “1-*" means the whole record. “words 1-4” means the first four
blank-delimited words. The input may also be a literal field, expressed as a
delimited string, such as “/MSG/”, or it may be “number”, to get a record number.

« The output location may be a starting column number, or “next”, which means the
next column, or “nextword”, which leaves one blank before the output field.

* A conversion routine, such as “c2d”, may be specified between the input location
and the output location. The specs conversion routines are similar to the REXX
conversion functions and are applied to the value from the input field before it is
moved into the output field.

* A placement option, “left”, “center”, or “right”, may be specified following the
output location; for example, “number 76.4 right” puts a 4-digit record number
right-aligned starting in column 76.

/* PIPEDS EXEC: Find lrecl of an 0OS dataset */
Parse Upper Arg dsname fm

'‘PIPE (name PIPEDS)',

‘command LISTDS' £m ' (FORMAT |°', /* Issue LISTDS. */
'locate /' dsname '/ ', /* Locate file we want. */
‘specs word 2 1 |°', /* Lrecl is second word. */
'console’ /* Display lrecl. */

PIPEDS EXEC is a simple example of using specs. PIPEDS displays the logical record length of
an OS dataset. The command stage issues a CMS LISTDS command with the FORMAT option
and routes the response into the pipeline, where locate selects the line that describes the specified
dataset, e.g.:

U 6447 PO 02/25/80 RES342 B SYS5.SNOBOL

specs selects only the second word of that line, the logical record length (*6447”), and moves it
to column 1 of its output record, which console then reads and displays.

333

Plunging into Pipes Page 9

pipe < cms execa | specs 1-27 1 8-27 nextword | > cms exec a

This is another simple example of using specs. The arguments to specs here are two pairs of
input-output specifications. The first input-output pair (“1-27 1) copies the data from columns
1-27 of the input record to columns 1-27 of the output record. The second input-output pair
(“8-27 nextword”) copies the data from columns 8-27 of the input record to columns 29-48 of the
output record; that is, a blank is left between the first output field and the second output field. So,
this pipeline would be used to duplicate the filenames in a CMS EXEC created by the EXEC
option of the CMS LISTFILE command. (This pipeline is almost 500 times as fast as the XEDIT
macro I used to use to do this same thing.)

Augmenting REXX: People often start in gradually using CMS Pipelines in EXECs, first just
taking advantage of the built-in programs that supply function that is missing or awkward in
REXX. Here is a function that has been implemented a zillion times in REXX or Assembler:

'‘PIPE stem bananas. | sort | stem bunch.’
That sorts the values in the stemmed array “bananas” and puts them into the array “bunch”.
Here is an example of using specs to augment REXX (which has no “c2f” function):
'PIPE var cpu2busy | specs 1-* c2f 1 | var cpu2busy’

The device driver var picks up the REXX variable “cpu2busy”, which contains a floating-point
number stored in the System/370 internal representation (e.g., '4419B600'x), and writes it to the
pipeline. specs reads the record passed from var and converts it to the external representation of
the floating-point number (6.582E+03), and then the second var stage stores the new
representation back into the same REXX variable, allowing it to be used in arithmetic operations.

Another function CMS Pipelines brings to REXX programmers is an easy way to process all the
variables that have a given stem. In the example below, rexxvars writes two records into the
pipeline for each exposed variable. One record starts with “n ” and contains the variable’s name;
the other starts with “v " and contains its value. The find stage selects only the name records for
variables with the stem “THINGS”. specs removes the “n”, and stem puts the names of the
“THINGS” variables into the stemmed array “vars”, where they can be accessed with a numeric
index. (The buffer stage prevents the stem stage from creating new variables while rexxvars is
still loading the existing variables.)

'PIPE', /* Discover stemmed variables: */
'rexxvars |', /% Get all variables. */
"£ind n THINGS.|', /* Select names of THINGS. */
'specs 3-*% 1 |, /* Remove record type prefix, */
'buffer |', /* Hold all records. */
'stem vars.' /* Names of THINGS into stem. */

Do i = 1 to vars.0
Say vars.i ‘=' Value(vars.i)
End

334

Page 10 Plunging into Pipes

rexxvars has many other uses; for example, you might wish to use it in a syntax error routine to
dump all exposed variables to a file for debugging. The combination of rexxvars and varload
provides such capabilities as saving the state of an EXEC and later restoring it.

varload uses the information in its input records to set REXX variables. The input to varload
consists of records that contain a delimited string specifying a variable name, followed by the
value to which the variable is to be set. The canonical example of using varload and rexxvars is a
pair of EXECs written by Jim Colten, of the University of Minnesota, with contributions by
Chuck Boeheim and Michael Friendly. The first one is called to save all CP settings:

/* CPQSET EXEC: Load CP SET values into REXX stem. */
'PIPE (name CPQSET)' ’
' cp query set' ’ /* Get QUERY SET output. */
'| split ,° ’ /* Split into settings. */
'| specs /=CPVAR./ 1' , /* Build up stem name, */
' word 1 next' ’ /* delimiters, and */
' /=/ next’ R /* value for VARLOAD. * /
! word 2-* nextword' ,
'| varload 1°' /* Create vars for caller. */

The cp stage issues a CP QUERY SET command and routes the response into the pipeline, where
the split stage splits the records at the commas, thus producing one record for each CP setting.
The specs stage converts these records into the format required by varload: a delimited string
containing the name (in this case, of the form “=CPVAR.xxx="), followed by the value.
varload 1 receives these records and loads the specified variables into the caller’s environment.
The companion EXEC performs the inverse operation:

/* CPRESET EXEC: Restore CP variables from REXX stem. */

'PIPE (name CPRESET)' .
' rexxvars 1° . /* Get caller's variables. */
'| drop 1° , /* Drop source line. */
'| spec 3-% 1°' ’ /* Join name & value, */
! read 3-* nextword' ' /* removing type prefix. */
"I £ind CPVAR.' M, /* Only our stem. */
']l nfind CPVAR.O' ; /* Discard the counter. */
'} nlocate /ECMODE/‘ ’ /* SET ECMODE is BAD! */
'l spec /CP SET/ 1' ' /* Make into CP command, */
' 7-* nextword' , /* removing stem name. */
'| cp!’ P /* Let CP do reSET. */
'| console’ /* Display any messages. */

335

- Plunging into Pipes Page 11

Replacing EXECIO: EXECIO is usually the first thing to go when one learns CMS Pipelines.
Anything that can be done with EXECIO can be done with CMS Pipelines, generally faster and
always more straightforwardly. (And replacing EXECIO with a pipeline makes it easier to port
an EXEC between CMS and MVS.) Let’s look at a few EXECIO examples from various IBM
manuals, along with the equivalent pipelines:

« These both read the first three records of a CMS file into the stemmed array “X” and
set the value of “X.0” to 3:

‘EXECIO 3 DISKR MYFILE DATA* 1 { STEM X!
'PIPE < myfile data® | take 3 | stemx.'

» These both issue a CP QUERY USER command in order to set a return code
(without saving the response):

'EXECIO 0 CP (STRING QUERY USER GLORP'
+++ RC(1045) +++

'PIPE cp query user glomp’
+++ RC(45) +++

« These both put a blank-delimited list of the user’s virtual disk addresses into the
REXX variable “used”:

Signal Off Error

‘MAKEBUF '

Signal On Error

theirs = Queued()

'EXECIO * CP (STRING Q DASD'

used = "'

Do While Queued() > theilrs
Pull . cuu .
used = used cuu

End

'DROPBUF '

'PIPE cpqdasd | specs word 2 1 | join * / / | varused'

The EXECIO case comes from the REXX User's Guide. Admittedly, it is rather
old-fashioned code; nevertheless, its eleven lines make up an all too familiar
example of manipulating the CMS stack. In the pipeline, the cp device driver issues
the CP QUERY DASD command and routes the response into the pipeline. specs
selects the second word from each input record and makes it the first (and only)
word in an output record. join *® joins all these records together into one record,
inserting the delimited string in its argument (a blank) between the values from the
individual input records. And var stores this single record into the variable “used”.

Pipeline Programs: After a while, you will find yourself not just augmenting your EXECs

with small pipes, but also writing EXECs that are predominantly pipes, such as REACCMSG
EXEC:

336

Page 12 Plunging into Pipes

/* REACCMSG EXEC: Notify users to re-ACCESS a changed disk */
Parse Arg vaddr .

'PIPE (name REACCMSG)',

'ep g links' vaddr '|°', /* Issue CP QUERY LINKS */
‘split at , |, /* Get one user per line */
'strip |°', /* Remove leading blanks */
'sort unique 1-8 |[°', /* Discard duplicates */
'specs /MSG/ 1°', /* Make into MSG commands */
'word 1 nextword', /* Fill in userid */
'/Please re-ACCESS your/ nextword',
‘word 2 nextwoxd', /* Fill in virtual address */
'/disk./ nextword |°',
‘cp' /* Issue MSG commands *x/

REACCMSG is used to send a message to all the users linked to a particular CMS disk to let them
know that they should re-ACCESS the disk because it has been changed. It uses built-in
programs we have seen before, but in a slightly more sophisticated manner: split receives the
response from the CP QUERY LINKS command:

PIPMAINT 320 R/0O, MAINT 420 R/0O, TDTRUE 113 R/0, Q0606 320 R/O
Q0606 113 R/O, SERGE 420 rR/O

and splits those records into multiple records by breaking them up at the commas between items;
strip removes the leading blanks; and sort unique sorts the records on the userid field in the first
eight columns and discards any duplicates, so that each user will be sent only one message. This
example shows a more elaborate use of specs than before, but it is not difficult to understand if
you keep in mind that specs’s arguments are always pairs of definitions for input and output.
This specs stage has been written in portrait format with each input-output pair on a separate line.
You will note that the input definitions in three of the five pairs here are for literals. The first
input-output pair puts the literal “MSG” into columns 1-3 of the output record; the second pair
puts the userid from the first word of the input record (“word 1”) into columns 5-12 of the output
record; and so on. Then as each record flows from the specs stage to the cp stage, cp issues it as
a CP MSG command.

