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Abstract of the Dissertation

Aspects of Supersymmetric Field Theories and
Complex Geometry

by

Patricio Marcos Crichigno

Doctor of Philosophy

in

Physics

Stony Brook University

2013

In this dissertation we study various aspects of Supersymmetric
Quantum Field Theory and Complex Geometry. We focus on three
main aspects. The first is general N = (2, 2) gauged linear sigma
models involving semichiral fields. We show that integrating out
the semichiral vector multiplet leads to the generalized potential
for a hyperkähler manifold, providing a formulation of the hyper-
kähler quotient in a generalized setting. We then discuss a new
quotient construction which leads to non-Kähler manifolds. The
second problem we study is motivated by recent developments in
the study of the Coulomb branch of supersymmetric theories with
a hyperkähler moduli space. A crucial element in these develop-
ments is the expression for Darboux coordinates in the hyperkäh-
ler manifold. We give a simple derivation of this expression by
using projective superspace techniques and we apply this to the
study of the moduli space of theories with eight supercharges on
R

3 × S
1 and R

3 × T
2. Finally, we study the partition function of

three-dimensional Chern-Simons theories on S
3 with affine ADE
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quivers. We give a general formula for the partition function of
affine D-type quivers in terms of the Chern-Simons levels, provid-
ing a prediction for the volume of an infinite family of tri-Sasaki
Einstein manifolds corresponding to the gravitational duals of such
field theories.
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Chapter 1

Introduction

Quantum field theory (QFT) is a mathematical framework describing an enor-
mous variety of physical phenomena. It was originally conceived as a marriage
of special relativity and quantum mechanics to describe fundamental parti-
cles and their interactions. It has done so with an outstanding success, but
in addition it has shed light on phenomena ranging from phase transitions,
superconductivity, and superfluidity to the interior of stars, aspects of black
holes, and cosmology.

Advances in physics and mathematics have often come together and QFT
has been at the forefront of some modern developments in both fields. Being
such an overarching framework, QFT has become a vast subject of study
containing many sub-disciplines, each with interests and methods of its own.

One of the most important concepts in QFT (if not the most important)
is the Renormalization Group and the idea of an effective action. A QFT is
defined by its short-distance behavior. However, we are typically interested in
the long-distance behavior, at scales at which we perform experiments. The
effective action provides the relevant information for experiments performed
at a certain scale, and it can be derived (in principle) from the microscopic
theory by following the renormalization flow.

As mentioned above, each sub-discipline of QFT has developed methods
of its own, depending on the problem of interest. Our main interest is the low
energy behavior of certain gauge theories and our method will be supersym-
metry. As we shall see, the concept of moduli space (the space of physical
vacua of the theory) will play a fundamental role and we will encounter it in
every chapter.

A technical advantage of supersymmetry is that, under certain circum-
stances, it allows for the computation of exact quantities that would not be
otherwise possible, at least with currently known methods. In addition, it leads
to deep connections with areas of pure mathematics, in particular Kähler and
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Generalized Kähler Geometry which are interesting subjects in their own right.
We clearly cannot give a full introduction to these subjects here, but let us give
a brief review of some basic elements. A Kähler manifold is a complex manifold
(i.e., a manifold that admits an integrable complex structure J that squares to
minus one) with a fundamental form ω defined by ωµν = gµρ J

ρ

µ
that is closed:

dω = 0. Thus, locally ω = i∂∂̄K, where K is called the Kähler potential. A
hyperkähler manifold admits three complex structures I, J,K satisfying the
quaternionic algebra and is Kähler with respect to each one of them. Other
concepts, such as Generalized Kähler geometry and Sasaki-Einstein manifolds
will be explained as needed in the main text.

This dissertation can be divided into two parts: Classical and Quantum.
In Chapters 2 and 3 we study the classical moduli spaces of two-dimensional
gauge theories and in Chapters 4 and 5 we venture into quantum aspects using
non-perturbative techniques. Each chapter introduces new methods and we
have tried to make each chapter as self-contained as possible. Where we have
not succeeded, we encourage the reader to consult the references provided in
each case.

A brief summary of the subject and the main results of each chapter is
given below.

• In Chapter 2 we study the classical moduli space of certain two-dimensional
gauged linear sigma models. We will prove that these spaces are hyper-
kähler. This leads to the generalized description of certain gravitational
instantons. This chapter is based on [1].

• In Chapter 3 we consider gauged linear sigma models whose classical
moduli space is non-Kähler, study their geometry, and make some com-
ments about quantum corrections. This chapter is based on unpublished
joint work with Martin Roček.

• In Chapter 4 we will use techniques of Projective Superspace to study
the quantum moduli space of three-dimensional gauge theories that arise
from compactifications of higher-dimensional theories with eight super-
charges. This chapter is based on [2].

• In Chapter 5 we use non-perturbative techniques of localization in three
dimensions to evaluate the partition function of certain superconformal
Chern-Simons theories with AdS4 duals. By the AdS/CFT correspon-
dence this leads to the prediction of the volume of certain tri-Sasaki-
Einstein manifolds. This chapter is based on [3].

2



Chapter 2

Generalized N = (2, 2) gauged
linear sigma models1

Two-dimensional non-linear sigma models (NLSMs) are simple, yet extremely
rich quantum field theories. As first pointed out by Polyakov [4], these simpli-
fied models share many features in common with four-dimensional non-abelian
gauge theories describing the real world, which are much more resistant to an-
alytical control than two-dimensional models. In fact, NLSMs exhibit asymp-
totic freedom, generation of a mass scale from strong coupling, solitons, con-
finement, a large-N expansion, all crucial features of four-dimensional Yang-
Mills theories including QCD (see [5] for a classic review of these parallels).
NLSMs were first proposed as an alternative description of spontaneous sym-
metry breaking and their name originates from one of the fields involved being
the sigma meson [6]. Nowadays we study generalizations of this model.

There is yet another reason that makes these models so interesting. It is
perhaps more abstract, but equally fascinating; supersymmetric NLSMs have
surprising connections with complex geometry. This will be the main focus of
this chapter.

2.1 Introduction
We begin by giving a review of basic elements of two-dimensional bosonic
NLSMs and their supersymmetric versions. Following this, we will give an
introduction to the main subject of the present chapter and Chapter 3: Gen-
eralized gauged linear sigma models.

In two dimensions, and in light-cone coordinates x±, the general action for
1This chapter is based on the work [1].
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the NLSM is:

S = −
1

2

�
d
2
x(gµν(φ) + bµν(φ))∂++φ

µ
∂−−φ

ν
, (2.1.1)

where gµν = gνµ, bµν = −bνµ and φ
µ are scalar fields and ∂±± = ∂

∂x± are
spacetime derivatives. The richness of these models resides in the fact that g

and b are general nonlinear functions of the fields φ. Since all the couplings are
dimensionless, these models are renormalizable for any such functions. The
term proportional to bµν in (2.1.1) is called a Wess-Zumino-Witten (WZW)
term [7, 8]. We will have much more to say about this term shortly.

With the advent of string theory, two-dimensional NLSMs gained interest in
their own right, beyond being toy models for four-dimensional gauge theories.
They describe strings propagating in certain spacetime backgrounds, and are
thus important tools in the development of string theory. In this context, the
scalar fields φµ are interpreted as coordinates in spacetime, gµν(φ) as the space-
time metric, and the WZW term corresponds to a background with the NS-NS
two-form turned on. As a string theory, however, the bosonic model (2.1.1)
is unsatisfactory. In part because upon quantization the spectrum contains a
tachyonic particle (signaling an instability), but more importantly because the
spectrum contains no fermionic particles, which are of course of fundamental
importance in Nature. This naturally leads to the study of supersymmetric
NLSMs, which solves both these problems in an elegant way. In addition, su-
persymmetric theories typically have a “milder” ultraviolet behavior than their
non-supersymmetric counterparts and, under certain circumstances, allow for
the computation of exact quantities. Thus, supersymmetric models are ex-
tremely attractive theoretical laboratories. (We will encounter some of these
methods in Chapters 4 and 5.)

Two-dimensional models are special in that in 1+1 dimensions there is a
Lorentz-invariant notion of left and right-moving massless modes. Thus, one
can consider an independent number of left and right-moving supercharges.
Let us consider (1, 1) SUSY, generated by one left-moving supercharge Q+

and one right-moving supercharge Q−
2. The (1, 1) supersymmetric extension

of the bosonic model (2.1.1) is straightforward. The action is most easily
written in (1, 1) superspace as

L = −
1

4

�
dθ+dθ− (D+Φ

µ)(D−Φ
ν) (gµν(Φ) + bµν(Φ)) , (2.1.2)

2In general it is possible to construct SUSY algebras of type (p, q), generated by p right-
handed Majorana-Weyl fermions and q left-handed ones [9]. For example (0, 2) or (1, 2)
models are possible, but we will not consider these cases here.
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where θ± are real Grassmann coordinates, Φµ are (1, 1) superfields and D± are
N = (1, 1) supercovariant derivatives satisfying the algebra

{D±, D±} = 2 i ∂±± , {D+, D−} = 0 . (2.1.3)

It is easy to see that by performing the integral over the Grassmann variables
in (2.1.2) (i.e., reducing the action to components), leads to a bosonic sector
as in (2.1.1), in addition of course to fermionic terms3.

Geometry of (2, 2) sigma models
As we have just seen, it is possible to write a (1, 1) SUSY extension of the model
(2.1.1) for any functions g and b. In other words, there is no obstruction to
(1, 1) SUSY. However, as we shall review now, this is not the case for models
with extended SUSY. In fact, what is required by the background geometry is
that it describes a certain complex manifold.

The relation between SUSY sigma models and complex geometry was first
noticed by the pioneering work of Zumino [10]. We will review shortly how this
connection precisely arises. For pedagogical reasons, however, let us first give
a specific example where (2, 2) SUSY imposes a restriction on the background;
the more general case will be analyzed below. If we assume that the model has
off-shell SUSY, we can write the action in (2, 2) superspace, which is parame-
terized by a total of four Grassmann coordinates: θ± and their conjugates θ̄±.
Superfields in (2, 2) superspace have more degrees of freedom than (1, 1) fields.
Thus, one imposes constraints. Chiral superfields Φ are constrained by impos-
ing D̄±Φ = 0, where D± are the (2, 2) supercovariant derivatives satisfying the
algebra

{D±, D̄±} = 2 i ∂±± . (2.1.4)

The general action is given by

L =

�
d
2
θd

2
θ̄K(Φ̄,Φ) . (2.1.5)

Note that no derivatives are needed in this expression since they are all hidden
in the fermionic measure. Integrating over the full superspace measure (this
time pushing in four D’s) leads to a model of the form (2.1.2) with gφ̄φ = ∂φ̄∂φK

and b = 0 (up to total derivatives). As mentioned in Chapter 1, this implies

3The easiest way to perform the Grassmann integration is by using
�
d2θ(...) =

D+D−(...)|, where | means setting all the θ’s to zero and pushing the D±’s into the in-
tegrand. From here it is clear that the action contains terms with at most two spacetime
derivatives.

5



that g is a metric on a Kähler manifold with Kähler potential K. Thus, we
learn that (2, 2) models involving only chiral fields require the background
geometry to be Kähler and that the Kähler potential is precisely the action in
(2, 2) superspace. Imposing (4, 4) SUSY requires the background geometry to
be hyperkähler [11].

Clearly, a natural question is how to extend this to the case b �= 0. Namely,
the question is whether it is possible for the model (2.1.2) to support (2, 2)
SUSY with a non-trivial b-field. This was studied in [12] (see also [13–15])
and led to an extension of Kähler geometry whose mathematical structure has
been elucidated in the last decade [16, 17]. We will now give an overview of
these results, mostly following [18].

On dimensional grounds, the transformations for extended SUSY must be
of the form

δΦµ = ε
+
D+Φ

ν
J
µ

+ν(Φ) + ε
−
D−Φ

ν
J
µ

−ν(Φ) . (2.1.6)

Acting with these transformations on (2.1.2), one finds that the action is in-
variant provided that

J
µ

±ρgµν = −gµρJ
µ

±ν (2.1.7)

and
∇

(±)
ρ

J
µ

±ν = J
µ

±ν,ρ + Γ±µ

ρσ
J
σ

±ν
− Γ±σ

ρν
J
µ

±σ = 0 , (2.1.8)

where Γ±µ

ρν
is a connection with torsion given by

Γ±µ

ρν
= Γµ

ρν
± g

µσ
Hσρν , Hµρσ =

1

2
(Bµρ,σ +Bρσ,µ +Bσµ,ρ) , (2.1.9)

where Γµ

ρν
is the Levi-Civita connection. Closure of the transformations (2.1.6)

to the usual SUSY algebra requires that J± are integrable complex structures
i.e.,

J
2
± = −1 , N (J±) = 0 , (2.1.10)

where N is the Nijenhuis tensor

N
ρ

µν
(J) ≡ J

ρ

λ
∂[νJ

λ

µ] + ∂λJ
ρ

[νJ
λ

µ] . (2.1.11)

To summarize, associated to the N = (2, 2) supersymmetry, there are two
complex structures, J± (each defining a two-form ω±), and the metric is her-
mitean with respect to both. Furthermore, the presence of the b-field induces a
connection with torsion (proportional to H = db) and the complex structures
are covariantly constant with respect to this connection. Finally, one can see
that

(dω±)µνρ = ∓HλστJ
λ

µ
J
σ

ν
J
τ

ρ
. (2.1.12)
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In the case H = 0 (and J+ = J−), this is precisely the definition of a Kähler
manifold, but for H �= 0 it is an extension of it.

Thus, imposing additional supersymmetries leads to the discovery [12]
of a rich geometrical structure: bihermitean geometry, defined by the data
(M, g, J±, H). The framework of Generalized Complex Geometry developed
by Hitchin [16] and Gualtieri [17], describes this geometry as a generalized
Kähler geometry and we will use these terms interchangeably. A summary of
the relation between worldhseet SUSY and target space geometry is given in
Table 2.1.

N g g, b

(0, 0) or (1, 1) Riemannian Riemannian
(2, 2) Kähler Bihermitean
(4, 4) Hyperkähler Bihypercomplex

Table 2.1: Summary of the requirement on the geometry depending on the
amount of worldsheet SUSY and background fields g and b turned on.

Just as in the case of Kähler geometry, generalized Kähler geometry is
locally completely determined by a single scalar function K called the gener-
alized potential. As we shall see next, generalized models can be formulated
off-shell and K is the action of the NLSM in (2, 2) superspace. See [18] for a
comprehensive review.

Off-shell description
As disscused above, the class of models studied by Zumino admit a formulation
in (2, 2) superspace. Thus, it is natural to wonder if models with a non-trivial
b-field admit such a description as well. Clearly, this is not possible if only
chiral fields are involved, as we have just seen that this leads to b = 0. In 1+1
dimensions one can impose chirality constraints on the left and right sector
independently, leading to different multiplets. A well-known example is the
twisted chiral multiplet, which is chiral in the left sector and anti-chiral in
the right sector. Less-known, but equally important, are the right and left
semichiral multiplets. These multiplets and the constraints are summarized in
Table 2.2.

As shown in [18], the off-shell formulation of the most general (2, 2) NLSM
is given by these fields and the action reads

7



Multiplet Symbol Left constraint Right constraint
Chiral Φ D̄+Φ = 0 D̄−Φ = 0

Twisted-chiral χ D̄+χ = 0 D−χ = 0
Left semichiral XL D̄+XL = 0 −

Right semichiral XR − D̄−XR = 0

Table 2.2: General N = (2, 2) multiplets and the supersymmetric constraints
they satisfy.

L =

�
d
2
θd

2
θ̄ K(Φ, Φ̄;χ, χ̄;XL, X̄L;XR, X̄R) , (2.1.13)

where K is the generalized potential for the generalized Kähler manifold. Note
that the generalized potential K is defined up to generalized Kähler transfor-
mations f(φ, χ,XL)+g(φ, χ̄,XR)+ f̄(φ̄, χ̄, X̄L)+ ḡ(φ̄, χ, X̄R), since these vanish
upon integration in superspace. As usual, performing the integral over the
fermionic measure determines the metric and b-field in each sector in terms
of second derivatives of K. We will give some explicit expressions as we need
them in the main text.

One of the earliest examples of a generalized geometry with torsion is the
S
3×S

1 WZW model, which can be described by chiral and twisted chiral fields
[19]. Furthermore, this model falls outside the classification of [20], having
(4, 4) SUSY and not being hyperkähler. (When the condition KΦ̄Φ +Kχ̄χ = 0
is satisfied, the model has (4, 4) SUSY without necessarily being hyperkähler
[12].)

A comment on notation: N = (2, 2) spinor derivatives are denoted by D±
to distinguish them from the N = (1, 1) derivatives D±. We usually denote
the lowest N = (1, 1) components of chiral and twisted-chiral fields by the
same letters as the N = (2, 2) fields, whereas for semichiral fields we write
XL,R| = XL,R. When writing the metric and b-field, it should be understood
that we are referring to the N = (1, 1) components.

Gauged linear sigma models
Much of the success of NLSMs (for chiral fields) in the study of Kähler geome-
try (and in particular Calabi-Yau manifolds) stems from the fact that they can
be realized as gauged linear sigma models (GLSMs). This fact was exploited
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with great success by Witten in [21]. As a typical example, consider a set of
n chiral fields Φi with charges qi under a U(1) gauge superfield V . In (2, 2)
superspace, the gauged action reads

L =

�
d
2
θ d

2
θ̄

�
−

1

e2
Σ̄Σ +

�

i

Φ̄ie
qiVΦi − r V

�
. (2.1.14)

The last term is known as a Fayet–Iliopoulos (FI) term and Σ = D̄+D−V is the
field strength. Upon reduction to components, (and integrating out auxiliary
fields) the action contains kinetic terms and a scalar potential given by

U =
�

i

|σ|
2
|φi|

2 +
e
2

4
(
�

i

qi|φi|
2
− r )2 , (2.1.15)

where σ is the lowest component of Σ. Recall that in a supersymmetric theory,
the energy of the vacuum vanishes. The vanishing of the kinetic terms is
ensured by taking the fields to be constants: φi = �φi� and the vanishing of
the potential imposes σ = 0 and the constraint

�
i
qi|φi|

2 = r. Thus, there
is a whole space of vacua labeled by the VEVs of all the scalar fields present
in the theory. Clearly, in the presence of a gauge symmetry, vacua that are
related by a gauge transformation are physically equivalent. Thus, the space
of physical vacua is defined by

M = {φ
i
∈ C : U = 0}/U(1) . (2.1.16)

This is known as the moduli space of the theory, a concept that we will en-
counter throughout this thesis. It is easy to see that due to the supersymmetric
Higgs mechanism the vector multiplet acquires a mass M2 = e

2
r (see, e.g., [22]

for a standard textbook reference). Thus, in the IR limit e → ∞ the massive
modes can be neglected and only the massless modes are retained. Thus, in
the IR limit the gauged linear sigma model is described by a NLSM on the
moduli space M.

