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Abstract

This thesis is devoted to the study of time-dependent backgrounds in string
theory. The first chapter contains a brief, non-technical introduction to the subject.

In the second chapter quantum field theory in d-dimensional de Sitter space
is studied, with an emphasis on the dS/CFT correspondence. We study a one-
parameter family of dS-invariant vacua; this bulk vacuum dependence is dual to
a deformation of the boundary CFT by a marginal operator. In odd spacetime
dimensions the state with no particles on Z~ has no particles on ZT, implying the
absence of particle production. In Kerr-dS, a thermal density matrix is found by
tracing over causally inaccessible modes. Assuming Cardy’s formula, the micro-
scopic entropy of such a thermal state in the boundary CFT precisely equals the
Bekenstein-Hawking value.

Next, we construct de Sitter vacua of supercritical string theories in D > 10
dimensions. Compactifying D — 4 of these dimensions on a carefully constructed
asymmetric orientifold projects out the continuous moduli of the compact directions.
By adding specific fluxes we generate dilaton potentials with nontrivial minima at
arbitrarily small cosmological constant and string coupling. We then discuss the
decay of such metastable de Sitter vacua. For sufficiently large potential barriers the
standard gravitational instantons violate both causality and low-energy decoupling,
raising the possibility that these de Sitter vacua are stable.

In the final chapter we study spacelike branes as exact, boundary deformed
worldsheet CFTs. Open string pair production is thermal, as can be seen from
either a Bogolyubov transformation or an Unruh detector argument. Moreover,

there exist exactly thermal mixed states which define a Euclidean effective field
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theory on the S-brane world-volume. By computing the boundary state of this
theory we determine the long range closed string production. At a critical value of
the coupling the S-brane reduces to an array of sD-branes on the imaginary time
axis. In real time this corresponds to a purely closed string configuration with no
D-branes, yet the long range force felt by an observer is proportional that produced

by the original unstable D-brane.
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Chapter 1

Introduction

1. Time Dependence in String Theory

The study of time dependent systems — and indeed the notion of time itself
— has played a crucial role in the development of modern physics. The theory
of relativity, for example, describes time and space not as separate entities but
in terms of a single, smooth space-time geometry. Quantum mechanics, however,
implies that these classical notions of space-time break down at very short distances.
The standard theories of gravity and quantum mechanics simply can not describe
physics at such small scales, and something new is required — a quantum theory
of gravity. String theory provides an elegant and radical solution to the problem
of quantum gravity. In doing so it promises to unify the two great triumphs of
the twentieth century — the theory of relativity and the standard model of particle
physics — into a single coherent formulation of fundamental physics. Many aspects of
string theory remain mysterious, however, and must be understood if string theory
is to live up to it’s early promise. Nevertheless, string theory has already solved
many of the long-standing and difficult problems in theoretical physics. In the
theory of gravity, for example, the list of accomplishments includes a microscopic
understanding of the structure of black holes and the resolution of singularities.
On the particle physics side, string theory provides insights into the fundamental
structure of quantum theories and progress towards understanding the origin of the
standard model of particle physics. Perhaps the most striking discovery is that
these and many other seemingly unrelated problems are in fact intimately related

by web of dualities.



While impressive, this list of achievements is primarily limited to static, time-
independent systems. The study of time-dependent systems in string theory has
proven surprisingly difficult, and until recently little progress had been made. This
question is not completely academic, as quantum gravity plays a crucial role in the
cosmological evolution of our universe. In fact, astronomical observations provide
one of the most exciting prospects for experimental tests of string theory.

This thesis contains my contributions to the study of time-dependent systems
in string theory. The following three chapters describe three different approaches
to the subject, which I shall now summarize in turn. Most of the material in this

thesis has appeared previously, in references [1-3].

1.1. Conformal Vacua and Entropy in de Sitter Space

We live in an expanding universe. Over the course of history, our universe has

090, Recent astronomical observations indicate

grown in size by a factor of about 1
that this expansion will continue forever, and that in the far future our universe
will gradually come to resemble a geometry known as de Sitter space. Moreover,
the most promising theories of the early universe posit that our universe resembled
de Sitter space in the far past. An understanding of de Sitter space in quantum
gravity is therefore of paramount importance.

de Sitter space is the simplest example of a time-dependent cosmology, and is
one of the oldest and best studied solutions of general relativity. It is characterized
by exponential expansion; every point in de Sitter space expands away from every
other point with exponentially increasing velocity. Eventually this rate of expansion

will exceed the speed of light, at which point no two observers will ever be able to

communicate with one another. ! The two observers will be separated by an event

1 In de Sitter space, everyone ends up alone — it has been called “the ultimate existential

nightmare.”



horizon, much like the one that surrounds the interior of a black hole. This analogy
between black holes and de Sitter space has guided much of the previous work on
the subject. String theory successfully describes the microscopic physics of black
holes, so it is natural to seek a similar understanding of de Sitter space in string
theory.

Moreover, a close cousin of de Sitter space, called Anti-de Sitter space, has
proven remarkably interesting in string theory. String theory in a D dimensional
Anti-de Sitter space is precisely equivalent to a theory of particle physics in D — 1
dimensions. Such an equivalence between two different theories is known as a du-
ality; in recent years string theory has provided several amazing examples of dual
theories. The Anti-de Sitter duality is especially interesting because the correspond-
ing dual theory lives in one less dimension, a phenomenon known as holography. It
is natural to speculate that string theory in a D dimensional de Sitter space has a
dual holographic description as a D — 1 dimensional theory of particle physics.

The second chapter of this thesis explores this conjecture in detail, along with
several related phenomena. The duality conjecture allows us to match certain fea-
tures of de Sitter space to analogous features of the dual D — 1 dimensional theory.
One such feature is the existence of conformal vacua — this is the statement that the
notion of empty space, or vacuum, is not a well defined concept in de Sitter space.
In fact, in any time-dependent geometry what one observer sees as empty space
may appear to another observer as a bath of radiation. This ambiguity greatly
constrains the structure of the dual D — 1 dimensional theory. Moreover, the ex-
istence of a dual holographic theory explains several other mysterious features of
de Sitter space. Certain properties of the event horizons, for example, have elegant

descriptions in terms of the dual particle theory.



1.2. de Sitter Space in Non-Critical String Theory

The third chapter, continuing the study of time-dependent backgrounds, gives
a construction of de Sitter space in a specific model of string theory. The string
theory under consideration, known as non-critical string theory, has a variety of
unusual features. The most well studied class of string theories — called critical
string theories — contain six extra dimensions in addition to the four that we live in,
for a total of ten dimensions. These six new dimensions are necessary to describe
a theory in flat space, i.e. a theory without space-time curvature. Other theories,
known as non-critical string theories, have more than six extra dimensions — they
can be used to describe curved geometries such as de Sitter space. However, the
same features that make these theories useful, namely the existence of more than
six extra dimensions, make them difficult to study.

The construction of de Sitter space in string theory involves another unusual
phenomenon, the appearance of non-geometric dimensions. The classical theory of
gravity describes space and time in terms of smooth, continuous geometry. However,
this description breaks down at very short distances. On these small scales the
traditional notions of space and time are replaced by new, string theoretic quantities.
These non-geometric concepts play a crucial role in the construction of de Sitter
space. For example, a four dimensional de Sitter solution is found by considering a
D dimensional non-critical theory, with D —4 of the dimensions taking this peculiar,
non-geometric form.

Any construction of de Sitter space in string theory is plagued by the problem
of vacuum instability. In particular, one expects that after a certain amount of
time these de Sitter solutions will spontaneously decay into flat space. A quantum
fluctuation will lead to the creation of a spherical bubble of flat space inside the

de Sitter geometry. The walls of this bubble expand at velocities approaching the



speed of light, converting everything in their path into empty flat space. 2 The final
part of this chapter describes a mechanism by which certain de Sitter constructions
evade this problem. These considerations are certainly important if, as astronomical
observations indicate, our universe will come to resemble de Sitter space in the far

future.

1.3. S-Brane Thermodynamics

The final chapter of this thesis concerns spacelike branes, a different type of
time dependent background. String theory contains, in addition to the eponymous
strings, a host of additional objects called branes. Whereas strings are one dimen-
sional objects, these branes are extended in more than one dimension — membranes,
for example, are objects that extend in two dimensions. Some of these objects are
unstable and if perturbed slightly will quickly decay into a bath of radiation. This
decay process, often referred to as a spacelike brane or S-brane, is one of the few
time-dependent backgrounds that can be readily studied in string theory.

An obvious first task is to determine the dynamics and composition of this
decay. In general, an unstable brane may decay into either open strings or closed
strings. Open strings — strings whose endpoints can move freely in space — are typ-
ically associated with theories of particle physics. Closed strings, whose endpoints
join to form a closed loop, describe the gravitational and geometric fluctuations of

space-time. Both types of decay play a crucial role in the study of S-branes.

2 These decays have been playfully referred to as “the ultimate ecological catastrophe.”
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Chapter 2

Conformal Vacua and Entropy in de Sitter Space®

2. Introduction and Summary

Recently, following earlier work [4-15], a proposal has been made relating quan-
tum gravity in de Sitter space to conformal field theory on the spacelike boundary
of de Sitter space [16]. The proposal was motivated by an analysis of the asymptotic
symmetry group of de Sitter space together with an appropriately crafted analogy
to the AdS/CFT correspondence [17,18,19]. Other relevant discussions of quantum
gravity in de Sitter space and dS/CFT appear in [20—42].

Unlike the AdS/CFT case, there has been no derivation of the proposed
dS/CFT correspondence from string theory. Hopefully, a stringy construction of
de Sitter space will be forthcoming. Meanwhile, much has been learned about
AdS/CFT by analyzing solutions of the field equations and studying the propaga-
tion and interactions of fields, without directly using string theory. In this paper we
pursue a parallel approach to dS/CFT, analyzing in some detail massive scalar field
theory in de Sitter space. A number of surprising and interesting features emerge.
Since this paper contains some rather detailed calculations, for the benefit of the
reader we include a summary in this introduction.

We begin in section 2 with a discussion of dS-invariant Green functions for a
massive scalar, reviewing and generalizing to d dimensions the discussion of [43,44].
We first describe the Green function obtained by analytic continuation from the
Euclidean sphere. This is the so-called Euclidean Green function, and it is the
two-point function of the scalar field in the Euclidean vacuum. We then construct

a family of dS-invariant vacua labeled by a complex parameter o and compute the

3 This chapter is based on the paper [1], with R. Bousso and A. Strominger.
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Green functions in these a-vacua, which have several peculiarities. Singularities
occur at antipodal points which are however, unobservable since antipodal points
are always separated by a horizon. Moreover, these singularities do not affect the
scalar commutator, which is independent of a. We also see that the coincident
point singularity has two terms, with opposite-signed ie prescriptions. Hence all
of these a-vacua except for the Euclidean vacuum differ from the usual Minkowski
vacuum at arbitrarily short distances. We also compute the response of an Unruh
detector and find that it is thermal only in the Euclidean vacuum. The dual CFT
interpretation of the a-vacua is deferred to section 4.

In relating the AdS/CFT and dS/CFT correspondences, it is natural to con-
sider the particular Green function obtained by ‘double’ analytic continuation from
AdS to dS via the hyperbolic plane. We show that the Green function so obtained,
while dS-invariant, does not correspond to the Green function in any known dS-
invariant vacuum.* This result underscores the non-triviality of extrapolating from
AdS/CFT to dS/CFT.

In section 3 we consider scalar field theory in spherical coordinates

ds’ 2 2 2
£—2 = —dt + cosh Tde—l’ (21)

again generalizing [43,44] to d dimensions. A salient feature of these coordinates
is that they cover all of de Sitter space and hence are suitable for studying global
properties. The solutions of the massive scalar wave equation are found for arbitrary

angular momentum. We then give an explicit construction in terms of these modes

4 We benefitted greatly from discussions with M. Spradlin and A. Volovich on this point.
There is in fact a four-complex-parameter family of dS-invariant Wightman functions,
characterized by the (complex) strengths of the coincident and antipodal poles, as well
as the two possible i€ prescriptions at each pole. Only a one-complex-parameter family
of these is known to be realizable as two-point vacuum expectation values. Analytic

continuation from AdS gives a result which is not realized within this family.

7



of the Bogolyubov transformations relating all the a-vacua. Special ‘in’ and ‘out’
vacua are found, which are distinct from the Euclidean vacuum. The in vacuum
has no incoming particles on Z—, while the out vacuum has no outgoing particles
on ZT. The Bogulubov transformation between them is computed. Surprisingly,
it is found to be trivial in odd-dimensions. This means that for the in vacuum of
odd-dimensional de Sitter space there is no particle production. This result did not
appear in previous analyses, which largely considered the four-dimensional case.

In section 4 we specialize to dS3 and consider the dual CFT; interpretation
of these results, along the lines proposed in [16]. We first compute the boundary
behavior of the massive scalar Green function as a function of the vacuum parameter
«. This behavior is fixed by conformal invariance up to overall constants which are
a-dependent. The boundary correlators have an especially simple form in the in
vacuum. For both points on Z~ (or both on Z%) they vanish!®> This is related
to the fact that on Z— the spatial kinetic terms vanish and the theory becomes
ultralocal. For one point on Z~ and one on ZT they do not vanish. The simplicity
of this behavior suggests that the in vacuum, despite the unphysical singularities,
may play an important role in understanding the dS/CFT correspondence.

One way of generating a family of correlators in a CFT is by deforming the
theory by a marginal operator. In [16] it was argued that a scalar field of mass
m is dual to a pair of CFT operators Oy with conformal weights 1 + /1 — m2£2.
The composite operator O;O_ always has dimension 2 dor any m, exactly what
is required for a marginal deformation. We show explicitly for real o that this
composite operator deforms the correlators in the same way as shifting a.

In section 5 we consider the definition of the adjoint in the Hilbert space of
the scalar field. In standard treatments of 2D Euclidean conformal field theory, the

adjoint of an operator involves a (non-local) reflection about the unit circle. This

5 Except for a contact term which is computed.
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prescription becomes the usual local adjoint when mapped to the cylinder. The
“naive” adjoint for a bulk scalar field induces an adjoint in the Euclidean CFT
which is local, and hence does not agree with the usual Euclidean CFT adjoint.
However, in [20] Witten introduced a modified bulk inner product and corresponding
adjoint. We show that, after a modification of the parity operation, Witten’s bulk
adjoint induces precisely the standard non-local Euclidean CFT adjoint. We further
show that with the modified adjoint the SL(2,C) generators obey LI = £_,, (in
a standard notation), as opposed to the relation £ = L£,, implied by the naive
adjoint.

As in the AdS case one expects that different coordinate systems in dS are
relevant for different physical situations. In section 6 we consider static coordinates
for dSs3, in which the metric is

ds?

- =1~ r?)dt? + + r?dy?, (2.2)

r
T
where ¢ is the de Sitter radius. These coordinates do not cover all of dS3 with
a single patch. Nevertheless, they do cover the so-called southern diamond—the
region causally accessible to an observer at the ‘south pole’ r = 0. Moreover, the
symmetry generating time evolution of the southern observer is manifest in static
coordinates. Hence they appear well-adapted to describing the physics accessible
to a single observer, as advocated in [45]. Z~ is at r — oo and is conformal to a
cylinder.

In the (¢,r,¢) coordinates, the full dS3 spacetime can be covered with four
patches separated by horizons. We solve the scalar wave equation in each patch
and construct global solutions by matching across the horizon. It is shown that
the in vacuum on the cylinder and the in vacuum on the sphere are equivalent. A
southern density matrix is constructed from the Euclidean vacuum by tracing over

modes which are supported only in the northern causal diamond and are thereby
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unobservable to the southern observer. This is explicitly shown to be a thermal
density matrix at temperature Tys = ﬁ, with energy measured with respect to
the static time coordinate in (2.2). (This result is implicit in the original work [46].)

In section 7 we extend the static coordinate discussion to the Kerr-dS3 geometry
which represents a pair of spinning point masses at the north and south poles of
dSs. This has a Gibbons-Hawking temperature Ty and angular potential Qg
which depend on the mass and spin. It is shown that, after tracing over northern
modes, one obtains a thermal density matrix at precisely temperature Tgy and
angular potential Qgpr.

According to the dS3/CFT5 correspondence the quantum state on a bulk space-
like slice ending on Z~ is dual to a CFT state on the boundary of the spacelike slice
at Z~[16]. The dS-invariant bulk vacuum should be dual to the SL(2,C) invariant
CFT vacuum. For pure de Sitter space, we therefore expect to see a Casimir energy
—c/12, where ¢ = 2% is the central charge of the CFT computed in [16]. We find
a two-parameter agreement with this expectation by computing the Brown-York
boundary stress tensor in Kerr-dSz. This generalizes results of [45].

Finally, in section 8 we turn to the issue of de Sitter entropy. In the case of BTZ
black holes in AdS3, the entropy formula can be microscopically derived, including
the numerical coefficient, from the properties of the asymptotic symmetry group
together with the assumption that the system is described by a consistent, unitary
quantum theory of gravity [47]. String theory seems necessary in order to produce
an actual example of such a theory, but the general arguments follow from the
stated assumptions independently of the stringy examples. Therefore it is natural
to hope that a similar discusion is possible for dS3. We report here some partial
results but not a complete solution of the problem. Related discussions appear in
[6,11,48-53].

The main observation is that if we simply assume Cardy’s formula for the den-
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sity of states, then a CFT with ¢ = % at temperature Ty and angular potential
Q¢ g has a microscopic entropy precisely equal to one quarter the area of the Kerr-
dS3 horizon. The two-parameter fit is striking but at present should be regarded
as highly suggestive numerology rather than a derivation. For one thing, the dual
CFT is unlikely to be unitary [16], and so there is no reason for Cardy’s formula to
apply. Secondly, it is not clear how a mixed thermal state arises in the dual CFT.
The natural CFT state associated to Z~ is the SL(2, C) invariant vacuum, in agree-
ment with the pure nature of the global bulk de Sitter vacuum. A mixed density
matrix arises in the bulk only after tracing over the unobservable northern modes.
However, tracing over northern modes is a bulk concept. We have not succeeded in
finding a natural boundary interpretation of this operation.

We believe this raises a sharp and important question whose answer may lie
within the present framework and in particular may not require a stringy construc-
tion of de Sitter. What is the meaning, in terms of the dual boundary CFT, of
tracing out degrees of freedom which are inaccessible to a single observer?

Two appendices detail useful properties of hypergeometric functions and de
Sitter Green functions. For the rest of the paper we will set £ = 1 unless otherwise

stated.

3. Green Functions

The two point Wightman function of a free massive scalar can be used to
characterize the various de Sitter invariant vacua. In this section we describe these
Green functions and their properties. Previous studies of scalar field theory in de
Sitter space, largely concentrating on the four-dimensional case, can be found in

[43,44,54-63].
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3.1. The FEuclidean Vacuum and Wightman Function

In this subsection we review the standard Euclidean vacuum and its associated
Wightman function.

d-dimensional de Sitter space (dS,) is described by the hyperboloid in d + 1-
dimensional Minkowski space

P(X,X) =1, (3.1)

where

P(X,X") = nap XX, a,b=0,...,d. (3.2)

We will use lower case x to denote a d-dimensional coordinate on dS; and upper
case X to denote the corresponding d + 1-dimensional coordinate in the embedding
space. The function P(z,z') is greater than one for timelike separations, equal to
one for lightlike separations, and less than one for spacelike separations. In fact,
P(z,z') = cosf, where 6 is the geodesic distance between z and z’ for spatial
separations, or ¢ times the geodesic proper time difference for timelike separations.

A vacuum state |Q) for a free massive scalar in de Sitter space with the mode

expansion

$() =D [andn(@) + al¢ (x)] (3.3)

n

can be defined by the conditions
an|Q) =0, (3.4)
where a,, and a}; as usual obey
[an; al] = Gnm.- (3.5)
The modes ¢, () satisfy the de Sitter space wave equation

(V2 = m?)pn =0, (3.6)



and are normalized with respect to the invariant Klein-Gordon inner product

(G bm) = —i /E s (qsnb‘,iqs;) = Snm.- (3.7)

The integral is taken over a complete spacelike slice ¥ in dS; with induced metric
hij, and d¥# = d%zv/hn*, where n* is the future directed unit normal vector. The
norm (3.7) is independent of the choice of this slice. |2) depends on the choice of
modes appearing in (3.3).

The Wightman function, defined by

Go(z, ') = (Qp(x) (') |2) = Zcbn ), (3.8)

characterizes the vacuum state |2). There is a unique state, the “Euclidean vac-
uum” |E), whose Wightman function is obtained by analytic continuation from
the Euclidean sphere. This state is invariant under the full de Sitter group. In d
spacetime dimensions the Wightman function in the state |E) is

Gpla,a') = (E|(a)o(a") B) = emaF (s o5 D7),

d—1
hiETiiu

ME\/mz_ (%)2 (3.9)

__T(ha)T(h)
™ (4m)a/er(d)

G is real in the spacelike region P < 1 and singular on the light cone P = 1. The

1€ prescription near the singularity is
_d
Gplz, o) ~ ((t—t' —ie)® —|#—Z%) 2. (3.10)

Note that this prescription cannot be written in terms of the invariant quantity P

alone, which is time-reversal invariant. Gg obeys

(V2 —=m?H)Gg(z,7') = 0. (3.11)
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In addition to the Wightman function, the Feynman propagator

Gr(z,z') =00 —t)G(z,z") + Ot —1)G(2, 1) (3.12)

and commutator
Go(z,2') = G(z, ") — G(2', x) (3.13)
are also of interest. With the normalization (3.9) G obeys

—1

Vi

(V2 = m*)Gp(z,z') = 6%z, ). (3.14)

3.2. The MA Transform

In this subsection we describe the MA (Mottola-Allen) transform [43,44], which
relates the various de Sitter invariant vacua and Wightman functions to one another.
Let QSE (z) denote the positive frequency modes associated to the Euclidean
vacuum. Explicit expressions for ¢Z will be given later (sections 3.3 and 6.5), but
we don’t need them now. Let x4 denote the antipodal point to x on the de Sitter
hyperboloid (i.e., X4 = —X). Then, as will be seen below, the Euclidean modes

can be chosen to obey
¢ (24) = by (2). (3.15)
Now consider a new set of modes related by the MA transform

1

T E a  Ex
¢n—Na(¢n +e ¢n )a Na \/W-

(3.16)

where o can be any complex number with Re @ < 0. The modes (3.16) can be used
to define new operators G, and @, via a decomposition of the form (3.3). These are

related to the Euclidean operators aZ and a7 by

n = Ny(aZ — e* afT), (3.17)



This may be rewritten as

an = U U, (3.18)
where
Ef\2 =/ E\2 1 —Rea\ _ima
U = exp Zc (a, ") —c(a,)*py, cla)= 1 In tanh e . (3.19)
The vacuum state
o) =U |E) (3.20)

is annihilated by the a,,. The operator I/ is unitary, so (3.20) is properly normalized.
In the quantum optics literature, |a) is known as a squeezed state. Equation (3.20)

may be formally rewritten as

la) = C'exp (%ea*(aETf) |E), (3.21)

where C is a constant. Although this expression is not normalizable (so C' is tech-
nically zero), it is often more convenient than (3.20).
The Wightman function in the state |«a) is
Ga(z,2') =) ¢u(@)d}(2). (3.22)
n
Using (3.15) and (3.16) this can be rewritten as a sum over Euclidean modes,

Gal NZZ (62 (@)$B* (2') + > ¢8 (2 )$2* ()
(3.23)

+ ey (@) (2') + €y (wa) g7 * (o),

and then evaluated as

Go(z,2') = N2[Gg(z,2') + T Gr(z/,z) + e* Gg(z, o)) + e*Gg(za,z')].
(3.24)
Hence it is easy to obtain the |a) Wightman function from the Euclidean one.

Since these Wightman functions depend only on the SO(d, 1) invariant quantity P
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(away from the singularities) this construction demonstrates the invariance of the
|a) vacua under the connected part of the de Sitter group. Note however that if « is
not real the collection of modes (3.16) is not mapped into itself by CPT. Therefore
the |a) vacua are C'PT invariant only for real a.