The next example is a simple service machine that uses the starmsg device driver to connect to
the CP *ACCOUNT system service, so that it can monitor attempts to LOGON to the system
with an invalid password. Each time CP produces an accounting record, this starmsg stage
receives that record via IUCV and writes it to the pipeline (prefacing it with an 8-byte header).
The locate stage discards all but the “Type 4” records, which are the ones that CP produces when
the limit of invalid LOGON passwords is reached. specs formats a message containing a literal
and three fields from the accounting record, which console then displays. (Note the stage
separators on the left side here. This is a widely used altemative portrait format.)

This pipeline runs until you stop it by using the haccount immediate command, which CMS
Pipelines sets up for you when it establishes the connection to the *ACCOUNT system service.
starmsg can also be used to connect to several other CP system services, including *MSG and
*MSGALL.

337

e —

Plunging into Pipes Page 13

/* HACKER EXEC: Display Type 4 Accounting Records. */
'CP RECORDING ACCOUNT ON LIMIT 20°

'PIPE (name STARMSG)',

'| starmsg *account’', /* Connect to *ACCOUNT. */
'| locate 88 /4/°', /* Only Type 4 records. */
'| specs’', /* Format warning message: */
' /Hacker afoot? / 1°', /* literal, */
' 9.8 next', /% ACOUSER, */
' 37.4 nextword’, /* ACOTERM@, */
' 79.8 nextword', /* ACOLUNAM. */
'] console’ /* Display on console. *x/

If Userid() <> 'OPERACCT'
Then 'CP RECORDING ACCOUNT OFF PURGE QID' Userid()

The next example may be a bit arcane, but it can be very useful; it reads a file containing textual
material of arbitrary content and record length and produces a file containing the same text
formatted as Assembler DC instructions for use, say, as messages:

/* MAREDC EXEC: Reformat text into Assembler DC statements */
Parse Arg fn ft fm . /* File to be processed. *x/

"PIPE (name MAKEDC)",

"<" £fn £t £m "|", /* Read the file, */
"change /&/&&/ |, /* Double the ampersands. */
"change /'/''/ |", /* Double the single quotes. */
"specs”, /* Reformat to DC statement: */
" /bc/ 1ov, /* literal "DC" in col 10; */
" /cv/ 16", /* literal "C'" in col 16; */
" 1-* next", /* entire record next; and */
" /'/ next |, /* terminate with quote. *x/
"asmxpnd (", /* Split to continuations. */
">" fn "assemble a" /* Write the new file. */

The two change filters double any ampersands or quotes in the text. For each input record, specs
builds an output record that has “DC” in column 10 and “C” in column 16, followed by the input
record enclosed in single quotes. asmxpnd then examines each record to determine whether it
extends beyond column 71; if so, it breaks the record up into two or more records formatted in
accordance with the Assembler’s rules for continuations. And finally, > writes the reformatted
records to a CMS file. Thus, if the input file were to contain the line:

The PACKAGE file records have ' &1 &2 ' in columns 1-7 and a filename,
338

Page 14 Plunging into Pipes

then these two records would appear in the output file:

DC C'The PACKAGE file records have '' &&l &&2 '' in colummns*
1-7 and a filename, '

Selection Filters: There are many more CMS Pipelines filters to leam, but I want to mention
one class in particular, the selection filters:

between friabel nfind outside uhique
drop inside niocate take whilelab
find locate notinside tolabel

The selection filters are used to select certain records from among those passing through the
pipeline, while discarding all others. A cascade of selection filters can quickly select the desired
subset of even a very large file. I routinely use pipelines to filter files containing tens (or even
hundreds) of thousands of records to select the records I need for some purpose.

One simple example is a filter I use with the NETSTAT CLIENTS command. NETSTAT
CLIENTS produces hundreds of lines of output, several lines for each user who has used TCP/IP
since the last IPL. The first line of the response for each user begins with the string “Client:”
followed by the userid; and one of the other lines begins with the string “Last Touched:”.
Usually, when I issue a NETSTAT CLIENTS command, I need to see only these two lines for
each of four servers. The eight lines I want are easily isolated using two selection filters:

/* STATPIPE EXEC: Display "Last Touched" for BITFTPn. */

'PIPE',
'‘command NETSTAT CLIENTS |°',
'between /Client: BITFTP/ /Last Touched:/ |',
'notinside /Client: BITFTP/ /Last Touched:/ |°*,
'console'

The command stage issues a NETSTAT CLIENTS command and routes the response into the
pipeline. The between filter selects groups of records; its arguments are two delimited strings,
describing the first and last records to be selected for each group. So, the between stage here
selects groups of records that begin with a record that begins “Client: BITFTP” and that end with
a record that begins “Last Touched:”. notinside then further refines the data by selecting only
those records that are not between a record that begins with “Client: BITFTP” and a record that
begins with “Last Touched:”. That leaves us with only those two lines for each client I am
interested in, the ones whose userids start “BITFTP”.

You will likely find that many of your pipelines process the output of CP or CMS commands or
CMS or MVS programs. The output from UNIX commands and programs is generally designed
to be processed by a pipe, so it tends to be essentially “pure data”, with few headers and trailers.
With CP, CMS, and MVS output, however, you generally need to winnow out the chaff to get
down to the data. Although I cannot go over the selection filters in detail today, they are easy to
use and quite powerful, so you should not hesitate to process listing files that were designed to be
read by humans and that have complicated headers and trailers and carriage control. It is very
easy to write a pipe that reads such a file and pares it down to the bare data.

339

Plunging into Pipes

Page 15

LIST2SRC EXEC is an example of really using the selection filters; I will leave the detailed
interpretation of LIST2SRC as an exercise for you. Basically, LIST2SRC reads a LISTING file
produced by Assembler H and passes it through a series of selection filters, winnowing out the
chaff in order to reconstruct the original source file. Although this is a “quick & dirty”” program
(and not quite complete), it is a good example of “pipethink™, of solving a complex problem by

breaking it up into simple steps:

'| mectoasa’
'| £rlabel
drop 1°',
tolabel
tolabel
tolabel
outside
nlocate
nlocate
nlocate

- . . .

/* LIST2SRC EXEC:
Signal On Novalue

Parse Axrg fn .

'PIPE (name LIST2SRC)',
| <' £n 'listing *',

[4

Re~create the source from a LISTING file

/* Read the LISTING file
/* Machine carriage ctl => ASA

- LOC', /* Discard to start of program
/* Drop that ‘- LOC' line too

- POS.ID', /* Keep only up to relocation

~SYMBOL', /* dictionary or cross-ref

OTHE FOLLOWING STATEMENTS',6 /* or diagnostics

/1/ 27, /* Drop lst 2 lines on each pg

5-7 /IEV/', /* Discard error messages

41 /+/°', /* Discard macro expansions

40 / /', [* Discard blank lines

specs 42.80 1°',
>' fn ‘assemble a fixed!

/* Pick out source "card"
/* Write new source (RECFM F)

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Subroutine Pipelines

Once you have been using CMS Pipelines for a while, you may find that there are some

sequences of stages that you use often:

pipe stage-a | stage-b | stage-c | stage-d | stage-e

pipe stage-x | stage-b | stage-c | stage-d | stage-y

In that case, it is time to move those stages into a subroutine pipeline, polish them a bit,

generalize them a bit, and create your own little gem:

/* MYSUB REXX */

'‘CALLPIPE *: | stage-b | stage-c | stage-d | *!

340

Page 16 Plunging into Pipes

Then whenever you need the function performed by your subroutine, you simply use its name as
a stage name (“mysub” in this case):

pipe stage-a | mysub | stage-e
pipe stage-x | mysub | stage-y

The subroutine may look a bit mysterious, but it is simply a pipeline stage written in REXX. If
we look at it again in portrait format, it can be demystified quickly:

/* MYSUB REXX: Generic subroutine pipeline */
'callpipe’, /* Invoke pipeline */
th:], /* Connect input stream */

'stage-b |°',
‘stage-c |,
'stage-d |°,
Tk /* Connect output stream */

Exit RC

There are just a few things one needs to understand about subroutine pipelines:

1. The CMS Pipelines command callpipe says to run a subroutine pipeline; callpipe has the same
syntax and the same options as the PIPE command itself.

2. Those “*:” sequences are called “connectors”. The connector at the beginning tells the
pipeline dispatcher to connect the output from the previous stage of the calling pipeline to the
input of the first stage of this subroutine pipeline, stage-b. The connector at the end says to
connect the output from the last stage of this subroutine pipeline, stage-d, to the input of the
next stage in the calling pipeline.

3. When you use REXX to write an XEDIT subroutine, the default subcommand environment is
XEDIT. Similarly, when you use REXX to write a CMS Pipelines subroutine, the default
subcommand environment executes CMS Pipelines commands. Thus, if you wish to issue CP
or CMS commands in your subroutine, you will need to use the REXX Address instruction.

4. When you use REXX to write an XEDIT subroutine, the subroutine has a filetype of XEDIT,
but when you use REXX to write a CMS Pipelines subroutine, the filetype is not PIPE. It is
REXX.

5. Arguments passed to a subroutine are available to the REXX Parse Arg instruction.

Let’s look at an example of a real subroutine pipeline, HEXSORT, which sorts hexadecimal
numbers. An ordinary sort does not work for hexadecimal numbers (i.e., base 16 numbers,
expressed with the “numerals” 0-9, A-F), because the EBCDIC collating sequence sorts A-F
before 0-9. This handy little subroutine pipeline sorts hexadecimal data correctly by using the
trick of temporarily translating A-F to characters higher in the collating sequence than 0-9 (which
are FO-F9 in hexadecimal):

341

Plunging into Pipes Page 17

/* HEXSORT REXX: Hexadecimal sort, 0123456789ABCDEF */
Parse Arg sortparms /* Get parms, if any */
'callpipe (name HEXSORT)', /* Invoke pipeline */
ke |, /* Connect input stream */
‘xlate 1-* A-F fa-ff fa-ff A-F |°', /* Transform for sort */
'sort' sortparms '|', /* Sort w/caller's parms */
‘xlate 1-* A-F fa~-ff fa-£ff A-F |', /* Restore */
kot /* Connect output stream */
Exit RC

The arguments to the xlate stages here are a column range, “1-*”, which means the entire record,
followed by pairs of character ranges specifying “to” and “from” translations. Records flow in
from the calling pipeline through the beginning connector; they are processed through the xlate,
sort, and xlate stages; and then they flow out through the end connector back into the calling
pipeline. If the caller specifies an argument, that argument is passed to the sort stage to define a
non-default sort operation. Here is a typical invocation:

'PIPE stem mdisk. | hexsort 7.3 | stem mdisk.’