This combined operation of setting U = 0 and dividing by U(1) can be
regarded as a Kähler quotient of the original manifold M0 (in this case C

n)
by U(1), which is usually denoted by M0//U(1) and reduces the complex di-
mension by 1. Similarly, one can also perform a hyperkähler quotient, denoted
usually by M0///U(1) which reduces the complex dimension by 2. See [11]
for a full explanation of the relation between supersymmetry and quotients.
We will often refer to the operation of integrating out the vector multiplet in
the IR limit as performing a quotient.

An important aspect of this is that the geometry of M depends on the
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signs of the charges qi and the FI parameters (there can be one FI parameter
for every U(1) factor in the gauge group). For example, if all the charges
in (2.1.15) are positive, there is a sphere worth of classical vacua for r > 0
and no solution for r < 0. These are usually referred to as different phases [21].

Despite the great success of GLSMs in realizing NLSMs on Kähler and
hyperkähler spaces, much less is known on how to engineer non-Kähler geome-
tries with non-zero torsion using generalized (2, 2) GLSMs. Thus, our main
goal is the expand the class of (2, 2) GLSMs considered so far, by considering
the gauging of linear sigma models involving the most general set of fields of
the form:

K =
dc�

a=1

Φ̄aΦa
−

dt�

a�=1

χ̄
a
�
χ
a
�
−

ds�

i=1

�
X̄

i

L
X

i

L
+ X̄

i

R
X

i

R
+ α(X̄i

L
X

i

R
+ X̄

i

R
X

i

L
)
�
.

The main reason why progress was hampered was due to the absence of vector
multiplets that can that can gauge isometries in a general bihermitean geom-
etry. This is simply because the gauge transformation of the gauge field is
not always compatible with the chirality constraints on the matter fields. For
example, a chiral vector multiplet cannot act on a twisted chiral field. (We will
have more to say about this action and additional possible couplings among
the fields in Chapter 3.)

As we shall review in the main text, this problem has been solved by the
introduction of the semichiral vector and the large vector multiplets [23, 24]
and we are now in a position to analyze the moduli spaces of general gauged
linear sigma models. This is the main motivation for the work presented in
this chapter as well as in Chapter 3.

2.2 Preliminaries
As mentioned earlier, in this chapter we will focus models involving semichi-
ral exclusively. Thus, we begin by giving some elements of the geometry of
semichiral models that and the semichiral vector multiplet [23, 24], one of the
new vector multiplets which acts in these fields.
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2.2.1 Geometry of semichiral sigma models
Consider a non-linear sigma model for a set of semichiral superfields X

a

L
,X

a
�

R
,

a, a
� = 1, ..., ds with an action given by

L =

�
d
2
θd

2
θ̄K(Xa

L
, X̄

a

L
;Xa

�

R
, X̄

a
�

R
) . (2.2.1)

These models were first studied in [25], showing that upon reduction to N =
(1, 1), they lead to a general non-linear sigma model4. However, semichiral
superfields are less constrained than chiral and twisted-chiral fields and contain
auxiliary superfields which, when integrated out, induce non-linearities in the
N = (1, 1) action. As a consequence, the metric and b-field are non-linear
functions of second derivatives of K. These can be written compactly [18, 26]
in terms of the complex structures J± and a closed 2-form Ω as

g = Ω [J+, J−], b = Ω {J+, J−} . (2.2.2)

The complex structures and Ω are completely determined by the generalized
potential by

J+ =

�
Js 0

K
−1
RL

CLL K
−1
RL

JsKLR

�
, J− =

�
K

−1
LR

JsKRL K
−1
LR

CRR

0 Js

�
,

where Js is a 2ds-dimensional matrix of the form diag(i,−i) and

Ω =

�
0 KLR

−(KLR)t 0

�
, (2.2.3)

with

KLL =

�
KLL KLL̄

KL̄L KL̄L̄

�
, KLR =

�
KLR KLR̄

KL̄R KL̄R̄

�
, (2.2.4)

where KLR ≡
∂
2
K

∂XL∂XR
, etc. and K

−1
LR

≡ (KRL)−1 and

CLL =

�
0 2iKLL̄

−2iKLL̄ 0

�
(2.2.5)

and similarly CRR.

In four dimensions (i.e., ds = 1) there is an additional structure, leading

4In fact, an equal number of left and right semichiral fields are needed to get a NLSM.
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to the anti-commutator of the complex structures to being proportional to the
identity, namely

{J+, J−} = c I, (2.2.6)

where c is a scalar function given by

c = −2
|KLR|

2 + |KLR̄|
2 − 2KLL̄KRR̄

|KLR|
2 − |KLR̄|

2
. (2.2.7)

As we shall review next, it contains important information about the geometry;
when c is a constant and |c| < 2, the manifold is hyperkähler.

2.2.2 Hyperkähler case
As shown in [18], a generalized Kähler manifold of 4N real dimesions, described
in terms of semichiral superfields, is hyperkähler if {J+, J−} = c I with c a
constant and |c| < 2 (see also [26] for the particular case c = 0). This is
easy to see from the expression for the b-field in (2.2.2); since Ω is a closed
2-form, the torsion, H = db = Ω dc, vanishes for constant c. If the manifold
is hyperkähler, there must be three complex structures and, indeed, a third
complex structure J3 can be constructed from J± by

J3 =
1��

2
c

�2
− 1

�
I−

2

c
J+J−

�
. (2.2.8)

A trivial example of a hyperkähler manifold (and one which will be used in
what follows) is flat R

4n with a constant b-field. This is described by the
generalized potential

KR4n =
n�

i=1

�
X̄

i

L
X

i

L
+ X̄

i

R
X

i

R
+ α(X̄i

R
X

i

L
+ X̄

i

L
X

i

R
)
�
. (2.2.9)

From equations (2.2.2-2.2.4), one finds the (constant) metric, b-field, and com-
plex structures satisfying

{J+, J−} = 2(1−
2

α2
)I . (2.2.10)

For the metric to be positive definite, α2
> 1 is required, which also ensures

|c| < 2. For the special value α
2 = 2, the b-field vanishes.
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2.2.3 Semichiral vector multiplet
The semichiral vector multiplet [23, 24] was introduced to gauge isometries
along semichiral directions, e.g.,

δXL = iλ, δXR = iλ . (2.2.11)

It is described in terms of three real supervector fields V α = (VL, VR, V
�), with

gauge transformations

δVL = i(Λ̄L − ΛL) , δVR = i(Λ̄R − ΛR) , δV
� = (ΛR + Λ̄R − ΛL − Λ̄L) .

(2.2.12)
It is convenient to introduce the complex combinations

V =
1

2
(−V

� + i(VL − VR)) , Ṽ =
1

2
(−V

� + i(VL + VR)) , (2.2.13)

with gauge transformations

δV = ΛL − ΛR , δṼ = ΛL − Λ̄R . (2.2.14)

The corresponding chiral and twisted-chiral field strengths are

F = D̄+D̄−V , F̃ = D̄+D−Ṽ . (2.2.15)

Thus, the nonvanishing commutation relations are [24]

{∇̄±,∇±} = iD±± , i{∇̄+, ∇̄−} = F , i{∇̄+,∇−} = F̃ ,

where ∇± are gauge-covariant superderivatives. The kinetic terms for the
gauge fields are given by

Lgauge =

�
d
4
θ
1

e2
(FF̄− F̃

¯̃
F) . (2.2.16)

It is also possible to add Fayet-Iliopoulos (FI) terms of the form

LFI = −

�
d
4
θ (tV+ sṼ+ c.c.) = −

�
d
4
θ tαV

α
, (2.2.17)

where we defined tα ≡ − (Im(s+ t), Im(s− t),Re(s+ t)). These will play an
important role in what follows. Upon reduction to N = (1, 1), (2.2.16) gives
the usual kinetic terms. The only dimensionful scale is [e] = 1 and the low
energy limit corresponds to taking e → ∞. Therefore, the kinetic terms are
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irrelevant in the IR limit and the gauge fields V �
, VL, VR become non-dynamical

and are integrated out. Thus, the gauged linear sigma model will flow in the
IR to a non-linear sigma model given by a semichiral quotient, which we now
describe.

2.3 The Semichiral Quotient
Here we describe what we refer to as the semichiral quotient. We consider
a bihermitean manifold M of d = 4(N + 1) real dimensions, parameterized
by semichiral coordinates (Xa

L
,X

a
�

R
) with a, a

� = 1, ..., N + 1 and generalized
potential K(Xa

L
,X

a
�

R
). We assume the existence of a U(1) Killing vector

k = k
a
∂a + k

ā
∂ā + k

a
�
∂a� + k

ā
�
∂ā� , (2.3.1)

generating the isometry

δX = [λk,X] , (2.3.2)

where λ is the parameter of the transformation and X is any of the coordinates.
We now choose coordinates (Xa

L
,X

a
�

R
) = (Xi

L
,X

i
�
R
;XL,XR), with i, i

� = 1, ..., N ,
which are adapted to the isometry and the Killing vector takes the form

k = i
�
∂L − ∂̄L + ∂R − ∂̄R

�
. (2.3.3)

In these adapted coordinates, the generalized potential depends explicitly on
the 4N neutral coordinates (Xi

L
,X

i
�
R
) and the 3 invariant combinations X

α =
(XL + X̄L,XR + X̄R, i(XR − X̄R − XL + X̄L)). Now we proceed to gauge this
isometry by promoting the parameter λ to a corresponding semichiral field and
introducing a semichiral vector multiplet. Then, the function K̂ is defined by

K̂(Xi

L
,X

i
�

R
) = K(Xi

L
,X

i
�

R
;Xα + V

α)− tαV
α
, (2.3.4)

where V
α = V

α(Xi

L,R
) is given by solving its equations of motion

∂K(Xi

L
,X

i
�
R
;Xα + V

α)

∂V α
= tα (2.3.5)

and choosing the gauge X
α = 0. The new potential K̂ depends on 4N coor-

dinates (and three FI parameters tα), and describes the quotient manifold M̂

of real dimension 4N .
Now we state one of our main results. Assume that M is a hyperkähler
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manifold and therefore

{J+, J−} = c I , (2.3.6)

with c a constant, as discussed in Section 2.2.2. Then, the anticommutator of
the complex structures on the quotient manifold M̂ is given by

{Ĵ+, Ĵ−} = c I (2.3.7)

(with the same c on the right-hand side). In particular, this implies that
the quotient manifold is also hyperkähler. In the current setting, the proof
of (2.3.7) requires some rather tedious algebra (see Appendix A.1), but is
straightforward. Imposing (2.3.6) leads to the set of equations

�
K

−1
LR

CRRK
−1
RL

, Js

�
= 0 , (2.3.8)

JsK
−1
LR

JsKRL +K
−1
LR

JsKRLJs +K
−1
LR

CRRK
−1
RL

CLL = c I , (2.3.9)

and those which follow from these exchanging (L ↔ R). Using standard
relations between second derivatives of Legendre-transformed functions, and
identities for matrix inverses, we show that these equations also hold for K̂,
proving the assertion (2.3.7) (see Appendix A.1 for more details).

A brief comment is in order. In showing that the structure (2.3.6) is pre-
served by the quotient, we have actually not made use of the fact that c

is a constant. Thus, one could in principle extend our results to bihermitean
geometries satisfying (2.3.6), other than hyperkähler (with c an arbitrary func-
tion), if there are any such manifolds. This, however, is not the case due to the
following result [27]. Although the set of equations (2.3.8, 2.3.9) are satisfied
identically in four dimensions, they highly restrict the geometry in higher di-
mensions. So much indeed, that the only manifolds satisfying (2.3.6) in d ≥ 8
are those with a constant c, i.e., hyperkähler manifolds.

2.3.1 Geometrical interpretation
It might seem surprising at first that the semichiral quotient coincides with the
hyperkähler quotient. However, this is clarified by the following geometrical
interpretation [28]. The hyperkähler quotient [11, 29] is based on assuming
the existence of three symplectic 2-forms ω

p, p = 1, 2, 3, and a triholomorphic
Killing vector k, i.e.,

Lkω
p = ikdω

p + d(ikω
p) = 0 . (2.3.10)
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Since dω
p = 0, this implies the existence (locally) of the three moment maps,

µ
p, such that

ikω
p = dµ

p
. (2.3.11)

Setting the moment maps to zero (and dividing by the isometry), leads to the
hyperkähler quotient. The relation with the semichiral quotient is based on
the observation that if [J+, J−] is invertible (which requires the presence of
only semichiral fields), the closed 2-form

Ω = g [J+, J−]
−1 (2.3.12)

is well defined5. This symplectic form can be decomposed [26] into its holo-
morphic and anti-holomorphic part, with respect to both complex structures
J±, i.e.,

Ω = Ω(2,0)
− + Ω̄(0,2)

− = Ω(2,0)
+ + Ω̄(0,2)

+ (2.3.13)

and dΩ = 0 implies

∂Ω(2,0)
± = ∂̄Ω(2,0)

± = 0 , (2.3.14)

and the complex conjugates. This implies the existence of four moment maps
µ±, µ̄±, subject to the reality condition

µ− + µ̄− = µ+ + µ̄+ , (2.3.15)

which follows from (2.3.13). Thus, there are three independent moment maps
and the semichiral quotient coincides with the hyperkähler quotient.

It can also be understood [27] in these geometrical terms why only hyper-
kähler manifolds satisfy (2.3.6). In a generalized Kähler manifold, the 3-form
H = db has no (3, 0) or (0, 3) part (see, e.g., [17]) with respect to both J±,
i.e.,

H = H
(1,2)
± +H

(2,1)
± . (2.3.16)

Assuming (2.3.6), one has H = Ω dc. Using (2.3.13) and dc = ∂c+ ∂̄c, one sees

5Even in the presence of only semichiral fields, [J+, J−] can fail to be invertible at some
points or loci in the manifold, leading to type change. We shall not consider this case here.
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that (3, 0) and (0, 3) parts appear. The requirement that they vanish implies

∂c = ∂̄c = 0 . (2.3.17)

Thus, c is a constant and H vanishes completely.

2.3.2 Comment on more General Quotients
As we have just seen, quotients involving only semichiral fields will not lead
to a non-trivial b-field. However, considering several types of fields typically
does. Here we give a simple example. Consider a set of semichiral fields and
a single chiral field Φ, gauged by the usual vector multiplet V , i.e.,

K = X̄Le
V
XL + X̄Re

V
XR + α

�
X̄Re

V
XL + X̄Le

V
XR

�
+ tΦ̄eVΦ− rV .(2.3.18)

Integrating out V (and choosing the gauge Φ = 1) leads to

K = r log
�
X̄LXL + X̄RXR + α

�
X̄RXL + X̄LXR

�
+ t

�
. (2.3.19)

From (2.2.7) we find

c = −2 +
4t (α2 − 1)

α(αt−R)
, (2.3.20)

where R ≡ X̄RXL+ X̄LXR+α(X̄LXL+ X̄RXR). Thus c is not a constant and
there is a non-trivial b-field. Although we will not analyze this model in full
detail here, we can already study some features. From (2.3.19), one sees that
the limit t → ∞ corresponds to flat space, while t → 0 gives a singular metric.
For finite t, the metric becomes singular (c = ±2) for R = t/α and R → ∞.

2.4 T-Duality
A duality relation between hyperkähler manifolds, described in terms of semichi-
ral superfields with c = 0, and N = (4, 4) models with chiral/twisted-chiral
fields was described in [26]. (For some early work on duality in N = (2, 2)
models see, e.g., [30–32].) Actually, understanding this relation was one of the
motivations for introducing the new vector multiplets and studying T-duality
in [33]. In this Section we would like clarify the exact relation of the duality in
[26] to T-duality and offer a geometrical interpretation, which also allows us to
consider Kähler manifolds with c �= 0 and even non-Kählerian manifolds (that
may still have N = (4, 4)). As we shall see, this depends on the character of
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the isometry along which the duality is performed. We first discuss T-duality
along a translational isometry, which leads to a hyperkähler manifold. Then,
we discuss T-duality along a general isometry.

2.4.1 Translational isometry
The duality described in [26] involves two steps. Given a potential F̂ (Φ, Φ̄, χ, χ̄)
satisfying the Laplace equation, one first constructs a potential F (Φ, Φ̄, χ, χ̄).
Then, one performs a Legendre transformation to semichiral superfields. It is
the first step which we reinterpret as a rotation of the N = (1, 1) components
by a fixed angle. As we shall see below, considering an arbitrary6 (constant)
rotation by an angle ν leads to a non-zero (constant) c.