Of course, since the commutator of two fields is a c-number, the commutator
function G¢ must be the same in all vacua. It is easy to check that the commutator
constructed from the two point function (3.24) has this property.

The Wightman function (3.24) has several peculiarities. Firstly, there are an-
tipodal singularities at 2’ = x 4. However such antipodal points are separated by a
horizon so this singularity is not observable. Secondly, the singularity at coincident
points has a negative frequency component coming from the second term in (3.24)
(although the commutator is unaffected). This means that for e* # 0 the vacuum
state does not approach the usual Minkowskian one even at distances much shorter
than the de Sitter radius. This “unphysical” behavior was to be expected since
the MA transform (3.16) involves arbitrarily high-frequency modes. Despite these
peculiarities we will see that these vacua play an interesting role in the dS/CFT

correspondence.

3.3. Analytic Continuation from AdS

An alternate way to get a dS Green function is by double analytic continuation
from AdS via the hyperbolic plane.® In fact, we shall argue that this yields a Green
function which differs from any of those discussed in the previous subsection and
therefore, as far as we know, is not physically realizable as the Wightman function
in any vacuum state. Hence the dS/CFT correspondence is not in any precise sense
that we know of the analytic continuation of the AdS/CFT correspondence, and

care must be taken in extrapolating from the latter to the former.

6 See [5,10,64] for discussions.
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AdS; has a unique SO(d— 1, 2) invariant vacuum whose scalar Green functions
can be obtained as a sum over normalizable eigenmodes. The wave equation allows
two possible falloffs (fast and slow) at infinity, but only the fast falloff appears in
the Green function. Double analytic continuation from AdS to dS will therefore
yield a dS Green function with only one of the two possible falloff rates (which
become complex conjugates for large enough m). This cannot be the Euclidean
dS Green function, as the latter involves both falloffs. There is a vacuum |«)
whose Green function has the required falloff”. However from (3.24) we see that
the Green function for every state except |E) has a coincident point singularity
with a coefficient larger than that of |E) and containing two terms with opposite-
signed ze prescriptions. However double analytic continuation from AdS will yield a
coincident point singularity with a canonical coefficient and a single ie prescription.

Hence it yields a Green function which is not realized as (a|¢(x)¢(z')|a) for any .

3.4. Particle Detection

In this subsection we discuss particle detection by a geodesic observer in the
|a) vacua. We will find a thermal spectrum only for the Euclidean vacuum.
Consider an Unruh detector moving along a timelike geodesic, which couples

to the field as
/ dt m(t) ¢(x(2)) (3.25)

where m(t) is an operator acting on the internal states of the detector and the inte-
gral is over the proper time along the detector worldline. Without loss of generality
we may take the detector to be sitting on the south pole. Let’s assume that the
detector has a spectrum of states |E;) with energies E;, and define the matrix ele-
ment m;; = (E;|m(0)|E;). In the vacuum state |«) the transition rate between the

states |E;) and |E;) may be evaluated in perturbation theory (see, e.g. the review

7 It turns out to correspond to the in vacuum discussed below.
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[65])
P.(E; — E;) = |myj|? /oo dt e 2B G, (x(t), 2(0)) (3.26)
where AE = E; — E;.
First, let us study particle production in the Euclidean vacuum. For two time-
like separated points  and x’ we have P(x,z’) = cosht and P(x4,2’) = — cosht,
where ¢ is the proper time between z and z’. We take ¢t to be positive (negative)

if £ is in the future (past) light cone of 2’. As a function of ¢, the appropriate ie

prescription for the Wightman function is
Gg(z,2') = Gg(t — ic) (3.27)

indicating that for positive (negative) ¢ we should go under (over) the branch cut

from P =1 to P = oo in (3.9). As a function in the complex ¢ plane Gg obeys
Gg(t) = Gg(—t — 2mi). (3.28)
G5 (t) = Gg(t — 2mi). (3.29)
To evaluate Gg(2',x) we must take t — —t
Gg(x', 1) = Gp(—t — ic) = Ge(t + ic — 27). (3.30)
Similarly, we may evaluate
Gg(z,7'y) = Gg(za,2') = Gg(t — 7). (3.31)

The points x and 2’y are spacelike separated, so it is not necessary to insert an ie.

Let us consider the example of d = 3. As a function of ¢, the Green function
(3.9) has singularities at t = nm¢ for allm # —1. This may be seen from the alternate
form of the Green function presented in Appendix A. Thus in the evaluating (3.26)

we may deform the contour of integration in the complex ¢ plane

/ dte T AE G (t — ie) = e AP / dte AP G (t — i)
- = (3.32)
S / dte AP G (t — 2mi + de).
—0oQ
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The e~“F terms have been dropped. Using (3.28) and the second line of (3.32) we
find that the detector response rate (3.26) obeys

Pp(E; — E;

E( — .7) — e—27|'AE (333)
in the Euclidean vacuum. This is the condition of detailed balance for a thermal

system at the de Sitter temperature

1
™

For a general vacuum state |a) we may use the identities (3.32) to relate the

integrals of all four terms in (3.24). We find

/ dte AP QL (t — i€) = N2[1 4 e2tAF)2 / dte AEL G (t —de).  (3.35)

— 00 — 00

So the ratio (3.33) becomes®

Pa(Ei — EJ) _ e—27rAE

1+ea+7rAE 2

(3.36)

Pa(Ej — EZ)

1+ ea—7AE
We conclude that the detector response is not thermal. In general the detector
will not equilibrate. Even though the ratio (3.36) is non-zero, we will see in the
next section that there are vacua for which, in a certain sense, there is no particle

creation.

4. The Sphere

In this section we study scalar field theory on dS; in global coordinates (7, £2).

The metric is

ds* = —dr? 4 cosh? 7dQ?_,, (4.1)

where ngl_1 is the usual metric on S9!, parameterized by the coordinates 2. A
important feature of these coordinates is that they cover all of dS; and hence are

suited to a global description of the quantum state.

8 This expression was obtained for the case of a scalar with conformal mass in [62].
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4.1. Solutions of the Wave Equation

In this subsection we find solutions to the massive wave equation
(V2 —m?)¢ =0. (4.2)
This differential equation is separable, with solutions
¢ =yr(1)Yr; (). (4.3)
The Yy,; are spherical harmonics on S¢~1 obeying
V%Y = —L(L +d—2)Yyg;. (4.4)

Here L is a non-negative integer and j is a collective index (j1,...,j4—2). We will

use a non-standard choice of Y ;’s, with
Y (Q4) = Y75(Q) = (=) YL;(Q). (4.5)
Here Q4 denotes the point on S?~1 antipodal to €. In terms of the usual spherical

i —i
YL; = \gsLj + ()4 5 iy (4.6)

The functions Yz; are orthonormal,

harmonics Sy,;,

/dQ Yo (Y7 () = dnr6j5, (4.7)
and complete,

D VL (Q)YE () = 6471H(Q, Q). (4.8)

Lj

We then have

. . L(L+d-—2
i + (d— 1) tanh 1y, + [m2 + LL+d=-2) yr, = 0. (4.9)

2
cosh” 7
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In terms of the coordinate ¢ = —e?” this becomes

d—1 d—1 m2l—o L(L+d-2)
1— “ 1——)—(1+ —— ! — — = 0.
o=+ |- 5 - o+ S up e | 2T - HEELEE N,
(4.10)
Let us make the substitution
yi® = cosh” et T Ty (4.11)

With

U= \/m2— @, (4.12)

equation (4.10) becomes a hypergeometric equation for z,
o(l—o0)z"+[c— (1+a+b)o]z’ —abz =0, (4.13)

with coefficients

d—1 d—1
a:L—}—?, b:L—I—?—iu, c=1—1ip. (4.14)

Let us consider the case of real positive y, i.e., 2m > (d — 1). We find that

d—1 d—1

) 2L—|—d/2—1
in __ L+ 5

Yy =

cosh” re@+ T —imTp([, 4

VE 2

— ;1 — ip; —e”7)
(4.15)

and its complex conjugate are two linearly independent solutions. The normaliza-

tion is fixed by demanding that these modes are orthonormal with respect to the

inner product (3.7), which is easily evaluated on Z~.

4.2. In and Out Vacua

We now use the solutions (4.15) to construct in (out) vacua with no incoming
(outgoing) particles, and find the Bogolyubov transformation relating them. Note
that (4.9) is invariant under time reversal. Hence we obtain another pair of linearly

independent solutions by defining

Y2t (1) =y (=7). (4.16)

21



Explicitly,

2L—|—d/2—1 P
cosh” Te(_L_%_“‘)TF(L +

N 2

out —

YL

At the past boundary (7 — —o0) we find that F — 1 and hence

2d/2—1 1

e(T_iiu’)T
Vi

yr —

while at the future boundary (7 — 00)

2d/2—1
Yt - ———e

N4T

—(%HM)T_

Thus we see that the modes
OF(z) =y (1) Y; ()

15 () =y (7)1 ().

1 . .
+oop; 1+ ops; —

6_2T).

(4.17)

(4.18)

(4.19)

(4.20)

are positive frequency modes with respect to the global time 7 near the asymptotic

past and future boundaries, respectively. They represent incoming and outgoing

particle states. They define two vacua, |in) and |out), which are annihilated by

the lowering operators associated to ¢'® and ¢°U®, respectively. Physically, [in) is

the state with no incoming particles on Z~ and |out) is the state with no outgoing

particles on ZT.

The Bogolyubov coefficients relating the two sets of modes can be found by

using the hypergeometric transformation equations (summarized in Appendix B)

and (4.5). One finds

P = Ae 0L gut 4 BT,

1, d odd 0, d odd
B = , ;
cothmy, d even (—)2 cschmp, deven

(4.21)

(4.22)



we have isolated the phase

p_az D(=im)T(L + %5 +ip)
L)L (L + %52 —ip)

e 20r — () (4.23)

for later convenience. The coefficients obey |A|?> — |B|?> = 1 as required for properly
normalized modes.

Note that B, the coefficient mixing positive and negative frequency modes,
vanishes in odd dimensions. This implies that the two sets of modes define the
same vacuum:

lin) = [out)  in odd dimensions. (4.24)

Hence, there is no particle production. If no particles are coming in from Z~, no
particles will go out on Zt.° This is in contrast to the even-dimensional case for
which there is always some particle production.

From (4.18) it follows that ¢; ~ e"~7 near Z~. In the language of [16], this
implies the modes ¢'* are dual to operators of weight A on the boundary. Likewise,
$™* are dual to operators of weight h_. The de Sitter transformations act on the
boundary theory as global conformal transformations, which do not mix operators
of different weight. We conclude that ¢ and ¢'™* do not mix under the de Sitter
group, so the states |in) and |out) are de Sitter invariant.

It is convenient to define the rescaled global modes
Ot (@) = €Ly (1) Yr;(Q)

(4.25)
B3 (2) = e ry™t (r) Y1, (Q),

This is a trivial phase shift, so |in) and |out) are the states annihilated by the lower-
ing operators associated to q;in and gz~5°“t, respectively. In this basis the Bogolyubov

transformation

L (z) = AdZS (2) + BT (x) (4.26)

9 Note however that according to (3.36) an Unruh detector still observes particles.
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has the form of an MA transform, and so can be used to define additional de Sitter

invariant vacua. The modes (4.25) have the useful property that for any point x
$Li(wa) = 925 (x) (4.27)

where x4 ~ (—7,$4) is the point antipodal to z. In odd dimensions this becomes
Ot (2a) = BL5* (o). (4.28)

This implies that in odd dimensions the in vacuum is CPT invariant, whereas in

even dimensions CPT interchanges in and out.

4.3. The Euclidean Vacuum

In this subsection we construct the Euclidean vacuum |E) in the basis of spher-
ical modes.

The Lorentzian de Sitter geometry (4.1) can be continued to Euclidean sig-
nature by taking 7 to run along the imaginary 7 axis, from 7 = —F to 7 = I,
The resulting geometry is a round d-sphere. We define the upper (lower) Euclidean
hemisphere as the portion of this path that lies in the upper (lower) complex 7
plane. In particular, the upper (lower) Euclidean pole lies at 7 = %r (r=-4).

We define positive frequency Fuclidean modes to be those that are regular
when analytically continued to the lower Euclidean hemisphere. In this subsection
we find these modes in global coordinates. The Euclidean vacuum |FE) is the state
that is annihilated by the positive frequency Euclidean modes.

We may rewrite (4.10) in terms of the variable z = 1 — 0 = 1 + €27, which is
well suited to analyzing the behavior of global modes on the Euclidean geometry.
Upon substituting

yE = cosh® L+ +im)Ty, (4.29)
we obtain the hypergeometric equation

2
z(1— 2)37;6 +[é—-(1+a+0b")0] cdl_a;: —ab*z =0, (4.30)
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with positive integer coefficient

¢c=2L+d-1. (4.31)
We find the general solution
where
d—1 d—1
U1:F(L—i-T,L-I-T—i-i,u;QL—i-d—l;z). (4.33)
The second solution is given by
d—-1 d—1
ngz2_2L_dF(1—L—T,1+z’u—L—T;3—2L—d;z) (4.34)
if d is odd, and by
Up=Urlnz+ Y Qe (4.35)
k=2—2L—d

if d is even; the coefficients Q) are found, e.g., in [66].

The Lorentzian geometry lies on the path from z = 1 (Z7) along the real z
axis to z = 400 (Z1). On the throat, at z = 2, it intersects with the Euclidean ge-
ometry, which lies on a unit circle centered at z = 1. The lower (upper) hemisphere
corresponds to the lower (upper) half-circle. The Euclidean poles are at z = 0. The
functions (4.32) have a branch cut from z = 1 to z = +o00. Hence, they are not
analytic on the whole Euclidean sphere. By choosing the Lorentzian path to run
just below the real axis (z — z — i€), we obtain solutions that are analytic on the
lower hemisphere and the entire Lorentzian geometry.

The first solution (4.33) is regular in these regions, whereas the second solution,
(4.34) or (4.35), becomes singular at the lower Euclidean pole, at z = 0 —ie. Hence
we discard the second set of modes and keep the first. The modes can be analytically
continued through the branch cut to the upper hemisphere, where they are not

expected to be regular.
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The normalized Euclidean modes are

1

E E
¢LJ (z) fL\/myL (7) LJ( )
where
Lyd/2—1;—L+951
yf = 2 cosh® reL+43 +in)
Vi
d—1 d—1
F(L+ T,L+ T+m;2L+d— 1;1+¢€%)
= '2L+d-1) T(ip)
"UOT@+ 5 T+ i)

The Euclidean Green function (3.9) is then given by the mode sum
Gg(z,x') = Zq&f](x)qbfj*(x')
L,j
This expression was given in the four-dimensional case in [43].

4.4. The |E) — |in) Transformation

(4.36)

(4.37)

(4.38)

In this subsection we show that the Euclidean and in vacua are MA transforms

of each other.

Let us again specialize to the case of 2m > (d —1). The y¥ are then related to

the y™® by
yr = fr ((—)“%e_wwii’* + e”“““y?) :
So the Euclidean modes are related to the global modes by

1
V1 —e2mp

from which it follows, along with (4.28) and (4.26), that

¢Ej = (Cl;lfilg + (—)%e_quifj*) .
¢]I:Jj($A) = ¢Ej*(37)

in any dimension. This implies the Euclidean vacuum is CPT invariant.
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Now, (4.40) may be inverted to give

Tin 1 atl _n *
¥y = e (W + () ety (142
which is an MA transformation with
d+1
a=—Tp+1 (%) . (4.43)

We have thus identified the MA transformation relating the |in) vacuum and the

Euclidean vacuum |E).

5. CFT Interpretation

In this section we interpret the CPT invariant (real o) family of bulk de Sitter
invariant vacua as a line of marginal deformations of the boundary CFT. A similar
interpretation may extend to the the case of general complex o but we do not pursue

it here. In this and later sections we restrict to the case d = 3.

5.1. T Correlators

In this subsection we evaluate the various Green functions appearing on the
right hand side of (3.24) for x and 2’ on Z%, and then put the results together to see
how the boundary values of the correlators depend on . We use global coordinates
(1,0), 0 = (w,w), where w = tan gew is the complex coordinate on the 2-sphere,

so that
dwdw

2 __ 2 2
dS ——dT +4COSh TW.

(5.1)

The behavior of the correlators at Z* follows from the asymptotic form of the

hypergeometric functions. As |z| — 0o one has (see Appendix B)

Flhy s 352) = ep (=)™ e (-2) ™

_T()Clhz — ha) (5.2)
T T(he)T(E — hs)
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This expression is not in general real (unless z is real and negative) because the

hy+ =14 iy are not real. In spherical coordinates one finds near Z—

e—'r—'r' |’U) _ ,wl‘Z

lim  P(r,0;7,0") = — . .
P PO 0) = e ) (L w) (5:3)
For z = (1,0) and 2’ = (7/,0’) both on 7~
lim Gg(z,z') =€t (T+T’)A+ (o;0") + eh*(TJFT’)A_(J; a'). (5.4)

7,7 —>—00
A here is proportional to the two point function for a conformal field of dimension

h+ on the sphere:

(5.5)

1+ ww)(1 + w'a’
Ai(o;a'):llhicmdci[( +wi)( +2 )]hi.
| =]
We note that Gg(z,2') = Gg(a’',z) on I~ as the points are spacelike separated.
We have assumed here, and in the following expressions (unless explicitly stated)

that z and z’ are not coincident so that contact terms can be ignored.

Let us now consider the case where z is on Z= and z’ is on Z1. Since the

antipodal point to 2/, namely #/4 = (—7',0%) = (-7, — 2, — =), is on ™ we may

use (5.4) and the formula

P(z,z") = —P(z,7y). (5.6)

In continuing (5.4) to positive P we must take care to go above the branch cut, in

accord with the ie presription for the Wightman function with 7/ > 7. We find

lim Gp(r,a’) = -~ ™A (570%) — et T A (050%).  (5.7)

To evaluate Gg(x',2) we must go under the branch cut, yielding
lim Gz, z)=—e"* "™ A (0;0") — e~ De ™A _(5:0").  (5.8)

T—F— 00
' 500

Now we insert these results into formula (3.24) for the Wightman function in

the general vacuum state |«). For both points on Z~ one finds

lim Gu(z,z') = N2(1 —e*™™)(1 — e® e (THTIA L (0 0)
7,7 —=—00 ) ’ (59)
+ N2(1 — e ™) (1 — e T -+ A _ (05 07).
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On the other hand for z on Z~ and z’ on Z" we get

lim Go(z,2') = — N2e ™1 — e*tmH|2eh+ T=")A (0;0"y)
/oo (5.10)
— N2e™|1 — e ™ 2eh-T=TIA_(0;07).
We see that the boundary correlators depend nontrivially on the choice of vacuum.
Since we have taken |P| — oo, these formulae are valid only for non-coincident
points on Z* and omit possible contact terms.
Let us now turn to the interesting special case of the in vacuum, which has

a = —mp. For both points on Z— it follows from (5.9) that the correlators vanish!

On the other hand, for z on Z~ and z’ on Z7 we get

lim Gi(z,2') = —2sinhwpe T"A_(0;0"),

. ) ! 9 hy(r—T7") L (511)
lim Giy(z',2) = —2sinhmpe Ay (o;0).

T—F— 00
'r’—>oo

When the points on Z~ coincide there is a contact term which can be easily
computed by noting that the Wightman function on Z= reduces to a mode sum

over spherical harmonics. This gives

2 ,
lim  Gi(z,2') = =TT §2 (0, 0"). (5.12)
T,7'—=—00 9]

The situation can be described as follows. As Z~ is approached, the spatial
part of the scalar kinetic terms are exponentially supressed relative to the rest of the
action. Neighboring points decouple and the theory becomes ultralocal. It reduces
to a harmonic oscillator at each point; hence the vanishing of Gj,. However, the
map defined by propagation from Z~ to ZT is not ultralocal on the sphere. It
introduces nontrivial correlators when one point is on Z~ and the other is on Z7.

Of course, in other vacua—such as the Euclidean vacuum—there are nontrivial
I~ correlators. As will be seen in the next subsection, the wave functions for these
vacua differ from the in vacuum wavefunction by terms which are nonlocal on Z7—.

These terms are directly responsible for the nontrivial Z~ correlators.
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5.2. dS Vacua as Marginal CFT Deformations

Now we argue that the dual interpretation of the one-parameter family of dSg
vacua is a one-parameter family of marginal deformations of the CFT. It is conve-

nient to define operators on Z~ and ZT by

lim ¢(7,0) = ¢} (o)™ + ¢ (0)e" 7,

T —

lim ¢(r,04) = $5(0)e™"47 + 2 ()"

T

(5.13)

$3"* has been defined with an antipodal inversion relative to ¢! so that they trans-
form the same way under conformal transformations [16]. These are position space

versions of the creation operators associated to the spherical modes ¢™ and ¢°u¢,
in in T 2 in |y *
P (o) = (¢2Z(0))" = P > a T YE(0)
7
¢35 (0) = (62"(0)) = \[ Z“M Yi(04)

(5.14)

From the asymptotic Green functions (5.12) and (5.11) we find that the only non-

zero commutators are

[¢(0), ¢ (0")] = [63(0), 62"*(c")] = %52(@ a'),
[ (0), 3 (0")] = +2sinh mp A (0, o).

(5.15)

The in and out operators are related by a Bogolyubov transformation and
hence are not independent. In this subsection we take gbii‘ to be the fundamental

operators. At a general point in the bulk ¢ is determined from its value on Z~ via
() = z/ d2x'\/§Gc(:c,x’)<gT:¢(x'). (5.16)
-

In particular, taking z to be on ZT and using the limiting expression for G¢ (which

does not depend on «) we find

¢ () = —psinh ru/dza'Ai(o, o') (). (5.17)
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This is a position-space version of the Bogolyubov transformation (4.21).1° We see
that the absence of mixing between ¢ and ¢°"*, which seemed so surprising in
section 3.2, follows directly from the asymptotic behavior of the Green functions.

We note parenthetically that this implies the identity (verified in [67])
(psinh mp)? / d*0"A_(o,0")AL (0", 0") = 6%(0,0"). (5.18)

The |in) vacuum obeys

¢ (o)|in) = 0. (5.19)

The general |a) vacuum state discussed in section 2.2 can be constructed in terms

of the in vacuum as

H in u _\ M in u :
@ =ex{et [@odrem -l [Eogmoznli, 20
where
sinh T&ta
el = W, (5.21)

2

and the function c is given by (3.19). This equation may be formally rewritten as
la) = Cexp (ev* % / d’c ¢$¢>iut) |in). (5.22)

These vacua obey the manifestly SL(2,C) invariant condition

(o)) = —e7 ¢ (0)| ). (5.23)
This is most easily seen by applying the representation ¢'* = _%&ﬁ% of (5.15) to
+
(5.22). In particular, the Euclidean vacuum has o = —oo and therefore obeys
$2(0)| E) = e (a) | E). (5.24)

10 Tn fact, expression (5.17) is singular for ¢ = ¢’ and so is really defined by (4.21).
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Now we consider the boundary field theory. Consider the two operators O4
dual to gbiq‘:‘ with conformal weights h. According to the dS/CFT correspondence

[16], the dual Oy correlators are determined from the ¢ correlator (5.9) as

(0|04 (0)O04(d)|a) = —%Ni(l — e (1 — e FTA L (0, 0"). (5.25)

The commutators (5.15) also imply the contact terms

(@0 ()04 (o)) = 1— s 520, 0),
. (5.26)
' € Ko '
(2]04(7)O- (") o) = L2 (0,0)

1—er 7 2
From the CFT point of view this is an unusual contact term prescription in that it
depends on the operator ordering.

What is the CFT origin of the parameter a? Usually a one-parameter family of
correlators corresponds to a line of marginal deformations generated by a dimension
(1,1) operator. Indeed, O, O_ is a dimension (1, 1) operator. Let us consider adding
this operator to the two-dimensional CFT action with real coefficient A. At linear
order this perturbs the correlators according to the formula

0x (@04 (0) O (0")]) = —(alg / do" {01 (c")0_(0"), 01(0)04(0")} )

= —4u cothy (a|O4 (0)O4(d")|a).
(5.27)

Let’s take « to be real, so that (|04 |a) is a monotonically increasing function
of a. Then the variation of the two point function as a — a + € is proportional to
the deformation (5.27), which may be integrated to determine A as a function of a.