That sorts an array of minidisk records from a CP directory into device address order. (The
device addresses are hexadecimal numbers in columns 7-9 of the minidisk records.)

Of course, it is not necessary to put these operations into a subroutine. You could simply use the
xlate-sort-xlate sequence in all your pipelines, whenever you need to do a hexadecimal sort, but it
is much better to hide such complexity. Once you have this subroutine built, you can invoke it by
name from any number of pipelines and need never think about the problem again.

Furthermore, by building the subroutine with a simple, well-defined interface and at the same
time making its function as generic as possible, you create a piece of code that can be used over
and over again. Here is another example of invoking HEXSORT:

'PIPE cpqnssmap | drop 1 | hexsort 33-44 | > nssmap &
That issues a CP QUERY NSS command, drops the header line from the response, and sorts the
remaining lines to produce a list of saved systems in memory address order. (The virtual memory
addresses are hexadecimal numbers starting in column 33 of the response lines.)
A subroutine pipeline is often the cleanest way to package a function that you have implemented

with CMS Pipelines. If you make it a subroutine pipeline, then the people you give it to can
easily invoke it from their own pipes.

342

Page 18 Plunging into Pipes

Writing REXX Filters

The time will come when you have a problem that cannot be solved by any reasonable
combination of CMS Pipelines built-in programs. You will need to write a filter of your own,
preferably in REXX. A REXX filter is similar to the simple subroutine pipelines we have just
been looking at. It has a filetype of REXX; its subcommand environment executes CMS
Pipelines commands; it is invoked by using its name as a stage in a pipeline; and it can receive
passed arguments.

You will find writing your own pipeline filters in REXX to be very easy once you understand the
basics. When I am writing a filter, I always start with this dummy filter that does nothing at all
except pass records through unchanged:

/* NULL REXX: Dummy pipeline filter */
Signal On Error

Do Forever /* Do until EOF *x/
'readto record' /* Read from pipe */
'output' record /* Write to pipe */

End

Error: Exit RC* (RC<>12) /* RC = 0 if EOF x/

There are only a few new things one needs to learn to understand this REXX filter:

1. The CMS Pipelines command readto reads the next record from the pipeline into the specified
REXX variable (“record” in this case).

2. The CMS Pipelines command output writes a record to the pipeline. The contents of the
record are the results of evaluating the expression following the output command (again, in
this case, the value of the REXX variable “record”).

3. The pipeline dispatcher sets return code 12 to indicate end-of-file. A readto command
completes with a return code of 12 when the stage before it in the pipeline has no more
records to pass on to it. An output command completes with a remum code of 12 when the
stage following it in the pipeline has decided to accept no more input records.

So, this filter, NULL, reads a record from the pipeline and writes it back to the pipeline
unchanged. It keeps on doing that until an error is signalled, i.e., until a non-zero return code is
set. That causes a transfer to the label “Error” in the last line of the EXEC. The most likely
non-zero return code would be a return code 12 from the readto command, which would indicate
end-of-file on the input stream, but the output command could get return code 12 instead, or there
could be a real error. If the return code is 12, then before exiting the filter sets its own retum
code to O to indicate normal completion. Any other return code is passed back to the caller.

The effect of including the NULL filter in a pipeline:

pipe stage-a | null | stage-b | stage-c

343

Plunging into Pipes Page 19

is simply to make the pipeline run a bit slower. But once you understand NULL, you can quickly
go on to writing useful filters, such as REVERSE, which reverses the contents of the records that
pass through it:

/* REVERSE REXX: Filter that reverses records */
Signal On Error

Do Forever /* Do until EOF */
‘readto record' /* Read from pipe */
'output' Reverse (record) /* Write to pipe */

End

Exrror: Exit RC* (RC<>12) /* RC = 0 if EOF *x/

We can make that example slightly more complex, to illustrate one more concept that you will
need when writing filters. This filter reverses only the even-numbered lines passing through it:

/* BOUSTRO REXX: Filter that writes records boustrophedon */
Signal On Error

Do recno = 1 by 1 /* Do until EOF *x/

'readto record' /* Read from pipe */

If recno // 2 =0 /* If even-numbered */

Then record = Reverse (record) /* line, reverse */

'output' record /* Write to pipe */
End

Error: Exit RC* (RC<>12) /* RC = 0 if EOF */

Each stage in a pipeline runs as a “co-routine”, which means that it runs concurrently with the
other stages in the pipeline. It is invoked once, when the pipeline is initiated, and remains
resident. So, when BOUSTRO is ready for another record, it calls upon the pipeline dispatcher by
doing a readto. The dispatcher may then decide to dispatch some other co-routine, but it will
eventually return control to this one, which will continue reading and writing records until an
error is signalled. Thus, when you are writing a CMS Pipelines filter, you need not worry (as I
did at first) about where to save local variables, such as “recno” here, between “calls” to your
filter. Your filter is called only once and then runs concurrently with the other stages in the
pipeline. There is nothing special that your filter needs to do in order to run concurrently with the
other stages; the pipeline dispatcher takes care of all that for you.

I would like to show one more example of a simple REXX filter, AVERAGE, which illustrates the
point that your filter can decide not to write a record back to the pipeline for every record it reads
from the pipeline. AVERAGE first reads all the input records; then, when it gets end-of-file on its
input, it calculates the contents of a single output record and writes that to the pipeline:

344

Page 20 Plunging into Pipes

/* AVERAGE REXX: Filter that averages input */

Signal On Error

acum = 0 /* Initialize */

Do nobs = 0 by 1 /* Do until EOF */
'readto record'’ /* Read from pipe */
Parse Var record number . /* Get number */
acum = acum + number /* Accumulate */

End

Error: If RC = 12 /* If EOF, then */
Then 'output' Format (acum/nobs,,2) /* write average */

Exit RC* (RC<>12) /* RC = 0 if EOF */

Differences from UNIX Pipes

That is as many examples of using pipelines in CMS as we have time for right now. I have
pointed out some of the differences between the UNIX and CMS implementations of pipelines.
You may have noticed some of the others:

As you would expect, CMS Pipelines is record-oriented, rather than character-oriented.

CMS Pipelines implements asynchronous input, immediate commands, and dynamic
reconfiguration of pipeline topology.

CMS Pipelines implements multi-stream pipelines. These networks of interconnected
pipelines allow selection filters to split a file into streams that are processed in different ways.
The streams can then be recombined for further processing.

Most CMS Pipelines stages run unbuffered; that is, they process each input record as soon as it
is received and pass it on to the following stage immediately. (Of course, some pipeline
stages, such as sort, must, by their nature, be buffered.) Running the stages unbuffered is
necessary to allow records flowing through a multi-stream pipeline to arrive at the end in a
predictable order. It can have the advantage of greatly reducing the virtual memory
requirements. Thus, CMS Pipelines can often be used to perform operations that cannot be
done with XEDIT because of virtual memory constraints.

CMS Pipelines runs a pipeline only after all its stages have been specified correctly.

CMS Pipelines programs can co-ordinate their progress via “commit levels” and can stop the
pipeline when a program encounters an error.

When the CMS Pipelines PIPE command completes, it sets its return code to the worst of the
return codes set by the stages in the pipeline.

345

Plunging into Pipes Page 21

To sum up the differences between UNIX pipes and CMS Pipelines, let me quote a colleague of
mine who said recently, ‘“You know what I really miss in UNIX? CMS Pipelines!”

Advanced Topics

I have had time to give you only a flavor of CMS Pipelines. 1have barely alluded to multi-stream
pipelines, a very powerful extension to the basic pipeline concept with which you will want to
become familiar. I also have not mentioned that CMS Pipelines can be run under GCS, TSO, and
MUSIC. CMS Pipelines can now be ordered with MUSIC, and although it is not officially
supported for TSO and GCS, it contains device drivers developed specifically for those
environments.

ll. WHY YOU SHOULD TAKE THE PLUNGE NOW

I have become convinced that any CMS user who writes REXX programs should learn to use
CMS Pipelines as soon as possible. By the time I had been using CMS Pipelines for a few
months, it had “saved my life” twice. In one case, I almost missed my plane to SHARE, due to a
last-minute problem, but I was able to write a pipe to solve that problem before dashing out the
door just in time. Then, a few weeks later, the systems in our SSI complex went into “yo-yo
mode” after a service machine went into a loop creating spool files; I was finally able to get out
of the problem by quickly keying in a command-line pipe to purge those files before the systems
crashed again. CMS Pipelines can do the same sorts of things for you.

CMS Pipelines Is a Powerful Application Enabler
CMS Pipelines makes CMS programmers more productive, so programs get written that would
not get written without CMS Pipelines. (And programs that use CMS Pipelines are often much

faster than if they had been written some other way.)

To give you a feeling for the variety of ways CMS Pipelines can be used, I will list a few of the
ways I have used it so far myself:

346

Page 22 Plunging into Pipes

+ To analyze many kinds of data, including system accounting data, system performance data,
and logs from service machines. Because CMS Pipelines is such a powerful tool, I find
myself doing more thorough analyses and getting the answer down to a single page more often
than I used to.

« To mend our system accounting data (more times than I care to admit).

« To charge for the use of our UNIX systems. This required writing a couple of
Assembler-language filters, which turned out to be easy to do.

+ To merge MVS RMF data into my VMAP ACUM files, so that I could plot the CPU
utilization of our SPMODE native processor along with the utilization of the processors that
the CP monitor knows about.

« To implement a full-blown service machine, with timer, IUCV, and I/O interrupts all handled
without a line of Assembler code.

+ To write a simple image enhancement program.
+ To merge a PC database with a mainframe database.
« To augment and circamvent SES. (This seems to be a rapidly growing trend.)

+ To build numerous tools to help me in my daily work, such as an XEDIT macro that
understands CMS UPDATE control files and can pipe the next update onto the current file in
the XEDIT ring.