Consider a potential F̂ (φ, φ̄, χ, χ̄) and assume that there is a translational
isometry, generated by the Killing vector

k = i(∂φ − ∂φ̄ − ∂χ + ∂χ̄) . (2.4.1)

Thus, in adapted coordinates

F̂ = F̂
�
φ+ φ̄, χ+ χ̄, i(φ− φ̄+ χ− χ̄)

�
. (2.4.2)

Assume now that the potential describes an N = (4, 4) model and, therefore,
satisfies the Laplace equation

F̂φφ̄ + F̂χχ̄ = 0 . (2.4.3)

The important observation now is that a rotation among the N = (1, 1) fields,
(φ, χ), is allowed and preserves the Laplace equation. Then, when integrating
up to the N = (2, 2) potential, one must choose what to call a chiral or twisted-
chiral field and we choose to take the rotated fields. That is, we consider the
transformation

φ → cos(ν)φ+ sin(ν)χ , χ → cos(ν)χ− sin(ν)φ . (2.4.4)

For convenience, we introduce θ = ν+ π

4 and define the potential F (Φ, Φ̄, χ, χ̄)
by

F = F̂
�
Φ + Φ̄, χ+ χ̄, i(c(Φ− Φ̄) + s(χ− χ̄))

�
, (2.4.5)

where we have abbreviated cos(θ) = c, sin(θ) = s. The Killing vector is now

6The author wishes to thank Martin Roček for this suggestion.
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given by

k = i[(s(∂Φ − ∂Φ̄)− c(∂χ − ∂χ̄)] , (2.4.6)

which implies the transformations for the matter fields

δΦ = isλ , δχ = −icλ . (2.4.7)

This isometry can be gauged by the Large Vector Multiplet (LVM) [23, 24],
defined similarly to the SVM by

VL =
1

2

�
−V

� + i(V φ
− V

χ)
�
, VR =

1

2

�
−V

� + i(V φ + V
χ)
�
, (2.4.8)

where the real vector fields V
α = (V φ

, V
χ
, V

�) transform as

δV
φ = i(Λ̄−Λ) , δV

χ = i( ¯̃Λ− Λ̃) , δV
� = −(Λ+ Λ̄) + Λ̃ + ¯̃Λ . (2.4.9)

Following [33], we perform a T-duality to semichiral fields by defining

K(XL,XR) = F
�
Φ + Φ̄ + sV

φ
, χ+ χ̄+ cV

χ
, i(c(Φ− Φ̄) + s(χ− χ̄))− csV

��

− [XLVL + XRVR + c.c.] . (2.4.10)

In the gauge Φ = χ = 0, we have

K(XL,XR) =F (sV φ
, cV

χ
,−csV

�)−
1

2

�
iV

φ(XL − X̄L + XR − X̄R)

− iV
χ(XL − X̄L − XR + X̄R)− V

�(XL + X̄L + XR + X̄R)
�
.

Integrating out the LVM, i.e., solving

∂K

∂V α
= 0 (2.4.11)

for the vector fields V
α leads to the semichiral potential. From the definition

(2.2.7), and using standard implicit differentiation relations (see Appendix A.2
for more details), we find a non-zero c given by

c = −2 cos(2θ) . (2.4.12)

For the particular case θ = π/4, this reduces to the duality described in [26].
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A short observation that will be useful later7 is that one may alternatively
rescale the fields φ, χ in (2.4.6) to bring the Killing vector to its usual form.
Then, the potential F will satisfy a scaled Laplace equation: If K describes a
hyperkähler manifold with a constant c = 2(1− 2

α2 ), the dual potential satisfies

Fφφ̄ + (α2
− 1)Fχχ̄ = 0 . (2.4.13)

2.4.2 General isometry
As we have just discussed, T-dualizing an N = (4, 4) model along a trans-
lational isometry using the LVM leads to a hyperkähler manifold, described
in terms of semichiral fields. In showing this, the form of the Killing vector
was crucial. Indeed, if it acts by translation on Φ and χ by equal amounts,
then c = 0, while if it acts by different amounts, it leads to a non-zero (but
constant) c. We wish to investigate now what happens for a general isometry
of the form k = k

Φ(Φ)∂Φ+k
χ(χ)∂χ+c.c. . If K is invariant under the isometry,

the gauging along a general Killing vector is given by [33]

K
(g) = exp

�
−
1

4
V

φ
L(J++J−)k −

1

4
V

χ
L(J+−J−)k −

1

4
V

�
LJ+J−k

�
K . (2.4.14)

By implicit differentiation (again, see Appendix A.2 for details), we find

c = 2

�
|kΦ|2 − |kχ|2

|kΦ|2 + |kχ|2

�����
∂K/∂V=0

. (2.4.15)

Note that although this expression does not depend on the potential explicitly,
it does depend on it implicitly; to write the right-hand side in terms of semichi-
ral coordinates, the relation of chiral/twisted-chiral fields to semichiral fields
given by the Legendre transform is needed. In the case k

Φ = −k
Φ̄ = i cos(θ)

and k
χ = −k

χ̄ = i sin(θ), we recover (2.4.12). We conclude from (2.4.15) that
for a general isometry c will not be a constant and the dual geometry will
not be hyperkähler, even if the T-duality preserves the supersymmetry (the
isometries preserving N = (4, 4) in this context are translational and rescaling
[? ]).

As an example, consider the gauging of the isometry along the S
1 in the

SU(2)×U(1) WZW model, described in terms of chiral/twisted-chiral super-
fields [19], recently studied in [34]. The isometry in this case acts by a rescaling

7In coming Sections we will perform T-duality transformations in the other direction,
namely from semichiral fields to chiral/twisted-chiral by the use of the semichiral vector
multiplet. We expect, however, the same relations to hold.
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of the fields, i.e.,

k = Φ∂Φ + Φ̄∂Φ̄ + χ∂χ + χ̄∂χ̄ . (2.4.16)

T-dualizing along this direction, the dual potential again describes an SU(2)×
U(1) WZW model, which is not hyperkähler. Indeed, from (2.4.15), one finds

c =
2

√
1− 4e−X� , (2.4.17)

where X � = XL+X̄L+XR+X̄R. Since the isometry in the SU(2)×U(1) WZW
model corresponds to a rescaling, N = (4, 4) supersymmetry is preserved in
the semichiral description.

2.5 Eguchi-Hanson
Here we give the first example of the semichiral quotient. We consider R

8 =
R

4×R
4, described by two copies of a left and right semichiral field, (X(1)

L
,X

(1)
R
)

and (X(2)
L
,X

(2)
R
), as discussed in Section 2.2.2. We assign equal8 U(1) charges

q1 = q2 = 1 to both and proceed as described, defining

K̂ =
�

i=1,2

�
X̄

(i)
L
e
VLX

(i)
L

+ X̄
(i)
R
e
VRX

(i)
R

+ α(X̄(i)
R
e
−iṼ

X
(i)
L

+ X̄
(i)
L
e
i
¯̃
V
X

(i)
R
)
�
− tαV

α
.

(2.5.1)
Based on our results of Section 2.3, we know the resulting quotient manifold
will be hyperkähler, with c = 2(1 − 2

α2 ). We show below that this is actually
the well-known Eguchi-Hanson manifold. Before showing this explicitly, by
computation of the quotient potential and metric, we show that this quotient
construction actually reduces to the usual hyperkähler quotient construction
of Eguchi-Hanson in terms of N = 1 fields.

2.5.1 Reduction to N = (1, 1): Comparison to the hyper-
kähler quotient

The procedure to reduce to N = (1, 1) is well known (see, e.g., [18] for a
review). One decomposes the N = (2, 2) gauge-covariant (super)derivatives

8It is worth mentioning that one can invert the charge of one of the pairs, say (X(2)
L ,X(2)

R ),
by dualizing to fields X̃L, X̃R that impose the semichiral constraints on the original pair [?
]. This duality is not based on an isometry and does not change the geometry. Hence, we
expect the quotient involving two pairs of semis, either with charges (+,+) or (+,−), to
lead to the same geometry.
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into their real and imaginary part, namely

∇± =
1

2
(D± − iQ±) , ∇̄± =

1

2
(D± + iQ±) . (2.5.2)

We perform the reduction of the matter fields XL,XR in the covariant approach
(see Appendix A.3 for more details), defining

¯̂
XL = X̄Le

VL , X̂L = XL, X̂R = e
−VLe

i
¯̃
V
XR,

¯̂
XR = X̄Re

−iṼ
,

in terms of which the Lagrangian (2.5.1) reads (relabeling the fields X̂L,R →

XL,R)

L =

�
d
2
θQ+Q−

�
X̄LXL + X̄RXR + α(X̄LXR + X̄RXL)

�
(2.5.3)

+

�
d
2
θ

�
tF− sF̃− c.c.

�
,

where d
2
θ is the N = (1, 1) measure and the relative minus sign between s

and t comes from the ordering in the measure. Next, one imposes the fields to
be gauge-covariantly semichiral and defines components with gauge-covariant
Q±’s, i.e.,

XL = XL

��, Q+XL = iD+XL, Q−XL

�� = Ψ− , (2.5.4)
XR = XR

��, Q−XR = iD−XR, Q+XR

�� = Ψ+ . (2.5.5)

The reduction of the semichiral vector multiplet is given by [23, 24]

f = − i

�
F− F̄+ F̃−

¯̃
F

���� ,

d
1 =

�
F+ F̄

��� , d
2 =

�
F̃+ ¯̃

F

���� , d
3 = i

�
F− F̄− F̃+ ¯̃

F

���� .

Rescaling XL → α/(
√
4− α2)XL and writing

XL =
1

4

�
φ−

√
α + 1

−
φ̄+

√
α− 1

�
, XR =

1

4

�
φ−

√
α + 1

+
φ̄+

√
α− 1

�
,

the kinetic terms are diagonalized, i.e.,

Lkin. ∼

�
d
2
θ
�
D+φ̄+D−φ+ +D+φ̄−D−φ−

�
(2.5.6)
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and the constraints read

φ̄+φ+ − φ̄−φ− = p , (2.5.7)
φ+φ− + ib = 0 ,

where we have defined

r ≡ −2Re[s+ t] , q ≡ −2Im[t] , p ≡ −2Im[s] , (2.5.8)

and 2b ≡ (r + iq)
√
α2 − 1. The free action (2.5.6), subject to the constraints

(2.5.7), is the usual hyperkähler quotient construction for Eguchi-Hanson [29]
(see also, e.g., [35, 36]). This is a specific example of our discussion in Section
2.3.1 of the semichiral quotient reducing to the hyperkähler quotient. Thus,
performing the quotient at the N = (2, 2) gives the generalized potential for
Eguchi-Hanson.

2.5.2 Generalized Potential
We have learned that the semichiral quotient (2.5.1) coincides, in N = (1, 1)
language, to the hyperkähler construction of Eguchi-Hanson. Therefore, per-
forming the quotient in terms of N = (2, 2) superfields will lead us to the
generalized description of this manifold. From (2.5.1), the equations of mo-
tion for the vector multiplet read

e
VL

�
1 + |XL|

2
�
+

α

2

�
e
−iṼ

�
1 + X̄RXL

�
+ e

i
¯̃
V
�
1 + X̄LXR

��
−

(p+ q)

2
= 0 ,

e
VR

�
1 + |XR|

2
�
+

α

2

�
e
−iṼ

�
1 + X̄RXL

�
+ e

i
¯̃
V
�
1 + X̄LXR

��
−

(p− q)

2
= 0 ,

iα

2

�
e
−iṼ

�
X̄RXL + 1

�
− e

i
¯̃
V
�
X̄LXR + 1

��
−

r

2
= 0 ,

where we have chosen the gauge X
(2)
L

= X
(2)
R

= 1 (and relabeled the remain-
ing fields). These can be easily solved for VL, VR, V

�, leading to the quotient
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potential

K̂EH =−
p

2
log

�
− (q2 + r

2) (S2 − α
2
T

2) + p
2 (S2 + T

2
α
2)− 2ipQ

(S2 − α2T 2)2

�

−
q

2
log

�
(1 + |XR|

2)2 (p2S2 + r
2
S
2 − q

2 (S2 − 2T 2
α
2) + 2iqQ)

((p− q)2 + r2)S4

�

−
ir

2
log

�
(1 + X̄LXR)2 (−2r2S2 + (p2 − q

2 + r
2)T 2

α
2 − 2rQ)

T 4α2

�
,

(2.5.9)

where we have defined

S
2 = (1 + |XL|

2)(1 + |XR|
2) , T

2 = (1 + X̄RXL)(1 + X̄LXR) , (2.5.10)

and

Q
2 = r

2
S
4
− (p2 − q

2 + r
2)S2

T
2
α
2
− q

2
T

4
α
4
. (2.5.11)

This quotient construction has been discussed to some extent in [37], where
the authors suggest that this will lead to a non-trivial H-flux. Based on our
result of Section 2.3, we know this is not the case. Instead, it must describe
a hyperkähler manifold; in this case, Eguchi-Hanson. By explicit calculation,
one can also verify that (2.5.9) satisfies the Monge-Ampere equation (2.2.7)
with c = 2(1− 2

α2 ), i.e.,

{J+, J−} = 2(1−
2

α2
)I . (2.5.12)

To show explicitly that one can derive the standard metric for Eguchi-Hanson
from this potential, we set the FI parameters to some convenient value for
which the potential is simplified. The choice r = q = 0, for instance, leads to
the left-right symmetric potential

K = p log [S + αT ] , (2.5.13)

while the choice r = 0, p = −q leads to

K = p log

�
S
2 − α

2
T

2

1 + |XL|
2

�
. (2.5.14)

This form of the potential also coincides with that of [38], constructed by
twistor methods. Note that these potentials are more compact than the usual
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Kähler potential and contain no term with a square root outside the log.
Working with the potential (2.5.14), we will explicitly construct the Eguchi-
Hanson metric, but first we will study the SU(2) symmetry of the problem.

2.5.3 SU(2) symmetry
The action (2.5.1) is invariant under the global SU(2) transformations which
rotate (X(1)

,X
(2)), as well as under U(1) gauge transformations. Recall that

we have chosen the U(1) gauge

X
(2)
L

= X
(2)
R

= 1 , (2.5.15)

which is not preserved by the SU(2). Nevertheless, the SU(2) symmetry can
be realized non-linearly in the gauged action by introducing a compensating
U(1) transformation with parameter ΛC , namely

�
δX

(1)
L

δX
(2)
L

�
= i

�
α −iβ

iβ̄ −α

��
X

(1)
L

X
(2)
L

�
+ i

�
ΛCX

(1)
L

ΛCX
(2)
L

�
, (2.5.16)

and similarly for XR. Imposing that the transformation preserves the gauge
(2.5.15), and relabelling X

(1)
L,R

= XL,R henceforth, one finds

δXL = 2iαXL + β̄(XL)
2 + β , δXR = 2iαXR + β̄(XR)

2 + β . (2.5.17)

The infinitesimal transformations are generated by the vector field

ξ = δXL∂L + δXR∂R + c.c. (2.5.18)

and the finite transformations are given by the Möbius transformations

XL →
aXL + b

ā− b̄XL

, XR →
aXR + b

ā− b̄XR

, (2.5.19)

with |a|2+ |b|2 = 1. Given the SU(2) invariance of the potential (and therefore
the metric), it will be convenient to find coordinates in which this symmetry is
manifest. The first step in doing this is to note that a natural radial coordinate
R is defined by the invariant cross-ratio

R
2
≡

Z13Z24

Z23Z14
, (2.5.20)
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where Zij = Zi − Zj. Since we have only two complex variables, namely
XL, XR, there is only one, non-zero, independent cross ratio we can form.
Taking Z1 = XL, Z2 = XR, Z3 = −1/X̄L and Z4 = −1/X̄R we have

R
2 =

(1 + |XL|
2)(1 + |XR|

2)

(1 + X̄LXR)(1 + X̄RXL)
=

S
2

T 2
. (2.5.21)

One can easily verify that LξR = ξR = 0. Therefore, one can reach every
point (XL, XR), at a certain radius R, by choosing a point (X0

L
, X

0
R
) on the

sphere of that radius and acting by a SU(2) transformation with parameters
(a, b). Thus, we can parameterize any point (XL, XR) by a, b (subject to
|a|2 + |b|2 = 1), and the radial coordinate R. Then, the natural remaining
invariants are the Cartan 1-forms σ

i on the group manifold. As shown in
Appendix A.4, this parameterization of the XL, XR coordinates leads to

dXL =
1

ā2
(iσ1

− σ
2) ,

dXR =
1

(ā− ρb̄)2
�
2iρσ3 + i(1− ρ

2)σ1
− (1 + ρ

2)σ2 + dρ
�
, (2.5.22)

where ρ2 ≡ R
2−1. As we shall see below, when writing the line element in this

SU(2) parameterization, all the dependence in a, b drops out as a consequence
of the invariance of the metric. Also, one can see by explicit calculations of
J± from the potential (2.5.13) that

LξJ± = 0 . (2.5.23)

That is, both complex structures, J± (and therefore the third one), are pre-
served by the SU(2), which is an important property of Eguchi-Hanson (see
Appendix A.4 for more details). To show explicitly that the potential (2.5.14)
indeed describes this manifold, we compute the metric.

2.5.4 Metric
From the potential (2.5.14), and Eqs. (2.2.2)-(2.2.4), one finds the metric9

9For simplicity, we have taken α =
√
2 here, but the final result (2.5.26) holds for any

α, with appropriate redefinitions.
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ds
2 =

F (R)(X̄L − X̄R)2

(1 + X̄RXL)2(1 + |XL|
2)2

dXLdXL +
F (R)(X̄R − X̄L)2

(1 + X̄LXR)2(1 + |XR|
2)2

dXRdXR

+
G(R)

(1 + |XL|
2)2

dX̄LdXL +
G(R)

(1 + |XR|
2)2

dX̄RdXR

+
H(R)(X̄L − X̄R)2

(1 + |XL|)2(1 + |XR|
2)2

dXLdXR +
I(R)(1 + X̄LXR)2

(1 + |XL|)2(1 + |XR|
2)2

dXLdX̄R +c.c.,

where

F (R) = −
16 (2− 2R2 +R

4)

(−2 +R2)3 R2
, G(R) = −

8(2− 2R2 +R
4)2

(−2 +R2)3R2
,

H(R) =
4R2 (4− 2R2 +R

4)

(−2 +R2)3
, I(R) =

4R2 (4− 6R2 + 3R4)

(−2 +R2)3
. (2.5.24)

Defining r through

R
2 =

2r2

r2 − 1
, (2.5.25)

and using (2.5.22), after some algebra the line element reads

1

8
ds

2 =
1

1− 1
r4

dr
2 + r

2

�
σ
2
1 + σ

2
2 + (1−

1

r4
)σ2

3

�
, (2.5.26)

which is the usual Eguchi-Hanson metric (see, e.g., [39] for a review).

2.6 Taub-NUT

2.6.1 A gauged linear sigma model
Here we present a gauged linear sigma model in terms of semichiral superfields
whose low-energy limit target space is Taub-NUT. Consider a gauged linear
sigma model with two copies of semichiral superfields, just as the Eguchi-
Hanson case, but with the difference that the isometry acts by translations on
one of the pairs, i.e.,
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K = X̄
(1)
L
e
VLX

(1)
L

+ X̄
(1)
R
e
VRX

(1)
R

+ α(X̄(1)
R
e
−iṼ

X
(1)
L

+ X̄
(1)
L
e
i
¯̃
V
X

(1)
R
)

+
1

2

�
X

(2)
L

+ X̄
(2)
L

+ VL

�2
+

1

2

�
X

(2)
R

+ X̄
(2)
R

+ VR

�2
(2.6.1)

+
α

2

�
(X(2)

L
+ X̄

(2)
R

− iṼ)2 + (X(2)
R

+ X̄
(2)
L

+ i
¯̃
V)2

�

−(tV+ sṼ+ c.c.) .