This strongly suggests that the family of CPT and SO(d, 1) invariant vacuum
states are marginal deformations of the boundary CFT generated by the (1,1)
operator O, O_. The two point functions of these CFTs can all be made equivalent
by rescaling operators, except for the special case « = —m . So in principle from this

analysis alone the CFTs with a # 7w might all be equivalent. In order to complete
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the argument one should check that the three point function is not invariant under

such rescalings. This has been shown in [68].11

6. CPT and the Inner Product

In this section we discuss various choices of norm for the Hilbert space of a
real scalar field on dSs, or equivalently the definition of the adjoint. The first naive

choice one might make is
¢ (2) = ¢(). (6.1)

However Witten [20] argues that this choice may not be well-defined for full quantum
gravity oustide of perturbation theory. An alternate norm is proposed [20] which
involves path integral evolution form Z~ to Z* together with CP7T conjugation. In
this section we will explicitly compute this norm for a free scalar and find, after
a slight modification involving the form of P, that it has a very natural boundary
interpretation: it yields the Zamolodchikov metric for the boundary CFT.

Before delving into details it is instructive to recall an isomorphic discussion
of norms which arises in the standard treatment of Euclidean CFT. Consider the

mode expansion for a free boson on the Lorentzian cylinder (ignoring zero modes)

X 0_ Lo7) = zz " —27rzn0 + %627%7“7_)_ (62)

n

1.

Using o’ ,, = a;, one finds

XT(oT,07)=X(0cT,07). (6.3)

On the other hand, the standard mode expansion on the complex Euclidean plane
is

(2,2) —zzl o+ 2 (6.4)

nz”

11 We thank Greg Moore for discussions on this point.
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Usin aT_ = a, one now finds
n

XH(z,2) =iy %(O;" =)
" (6.5)
= X(;’ ;)-

In this case the adjoint relates X at points in the Euclidean plane reflected across
the unit circle. In particular the norm of the state created by X (z, Z) or any other
operator is just the two point function, and hence is the Zamolodchikov norm.

Returning now to dSs, the naive adjoint rule (6.1) induces an adjoint in the
Euclidean boundary CFT of the form XT(z,2) = X(z,z). On the other hand we will
show that the modified Witten adjoint gives precisely (6.5). We further consider the
dS3 SL(2,C) isometry generators Ly, Ly, for n = 0,£1. It is shown that £ = L,
for the naive adjoint, but £{ = £_,, for the modified adjoint.

Although we take d = 3, much of the following discussion carries over simply

to higher dimensions.

6.1. Continuous and Discrete Symmetries of de Sitter Space

dS3 can be represented by the hyberboloid
XtX™ +2z2=12 (6.6)

in flat Minkowski space. The isometries of dS3 are then inherited from the SL(2,C)
Lorentz isometries of Minkowski space. The six generators can be written as com-
binations J + iK of rotations and boosts together with their complex conjugates.
We denote the associated Killing vectors by ¢, and (, for n = 0,41. The past and
future horizons of an observer worldline at z = 0 are located on the hyperboloid at

XTX~ =0. We denote the Killing vectors preserving this horizon as
Co+C=X"T0;-X"0_,
) (6.7
Co — Co = 20; — 20,.
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The four additional Killing vectors are

G=X10, —z0_,
C—l = X_az — 28+,
_ (6.8)
G =X10; —20_,
4_._1 = X_az - 284_.
They obey the Lie bracket relation
[C’mn Cn] = (n - m)Cm—*—n- (69)

In addition, we consider the two discrete symmetries parity and time reversal

PX*=X* = Pz= -z,
(6.10)
TX*=XF, Tz=u=
In terms of the global coordinates (7,(2), P takes a point Q = (6, ¢) on the 2-sphere
to the point PQ = (0, 7+ ¢) and T takes 7 to —r.

Our choice of parity P in (6.10) reflects all the coordinates about an observer
at the south pole. An alternate choice is Pz = z which reflects only one coordinate.
This is the choice employed in [20], motivated by the fact that the corresponding
CPT operation is known to be an exact field theory symmetry, after taking a flat

space limit of dS3. We shall indicate below how the results are modified if this

definition of P is employed.

6.2. CPT

We now compute the action of the discrete symmetries C, P and 7 on the field
operators.
We consider a real scalar field so that C is trivial. We wish to find Hilbert space

operators P and 7 that implement (6.10) on ¢(z) as

Po(x)P = ¢(Px), To(x)T = ¢(Tx). (6.11)
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As usual 7 = UK is an antilinear operator which combines a unitary operator U
with complex conjugation K of functions.

The mode expansions for ¢ in terms of the ¢ and ¢°"* modes are

¢(T,0)=Z(aij?( )Y1;(Q) + bLyp* (1) YL;(9)) (6.12)
¢(7,0) =Z( ag;ye" (1)Y1;(Q) + b33 ye™ (1)YE;(Q)) (6.13)

We have written lowering and raising operators as a’s and b’s, respectively, and are
not assuming here that af = b.
We define the action of P by
= (—)al, Pbi;P = ()b}, (6.14)
and similarly for the out operators. Since Yz;(P) = (—)7Yz;(£2) this definition
reproduces (6.11). We define the action of T by
TaanJT ( )LaOLl;t, Tblll?JT = ( )LbOUt (615)
At the same time it acts as complex conjugation on functions. The wave functions

appearing in (6.12) transform as

Y75(Q) = (=)*Yz;(9),

. (6.16)
yr (1) =y (=)
Putting this together gives
Té(r,0)T = Z (aZ5ye™ (—7)Y1;(Q) + b 'yp™ (—7)YE;(Q))
L (6.17)

= ¢(=7,0),
as required.
We wish to consider the action of CPT on the in and out field operators gbi};
and ¢"* defined by (5.13). Using (6.14)-(6.16) these obey
PTG (0)PT = ¢°™(Poa)

. (6.18)
PT¢3(0)PT = ¢2(Poa).
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6.3. The Witten Inner Product and Modifications

Following Witten [20], we now describe a modified inner product. First we
construct a bilinear pairing between states on Z~and states on ZT. We will consider

asymptotic states on Z* 12

iy = / T ()pR (o)), [T = / T () (o)im),  (6.19)

where U7 (£2) and U () are functions on the 2-sphere. Using (5.17), the out state

can be expressed as a linear combination of in states

|pouty = —,usinhmz//\Ilout(a')A_(a',a)¢$(o)|in). (6.20)

This corresponds to evolving the state [¥°U¢) backwards from Z* to Z~, and defines

the bilinear pairing

(T ) = —psinh 7 / / T (VA (o, 0) T (o). (6.21)

We now use the pairing to define an inner product on Z~ that is antilinear in the

first argument. Note that applying CP7T to a state on Z~ gives us a state on Z:
CPTI™) = [ W (Pag)§ (o) in (6.22)

to which we may apply the pairing (6.21). We find the inner product between two

states on 7~
(P[P = —psinh 7 / / T Q)A_ (PO, X)TR(Q).  (6.23)
For free field theory the norm (6.23) implies the adjoint relations!?

¢'(z) = ¢(PTz),

. (6.24)
1T (Q) = 3 (PQ).

12 Of course, these states are linear in '™ and b°*. The general asymptotic states will

take a more complicated form.

13 1t is intriguing that this adjoint relates degrees of freedom separated by a horizon.
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This may look strange at first but is in fact precisely the usual norm employed
for a Euclidean CFT. Note that P coupled with the antipodal map is reflection
about the equator, so that

11

PA(z,z) = (E’ ;), (6.25)

as in (6.5). For states constructed by acting with operators on Z—, it therefore
follows that the norm is simply the two point function. Hence (6.23) gives the
Zamolodchikov metric on the boundary CFT.

Formula (6.23) in fact remains valid for any choice of P. Using Pz = Z as in
[20], one finds instead of (6.25), PA(z,2) = (—%,—1). The adjoint then involves

rotation by m about z = 44 rather than reflection across the unit disc.

6.4. Adjoints of the SL(2,C) Generators

The quantum generators of the symmetries (6.7) and (6.8) are as usual given
by

L= / 5P T, CY,
> (6.26)

Zn :/ dzunu@;:
>

for any complete spacelike slice . We choose X to be the throat XT = X~ because

it is mapped to itself under both P and T'. For a massive scalar,

T () = 0,(2)00 () — % G [(V(@))? + mP¢2 ()] . (6.27)

With the ordinary inner product, 7, is hermitian, and one finds [,IL = L,. With

the modified inner product, one has
L= / d%* () T (PTx)Ch (). (6.28)
We then consider a coordinate transformation 2’ = PTx. One finds
L= / d¥H(PTx') T, (2') (4 (PTx). (6.29)
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Using the relations )
Cn(PTxl) = _C—n (xl)’

dS* (PT') = —dsi('),

(6.30)

it follows that

Ll =L_,. (6.31)

In [16] the SL(2,C) isometries of dS3 were conjectured to extend to a full Vi-
rasoro symmetry of the full quantum gravity (not just a free scalar). This naturally
acted not on closed spacelike slices but on asymptotically flat slices ending on Z. Tt

would be interesting to compute the adjoints of these generators.

7. The Cylinder

In this section we study scalar field theory in static coordinates. Again for
simplicity we specialize to dSg, although we expect the higher dimensional cases to

be similar. The metric is

ds* = —(1 —r?)dt® + + r2dp?. (7.1)

r
(1—r2)
This metric is singular at the horizons r = 1, which divides dS3 into four regions.
There are two regions with 0 < r < 1 corresponding to the causal diamonds of
observers at the north and south poles. We shall refer to these as the northern and
southern diamonds. There are two more regions with 1 < r < co containing Z+ and
Z~ which we shall refer to as the future and past triangles. On 7%, where r — oo,
the spatial metric approaches r2(dt?> + dp?) and hence is conformal to the cylinder.

Unlike the global coordinates, static coordinates do not smoothly cover all
of dS4. However, they are well-suited to describing the physics associated to an
observer who can access a single causal diamond. The Killing vector % is manifest

in static coordinates, but is future-directed only in the southern diamond; it is past-

directed in the northern diamond and space-like in the past and future triangles.
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In the following we solve the scalar wave equation in the four regions. Then we
patch the solutions together to get a global solution over all of dS3 by matching at
the horizons. We further show explicitly that tracing the Euclidean vacuum over
the Hilbert space of the northern modes leads to a thermal density matrix in the

southern diamond.

7.1. The Wave Equation

The equation of motion for a scalar field of mass m is (V2 — m?)¢ = 0. In

static coordinates, this becomes

1 1 1

The equation separates, so that a general solution can be expanded

(o]

o(t,r, p) = /0 dw Y aujduj + buid”? +al;dl; +bl¢%9%,  (1.3)
j=—00
where
Guj = Juj(r)e TP G0 = [T (r)em e, (7.4)

and f,;(r), f¥(r) are two linearly independent solutions of the radial equation

(1- T2)d2fwj + (} B 3r> Yuj ( A m2> fui = 0. (7.5)

dr? T dr

7.2. The Northern and Southern Diamonds
A solution smooth near r = 0 is given by
855 = Luslr)e 4%,

fui(r) =01 =122 F(a, b c;7%),

...

a =5 (] +iw +hy), (7.6)
1

b= §(|j| +iw+h_),

c=1+|j]

40



We have not normalized this solution, although the necessary factor follows from
computations below. The superscript S denotes that this solution is in the south-
ern diamond. One can show from the transformation formulae for hypergeometric

functions (see Appendix B) that

foi = f-wi = fuj- (7.7)
Similarly we may define northern modes

Ny = fuglr)e e tise, 789)

It is convenient to use the time coordinate ¢ both in the northern and in the southern
diamond. Although this coordinate system does not uniquely label points on all of
dS3, there will be no confusion since we denote northern functions with a superscript
N. The coordinate t runs forward in the southern diamond and backward in the
northern diamond. Hence for w > 0 the modes (7.6) are positive frequency and
(7.8) are negative frequency.

Near the horizon, for » — 1, one can show (see Appendix B for details) that
(7.6) becomes:

I'(—iw)

(3] = w + Py T (3 (4] = iw + )

iw

(1- 7'2)_7}.

o = eI+ |]) (1—r?)%

)1
~— Nl

(
N I'(iw
L(3(4] + iw + hy))D

—~

57l +iw+ho))
(7.9)

In order to analyze the flux across the horizons it is useful to introduce Kruskal

coordinates

=
t:lmeg) (7.10)
2 v
in which
ds® = ﬁ (—4dUdV + (1 4+ UV)?dy?). (7.11)
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U >0 and V < 0 in the southern diamond. The future (past) horizon is at V = 0
(U = 0). In contrast to the static coordinates, Kruskal coordinates are nonsingular

at the horizon.

The modes (7.9) become, for r - 1 (UV — 0):
fj — eli® [awj(—V)i“’ + o::,jU_i“’], (7.12)

where we define the complex constants

o P(1+ [j)T(—iw)2
YT TG (5] - iw 4+ )T (5 (5] — iw + ho))

=at (7.13)

_wj-

The first term in (7.12) is incoming flux across the past horizon, while the second is
outgoing flux across the future horizon. A similar analysis in the northern diamond

with U < 0, V > 0 gives for r — 1:
i\fj — eli¥ [aiji“’ + oz:,j(—U)_i“’]. (7.14)
The northern and southern modes are simply related by
s _ 4N
wj(_Ua _V) - (bwj(Ua V) (715)
The second family of solutions is given by

¢wj — 1n(7'2)¢wj + e—iwt+ij<PT-|j|(1 _ 7-2)%0 Z Anr2n7 (716)
n=-|j]

where the coefficients A,, are given in, e.g., equation 15.5.19 of [69]. These modes

are singular at r=0 for all 7 and hence are excluded.

7.3. The Past and Future Triangles

Let us analyze the behavior of the modes in the past triangle (which includes
Z~ but not Z) where 72 > 1. A complex solution of (7.2) is
qsg‘j*' = fu‘j'j(r)e_i“’“rij‘p,

1
2

1 (7.17)

f(j'j(r) =r (1 - )% F(a,1—a*; hy; r_2)

r
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Using properties of the hypergeometric functions one finds that fjj is invariant
under w — —w, but is not real. Therefore the second solution of (7.2) is obtained

by complex conjugation:
1n— ( ( ))*e—iwt—i-ijcp. (718)
This is equivalent to replacing Ay with h_ in (7.17). Near Z— we find

PIE TR (7.19)

wj

In the past triangle the coordinate r is timelike and past-directed, so that the ¢"~
are positive frequency for m? > 1.

Near the horizon, for r — 1, we find

int _, —iwttije I'(—iw) P2 _ 1%
buj Ml a i ra i —wriy " Y
L (= 1)7%].
(3 (=i +iw + by ))L(5 (4] + tw + hy))
(7.20)

The relation between static and Kruskal coordinates in the past triangle is

14UV
C1-UV’
1. U

t= 2 ln(v).

(7.21)

U and V are both negative in this region. The boundary with the northern (south-

ern) diamond is at V' =0 (U = 0). The near horizon behavior (7.20) becomes
g — €7 [Bui (=V)™ + Boui(=U) 7], (7.22)

where

= L(hy )T (—iw)2%
s T(L(j] = iw + b )T (=|j] — iw + hy)) (7.23)

Similarly one finds near » = 1 that

P — €928 i (V) + B (—U) . (7.24)
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One may also define modes in the future triangle by

¢2}1;t+ — fa—!-j(r)e—zwt+zgcp’

7.25
0 = () eere o
Near Z1 we find
ut+ —h
Gog T E, (7.26)

In the future triangle the coordinate r is future-directed, so that the ¢°"** are
positive frequency.

The relation between static and Kruskal coordinates in the future triangle is
again given by (7.21), which means that ¢ increases to the south (north) in the
future (past) triangle. U and V are both positive in this region. The boundary
of the future triangle with the northern (southern) diamond is at U = 0 (V = 0).

Near the horizons (UV = 0) the ¢°"* modes obey

¢gt;t+ — eij(p [ﬂwyvzw 4 ﬂ—ij_iw},

g _ , (7.27)
¢g\;t— — pl¥ [:Biwjvzw + I@:}jU—zw} )
The past and future modes are simply related by
utt __ ind
bo; (U V) =g (=U,=V). (7.28)

7.4. Matching Across the Horizon.

In the previous two subsections we have described solutions in the past and
future triangles as well as the northern and southern diamonds. By matching fluxes
across the horizon, these may be extended to global solutions over all of dSs. For
example the (—=V)% ((=U)~™) terms in the past modes (7.22) and (7.24) carry
flux into the southern (northern) diamond. The continuation of (7.22) and (7.24)
into these regions is obtained by matching to (7.12) along U = 0 and to (7.14) along

V = 0. Matching across the horizon again then yields the future mode.
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Henceforth we shall use the symbol ¢®* to denote the global solution so con-
structed. Similarly, ¢°“** will denote the global solution agreeing with (7.27) in the
future triangle. We may also construct global solutions ¢° (¢”) that agree with
the modes (7.6) ((7.8)) in the southern (northern) diamond—these solutions vanish
in the northern (southern) diamond.

From the matching procedure outlined above we find that these modes obey

S in ut—
i) _ A ) A o (7.29)
N‘ - “J ¢in‘— o wJ out+ ’ '
wj wj wj
where
awjﬁ:;j - awj/B—wj
NyjA,j= (7.30)
_a:zjﬁiwj a:;jﬁwj
and

Nuj = (BuiBu; — B-wiBlu;) = — (7.31)

€=

Reversing the signs of U and V' and using 0,Aoc, = A*, one finds that the second
equation in (7.29) follows from the first. The Bogolyubov transformation from Z—

to Z* then follows from (7.29) as

out— Qsinj}-
wj wj
=B.; , (7.32)
out+ in—
¢wj ¢wj
where
awjﬁz;j 0
Of: 'ﬁw )
Bwj = O'zA;.lo'mij = 7 * (733)
I awjﬂwj
0 *
awjﬂwj

As with the spherical modes of section 3.2, the Bogolyubov transformation (7.32) is
trivial. The vacuum [in) defined by the modes ¢ is identical to the vacuum |out)

defined by the ¢°ut.
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7.5. FEuclidean Modes on the Cylinder

In this subsection, following [70] we write the Euclidean modes as linear com-
binations of northern and southern modes.
In Kruskal coordinates the southern modes (7.6) in the southern diamond are
of the form
)= Fus(UV)ETe(— 1) % (7.34)
for U > 0,V < 0, and vanish for U < 0,V > 0. The northern modes in the northern

diamond are of the same form
N _ o Vi
Y, = fus UV (- 1) ¥, (7.35)

but have support for U < 0,V > 0 instead of U > 0,V < 0. We wish to find a
linear combination of (7.34) and (7.35) which is analytic in the lower complex U
and V planes.'* This can be accomplished by analytically continuing the southern

modes (7.34) to the northern diamond along the contour
U—e U, V —=eV, (7.36)

taking v from 0 to w. Notice that the product UV is independent of ~, so that the

continuation of the southern mode (7.34) is
—Tw 19 V iw
e " f,;(UV)e W(—ﬁ) z, (7.37)
Comparing with (7.35) we see that the linear combination

E _ S —7mw N

14 Buclidean modes were defined earlier to be regular on the lower Euclidean hemisphere
(tRe =0, -5 < 7™ < 0). Explicit transformation of coordinates shows that sgn U™ =

sgn VIm = ggn 7™

. The lower pole, 7 = —i3, maps to a single point, U = V = —i,
independently of #. Smooth curves through this pole remain smooth in the U and V
planes. Thus, modes that are analytic and bounded in the lower half U and V planes will

be regular on the lower Euclidean hemisphere.
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is analytic in the lower half of the complex U and V planes. Since t runs backwards
in the northern diamond, this is a linear combination of positive and negative fre-

quency modes. A second linear combination
oy = (B +e ™ (¢2,)" (7.39)

is also analytic in the lower half plane. Both ¢¥ and ¢’ are positive frequency for

w > 0.

7.6. MA Transform to Euclidean Modes

In this subsection we will show that the |in) vacuum on the cylinder is the
same as the |in) vacuum on the sphere by showing that it is an MA transform of
the Euclidean vacuum with @ = —mpu. This result is anticipated by the fact that
the dual CFTs should be simply related by the conformal transformation from the
sphere to the cylinder. Nevertheless, it provides a useful check on our constructions.

The first step is to redefine ¢'®* in order to simplify the expression for A in

(7.29). Let
in Gy ﬁw in
gt = =Lt
(7.40)
éin.— — (—’L)J awjﬁw] (bin'_-
Then (7.29) becomes
¢ {1« Gt
= (~i) , (7.41)
N j j Tin—
wi (=Ya (=) Do
with
) . . _\J m(w+p)
q=(—)i+! aw*J/B—wJ _ _( ) +e ‘ (7.42)
0 e (e
It follows that the Euclidean modes obey
_ —7w N
= $o; + e ™ by
oW _ o= Tw (7.43)

= (-

Inverting this relation, one recovers a = —mp.

(¢m+ 7rp,¢ )

eTw (_)je'/rp,
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7.7. The Thermal State

Let us summarize the southern and northern mode expansions:

e o]

¢S(ta7“aS0):/0 dw Z ab;do; + (a5;) (¢2;)*
o (7.44)
)= [ do Y aliell+ @) el
j=—00

Here we take the modes ¢° and ¢~ to be normalized with respect to the Klein-

Gordon inner product (3.7). The Fock space in the southern diamond is constructed

S

with lowering operators a;)

; and raising operators (aZ j)T. The Fock space in the
northern diamond is constructed with lowering operators (ai\fj)T and raising opera-

N

wg*

The modes (7.38) and (7.39) annihilate the Euclidean vacuum, |E). This allows

tors a

us to express |E) as a superposition of states in the northern and southern Fock

spaces [71]:

~ (7.45)
1
=[I( =) 32 " Inu;, $) @ [nas, N)
w,j nijO
Here |S) and |N) are the southern and northern vacua, and
_1 .
11, §) =(nwi!) "2 [(agy) T 1S),
(7.46)

s N) =(s51) ™ [a ] V).
Only the southern diamond is causally accessible to an observer at the south pole.
The quantum state in this region is described by a density matrix p°, which is
obtained from a global state by tracing over the field modes in the northern diamond.

For the Euclidean vacuum (7.45) we obtain

Py = try|EYE| = H (1—e?™) 26_2’”"”“3‘ Ny S) (s, S| - (7.47)

“Jaj Nwj
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Recall that the Killing vector {0, = 0; is everywhere time-like and future
directed in the southern diamond. Neglecting gravitational back-reaction of the
field modes, this allows us to define a Hamiltonian for the southern modes:

0o

M= [ d5HT,, ¢ = /0 dw Y (a2;)ad; w, (7.48)

S .
by j=—oo

where T is the stress tensor of the scalar field. Here ¥° is a t = constant Cauchy
surface in the southern diamond with normal vector is nfid,, = (1 — 7‘2)_%@. This
definition of energy is natural for the observer at the south pole. For later use, we
also define the angular momentum 7 as the conserved charge associated with the
Killing vector v*0,, = —0,:

o0

J = dXF T 0" :/0 dw Z (agj)Tafj J (7.49)

S .
by i oo

With respect to the Hamiltonian M, the southern state (7.47) becomes a ther-

mal density matrix

pe = Cexp (—%) (7.50)

with temperature T = 5~; C = [[(1 — e72™) is a normalization factor.

8. Kerr-de Sitter

In this section we generalize the discussion of the previous sections to the three-

dimensional Kerr-de Sitter solution, which represents a spinning point mass in dSs.