I reached some sort of new plateau the first time I used CMS Pipelines to write a pipe to write a
pipe. To celebrate that, I used CMS Pipelines to do this:

!/ EXEC PGM=PIPE,
/I PARM='literal Hello, World | change /World/Momnv | console’

(If you put CMS Pipelines into an MVS loadlib, it figures out where it is and struggles on. In this
case, when the console stage finds no console to write to, it uses a WTP macro.)

You Can Get Lots of Help in Learning CMS Pipelines

There are several good sources for leaming CMS Pipelines and for getting assistance if you have
questions:

CMS Pipelines Tutorial (GG66-3158): This Washington Systems Center Bulletin provides
an excellent introduction to CMS Pipelines, and I strongly recommend it to anyone who wants to
plunge into “Pipes”. My advice is to read this manual and work the exercises at the end of each
section. Then make a conscious effort to use CMS Pipelines in your daily work. Before long,
you will find that “pipethink” has become second nature.

CMS Pipelines User’'s Guide (SL26-0018): This is a rather awe-inspiring manual-—300
pages without an ounce of fat on it. It contains a good tutorial and is also the reference manual
and the messages manual for CMS Pipelines. Read the “Syntax Notation” chapter before using it
as a reference manual. (The same information can be obtained by typing the command pipe help

347

Plunging into Pipes Page 23

syntax.) Incidentally, if you have only the “-00” version of this manual, you should order the
“-01” version, which is substantially expanded and improved.

“Pipe help”: CMS Pipelines provides help files that can be used with the CMS HELP
command, but using the pipe help command is less painful. One especially nice feature of the
pipe help command is that if you issue it with no arguments, it gives you help for the last error
message that CMS Pipelines issued, while pipe help 1 gives you help for the one before that, and
SO on.

VMSHARE: The VMSHARE electronic conference has several active files dealing with CMS
Pipelines, notably Memo Pipeline and Prob Pipeline. If you ask a CMS Pipelines question on
VMSHARE, you will almost certainly get it answered within hours. (Inside IBM, Pipeline
Forum on IBMVM is another good place to get help with CMS Pipelines.)

CMSPIP-L: The BITNET discussion list for CMS Pipelines, CMSPIP-L, is a good place for
asking questions if you do not have access to VMSHARE. Several “master plumbers” participate
in the list. CMSPIP-L is housed at Marist College (MARIST on BITNET or vm.marist.edu on
the Intermet) and at the Institute for Medical Computer Science of the University of Vienna
(AWIIMC12 on EARN or awiimc12.imc.univie.ac.at on the Internet). If you can contrive to get
electronic mail into BITNET/EARN or the Internet, you can subscribe to this list by sending mail
to LISTSERY at one of these two sites. The body of your mail should contain the command:

SUBSCRIBE CMSPIP-L your name

The LISTSERVs at Marist and Vienna maintain archives of the discussions from the list, as well
as an archive of useful pipes. You can get a list of what the nearest archive has available by
sending its LISTSERYV mail containing the command:

GET CMSPIP-L FILELIST

Pipedemo: Chuck Boeheim, of SLAC, has written a wonderful program called Pipedemo
which “animates” a pipeline to illustrate the flow of data from stage to stage. You can download
Pipedemo from Note Pipedemo on VMSHARE or order it from LISTSERV. Pipedemo is also
available on the VM Workshop Tools Tape for 1991.

To use Pipedemo, you simply write a normal pipeline specification but change PIPE commands
to pipedemo and change callpipe commands to rexx pdcall. Running a few CMS Pipelines
examples through Pipedemo is an excellent way to get a deeper understanding of how pipelines
work. Pipedemo can also be a big help in understanding why one of your pipelines is not
working. Pipedemo is itself a pipeline, of course, and is well worth reading as an example of
skillful use of CMS Pipelines.

CMS Pipelines Explained: This new paper by John Hartmann, the author of CMS Pipelines,
provides many extremely useful insights into how “Pipes” works. I strongly recommend it.

ESA Manuals: New CMS Pipelines manuals will soon be issued for ESA 1.1. The new
Pipelines User’s Guide (SC24-5609) is essentially an updated version of the Tutorial; it reflects
the changes in message numbers and the HELP facility that were required when “Pipes” was
incorporated into CMS 8. There is also a completely new CMS Pipelines reference manual for
CMS 8, Pipelines Reference (SC24-5592). However, I cannot recommend that book for any but
the most casual users of CMS Pipelines. Even if you are running CMS 8, I suggest that you order
the PRPQ manual. (Unfortunately, if you are on CMS 8, you will be stuck with help files based
on the new Reference, unless you also order the PRPQ and load the help files from there.)

348

http://vm.marist.edu

Page 24 Plunging into Pipes

CMS Pipelines Pays Back Your Investment Quickly

CMS Pipelines is an extremely powerful facility with very rich function. There is a lot to learn.
After not quite two years of using CMS Pipelines, 1 still frequently find myself saying, “Wow! I
didn’t know that!” or “I never thought of using it that way!” Although I am still a long way from
having completely mastered CMS Pipelines, it has, nevertheless, been making my life easier since
the day I installed it.

You do not have to understand all of CMS Pipelines to benefit from using it. The learning curve,
though long, is not steep. You do not need to read the entire User’s Guide before starting to use
CMS Pipelines; indeed, you do not need to read the entire Tutorial before starting. I can
guarantee that if you spend two or three hours reading the first few sections of the Tutorial and
working the exercises, you will learn enough about CMS Pipelines that you will never again need
to use EXECIO.

I recall that when I started leaming REXX, there were several pleasant surprises:

~ Programming in REXX was more fun than programming in other languages I had
used.

~ Because the REXX language was so powerful, I could write more programs and I
could go further with them than I would have had the time for otherwise, so I ended
up providing richer function and handling error conditions better.

~ Even more pleasant was finding that my REXX programs tended to work correctly
once I got them correct syntactically (or soon after that), which had seldom been my
experience with programs I had written in other languages. The structure of the
REXX language was disciplining my thinking so that I was programming not only
more easily but also better.

I see these same effects even more strongly when I combine REXX with CMS Pipelines:

«» Programming with “Pipes” is even more fun. It has restored my delight in CMS. 1
cannot imagine going back to not having CMS Pipelines. As my colleague Serge
Goldstein was heard to exclaim a few weeks after we got it, “I can’t do anything
without Pipes!”

~ The power of CMS Pipelines allows me to write programs that I would not have
found the time (or the stamina) to write before. 1 am writing more programs and
giving them richer function.

~ My CMS Pipelines programs have fewer bugs. The processes of applying
“pipethink” and of visualizing the flow of data through my pipelines make me a
better programmer. .

If you will give it a try, I think you will find, as I have, that CMS Pipelines is a tool for
unclogging the brain,

349

THE IMPLICATIONS OF MULTIMEDIA FOR TRAINING IN THE '90S

P. JOSEPH VERTUCCI
THE ALIVE CENTER OF AMERICA

350

Session:

Page 1 of 11

The Implications of Multimedia for Training in the "90’s

Dr. P. Joseph Vertucci
Chief Executve Officer
ALIVE Centers of America, Inc.

Fairlawn, Ohio

. IASA Annual Conference
Dallas, Texas

May 31 - June 3, 1992

351

Fle

e

s

/

Television has had a dramatic impact on the adult population. By the time a person graduates
from high school, they have been exposed to over 20,000 hours of television, that is high impact visuals
and audio. In contrast, that same person has been exposed to approximately 14,000 hours of classroom
instruction. Multimedia brings the impact of television to the training environment.

‘While motivating adult learners is a very complex issue, part of the solution resides in the
application of adult leaming principles to multimedia instruction. Documented research shows that when
interactive multimedia is employed over every other style, stand up instruction, computer based training
(CBT), or video based training, learners prefer interactive multimedia in 97% of the cases. That means
almost 33 to 1 prefer interactive multimedia to other training approaches. Preference of leaming approach
also equates to increased performance and results. Documented studies show that as more senses are
incorporated into the leaming environment, retention increases dramatically. Traditional computer based
training, that is reading a computer screen, is very similar in task to reading a book. Documented research
shows that a person remembers only 10% of what is read, 20% of what is heard, 30% of what is seen,
50% of what is seen and heard and 80% of what is experienced. Interactive multimedia simulates
experience to such an extent that it has been docimented in over thirty research studies to renlace the
actual experence.

While the issue of individual motivation is complex, multimedia has demonstrated through numerous
studies to be a major factor for increased performance, reduced time on task and incmasedk employee
productivity. Multimedia programs ensure student motivation and successful program completion. Well-

known Adult Learning Principles enhance and complement multimedia in this respect.

352

Adult Learning Principles
The Adult Learning Principles include the following:
» Project vs. subject centered focus
« Immediate application of learning
» Capitalizing on learner’s previous experience
« Learner vs instructor centered focus
» Self-directed vs dependent focus
« Active participation in the learning process
« Whole-part-whole sequence of learning
» Association of material
+ Integrated thinking
s Recognition of individual learning rates and styles
« Maximizing time on task
« Regular checking of understanding

« Appropriate and meaningful instructional cues

353

» Feedback on results with positive reinforcement

The following examples illustrate how these principles can be incorporated into training applications.

vs. subject cen

Adults are problem oriented, thus training must be problem centered. Classroom training is
predominantly subject centered. By focusing on problems, adults are challenged to use their experience
in finding solutions to problems.

We have created training programs to teach high school coaches how to accurately diagnose knee
injuries; to teach sales representatives for orthopedic impiant manufacturers how to enter product orders
into the company’s computerized order-entry system; and to teach retail store employees how to
recognize potential shoplifters. These are just a few examples that illustrate how multimedia learning

_applications are being used today.

Immedi lication of 1

Trammg programs can allow immediate application to the learner’s work environment. In this
respect, the programs méy be regarded as a modern approach to the older but successful on-the-job-
training concept. Whether the training is aimed at teaching product knowledge of caskets or orthopedic

implants, the learner can employ the skill and knowledge just acquired to enhance job performance.