It is known in general that such constructions (where the isometry acts tran-
sitively on some fields) lead to ALF (as opposed to ALE) spaces and we claim
that performing the semichiral quotient in this way leads to the semichiral
description of Taub-NUT. Although integrating out the vector field cannot be
done explicitly, by implicit differentiation we could still compute the metric.
Instead, we shall study the geometry of the T-dual theory.

2.6.2 T-dual
To perform a T-duality from the worldsheet perspective, one proceeds as ac-
cording to [33, 40]. We introduce an additional vector multiplet Uα, which acts
on the second pair and constrain its field strengths to be trivial by Lagrange
multipliers Φ, χ, i.e.,

K̃ = X̄
(1)
L
e
VLX

(1)
L

+ X̄
(1)
R
e
VRX

(1)
R

+ α

�
X̄

(1)
R
e
−iṼ

X
(1)
L

+ X̄
(1)
L
e
i
¯̃
V
X

(1)
R

�

+
1

2

�
X

(2)
L

+ X̄
(2)
L

+ UL

�2
+

1

2

�
X

(2)
R

+ X̄
(2)
R

+ UR

�2
(2.6.2)

+
α

2

�
(X(2)

L
+ X̄

(2)
R

− iŨ)2 + (X(2)
R

+ X̄
(2)
L

+ i
¯̃
U)2

�

−((t+ Φ)V+ (s+ χ)Ṽ+ c.c.) + (ΦU+ χŨ+ c.c.) ,

were we have shifted U
α → U

α − V
α. Integrating out U

α yields the T-dual
gauged linear sigma model

K̃ =
1

g2
(−

χ̄χ

α2 − 1
+ Φ̄Φ) + X̄Le

VLXL + X̄Re
VRXR + α(X̄Re

−iṼ
XL + X̄Le

i
¯̃
V
XR)

−(ΦV+ χṼ+ c.c) , (2.6.3)

where we have shifted χ, φ to get rid of the FI parameters s and t, dropped
terms that vanish upon integration in superspace (i.e., generalized Kähler
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transformations) and rescaled the fields appropriately10. As we will see in
Section 2.7, this gauged linear sigma model describes a smeared NS5-brane
and, therefore, the original theory (2.6.1) is a gauged sigma model for Taub-
NUT.

2.7 NS5-branes
It is well known that under type II string theory T-duality, Taub-NUT is
mapped to an NS5-brane. A worldsheet discussion of such relation is given in
[41]. There, a gauge theory description of NS5-branes involving a hypermul-
tiplet, a twisted hypermultiplet, and a vector multiplet acting on the former
is given and instanton corrections are discussed. We shall first show that the
gauge theory (2.6.3), involving semichiral fields, also describes NS5-branes and
we shall comment in Section 2.7.2 on instanton effects.

2.7.1 A gauged linear sigma model
Consider the action

L =

�
d
4
θ

� 1

e2
(FF̄− F̃

¯̃
F) +

1

g2
(−

χ̄χ

α2 − 1
+ Φ̄Φ)

+X̄Le
VLXL + X̄Re

VRXR + α(X̄Re
−iṼ

XL + X̄Le
i
¯̃
V
XR) (2.7.1)

−(ΦV+ χṼ+ c.c.)
�
.

In the IR limit (e2 → ∞), the equations of motion for the semichiral vector
field are

X̄Le
VLXL +

α

2
(X̄Re

−iṼ
XL + X̄Le

i
¯̃
V
XR)−

i

2
(Φ− Φ̄ + χ− χ̄) = 0 ,

X̄Re
VRXR +

α

2
(X̄Re

−iṼ
XL + X̄Le

i
¯̃
V
XR)−

i

2
(−Φ + Φ̄ + χ− χ̄) = 0 , (2.7.2)

α
i

2
(X̄Re

−iṼ
XL − X̄Le

i
¯̃
V
XR) +

1

2
(χ+ χ̄+ Φ+ Φ̄) = 0 .

10We have chosen to keep the kinetic terms of Φ with the usual normalization, leading to
the 1/(α2 − 1) factor for χ. This relative coefficient, as we will see, is important to ensure
the N = (4, 4) symmetry of the quotient model, as is expected of a model which is dual in
this manner to a model describing a hyperkähler manifold in terms of semichiral fields, as
discussed in Section 2.4.
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For simplicity, we gauge the semis to XL = XR = 1. Solving these equations
leads to

K(Φ, χ) =
1

g2
(−

χ̄χ

α2 − 1
+ Φ̄Φ) + ∆K(Φ, χ) (2.7.3)

with

∆K(Φ, χ) ≡ −iχ log
�
i(χ− χ̄)α2 + i(χ+ χ̄+ Φ+ Φ̄)(α2

− 1)− 2R
�

−iΦ log
�
−

i(χ+ χ̄+ Φ+ Φ̄) + i(Φ− Φ̄)α2 + 2R

2i(Φ + χ̄)

�
+ c.c. ,

(2.7.4)

where we have defined

R ≡
1

2

�
(χ+ χ̄+ Φ+ Φ̄)2(α2 − 1)− (χ− χ̄)2α2 − (Φ− Φ̄)2α2(α2 − 1) .

Note that α
2 ≥ 1 ensures the reality of R. From here we find

Kχχ̄ = −
1

α2 − 1

� 1

g2
+

α
2 − 1

2R

�
, KΦΦ̄ =

1

g2
+

α
2 − 1

2R
,

KχΦ̄ = −
1

2R

� (α2 − 1)(Φ̄ + χ)

2iR− (χ− χ̄)− (α2 − 1)(Φ− Φ̄)

�
. (2.7.5)

Note that the 1/(α2 − 1) factor for χ̄χ in (2.7.1) is crucial for the potential to
satisfy the scaled Laplace equation (2.4.13) (although in Section 2.4 we per-
formed the duality in the other direction, one would expect the same relations
to hold). After a trivial rescaling of the fields, the line element is given by

ds
2 = 2(KΦΦ̄dΦdΦ̄−Kχχ̄dχdχ̄) = 2H(r)(dΦdΦ̄ + dχdχ̄) (2.7.6)

with

H(r) ≡
� 1

g2
+

1

2r

�
. (2.7.7)

Defining

χ| =
(r1 + θ)

2
+ i

r2
√
2
, Φ| =

(r1 − θ)

2
+ i

r3
√
2
, (2.7.8)
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we finally have

ds
2 = H(r)(dr · dr + dθ

2) , (2.7.9)

which is the metric for an NS5-brane, smeared along the θ direction.

2.7.2 Comment on instanton corrections
In [41] a gauge theory description of smeared NS5-branes and a worldsheet T-
dual description of Taub-NUT was also given. It was argued that worldsheet
instanton corrections to the effective action un-smear the NS5-brane, localizing
it in the θ direction. (For a recent discussion of this phenomenon in the
context of double field theory [42], see [43].) In two dimensions, instantons
are Nielsen-Olesen vortices, which arise as BPS solutions to an abelian Higgs
model contained in the gauge theory. Although our gauge theory construction
is quite different (from the N = (2, 2) point of view), the same arguments hold
so we expect the same mechanism to be at work. Our construction does not
add to the results of [41], but is consistent with it. This is more easily seen
upon reduction of the gauge theory (2.7.1) to N = (1, 1). Following [23], we
find (see Appendix A.3 for details)

L =

�
d
2
θ

� 1

4e2
(D+d

a) (D−d
b) gab +

1

g2

�
D+φ̄ D−φ+D+χ̄D−χ

�

+(D+X
i)(D−X

j)Eij + 2id1(X̄LXL − X̄RXR −
i

8
(φ− φ̄))

+d
3(α(X̄RXL − X̄LXR)−

i

8
(φ+ φ̄+ χ+ χ̄))

−2id2(X̄LXL + X̄RXR + α(X̄RXL + X̄LXR)

−
i

8
(χ− χ̄)) + if(φ+ φ̄− χ− χ̄)

�
,

where d
a = (f, d1, d2, d3), X i = (XL, X̄L, XR, X̄R) and gab = diag(1, 2, 2, 1).

One can rewrite this in terms of the fields φ± from Section 2.5.1 which diag-
onalize the kinetic terms for the semis. Then, following Tong, we allow only
the lowest component of, say, φ+ to vary over space and set all other fields to
their classical expectation values. This results in an abelian Higgs model with
a θ term for the gauge field, whose instanton solutions (in the limit g

2 → 0)
are conjectured to contribute to the low-energy effective action, effectively
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replacing

H(r) → H(r, θ) =
1

g2
+

1

2r

sinh r

cosh r − cos θ
, (2.7.10)

therefore unsmearing the NS5.

2.8 T-dual of Eguchi-Hanson
For completeness, we finally discuss the T-dual of Eguchi-Hanson. We can
perform a T-duality before taking the quotient. As before, we introduce an
additional semichiral vector multiplet U

α which acts only on the second pair
X

(2)
L,R

, and defines

K =
�
X̄

(1)
L
X

(1)
L

+ X̄
(2)
L
X

(2)
L
e
UL

�
e
VL +

�
X̄

(1)
R
X

(1)
R

+ X̄
(2)
R
X

(2)
R
e
UR

�
e
VR

+α

�
X

(1)
L
X̄

(1)
R

+ X
(2)
L
X̄

(2)
R
e
−iŨ

�
e
−iṼ + α

�
X̄

(1)
L
X

(1)
R

+ X̄
(2)
L
X

(2)
R
e
i
¯̃
U

�
e
i
¯̃
V

−

�
ΦU+ χŨ+ c.c.

�
.

Shifting U
α → U

α − V
α, the Lagrangian decouples and, gauging all the semis

to 1, we have

K = K1 +K2 , (2.8.1)

where

K1 = e
UL + e

UR + α(e−iŨ + e
i
¯̃
U) +

�
ΦU+ χ Ũ+ c.c

�
,

K2 = e
VL + e

VR + α(e−iṼ + e
i
¯̃
V)−

�
(Φ + t)V+ (χ+ s)Ṽ+ c.c

�
.

Thus, integrating out both U
α and V

α reduces to the case studied for NS5-
branes with K1 = ∆K(−Φ,−χ) , K2 = ∆K(Φ + t, χ+ s) and therefore

K̃ = ∆K(−Φ,−χ) + ∆K(Φ + t, χ+ s) , (2.8.2)

with ∆K given in (2.7.4). Since the metric is linear in second derivatives of
the potentials, we have

K̃χχ̄ = −
1

2

� 1

R1
+

1

R2

�
, K̃ΦΦ̄ =

α
2 − 1

2

� 1

R1
+

1

R2

�
, (2.8.3)
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and similarly for the torsion terms. Again, this potential satisfies the scaled
Laplace equation

K̃ΦΦ̄ + (α2
− 1)K̃χχ̄ = 0 , (2.8.4)

in accordance with our results of Section 2.4. Note that changing the relative
position of the mass-points corresponds to rotating the complex structures.

2.9 Summary and Conclusions
We have studied a supersymmetric quotient construction by the use of gen-
eral N = (2, 2) sigma models and the semichiral vector multiplet. We first
restricted ourselves to the case in which only semichiral fields are involved.
Due to the presence of a b-field in these models, one may naively think that
a non-zero H-flux could be induced on the quotient manifold M̂, even if the
original manifold M is hyperkähler. This, however, is prevented by our re-
sult of Section 2.3, asserting that the quotient of a hyperkähler manifold is
hyperkähler, as in the usual hyperkähler quotient. Furthermore, the value of
the anticommutator of the complex structures is preserved under the studied
quotient. Thus, although the quotient manifold in general does have a b-
field, its field strength H = db vanishes. Nonetheless, the quotient provides a
powerful method for constructing generalized potentials for hyperkähler man-
ifolds, of which few explicit examples are known. We gave two examples of
well-known hyperkähler manifolds, namely Eguchi-Hanson and Taub-NUT.
We also used the SVM to perform T-duality transformations, giving a new
N = (2, 2) gauged linear sigma model description of (smeared) NS5-branes
involving semichiral, chiral, and twisted-chiral superfields. This description is
consistent with previous ones in that it contains an abelian Higgs model whose
instanton solutions unsmear the NS5.

We have also clarified and extended some previous results on the duality
relation of these semichiral models with N = (4, 4) models with chiral/twisted-
chiral fields. We showed that the T-dual of an N = (4, 4) model with chiral
and twisted-chiral fields, may or may not describe a hyperkähler manifold,
depending on the character of the isometry along which the duality is per-
formed. If the isometry is translational, the dual manifold is hyperkhäler. For
a general isometry, however, the dual manifold is in general not hyperkähler,
even if the N = (4, 4) SUSY is preserved. This, for instance, is the case of the
SU(2)× U(1) WZW model which was briefly discussed.

We also commented on more general quotients that can lead to manifolds
with torsion, noting that this requires the presence of more than one type of
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N = (2, 2) field and gave an example involving a chiral and a pair of semichiral
fields.

In the next chapter we move to the study of certain GLSMs whose classical
moduli spaces are non-Kähler.
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Chapter 3

GLSMs with torsion1

In this chapter we describe some recent progress in the understanding of the
classical moduli space of certain GLSMs that are non-Kähler. Although some
aspects are still work in progress, we believe that the results are interesting
enough to be included.

Recall from the previous chapter that the semichiral quotient of a hyperkäh-
ler manifold is hyperkähler. As we have discussed at length, this implies that
the classical moduli space of GLSMs involving only semichiral fields coupled
to the semichiral multiplet are hyperkähler and we have given two examples
of gravitational instantons.

We will first give an overview of general GLSMs that can lead to non-
Kähler geometries, but we will focus particularly on one example involving
only semichiral fields. However, rather than coupling them to the semichiral
vector multiplet (as we did in the previous chapter), we will couple them to
the usual chiral vector multiplet V with gauge transformation δgV = i(Λ̄−Λ)
with Λ chiral. This is possible since δgXL = δgXR = iΛ is compatible with
the chirality constraints on semichiral fields. We will show that the classical
moduli space of such GLSMs is non-Kähler and study the geometry

Recall that, as we reviewed in Chapter 2 for the case of chiral fields, the
moduli space of the GLSM can be compact or non-compact, depending on the
signs of the charges of the chiral fields. Rather surprisingly, this will not be
the case here. In fact, we will see that the spaces obtained by this quotient are
always non-compact, regardless of the signs of the charges of the (2, 2) fields.

From the superspace point of view, however, this formulation is unsatis-
factory for reasons to be discussed below. We will show that actually these
models can be rewritten in terms of a constrained semichiral vector multiplet
(the meaning of this will become clear below), thus resolving these issues and

1This chapter is based on unpublished joint work with Martin Rocek.
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in addition clarifying the geometry of these spaces.

3.1 Preliminaries
As we have discussed, in full generality one can consider the gauging of linear
sigma models with an action of the form

K =
dc�

a=1

Φ̄aΦa
−

dt�

a�=1

χ̄
a
�
χ
a
�
−

ds�

i=1

�
X̄

i

L
X

i

L
+ X̄

i

R
X

i

R
+ α(X̄i

L
X

i

R
+ X̄

i

R
X

i

L
)
�
.

(3.1.1)
The action is explicitly invariant under N = (2, 2) SUSY and all these fields
can be coupled to various gauge multiplets in (2, 2) superspace. Before dis-
cussing possible gaugings, let us make a few comments about this action.
In principle, one can include terms of the form φ̄

a
χ
a
�
+ c.c., φa

χ
a
�
+ c.c., or

φXL + c.c., etc. We have omitted these terms because they correspond to
generalized Kähler transformations (i.e., they integrate to zero over the full
superspace measure). However, they might be important when coupling these
fields to vector multiplets. In addition, there are possible terms which are not
generalized Kähler transformations, namely

(LiāX
i

L
Φ̄a + c.c.) + (RiāX

i

R
Φ̄a + c.c.) + (L̃iā�X

i

L
χ̄
a
�
+ c.c.) + (R̃iā�X

i

R
χ
a
�
+ c.c.) .

In full generality these terms should be included. Since we are thinking about
coupling these models to vector fields, gauge invariance is the only princi-
ple determining the presence of such terms. Regarding the kinetic term for
semichiral fields, terms such as (Xi

L
X

i

R
+ c.c.) are also allowed, but we are as-

suming that Xi

L
and X

i

R
have the same charge. As we shall review below, this

is equivalent to the these fields having an opposite charge because a semichiral
field of charge Q can be dualized to a semichiral field with charge −Q. This
is in fact one of the many distinctive features about semichiral fields. One
could also consider terms mixing different semichiral families, i.e., Mab̄

ij
X

i

a
X̄

i

b̄

with Mij not diagonal, but for simplicity we will assume that Mij is diago-
nal. Regarding F-terms, it is also possible to add the usual superpotential and
twisted superpotential terms. However, these cannot contain semichiral fields
since this would break N = (2, 2). The reason is simple: the SUSY variation
of semichiral fields contains three superderivatives, which does not integrate
to zero over a measure with only two θ’s.

Let us review now possible gaugings of (3.1.1). The most general (2, 2)
gauged linear sigma model requires chiral vector, twisted chiral vector, semichi-

36



ral vector, and the large vector multiplet.
We are interested in studying the classical moduli space of these general-

ized GLSMs. As explained in the introduction to Chapter 2, this amounts to
integrating out the vector multiplet and then setting the scalar potential U(φ)
to zero. Actually, there is no need to go all the way down to components to
identify the space of classical vacua. As we shall review below in Section 3.1.1,
upon reduction to (1, 1) one can identify the moment map functions µ whose
zero-level determines the classical moduli space.

Below we give a full review of the (2, 2) vector multiplets with their gauge
transformations, couplings, and their (1, 1) components. This is summarized
in Table 3.1.

Vector multiplet Φ χ XL,XR Field Strength Prepotentials µ

Chiral � × � χ VΦ d

Twisted Chiral × � � Φ Vχ d̃

LVM � � � X± VΦ ⊕ Vχ ⊕ V
�

d1,2,3

SVM × × � Φ⊕ χ VL ⊕ VR ⊕ V
�

d1,2,3

Table 3.1: General (2, 2) vector multiplets, fields they can couple to, field
strengths, prepotentials, and number of (1, 1) bosonic fields which yield mo-
ment map functions.