8.1. Static Coordinates

The Kerr-de Sitter metric describes the gravitational field of a point particle

whose mass and spin are parametrized by 1 — M and J:

ds® = —N2dt% + N~2dr? + 2 (dp + N¥dt)?. (8.1)
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The lapse and shift functions are

16622, 4GJ

N2=M —7r?+ : (8.2)

7

2 72

The lapse function vanishes for one positive value of r:

ry = % (vr+ V7). (8.3)

where

= M +i(8GJ). (8.4)

This is the cosmological event horizon surrounding an observer at » = (. It has a

Bekenstein-Hawking entropy [72,73] of

S:g—g:%(ﬁJrﬁ). (8.5)

8.2. Kerr-dSs as a Quotient of dSs3

In 241 dimensions, there is no black hole horizon for Kerr-de Sitter because
the “black hole” degenerates to a conical singularity at the origin. This is best seen
by writing the metric as an identification of de Sitter [74]. Let us define p = 7y

and o = 4GJ/r, so that

M=p>—a? J= %. (8.6)
The coordinate transformation
t = put + o,
P = pp — ot, (8.7)
8 r? + a2
r = _
u2 + a2

changes the Kerr-de Sitter metric to the vacuum form
dr?

i F2d@?, (8.8)

ds® = — (1 —7%)di* +
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but with a non-standard coordinate identification. In empty de Sitter space,
(t, 7, ¢+ 2mn) labels the same point for all integer n. In the presence of a particle,
the points

(t, 7, ¢)+ 2mn(a, 0, p) (8.9)

are identified instead.

8.3. Kerr-dSs Temperature and Angular Potential

In this subsection we consider a scalar field in Kerr-dSs. The cylinder mode
solutions found for de Sitter in Section 6 are also solutions in Kerr-de Sitter, after
the substitutions t — ¢, 7 — 7 and ¢ — @ are performed. For the modes to remain

single-valued, the angular momentum j must be non-integer:

Jj= nt wa’ n integer. (8.10)
W

The mode analysis carries over trivially. In particular, the Euclidean modes (7.38)
and (7.39) take the same form in Kerr-de Sitter.
Analogues of (7.48) and (7.49) define conserved charges associated with the

Killing vectors é“@N = 07 and %0, = —0y:

%) (e8]
o U S S
M= - d>¥* € —/0 dw ‘_z_:oo(awj)Tawj w,
T (8.11)
J = DT = /0 dw ) (ag;)'al; 5
j=—00

where 7,, is the matter stress tensor. Here the hypersurface Y5 is defined, for

example, by the normal vector

T i V1-72q«
——0; + f—ﬁqg. (8.12)
V1—72r7 T T

(For o > 0, ¥° is not a space-like surface near the origin; this does not affect the

By _
Ngs Oy =

definition of conserved quantities.) The expressions for M and J nevertheless take
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the same form as M and J in de Sitter space. The Euclidean state, restricted to

the southern diamond (7 < 1), is a density matrix
p3 = Cexp (—27TM> . (8.13)

In the (¢, 7, @) coordinates, the asymptotic metric of Kerr-de Sitter space takes a
standard form near Z (detailed in section 7.4 below). In order to compare conserved
quantities of different space-times, we must use the Killing vectors d; and 9, to
measure energy and angular momentum.'® The corresponding conserved charges

are related to M and J by a linear transformation. Using (8.7) one finds
W a

M= M+ ——J. 8.14
p? + a? +u2+a2‘7 (8.14)
Thus we obtain a density matrix
M+ Q
p3 = Cexp <—+7J> , (8.15)
T
at temperature and angular potential
2 2
T:u’ o=2 (8.16)
2 pu 1

For later convenience it is useful to rewrite the the density matrix (8.15) in

terms of the complex inverse temperature

1+’iQ_ 2

B= T 7 (8.17)
and the complex charges
Lo=3(M—id),  Lo= 5 (M+id). (3.15)
These charges are constructed from the complex Killing vector fields
Co = %(éh +1i0,), (o= %(at —iy). (8.19)

Then the density matrix of the scalar field in the southern diamond takes the form

p3 = Cexp (=BLo — BLo). (8.20)

15 We are choosing the normalization of the time-like Killing vector to be fixed at Z, as
is appropriate for a CFT description. By normalizing at ¥ = 0 instead, one would obtain
the apparent temperature seen by a local observer [75].
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8.4. The Boundary Stress Tensor and Virasoro Charges

In this subsection we define, compute and interpret the Brown-York boundary
stress tensor in static coordinates, following [45].
In the static coordinates Z® is at r — oco. The metric takes the asymptotic

form

M T T 1
2 _ _4r 2 M - T2 T2 -
ds® = + (r 5 )dwdw+4dw -|—4dw +O(r4)’ (8.21)

with

w = @+ it. (8.22)

Since w ~ w + 2w, the boundary is a cylinder with conformal metric
ds?, ¢ = dwd. (8.23)

dS3 has an infinite number of asymptotic symmetries, whose associated bulk
vector fields ¢ generate the conformal group on 7:'_[16]. With each of these sym-
metries there is an associated charge. A general procedure for constructing such
charges for spacelike slices ending on a boundary was given in [76], adapted to AdS
in [77], and adapted to dS in [16]. For dS3 in planar coordinates, Z~ is a plane and

the charges are
1

L, = 5 dz T,z 1,
7”1 (8.24)
_Z—/n B — dZT§52n+1,
213
where T, is the boundary stress tensor given by [76,77,16]
1
Ty = G (K — (K + 1)y (8.25)

Here y,, is the induced metric on the boundary, and the extrinsic curvature is
defined by K,, = %En'ym, with n#* the future-directed unit normal. The contour

integral is over the S* boundary of Z~ in planar coordinates at |z| = co. The AD
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mass [78] is proportional to Ly + Ly. The complex coordinates on the boundary

cylinder in (8.21) are related to those of the plane by
z=e ", (8.26)

In the previous section charges £y and £, were constructed for weak scalar
field excitations on a fixed de Sitter background. These can be related to the weak
field limit of Ly and Ly by using the conservation equation [76]

1

VT =Ty, (8.27)

which states that the failure of T},, to be conserved is given by the matter flux
across the boundary. Contracting both sides of (8.27) with a Killing vector ¢ and

integrating over a disc Y¢ spanning a contour C on Z~ yields

1
L / T, " = / 5P T, (8.28)
2 C So

where do* is the normal boundary volume element normal to the curve C. Com-
paring with (8.11), (8.18), and (8.19), we see that integrand on the right hand side
of this expression for Lo (Lg) agrees with that in the expression for Lo (£o). 16 Of
course when the fields are not weak there are gravitational corrections to the bulk
expressions.

The cylinder charges corresponding to (8.24) are 17

1 27 i
H, = ——/ dw Tyye ™™ (8.29)
2 Jo

16 Qur sign convention in (8.24) was chosen so that in the weak field limit # reduces
to the integral of the scalar stress energy density, without a relative minus sign. This
convention agrees with [16,45,65], but differs by a sign from [49,50].

17 A minus sign arises in this expression from the relative orientation of the z and w

contours.
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and its complex conjugate. We have used the symbol H,, rather than L,, because
on the cylinder (8.29) includes a Casimir energy contribution for Hy. We will be

interested in Hyp, which is the charge associated to the vector field

1 )
Co = 2 (0¢ +10,) - (8.30)
For » — oo one finds
1 T
Tow = ~—=Yow = ——- 31
we = 4q7 16G (8:31)

Integrating around the cylinder then gives

1 27

c
Hy=—-—— doTyy = ——T, 8.32
0 o7 Jy ¥ oa” ( )
and similarly
_ c
Hy=——T7. :
0 vl (8.33)

For later convenience we have written these expressions in terms of the dS3 central
charge
3¢

where we have restored the factor of the de Sitter radius £. However, so far our
discussions have been purely classical.

We note for pure de Sitter space (M = 1 and J = 0) Hy = —=. This has a

24"
nice interpretation in the dual field theory on the boundary, as discussed in [45].18
According to [16], the bulk gravity state on the slice ¢ = oo in planar coordinates
is dual to a CFT state on the S boundary of Z~ (i.e., where the slice ¢ = oo
intersects Z—) at z = oo. This state is the wave functional produced by fixing
boundary conditions on the S* and then doing the CFT path integral over the disc.
This should give the SL(2,C) invariant ground state of the CFT. Transforming

from planar to static coordinates in the bulk is then dual to the conformal mapping

18 An alternate interpretation was given in [49].
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from the plane to the cylinder. This mapping should produce, via the Schwarzian
in the stress tensor transformation law, the Casimir energy —57 for a CFT with
central charge c on a circle of radius 1. Indeed this agrees beautifully with the fact
that the boundary stress tensor vanishes in planar coordinates but gives Hy = —o3
in static coordinates.

We note for future reference that the state so constructed on Z~ is a pure state
with no entropy.

The agreement with the CFT picture persists for general 7. (8.32) is then
precisely the Casimir energy from conformal mapping from the plane to a cone.

We note also that as M decreases, the energy Hj increases, in accord with the

expectation that a positive deficit angle has a positive mass.

9. Entropy

In this section we discuss the conditions under which the entropy (8.5) might
be microscopically derived from a 2D CFT. Related discussions have appeared in
[11,48,49].

Consider the canonical partition function of a 2D CFT with complex potential

8
7= [ dLodLyp(Lo,Lo)e?bo-PPe, (9.1)

where p is the density of states. We wish to evaluate this in the saddle point
approximation. Let us assume that we are in a regime where the thermodynamic

approximation is valid, and we can use Cardy’s formula [79] for the density of

(Lo, Lo) = exp [%« /%(L0 - i) + 2, /%(EO - i)] , (9.2)

19 Since we are working in the canonical, rather than microcanonical picture, the final

states!?

formula for the entropy is unaffected by the shift of Ly in the exponent.
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When 3 is complex, (9.1) has a complex saddle point at Ly = gTig + 5.2 Evaluating

the integral at the saddle point and using S = (1 — 5dg — B@B) In Z gives

wlc wc
S=—+—. 9.3
38 3B (6:3)
If we now use the formula
3¢
= — 9.4
MTek (9.4)
for the central charge of the boundary CFT, together with the formula
2w
B= (9.5)

VM —i(8GJ)’

derived in section 6.3 for the complex temperature of Kerr-dSs, the microscopic
formula (9.3) reproduces exactly the macroscopic formula (8.5) for the Bekenstein-
Hawking entropy of Kerr-dSs;.

This yields a two-parameter fit relating the area of the Kerr-dS3 horizon to
the number of microstates of a 2D CFT. However with our current understanding,
this should be regarded as highly suggestive numerology rather than a derivation
of the entropy. One problem is that the dual CF'T is not unitary, and hence is not
obligated to obey Cardy’s formula. A second problem is that we have not specified
where the CFT density matrix resides whose entropy is being computed. In most
discussions—including ours—the quantum state on global de Sitter is in a pure
state. Furthermore its dual—as discussed at the end of the previous section—is
the SL(2,C) invariant CFT vacuum. A density matrix arises only after tracing
over a correlated but unobservable sector. We saw in section 6.3 that for a scalar
field in the (pure) Euclidean vacuum state, a thermal density matrix arises after a
northern trace over the Hilbert space in the unobservable northern diamond. One

might expect that the quantum state of the boundary CFT would also become

20 por pure dSs3 this is Lo = 15, as in [11].
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thermal after performing a similar trace. However it is not clear to us exactly what
a northern trace corresponds to in the boundary CFT on I+,

It appears that de Sitter entropy arises when attention is restricted to the
true observables in the theory. The boundary CFT includes information about
correlators at acausal separations that do not directly correspond to observable
data. It is a challenging and important problem to understand what are the true
observables in the language of the of the boundary CFT.
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Appendix A. Alternate Forms of Green Functions on dS,

In this Appendix we present several alternate expressions for the Green func-
tions.
First, let us consider a de Sitter invariant vacuum |2}, so that the wave equation

for Go(z, z') becomes
(1 - P%0:G — dPOpG — m*G = 0, (A.1)
where P is related to the geodesic distance 0(x, z’) by
P = cos . (A.2)

Note that if G4 2 solves (A.1) in d dimensions for mass-squared m?, then dpG 2

solves (A.1) in d 4+ 2 dimensions with mass-squared m? + d. This gives an iterative
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procedure for constructing Green’s functions in all dimensions. We find

C713—}—2'n,,m2 = 8I’r—l”(;S,m,?‘—{—1—(n—{—1)2

(A.3)
C';’2—}-2n,m2 = 81’r5G2,m,2—n(n+1)
where n is a positive integer.
Let us first consider odd d. For d = 3, if we let
X
G2 = —— A4
3 sin 6 (A-4)
then x satisfies
dpx + (1 —m?)x=0. (A.5)
So the general solution in 3 dimensions is
G = Asinh y(m — 6) + B sinh pf (A.6)

sin 0
where 4 = v/m2 —1 and A and B are arbitrary constants. The first term gives
the usual short distance singularity for the Euclidean vacuum—with the correct
normalization, it gives the usual expression (3.9). The second term is present for
the transformed vacuum states |«), and has the antipodal singularities mentioned
in section 2.2. From (A.3) we can obtain an expression for the Green functions in
higher dimensions,

Game = Z (n) (n = m+ 2ip) sin?~ 49

L= \m TC(m+ 1+ 2ip)

(Asinh(2p — in + 2im) (7 — ) + Bsinh(2u — in + 2im)0)
(A7)

o= (451" as)

We have absorbed an overall normalization into the constants A and B. As a

where n = 1(d — 3) and

function of §, G has isolated singularities but no branch cuts. However, § = cos™! P
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has a branch cut from P = 1 to oo along the real axis, across which #(P) changes
sign. When expressed as a function of P, G will likewise have a branch cut.

For even d, we start with the d = 2 solution in terms of Legendre functions

Ga,m> = AP,(cos0) + BQ,(cos ) (A.9)
where v(v + 1) = —m?. So
Game = AP™ (cos 0) + BQ™ (cos 0) (A.10)

where n = 3(d — 2) and v(v + 1) = n(n + 1) — m?. Here, PS™ is an associated

Legendre function, the nt* derivative of the Legendre function.

Appendix B. Properties of Hypergeometric Functions

We collect a few relevant facts about hypergeometric functions. More details
may be found in, e.g., [69].

The formula
F(a,bic;2) = (1= 2)"*F(c—a,c—b;c; 2) (B.1)

relates hypergeometric functions of z with different values of parameters, as in (7.7).

To relate hypergeometric functions of different variables we use

F(a,b;c;2) = %(—)“F(aa+l—ca+l—b o)
%(—) °F (b, b+1—cb+1—a§)
:FEZ)E(:)F(‘Z b; (@b l+a+b-cl-2)
F(C)FF((S);(Z)_ V(1= )V F(e—a,c—bic—a—b+ 151 2).

(B.2)
These give us the Bogolyubov relations (4.21) and (4.39), respectively. Since
F(a,b;c;0) = 1 these equations also fix the behavior of F(a,b;c;z) as z — o0

and z — 1, as in (5.2), (7.9) and (7.20).
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Chapter 3

de Sitter Space in Non-Critical String Theory =

10. Introduction

Recent progress in string theory has led to deep conceptual insights into the
quantum nature of a number of spacetime geometries, including black holes and
AdS. dS (de Sitter) has so far been largely left out of the fun. A key reason for this
is that so far no fully satisfactory dS solution of string theory has been found.?? The
problem is intrinsically difficult because there can be no unbroken supersymmetry
in dS [85]. Hence the solutions are likely to be isolated with no massless scalars or
moduli.

A recent approach [86] employs supercritical superstring theory. Although
they do not have flat space as a solution, noncritical string theories are of intrin-
sic interest for a wide variety of reasons. They are implicated in tachyon decay
processes in compact closed string backgrounds [87], and in attempts to obtain the
QCD string [88]. Their precise place in the M-theory duality web remains an out-
standing question. New cosmological solutions (with a strongly coupled singularity)
of supercritical string theory were discussed in [89]. The recent application to de
Sitter space [86] utilizes an asymmetric orientifold construction in non-critical 12-
dimensional string theory which has no moduli. The supercriticality introduces a
leading-order cosmological term (dilaton potential) which aids in fixing the dilaton.
By turning on RR fluxes it is possible to arrange for the dilaton to have a nontrivial
minimum with a positive cosmological constant. The string coupling at the mini-

mum is numerically, but not parametrically, small. However, as stressed in [86], the

21 This chapter is based on the paper [2], with E. Silverstein and A. Strominger.

22 However there are a number of interesting constructions which may not have been

fully exploited [80-84].
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true expansion parameter about the minimum — and the nature of string perturba-
tion theory about a minimum which balances dilaton tadpoles from noncriticality
against RR fluxes — are not understood. For both of these reasons the existence
of a string perturbation expansion about the minimum is in question, and strong
coupling effects could in principle eliminate the dS solution. A second issue in this
model is that the dS minimum is unstable to decay to flat space. This implies that
not every point on the asymptotic boundary of the space is dS. One of the recent
lessons of string theory is that the nature of the boundary can be quite important,
so a theory which asymptotically decays to flat space may be very different from a
“stable” dS.

In this paper we report on work in progress which improves on this construc-
tion. A generalized asymmetric orientifold construction is introduced with a new
parameter: the number of dimensions D. By making the number of dimensions
large and employing the Bousso-Polchinski mechanism [90] with the RR fluxes we
are able to make the cosmological constant at the minimum parametrically small,
the higher-dimensional string coupling parametrically weak, and the effective bar-
rier to the linear dilaton regime parametrically large. Despite this improvement
we have not understood the true expansion parameter about the minimum, which
could therefore in principle be eliminated by strong coupling effects.

In particular, as a function of the dimensionality D, the number of RR fields
is ngrr = 2P, which dominates the spectrum at large D. This is potentially both
a liability and an asset: on the one hand, the 2 RR species threaten to render
the effective coupling uncontrollably large; on the other hand, the large number
of RR fluxes facilitate the construction of vacua with small cosmological constant
and weak D-dimensional string coupling. As one increases D, the naive number of
degrees of freedom increases, and as we will see one can obtain a larger and larger de

Sitter space. It is tempting to speculate that the 2° RR degrees of freedom pertain
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to the entropy; this will be interesting to explore in the future. In particular, since
a large de Sitter space requires a large number of states (to account for the large
entropy), the large number of degrees of freedom intrinsic to supercritical string
theory may play a natural role.

We also consider, in a more general setting, the issue of the decay of dS space to
flat space. When the barrier is small such decays clearly occur via flat space bubble
nucleation and are described by gravitational instantons. However, the required
bubble size grows with the barrier height, and eventually the bubble wall crosses
the horizon. We will argue that the inclusion of such superhorizon processes has
bizarre consequences. Causality and unitarity appear to be violated, and for very
large height the process describes the tunneling of the entire universe to a planckian
region! The proper rules for dS quantum gravity are not well understood, and this
casts doubt on the assertion that such instantons should be included in the first
place. We further note that the tunneling time exceeds the Poincare recurrence
time for dS [91] for exactly the same parameter range that the instanton becomes
superhorizon sized. (It also exceeds the (shorter) time for all of de Sitter space to
tunnel into a maximal black hole [92].) Hence both the observable significance and
the validity of the semiclassical approximation are in question for the superhorizon
decay processes.?3 If the superhorizon instantons are excluded, a “false” dS vacuum
may be stable against decay to flat space (or to the linear dilaton regime in the case
of the supercritical models), or equivalently the decay time may become so long as
to be meaningless.

In the supercritical models, one can in this way potentially forbid decays from

a large range of dS minima to the linear dilaton regime, since as we will see the

23 As discussed in section 3.4 and alluded to in [93], this is a de Sitter analog of the
breakdown of the semiclassical approximation for black holes discussed in [94]. Related

discussions can be found in [95,96].
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domain wall tension is too large for a sub-horizon size bubble. However, we also
find decays between different flux vacua proceeding via nucleation of D-branes (as in
[97,90,93]), including transitions from dS to AdS. The model thus is a stringy con-
struction sharing features with those studied in [98,97,90,93] exhibiting a dynamical
relaxation of the cosmological constant. Among the different flux vacua, there are
many more choices of flux configuration yielding larger values of the cosmologi-
cal constant than smaller values, and in our system there are large degeneracies
among different flux vacua due to the highly symmetric structure of the internal
dimensions.

This paper is organized as follows. Section 2.1 presents the asymmetric orien-
tifold construction. 2.2 describes the de Sitter minima, and 2.3 discusses the lower
limit on the cosmological constant implied by flux quantization. 3.1 reviews the
instantons which describe the tunneling from de Sitter to flat space. 3.2 questions
the conventional wisdom that this tunneling occurs (or is even well-defined) for ar-
bitrarily high barriers. 3.3 relates this to Poincare recurrence and the breakdown
of the semiclassical approximation. Finally in section 3.4 we address the stability

of the asymmetric orientifold models.

11. de Sitter Compactifications of Super-Critical String Theory

In this section we generalize the construction of [86] to large numbers D of
dimensions and describe de Sitter solutions of the low energy action. We compute
the contributions to the dilaton potential from noncriticality, orientifold planes and
RR fluxes. We demonstrate that by taking the number of dimensions to be large,
one can find potentials having minima at a parametrically small value of the D-
dimensional string coupling. Finally, we consider flux quantization and show that

at large D the cosmological constant can be made parametrically small.
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11.1. Asymmetric Orientifolds in Non-Critical String Theory

In D (more than 10) dimensions, we start with the string frame low energy

effective theory for the graviton, dilaton and Ramond-Ramond fields

(11.1)
where the sum runs over the various RR fields F}, in the theory.

We will be interested in asymmetric orientifold models obtained from this D-
dimensional theory in which the dilaton is fixed. Let us begin by noting a few salient
points regarding the spectrum in these relatively unfamiliar theories. Note from the
action (11.1) (and as discussed in [99] and reviewed in [86]), the graviton, dilaton,
and RR fields in D dimensions are massless. However, if one calculates using free
field theory the putative zero-point energy of these fields in flat (string-frame) space,
i.e. in the linear dilaton background, one finds in the NS sector a vacuum energy
of —(D —2)/16. As explained in [99], this reflects the effective tachyonic behavior
of the fields in the linear dilaton background (obtained from (11.1) by expanding
in small fluctuations about the linear dilaton solution). In order to obtain the
effective mass squared of the fields in the Lagrangian expanded around a putative
extremum with constant dilaton (such as those we are studying in this paper) one
must therefore cancel the contribution from the linear dilaton from the zero point

energy. This amounts to the statement that in the NS sector, the effective vacuum

energy F is off from the free field result Ey by

D —10

E =E,
T

(11.2)

Let us now proceed to the models of interest here, which are compactifications
from D down to d = D —r dimensions. We will eventually be interested in the case

of large D with d held fixed, and in particular how various quantities depend on D.
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Because as we will see the quantities relevant to our conclusions scale exponentially
with D, some numerical factors which are order one will not be explicitly computed.

We begin with a self-dual torus T". The zero modes on the torus are given by

(11.3)

and the dimensions of the corresponding worldsheet operators are (Sp7, Tpz)-

Mod out by the orientifold group generated by

g1 = (0,8%)g41-..(0, 5D gqr (11.4)
92= (=1, az1--- (=1, 1)apsr (11.5)
g3 = QI (11.6)

94 = (=1)"(s,8)at1-- - (5, 8)asr (11.7)

As in [86], we adopt the following notation. (0, s?); is an asymmetric shift on the "
coordinate, and acts as (—1)"i+mi. (s, 8); is a geometric shift on the i*® coordinate
by half the circle radius, and acts as (—l)mi. 2 is an orientation reversal, I,
a reflection on all r coordinates of the T". (—1,1); is a reflection on the i*® left-
moving coordinate only, and is at the heart of the moduli-fixing effect of this model,
since it projects out all the untwisted NS NS moduli.

In order to check level-matching (for modular invariance) and to check for
twisted moduli, we must compute the vacuum energy in all inequivalent sectors,
taking into account (11.2). Let us start with the shifts. In the (0,s%)" twisted
sector, the momentum and winding lattice (11.3) is shifted so that (m,n) — (m +
1/2,n + 1/2), while in the (s,s) sector it is shifted by (m,n) — (m,n + 1/2).

Each (0, s?) shift (per direction) has a right-moving energy of 1/4, while each (s, s)
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shift (per direction) gives left and right moving energies of 1/16. For the element

92 = (—1,1)", we have ground state energies
Ep=—-= (11.8)

This level-matches if r = 4k for integer k. In order to avoid any massless modes

(potential moduli) in this sector, we must take & > 1. For the element gog4 we have

1 1 k-2

- St 11.9
2 2 16 2 4 ) ( )
requiring that £k = 2N be even for level-matching. As discussed in [99], in order to

have a standard GSO projection, one requires D = d + r = 85 + 2 for integer j.