Capitalizing on learner’s previous experience
By employing pretest and branching techniques, training programs recognize the value of the

learner’s previous experience. Such programs are designed to permit learners to progress at their own

354

pace, 1o focus on material they do not know and to bypass material which is already known.
TVvs. i cen focu
Training programs can be designed to focus on the leamner. The learner can select the subject, topics
within the subject and pace. By using built-in navigational controls, the learner can move forward or

backward, access a glossary or bibliography or review course maps.

If-di v n
Learning is self-directed. The learner is not dependent on a group pace, but controls his own pace.

We have developed a proprietary menu system which allows the leamner to access information quickly

and effortlessly.

 Activ iciation in the leamine
Training programs can involve the user. The learner is an active participant in the learning process.

Regardless of whether the subject deals with executive, management, sales, industrial or medical

training, the learner makes decisions and is branched to different sections of the course based on these

decisions.

le-part-w
Programs can relate information into context. The leamner is introduced to concepts using whole-
part-whole sequencing. The learner’s ability to quickly grasp the material is substantially increased by

first learning a small concept, then relating that concept to the whole.

355

Association of material
| Learning generally does not exist in isolated settings and frequently the same material can be used for
multiple applicatons. Product knowledge is very much related to both sales and technical training. More
often a logical association exists between information and its use in various other parts of an enterprise.
This information is a valuable corporate asset. Our programs recognize the investment involved in
capturing and maintaining this information by organizing this material modularly. Modularity minimizes

the expense of updating information or of extracting this information for use in other applications.

tegrat
. Training programs can employ integrated/holistic thinking. Through navigation and mapping,

individual leamers can determine their current position and assess their progress throughout the course.

ion of indivi i I
Triming zoograms can ke desigred o recognize that individuals have different leamning styles as well
as learning rates. Programs offer visual, audio, and conceptual stimulus. Programs are designed to

stmulate the learner by rewarding correct answers to exercises and quizzes. By the same token, a

benevolent, non-judgmental response is provided in response to incorrect answers.

Maximizing time on task
Studies have shown a 30% to 60% reduction of time on task using interactive multimedia. Learners

proceed at their own pace and access information as needed. Learners move forward and backward

356

through the material in accordance with their personal style and educational needs.

Regular checking of understanding

Our training programs incorporate periodic, regular checks of the learner’s comprehension.
Programs can be customized by the training administrator to require 100% mastery, or any other specified
level of accomplishment. This can be accomplished by employing remediation techniques that return the
learner to material not mastered, feedback on responses to reinforce success, and other appropriate

learning strategies.

Appropriate and meaningful instructional cues
Adult learners require appropriate and meaningful instructional cues. Our programs employ icons,

images and audio feedback appropriate and sensitive to the audience.

ith-positive reinfor
In addition to the audio and visual feedback used to reinforce the learner’s understanding of material,

learners are remediated into appropriate course material to further enhance the learning experience.

Overall Program Structure
In addition to utilizing the Adult Learning Principles in designing multimedia tmmmg applications,
there are specific overall design concerns that can effect learner motivation and retention. These include:
«Skill and Dnill: the repetition of an exercise insuring the learner’s understanding and
proficiency. This is usually followed by a self-test.
s Tutorial: personalized company assistance promoting understanding of a particular concept;
one-on-one is the best and most expedient method.

357

+Gaming: Know Your Product game, a method of involving competition under specified rules;

and,

~Simulation: the method of teaching allowing a learner to manipulate a particular environment.

Multimedia technology uses numerous learning aids imbedded in programs to facilitate learn-

ing. These include:

« Icons and buttons to permit the student to navigate through the course. We use forward and
backward navigational tools, a looping tool, ability to return to the main menu, help screens
and other features as required by the content;

~ Course maps that permit the leamer to assess where they are in the course;

+ Glossary and bibliographies to permit the learner to access definition of terms;

~Remediation programming to loop the learner through material that has not been mastered;

~ Randomized question pools for mastery tests;

~ Help features that include how the system operates;

« Pretests to assess the learner’s current level of understanding and knowledge with branching on
results to permit the learner to move quickly through material that they hgvc previously
mastered; |

» Periodic exercises to verify learner retention;

~ Comprehensive post tests to measure performance and mastery;

« Tracking of learner progress mrough use of a database manager;

«~ Bookmarking capabilities to permit the learner to leave a program and return at a later time to

exactly where they left;

358

+.Course objectives stated at the beginning of the course and at the beginning of each new

section;

*.A summary screen that Jets the leamer review material before taking the mastery test.

Additional features are added to courses as required. Each multimedia course can be designed
to employ these key concepts while also addressing the specific requirements of the content. In this
respect, content can be made easy to understand by incorporating the following features:

+. High level of student motivation by using graphics, digital effects, audio and text in appropriate

educational strategies;

*sRandom visual and audio accessibility;

- »,Consistency of instruction that guarantees all students receive a high quality presentation;

+.Dual track, stereo audio with music:and professional voice over as required;

«.Subject mastery that can be adjusted by the instructor. Mastery levels can be set at 100% if
required and can be modified by the instructor as appropriate;

*.Feedback and reinforcement using immediate and ,automatic feedback and reinforcement
including visual, graphic and audio;

+.Zoom feature to let the learner examine in detail material and concepts;

+.Self-paced leamning permitting each learner to master the course at their own learning rate; and,

+.Round the clock availability allowing the learner to take the material on demand.

Further educational concems include graphic quality, testing and evaluation, on-the-job applicability

and obsolescence issues.

359

raphics Characterist

Multimedia training programs employing AVC use VGA graphics resolution, but with enhanced
resolution to 8 bit graphics with 256 colors. The resolution is 320x480 lines of resolution. Picture and
image clarity and quality is unmatched. Even though the images are superb, the image size is
approximately one tenth of the size of comparable industry standard images. Because of this, the learning
process benefits in several significant ways. First, we are able to provide close representation of a
company’s products on the computer image. Because of the high image quality, the learner does not
experience a believability problem. We are also able to provide greater detail that is further exploited to
enhance the learning process. Secondly, because we can support stereo audio, the learner has multi-
sensory exposure further enhancing the learning environment. The combination of high quality image
and lJow memory requirements means that we can pack our programs with more images and use less
‘memory. We use a five to.one ratio, that is five images for one tiff or targa formatted image. More

~visuals means greater representation of products and enhanced learning.

Student Testing and Evaluation Procedures

Students are tested against the behavioral learning objectives prescribed by the program. We
recommend that mastery levels be set at 100%. Because of the inherent capabilities of muitimedia,
mastery at 100% is still accomplished in less time than with conventional approaches. We employ
several testing strategies as previously documented. Student performance is tracked by the system. The
instructor has the ability to review student performance and recommend additional strategies to assure
success. Testing is accomplished in a variety of approaches. These include:

«.Exercises after each section, chapter or major content function;

*« Module tests from a randomized pool of questions; and

360

» Mastery test covering all major course objectives.

Final mastery is compared to initial pretest results to measure overall program effectiveness.

On-the-Job Application of Learning

Multimedia training programs can incorporate not only skill and drill and tutorial strategies, but also
game and simulation strategies. Our programs can challenge the learner fo apply the principles, skills and
concepts that have been leamned in realistic situations. This takes the multimedia user where CBT
programs could never take them, into the realm of experience. Multimedia with realistic image, voice,
noise and sound offer capabilities that no other methodology can approach. The difference between
interactive multimedia and computer based training is similar to being in the driver’s seat of a race car
(interactive:multimedia) versus reading about the experience (computer based training). We have known

that experience is the best.teacher. Now with interactive multimedia, we can afford to put the learner in

the driver’s seat!

W t frw
Images, audio as well as story files can be upgraded and distributed on a company’s current network.
When an image or audio file or story is created, updated or modified, it can be automatically loaded onto
the distributed system via modem, network software or floppy disk. The file is copied onto the local
system. The new file replaces the old one and the user is virtually shielded from the process. There are
no expensive charges, no complicated re-editing problems and no reliance on outside production services.

Cost for upgrading can be handled on an hourly rate or on an as needed basis.

361

REXX, PERL, AND VISUAL BASIC

BEBO WHITE
STANFORD LINEAR ACCELERATOR CENTER

362

363

Bebo White
SLAC

REXX Symposium
Annapolis, MD
May 4, 1992

M.E COWLISHAW

A
PRACTICAL
APPROACH TO
PROGRAMMING

SECOND EDITION

"THE

LANGUAGE

|
UNIX Programming

Programming

Larry Wall and Randal L. Schwartz

/ / .O’Reilly & Associates, Inc.

365

Caveats

| am a REXX bigot, but the cards
weren't stacked against Perl; | am
not a Perl expert (much less bigot);

the most important thing about
comparing these languages is
determining how well they support
their environment; this is largely
implementation-dependent;

| have never used REXX and Perl on
the same system;

this talk started out as "REXX vs. Perl"
- but they really aren't competitors;

| like Perl; it makes Unix far more
"approachable" for me;

| think that some of the features of
Perl can contribute to the development
of REXX;

REXX and Perl Have a Similar

Background

BOTH-

o

were developed largely by an
single individual;

were developed for a particular
operating system and strongly utilize
features of that system;

have their roots in a "popular" high
level programming language;

have "natural typing";
emphasize string processing;

provide a strong built-in function
library;

emphasize readability and an
understandable block structure;

have useful debugging capabilities;

367

Perl Names

BLATZ - a filename or directory "handle"
$BLATZ - a scalar variable
@BLATZ - a normal array
$BLATZ - an associative array
&BLATZ - a subprogram
*BLATZ - everything named BLATZ

o does not harken back to EXEC, EXEC2
or Batch;

° does increase the readability
/understandability of a program;

° allows program entities to be
associated in a subtle way;

° eliminates part of a "style
controversy";

368

Perl Lists

an ordered list of scalars;

can be like an array, or "user-defined
types”;

can be fully dynamic;

incorporates some of the capabilities
of Parse; for example -

° @ARGV consists of
SARGV[0] tO SARGV[S#ARGV]

° ($name, $address) =
split(/:/,<NAMES>)

369

Perl "Gotchas"
(for REXX users)

the default value of a variable is the
null string;

a value is TRUE if it isn't the null
string, 0 or "0";

there are different comparison
operators for numerics and strings;

some operators are borrowed from
sed, awk, and various Unix utilities;

370

Some General Conclusions

REXX is easier to learn and more
readable; REXX is more accessible
to a greater audience;

Perl's syntax is harder to learn and
read (unless you're a big C fan);
appeals to "hackers”;

Perl is an excellent interpreted shell
script/systems language, but not a
common embedded macro language
for Unix;

Perl is more consistent with a "Unix
mindset” than REXX;

Some Perl operations are very arcane
(e.g., ++i, i++);

Perl has many more redundancies than
REXX;

Perl has better support for aggregate
types than REXX; both languages
lack support for non-trivial datatypes;

Perl is more compact for some things

(e.q., string processing);
compactness <----> safety?