Chiral and twisted chiral vector multiplets
The chiral vector multiplet V is the best-known vector multiplet. The field
strength is a twisted chiral superfield defined by

Σ ≡
1

2
{∇̄+,∇−} , (3.1.2)

where ∇± are (2, 2) gauge-covariant superderivatives and under gauge trans-
formations

δV = −i(Λ− Λ̄) , (3.1.3)

with D̄±Λ = 0. The (1, 1) components are defined by

f = 2 (Σ̄ + Σ)
�� , d = 2 i (Σ̄− Σ)

�� . (3.1.4)

As shown in Table 3.1, this vector multiplet can act on semichiral fields
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since the gauge transformation (3.1.3) is compatible with the semichiral con-
straints.

Semichiral vector multiplet and Large vector multiplet
The semichiral multiplet (SVM) and the large vector multiplet (LVM) were
discussed in Chapter 2. For completeness, we review the most important
elements here. The semichiral multiplet is described by the three supervector
fields (VL, VR, V

�), with gauge transformations

δVL = i(Λ̄L − ΛL) , δVR = i(Λ̄R − ΛR) , δV
� = (ΛR + Λ̄R − ΛL − Λ̄L) ,

with D̄+ΛL = D̄−ΛR = 0. One can define two field strengths, one chiral and
one twisted chiral, given by [24]

F = i{∇̄+, ∇̄−} , F̃ = i{∇̄+,∇−} .

The (1, 1) components are defined by [23, 24]

f = − i

�
F− F̄+ F̃−

¯̃
F

���� ,

d
1 =

�
F+ F̄

��� , d
2 =

�
F̃+ ¯̃

F

���� , d
3 = i

�
F− F̄− F̃+ ¯̃

F

���� .

Thus, a quotient with the SVM leads to three moment maps, given by the
field equations of each di. In other words, the quotient reduces the complex
dimension by two because there is enough gauge symmetry to gauge away both
XL and XR.

The LVM has a similar structure [23, 24]. It is described by three super-
vector fields (V φ

, V
χ
, V

�), with gauge transformations

δV
φ = i(Λ̄− Λ) , δV

χ = i( ¯̃Λ− Λ̃) , δV
� = −(Λ + Λ̄) + Λ̃ + ¯̃Λ ,

with Λ chiral and Λ̃ twisted chiral. The reduction to (1, 1) contains three
fields di which give rise to three moment maps. Again, there is enough gauge
invariance to gauge away a chiral and a twisted chiral field and a quotient
performed with the LVM reduces the complex dimension by 2.
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3.1.1 Reduction of the action to N = (1, 1) and moment
maps

Here we give some details on the reduction to (1, 1) superspace. The (2, 2)
superderivatives satisfy

1

2
{∇±, ∇̄±} = iD±± , (3.1.5)

where ∇± are gauge-covariant superderivatives (other commutation relations
depend on the gauge multiplet considered). To reduce to (1, 1) superspace,
one writes

∇± =
1

2
(D± − iQ±) , ∇̄± =

1

2
(D± + iQ±) , (3.1.6)

where D± are gauge supercovariant N = (1, 1) derivatives and Q± are gauge-
covariant generators of the additional SUSY and satisfy

D
2
± = 2 iD±± , Q

2
± = 2 iD±± . (3.1.7)

As discussed above, there are various quotients one can perform in this
general setting. Generically, the action is given by

L =Lgauge +

�
d
2
θ d

2
θ̄ K

�
φ
a
, φ̄

a;χa
�
, χ̄

a
�
;Xi

L
, X̄

i

L
,X

i

R
, X̄

i

R
;VI

�

=Lgauge +

�
d
2
θ
�
Q+Q−K

�
Φa

, Φ̄a;Xi

L
, X̄

i

L
,XR, X̄

i

R
;VI

�� ��� ,

where VI collectively denotes all the gauge multiplets from Table 3.1 and K

is any gauge invariant function (satisfying some mild conditions to ensure
positivity of the metric), although here we will have in mind a gauged linear
sigma model. In the second line, d2θ = dθ+ dθ− is the full (1, 1) superspace
measure (θ± are real here) and the integrand is the (1, 1) Lagrangian. Pushing
in the Q±’s (and using the commutation relations (3.2.3)) one obtains the
(1, 1) Lagrangian, which is always of the form

L = Lgauge +

�
d
2
θ

�
Eµν(D+φ

µ)(D−φ
ν) +

�

I

dI µ
I(φ)

�
, (3.1.8)

where φ
µ are the (1, 1) components of all the fields (XL, XR, φ, χ) present in

the theory and µ
I(φ) are moment map functions and d

I components of the
vector multiplet.

In the IR limit, the kinetic action for the gauge fields becomes irrelevant
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and the equation of motion for the dI ’s becomes algebraic2, and the submani-
fold is defined by the zero-level of the moment maps µI(φ), which is preserved
by the action of the Killing vector. As discussed above, the number of such
moment maps depends on the type of gauging that was performed. The chiral
and twisted chiral vector fields lead to one moment map and the quotient by
the SVM and the LVM lead to three moment map equations.

We will give more details of the reduction in a particular model below.
In [44], the authors considered the conditions for a (1, 1) gauged linear

sigma model to admit (2, 2) SUSY. Our models are the off-shell versions3

with some minor differences. We have assumed that the Generalized Kähler
potential is invariant under the action of the Killing vector ξ which is being
gauged (and not simply invariant up to generalized Kähler transformations).
Thus, there is no need for some additional terms that appear in the (1, 1)
action in [44]. In this sense, our model is more restricted but can easily be
generalized. On the other hand, we allow for the possibility of more than a
single moment map function for each isometry due to the possibility of gauging
with the LVM or the SVM.

Having off-shell (2, 2) SUSY might be an important aspect to perform
localization along the lines of [46]. This will be studied elsewhere.

3.1.2 Duality between semichiral fields
Before going to a specific model, let us review the duality between semichiral
fields of opposite charges. Consider relaxing the condition of semichirality on
XL, imposing it by a (semichiral) Lagrange multiplier X̃L, i.e.,

K = X
†
L
e
V
XL + X

†
R
e
V
XR + α

�
X

†
L
e
V
XR + X

†
R
e
V
XL

�
−

�
XLX̃L + X̃

†
L
X

†
L

�
.

Integrating out XL leads to

K = −X̃
†
L
e
−V

X̃L − (α2
− 1)X†

R
e
V
XR + α

�
X̃LXR + X

†
R
X̃

†
L

�
.

Thus, X̃L has opposite charge. One can see that this leads to a positive definite
metric for α2

> 1. Note that there are no e
V factors in the cross terms as they

are gauge invariant as they are. It is important to stress that this duality does

2It should be noted that the kinetic action for the chiral, twisted chiral, and semichiral
vector multiplets have been constructed and are irrelevant in the IR. However, the kinetic
action for the LVM is not fully understood.

3Some discussion of related issues can be found in [45].
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not change the geometry since it is not based on an isometry. (Note that a
duality like this for chiral fields is not possible because terms of the form ΦΦ̃,
integrated over the full measure would vanish.)

3.2 Conifold with torsion
Here we describe a model which involves only semichiral fields, gauged by
the action of the chiral vector multiplet. This quotient was mentioned briefly
in [45, 47]. Here, we will analyze this model in more detail, showing that
the GLSM always leads to non-compact spaces, regardless of the charge as-
signments of the superfields, quite unlike the usual models with only chiral
superfields. Consider the linear sigma model for semichiral fields given by

L = −

�
d
2
θ d

2
θ̄

2�

i=1

�
X̄

i

L
X

i

L
+ X̄

i

R
X

i

R
+ α(X̄i

L
X

i

R
+ X̄

i

R
X

i

L
)
�
. (3.2.1)

There is a global symmetry acting on all the fields with the same charge4. We
can gauge this symmetry in the same way that it is done for chiral superfields,
namely, introducing the vector multiplet V . In other words, we have identified
a chiral symmetry, which we gauge by

L = −

�
d
2
θ d

2
θ̄

�
�

i=1,2

e
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X̄

i
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i
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+ X̄
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+ α(X̄i
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R
+ X̄
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R
X

i

L
)
�
− tV

�
,

(3.2.2)
where t is an FI parameter that we will set to zero for now. As we shall show,
in the low energy limit this GLSM is described by a NLSM on a non-compact
manifold with torsion. To study the classical moduli space, we calculate the
corresponding moment map by reducing the model to (1, 1) superspace, as
discussed in Section 3.1.1.

3.2.1 Reduction to (1, 1) and Geometry
We define the N = (1, 1) components in terms of gauge covariant derivatives.
Semichiral fields contain a (1, 1) bosonic superfield and a (1, 1) fermionic aux-

4If we had assigned opposite charges to the fields, we would have instead terms of the
form α(XLXR + c.c.).
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iliary superfield:

XL = XL

�� , Q+XL = iD+XL , Q−XL

�� = Ψ− ,

XR = XR

�� , Q−XR = iD−XR , Q+XR

�� = Ψ+ .

The reduction of the vector multiplet was given in (3.1.4). From these defini-
tions and the (2, 2) SUSY algebra we find

{D+,D−} = f , {D+,Q−} = −d ,

{Q+,Q−} = f , {D−,Q+} = d . (3.2.3)

Using the commutation relations (3.2.3), and integrating out the auxiliary
fields Ψ±, the action reads

L =

�
d
2
θ [Eµν(D+φ

µ)(D−φ
ν) + d µ(X)] , (3.2.4)

with

Eµν =





0 −2 0 −
4
α
+ 2α

−2 0 −
4
α
+ 2α 0

0 −2α 0 −2
−2α 0 −2 0



 , (3.2.5)

and
µ(X) =

�
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X

i

R
+ α(X̄ i
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�
. (3.2.6)

It is convenient to define

X
i

L
=

Xi
√
α− 1

+
Yi

√
α + 1

, X
i

R
= −

Xi
√
α− 1

+
Yi

√
α + 1

. (3.2.7)

The classical moduli space is therefore given by

M =
�
Xi, Yi ∈ C : |X1|

2 + |X2|
2
− |Y1|

2
− |Y2|

2 = 0
�
/U(1) . (3.2.8)

As is well known, this corresponds to the usual description of the unresolved
conifold, a six-dimensional complex space with a conical singularity at the ori-
gin (see, e.g., [48]). Note that the reason one finds a non-compact manifold,
despite all the U(1) charges being positive, is due to the condition α

2
> 1. (Al-

ternatively, one can dualize, say, XL to a semichiral field X̃L with an opposite
charge and then it is direct to see that the space is non-compact.)
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3.2.2 UV metric and b-field
Rather than working in superspace, it is simpler in this case to use the usual
quotient rules to determine the metric and b-field

g̃µν = gµν +
BθµBθν − gθµgθν

gθθ
, B̃µν = Bµν +

gθµBθν − Bθµgθν

gθθ
, (3.2.9)

where Greek indices belong to the quotient manifold and θ is the direction
parametrizing the isometry. A convenient set of coordiantes (which is adapted
to solving the D-term constraint (3.2.8)) is

X1 = r cos
θ2

2
e

i
4 (ψ+−ψ−−2φ2) , X2 = r sin

θ2

2
e

i
4 (ψ+−ψ−+2φ2) ,

Y1 = r cos
θ1

2
e

i
4 (ψ++ψ−+2φ1) , Y2 = r sin

θ1

2
e

i
4 (ψ++ψ−−2φ1) .

The isometry acts only by shifting ψ+ → ψ+ + β. From (3.2.9), we find

ds
2 =

1

α
ds

2
0 +

1

16α
(α2

− 1)A2
(1) , (3.2.10)

with

ds
2
0 = dr

2 + r
2
�1
8
(dθ21 + sin2

θ1 dφ
2
1 + dθ

2
2 + sin2

θ2 dφ
2
2)

+
1

16
(dψ + cos θ1 dφ1 + cos θ2 dφ2)

2
�

and

A(1) = cos
θ1

2
cos

θ2

2

�
r cos

φ+ ψ

2
(dφ+ dψ) + 4 sin

φ+ ψ

2
dr

�

− sin
θ1

2
sin

θ2

2

�
r cos

φ− ψ

2
(dφ− dψ) + 4 sin

φ− ψ

2
dr

�

−r cos
θ1

2
sin

θ2

2

�
sin

φ− ψ

2
dθ1 + sin

φ+ ψ

2
dθ2

�

−r sin
θ1

2
cos

θ2

2

�
sin

φ+ ψ

2
dθ1 + sin

φ− ψ

2
dθ2

�
,
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where φ ≡ φ1 + φ2 and we relabeled ψ− → ψ. Computing H = db we find:

H =
2r2

√
α2 − 1

α
sin θ1

�
− cos

�
θ1 − θ2

2

�
cos

�
φ1 + φ2

2

�
cos

�
ψ

2

�
+

cos

�
θ1 + θ2

2

�
sin

�
φ1 + φ2

2

�
sin

�
ψ

2

��
dθ1 ∧ dφ1 ∧ dψ + ...

(3.2.11)

where for simplicity we have omitted additional terms.
Note that the metric does not have the cone form ds

2 = dr
2+ r

2
ds

2
B

for an
arbitrary value of α (note nonetheless that for r → 0, the cross terms drdθ1...

dissapear). However, in the limit α → 1, the metric becomes ds
2 → ds

2
0 and

b = 0.
Recall that the topology of the conifold is R+ × S

2 × S
3 [49]. Thus, we

can choose a representative 3-cycle by fixing r and θ2, φ2. Integrating over the
remaining coordinates with ranges ψ = (0, 4π], θ1 ∈ (0, π) and φ1 ∈ (0, 2π]
gives the H-flux through the S3. The only component of H we need to perform
the integral is Hθ1φ1ψ, given in (3.2.11). Performing the integral, we find

�

S3

H = 0 . (3.2.12)

Thus, although this model has a non-zero H-field, the flux is zero and the
H-field is topologically trivial. It remains as an open question for the moment
what is the IR geometry of this model. We will comment further on this in
Section 3.4.

3.3 Relation to constrained semichiral quotient
We have shown above that a GLSM involving only semichiral fields coupled to
the chiral vector multiplet realizes a non-compact generalized Kähler manifold
with torsion, thus providing an example of a quotient which is not Kähler.
However, from the superspace point of view the model is unsatisfactory. The
reason is that in the Kähler quotient, the complexified action of the group
allows one to choose a supersymmetric gauge, where a chiral field, say Φ1, is
gauged away completely. This is achieved by the gauge transformation V →

V−log(Φ̄1Φ1) so that Φ̄1
e
VΦ1 → e

V and terms such as Φ̄2
e
VΦ2 → e

V transform
into Φ̄eVΦ → e

V , where Φ ≡ Φ2
/Φ1 is a chiral superfield corresponding to a

projective coordinate on the manifold. This is not possible to do in the case of
this quotient since a chiral gauge parameter does not contain enough degrees
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of freedom to gauge away a whole semichiral field.
In this section we describe an alternative point of view on this quotient

which illuminates the superspace aspect of it. As we shall see below, this
reformulation will also show us that these quotient manifolds can be thought
of as a union of a continuous family of hyperkähler submanifolds along one
(complex) dimension parameterized by a chiral superfield, making it clear that
they are non-compact manifolds.

Let us go back to the GLSM

K = e
V
�

i=1,2

�
X̄

i

L
X

i

L
+ X̄

i

R
X

i

R
+ α(X̄i

L
X

i

R
+ X̄

i

R
X

i

L
)
�
− t V ,

and shift V → V − log X̄1
L
X

1
L
. Defining

XL =
X

2
L

X
1
L

, XR =
X

2
R

X
1
R

, e
Σ =

X
1
R

X
1
L

, (3.3.1)

where Σ is a complex linear superfield D̄+D̄−Σ = 0, we have

K = e
V

�
1 + e

Σ+Σ̄ + α(eΣ + e
Σ̄)
�

+ e
V

�
X̄LXL + e

Σ+Σ̄
X̄RXR + α(X̄LXRe

Σ + X̄RXLe
Σ̄)
�
− t V .

In other words, while a similar shift of the gauge field for chiral fields amounts
to choosing a gauge in which a whole chiral field is gauged away, here we have
gauged away some parts of a left and right semichiral field and a complex
linear superfield Σ remains. Note that Σ enters in the action as gauge fields
usually do. However, unlike vector multiplets, Σ is a constrained superfield.
We can relax this constraint and impose it by a chiral Lagrange multiplier Φ
by

K = e
V

�
1 + e

Σ+Σ̄ + α(eΣ + e
Σ̄)
�

+ e
V

�
X̄LXL + e

Σ+Σ̄
X̄RXR + α(X̄LXRe

Σ + X̄RXLe
Σ̄)
�
− t V + i(ΦΣ− Φ̄Σ̄) .

In this formulation we see that we can identify Σ and V with the SVM studied
in Chapter 2 by:

V = VL , Σ̄ + Σ = VR − VL , Σ = i
¯̃
V− VL = iV . (3.3.2)

45



MHK

Φ

Figure 3.1: Slices of constant Φ in the quotient manifold correspond to Hy-
perkähler manifolds MHK determined by a semichiral quotient.

Finally,

K =
�
e
VL + e

VR + α(e−iṼ + e
i
¯̃
V)
�

+
�
X̄Le

VLXL + X̄Re
VRXR + α(X̄Le

i
¯̃
V
XR + X̄Re

−iṼ
XL)

�

− t VL − (ΦV+ Φ̄V̄) .

Thus, the chiral quotient of semichiral fields (3.2.2) can be reformulated as a
semichiral quotient (where we have chosen a supersymmetric gauge in which
a left and a right semichiral field have been gauged away, which is possible
to do with the SVM) with the constraint that V is trivial (i.e., F = 0). Note
that the sections of Φ = const. correspond to the (unconstrained) semichi-
ral quotient of C4 and are thus hyperkähler submanifolds. In fact, they are
Eguchi-Hanson manifolds, as discussed in Chapter 2 (compare to the GLSM
in (2.5.1)). Thus, one can think of these manifolds as a union of hyperkähler
submanifolds along the direction Φ, as shown in Figure 3.1. This also explains
why these manifolds are always non-compact. The whole manifold M has a
non-vanishing torsion and is a generalized Kähler manifold.

As a final observation, recall from Chapter 2, that one can perform a T-
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duality using the SVM by constraining both field strengths F and F̃ to vanish
by Lagrange multipliers ΦV+χṼ+c.c.. Thus, this quotient can also be thought
of as performing a T-duality of C4 (described in terms of semichiral fields) and
taking the section χ = 0.