Altogether, in order to have a consistent orientifold group we need
r =8N (11.10)
for integer N > 1, and to have an ordinary GSO projection we need
d=D—8N =8j+2—8N. (11.11)

This model has two sets of orientifold planes — O-(d — 1)-planes generated by
the element g3 and spacefilling O-(D — 1)-planes generated by the T-dual element
g29392 = 2. We also have anti-orientifold planes, which are necessary to cancel the
RR tadpoles — these are generated by the elements gsgs and g2g39492. The total

contribution to the action due to these orientifold planes is
Sorientifold = » _ 1o, / dPitlp/—Ge ? (11.12)
i

where 7 runs over the orientifolds — here the orientifold group acting on the r di-
mensions of our torus introduces 2”1 O-(d — 1) planes, 2"~! O-(d — 1) planes, as

well as the T-dual objects, an O-(D — 1) plane, and an O-(D — 1) plane. These
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T-dual pairs are identified under the action of gy, so (11.12) is just 2" times the

action for a single O4_1 plane:

Sorientifold = 2" To,_, /dda:\/—Ge_"S

97/24D/4,1/2 (11.13)

== [ d%\/—Gge?.
KDE;—D/2+d

Here we have defined the string length
Ly =2V (11.14)

and are using the generalized formula for the tension of an orientifold p-plane in
D dimensions derived in [86] with the assumptions listed there (which consist es-
sentially of the procedure (11.2) for the closed-string channel modes applied to the
annulus diagram),

97/2+D/4,1/2

2P=t T, = - (11.15)

K/D£€+2_D/2 :
The action of the orientifold group projects out the NS-NS moduli of the T,

so the d-dimensional action for the untwisted NS-NS sector reduces to
1 2(D —10
Sns = o / diz\/—Gae 2 (Rd — % +4vu¢v“¢) (11.16)
d

where the d-dimensional gravitational coupling is
2 _ KD 1pd—2
kg = =" 4T 11.17
d ,Ueg s ( )

v here is the dimensionless effective volume of the compactification space given by
(/ d4ma:\/—Gr) = vl’, (11.18)
" eff

and is of order one. We have taken the D-dimensional coupling to be k2%, = P2 .

24

24 In making this choice, we are tacitly assuming that high order terms in the perturba-
tion series will be < order one with respect to this choice of coupling. See the discussion

in [86] for more details.
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Note that one could also consider multiple copies of this orientifold group acting
on subtori of T". Each €], action reduces the RR spectrum by half, so this has the
virtue of reducing the number of species which contribute to the effective coupling.
However, there is a danger of also reducing the effective volume and thus v in (11.18),
thereby increasing the effective coupling. It would be interesting to determine the
winner of the competition between these two effects, but for now we will stick to a
single copy of the orientifold group (11.4)-(11.7).

We now turn on some RR fluxes along the compact directions (see, e.g. [100—
106]). In D dimensions, a p-form field strength wrapped on a cycle of volume V,
will be quantized as

1 2p—D

— | E,=mt, T Q (11.19)

2/§D Vp

where () is an integer. Let us use a basis of cycles given by the square subtori
C T". We will label these by ¢« = 1,...,2". Turning on RR fluxes adds a dilaton
independent piece to the d dimensional string frame action. Before orientifolding,
there are (Z) possible k-form fluxes to choose from, for a total of 2". Although
some of the internal fluxes will be projected out by the orientifold action, certain
flux configurations will be left invariant. These invariant combinations of fluxes from
the untwisted sector of the orbifold, which involve fluxes of different rank related to
each other by T-duality, will also be subject to the quantization condition inherited
from the parent theory. Because our orbifold is of finite order independent of r, the
number of invariant fluxes still scales like 2" for large r after taking into account
the reduction in the RR spectrum effected by the orientifold action. Chern-Simons
couplings among the many RR fields at large D may also affect the spectrum in a
given flux background, and the set of consistent choices of flux configuration; this
would be interesting to work out in detail.

Going to d-dimensional Einstein frame

Gapw = Gy = Gappe™a (11.20)
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the low energy action becomes

R N et O O 1
5_2’% iz G(R <(d_2)>au¢a“¢ MgU(QS)). (11.21)

The Einstein frame dilaton potential is

U(p) = eﬁd’(a — be? + ce??) (11.22)
where 5D — 10
a = vdn? (7( _ )>
3
b=2 27/2HD/Ag1/2y, (11.23)
c=Y" Ungegm—D +A =7y QP+ Ay
i=1 Pi i=1

Here in the expression for b, vp is a dimensionless volume associated with the
orientifold planes on our orbifold similar to v; again this is of order 1 in our model
and we will not keep track of such factors in our analysis. In the expression for c, ¢
labels the fluxes in the square basis discussed above, and we consider only invariant
combinations of these basic fluxes. p; is the degree of the field strengh and v,, is an
order one dimensionless volume associated to the i*® flux. (Before the orientifolding,
these volumes are self-dual, but as in (11.21)the effective volumes may be reduced
by the action of the orientifold group.)

A4 is the one-loop dilaton potential. It will be proportional to ngpr ~ 2P
times (D) where (D) is an unknown D-dependent constant, which is related to
the effective loop-counting parameter in our theory. (For some insight into the
scaling of loop effects in gravitational field theory as a function of dimension D,
see [107], where factors of 1/D! appear with additional loops, providing enhanced
control at large D.) Because the 2 RR bosons dominate the spectrum, A; is
likely to be negative in the string theoretically regulated theory, similarly to the
situation in for example Scherk-Schwarz compactifications [108] and many other

non-supersymmetric orbifold examples that have been analyzed in critical string
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theory, in which one finds the sign of A; to be the same as that of the difference
between the number of massless fermions and bosons in the tree-level spectrum.
Below, we will analyze the potential assuming conservatively that A; ~ —2P for
definiteness, but as will become clear the qualitative results apply for a large range
of possible values of A; including those with smaller magnitude.

In principle, we should also include a renormalization of Newton’s constant at
the same order; this will not affect the perturbative stabilization in what follows in

this section, but nonperturbatively may adjust the instanton actions in §3.

11.2. de Sitter Solutions

Let us write the potential as
P b2 4¢
U(p)=|(a—be” +— ™ — (14 6)e?? |e—2. (11.24)

There is a de Sitter solution if U(¢) has a stable minimum at positive energy. This

requires that the solutions of U'(¢) =0

o _ 0 (d+2+/(d—2)°—8dd
e db( s (11.25)

are real — here ¢4 is the local minimum (maximum). In addition the effective

cosmological constant

— U(9s), (11.26)
should be greater than zero. These two conditions require that

(d—2)*

0
0<o< 3d

(11.27)

As § increases from the lower bound to the upper bound, U(¢, ) increases from 0 to

d+2 4
a_d 28d—2 (d—2)2

a3z~ and the string coupling decreases from 22 to e _|_2) Near 6 = 0,
T2 d(d42)d 2
the cosmological constant goes like
2a 2
U(py) =a(— 2 )d 20 + O(67). (11.28)
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2
If we wish to minimize the string coupling we must take § ~ (dgj) . For

example, in the original scenario of [86] (D = 12, d = 4) this gives

2

1

R ¥ L LAWY raryi 009 et ~0.11. (11.29)
Yo%

3
This has the disadvantage that A is only a couple orders of magnitude above string
scale. Also, the potential barrier seperating the local minimum from the global
minimum at ¢ — —oo is small, so the vacuum is not very stable against tunneling
effects. Let us instead try to minimize A by taking 6 — 0. We find that (modulo
issues of flux quantization, which we will consider in the next section) we can make

A as small as we like, with
A~0, e ~0.16. (11.30)

We have found that A can be made arbitrarily small, at the cost of a small increase
in the string coupling. In addition, this solution is much more stable, since the
potential barrier is high.

A solution with small D-dimensional string coupling is found by taking a/b — 0.
From the expressions (11.23) it is clear that this can always be accomplished by
taking D large. However, it is not clear that this implies a small true effective
string coupling after compactification. The latter may for example be enhanced by
the enormous multiplicity (~ 2P) of RR fields. (On the other hand, if things work
as in [107], there may in fact be overcompensating loop-suppression factors as a

function of D that preserve the smallness of the effective coupling.)

11.3. Solutions With Small A

In order to get a small cosmological constant we must take § — 0. However,
flux quantization constrains how small we can get §, and thus how small we can get

A. We see from §2.2 that for A ~ 0 and large D, c approaches a large value
b2 2D/2

EN 4q

c=mY Q7 +A— (11.31)
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For example, this is 32’2 in the scenario in [86]. Since A; ~ —22, we have

Ty QF ~2P. (11.32)

By taking linear combinations of many different fluxes we can tune c quite accurately
— this is similar to the mechanism of Bousso and Polchinski [90], though in our case
we have large degeneracies in the set of flux configurations. The allowed charges @Q;
lieon a g ~ 2" ~ 2P-dimensional lattice. Because of the flux quantization condition,
the smallest jumps we can have in ¢ are of order 1. Because of (11.32) and the fact
that we have 2P independent fluxes Q; to pick, there will always be some Q; which
are of order 1 (or smaller), so order 1 jumps are indeed possible. Using (11.28), this
gives for the scale of the lowest-lying de Sitter minima
b2

AC ~ 4—5 ~1
a (11.33)

A=U@ps)~ (3)7 ~27wd

Since b ~ 2P/%, this vacuum energy is exponentially small for large D.

12. Metastability of the de Sitter Vacuum

In addition to the de Sitter minimum, the dilaton potential (11.22) has a global
minimum with vanishing cosmological constant at ¢ — —oc. Our system also has
a multitude of different dS and AdS vacua obtained from different configurations of
flux in the internal space. This raises the issue of whether or not the de Sitter mini-
mum is only metastable. This question arises generically in any string construction
of a de Sitter solution involving a potential which vanishes at weak coupling, and/or
containing many flux vacua.

Instantons have been described [109,97] which might be related to this tunnel-
ing. However, as we will see in this section, when the barrier between the minima is

sufficiently large, the instanton degenerates and no longer describes tunneling of a
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de Sitter horizon volume to a comparably sized-region of flat space. The instanton
describes a rather unphysical process in which the visible universe disappears al-
together. Such “super-horizon” instantons occur in the parameter range for which
the bubble wall lies behind the horizon.

Whether or not such processes actually occur, and whether or not such de
Sitter vacua can be stable, are questions which cannot be definitively settled with
our present understanding of quantum gravity in de Sitter space. In ordinary field
theory, instantons provide saddle point approximation to a functional integral with
fixed boundary conditions. The instantons which describe the decay/disappearance
of de Sitter space have no boundary at all, and so it is not clear if they should be
included. We will argue that the super-horizon instantons in a sense violate both
causality and unitarity and should be omitted altogether. We will also discuss other

potential mechanisms for mediating vacuum decay.

12.1. The Instantons

For simplicity we work in the thin wall approximation, in which case the rel-
evant instanton solutions are rather simple. They have been described in detail in
[97] and will now be reviewed.

The euclidean solutions are characterized by the tension 7' of the bubble wall
and the dS cosmological constant A. The solutions are determined by simply match-
ing the extrinsic curvatures on the two sides of the bubble wall to the tension T in
accord with the Israel junction condition. The instanton looks like a portion of a

round sphere glued to a portion of flat space. The spherical portion is

ds® = R3g(d0” + sin®0d)3), 0 < 6 < arcsin ]};—B, (12.1)
s

where dQ2 is the metric on the unit three sphere, Rgs = 1/3/A is the dS radius,

and Rp is the radius of the S boundary. The flat space portion is
ds* =dr* +1r%dQ3, 0<r<Rp. (12.2)
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The full instanton is then obtained by gluing together (12.1) and (12.2) along the
53 bubble wall at radius Rp. This is depicted in figure la-c. The Israel junction

condition
11 +( 1 Tm2)2
RYL  RY, ‘TR s 4

(12.3)

where Mp the Planck mass, determines Rp in terms of 7. Note that Rp increases

with T for small T" but then decreases for T' greater than the critical value

2

Te = ————. 12.4
¢ %2Rd,5' ( )
Rp approaches zero for very large T'.
a) b) o)
Fig. 1: The Euclidean instanton solutions matching the sphere

(Euclidean de Sitter) to flat space. The cases T' < Tg, T = T¢ and
T > T¢ are shown in figures a), b) and c) respectively.
It is straightforward to generalize these euclidean solutions to the dS—dS and

dS—AdS cases. In general dimension d, the relation (12.3) becomes [97]

1 2A, kAT A=A, 1\’
w5 = o eyt e (125

Here, A, is the initial dS cosmological constant (outside the bubble) and A; is the
final cosmological constant A; (inside the bubble). In general dimension d, the

critical tension is
2(Ao — Ag)(d —2)

TE =
¢ T @A

(12.6)

The instanton purportedly describes tunneling from one classical geometry to

another. We are interested in an initial dS geometry. The final geometry is then
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given by the analytic continuation of the instanton, which describes an expanding
bubble of flat space inside dS. The two geometries are glued together along the
moment of time symmetry. This is depicted in figure 2a-c. The tunneling rate is
purportedly given by the action of the instanton minus the background action of

Euclidean dS without a bubble. This is

27?2
AS =2m*RpT + —— [2R35 + {3R35(R§s — R%)Y? — Rys(R3s - R23)3/2H :

R2 K2
(12.7)
The upper and lower signs correspond to T' < T and T > T, respectively. Again,
the expression for general d was worked out in [97] (equations (6.4)-(6.7)).

b) c)

Fig. 2: The Lorentzian instanton geometry describing the nucleation
of a bubble of flat space (the shaded region) inside de Sitter space. The
cases T < Tg, T = Tc and T > T¢ are shown in figures a), b) and c)
respectively.

12.2. Causality

The tunneling process depicted for small tensions in figure 2a approaches the
usual flat space false vacuum decay in the limit Mp — oo with T held fixed. The
rate according to (12.7) also approaches the correct flat space value. The instanton

of figure 1a surely describes this tunneling process for sufficiently small but finite

T
MT
The process depicted in figure 1c on the other hand has a bizarre interpretation.

The entire universe tunnels to a small dime, with one flat and one dS face! Further-

more for T'— oo the rate from (12.7) approaches a constant. Hence the tunneling
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rate can be enhanced by adding a large number of ultra-planckian domain walls.
In fact, the action (12.7) is not monotonically increasing in the regime 7' > T¢; for
certain ranges of paramaters, the tunneling rate increases as the tension increases!
This conflicts with the notion of decoupling in low-energy field theory, as well as the
general fact that tunneling effects are supressed as the size of the barrier increases.

This process also appears in conflict with causality. An observer in dS should
be insensitive to any physics behind the horizon. In particular there should be
no consequences of placing boundary conditions on the fields along a timelike sur-
face behind the horizon. It is easy to find boundary conditions that forbid the
super-horizon instanton. Therefore the observer can learn about physics behind the
horizon by waiting to see whether or not the tunneling occurs.

There is also an issue with unitarity. In the benign process of figure 2a, an
observer at the south pole finds him or herself, after the tunneling, in the middle
of a bubble of flat space. However for the superhorizon case of figure 2c, his or
her entire southern causal diamond - the entire observable universe - disappears.
It has been advocated by many (see for example [6] and the contribution [110] to
these proceedings) that the causal diamond should be viewed as a closed unitary
system (whose microstates compute the entropy). Surely this process - in which the
diamond disappears altogether- violates unitarity in the worst possible manner!

Based on these observations, our conclusion is that when the tension T exceeds
Tc, the superhorizon instantons simply should not be included in the semiclassical
description of dS. At the same time we wish to stress that, with our current level
of understanding of dS quantum gravity, no such conclusions can be drawn with
certainty.

The above arguments apply equally well to tunneling from de Sitter to de Sitter

or Anti-de Sitter, with the critical tension given by (12.6). We should note that the
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criterion

T > To (12.8)

in the case A, = 0, A; < 0 reproduces the well known Coleman and DeLuccia
condition for the stability of flat space against tunneling to Anti de Sitter [109]. We
may thus regard the stability criterion (12.8) as a generalization of the Coleman -
DeLuccia mechanism.

Even if such instantons are not to be included, there may be other processes
which mediate the decay of the dS to flat space when the barrier is very high. For
example if de Sitter space is viewed as a thermal ensemble?®, thermal fluctuations
could eventually push the value of ¢ over the top (see e.g. [111][112] for a discussion
of this mechanism). This however is also not obviously possible. There appears to
be a maximum energy allowed in dS given by the largest black hole which can
fit inside the observer horizon. If the energy required to cross the barrier to flat
space exceeds this value, it may be suppressed. Furthermore if the appealing notion
[113,114,115] that dS has a finite number of states given by the area law is accepted,
there must be a highest energy state. Again if this is less than the barrier height

decay to flat space is suppressed.

12.3. Breakdown of the Semiclassical Approrimation

There is yet another way to interpret the condition T? > TZ ~ A, which
involves a further assumption about de Sitter quantum gravity. Following [113],
we assume that de Sitter gravity has a finite number of degrees of freedom which
determine the de Sitter quantum entropy. Imagine in this context a detector sitting
on a timelike geodesic for a very long time. The detector must be built out of a

subset of the finite number of degrees of freedom, all of which will eventually be

25 with temperature conjugate to the energy defined by the timelike Killing vector which

preserves the causal diamond
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thermalized by de Sitter radiation from the horizon. This thermalization process
sets a maximum timescale in de Sitter space, intervals longer than which can never
be measured by a geodesic observer. (See also [95,96].) The precise value of the
thermalization time depends on the structure of the detector, but it is certainly
less than the Poincare recurrence time, which is a timescale on which all degrees
of freedom have been thermalized. This recurrence time is related to the de Sitter

entropy by [91] 26

8m2R?
lrecurrence ™~ GXP{S} = exp {TdS} . (12.9)

Another time scale in de Sitter is the typical time for the entire space to tunnel

to a maximal sized black hole. This has been estimated using instantons in [92] as

tblackhole ~ (trecurrence) 1/3- (12'10)

Hence the entire space tunnels into a maximal black hole exponentially many times
before the Poincare recurrence time.

We wish to compare these times to the expected lifetime of de Sitter space due
to vacuum decay. When the tension equals the critical value T, the lifetime for

the putative instanton decay is (omitting a prefactor which is polynomial in Rgs)

82 R2
ldecay NeXp{AS} = exp {u} . (12.11)

P
This is precisely the Poincare recurrence time! Thus as T approaches the critical
value T¢ the lifetime becomes comparable to the recurrence time, and no observer

will ever live long enough to see the vacuum decay. 27 Moreover, at T = T¢ the

26 The authors of [91] considered several different types of recurrence phenomena. Here
we quote the timescale for two point fluctuations proportional the thermal background
value of the Green function — so called “relative” fluctuations — as opposed to fluctuations
of some fixed size independent of S.

27 Given that the action (12.7) decreases at T >> To one might worry that naively
applying the instanton methods for very large tensions would lead to decay timescales
shorter than the recurrence time. This turns out not to be the case: as T' — oo the decay
time precisely approaches (12.11).
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lifetime is much longer than the time (12.10)

tdecay ~ trecurrence

(12.12)
~ 1
black hole-

Hence in order to observe the decay of de Sitter space when T = Ty one needs
a detector capable of passing through a black hole exponentially many times. We
regard the existence of such detectors doubtful!

Let us state this in yet another way. The semiclassical approximation describes
the de Sitter horizon as a hot wall in contact with a heat reservoir with in finite
heat capacity. In this approximation no correlations ever appear in the radiation
emitted from the horizon. In the exact theory, it is plausible that the horizon has
a finite heat capacity as determined from the finite de Sitter entropy. This means
that if we watch long enough correlations will be seen in the radiation.?8 A typical
time required to see those correlations is the Poincare recurrence time. Hence this
time scale signals the breakdown of the semiclassical approximation. A semiclassical
instanton which involves a longer time scale therefore cannot be trusted.

Phrased in this way, our argument parallels a similar one give for black holes
in [94], and alluded to in the de Sitter context in [93]. In [94], it was argued that
the semiclassical approximation for near-extremal black holes breaks down as the
temperature goes to zero very near extremality. The breakdown occurs when the
energy of a typical thermal Hawking quantum exceeds the excitation energy of the
black hole above extremality. Clearly the Hawking emission cannot proceed under
these circumstances because it would leave a subextremal black hole with a naked
singularity.

This is a close analogy to the situation we have described in the de Sitter con-

text. The hot horizon emits a thermal spectrum of bubbles of flat space. When the

28 Of course, as mentioned above, no one can live that long. However this only under-

scores the unphysical nature of a tunneling process which takes such a long time.
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energy of these bubbles (as determined in part by the tension of the bubble walls)
exceeds the energy of de Sitter space above flat space, the semiclassical approxima-
tion breaks down.

In the black hole case, it was eventually quantitatively understood [116] in the
context of string theory that this breakdown of the semiclassical approximation
signals the appearance of a gap. Presumably similarly interesting and yet-to-be
understood phenomena appear in the de Sitter context.

In conclusion, superhorizon tunneling processes from dS to flat space do not
appear to be meaningful or consistent. The stability and correct quantum descrip-
tion of a dS vacuum separated by a very high barrier from flat space is an open

question.

12.4. Instantons in the Orientifold Model

In the asymmetric orientifold model the tension of the domain wall separating
the de Sitter from the flat vacuum at ¢ — —oo is determined by the shape of U(¢);

for example in d = 4 it is roughly

03/2

Using the criterion of the previous subsection, we conclude that many of the de
Sitter minima discussed in section 2 are stable against decay to the linear dilaton
regime. 2° The maximum-energy de Sitter minimum stable under this decay is
at ¢ ~ Z—Z + O(b?), i.e. at § ~ 1. (Here we are only keeping track of exponential
dependence on D, i.e. factors of b but not a.) This corresponds to an energy of the
order

max 1 —-D
UPe® ~ o5~ 2 /2 (12.14)

29 We should note that when D is large, the thin wall approximation breaks down for
the potentials (11.22); in this limit the width of the domain wall interpolating between the
de Sitter and flat vacua scales as T~'. However, this subtlety does not affect the causality
considerations of Section 3.2.
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The minimum-energy de Sitter minima possible with our quantization condition on
the charges and thus on ¢ (which are of course also stable under this decay) have

c~ Z—Z + O(1), i.e. at § ~ 3. This corresponds to an energy of the order

. 1 _
UL o og 2 b, (12.15)

In addition to the instanton decays to the linear dilaton regime discussed
above, there is also the possibility of transitions among the different flux vacua,
as in [97][90][93][117]. D-branes extended along d — 1 of the d de Sitter dimensions
constitute domain walls separating vacua with different flux configurations. More
specifically, D-branes of charge () connect vacua of flux (; and @1 — @ on the dual
cycle to the D-brane on the compactification. In order to determine the (in)stability
of our solutions, we must apply the results reviewed in §3.1 to such D-brane induced
decays in addition to the dilatonic domain wall we considered above.

At our de Sitter minima for d = 4, the string coupling is
gs ~1/b (12.16)

and the energy is

Uy ~ (a*/b%)(c — (0% /4a)) (12.17)

As we just discussed, the lowest-lying dS vacua have c tuned to cancel b2/(4a) to

within order 1, so that

urt ~ 1/t (12.18)

The highest-lying dS minima that are stable against decay to the linear dilaton
background have, from our earlier calculation, ¢ tuned such that ¢ — (b2/4a) ~ b2,
i.e.

UP ~ a?/b? (12.19)
Recall from (12.6) that

T2 ~ A, — A;. (12.20)
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The D-brane tension is, in Einstein frame, from [86] and the above scaling of g, at

the minimum,

T ~ (1/b%)27D/4, (12.21)

This formula will apply for a transition in which the bubble wall is a single D-brane;
the tension of multiple D-branes will be subject to appropriate binding energy
contributions.

If we allow the instanton, i.e. if T < T, then its action B is given by equation
(6.4) in [97]. One should keep in mind that the renormalization of Newton’s constant
may affect the overall scaling of the action. In addition to the contribution of exp(-
action) to the probability for decay, there will also be significant degeneracy factors
from the large multiplicity of vacua in our large-D system. Here we will confine
ourselves to checking whether the transitions occur at all according to the criterion
we have developed in this paper, assuming that the semiclassical instanton analysis
applies (i.e. that the action is large enough in renormalized Planck units).