3N

Perl has an extensive collection of
pattern matching operators; REXX
relies more heavily on PARSE;

Perl has built-in file feature operators;
where REXX relies on OS;

Perl has a package mechanism which
REXX lacks;

REXX is more extensible than Perl;

372

Can REXX Learn From Peril?

Associative arrays are very "CMS-
like"; can be weakly implemented by
the REXX ABBREV; |

Perl lists allow for a for each construct;

Perl makes extensive use of the
<STDIN>, <STDOUT>, <STDERR>
streams; REXX LINEIN, LINEOUT
capabilities not always implemented;

PIPELINES can add some Perl
capabilities to REXX;

373

REXX APPICATIONS IN AUTOMATED OPERATIONS

PETE ZYBRICK
FUTURESYS, INC.

374

REXX
Applications In
Automated
Operations

Pete Zybrick

FutureSys, Inc.
20 Dogwood Trail
Kinnelon, NJ 07405
(201) 492-2777

I. Overview

1. What is Automated Operations? The progressive
minimization of computer operator intervention by

1. Replacing the need for intervention whenever
possible by the design and implementation of
hardware/software problem determination and
correction processes.

2. Increase problem determination and correction
efficiency by filtering and combining only the
critical system status information, eliminating
redundant and trivial information.

2. Automation Types
1. Reactive - Event/Response
2. Proactive - Question/Answer
3. Administrative/Management

376

Il. Why use REXX

1. Good
1. PARSE Instruction, especially Literal String
2. Relatively simple to use/debug/maintain
3. Relatively easy to create structured code
4. Function libraries

2. Bad

1. Simplicity has been oversold by vendors

2. Unskilled programmers can write bad code in
any language

3. Simplicity masks potential errors

4. CLIST programmers rarely take advantage of
REXX features

5. Reliance on environment for global variables,
poor variable sharing between procedures

377

Ill. Features and AO Application

1. Subcom (Host Command Environment Table) -
Creating an Environment

1. Advantages

1. Speed - commands are directly targeted
2. No changes to REXX itself are required

2. Disadvantages
1. Development - must be written in lower
level language, initialization exit configured
(MVS) or DLL created (0S/2)
2. Programmer must remember to use
ADDRESS both initially and when switching
environments (ie. ADDRESS MVS

"EXECIO..." and ADDRESS NETVIEW
"GETMLINE..."

378

2. Shared Variable Interface

1. Advantages
1. Large blocks of variables can be created
with one command/function
2. Same basic processing sequence and
control block structure on different
platforms

2. Disadvantages
1. Uses more storage than the stack
2. Programmers usually forget to DROP,
polssibly causing storage problems

379

3. Function Libraries

1. Advantages
1. Speed development time and consistency

2. Can be written in lower level language for
improved performance

3. Can accept and return very large plists

4. Third party vendors and SHARE

2. Disadvantages
1. Definition of requirements
2. Someone has to write/maintain the
functions
3. Will anyone know they are there?

380

4. External Programs

1. Advantages
1. Can be REXX or load module. Load
modules can use the Shared Variable
Interface
2. Interface to external products
3. Command response/screen capture

2. Disadvantages
1. Search time (for load modules, faster to use
Subcom and ADDRESS)
2. Poor global variable handling forces large
values to be passed/duplicated between
programs

381

IV. Suggested Methods

Obijectives:
1. Keep it simple
2. Minimize redundant coding/maintenance

1. Centralized Routines
1. Objectives

1. Maximize the capabilities of the most skilled
programmers to produce common ‘black
box’ routines to simplify the most difficult
tasks

2. Maintenance - if the program is broken, it is
fixed in one place

2. Example: NetView returns command responses
asynchronously, if at all. Even experienced
programmers can have a conceptual problem
with async events. Create an external function
to serialize command execution/response under
NetView, returning the responses on the stack.

382

/¥ REXX - LINKSTN */
call stkmsgs ,
"D NET,ID =someappl,E" , ,
"ISTO971 ISTO751" , "IST314/"
. read from stack and process messages . . .
exit

/¥ REXX - STKMSGS */
parse arg CmdText , TrapMsgs , EndMsg
"TRAP AND SUPPRESS MESSAGES" TrapMsgs
CmdText
"WAIT 56 SECONDS FOR MESSAGES”
"MISGREAD"
getresps: do while ‘EVENT’() = "M"
"GETMSIZE MAXMLWTO"
getmiwto: do micnt = 1 to maxmiwto
"GETMLINE CURML" micnt
queue curm/
if ‘WORD’(curml, 1) = EndMsg then leave
end /* getmlwto */
"WAIT CONTINUE"
"MSGREAD"
end /* getresps */
return /* stkmsgs */

383

2. Literal String Parsing

Objectives:
1. Parse messages based on text fields to
extract variable-length values.

Example: The NetView TSOUSER command
describes the status of a TSO user. Display the
TSO (application name) and LU of a particular
user.

a. Command Format:
"TSOUSER tsologonid”

b. Output:
ISTO97/ DISPLAY ACCEPTED
ISTO75/ VTAM DISPLAY - NODE TYPE = TSO USERID
IST4861 NAME = TSOPJZ, STATUS=ACTIV,DESIRED...
IST576/ TSO TRACE=OFF
IST262/ APPLNAME =TSOA, STATUS = ACTIV
IST262/ LUNAME=A01T1234, STATUS=ACTIV
IST314/ END

384
- 10

c. Program:
/* REXX */
parse upper arg tsoid .
call 'STKMSGS’ "TSOUSER’ tsaid , "ISTO97! ISTO75!",
"IST314]"
do queued()
parse pull MsglD MsgText
if MsglD = "IST2621" then do
parse var MsgText hdr"= "name", STATUS = "status
if hdr = "APPLNAME" then do
TSOName = name
TSOStatus = status
end
if hdr = "LUNAME" then do
LUName = name
LUStatus = status
end

’

end
end

385
11

3. Global Variables - Logical/Stem/Associative Arrays

Objectives:
1. Simplify the status setting and
determination of a particular subsystem
2. Can be used to drive a graphic status panel
(ie. subsystem name in green if up, yellow
if brought down cleanly, red if crashed,

etc.)

Example: Set status variables for group of CICS’s.
Retain the time each CICS was last brought up
or down. There is nothing 'CICS-unique’ about
this example - any subsystem on any platform
can be substituted (just the type of global
variable handling would have to change).

386
12

a. Executed during System Initialization
/* REXX */
AIICICS = "PRODO1 PRODO2 ... PRODxx"
"GLOBALV PUTC ALLCICS"
CICSUp. = 0
do until AlICICS = ""
parse var AlICICS CurrCICS AlICICS
"GLOBALV PUTC CICSUP. "CurrCICS

call 'STRTCICS’ CurrCICS
end

b. Start a given CICS region (ie. STRTCICS PRODO1)
/* REXX */

parse upper arg CurrCICS

/* Current CICS brought up OK */
CICSUp.CurrCICS = 1

CICSDtTm.CurrCICS = '‘DATE’("U"] "TIME’()
"GLOBALV PUTC CICSUP."CurrCICS "CICSDTTM. "CurrCICS

c. Stop a given CICS region (ie. STOPCICS PRODO1)
/* REXX */

parse upper arg CurrCICS

/* Current CICS brought down OK */
CICSUp.CurrCICS = 0

CICSDtTm.CurrCICS = 'DATE’("U") ‘"TIME"()
CICSWhyDown.CurrCICS = "Stopped by" ‘OP’()

"GLOBALV PUTC CICSUP. "CurrCICS "CICSDTTM. "CurrCICS ,
"CICSWHYDOWN. "CurrCICS

387
13

d. Restart CICS due to some error (ie. RSTCICS

PRODO1, probably called from NetView Message

Automation Table after hit on abend message)
/* REXX */

parse upper arg CurrCICS Abendinfo
CICSUp.CurrCICS = 0

CICSDtTm.CurrCICS = '‘DATE’("U") 'TIME"()
CICSWhyDown.CurrCICS = "Abended:" Abendinfo

"GLOBALV PUTC CICSUP. "CurrCICS "CICSDTTM. "CurrCICS ,
"CICSWHYDOWN. "CurrCICS
/* Restart Current CICS */

e. Status of CICS regions
"GLOBALV GETC ALLCICS”
do until AllICICS = ""
"GLOBALV GETC CICSUP. "CurrCICS ,

"CICSDTTM. "CurrCICS "“"CICSWHYDOWN. "CurrCICS
select

when CICSUP.CurrCICS then
say "UP " CurrCICS
when “CICSUp.CurrCICS &
CICSWhyDown.CurrCICS <> "" then

say "DOWN" CurrCICS CICSWhyDown.CurrCICS
when *CICSUp.CurrCICS &

CICSWhyDown.CurrCICS = "" then

say "DOWN" CurrCICS "Never Started"”

otherwise say "Unknown" CurrCICS
end

end

388
" 14

4. Log Processing

Objectives:
1. Perform filtering and summary information
against log files (ie. MVS system log, VM
operator console log, NetView log, etc.).

Example 1: Create a subset of a large log file.
Scan an entire log and write only VTAM
messages to another dataset.