3.4 Comments on quantum corrections
We have presented in this chapter the first thorough analysis of a general-
ized quotient that leads to a non-Kähler manifold. As a specific example, we
discussed a generalized GLSM for the conifold. As we have discussed, there
are many possible generalizations that need to be explored. In particular, the
quotient by the LVM and the possible geometry that it leads to needs to be
understood.

Our analysis thus far has been completely classical. An interesting aspect is
of course quantum corrections, under which the metric renormalizes following
the beta-function equations. Let us first recall the situation for chiral fields
and, for the purpose of discussion, let us consider the example of the conifold.
This model can be realized by a NLSM with four chiral fields Φa with charges
(1, 1,−1,−1). As is well-known, this space admits a Calabi-Yau metric [49].
However, at the classical level the quotient is not the Ricci-flat metric, but
instead

ds
2 = dr

2 + r
2
�
a(dθ21 + sin2

θ1 dφ
2
1 + dθ

2
2 + sin2

θ2 dφ
2
2)

+ b (dψ + cos θ1 dφ1 + cos θ2 dφ2)
2
�
, (3.4.1)

with a = 1/8 and b = 1/16 (which actually coincides with the metric (3.2.10)
for α = 1). The Ricci-flat metric has the same form but with a = 1/6 and
b = 1/9. What is usually believed is that the metric (3.4.1) will follow the
RG flow equation (which to 1-loop and for H = 0 is the Ricci-flow equation
Λ∂Λgµν = Rµν) until it reaches the fixed point at the Calabi-Yau metric with
Rµν = 0.

Similarly, we do not expect the quotient metric in our model to solve the
beta function equations (even with a non-zero H), but rather to flow to a solu-
tion in the IR. The question thus is whether the fixed point of this flow is the
same as in the torsionless case or if there is a fixed point with a non-zero H.
This question remains unanswered for the moment, but we would like to make
a comment. Recall that the H-flux generated in our example is topologically
trivial, as implied by the value of the integral in (3.2.12). Since this integral
is a topological quantity, it is invariant under RG flow. Thus, it is plausible
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that in fact our model flows to an IR fixed point with H = 0. It would be
interesting to see if the LVM can lead to models with a topologically non-trival
H-field, as these would necessarily flow in the IR to a non-Kähler NLSM. We
plan to address these questions in future work.

In the next chapter we move to the study of the moduli space of higher-
dimensional theories for which the full quantum moduli space metric can be
determined exactly.
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Chapter 4

Darboux Coordinates and
Instanton Corrections in
Projective Superspace1

In this chapter we move to the study of the moduli space of super Yang-Mills
(SYM) theories with eight supercharges in four and five dimensions, and their
hyperkähler structure.

Since classic work of Seiberg and Witten [50, 51], the structure of N = 2
theories in four dimensions has been extensively explored, leading to impor-
tant insights into the dynamics of gauge theories. A recent area of progress in
this field is the study of the Coulomb branch moduli space of N = 2 theories
on R

3×S
1, first analyzed in [52]. It has received renewed attention due its re-

lation to the Kontsevich-Soibelman (KS) wall-crossing formula [53] for N = 2
theories in the work by Gaiotto, Moore, and Neitzke (GMN) [54]. As described
by GMN, the KS formula ensures the continuity of the metric on the moduli
space. Alternatively, demanding continuity of the metric provides a physical
proof of the wall-crossing formula. The central idea in [54] was to find an
efficient description of the moduli space metric and its corrections due to BPS
instantons. Such a description was given in terms of holomorphic Darboux
coordinates (ηe, ηm) by making crucial use of twistor techniques. The main
goal of this chapter is to rederive these results using techniques of Projective
Superspace.

As general background for the results in this chapter we begin by giving a
review of basic elements of N = 2 SYM, its compactification to three dimen-

1This chapter is based on joint work with Dharmesh Jain in [2].
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sions, and an account of the developments referred to above.

4.1 Introduction
Just as in the case of GLSMs, classical SYM has a space of inequivalent vacua
determined by the vanishing of the classical potential:

U =
1

g2
Tr[φ, φ†]2 , (4.1.1)

where φ is the scalar in the vector multiplet. For this to vanish, φ does not
need to vanish, but just belong to the Cartan subalgebra. In this chapter we
will consider only gauge group SU(2) and therefore we can take φ = 1

2 a σ
3,

where a is a complex parameter labeling the vacua. Thus, the space of vacua
is of complex dimension one. The space of inequivalent vacua is parametrized
by the gauge-invariant coordinate u = Trφ2.

Note that in the case of GLSMs the moduli space was parametrized by
the VEV of scalar fields in matter fields, while here it is parametrized by the
VEV of the scalar field in the vector multiplet. This is usually referred to as
the Coulomb branch of the moduli space. Since we are considering pure SYM
there is only a Coulomb branch, but in the presence of hypermultiplets there
can be a branch where these acquire a VEV, which is known as the Higgs
branch.

The metric on the Coulomb branch is determined by the kinetic term of
φ, which at the classical level is simply the flat-space metric. However, at the
quantum level the action receives corrections, modifying the effective metric
on the moduli space. Thus, at the quantum level the metric on the moduli
space can be very different. In fact, it was shown by Seiberg and Witten that
quantum corrections greatly modify the geometry and singularity structure of
this moduli space, with important physical consequences. To determine the
quantum-corrected metric one must study the low-energy effective action for
the light fields, which in this case is a single vector multiplet W (SU(2) has
been spontaneously broken to U(1)). The only constraint on the low energy
effective action for W is N = 2 SUSY. In N = 2 superspace the most general
(two-derivative) action for the vector multiplet is given by

1

16π

�
d
4
xd

2
θd

2
θ̃F(W ) , (4.1.2)

where F is a holomorphic function called the prepotential. For an abelian the-
ory, integrating over the Grassmann coordinates leads to the following bosonic
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terms:

S =

�
d
4
x

�
−

ImF ��

4π

�
FµνF

µν + |∂µφ|
2
�
+

ReF ��

4π
FµνF̃

µν

�
, (4.1.3)

in addition, of course, to fermionic terms which we omit for the purpose of our
discussion. Thus, the metric in moduli space is given by

ds
2 = Im τ |da|

2
, τ = F

��(a) . (4.1.4)

At the classical level, F(W ) ∼ W
2 and the metric is simply flat-space (except

at the origin, where the full SU(2) symmetry is restored). At the 1-loop level,
however, the prepotential receives corrections and is given by [55]:

F(W )1−loop =
i

2π
W

2 log
W

2

Λ2
, (4.1.5)

where Λ is the dynamically generated scale. Due to the amount of SUSY, this
is the only perturbative correction to the prepotential, but there are also non-
perturbative corrections due to four-dimensional instantons. The remarkable
achievement of Seiberg and Witten [50, 51] was to determine the quantum pre-
potential exactly thereby determining the quantum moduli space completely,
basing their analysis on symmetry and electromagnetic duality.

As we have just seen, the prepotential contains al the information about
the metric. In addition, the prepotential also determines the mass M of BPS
particles with a certain electric and magnetic charge at any point in the moduli
space. Recall that for BPS particles M2 = 2|Z|2, where Z is the central charge
given by

Z = ane + aDnm , aD = ∂F/∂a , (4.1.6)

where ne, nm are the electric and magnetic charges of the particle. Thus,
given a lattice vector γ = (ne, nm), the SW prepotential determines the mass
of the BPS particle. However, except in the simplest cases, the question of
which BPS particles are present in the theory at a certain point in the moduli
space remained open. As was first observed in two dimensions [56, 57], the
spectrum of BPS particles can change discontinuously as a curve in the moduli
space is crossed. This in fact played a crucial in the development of SW
theory. These are known as curves of marginal stability (or simply “walls”)
and separate the weak-coupling from the strong-coupling regions of moduli
space. Kontsevich and Soibelman have now solved this problem, proposing a
wall-crossing formula (WCF) that determines the spectrum of BPS particles
and their decays as walls of marginal stability are crossed.

Recently, Gaiotto, Moore, and Neitzke [54] took a different point of view on
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the WCF formula, by studying instead what is at first a seemingly unrelated
problem; the moduli space of the theory on R

3×S
1. The critical observation is

that the compactified theory receives contributions from all the existing BPS
particles running around the S

1. Thus, the full moduli space metric g of the
compactified theory must contain information about the BPS spectrum of the
parent four-dimensional theory; perhaps this information can be “retrieved”
from it. However, if this is the case, it raises a puzzle: while the BPS spectrum
is discontinuous, the metric in moduli space is expected to be smooth. Before
going into the resolution of this puzzle, let us review some basic elements about
the moduli space of the compactified theory. As explained in the main text in
Section 4.4, the moduli space is four-dimensional rather than two-dimensional.
This space is parametrized by the complex coordinate a (corresponding to the
complex scalar φ) and the real coordinates (θe, θm) (corresponding to the fourth
component of the photon and the three-dimensional dual photon, respectively).
Furthermore, due to the amount of SUSY this space must be hyperkähler [20].

The metric on this moduli space is as usual determined from the effective
action for these fields. The leading behavior of the action at large R is deter-
mined by dimensionally reducing the four-dimensional action, assuming that
fields are independent of the x

4-coordinate. From (4.1.3) one has

S =

�
d
3
x

�
−
R

2
Im τ

�
FijF

ij + |∂iφ|
2 +

1

4π2R2
(∂iθe)

2

�
+

Re τ
2π

�
ijk
Fij∂kθe

�
.

As mentioned above, in three dimensions the photon can be dualized to a
scalar field θm. Following standard methods for dualizing a vector field in three
dimensions to a scalar θm = 2πRÃ4, the action reads (see [54] for details)

S = −

�
d
3
x

�
R

2
Im τ |∂iφ|

2 +
1

8π2R

1

Im τ
|∂iθm − τ∂iθe|

2

�
, (4.1.7)

which is in fact a three-dimensional NLSM with a four-dimensional target
space with the metric

(ds2)sf = R Im τ |da|
2 +

1

4π2R

1

Im τ
|dθm − τdθe|

2
. (4.1.8)

This is known as the semiflat metric and will play an important role in this
chapter. This, however is not the whole story. As discussed above, this metric
receives corrections from BPS particles of the four-dimensional theory wrap-
ping the S

1. Determining the full metric from first principles is a difficult
problem and is not known.

The strategy taken by GMN was to first study a simplified case, N = 2
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SYM with U(1) gauge group, coupled to a hypermultiplet of charge q. Since
the gauge group is abelian, this does not contain magnetic monopoles and
the three-dimensional theory does not contain instantons. Thus, the only
contribution to the moduli space metric of the compactified theory comes
from electric particles wrapping the S

1. This metric was studied in [58, 59]
and is completely known. It can be written in the Gibbons-Hawking form:

ds
2 =

1

V (x)

�
dθm

2π
+ A(x)

�2

+ V (x)dx2
, (4.1.9)

where F = �dV = dA and

V =
R

4π

∞�

k=−∞



 1�
R2|a|2 + ( θe2π + k)2

− κk



 , (4.1.10)

where κk is a regularization constant ensuring the convergence of the sum and
a = x

1 + ix
2
, θe = 2πRx

3. By a Poisson resummation of (4.1.10), one finds

V = V
sf + V

inst
, (4.1.11)

where

V
sf = −

R

4π

�
log

a

Λ
+ log

ā

Λ̄

�
, V

inst =
R

2π

�

n �=0

e
inθeK0(2πR|na|) , (4.1.12)

and similarly for A = A
sf +A

inst. This metric is sometimes referred to as the
Ooguri-Vafa or Seiberg-Shenker metric. Following the terminology of [60], we
will refer to it as the periodic Taub-NUT (PTN) metric. In the absence of
electric corrections, the metric reduces to the semiflat metric discussed above.

Note that the semiflat metric has two isometries, one corresponding to
shifts of θe, and another one corresponding to shifts of θm. The PTN metric,
however, has only an isometry in θm since the electric corrections have broken
the isometry in θe. Thus, one expects (and this is indeed what happens) that
magnetic corrections will break the only remaining isometry. At this point, it
is not clear how to introduce corrections due to magnetic particles, but what
is clear is that the metric cannot be of the Gibbons-Hawking form (4.1.9)
because this metric always has an isometry in θm.

This is where hyperkähler geometry came into play. The essential insight of
GMN was that by exploiting the hyperkähler structure of the metric (4.1.9), it
is possible to identify an efficient way to incorporate the magnetic corrections.
Furthermore, their proposal does so in such a way that the moduli space metric
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is ensured to be smooth. We will now give a brief account of this idea.
Recall that in a Kähler manifold there is symplectic form ω = Jg, where J

is a complex structure and g the metric. According to a theorem by Darboux,
there is a set of coordinates (p, q) (known as Darboux coordinates) in which
the symplectic form takes the canonical form ω = dp ∧ dq. This is familiar
from classical mechanics. In a Hyperkähler manifold there are three complex
structures and therefore three symplectic forms. These can be combined into
a single object

� = ω
(2,0) + ω

(1,1)
ζ − ω

(0,2)
ζ
2
, (4.1.13)

where ζ is a coordinate in CP
1 (the twistor sphere of complex structures).

Being a symplectic form, according to Darboux, one can write

� = iζdηe ∧ dηm , (4.1.14)

where ηe and ηm are Darboux coordinates for �. We will refer to these coor-
dinates as the electric and magnetic coordinates, respectively, for reasons that
will become clear below.

With an ingenious use of twistor techniques, and representations of Bessel
functions as contour integrals, it was shown by GMN that the Darboux coor-
dinates for the PTN metric are given by2

ηe =
a

ζ
+ θe − āζ

and

ηm = η
sf

m
+

i

2

�

l+

dζ
�

2πiζ �
ζ + ζ

�

ζ − ζ �
ln (1− e

iηe)−
i

2

�

l−

dζ
�

2πiζ �
ζ + ζ

�

ζ − ζ �
ln (1− e

−iηe) ,

(4.1.15)
where l± are certain rays in CP

1 and η
sf

m
will be given below. Performing

these integrals, and evaluating the symplectic form, one can recover the Bessel
function appearing in (4.1.12) and the η

sf part leads to the V
sf (see [54] for

more details).
Thus far we have only described the PTN metric in a language that makes

manifest its hyperkähler structure. This might seem like a convoluted form
of describing a metric which was already known and we have not learned
anything yet about the magnetic corrections. However, the essential insight
of GMN is that from this equation one can propose an ansatz to include the
magnetic corrections (namely, (4.4.2) below). This is an integral equation

2Here we have set the electric charge q = 1 and our conventions differ slightly from GMN.
To go from our conventions to theirs, one must replace a → −iπRa and η → −i logχ.
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for the Darboux coordinates whose solution determines the full metric with all
the corrections due to electric as well as magnetic BPS particles. Furthermore,
GMN showed that this construction leads to a smooth metric only if the WCF
formula holds, ensuring that the corrections from single and multi-particle
states combine in such a way that the metric is smooth. Thus, the WCF
formula arises as a consistency condition ensuring that the metric constructed
by this prescription is smooth.

As we have just explained, the crucial information in this approach is the
expression (4.1.15) for the magnetic Darboux coordinate for the PTN metric.
The derivation of this expression by GMN required some ingenious use of
twistor techniques (which we did not review here and we refer the reader to
[54] for details). The question we would like to address is whether one can
give a simpler, systematic construction of the Darboux coordinates, not only
for the PTN metric, but for any hyperkähler manifold.

This brings us to the main subject of this chapter. A natural physical con-
text in which hyperkähler metrics and their twistor space occur is in Projective
Superspace, where ζ is an additional bosonic coordinate. In this chapter we
formulate the problem of describing Darboux coordinates in projective super-
space. We will show that the Legendre transform construction of hyperkähler
metrics (reviewed below) leads directly to the symplectic form � and a con-
sistency condition on the construction leads to a simple derivation of a general
expression for the Darboux coordinates. Furthermore, we can easily derive
by this method a generalization of this formula for any hyperkähler manifold
described by O(2p) multiplets, with p = 1 corresponding to the case discussed
above.

Before going into details, let us already give the answer. Our analysis will
be based on the projective Legendre transform, which dualizes the O(2p) su-
permultiplet ηe to an “arctic” supermultiplet Υ. We will see that the magnetic
coordinate ηm is the imaginary part of ζp−1Υ and is given by

ηm =
i

2

�

C0

dζ
�

2πiζ �
1

ζ − ζ �

�
ζ

�
ζ

ζ �

�p−1

+ ζ
�
�
ζ
�

ζ

�p−1
�
∂f

∂η�
e

, (4.1.16)

where f is the projective Lagrangian describing the manifold and C0 is a
contour around the origin. Such expression can also be obtained from gluing
conditions for the Darboux coordinates, as done in [61–64] (see [65] for a recent
review and references therein). Our derivation, however, is based on requiring
the consistency of the Legendre transform by imposing the condition that Υ is
regular at ζ = 0. The kernel in (4.1.16) is understood as a projector ensuring
this consistency condition.
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In the specific case of the PTN metric we recover (4.1.15) and a natural
generalization to incorporate mutually nonlocal corrections leads to the inte-
gral equation mentioned above. We will also apply this construction to the
moduli space of five-dimensional SYM compactified on T

2 (considered in [66])
giving an explicit form for the Darboux coordinates including electric correc-
tions, which we believe can serve as a starting point in understanding the full
moduli space of this theory.

Let us begin by giving some necessary background on Projective Super-
space and the construction of hyperkähler metrics. The reader familiar with
this material may skip to Section 4.3.

4.2 Background
In this Section, we review some elements of N = 2 projective superspace
[67, 68] and the construction of hyperkähler metrics [11]. A recent review of
essential aspects of the relation between projective superspace and hyperkähler
manifolds can be found in [69].