For example, consider decays from UT'e* — Ue® — g*/b*. This occurs if ¢ ~

Z(QZV changes by order 1, and in particular can proceed via a bubble consisting

of a single D-brane . In this case, the D-brane tension is
Ty ~ 2724 (1/6%), (12.22)
while the critical tension in this case is
T ~ 1/b%. (12.23)

So Ty << Tgs), and the decay proceeds according to our criterion developed
above.
Similarly, there are decays from dS to AdS. Consider for example a transition
U_ﬁf”'” — —U_Ti". Here again
Tiizy ~ 272741/ (12.24)
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and

To iy ~ 1/b° (12.25)

so the decay is again allowed.

As we mentioned above, there will be large factors in the transition rates asso-
ciated with the relative multiplicity of different decay endpoints. In particular, the
smaller the value of 3> Q? = R? coming into the coefficient ¢, the fewer choices of
flux configuration there are in the window between R and R 4+ AR for a fixed AR.
So although decays to AdS are possible, it is reassuring that this degeneracy factor
prefers the less negative A; values. (In fact these factors also prefer higher dS vacua
to lower ones, which may act to suppress the decays depending on the scaling of
the renormalized instanton action.)
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Chapter 4

S-Brane Thermodynamics =

13. Introduction

A spacelike brane, or s-brane, is much like an ordinary brane except that one of
its transverse dimensions includes time. S-branes arise as time-dependent, soliton-
like configurations in a variety of field theories. In string theory, the potential for the
open string tachyon field leads to s-branes [118] in a time-dependent version of the
construction [119] of D-branes as solitons of the open string tachyon. These s-branes
can be thought of as the creation and subsequent decay of an unstable brane. They
are of interest as relatively simple examples of time-dependent string backgrounds.
Some of the recent investigations can be found in [120-135] and related earlier work
is in [136,137].

An elegant worldsheet construction of a family of s-branes was given in the
classical g; = 0 limit by Sen [120]. This construction employs an analytic contin-
uation of the conformally-invariant boundary Sine-Gordon model. It describes the
tachyon field on an unstable bosonic D-brane by the boundary interaction on the

string worldsheet

XO(r
Sboundary = )\/dT cosh V&), (13.1)

where X© is the time coordinate. Qualitatively similar constructions were also
given for the superstring [121]. In this paper we will describe some surprising and
intriguing properties of these s-branes.

A salient feature of time-dependent backgrounds is that there is in general no

preferred vacuum and particle production is unavoidable. We study the open string

30 This chapter is based on the paper [3], with A. Strominger and X. Yin.
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vacua on an s-brane and find that they have somewhat mysterious thermal proper-
ties reminiscent of black hole or de Sitter vacua. For the case (13.1) there is open
string pair production with a strength characterized by the Hagedorn temperature

[129,134]
1

B 4#\/(7'

Mathematically, the temperature arises from the periodicity of the boundary inter-

Ty

(13.2)

action (13.1) in imaginary time. Physically, we show that (for the quantum state
of a brane created with no incoming string excitations) an Unruh detector will
see a thermal bath. We further show that at late times the exact Green function
approaches the thermal Green function plus asymptotically vanishing corrections.
The appearance of the Hagedorn temperature signals a breakdown of string
perturbation theory [129,131,138,139]. Describing the mechanism which cuts off
this divergence is an interesting problem which we will not address in this paper.3!
Herein we simply avoid the problem by working at g, = 0. Interestingly, we find that
the Hagedorn problem disappears in the A = % sD-brane case discussed below.32

In addition to the pure vacuum states mentioned above, we construct a series

of mixed thermal states with temperatures

1
B 27rn\/a

for positive integer m. Ordinarily it makes no sense to discuss a thermal state

T (13.3)

in a highly time-dependent background. However, because of the Euclidean time
periodicity of the interaction (13.1), we can construct mixed states whose Green

functions have exact thermal periodicity at all times. Physically, it is natural to

31 The divergence might be controlled by lowering the s-brane temperature either with

the addition of an electric field [140,141] or a null linear dilaton (4.12).
32 This can be seen both from the absence of on-shell open strings and the vanishing of
the projection of the boundary state onto the massless winding state in the closed string

channel associated to the Hagedorn divergence.
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expect open strings on an s-brane to be in a mixed state, since they are correlated
with the closed string modes whose energy was needed to create the s-brane in the
first place.

Ordinary branes are usefully characterized at long distances by a long-distance
effective field theory. It is rather subtle to define such an effective theory for an
s-brane because there is no time-translation invariant ground state around which to
define and expand the low-lying excitations. One may try to define a long-distance
effective field theory as the Fuclidean theory which reproduces the long-distance
equal time correlators on the s-brane. In general these correlators depend strongly
on the quantum state of the fields on the s-brane, and will not behave like those
of any Euclidean field theory whose dimension is that of the s-brane. However, we
show that the thermal state of the s-brane gives an effective field theory which is
essentially a (twisted) compactification of the unstable brane whose creation/decay
comprises the s-brane. Ultimately, this Euclidean effective field theory may play an
interesting role in timelike holographic duality.

The thermal s-brane states can be succinctly characterized by a CFT boundary

state. The thermal boundary state at temperature T' = L differs from the
2rnva'

zero-temperature boundary state of [120] by a periodic identification ¢ ~ ¢ + 27n

of the Euclidean timelike scalar ¢ = —iX°. The thermal s-brane boundary state

contains closed strings with winding in the ¢ direction. These thermal boundary

states enable efficient evaluation of various worldsheet string diagrams.

1

5 appearing in (13.1), a dramatic

At the special value of the coupling A =
simplification occurs. For any A the boundary interaction (13.1) generates a right-
moving rotation by 27 in the SU(2) level one current algebra generated by 0.X°,
cosh X° and isinh X°. When A = 3 the rotation is by m, which simply trans-

forms the Neumann boundary state into a Dirichlet boundary state. The s-brane

then degenerates into a periodic array of sD-branes (i.e. D-branes with a Dirichlet
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boundary condition on the time coordinate) located on the imaginary time axis at
¢ = mm for odd integer m. This gives the precise relation between the Dirichlet
type boundary states discussed in [118] and the Sine-Gordon type boundary states
discussed in [120].3% In this A = % limit there are no on-shell open string states3?,
but the on-shell closed string states determined from the boundary state remain.
This remaining closed string configuration has the unusual property that its total
energy is of order g% and its behavior can be determined from open string calcula-
tions on the sD-brane. The annulus diagram connecting one (bosonic) D-brane and
one s-brane is computed for arbitrary A using the boundary state. At A = %, the
long-distance force between a D-brane and an sD-brane is shown to be % times the
force between two D-branes (which corresponds to A = 0).3°

This paper is organized as follows. Section 2 describes various s-brane vacua
and their properties in a minisuperspace approximation which treats the open

£t mass. Most of the

strings as quantum fields with a time-dependent cosht or e
important behavior follows from the Euclidean periodicity of the interaction, which
is an exact property of the worldsheet CFT. In section 2.1 we review the “half

s-brane” corresponding to brane decay, which is described by a (in some respects

simpler) boundary interaction [ e* *dr instead of (13.1). We recall that open string

33 Reference [118] only considered sD-branes on the real time axis. As discussed therein,
these have problems both with the dominant energy condition and the existence of a well-
defined string perturbation expansion. Both of these problems seem to be resolved by
moving the sD-brane to imaginary time. In [131] it was shown that, for the bosonic string,
the theory with A = —% has an sD-brane at real time.

34 Off-shell open string states still appear in the Euclidean effective field theory.

35 This might appear to contradict the claim [120] that A = 3 is the trivial closed string
vacuum. The interesting resolution of this apparent conflict, discussed in section 6.1 in
some detail, is that when there is time-dependence, the boundary state does not uniquely
determine the closed string fields. The implicit prescription adopted in [120] differs from
the one used herein, which latter amounts to the use of the Feynman propagators obtained

by analytic continuation from Euclidean space.
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pair creation is characterized by the Hagedorn temperature Ty = ﬁ\/? [129]. In
section 2.2 we consider the time-reverse process of brane creation, for which a nat-
ural state is one with no incoming open strings. In section 2.3 we move on to the
full s-brane (13.1), whose linearized solutions are Mathieu functions. We use these
solutions in section 2.4 to describe two vacua of the full s-brane with no particles in
the far past and the far future, respectively. In 2.5 a time-reversal invariant s-brane
vacuum is defined by the condition that there is no particle flux in the middle of the
s-brane at t = 0. The resulting positive frequency modes are found to be bounded in
the lower half plane t — —¢oc. This vacuum can therefore be obtained by analytic
continuation from Euclidean space. Other possible vacua are described in 2.6.

In section 3 we discuss the thermal properties of s-branes. In 3.1 it is shown that

1 . .
T Can be obtained by analytic

thermal Green functions at temperature T' =
continuation from a periodically identified Euclidean section. The Minkowskian
mixed thermal state (or density matrix) which reproduces these Green functions
is explicitly constructed. Thermal properties of certain pure vacuum states arising
from the imaginary-time periodicity of (13.1) are also demonstrated. For example,
in 3.2 it is shown that an Unruh detector in the vacuum with no incoming particles
measures a temperature Ty during brane creation. Furthermore, in 3.3 it is found
that at late times the correlators in the pure state approach thermal correlators
plus asymptotically vanishing corrections. This suggests that branes are naturally
produced in something close to a thermal state.

Section 4 defines the notion of long-distance effective field theory for an s-brane.
This effective theory is determined as the Euclideanization and time compactifica-
tion, with twisted fermion boundary conditions and a periodic boundary tachyon
interaction on the worldsheet, of the theory on the unstable brane whose cre-
ation/decay describes the s-brane. Long-distance modes are related to zero modes

of this compactified theory.
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In section 5.1 the boundary states which generate the finite-temperature string
correlators on an s-brane are constructed. They differ from the usual expression
by a periodic identification of Euclidean time, which allows for winding modes in
the closed string channel. The superstring is discussed in 5.2, and the allowed

temperatures are shown to be

1
T=—-—. 13.4
2 2a! ( )
In section 6 we turn to the special case of A = %, in which the boundary

interaction becomes an SU(2) rotation by 7. In this case the s-brane collapses to
an array of sD-branes on the imaginary time axis at ¢ = mm¢ for odd integer m. In
section 6.1 we explain an ambiguity in the propagator used to obtain the spacetime
closed string fields from the boundary state, which is due to the appearance of
on-shell states in the boundary state. It is shown that the analytic continuation
of the Feynman propagator gives a non-zero answer even when the support of the
boundary state moves off the real time axis. The summation over the sD-branes
m is performed in a simple example to give a closed-form expression for a massless
closed string field. In 6.2 we compute the RR field emanating from an sD-brane
and integrate it over a transverse spacelike surface to find the s-charge. Long range
dilaton/graviton fields are computed in 6.3. In section 6.4 we compute the annulus
diagram connecting an ordinary D-brane to an s-brane for general ), using old
results on the boundary Sine-Gordon model [142]. We find that the long distance
force between a D-brane and an s-brane has a coefficient of 23+-cos(27), indicating
that the force between an sDp-brane (A = 1) and a D-brane is 1} times the force
between two ordinary D-branes. In 6.5 we extend the annulus computation to finite
temperature. In 6.6 we discuss the relation between sD-branes and D-instantons.
Finally, we conclude in section 7 with speculations on timelike holography.

Results overlapping with those of this paper will appear in [138].
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14. Quantum vacuum states
We wish to understand the dynamics of the open string worldsheet theory with
a time-dependent tachyon

1
S=—-— [ d*0c0"°X"9,X,+ dr m*(X?), (14.1)
am Js, 9%

where here and henceforth we set o/ = 1. For the open bosonic string m? = T
where T is the spacetime tachyon, while for the open superstring m? ~ T? after
integrating out worldsheet fermions. We use the symbol m? to denote the interac-
tion because the coupling (among other effects) imparts a mass to the open string
states. We consider three interesting cases described by the marginal interactions

[120,129,134,143)3¢

m3 (X°) = %exo (14.2)

2 (yO A _x°
m” (X") = 5¢ (14.3)
m2(X°) = Acosh X°. (14.4)

The first case mﬁ_ describes the process of brane decay, in which an unstable brane
decays via tachyon condensation. The second case describes the time-reverse process
of brane creation, in which an unstable brane emerges from the vacuum. The final
case describes an s-brane, which is the process of brane creation followed by brane
decay. Brane decay (14.2) (creation (14.3)) can be thought of as the future (past)
half of an s-brane, i.e. as the limiting case where the middle of the s-brane is pushed

into the infinite past (future).

36 For the bosonic string one could also consider a sinh X interaction, although we do
not do so here. In the bosonic theory cosh X° describes a process in which a tachyon rolls
up the barrier and then back down the same side, while sinh X° describes the tachyon
rolling over the barrier. The bosonic sinh X interaction is challenging because it ventures
into the unbounded side of the tachyon potential. The superstring potential is always

positive, so there is no analog of a sinh X° type interaction.
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An exact CFT analysis of these s-brane theories should be possible [120,129,134,143],

and some exact results are given in sections 5 and 6. However in this and the next
section we shall confine ourselves to the minisuperspace analysis [129] in which the
effect of the interaction is simply to give a time-dependent shift (given by (14.2)-
(14.4)) to the masses of all the open string states. The range of validity of the
minisuperspace approximation is unclear, although some evidence in favor of its
validity at high frequencies was found in [134]. However, most of the results of the
next two sections follow from the periodicity in imaginary time, which is an exact
property of the CFTs defined by (14.2)-(14.4), so we expect our conclusions to be
qualitatively correct.

In the minisuperspace approximation only the zero-mode dependence of the
interaction m?(X?) is considered. In this case we can plug in the usual mode
solution for the free open string with oscillator number N to get an effective action
for the zero modes

S = /dT [—ia’v“a’:u + (N —1) +2m?(z°)| . (14.5)

This is the action of a point particle with a time dependent mass. Here z#(7) is the
zero mode part of X#(o, 7), and the second term in (14.5) is an effective contribution
from the oscillators, including the usual normal ordering constant. From (14.5) we

can write down the Klein-Gordon equation for the open string wave function ¢(t, %),
("8, —2m?(t) — (N — 1)) ¢(t, %) = 0, (14.6)

where (t,%) are the spacetime coordinates corresponding to the worldsheet fields
(X° X). This is the equation of motion for a scalar field with time-dependent
mass.

At this point, we should make a few remarks about field theories with time

dependent mass. Time translation invariance has been broken, so energy is not
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conserved and there is no preferred set of positive frequency modes. This is a familiar
circumstance in the study of quantum field theories in time-dependent backgrounds
which leads to particle creation. The probability current j, = i(¢*0,¢ — 0,¢* @) is

conserved, allowing us to define the Klein-Gordon inner product

(flg) =i /E IS (F*0,g — D f*9) (14.7)

where Y is a spacelike slice. This norm does not depend on the choice of ¥ if f
and g solve the wave equation. Normalized positive frequency modes are chosen
to have (f|f) = 1. Negative frequency modes are complex conjugates of positive
frequency modes, with (f*|f*) = —1. There is a set raising and lowering operators
associated to each choice of mode decomposition — these operators obey the usual
oscillator algebra if the corresponding modes are normalized with respect to (14.7).
We also define a vacuum state associated to each mode decomposition — it is the

state annihilated by the corresponding lowering operators.

14.1. The |in)y vacuum for brane decay

In this section we review some results of [129] on a scalar field with mass
m3 (t) = Zé, (14.8)

describing open strings on a decaying brane. A natural vacuum in this case is that
with no particles present in the far past: we shall denote this state |in) .

Expanding ¢ in plane waves
b(t, T) = e Tu(t) (14.9)
the wave equation becomes

(02 + Xt +wHu=0, w*=p*+N-1. (14.10)
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This is a form of Bessel’s equation. It has normalized, positive frequency solutions

37

(1 — 2iw)
V2w

These solutions have been chosen because they approach flat space positive fre-

wit = \w J_2i0(2VAe!/?) (14.11)

quency plane waves in the far past t — —oc,

ui ~ e~ Wt (14.12)

1
V2w
We will also consider the wave functions

uim _ \/g(iezww)—lﬂﬂ(fz)iw (2\/X€t/2) (14.13)

that are purely positive frequency in the far future ¢ — 400,

—1/4
uert o A / exp {—t/4 - 2z'\/Xet/2} (14.14)
o % . .

These are related to the previous set of wave functions by a Bogolubov transforma-
tion

ul™ = aqu’l + bu'l* (14.15)

whose coeflicients

‘ ) )\—iw
_ 27rw+7r1/2b* — Tw—mi/4 14.16
a=e wne (sinh 2wl (1 — 2iw)> (14.16)

obey the usual unitarity relation |a|? — |b|? = 1. All solutions of the wave equation
during brane decay vanish exponentially in the far future (but not in the far past)

because the mass is growing exponentially.

3T A + (—) subscript on a wave function denotes solutions with m? = m?2 (m? = m?2)
during brane decay (creation). A wave function without a subscript refers to solutions for
full s-brane m? = m2. A superscript in, out and 0 on a wave function denotes solutions
that are purely positive frequency when ¢ -+ —oo, t =& +o00 or t = 0. The wave functions

u depend on p as well, although we will typically suppress momentum indices.
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The relation (14.15) between in and out modes implies as usual the relation

between in and out creation and annihilation operators
a™ = aa®* + b* (aom)T. (14.17)
From this, the condition that a*™|in) = 0 implies that |in) is a squeezed state

. 1 ou *
i) =500 = P exp { = a(ag 2 bowthes v =00 (aa8)

Physically, this is the statement that particles are produced during brane decay: if
we start in a state with no particles at ¢ — —oo, there will be many particles at

time ¢ — +00. We should emphasize here that - is a function of p’
’Y = b*/a = —’[:6_27“") (14.19)

that decreases exponentially as the energy w increases. In particular, this implies
that the |in)y and |out), vacua become identical at very short distances. The

density of particles with momentum p’is
ny = |y|* =e 4™, (14.20)

Despite the fact that (14.18) is a pure state, this is precisely the Boltzmann density
of states at temperature Ty = 1/4n. In string units, Ty is the Hagedorn temper-
ature. The fact that this “temperature” is so high means that g, corrections are
likely qualitatively important even for gs — 0 [129], but we do not consider these
here.

The appearance of the temperature Ty here is ultimately due to the Euclidean
periodicity of the interactions (14.2)-(14.4). This will lead to other thermal prop-
erties as described in the next section. Since the thermal periodicity is an exact
property of the worldsheet CFT (14.1), we expect this behavior to persist beyond

the minisuperspace approximation considered here.
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14.2. The |in)_ vacuum for brane creation

Solutions u_ of the wave equation during brane creation are related to those

(u4) during brane decay by time reversal. In particular,

ut(t) = u'l(—t)* (14.21)

becomes a plane wave in the far future ¢ — 400, and
it () = ugHt (—t)* = \/g (ie2™) 2HY). (2v/ e t/?) (14.22)

becomes purely positive frequency in the far past ¢t - —oo
i AT f t/2
u'™ ~ ex {t 4 4+ 2iV de” } ) 14.23

These two solutions are related by the Bogolubov transformation

U™ = q*ulUt o pry0utt (14.24)

where a and b are given by (14.16). Wave functions during brane creation vanish
exponentially in the far past but not in the far future, because the masses are infinite
in the far past.

The natural vacuum state during brane creation is not, however, the time
reverse 7 of the in state for brane decay 7|in);. The latter state has particles
present in the far past with infinite masses. Indeed it would cost an infinite amount
of energy to prepare such an initial state. Rather, the natural in state |in)_ for
brane creation has no particles in the far past and is the time reverse T |out) of the
out vacuum for brane decay. We can write |in)_ in terms of the free out operators

as
1

in)- = T15(1 = 1) exp { 3 (a5t | four) (14.25)

where «y is given by (14.19). The spectrum in the region t — +oo is just the free

spectrum of the unstable D-brane, and (14.25) is a pure state of open string exci-

tations. Despite this fact we shall see in section 3 that (14.25) closely resembles
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a thermal state at temperature Ty. Indeed we shall see that the results of mea-
surements done after brane creation differ from thermal results by asymptotically

vanishing amounts.

14.3. Full s-brane modes

For the full s-brane potential (14.4), the Klein-Gordon equation is
(02 + 2\ cosht + w?)u = 0. (14.26)

This is a form of Mathieu’s equation. We will now summarize a few useful properties

of the solutions — see e.g. [66-145] for more detail. The solutions are generalized

Mathieu functions, which can be written as 38
u =Ae " P(t) + Be*tP(—t) (14.27)
where the function
Pt)= ) coe™ (14.28)
r=—00

is periodic in imaginary time P(t) = P(t + 2m¢). The constants @ and ca, obey
complicated recursive formulae and are typically computed numerically. Although
it is not obvious from (14.27), all solutions u vanish exponentially in the far past
and the far future. This is because open string modes get very massive far from the
interior of the brane.

Solutions to Mathieu’s equation are typically classified by their behavior with
respect to imaginary time 7 = ¢¢t. A solution is bounded on the 7 axis only if @ is
purely imaginary. In this case the solution is called stable - otherwise it is unstable.

Solutions are stable only for certain regions of the (w?, \) plane. For large positive

38 This form for u differs from the standard convention for Mathieu functions. Our &
is related to the standard characteristic exponent (often denoted v in the literature) by

v = —210.
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w? — the case of interest — @ is real and all solutions are unbounded on the real T
axis. However, there is a unique solution that vanishes as 7 — oo — this is the
solution with B = 0. We will see later that this solution is naturally associated to
the state with no particles in the interior of the s-brane at t = 0.

It is useful to assemble Mathieu functions in the form [145] analogous to Bessel

functions

J(=2i@,t/2) == e ™P(t) = Z ¢ (n — i) (=it

n=—oo
» J(2i0,t/2) — e 2™ J(—2id, /2 14.29

H(l)(—2zw,t/2) = ( & sinh 27w : / )’ ( )
» J(2i0,t/2) — ™ J(—2iw,t/2

H(2)(_2M’t/2) = ( / )—sinh 27r€5 / )

They have asymptotic behavior

ATVAE t T
H®(=2i5,t/2) — 7 e ™ exp (7 + 2iv/xet/? — iZ>
T
o 7 ; S - as t — +oo.
i~ - ot T
HY(-2iw,t/2) — N e exp( A 21V e +z4>
(14.30)

Mathieu’s equation is invariant under ¢ — —t, so J(—2iw,—t/2) is also a solu-
tion. Under t — t + 2mi, J(—2i@,—t/2) picks up the phase e~2"%  so it must be

proportional to J(2iw,t/2)

J(2i@,t/2) = xJ (—2i@, —t/2) (14.31)

where the proportionality factor x is related to ¢ by

_ pn+id) i)
¢(—n —iw)  P(—iw)’
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The coefficients ¢(7) can be computed using the formula

1 oo
— -1 n)\2n+TA(n)
M) = S T )T T 7= ) HZZO( ) T

AO =1,

oo oo oo
A
Ag ) = E E : E : A7 +p1 Cr4pi+pe * " Artpi+-+prs

p1=0p2=0 pA=0

(14.33)

1
Q+7+w)(l+7—w)2+ 7+ iw)(24+ 7 — iw)’

a, =

One can analyze the behavior of H® (—2i®,t/2) as t — —oo using the relation

1
2sinh 27w

[(x — 1) HM(=2i0, —t/2) + (X _ ¢

X

HW(—26i,t/2) =

—4nrw

) H® (=2i, —t/2)]
(14.34)

When ) is small, we can use the expansion

W 4 22 N (2002 — 7)\* N
B 402 +1 2402 +1)3(@%2+1)

to compute w.

14.4. lin)s and |out)s s-brane vacua

For our full s-brane, the incoming and outgoing positive frequency wave func-

tions are normalized as

w'(t) = \/g (1> 2 HM (—2i0, —t/2),

ufvt(t) = 5(z‘e2’f°7')—1/215{(2)(—2z‘a;,t/z).