/* REXX */
/* Scan a log and filter messages */

/* Delete/Erase the Output File */
/* if MVS/NetView, ALLOCATE here */

ReadLoop: do until ExecioRC <> 0
"EXECIO *nnnnn DISKR <InputFile>"
ExecioRC = rc
PullLoop: do queued()
/* Message ID starts in 10 */
/* Save only VTAM (IST) Messages */
parse pull . 10 MsglD 13 1 MsgRec
if MsglD = "IST" then queue MsgRec
end /* PullLoop */
/* if any matches on IST then write */
if queued() > O then
"EXECIO" queued() "DISKW < OutputFile>"
end /* ReadlLoop */

/* Close files here */

389

15

16

Example 2: Display a summary of message
occurances

/* REXX */
/* Scan a log and sum by message id */

/* if MVS/NetView, ALLOCATE here */

UniqueMsg = ""
GotMsg. = O
SumMsg. = 0
TotMsgs = O

Readloop: do until ExecioRC <> 0
"EXECIO nnnnn DISKR"
ExecioRC = rc
TotMsgs = TotMsgs + queued()
PullLoop: do queued()
/* Message ID is in cols 10-19 */
parse pull . 10 MsgiD 20 .
SumMsg.MsglD = SumMsg.MsglD + 1
if “GotMsg.MsglD then do
UniqueMsg = UniqueMsg || Msgl.
GotMsg.Msg/lD = 1
end
end /* PullLoop */
end /* ReadlLoop */

/* Close the log file here */

/* Display Msgid # % */
do until UniqueMsg = ""
parse var UniqueMsg Msgl/D UniqueMsg
Pct = 100 * (SumMsg.MsglD/TotMsgs)
say ‘LEFT'(MsgID,12) '‘RIGHT'(SumMsg.Msg/D,8) ,
‘FORMAT’(Pct, 3,0} || "%"

" n

end

390

5. Screen Image Parsing

Objectives:
1. Parse screen images to isolate critical
information

Example: The following screen image was trapped
into one variable, SCREEN. Extract the CPU
utilization for the displayed applications.

Performance Stuff

before
before
App Util
========|=======]
ME 22
YOU 15
========|=======|
after
after

/* REXX */

GotHdr = O

"

do while Screen < >
parse var Screen 1 Line 81 Screen
parse var Line 1 Hdr 8 1 SubSys 10 UtilCPU 15 .

select
when “GotHdr & Hdr = '========"then
GotHdr = 1
when GotHdr & Hdr = "========"'then
leave

when GotHdr then say SubSys UtilCPU
otherwise nop /* '‘Before’ stuff */
end
end

391
17

6. Table Driven Automation
7. Testing and Simulation
8. Selective/Blanket Restart Enable/Disable

9. System/NCP/etc. Generation File
Scanning/Parsing/Comparing

392
18

V. 0S/2 CommMgr as an AO Tool

1. REXX is supplied with 0S/2

2. CommMgr uses EHLLAPI to allow session

management, namely:
1. Issuing text strings to a 3270 session

2. Retrieving 3270 screen images

3. REXX APl’'s support Environments, Shared
Variable Interface, Function Libs

4. REXX3270 tool:

REXX Intempreter
Source s
/* REXX %/ U RX3270
e e Y
O
M

Variable Pool
SCRDATA ‘\
SCRATTR

<ITO”

393

19

VI. Indirect Benefits

1. Table driven status/recovery routines allow
ownership of resources to be rapidly moved to
alleviate performance/failure considerations

2. Disaster Recovery

1. A 'disaster’ table can exist which contains
only critical devices mapped to the
ownership of critical systems

2. A 'snapshot’ program can display/query
critical system components/values on a
periodic basis and save this info into a
table. After and disaster and recovery, a
display/query job can be run to verify
critical component availability and
differences.

3. Job Automation. Experience/confidence gained
during AO implementation can be extended to
automating nightly job cycles, replacing JCL
with REXX to allow for more intelligent and
automatic job monitoring/restart/correction.

394
20

VIl. The Future...

1. Dynamic Configuration Management. Access
external matrix switches to reconfigure devices
from one system to another ‘on the fly’, both
for performance and failure recovery purposes.

2. Enterprise Automation
3. DMS?

4. NetWare?

5. 2?7

395
21

The programs/ideas in this document are in the public
domain. Use them in any manner. Most were written
to run under NetView and/or MVS, but should, with
minor changes, run anywhere. Be careful - | either
clipped them out of larger programs or wrote them
from memory based on projects | worked on in the past
- typos are probable. More importantly, to keep things
concise, | removed all the error handling code. If you
have any questions, feel free to call/fax me at (201)
492-2777. I'm always willing to help and curious to
hear how different sites implement automated
operations.

Thanks,
Pete Zybrick

396
22

Jebbie Audette
VIS America Lid.

lymouth Meeting, PA 19462-0905

'15-834-4623

fim Babka

BM GO9/20

2.0.Box 6

Indicott, NY 13760
307-752-1613

»abka @ gdivm7.vnet.ibm.com

ick Berge

VMSG, INC.

1604 Spring Hill Road
vienna, VA 22182-2224
703-506-0500

fdb @ alumni.caltech.edu

Gurnie Bowden
2704 Loyola Lane
Austin, TX 78727

Gordon Callan
2040 Wooden Glen Way
Los Altos, CA 94024

Jerry Campbell

Amoco Corporation

501 WestlLake Park Bivd.
P.O. Box 3092

Houston, Texas 77253
713-556-7036

ZSLCIZ@ HOU.AMOCO.COM

Steven Carroll

EBASCO

89-20 55th Ave. Apt. 7A
Elmherst, NY 11373
718-446-8973

Anders Christensen
University of Trondheim
Computing Center
Trondheim, Norway
+47-7-593004

anders @lise.unit.no

Dean Clark

InFonet Corp.

11700 Montgomery Rd.
Beltsville, MD 20705
301-937-0500

Creswell Cole

Amdahl

1350 East Arques Ave.MS205
Sunnyvale, CA
408-746-4877
chappy @ pswd.amdahl.com

Mike Cowlishaw

IBM United Kingdom Labs., Ltd
Hursley Park

Winchester, Hampshire S021 2JN
UK

Cathie Dager

SLAC MSg7

P.O. Box 4349

Stanford, CA 94309
415-926-2904

cathie @ slacvm.slac.stanford.edu

Charles Daney

Quercus Systems

P.O. Box 2157

Saratoga, CA 95070-0157

Chip Davis

Amdahl Corp.

10420 Little Patuxent Parkway
Columbia, MD 21044-3598

CHIP.DAVIS @ AMAIL AMDAHL.COM.

Steve Demion

30 Sawmill River Rd.
MS HOB13
Hawthorne, NY 10532

Kenneth R. Down

ORACLE

2075 Sutter St. #523

San Francisco, CA 94115-3131
415-506-2778
Kdown@ORACLE.COM

397

Deryl Duncan

1BM

1802 Willowcrest
Denton, TX 76205
214-280-6739

Larry Dusold,

Telecom. & Sci. Comp. Support
FDA/C F.S.A. N.

200 C St. S.\W.

Washington, DC 20204

Bitnet: LRD @ FDACFSAN

Frank Esposito

P.O. Box 140125
Brooklyn, NY 11214-0002
718-946-6148
FPEOC2CUVMB

Carl Feinberg
Relational Architects
33 Newark Street
Hoboken, NJ 07030
201-420-0400

Janice Fitch

Electronic Data Systems
3044 West Grand Boulevard
GM Building Room 7-119
Detroit, Ml 48202
313-556-4451

Bob Flores

CIA

Rm 2V29

Washington, DC 20505
703-874-5174
RAF4@PSUVM.PSU.EDUV

Nancy Flynn

Computer Sciences Corp.
Applied Technology Division
16511 Space Center Bivd.
Houston, TX 77058
713-280-2434

Dave Fraatz

3M Center

Bldg. 220-3W-01
St. Paul, MN 55144

Forrest Garnett

BM

2500 Huston Court
Morgan Hill, CA 95037
408-997-4619

Garnett @ sisvm28.vnet.ibm.com.

Kathleen Garvey

Borland

1800 Green Hills Road

Scotts Valley, CA 95067-0001

Eric Giguere
University of Waterloo
Computer Systems Group

Waterloo, Ontario, Canada N2L 361

Gabe Goldberg

VM Systems Group, Inc.
1604 Spring Road
Vienna, VA 22182-2224

Anthony Green
Ruddock & Assoc.
74 McGill Street
Toronto, Ontario
Canada M5B 1H2
416-340-0887
green@roboco.vocp

Linda Green

IBM

G93/6C12
P.O.Box 6
Endicott, NY 13760

Billy Guthrie
SIDNEY

5727 Holly Hill Circle
Dallas, TX 75231
214-750-8112

Rainer Hauser

IBM Research Div. Zurich
Saumerstrasse 4
CH-8803 Ruschlikon
Switzerland

rig@ zyrucg.ibm.com

Paul Heaney

Delphi Software, Ltd.