4.2.1 Projective Superspace
The algebra of d = 4, N = 2 supercovariant derivatives is

{Diα, Djβ} = 0 , {Diα, D̄
j

β̇
, } = i δ

j

i
∂
αβ̇

, (4.2.1)

where i, j = 1, 2 are SU(2)R indices and α, α̇ are spinor indices. Projective
superspace is defined as the Abelian subspace parametrized by a coordinate
ζ ∈ CP

1 and spanned by the combinations

∇α(ζ) = D2α + ζD1α , ∇̄α̇(ζ) = D̄
1
α̇
− ζD̄

2
α̇
, (4.2.2)

where D1α and D̄
1
α̇

are N = 1 derivatives and D2α and D̄
2
α̇

are the generators
of the extra supersymmetry. These combinations satisfy

{∇α,∇β} = {∇α, ∇̄β̇
} = 0 . (4.2.3)

Projective superfields are then defined to satisfy the constraints:

∇αΥ = ∇̄α̇Υ = 0 . (4.2.4)

There are several types of projective supermultiplets, characterized by their
ζ-dependence. We shall mainly focus on two: real O(2p) and (ant)arctic
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supermultiplets. The first class of multiplets are polynomial in ζ, with its
powers ranging from −p to p, and real under the bar conjugation (complex
conjugation composed with the antipodal map: ζ → −1/ζ). In particular, the
O(2) multiplet is defined by

ηe =
a

ζ
+ θe − āζ . (4.2.5)

It follows from (4.2.4) that a and θe are N = 1 chiral and real linear superfields,
respectively. The second class of multiplets are arctic and antarctic superfields,
which are defined to be analytic around the north pole (ζ = 0) and south pole
(ζ = ∞), respectively, i.e.,

Υ =
∞�

n=0

Υnζ
n
, Ῡ =

∞�

n=0

Ῡn

�
−1

ζ

�n

. (4.2.6)

From (4.2.4), it follows that only the two lowest components of the arctic
superfield are constrained N = 1 superfields (chiral and complex linear, re-
spectively), while the remaining (infinite) components are auxiliary (uncon-
strained) complex superfields.

4.2.2 Hyperkähler Manifolds
Here we review the construction of hyperkähler metrics in projective super-
space [11, 69–71]. Given an arbitrary analytic function f(ηe; ζ), one defines
the function

F (a, ā, θe) ≡

�

C

dζ

2πiζ
f(ηe; ζ) , (4.2.7)

where C is an appropriately chosen contour, which typically depends on the
choice of f (referred to as the projective Lagrangian henceforth). The Legendre
transform of F serves as the Kähler potential K for a hyperkähler manifold,
i.e.,

K(a, ā, v + v̄) = F (a, ā, θe)− (v + v̄) θe , Fθe = v + v̄ , (4.2.8)

where v is an N = 1 chiral superfield. Note that Kähler metrics described in
this way automatically have an isometry, associated to shifts of Im(v). The
resulting metric is of the Gibbons-Hawking form

ds
2 =

1

V (x)
(dθm + A)2 + V (x)dx · dx , (4.2.9)
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where a = x
1 + ix

2
, θe = x

3 and dV = �dA, with

V =

�

C

dζ
�

2πiζ �
∂
2
f

∂η�2
e

, A =
1

2

�

C

dζ
�

2πiζ �

�
1

ζ �
da+ ζ

�
dā

�
∂
2
f

∂η�2
e

. (4.2.10)

An important class of metrics are AN−1 ALE metrics and can be described in
this way by taking

f(ηe) =
�

k

(ηe − ηk) log (ηe − ηk) , (4.2.11)

where ηk are constant O(2) multiplets simply giving the position xk of N mass
points. For this Lagrangian, the contour in (4.2.7) is an 8-shaped contour C̃

enclosing the two roots of ηe − ηk = 0. Indeed, using (4.2.11) in (4.2.10) gives
the harmonic function

V =
�

k

�

C̃

dζ

2πiζ

1

ηe − ηk
= 2

�

k

1

|x− xk|
(4.2.12)

and the corresponding A. Taking an infinite superposition of mass points
along θe, i.e., taking ηk = k and N → ∞, the metric becomes periodic along
this direction3. This metric (commonly referred to as the Ooguri-Vafa metric)
was discussed by Ooguri and Vafa in [58] and Seiberg and Shenker in [59].
Following the terminology of [60], we will refer to it as the periodic Taub-NUT
(PTN) metric. We will refer to a PTN metric which is periodic along two
directions as the doubly-periodic Taub-NUT (dPTN) metric.

As mentioned earlier, a hyperkähler manifold has three Kähler forms: ω(2,0),
ω
(1,1) and ω

(0,2), which can be conveniently organized into

� = ω
(2,0) + ω

(1,1)
ζ − ω

(0,2)
ζ
2
. (4.2.13)

According to Darboux’s theorem, there are certain coordinates (ηe, ηm) in
which the symplectic form � takes the canonical form:

� = iζ dηe ∧ dηm . (4.2.14)

For Gibbons-Hawking metrics the differentials dηe and dηm are given by

dηe =
da

ζ
+ dθe − ζdā , dηm = dθm + iA+

iV

2

�
1

ζ
da+ ζdā

�
. (4.2.15)

3Strictly speaking, V is logarithmically divergent and must be properly regularized. It
should be understood that this has been done in what follows.
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Note that dηe can easily be integrated, but this is not the case for dηm. The
main purpose of the coming sections is to find an explicit expression for ηm in
terms of ηe and f(ηe; ζ).

4.2.3 Duality and Symplectic Form
One can alternatively describe these hyperkähler manifolds in terms of an
arctic superfield Υ, rather than in terms of an O(2), by a duality relating
these two multiplets [71, 72]. In terms of N = 1 components, this is based
on the Legendre transform (4.2.8) exchanging a real linear superfield by a
chiral superfield. This duality is described in terms of projective superfields as
follows: One relaxes the condition of ηe being an O(2) multiplet, imposing this
through a Lagrange multiplier Υ+ Ῡ. Integrating out Υ leads to the original
description in terms of ηe, while integrating out ηe leads to a dual description
in terms of Υ. That is, one defines

f̃(Υ + Ῡ; ζ) = f(ηe; ζ)− (Υ + Ῡ)ηe , (4.2.16)

with the standard Legendre transform relations

∂f

∂ηe
= Υ+ Ῡ ,

∂f̃

∂Υ
= −ηe . (4.2.17)

The main advantage of this setup (for our purposes) is that one can define
a holomorphic symplectic two-form that captures the essential aspects of the
hyperkähler geometry [69] (see also [73] for related results). This is based
on the observation that arctic superfields have infinitely many unconstrained
N = 1 fields Υi, for i ≥ 2, which must be integrated out. These equations of
motion imply that

Υ̃ ≡ ζ
∂f̃

∂Υ
= −ζηe (4.2.18)

is also an arctic superfield. Thus, one can define a 2-form � by

� = dΥ ∧ dΥ̃ = ω
(2,0) + ω

(1,1)
ζ − ω

(0,2)
ζ
2
. (4.2.19)

In other words, Υ and Υ̃ are (by construction) Darboux coordinates for the
holomorphic symplectic form �. Note that they are regular at ζ = 0, while
(Ῡ,

¯̃Υ) are regular at ζ = ∞, and

� = −ζ
2
� = −ζ

2
dῩ ∧ d

¯̃Υ. (4.2.20)

59



Thus, up to the twisting factor ζ
2, there is a symplectomorphism relating

north pole and south pole coordinates and the generating function is precisely
f̃(Υ+Ῡ), giving a geometric interpretation to the N = 2 projective Lagrangian
[69].

4.3 Darboux Coordinates
As seen in Section 4.2.3, the projective Legendre transform provides an ex-
pression for a set of Darboux coordinates, namely (Υ, Υ̃). The coordinate Υ̃
is given by (4.2.18) whereas only the real part (under bar conjugation) of Υ is
determined by (4.2.17), i.e.

Υ =
1

2

∂f

∂ηe
+ iηm , (4.3.1)

where we have introduced ηm = η̄m as the (undetermined) imaginary part of Υ.
The crucial observation [74] is that Υ is actually completely determined by a
consistency requirement on the whole construction. Recall that the constraint
of ηe being an O(2) multiplet was imposed through a Lagrange multiplier,
assuming that Υ was an arctic superfield. However, the first term on the
r.h.s. of (4.3.1) contains negative powers of ζ and therefore, the consistency
requirement is that these should be canceled by ηm. This ηm is precisely the
magnetic coordinate we are after, since we find from (4.2.18) and (4.3.1) that

� = dΥ ∧ dΥ̃ = iζ dηe ∧ dηm (4.3.2)

coincides with (4.2.14). To determine ηm, we introduce the antarctic projector

ΠN ≡

�

C0

dζ
�

2πi

1

ζ − ζ �
, Π2

N
= ΠN , ΠN Π̄N = 0 , (4.3.3)

where C0 is a closed contour around the origin (see Appendix C.1). This
projector annihilates the non-negative powers of ζ. Thus, the consistency
requirement is simply

ΠNΥ = 0 . (4.3.4)

It is easy to see that

ηm = θm +
�
iΠN − iΠ̄N

�1
2

∂f

∂ηe
, (4.3.5)

60



with θm = θ̄m, solves the consistency condition4. We can rewrite (4.3.5) in a
more familiar form. From (4.3.3), we see that the projectors combine into

iΠN − iΠ̄N = i

�

C0

dζ
�

2πiζ �
ζ + ζ

�

ζ − ζ �
(4.3.6)

and hence
ηm = θm +

i

2

�

C0

dζ
�

2πiζ �
ζ + ζ

�

ζ − ζ �
∂f

∂η�
e

, (4.3.7)

recovering the expression obtained in [61–64]. The derivation of this ex-
pression, by ensuring and making manifest that Υ is arctic, is one of the
main results of this chapter. This condition is enforced by the projector
(ζ + ζ

�)(ζ − ζ
�)−1 and will be extended below to include O(2p) multiplets.

We can easily check that from (4.3.7) we recover the expression (4.2.15)
for Gibbons-Hawking metrics. Acting with d on ηm, we have

dηm = dθm +
i

2

�

C0

dζ
�

2πiζ �
ζ + ζ

�

ζ − ζ �
∂
2
f

∂η
�2
e

(dη�
e
− dηe)

= dθm +
i

2

�

C0

dζ
�

2πiζ �

��
1

ζ
+

1

ζ �

�
da+ (ζ + ζ

�)dā

�
∂
2
f

∂η
�2
e

= dθm + iA+
iV

2

�
1

ζ
da+ ζ dā

�
. (4.3.8)

In the first line, we have added a term proportional to dηe, which gives no
contribution to the symplectic form (4.3.2). In the last line, we have used the
definitions (4.2.10), assuming that the contour giving the Kähler potential is
C0.

Although the derivation of (4.3.7) requires a contour enclosing only a sin-
gularity at the origin, note that choosing the contour to be the one defining the
Kähler potential gives the correct symplectic form. This expression provides a
systematic way of constructing Darboux coordinates for any hyperkähler man-
ifold described by an O(2) multiplet ηe and projective Lagrangian f . We will
use this in the following sections to describe instanton corrections to moduli
spaces of SYM theories.

4Indeed, from (4.3.1), (4.3.5), and using the properties in (4.3.3), we see that

ΠNΥ = ΠN

�
1

2

∂f

∂ηe
+ i

�
θm +

�
iΠN − iΠ̄N

�1
2

∂f

∂ηe

��
= ΠN

�
1

2

∂f

∂ηe

�
−ΠN

�
1

2

∂f

∂ηe

�
= 0 .
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Semiflat Geometry and the c-map5

It is clear from (4.3.7) that, unlike ηe, the magnetic coordinate ηm will not be
an O(2) in general, this depending on the singularity structure of f(ηe; ζ). A
special case however is when the rigid c-map [75–77] (see Appendix C.2) can
be applied. According to the c-map,

f
sf (ηe; ζ) = −i

�
F (ζηe)

ζ2
−F

�
−
ηe

ζ

�
ζ
2

�
, (4.3.9)

where F(W ) is the N = 2 holomorphic prepotential. The c-map gives the
contribution from naïve dimensional reduction, without taking into account
the effect of BPS particles. Thus, one expects ηm to be given by an O(2).
However, by the direct substitution of (4.3.9) in (4.3.7), we see that this is
not the case. This is resolved by recalling that the Darboux coordinates are
defined up to terms that vanish in the symplectic form. In fact, we can add
such a term to the definition of ηm that does lead to an O(2), namely

Υ =
1

2

∂f
sf

∂ηe
+ i

�
η
sf

m
−

1

2

�
F �

ζ
− F̄

�
ζ

��
(4.3.10)

= −
iF �(ζηe)

ζ
+ iη

sf

m
. (4.3.11)

From the fact that F �(ζηe) = F �(a + θeζ − āζ
2) is regular at the origin, the

condition that Υ in (4.3.11) is arctic is simply solved by

η
sf

m
=

F �(a)

ζ
+ θm − F̄

�(ā) ζ . (4.3.12)

Therefore, naïve electric-magnetic duality a → aD = F �(a) holds. In general,
dyonic multiplets have the form η

sf

γ
= Zγ

ζ
+θγ− Z̄γ ζ , where the central charge

is Zγ = nea+ nmaD with ne and nm being the electric and magnetic charges,
respectively. Once BPS instanton corrections are included, the magnetic co-
ordinate is no longer an O(2) since the total Lagrangian is

f = f
sf + f

inst
,

5This section is based on [74].
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where f
inst is not of the form (4.3.9). Thus, the full magnetic coordinate is

given in general by

ηm = η
sf

m
+

i

2

�

C0

dζ
�

2πiζ �
ζ + ζ

�

ζ − ζ �
∂f

inst

∂η�
e

, (4.3.13)

where η
sf

m
is given by (4.3.12).

Generalization to O(2p) Multiplets

Our construction so far includes only hyperkähler manifolds described by O(2)
multiplets, but it can be easily extended to the case of O(2p) multiplets by a
generalization of the Legendre transform relating Υ to an O(2p) multiplet ηe

[72] . Additional factors of ζ have to be introduced in the Legendre transform
to impose the corresponding constraint on ηe, namely

f̃ = f −

�
ζ
p−1Υ+ (−ζ)−(p−1) Ῡ

�
ηe (4.3.14)

with the relations

∂f

∂ηe
= ζ

p−1Υ+ (−ζ)−(p−1) Ῡ , Υ̃ ≡ ζ
∂f̃

∂Υ
= −ζ

p
ηe . (4.3.15)

Thus, we now have
ζ
p−1Υ =

1

2

∂f

∂ηe
+ iηm , (4.3.16)

and the symplectic form is still given by

� = dΥ ∧ dΥ̃ = iζ dηe ∧ dηm .

The magnetic coordinate ηm will again be determined by the requirement that
the resulting superfield Υ is arctic. From (4.3.15) it follows that ∂f

∂ηe
contains

powers ζ
n with |n| ≥ (p − 1) only. Thus, ηm in (4.3.16) is required to cancel

the powers ζ
n with n < −(p − 1) of ∂f

∂ηe
and we cannot add a ζ-independent

term, contrary to the O(2) case. Using the corresponding projectors, we then
find

ηm =
i

2

�

C0

dζ
�

2πiζ �
1

ζ − ζ �

�
ζ

�
ζ

ζ �

�p−1

+ ζ
�
�
ζ
�

ζ

�p−1
�
∂f

∂η�
e

. (4.3.17)

The corresponding semiflat contribution can be determined using the c-map
prescription for O(2p) multiplets given in [76].
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A metric which is described, for example, by an O(4) multiplet is the
Atiyah-Hitchin metric, characterizing the moduli space of two monopoles and
the moduli space of three-dimensional SYM. It would be interesting to compare
(4.3.17) to the Darboux coordinates given in [? ]. In the remainder of the
chapter, we will restrict ourselves to O(2) multiplets and apply our results to
the study of moduli spaces of pure SYM theories with eight supercharges in
d = 4 and d = 5.

4.4 N = 2 SYM on R
3 × S

1

In this section, we apply our construction to the study of the Coulomb branch
of pure N = 2 SYM with gauge group SU(2), first analyzed in [52]. The
bosonic content of the four-dimensional theory consists of a complex scalar
field a and a gauge field Aµ. Upon dimensional reduction on a circle S

1 of
radius R (which we set to 1 in this section), the gauge field decomposes as
Aµ → (Ai, A4), giving a three-dimensional photon and a real scalar field.
Since in three dimensions the photon itself is dual to a scalar field, the moduli
space of supersymmetric vacua is four-dimensional. Furthermore, due to the
amount of supersymmetry it is hyperkähler. It can be parameterized by the
VEV of the vector multiplet scalar field, a, in addition to the gauge-invariant
electric and magnetic Wilson loops6

θe ≡
1

2π

�

S
1
4

A4 , θm ≡
1

2π

�

S
1
4

AD,4 . (4.4.1)

Naïve dimensional reduction of the 4D SYM action results in a 3D sigma
model with a target space metric of Gibbons-Hawking form, specified by the
“semiflat” potential V sf = Imτ , where τ is the usual complexified 4D gauge
coupling. However, the BPS particles from the four-dimensional theory can
wrap the compactification circle S

1, generating instanton corrections to the
semiflat metric in the compactified theory, which we discuss next.

4.4.1 Mutually Local Corrections
Following [54], we begin by assuming that all the BPS particles are mutually
local and choose a duality frame in which there are no magnetically charged
particles. This leads to a shift isometry in θm and therefore the space is

6We have normalized the angular variables θe,m to have period 1.
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naturally described by the O(2) multiplet

ηe =
a

ζ
+ θe − āζ . (4.4.2)

Integrating out a hypermultiplet of electric charge q (which we set to 1 here)
leads to a Taub-NUT metric. Summing over the infinite tower of Kaluza-Klein
momenta k along the S1 turns it into the periodic Taub-NUT metric described
in Section 4.2.2. Thus, the projective Lagrangian is given by

f(ηe) =
∞�

k=−∞

(ηe − k) log(ηe − k) . (4.4.3)

Recall that here each term in the Lagrangian is to be integrated along an
8-figure contour around the roots of ηe − k = 0. To isolate instanton contri-
butions, we perform a Poisson resummation. This is based on the indentity

∞�

n=−∞
f(n) =

∞�

k=−∞

f̂(k) , f̂(k) =

� ∞

−∞
dx e

−2πikx
f(x) .

Applying this to (4.4.3) we have

f = f
sf + f

inst ;

f
sf = −i

�
η
2
e
log

�
ζηe

Λ

�
− η

2
e
log

�
−ηe

ζΛ̄

��
, (4.4.4)

f
inst = i s

�

n>0

1

n2
e
inηeθ(s) + i s

�

n<0

1

n2
e
inηeθ(−s) , (4.4.5)

where Λ is the UV cutoff and s ≡ sign [Im (ηe)] and we have omitted the
divergent n = 0 term in (4.4.5).