(14.35)

The in (out) vacuum, which has no incoming (outgoing) particles, is defined by the

condition
a’™lin), = 0 = a®t|out)s. (14.36)
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The relation between in and out modes is determined from (14.34) to be

n 1 . 27w 6_27“:} ) out ( 1 ) out* :|
u (t)=———112le -] U t)+ —— ]Ju t
®) 2 sinh 2@ [ ( X X (¥ X X ) (14.37)

— auout(t) + BUOUt* (t),

where «, 8 are the Bogolubov coefficients

! 2nay, € 3 = ! (14.38)
a=——"—1\e — =— [y—=). )
2sinh 27w X X ’ 2 sinh 27w X X

Although the dependence of @, x on w, A is in general quite complicated, it is known
that either e is real and y is of unit modulus, or x is real and 2™ is of unit
modulus. It follows that the Bogolubov coefficients satisfy the unitarity condition

la|? — |B]2 = 1. In the case of interest, w is large and A < w, we have
& =w[l+0N\/w")]. (14.39)

Using (14.32) and (14.33), we obtain the expansion for x

(1 — 2iw)

T2y L+ OO /wh)]. (14.40)

X:

To leading order in O(A\2/w?), the Bogolubov coefficients are

_ sin(f + 27iw) . sinf 0 _ \—2iw (1 + 2iw)

= -1 . 14.41
sinh 27w’ 'Sinh 27w’ I'(1 — 2iw) ( )

Sub-leading terms can be computed order by order in 1/w? using the methods of

[145], although we shall not need them here.

14.5. The |0)s Euclidean s-brane vacuum

If we take A — 0 there is a long region around ¢t = 0, of duration In A, in which
the interaction can be neglected and we just have an ordinary unstable brane.

There is then a natural |0)s; vacuum in which there are no particles present at ¢ = 0.
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This will later be identified with a vacuum obtained by analytic continuation from

Euclidean space. It is associated with the wave functions

dmx .
0 P— J—
u(t) =\ g (2@, 1/2). (14.42)

Using the relation J = 2[H®) + H®), u0(t) can be expressed in terms of u®*¢(t) as

0 _ X Tw+iZ  out —TmTw—1Z  outx*
Py g S Fuout(y Fuoute(f
W=\ gamhang B +e u (1) (14.43)

— a*uout (t) o buout* (t)

and in terms of u*(t) as

1 PO O
uO(t) - _ - [evrw—zzum(t) + e_ww_HZU,m*(t)}

Vv 2x sinh 27w (14.44)
= au™(t) — b*u'™ (t).
The Bogolubov coefficients relating the |0)s vacuum to the |in)s and |out)s vacua

are given by

T % o X
0= ——, b=—e TN [ o (14.45)
V2x sinh 2rw 2sinh 27w

In the limit w,w/A > 1, the s-brane wave functions may be understood in
terms of a flux matching procedure. 3% In this limit the Klein-Gordon equation
(14.26) describes brane creation (14.10) in the far past and brane decay in the far
future, separated by a long region near t = 0 where the interaction is negligible.
Approximate solutions to (14.26) may be found by matching wave functions of brane
creation with wave functions of brane decay across the region ¢ ~ 0. In particular,
u'™ and u°"! look like the half s-brane solutions u*" and ui"t in the past and future,
respectively. The wave function u° looks like an ordinary plane wave solution in

the interior of the s-brane, u°“t in the far past and uT in far future. This may be

39 A similar procedure was used to study scattering of scalar fields by a D3 brane in
[146].
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verified by noting that to lowest order in 1/w? the Bogolubov coefficients (14.45)
are given by (14.16).
For transitions to and from the |0); vacuum, we find that the particle creation

rate is governed by the “thermal” factors :

Yo—in = b/a* — Z'e_z'ﬂ't:l’ Yin—s0 = _b/a — e—271’c:1—i§
- o (14.46)
Yoout = b*/a = —ie”?"¢, Yout—o = —b*/a* = e”2TOTH,
where e=® = y. In the limit of large w and w/A > 1, @,0 — w,6 and we find

the same particle creation rates as for the half s-branes. We see that the particle
occupation numbers in the far past and future are both thermal at temperature
T = 1/4w. The |0) vacuum is special in this respect.

The |0), state is also special because it is time reversal invariant and is the
natural state defined by analytic continuation from Euclidean space. This latter
property can be readily seen from the fact that it is the unique state whose modes
are bounded on the positive Euclidean axis, as described in section 2.2. It is also the
only state whose positive and negative frequency modes do not mix under imaginary

time translation ¢ — t + 2ms. A general solution of the wave equation has the form
u = AJ(—2iw,t/2) + BJ(—2iw, —t/2). (14.47)

For the |0) vacuum B vanishes, and the solution transforms as
u® (t + 2mi) = e*™ u°(t) (14.48)

under imaginary time translation. In all other states both A and B are non-zero,
so this procedure mixes v with u*. When w is large and w/\ > 1, & approaches
w and (14.48) is the usual imaginary time translation condition exhibited by plane
waves in flat space. Moreover, in our choice of solutions (14.42) we have chosen the

phase of A so that u° has the usual time reversal behavior

u® (—t) = ul* (). (14.49)



14.6. More vacua

The wave equation (14.26) is second order, so for any given momentum p’ there
is a one complex parameter family of normalized, positive frequency solutions u(t).

We can write these solutions as linear combinations

67 1 0 a, 0%

where « is a function of p with negative real part. This choice of modes defines a
state |a) for every such function a(p). The state is invariant under spatial trans-
lations when « is a function of p only. This is a very large family of vacua, which
includes the |in)s, |0)s and |out), states. Of course, one can define families of vacua
for brane creation and brane decay as well.

In order to constrain « further, one needs to demand some other symmetry.
One such symmetry is time reversal invariance — this restricts us to states such as
0)s and 2(|in)s + |out),). It is also natural to demand that the short distance
structure of the vacuum be the same as the |0); vacuum. This restricts a(p) to

vanish sufficiently quickly at large p.

15. S-brane thermodynamics

In this section we study the thermal properties of s-branes. In the first subsec-
tion we will consider the response of a monopole Unruh detector coupled to ¢. We
will show that in the |in)_ and |out); vacua the detector response is thermal, but
that in other states the detector response is non-thermal. Next, we will demonstrate
that in the |in)_ vacuum the correlators of the theory become exactly thermal up to
corrections that vanish in the far future. Likewise, the |out); vacuum looks thermal
in the far past. Similar results pertain to the full s-brane, but we will not work out

the details here.
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15.1. S-branes at finite temperature

The s-branes described by (14.2)-(14.4) are highly time-dependent configura-
tions. Temperature is an equilibrium (or at best adiabatic) concept, so it usu-
ally does not make sense to put a time dependent configuration at finite tempera-
ture unless the inverse temperature is much lower than the scale of time variation.
Thus it would seem to be impossible to study s-branes at string-scale temperatures.
However, certain special properties of s-branes make this possible, as we will now
demonstrate for a scalar field obeying (14.6). In section 5 we will see that the finite
temperature states in string theory have a natural boundary state description.

Let us first consider the construction of Green functions by analytic contin-
uation from Euclidean space. In Euclidean space, parameterized by 7 = it, the
formulae (14.2)-(14.4) for m?(7) have the special property that they are periodic
under 7 — 7 4+ 2m. It is therefore possible to identify Euclidean space so that
T = 7 + 27n for any integer n, and compute the Green function on the identi-
fied space. After continuing back to Minkowski space, the resulting Green function

Gonn(Z,t; 7, t") will be periodic under t — t + 2min and t' — ' + 2mwin. This is a

1

thermal Green function at temperature 7' = 5 .

The thermal Green function so obtained can also be understood as a two point
function in a certain mixed state. We will consider the case of brane decay, although
a similar discussion will apply to brane creation and to the full s-brane. For ¢,¢' —
—00, Gonn (T, t;7,t') is clearly the usual thermal Feynman Green function which is

given by (suppressing the time-ordering)

Gorn (&, 17 ,1') =Y e 2™ Fi (Ej|p(&, t')$(#, 1) | Ej)
J

(15.1)
= Trp, (&', 1) $(Z, ).
Here we have defined the density matrix
pp = Cpe2mnH(=) (15.2)
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where (), is a normalization constant and the time dependent Hamiltonian is

H(t) = /2 do((§)? + (Vé)* + %) + N. (15.3)

In this expression, N is a (time-independent) normal ordering constant and ¢ is to

be expanded in terms of time-independent creation and annihilation operators as

—

P

¢ — Z(w%na%n + ,Lp%n*a%nT) — Z( %Uta%Ut + wgut*agutf)_ (154)
P
The Hamiltonian H () obeys

i[H(t), p(8)] = 9:o (1), i[H(t), 8:(t)] = 0/ () (15.5)

so that the path-ordered operator

. [t2
Ulta, 1) = Pl Ju #O (15.6)
generates time evolution on ¢
(&, ta) = Ulta, t1) (L, 11)U (t1, t2)- (15.7)

However, because of the explicit time dependence in (15.3), U does not generate
evolution of H(t).

In fact (15.1) turns out to be the desired Green function even for finite t,¢’,
and (15.2) can be viewed as the exact Heisenberg-picture density matrix. First, it

can be shown from properties of Bessel functions that
G(, t + 2min) = e~ 2H () (i, ¢)e2mnH(o0), (15.8)
O, p(Z, t + 2min) = e~ 2H(=2)g, (i, t) 2 H (=), (15.9)
Note that shifts in t — ¢ 4+ 27i are generated by H(—o0) for any t. This implies

U(t,t + 2min) = U(—o0, —00 + 2min) = (15.10)

)
Q3
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It then follows that (15.1) obeys
Gonn (Tt + 2min; T ') = Gonn (T, 4, 7,1 — 2min) = Gopn (2,5 7,1),  (15.11)

as expected for a thermal Green function.

It is possible to define a time-dependent Schroedinger picture density matrix
pn(t) = CrLU(—00,t + 2min)U(t, —00). (15.12)

One can then compute correlators at equal (finite) times by inserting the Schroedinger-

picture operators ¢(&, —00):
Gomn (T, 6,7, t) = Trp, (8)d(F, —00)P(Z’, —00). (15.13)
The Heisenberg density matrix is related to the Schrodinger density matrix by

Pn = pn(—OO). (15'14)

We note that the thermal density matrix p,, can not be exactly identified with
any of the vacua of the preceding section, all of which are pure states by construc-
tion. Despite this fact we will see below that in some cases it becomes difficult to
distinguish pure and mixed states.

To summarize, we have seen that, despite the time dependence of the back-
ground, it is mathematically possible to define mixed states which approaches the
standard thermal vacuum at past infinity while retaining the thermal periodicity at

all times.

15.2. Unruh detection

In the previous subsection, a sequence of mixed thermal states were described

with temperatures T' = ﬁ On the other hand, in the previous section we saw that

various s-brane vacua — despite being pure states — have some mysterious ” thermal”
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behavior. In this subsection we will clarify this by showing that a particle detector
in these vacua will respond as if it is in a mixed thermal state with temperature
T = ﬁ. In the next subsection we will show that the pure state correlators can
asymptotically approach those of the thermal state.

Let us imagine coupling some detector to the field ¢ via a monopole interaction
term [ dt O(t)¢(t). Here O(t) is a hermitian operator that acts on the Hilbert space
of the detector, which we will assume is spanned by some discrete, non-degenerate
set of energy eigenstates |E;). We also assume that the detector is stationary and
that the detector Hamiltonian is time independent. We can now calculate the
probability that the detector will jump from a state with energy E; to one with

energy E;. To first order in perturbation theory it is (a recent discussion appears

in section 3.2 of [147])
Py = (B OW) B [ dt [ dte 8506 (1,1 (15.15)

where AE = E; — E; and G(t,t') is the Wightman two point function of the scalar
field in a particular vacuum state. The detector response is thermal at temperature
T if the probability amplitudes (15.15) obey the detailed balance condition
% = e"AF/T, (15.16)
For time translation invariant theories the green function depends only on ¢ —t' and
the double integral (15.15) is infinite. One can then factor out the [d(t +t') to
get a finite expression for the transition rate per unit time Pi_)j. For s-branes the
Green function G(t,t') is not time translation invariant and the calculation is more
complicated.
In fact, for the full s-brane expression (15.15) — the total probability integrated
over all time — is finite. This is because the Green function G(z,y) solves the wave

equation in both arguments, so that as t — +o00, G(t,t') ~ e¥t/* vanishes rapidly.
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This holds for both ¢ and ¢, so the double integral (15.15) converges. This is true
for any vacuum state of the full s-brane. This behavior has a natural physical
interpretation: in the far past and far future the open string states become very
massive and cannot couple to the detector.

For brane creation, the Green function G(t,t') does not fall off exponentially as
t — +o0, so that the integrated probability amplitudes (15.15) are infinite. At this
point one approach is to consider the transition rates Pi_>j (t), which are finite and
time dependent. We will take a different point of view, however, and show directly
that the ratio (15.16) converges to a finite (and interesting) answer.

In order to evaluate (15.15), we rewrite the Green function in a particular

vacuuil as

G(z° % 9°, 9) = (|o(2°, ©)p(3°, 9)|)
_ / d*p e P @Dy (20)u(y”)

where u are the (p-dependent) positive frequency modes. Then (15.15) becomes

(15.17)

P :/dd—lma(ﬂg _ B (15.18)

where @ are the Fourier transformed modes. For the |out) vacuum of brane decay

we can evaluate the Fourier integral 4°

’l]?i_Ut (E) — /e_iEtuiUt (t) dt

_ (15.19)
- ,/S%e—WEMEr(—z'(w + E)(i(w — E)).
This has the form
Ut (E) = i 2e Py (E) (15.20)
where z(—FE) = 2*(FE). The norm is
[aS“(E) |2 = e ?"F [z2*], (15.21)

40 As usual, the integral converges only after we deform the contour to give E a small

positive imaginary part, £ — E + ie.
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where the term in the square brackets is invariant under £ — —F. From this fact
and expression (15.18) it follows that the transition probabilities in the |out); vac-
uum satisfy the detailed balance condition (15.16) with characteristic temperature
Ty = 4. *' The [in)_ vacuum for brane creation is related to the |out) vacuum
for brane decay by time reversal, so it has identical transition probabilities P;_,;
and thermal detector response.

In fact, the |in)_ and |out) vacua are very special in this respect. For example,
we could calculate the transition probabilities in the |in); vacuum by inverting the

Bogolubov relation (14.15). This gives

Uy (E) = c*ug"(E) — dug"™* (- E)
(15.22)

= —2i%/2de™ coshm(w — E)z.

The norm is

|&2(E)\2 = cosh’ 7(w — E) [4|d|*e*™ zz*] (15.23)

where again the quantity in the square brackets is invariant under £ — —F. In this
case it is clear that the transition probabilities are not thermal. It seems likely that
for any vacuum state that is not |out) 4 or |in)_, the Bogolubov transformation will

give terms proportional to e™¥ so that the detector response is non-thermal.

15.8. Thermal correlators

We will now demonstrate that the correlators of the [in)_ vacuum are asymp-
totically thermal in the far future. The theory is free, so it suffices to consider the

two point function G(z,y). For brane creation, we have

uin — a(uout _ e—27rw+i9u(iut*) (15.24)

41 As mentioned above, these transition probabilities are infinite, so in evaluating

(15.15) it is necessary to regulate the divergent momentum integrals by, e.g. imposing

some cutoff. In evaluating the ratio (15.16) one can safely take this regulator to infinity.
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so the |in)_ Green function is
G (a,y) = [ dIpu @ ()

dd—l—' L
:/ 71 — e—fww ezp~(a:—y) [(Uo(t)US(tl) + 6_4wwu3(t)u0(tl)) (15.25)

+e72™ (P ug (t)uo(t') + c.c.)].
In the far future, u°“* approaches a positive frequency plane wave plus corrections
exponentially small in ¢ + ¢’. In this limit the term on the second line of (15.25)
becomes a function of ¢ —t¢’ only, and approaches the usual (constant mass) thermal

Green function at temperature Ty = 4=

dd—lﬁ eiﬁ(i’—g’)—iw(t—t') eiﬁ(iz’—g’)—i—iw(t—t')
GT(x,y):/ o ( e~ T : (15.26)

In the far future the third line of (15.25) depends on t + ¢’ rather than ¢ — t/, and

gives a contribution to the Green function

d—1> 2 e e . ’
/ d2 p_ 2 (ezeezp-w—y)—w(m)+C_c,) (15.27)
w SIn W

plus exponentially small corrections. In the limit ¢,# — oo this contribution
vanishes as (¢t 4+ ')~ (@=1/2_ In fact, when w? = p? (i.e. the field becomes massless
in the far future) the integral (15.27) can be converted into a contour integral and
shown to vanish exponentially in ¢ 4 ¢'.

We conclude that in the far future the pure state |in)_ correlators become
thermal plus asymptotically vanishing corrections. Likewise the |out), correlators

become thermal in the far past.

16. Long-distance s-brane effective field theory

The dynamics of ordinary D-branes are described at low energies by a long-
distance effective field theory. This field theory is of much interest in the under-

standing of holographic bulk-brane duality. One would like to know if there is a
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similar long-distance field theory for s-branes, which would be a candidate holo-
graphic dual for an appropriate bulk string cosmology.

The first task is to define the notion of an effective field theory for branes with
a spacelike orientation. This is best understood in terms of correlators. We define
the long-distance effective field theory on the p+1-dimensional sp-brane as the p+1-
dimensional Euclidean field theory that reproduces the long-distance correlators.
To be specific, let us consider an s2-brane which is real codimension one in four
spacetime dimensions. A massless field confined to the s2-brane should have a
correlator that falls off like % This is quite distinct from massless correlators at
spacelike-separated points in the ambient four-dimensional spacetime, which fall off
like %

Consider a scalar on the full s2-brane with four-dimensional wave equation:

00,0 — (2Acosht + w?)¢ = 0, (16.1)

as in (14.26). In the far future and far past, ¢ is very massive, and correlators
fall off exponentially with the spatial separation. Hence if there are any massless
excitations they will be confined to the s2-brane world-volume near t = 0 where ¢
is light.

In trying to compute the equal-time correlators near ¢ = 0, we immediately
encounter a puzzle. Such correlators depend on the choice of quantum state for
the field ¢. Indeed, given any set of equal time correlators A(Z, ) there exists a
quantum state ¥[¢] = exp[—71 [ [ #(Z Z,7)¢(%)] that reproduces them.

In order to determine the long-distance effective field theory we must therefore
first specify a quantum state. One possibility is to take the |0), state which has no
particle flux at t = 0. Spacelike correlators at ¢ = 0 in this state fall off exactly as
they would in Minkowski space, i.e. as T% So this does not lead to a low energy
effective field theory confined to the s-brane world-volume. As we have seen, a nat-

ural state for an s-brane is the thermal state at temperature T' = . Such thermal
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states plausibly approximate the quantum states of open strings on an s-brane cre-
ated from incoming closed string excitations. The t = 0 correlators in these states
indeed fall off as %, indicating massless modes are confined to the s-brane. This can
be most easily seen from the Euclidean construction of the correlators on R3 x S*.
At distances large compared to the radius of the S' (i.e. large compared to the
inverse temperature) there is an effective compactification from four to three (Eu-
clidean) dimensions, and so the effective correlators are three-dimensional. Massless
modes of the three dimensional effective theory arise as usual from compactifica-
tion zero modes. From the Minkowskian perspective, the mixed thermal state has
excited components which carry more spatial correlations than the vacuum.

The Euclidean zero mode equation following from (16.1) is
02¢ — (2Xcos T + w?)p = 0, (16.2)

where 7 ~ 7 4 2mn. Whether or not there is a zero mode for a given temperature
depends on the precise value of the mass parameter w? (16.2), which has to be fine-
tuned to get an exact zero mode. This special value might arise as a consequence
of Goldstone’s theorem or other symmetry considerations.

In conclusion, the s2-brane has a naturally associated three-dimensional Eu-
clidean effective field theory given roughly by the high-temperature limit of the
theory on the four-dimensional unstable brane. The full determination of such
an effective theory for stringy s-branes is beyond the scope of the present work,

although a few preliminary comments are made in our concluding discussion.

17. Thermal boundary states

We have seen that natural quantum states for s-branes are mixed thermal states

at temperature T = ﬁ In this section we will construct the exact CFT bound-

ary state whose worldsheet correlators give the thermal spacetime Green functions,
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generalizing the zero-temperature construction of [120]. Ghost and spacelike com-

ponents of the boundary state are suppressed, but are similar to those in [120].

17.1. Zero modes and winding sectors

The boundary state |B) for the conformally invariant boundary Sine-Gordon

theory
S = i/ dpdg + é/ (' +e7%) (17.1)
27 Jx 2 Jox

was found using the bulk SU(2) current algebra in [142] (see also [148,149,150]).
Here ¢ is Euclidean time, which will later be analytically continued to the Lorentzian

world sheet field X° = i¢. The boundary state corresponding to temperature

T = ﬁ arises when one identifies

¢~ ¢+ 2mn. (17.2)
This identification restricts the left and right moving momenta to be
p p
(pL,pR) = (ﬁ +wn, = — wn) (17.3)

where p and w are integers. In this case the thermal boundary state is simply

|B,) = P, ™1 N). (17.4)
Here
IN) =274 3" jym, —m)) (17.5)
jym

is the standard SU(2) Neumann boundary state and |j;m, —m)) is the Ishibashi
state associated with the SU(2) primary field |j;m,—m). The SU(2) rotation Jy
acts only on right-movers, and P, is the projection operator onto the allowed sub-
lattice defined by (17.3). For n = 1, P; is the identity. In the non-compact case,

n — oo and P, projects onto pr, = pg.-
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Let us now consider the part of the boundary state which involves no oscillators.

There are four such terms for every j, namely |j; +7,+j). Now, since

for any n, the p;, = pr components of the state are the same as in [120]. For real

A they may be written

1423 (= sin(wA) cos(2¢(0))]|0) = cos*(m)) 10).
s 1+ sin?(7\) 4 2sin(7wA) cos ¢(0)
(17.7)
For finite n, there are also terms with p;, = —pr = 2nj # 0. These are related to

the p;, = pr terms by the rotation e/, which corresponds to a shift of A by %
Hence in addition to (17.7), |B,) has a winding-sector component

2 cos™ () cos(ng(0)) — 2 cos? ()

~——|0).
1+ cos??(mwA) — 2 cos™(m ) cos(ng(0))

(17.8)

2 “(cosmA)>" cos(2nj$(0))|0) =
J#0

In this expression ¢(z,z) = 3 (#(z) — ¢(2)) is the T-dual of ¢.

The continuation ¢ — —iX? of these expressions to the timelike theory
1 _
S=—— / 0X%9X° + X / cosh X° (17.9)
27 Js )y
is straightforward. The theory (17.9) contains the currents*?
1
je() =X, az) = SaX°(2), (17.10)

which generate the usual level one SU(2) current algebra. Note however that with
the standard norm X° = XO° j; is anti-hermitian while j* are both hermitian.

Nevertheless the charges

J:t :%d—z_]‘i(Z), J3 :%d—z,jg(Z), (1711)

21 27

42 In our conventions X (z,2) = 3(X(2) + X (2)), X(2)X (w) ~ 2In(z — w) and &’ = 1.
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obey the usual commutation relations
[J_, J+] = —2J3, [J3,J1] = +Jx. (17.12)

States can therefore be characterized by their SU(2) representations. Under ¢ —
—iX, Jy — Ji and hence |j;m,m')) — |j;m,m’)). Therefore the Sine Gordon
boundary state written in the form (17.4) can also be viewed as a boundary state
for the timelike theory (17.9). Expressions (17.7) and (17.8) become
[1+2 Z(— sin(m))? cosh(2X°(0))](0)
3#0

cos?(m) (17.13)

" 1+ sin®(nA) + 2sin(mA) cosh X°(0)

0)

and

Z(cos 7A)# cosh(2nj X°(0))[0)
770 i (17.14)
2 cos™(mA) cosh(nX?(0)) — 2 cos?™ (7))

" 1+ cos?n (mA) — 2cos™(mA) cosh(nX0(0))

10).
Here X9(z,2) = 1(X°(2) — X°(2)).