Fleming Court, Flemming Place
Mespil Road

Dublin 4, Ireland

Ireland 602877

Earl Hodil
Chicago-Soft, Ltd.
420 S. Winsome Ct.
Lake Mary, Fl 32746
407-834-7530

Marc Irvin

Mvi

100-01 Hope Street
Stamford, CT 06906
203-327-4361
498-9279pmcimail.com

Don Jones

IBM

1902 Willowcrest
Denton, TX 76205
214-280-6458

Jeff Karpinski

Towers Perrin

Centre Square East

1500 Market St.

Philadelphia, Pa 19102-4790
215-246-6003

Andrew J. Katz

IBM

13 Dufief Ct.
Gaithersburg, MD 20878
301-571-7842

Thomas W. Kema

Bell South Telecom.
Rm S$-304

1876 Data Drive
Birmingham, AL 35124
205-988-1504

William Kohistrom

Kohl International

400 N. Fourth St., Suite 1012
St, Louis, MO 63102-2636
410-664-1961

MCI333-1002

398

Terry Kong

National Library of Medicine
Bidg. 38A Rm. B1W08G
8600 Rockville Pike
Bethesda, MD 20894

Lee Krystek

Boole and Babbage
8000 Commerce Parkway
Mount Royal, NJ 08054

Jimmy Lee

Metropolitan Life

One Madison Ave. Area 9-C
New York, NY 10010-3690

Linda Littleton

214 Computer Bidg.
Penn State University
Univ. Park, PA 16802

Terry Masemore

IBM

800 N. Frederick
Gaithersburg, MD 20879
301-240-7607

David McAnally

Motorola, Inc,

Corporporate Computer Services

8220 E. Roosevelt R7142

Scotisdale, AZ 85257

602-441-5296
ACUS02@WACCVM.CORP.MOT.COM

Glenn McPeters
RD1, Box 6390
Underhill, VT 05489

Pat Meehan

IBM Ireland

ECFORMS Dev.Team

4 Burlington Road

Dublin 4, Ireland

353-1-603744
MEEHANP@DUBVM1.VNET.IBM.COM

John Milburn

IBM

800 N. Frederick
Gaithersburg, MD 20879
301-240-7275

Neil Milsted
iX Corporation

575 W. Madison St. NO. 3610

Chicago, IL 60606
312-902-2149
NFNM@WRKGRPP.COM

Stan Murawski

635 S. 16th St.

San Jose, CA 95112-2372
408-288-6759

CISMAIL 70444.55

Chuck Nelson
830 McCandless
Wichita, KS 67230

Edward G. Nilges
P.O.Box 16
Kingston, NJ 08528
egnilges @pucc

Eric Nothman
8417 Fenway Rd.
West Bethesda, MD 20817

Robert O'Hara

Lotus Development Corp.
One Rogers Street
Cambridge, MA 02142

- F. Scott Ophof

Consultant

269 Hall Avenue

Windsor, Ontario

Canada N9A 2.5
519-253-7534
ophof@server.uwindsor.ca

Walter Pachl

IBM Austria
Lassallestrasse 1
A-1020 Vienna, Austria

PACHL @ VABVM1.VNET.IBM.COM

Steve Price

IBM

GO9/20M

P.O.Box 6

Endicott, NY 13760
607-754-9653

pricesg @ gdivm7.vnet.lbm.com

Brian Rodbell

RMS TECHNOLOGIES, INC.
NASA GSFC Code 520.9
Greenbelt, MD 20771
301-286-2098
Z8birAsspa.gsfc.nasa.gov

Ed Root Il

Motorola, inc.

Corporate Computer Services
8220 East Roosevelt R7142
Scottsdale, AZ 85257

Roger Root

2953 Tillinghast Trail
Raleigh, NC 27613
919-846-7014
compuserve?

Anthony Rudd
Robent-Schumannstrasse HA
W-8510 Fuerth

Germany

Albert Sayers

MILBANK, TWEED

12 Woodiland Dr.

Port Washington, NY 11050
212-530-8920

Kurt D. Scherer

CSC

4522 Bennion Rd.
Silver Spring, MD 20906
301-794-1030

399

Paul Schobert
IBM

1920 Willowcrest
Denton, TX 76205

Sally Schor

IBM

1920 Willowcrest

Denton TX 76205
214-280-6487

mks @cbmvax.commodore.com

Gary Schramm
4912 Green Road
Raleigh, NC 27604

Colleen K. Seine
IBM

5601 Executive Blvd.
Irving, TX 75038

David Shriver

IBM MS 01-03-50

5 W. Kirkwood Blvd.
Roanoke, TX 76299-0001

Michael Sinz
Commodore-Amiga, Inc

1200 Wilson Drive

West Chester, PA 19380
215-431-9382

mks @cbmvax.commodore.com

Steve Siperas
3M-HIS

100 Bames Road
Wallingford, CT06906
Siperas@hsi.com

Phil Smith

VM SYSTEMS GROUP, INC.
1604 Spring Hill Road
Vienna, VA 22182-2224
703-506-0500

Ed Spire

The Workstation Group
6300 River Road
Rosemont, IL 60018

Tony Stephenson

U. S. Dept of Agriculture

Econ Mgmt. Staff/Personnel Division
1301 New YorkAve NW

Washington, DC 20005
202-219-0573
MAINT3@ERS.BITNET

Bernie Style

Systems Center

1800 Alexander Beil Dr.
Reston, VA 22091

Dave Sutter
4912 Green Road
Raleigh, NC 27604

Philippe Taymas

Westin Ghost Energy Systems, Inc.
73 Rue De Stalle

B1180-Brussels, Belgium

Anh Te

Towers Perrin

Centre Square East

1500 Market St.

Philadelphia, PA 19102-4790

Melinda W. Varian
38 Gordon Way
Princeton, NJ 08540

Paul Verba
Relational Architects
33 Newark St.
Hoboken, NJ 07030

Joe Vertucci

The Alive Centers of America, Inc.
3250 W. Market St. -

Suite 202

Faidawn, OH 44333

Al Villarica

SYRACUSE UNIV.

104 Roney Lane
Syracuse, NY 13218
315-442-9198
RVILLARI@CAT.SYR.EDU

Tony Walsh

Lotus Development Corp
One Rogers Street
Cambridge, MA 02142

Chi-Ching Wang
10413 Quietwood Dr.
North Potomac, MD 20878

Tom Wassel

IMS America Ltd.

Plymouth Meeting, PA 19462-0805
215-834-4447

Howard Weatherly

Computer Task Group

3347 Eastern Ave. NE

Grand Rapids, M! 49505-25676
616-3263-7634
cis:71327,1575

James H. Weissman
Failure Analysis Associates
149 Commonwealth Dr.

" P.O. Box 3015

Menlo Park, CA 94025
415-688-6737
JHW@cup.portal.com

David Wescott
State of California

Health & Welfare Agency Data Center

1651 Alhambra Blvd. MS 710
Sacramento, CA 95816-7092

HWJ.DWESCOTT@TS3.TEALLE.CA.

GOV
400

Bebo White

SLAC MS97

P.O. Box 4349

Stanford, CA 94309

bebo @ slacvm.slac.stanford.edu

Michael Wright
Mobil Room 4A-508
3225 Gallows Rd.
Fairfax VA 22037
703-846-3930

James Youngdale

IBM M/D B025

10401 Fernwood Rd.
Bethesda, MD 20817
301-571-7520
JWYOUNG@BETASUM2

Kathryn Youngdale
IBM M/D D072

10401 Fernwood Road
Bethesda, MD 20817
301-571-2872
KYOUNG @BETASUM2

Peter Zybrick
Future Systems

20 Dogwood Trail
Kinnelon, NJ 07405
201-492-2777

mailto:bebo@slacvm.slac.stanford.edu
mailto:RVlLLARl@CAT.SYR.EDU
mailto:JHW@cup.portal.com

ANNOUNCING

The REXX Symposium
for Developers and Users

San Diego, CA
May 18-20, 1993

= Meet the developers of the REXX implementations currently
available on a wide variety of computing platforms and operating
systems

~ Learn about current research and development projects in REXX

= g%)eé)n(wng the first to learn of new products developed for and in

« Learn the latest programming tips and techniques from the REXX
pioneers and an international body of REXX enthusiasts

For further information, or to participate as a speaker or panelist,
contact:

Cathie Burke Dager Forrest Garnett

(415) 926-2904 (408) 997-4089
cathie@slacvm.slac.stanford.edu garnett@sanjose.vnet.ibm.com
FAX: (415) 926-3329 FAX: (408) 997-4538

Bebo White Jim Weissman

(415) 926-2907 (415) 688-6737
bebo@slacvm.slac.stanford.edu jhw@cup.portal.com

FAX: (415) 926-3329 FAX: (415) 688-7269

Register and make travel arrangements by April 1 with:
Village Travel

(800Y 245-3260
FAX: (415) 326-0245

401

mailto:cathie@slacvm.slac.stanford.edu
mailto:garnett@sanjose.vnet.ibm.com
mailto:bebo@slacvm.slac.stanford.edu
http://cup.portal.com

	slac-r-401-Frontmatter
	rexx92-001
	rexx92-002
	rexx92-003
	rexx92-004
	rexx92-005
	rexx92-006
	Phone: 607-752-1 'I

	rexx92-007
	rexx92-008
	rexx92-009
	rexx92-010
	rexx92-011
	rexx92-012
	rexx92-013
	rexx92-014
	rexx92-015
	Support for application macros written in REXX
	High-level clientlserver architecture support
	Command definition of REXX Subcommands
	FlatlUniversal default REXX Subcommand space
	Transparent CICS Pseudo-conversational tefininal support
	Support for system and user profile EXECS
	Shared EXECs in virtual storage
	Nested ISCLUDE support in EXEC Loader
	EXEC Suspend/Resume support
	REXX interface to OfflceVisioniMVS and ASF Version
	Compatibility support for several popular VM/CMS commands
	CICS,™REXX Benefits
	Business Solutions
	Investment Protection
	User Productivity
	Growth Enablement
	Systems Management

	ClCSlREXX General Arehitecture/Implementation
	General Design Goals
	Basic structure of REXX running under CICS
	REXX EXEC invocation
	Where EXECs execute
	How EXECs are located and loaded
	How EXECs are edited
	Control of EXEC execution search order
	REXX EXEC File System structure
	Support of standard REXX features
	SAY and TRACE statements
	PULL and PARSE EXTERSAL statements
	REXX stack support
	REXX function support
	REXX Function Packages

	REXX Subcommand Environment Support
	Invoking another EXEC as a subcommand
	Invoking CICS load modules as user provided subcommands
	Adding REXX host subcommand environments

	Support of standard ClCS featuresifacilities
	CICS mapped 1/0 support
	invoking user applications from EXECS
	REXX interfaces to CICS temporary & transient storage queues
	Pseudo-conversational transaction support

	REXX EXEC Suspend/Resume support
	interfaces to other programming languages
	Security
	Perfonnance discussion
	Miscellaneous features
	Supported Environments and prerequisites
	National language and DBCS support
	Building block S/W development - Common Interface Routine
	CICS/REXX Client/Server Architecture
	High-level Client /Server support
	ClientlSener Design goals
	Current ClientlServer Implementation

	CICS/REXX Office\™ision/MVS Environment Supporl
	REXX EXECS for Application Integration
	REXX EXECS as exits
	CICS/REXX Interfaces to other products
	Description of interface to DB2
	Description of interface to GDD,M

	rexx92-016
	rexx92-017
	rexx92-018
	rexx92-019
	rexx92-020
	rexx92-021
	rexx92-022
	rexx92-023