17.2. The superstring

In this subsection we sketch the finite-temperature generalization for the super-
string of the zero-temperature boundary state of [121]. For the superstring, instead
of the boundary interaction (14.1), one has

0

X

We follow the notation of [119,121,131] in which o; acts on Chan-Paton factors,

XO
V2

out 1° one obtains a boundary interaction of the form (14.4). This interaction is

and (17.15) arises from a tachyon field proportional to cosh <. After integrating

invariant under

X0 - X0+ 2v/2mi. (17.16)
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We can therefore consider thermal boundary states at temperatures

1
T = .
2\/§7m

This corresponds to the superstring Hagedorn temperature Ty = 2\/1% for the

(17.17)

minimal value n = 1, rather than the n = 2 we encountered in the bosonic string.
The bosonic zero mode part of the boundary state with no winding is then

1 —sin*(7 )

1+ sin® (7)) + 2sin® (7)) cosh(v2X°(0)) o (17.18)

The winding component is

2 cos?™ () cosh(v2nX°(0)) — 2 cos*™ (7))

1 + cos?n(wA) — 2 cos?(mwN) COSh(\/EnXO((])) 0). (17.19)

These components are similar to those of the bosonic string, with the replacement
sinmA — sin® wA and the factors of /2. In computing the fermionic components,

twisted boundary conditions around the thermal circle must be taken into account.

18. The )\ = :l:% sD-brane limit

In this section we will consider the very interesting limits A — +3. In [131] it
was shown that in a certain A — —% limit, the general bosonic s-brane boundary
state (17.4) (at zero temperature) reduces to the boundary state of [118] which
imposes a Dirichlet boundary condition X° = 0 in the time direction. In other
words A = —% is an sD-brane. The relation to sD-branes follows immediately from
the fact that the A = :I:% boundary interaction is an SU(2) rotation by = which
transforms a Neumann boundary state into a Dirichlet state.

On the other hand, in [120] it was shown that in a certain A — 3 limit, the

general s-brane boundary state in some sense reduces to nothing — i.e. in this limit

there is no brane present at all.*3 In fact, we will see that the limiting closed string

43 As can be seen from (17.18), the superstring case for both A — 2and A > —1is

qualitatively similar to the A — % bosonic case.
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configuration is not unambiguously determined from the boundary state for any
value of A\. Additional boundary conditions on the fields are needed. In general the
limit is not the trivial one described in [120], but rather is a very special type of s-
brane configuration described by spacelike Dirichlet branes located on the imaginary
time axis.

In the next subsection, we will describe this ambiguity in the limit A\ — % In
section 6.2 we will derive the linearized RR-field sourced by an sD-brane and see
that it carries a non-trivial s-charge for all A. In 6.3 the long range graviton and
dilaton fields of an s-brane are computed. In 6.4 we determine the force between
an ordinary D-brane and a A = % sD-brane from a computation of the annulus
diagram. in 6.5 the calculation is generalized to finite temperature. Finally, in

section 6.6 we discuss the relation between s-branes and D-instantons.

18.1. The classical closed string field

Counsider the state

C) = ﬁu}). (18.1)

This can be viewed as a quantum state of a single closed string. Alternately, since
the states in the Fock basis of the single closed string are identified as spacetime
components of the classical string field, |C) can be viewed as a classical string field

configuration. By construction it obeys
(Lo + Lo)|C) = |B). (18.2)

These are the linearized spacetime wave equations with sources for the components
of the classical string field. The source is the boundary state |B) whose support is
confined to the brane. Hence we conclude that |C) is the linearized classical closed
string field sourced by the brane.

For ordinary static supersymmetric D-branes, it has been explicitly verified

that |C) as defined in (18.1) reproduces the linearized dilaton, metric and RR fields
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sourced by the brane [151]. When the brane is static, the Fock component states in
|B) carry no p°, and all of its components are off-shell. A unique static |C) may then
be determined from (18.1). Time-dependent boundary states differ crucially in this
regard. They have components with non-vanishing p® which correspond to on-shell
closed string states and hence are annihilated by Lo+ Lg. It follows that Ly + Lg is
not invertible and |C) is not unambiguously determined from |B). This is just the
usual problem of specifying the homogenous part of the solution emanating from a
time-dependent source. Some additional boundary conditions must be specified.**

For general A, the Fock components of the string field wave equation (18.2) are

of the form

cos?(mwA)
1 + sin®(7)) + 2sin(7)) cosht

_ §25-p(7) ( S S 1) .

l1+etsinmA 14+ e tsinwA

n*0,0p(Z, t) = 62577 (Z)
(18.3)

This follows from (17.13) after replacing the operator X° by its eigenvalue ¢. Here
Z are the transverse spatial dimensions, and longitudinal spatial dimensions are
suppressed. For notational simplicity we henceforth specialize to p = 22, so that
only four spacetime dimensions are relevant. For A = % the wave equation (18.3)
reduces to

N™0a0pp(Z,t) = 2mid®(F) Y 8(t+ mi+ 2mai). (18.4)

m=—00
Since the source on the right hand side vanishes for real ¢, an obvious solution of

(18.4) for real ¢ is simply
¢(Z,t) = 0. (18.5)

This is the solution implicit in [120]. However, there is another solution which

"knows” about the sources at imaginary ¢. Recall that the wave equation with a

44 We note that this closed string ambiguity remains even after we have fixed the quan-

tum state of the open strings on the brane.
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delta function source
n“baaabgb(f, t) = 53(55’)5(15 — o) (18.6)

is solved by Feynman propagator

o ) 1
7,t) = —Ap(Z,t;0,ty) = i 18.7
¢($a ) F(.’L’, s Uy 0) A2 el—I>I(1) (t — t0)2 2 T ’ié’ ( )

where 72 = 72. Continuing this to imaginary ¢, we find that (18.3) is solved by

O(Z,t) = —2mi Z Ap(Z,t;0, mi + 2wmi)

m=—0c0

(18.8)

oo

1 1
T on 2. r2 — (t — mi — 2mmia)2’
m=—0o0

Since the denominator is non-vanishing for real (r,t), we have set € to zero here.

Performing the sum over m yields

1

- (tanh

tanh
4rr + tan

=

&

=
I

r+t r—t). (18.9)

Note that at large ¢ and fixed r this vanishes exponentially. On the other hand,
at fixed time ¢ this has the % falloff at large r characteristic of a static source, yet
it is nonsingular for all real r,t. With 25-p transverse dimensions we would find a
characteristic —z— falloff. Solutions of this general form were discussed in [118].

In section 6.3 we will compute the annulus diagram connecting an sD-brane
and an ordinary D-brane using a straightforward adaptation of the standard string
theory prescription [152], which involves a Euclidean continuation of the worldsheet
field X©. Since this calculation gives a definite answer, it must contain an implicit
prescription for inverting Lo+ L. We shall find that at large separation the graviton
falls off like m%p This indicates that non-trivial solutions of the form (18.9) rather
than the trivial solution (18.5) are implicit in this formulation of worldsheet string
theory.

We note that at A = %, the branes have no support at real £, and therefore
there can be no on-shell open strings propagating at real time. Hence the problem

[129] of a Hagedorn-like divergence in open string pair production disappears.
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18.2. RR field strength and s-charge

In this subsection we will use (18.1) to determine the RR field sourced by an
sD-brane in superstring theory. We will find that it carries one unit of “s-charge”
defined below as an integral of the RR field strength over a complete spacelike
surface.

In the presence of an s-brane described by the boundary deformation (17.15),
the source for RR fields is proportional to [153]

eXo/ V2 e‘XO/ V2
1+ sin®(mw\)evV2X° 1+ sin? (mA)e—V2X°

sin(mA) (18.10)

up to an overall normalization, which can be determined as follows. If we analyti-

cally continue

A= —i), X% X0 4 71i/V2, (18.11)

the boundary interaction (17.15) becomes A°cosh X°/v/2, which describes the
tachyon rolling over the barrier. The corresponding s-brane should carry £1 unit of
RR charge, with the sign depending on the sign of A. The integral of the source is
now /2 sign()), which determines the normalization factor to be (v/27)~! times
the unit RR charge.

Let us now return to the case (17.15). After Euclidean continuation X% — i¢,

the RR source can be written as

L sin(mA) Z( 1)™ sin®" (7 ) Z(2n+1)<i>/\/§_z:( 1)" sin2" (1 \)e —i(2n+1)p/V2
\/Eﬂ- n=0 n=0

(18.12)
When A = 1/2, this is the source corresponding to an array of branes and anti-

branes located along the Euclidean time axis

—iV?2 Z 1)"6(V2¢ + 7 + 2n) (18.13)

n=—oo
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The wave equation is then

0°0,C9—p ... 0 = V2 —1)"§(V2X° + imr + 27ni)6(7L). 18.14
p’ 9

n=-—oo

For simplicity, we will consider the case of an sb-brane in type IIB theory, so that
there are 4 transverse directions. As in the previous section, we can solve the wave

equation in Euclidean space and analytically continue back to find

Cro= -2 3 (=1)"
49T o (V2t + mi + 2mni)2 — 272

n=—oo

(18.15)

1 1 1
- 8v/2m2r [coshT—Jit " cosh T—\g] '
The RR potential for sp-branes, p # 5, in type IIB theory can be obtained from the
above by, say, taking derivatives in 7.
The s-brane with A = 1/2 has no RR source located at real time, so the RR
flux through any transverse spacelike 3-surface is conserved. The conserved charge

is

Qs = / xdC. (18.16)
33
If we take X3 to be the plane located at X° = ¢ and extending in X123 directions,
then
b 1 sinh T—\g sinh T—\g

dC)og..9 = =Cy..9 = + 18.17
(@C)o4-o 8, 0T 16m2r Losh2 T—Jg cosh? T—\g ( )

yields

o 1
Qs = / dramr?(dC)o4...0 = 3 (18.18)
0

We conclude that the A = % closed string configuration carries half a unit of spacelike

Ramond-Ramond charge.

18.3. Long-range graviton/dilaton fields

In this subsection we compute the long-distance Coulomb fields for the graviton
and dilaton sourced by the sp-brane. We will restrict to the bosonic case, although

the generalization to the superstring is straightforward.
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The spatial components of the boundary state of an sp-brane are
B TP+1 624 P
|B) ¢ = 5 (Z1)exp Z Sijat |0) (18.19)
where T is the tension of the D(p 4 1)-brane and S;; (1 < 4,5 < 25) is given by
Sij = (5(13, _6a,b) (1820)

where «a, 8 (a,b ) label the directions with Neumann (Dirichlet) boundary condi-
tions.

The relevant parts of the time component of the boundary state are [120]

[B)xo = £(X0)[0) + a2 40 1g(X)[0) + - - (18.21)
where . .
X% = —1
J(X5) 1+ eX%sinTA 1 +eX%sintA (18.22)

g(X%) =1+ cos(27)) — f(XO),
and a? ; is an oscillator in the expansion of X°. Combining (18.19) and (18.21), we
1 g

get the total source for graviton and dilaton

By = L0 (@) [ Sgal yal 1 f(X0) +a%1a00(X0)] 0) 4 (1829

The massless part of the closed string field is then

T. = . ,
|C> = p2+1 Vp+1 /dt'A(X,XO; Oatl) [—Sijaz_lajqf(t,) + agléglg(t')} |0> +

(18.24)

where Vp41 is the spatial volume of the s-brane. Our prescription for the ¢’ integral

employs the Euclidean imaginary time axis. Defining
JH (k) = (0; klafay|C) (18.25)

one finds T
Jij(z) = —pTHVpHSz‘j/dt'A(f, t;0,t") f(t'),

Tpir

(18.26)
Too(@) = B2V [ A 60.0)9(0).
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For simplicity let us first consider the case p = 21, where there are 4 transverse

directions to the sp-brane. For r = |Z| > [¢],4°

Tyi1Vyr1 Sij 1 1
(@) 2 drr [1+ et~ "sinTA + 1+et=Tsinw\
Tot1Vpy1 1 1 1
Joo(Z, t) = — 2P — 2 —cos(2m\) | .
00(%:?) 2 Arr |1+ et~7TsinwA * l1+etrsinmA cos(2m)
(18.27)
In the limit of large r, we have
T 1V 1 Sii T_|_1V_|_1 COS(Zﬂ')\)
Jig — ——ptLTpHl Py gy TP 18.28
I 2 47r 00 2 477 ( )
For general sp-branes
Sij cos(2m\)
Jig = =No e Joo 2 Np= 5 (18.29)
sz Tp-|-14Vp+17rp—T24F<242—p)‘ .

We see that in the string frame the graviton and dilaton fields fall off like Tm%p

This is consistent with the results of the next subsection in which the force between

an s-brane and a D-brane is computed.

18.4. The annulus diagram

In this subsection we compute the bosonic annulus diagram in the presence of
an ordinary D(p+1)-brane and sp-brane with general \. A = 0 corresponds to two
D(p+1)-branes while A =  is an sDp-brane and a D(p+1)-brane. We will deduce
the long range force from this computation and find that it is in agreement with
the results of the previous section.

Let us denote the boundary state associated to the D(p+1)-brane by |Dpy1)

and the boundary state associated to the sp-brane with coupling A by |sp, A). They

45 The full solution is discontinuous (but obeys the wave equation) on the light cone for

AL % The A = 0 case corresponds to a D-brane with some radiation inside the light cone.
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are factorized as the product of time components and spatial components as

|Dp11) = [N)° @ [N)VPH g | DyPH225 @ |ghost),
(18.30)
sp) = | B, \) ® |[N)L P+ @ | DYPH225 @ |ghost).

Here |B, \) is the zero-temperature boundary state (as in [142], [120] and equation
(17.4))
|B, A> — Pooe27ri)\.]1 |N>,

. 18.31
= 2_1/4 ZDgn,—m(27TA)|J7 m7 m>> ( 8 3 )
Jm

Here J; = cosh X°, P, projects onto p;, = pr and Dfn,m, is the SU(2) representa-

tion matrix element

D?

m,m/’

(27A) = (j, m|e?™ 1| j,m/). (18.32)

For the state |j, m, m')) the left and right momenta are related by p;, = 2m/, pr =
2m.

The annulus diagram connecting |Dp41) and |sp, A) is given by*®

Za = / Tt Iy(0), (18.33)

with

I\(t) = (sple~*@otTo) D, 1), (18.34)

The integrand of Z, is a product Iy(t) = I(t)I°(t) of contributions from time

components and spatial plus ghost components. The contribution from these latter

46 To compute the force between the D-brane and the s-branes we must multiply this

expression by a factor of 2, since the string can stretch in either orientation.
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components is the same as in the free theory, namely*”

1 drtiy w52 2
150 = Vs [ e T e

2_t 27'()p+1
2\ —(p+1)/2
_ V;;:& (8%) B_Qy_:t’l’](’l:/t)_23 (1835)

2
— ‘/;72+1 (87r2)—(p+1)/2t(p—24)/26— Qy_"”’l’](’l,t)_23

The timelike components were computed in [142] (up to the factor of 7 from analytic

continuation of the volume) as

_ %

19() = (Ble~ (Lot | ) Diy(2m) V7€), (18.36)

where

D, (27m\) = Jl— [E9(1—¢)], ¢&=sin®(nN), (18.37)

and Vj is the real volume in the X° direction and

. B 2 e or 1
;@) =a"* e — g ] = 0 (18.38)
n=1
is the Virasoro character. The total integrand from large ¢ goes as
VoVpt1 2\—(p+1)/2 (p—24)/2 —y*/27a’t 2wt
I)\(t)zzT(Sw )P dt t'? e Y (e“™" + 23 + cos(2mA) + - - ).
(18.39)

When A = 0 we have two D(p+1)-branes and (18.39)reduces to the usual expression.
As usual the force between the D-brane and s-brane is obtained by differentiating
with respect to y. As A ranges from 0 to % and the D-brane goes to an s-brane and

then an sD-brane, the force decreases by a factor of %

47 In general when there is on-shell closed strings exchange one must include an ordering
and e prescription for the ¢ and § integrations. However when one of the boundary states
is a D-brane, local energy conservation prohibits emission/absorption of an on-shell closed

string.
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18.5. The finite-temperature annulus

In this subsection we compute the bosonic annulus diagram at general A and
temperature T = ﬁ We will find that the 7" — 0 limit reproduces the results of
the previous section.

At finite temperature T = ﬁ one naturally computes the Euclidean ther-
mal partition function. This is obtained by Wick rotation X° — i¢ with the
Euclidean time ¢ compactified on a circle of radius n[154,152]. We consider a
D(p+1)-brane located at X™ =0, m = p+2,---,25, with world-volume extending
in the X1!,..., XP*! directions and wrapped around the ¢ circle. There is also
an sp-branes located at X™ = y™ and parallel to the D-brane in the spatial di-
rections. When A vanishes, we simply have the Euclidean annulus connecting two

finite temperature D(p+1)-branes. The open string 1-loop calculation gives (before

integrating over t)

2w m
t p2

b
3
~
S
~
o~
I
—_
®
|
W

1 2
= "0 ) (18.40)
= mﬁ(o,m t/2).

3

We will recover this result below in the special case A = 0.
We will now turn to the Euclidean s-brane boundary state. At the self-dual

temperature (n = 1), the time component of the boundary state describing an

s-brane is[142]

B)suz) = €™ [N)su)- (18.41)

For other values of n the boundary state describing an array of n s-branes is, up to
a normalization factor, simply the projection of |B) su(2) onto allowed momentum

and winding modes. For A = £+1/2, this boundary state describes n Dirichlet branes

126



on a circle. The boundary state |B) at temperature T = 1/27n is

‘B>R:27rn = 2_1/4 Z Pneieaja ‘.77 m, _m>>
j=0,1/2,---

(18.42)
2SS D2 — ).
i m,w
At XA = £1/2 equation (18.42) simplifies to
9~ 1/4 Z eI |5, m, m)). (18.43)

§=0,1/2,---
The Neumann boundary state at T' = 1/27n is
(N r=pnn =27% > > [, wn/2, —wn/2)). (18.44)
§j=0,1/2,- w
Here the second sum is over allowed values of w, i.e. wn is restricted to be even
(odd) when j is integer (half integer). The time component of the annulus amplitude
is

<B‘6_7rt(LO+LO)‘N)R P \/‘ Z Z Jan,an 27‘(’)\) XV’LT( —27rt). (1845)
§=0,1/2,1,- w

The prefactor n comes from the volume of the ¢ zero mode.

The trivial case A = 0 corresponds to a Neumann boundary condition. We
should be able to recover from (18.45) the answer for ordinary D-branes (18.40).
We can write (18.45) as

<N|e—7rt(Lo+Lo)|N>R orm = \/_ Z C, i X;/zr( —27rt)’ (18.46)
§=0,1/2,1,--
where
Chrj = > 1. (18.47)

Suppose n is even. Then the wn/2 are integers, so the contribution to (18.47) comes

from integer values of j. Equation (18.46) can then be rewritten as

n > _oxi2
V2 (it) > (Cnj = Cujor)e ™0, (18.48)
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For n even,
2, j=kn/2,k(A.1)1;

Cnj—Cnj-1=41, j=0; (18.49)

0, otherwise

so we can evaluate the sum (18.46)

0o
n n

e—7rn2k2t/2 —
V2 (it) k;oo V2n(it)

which agrees with (18.40). A similar analysis yields the same expression for odd n.

9(0,in°t/2), (18.50)

At the special values A = +1/2 only the w = 0 sector will contribute to the
amplitude (18.45), so j is therefore restricted to be an integer. The amplitude

(18.45) then reduces to

Z e 2mti i — fn( )19(1/2 , 2t). (18.51)

J— o0
Combining this with (18.35), we find that the annulus partition function at generic

A and n is

o0 ~
/ dt <3p‘6_7rt(L0+LO)|Dp+l>
0

V p pP— 2 .
:/ dtnzjfl( 8m?) " e dp(it) (18.52)
0

Z ZDJ“’—" wn 27T)\) (6—27rtj2 . 6—27rt(j+1)2).

§=0,1/2,1,-- w

For A = £1/2 and all n, the contribution from large ¢ goes like
nVpi1 / dt tP—24)/2g—v"/2mat(g2mt | 9o 4 ). (18.53)

As usual, the first term in the sum corresponds to the amplitude of tachyon ex-
change. The graviton exchange amplitude, given by the second term in the sum,
falls off like |y[P~22 = |y|2~(25=(P+1) a5 in the zero-temperature case. This agrees
with (18.39) up to the factor of 4, which is due to the fact that (18.53) comes from

the Euclidean rather than Lorentzian one loop diagram.
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18.6. S-branes and D-instantons

In this subsection we discuss the relation between s-branes and D-instantons.

Instantons fall into two general categories: those with and those without a
time reversal symmetry. An example of the latter is the Yang-Mills instanton. It
describes tunneling between topologically distinct vacua. Any attempt to continue
it to real time yields an imaginary solution. There is a topological Lorentzian
configuration — the creation and decay of a sphaleron — which interpolates between
the distinct vacua, but it is not obtained by analytic continuation of the Euclidean
instanton solution.

The situation is different when there is a time reversal symmetry, as in the Eu-
clidean bubble describing the decay of the false vacuum. The analytic continuation
to real time yields a real solution describing a contracting/expanding bubble of the
true vacuum inside the false vacuum. Indeed, the semi-classical decay process is
quantum tunneling followed by the real time expanding bubble solution. In this
case both the Euclidean and Lorentzian solutions are real and meaningful.

The sD-branes (and most of the s-branes) discussed herein are of this latter
character. They are processes in which the tachyon rolls up one side of the barrier
and back down the same side, and so are time symmetric. While we have been focus-
ing on the Lorentzian solutions, there are also Euclidean solutions which represent
tunneling through the tachyon barrier at 7 = 0. For example, we could consider a
semi-classical process in which the tachyon is incident on the barrier from 7 = —oo,
tunnels through it, and then proceeds to 7 = 4o00. The tunneling phase of this
evolution would be described by the Euclidean continuation of the s-brane. It con-
nects two time-symmetric solutions in which 7 bounces off the barrier. Alternately
the periodically identified instanton can be interpreted as a finite-temperature tun-
neling in which the energy comes from the thermal bath. Such tunneling processes

could become important near the Hagedorn transition.
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There are also of course non-time symmetric solutions with large enough energy
to classically pass over the barrier. These solutions, largely the focus of [118], will
result in a change in the RR s-charge Q5 evaluated at ¢ = £00. They are analogs of
baryon-number-violating sphaleron creation/decay in the standard model. They do
not have a real continuation to Euclidean space (at least by the usual method). In
the superstring, one has a cosh rather than a sinh in (17.15), while in the bosonic

string one has a sinh rather than a cosh in (14.4).

19. Timelike Holography

An interesting potential application of s-branes is to the problem of finding a
string theory configuration with a timelike holographic dual. We close this paper

with some speculation on this topic.

1

2v/27n
describes 2n Euclidean D-branes spaced along a circle at intervals v/27. According

The sD-brane boundary state for the superstring at temperature T =

to (18.14), these have alternating RR charge, and hence are really n D-branes and n
anti-D-branes. One may also consider beginning with a boundary interaction on N
coincident Lorentzian D(p+1)-branes, in which case the individual Euclidean (anti)
Dp-branes become replaced by a collection of N coincident (anti) Dp-branes.

According to the discussion of Section 4, this finite temperature configuration
determines an effective long-distance Euclidean field theory. This field theory ev-
idently contains 2n supersymmetric U(N) gauge theories. Additionally, the /27
spacing is precisely such that the would-be tachyonic open string connecting a D-
brane and an anti-D-brane is massless. (A similar massless mode appears in the
bosonic sD-brane.) This couples the U (V) theories with bifundamentals in a man-
ner that breaks supersymmetry.

Assuming they do exist, what could the dual supergravity solutions be? In

part these should be determined by the symmetries. A number of potentially dual
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solutions have appeared in the literature. Many of them have an R-symmetry cor-
responding to Lorentz transformations transverse to the brane. This symmetry is
clearly spontaneously broken in all the s-branes discussed herein, and hence should
not appear in the supergravity solution. Some solutions that do have the appro-
priate symmetries have appeared in [136,132,135]. Particularly intriguing in this
connection is a class of solutions [135] that exhibit thermal particle production and
are periodic in Euclidean time.
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