The semiflat Lagrangian f
sf has been included using the c-map prescription

described previously, with the 1-loop prepotential F(W ) ∼ W
2 logW 2. The

full magnetic coordinate is then given by (4.3.13).
Note that since the Heaviside functions θ(±s) in f

inst contain ζ, they re-
strict the integration contour. Using the identity

Im (ηe) = (1 + |ζ|
2)Im

�
a

ζ

�
, (4.4.6)
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we see that θ(±s) imposes the BPS ray condition7
l± =

�
ζ : sign

�
Im

�
a

ζ

��
= ±1

�
,

leading to
�

C0

f
inst(ηe) = i

�

l+

Li2
�
e
iηe
�
− i

�

l−

Li2
�
e
−iηe

�
, (4.4.7)

where we have used the series expansion for Li2(x) =
�∞

n=1
x
n

n2 . Substituting
(4.4.7) in (4.3.13) finally gives

ηm = η
sf

m
+

i

2

�

l+

dζ
�

2πiζ �
ζ + ζ

�

ζ − ζ �
ln (1− e

iηe)−
i

2

�

l−

dζ
�

2πiζ �
ζ + ζ

�

ζ − ζ �
ln (1− e

−iηe) ,

(4.4.8)
where η

sf

m
is given by (4.3.12). Thus, we have recovered GMN’s result for the

mutually local case. We now discuss the mutually nonlocal case.

4.4.2 Mutually Nonlocal Corrections
Inspired by the analytic and asymptotic properties of (4.4.8), an integral equa-
tion, of the form of a Thermodynamic Bethe Ansatz (TBA) equation, for the
Darboux coordinates in the mutually nonlocal case was derived in [54]. The
natural proposal to include dyonic multiplets is that each BPS particle of
charge γ contributes independently to the projective instanton Lagrangian,
with a weight given by the multiplicity of each state Ω(γ�; u), i.e.,

f
inst = i

�

γ�

Ω(γ�; u) Li2
�
σ(γ�)eiηγ�

�
θ(sγ�) . (4.4.9)

Here γ = (ne, nm) is a vector in the two-dimensional charge lattice with the
antisymmetric product �γ, γ�� = nen

�
m
− n

�
e
nm, σ(γ) = (−1)ne nm , ηγ = neηe +

nmηm, and sγ = sign
�
Im

�
Zγ

ζ

��
that defines the BPS ray lγ. From (4.3.13), it

is natural to write the following integral equation for the dyonic coordinate

ηγ = η
sf

γ
+

i

2

�

γ�

�γ
�
, γ�

�

C0

dζ
�

2πiζ �
ζ + ζ

�

ζ − ζ �
∂f

inst

∂η
�
γ�

. (4.4.10)

7Our conventions in the definition of ηe differ by a factor i with those of GMN, and so
does the definition of the BPS rays.
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Inserting (4.4.9) above leads to

ηγ = η
sf

γ
+

i

2

�

γ�

Ω(γ�; u)�γ�
, γ�

�

lγ�

dζ
�

2πiζ �
ζ + ζ

�

ζ − ζ �
ln
�
1− σ(γ�)eiη

�
γ�
�
, (4.4.11)

corresponding to the TBA equation that determines the exact moduli space
metric. Note that the Darboux coordinates played the central role in the
analysis by GMN, being in some sense the fundamental objects. In the cur-
rent setting, the fundamental object (which behaves additively and contains
all the geometric information) is the projective Lagrangian f . The Darboux
coordinates are determined by it through the integral equation (4.4.10).

4.5 N = 1 SYM on R
3 × T

2

Minimally supersymmetric Yang-Mills in five dimensions has an interesting
BPS spectrum, containing not only electrically charged particles, but also
magnetically charged strings and dyonic instantons [78]. Since the theory is
non-renormalizable by power-counting it should be viewed as a field theory
with a cutoff. In this sense, one can still ask what are the quantum corrections
to the moduli space. This was first studied in [79], where the exact Coulomb
branch metric was determined. More recently, the compactification of this
theory on T

2 was studied in [66], giving an important first step in analyzing
the Coulomb branch metric of the compactified theory. Since dimensional
reduction of this theory to four dimensions leads to the theory discussed in
the previous section, compactification of the five-dimensional theory on T

2

gives a (two-parameter) generalization of the moduli space studied above.
The bosonic content of this theory consists of a real scalar σ and the gauge

field Aµ̂. Upon dimensional reduction to three dimensions, the gauge field
reduces according to Aµ̂ → (Ai, A4, A5), leading again to a four-dimensional
moduli space. The two electric coordinates ϕ1, ϕ2 and the “magnetic” coordi-
nate λ are defined by

ϕ1 ≡
1

2π

�

S
1
4

A4 , ϕ2 ≡
1

2π

�

S
1
5

A5 , λ ≡

�

T 2

B , (4.5.1)

where Bµ̂ν̂ is the (2-form) dual of the photon Aµ̂. Under large gauge trans-
formations, these variables are periodic and parameterize a torus T

2. Due to
the electric particles running around these two compactified dimensions, the
Coulomb branch metric inherits the modular properties of the torus and has
an isometry in λ. A full analysis of the moduli space must include the effect of
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dyonic instantons, as well as the mutually nonlocal effect of magnetic strings
wrapping the whole T

2, which will break the isometry in λ. In this chapter,
we focus only on the projective description of the electric corrections to the
moduli space metric, hoping that this will help in incorporating the effect of
magnetic strings as well.

4.5.1 Electric Corrections
Here we apply the methods of Section 4.3 to find the corrections to ηm, due
to electric particles running along the two compact directions. It is clear that
the metric in this case is simply the dPTN metric. For simplicity, we discuss
first the projective description of this metric in the case of a rectangular torus
and then for a generic torus with complex structure τ .

Rectangular Torus

Consider a rectangular torus with radii R1, R2 and complex structure τ = i
R1
R2

.
We define the doubly periodic O(2) multiplet by

ηe =
σR2 + iϕ2

2R2ζ
+

ϕ1

R1
−

(σR2 − iϕ2)

2R2
ζ . (4.5.2)

With this definition, the projective Lagrangian f for the dPTN metric has the
form (4.2.11) with

ηk =
1

R1
k1 +

i

2R2

�
1

ζ
+ ζ

�
k2 ≡ a1k1 + a2k2 . (4.5.3)

For convenience, rather than concentrating on the calculation of f , in this
section we will focus on the Gibbons-Hawking potential V , given by

V =
�

k

�

C̃

dζ

2πiζ

1

ηe − a1k1 − a2k2
. (4.5.4)

As before, C̃ is an 8−shaped contour enclosing the poles of the integrand
for each k, leading to a doubly periodic Gibbons-Hawking potential. This
potential is linearly divergent and as in the PTN case should be understood
to be properly regularized. We now perform a double Poisson resummation.
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Resumming over k1 first gives

V = V
(0) + V

(1)
,

V
(0) = −R1

�

C0

dζ

2πiζ

�

k2

log [ζR1 (ηe − a2k2)] + c.c. , (4.5.5)

V
(1) = −iR1

�

C0

dζ

2πiζ

�

k2

�

n1 �=0

e
in1R1(ηe−a2k2)s θ (n1s) , (4.5.6)

where s = sign [Im (ηe − a2k2)]. Here V
(0) is a superposition of shifted semiflat

potentials of Section 4.4. We now show that it leads to the effective gauge
coupling 1/g4(a)2 due to the dimensional reduction from 5D to 4D [80], and it
reduces (after Poisson resummation) to the semiflat potential in the R2 → 0
limit. Performing the integral around the origin in (4.5.5) gives

V
(0) = −R1

�

k2

log

�
σR2 + i(ϕ2 − k2)

2R2

�
+ c.c. = R1

�

n2 �=0

1

|n2|
e
−(R2|n2σ|−in2ϕ2) ,

(4.5.7)
where we performed a Poisson resummation for the second equality. This in
fact matches the result in [80] (see also [66]). In the four-dimensional limit,

V
(0) R2→0

−−−→ V
sf

4D = R1 (log a+ log ā) , (4.5.8)

where a = σR2+iϕ2

2R2
, which coincides with the potential derived from (4.4.4).

The contribution to the magnetic coordinate is given by

η
(0)
m

=
F �(a)

ζ
+

λ

R1
− F̄

�(ā) ζ ,

F(a) =
1

4R2
2

�
Li3

�
e
2aR2

�
θ(−σ) + Li3

�
e
−2aR2

�
θ(σ)

�
, (4.5.9)

where we have integrated (4.5.7) twice with respect to a to determine F(a).
Now we turn to V

(1), which in the R2 → 0 limit reduces to the instanton
corrections in the four-dimensional theory. The contour in (4.5.6) splits into
two rays l±, and integration along these rays ensures that the limit R2 → 0 is
well defined. In fact, in this limit the sum over k2 is localized at k2 = 0, i.e.,

V
(1) R2→0

−−−→ V
inst

4D = −iR1

�

C0

dζ

2πiζ

�

n1 �=0

e
in1R1ηes θ (n1s) , (4.5.10)

which is the Gibbons-Hawking potential one would obtain from (4.4.5). (One
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should rescale a → R1a in the four-dimensional case for comparison.)
For finite R2, Poisson resumming (4.5.6) leads to8

V
(1) = −

�

C0

dζ

2πiζ

�

n1 �=0
n2∈Z

e

in1ηe
a1

a2n1 − a1n2
. (4.5.11)

Note that after the double Poisson resummation, the contour in (4.5.11) re-
mains a closed contour, enclosing only the essential singularity at the origin
(and not the simple poles). By residue integration, we find

V
(1) = R1R2

�

n1 �=0
n2∈Z

1�
n
2
1R

2
1 + n

2
2R

2
2

e
i(n1ϕ1+n2ϕ2)−|σ|

√
n
2
1R

2
1+n

2
2R

2
2 . (4.5.12)

Combining the two contributions, we have

V = V
(0) + V

(1) = R1R2

�

n∈Z2�

1�
n
2
1R

2
1 + n

2
2R

2
2

e
i(n1ϕ1+n2ϕ2)−|σ|

√
n
2
1R

2
1+n

2
2R

2
2 ,

(4.5.13)
which matches the expression for U1−loop in [66]. Integrating twice with respect
to ηe (and dropping a possible linear term, which does not contribute to ηm),
we find

f
(1) =

�

n1 �=0
n2∈Z

a
2
1

n
2
1 (n2a1 − n1a2)

e

in1ηe
a1 . (4.5.14)

As explained in [66], the corrections due to f
(1) to the Coulomb branch metric

should coincide with the corrections to the hypermultiplet moduli space due
to D1 instantons in type IIB theory. Indeed, we find that the projective
Lagrangian f

(1) matches with that given in [81]. Now, putting all the elements
together, the magnetic coordinate for the dPTN metric finally reads

ηm = η
(0)
m

+
i

2

�

C0

dζ
�

2πiζ �
ζ + ζ

�

ζ − ζ �
∂f

(1)

∂η�
e

. (4.5.15)

8Here we have dropped a term in the exponent

e
in1R1ηe+i Im(ηe)

2R1R2|ζ|2

(1+|ζ|2)Re(ζ)

�
n2
R1

− in1
2R2

( 1
ζ+ζ)

�

,

because we choose the contour enclosing the origin along which Im(ηe) = ±�. In the limit
� → 0 this term does not contribute to the integral, which becomes simply an integral around
the origin.
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In summary, the magnetic coordinate contains two parts: the η
(0)
m part from

the naïve 5D to 4D reduction, which becomes η
sf

m
in the 4D limit, and the

remaining part, which reduces to η
inst

m
.

Generic Torus

To consider a generic torus with complex structure τ , we perform a modular
transformation from the rectangular case. Under the SL(2,Z) symmetry group
of the torus, the complex structure τ = τ1+ iτ2 and the coordinates transform
as

τ →
aτ + b

cτ + d
,

�
ϕ2

ϕ1

�
→

�
a c

b d

��
ϕ2

ϕ1

�
, (4.5.16)

with ad− bc = 1. The electric coordinate for a generic torus then becomes9

ηe =
1

2ζ

�
σ + i

�
τ2

V
ϕ2

�
+

ϕ1 + τ1ϕ2
√
Vτ2

−
1

2

�
σ − i

�
τ2

V
ϕ2

�
ζ . (4.5.17)

Here we also rescaled the ϕi’s by the volume V of the torus. The Gibbons-
Hawking potential is now given by (4.5.4) with

a1 =
1

√
V τ2

, a2 =
1

√
Vτ2

�
τ1 + iτ2

1

2

�
1

ζ
+ ζ

��
. (4.5.18)

Upon Poisson resummation and contour integration, we find

V =
�
det gij

�

n∈Z2�

1�
ninjgij

e
in

i
ϕi−|σ|

√
ninjgij , (4.5.19)

with the metric g on the torus given by

gij =
V

τ2

�
1 −τ1

−τ1 |τ |2

�
. (4.5.20)

Finally, the magnetic coordinate is still given by (4.5.15), with the new defi-
nitions (4.5.17), (4.5.18), and the replacement 2a →

�
σ + i

�
τ2
V ϕ2

�
in η

(0)
m .

9For a generic torus with complex structure τ = τ1 + iτ2, we perform the SL(2,Z)
transformation ϕ → MTϕ, where M is given by

M =
1

√
τ2

�
τ2 τ1
0 1

�
.

The metric transforms according to g → (M−1)T gM−1, leading to (4.5.20).
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4.5.2 Dyonic Instanton Corrections
Dyonic instantons are particle-like objects which are the uplift of four-dimensional
instantons to five dimensions. Due to the Chern-Simons term

κ

24π2
A ∧ F ∧ F , (4.5.21)

they become electrically charged. Their central charge is given by

ZI = κσ|nI |+
|nI |

g
2
5,0

, (4.5.22)

where g5,0 is the five-dimensional gauge coupling and nI is the four-dimensional
instanton number. Since these particles are electrically charged, they con-
tribute corrections to the metric preserving the isometry. Hence, their effect
is incorporated easily by replacing a → a + ZI in the definition of the O(2)
multiplet.

A more interesting contribution to the metric will come from magnetic
corrections. These are now given by magnetic strings and incorporating their
effect will be studied elsewhere.

4.6 Summary and Outlook
We have presented a derivation of the expression for a set of Darboux coor-
dinates on a hyperkähler manifold parameterized by O(2p) projective super-
fields. Our derivation relies on the projective Legendre transform construction
of such manifolds and can be understood as enforcing a consistency condition.
The application of our results to the PTN metric leads to the expression for
the magnetic coordinate derived by GMN, describing the mutually local cor-
rections to the moduli space metric of N = 2 SYM on R

3 × S
1. Mutually

nonlocal corrections can also be incorporated into the projective Lagrangian,
leading to the TBA equation studied by GMN.

We also applied this method to the study of electric corrections to the mod-
uli space of five-dimensional SYM compactified on T

2, providing a projective
superspace description of the metric discussed in [66] and the corresponding
Darboux coordinates. There are two contributions: an O(2) part determined
by the five-dimensional perturbative prepotential, which reduces to the semi-
flat part in the 4D limit; and the corrections due to electric particles, which
reduce to the instanton corrections of the 4D theory.

There are several open questions which could be addressed within this
formalism. For example, it could shed new light on the three-dimensional
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limit of GMN (recently analyzed in [82]), corresponding to the Atiyah-Hitchin
metric. Regarding the five-dimensional theory, corrections due to magnetic
strings could be incorporated in a form analogous to what was done in (4.4.9)
for the four-dimensional case, leading to an integral equation for the Darboux
coordinates.

In addition to Darboux coordinates, another important geometrical object
is the hyperholomorphic connection (see for example [83]) and it would be
interesting to investigate its description using the Υ ↔ η duality10. Finally, it
would be quite interesting if this framework could yield any information about
the six-dimensional SYM theory compactified on T

3, whose exact moduli space
is K3.

In the next chapter we move to the study of three-dimensional CFTs with
AdS4 × Y7 duals where Y7 is a tri-Sasaki Einstein manifold. Using localiza-
tion techniques we will be able to evaluate the partition function of the CFT
and through AdS/CFT predict the volume of an infinite family of tri-Sasaki
Einstein manifolds.

10The authors wish to thank Greg Moore for this suggestion.
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Chapter 5

AdS4/CFT3 and Matrix Models 1

The AdS/CFT correspondence [84–86] is one of the most remarkable devel-
opments in modern theoretical physics. It asserts that a theory of quantum
gravity in d+1 dimensions is equivalent to a non-gravitational conformal field
theory (CFT) in d dimensions. One of the reasons it is remarkable is that the
strongly-coupled quantum regime of the field theory is captured by the weakly-
coupled classical regime of the gravitational theory, and vice versa. The best
understood case, and the earliest example, is AdS5/CFT4. This duality has led
to important insights into the properties of strongly-coupled four-dimensional
gauge theories resembling the behavior of QCD such as confinement, meson
spectrum, transport coefficients, etc. See [87–91] for reviews on AdS/CFT,
[92–94] for some of these applications and, e.g., [95] for a recent review on
applications to heavy-ion physics.

Three-dimensional conformal field theories are also of great physical in-
terest as they describe fixed points of condensed matter systems. However,
despite the impressive success of AdS/CFT in illuminating aspects of four-
dimensional theories, not much was known about three-dimensional theories.
This situation has changed dramatically in the last couple of years with the
discovery of a large number of precise AdS4/CFT3 dualities.

As mentioned above, the power of the AdS/CFT correspondence relies
on its strong/weak coupling character. However, it is precisely this aspect
that makes AdS/CFT difficult to test, since few strongly-coupled methods are
known purely from the field theory side. However, in recent years there has
been important progress developing tools of supersymmetric localization which
allow testing certain AdS/CFT predictions.

In this chapter we use the technique of localization in three dimensions to

1This chapter is based on joint work with Dharmesh Jain and Chris Herzog [3].
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study a certain (infinite) class of three-dimensional CFTs with AdS4 duals. We
compute the free energy of these theories which, through the AdS/CFT corre-
spondence, leads to a prediction for the volume of certain tri-Sasaki Einstein
manifolds.

Although the techniques used in this chapter are new, relative to those of
previous chapters, we will see recurrent characters: the role of moduli spaces
and of complex geometry. In fact, as we review below, the concept of moduli
space plays a crucial role, leading the way to identify the dual pairs. Also, we
encounter tri-Sasaki-Einsten manifolds, which are the odd-dimensional cousins
of hyperkähler manifolds.

5.1 Introduction
We now give a brief account of the developments mentioned above, encouraging
the reader to consult the bibliography provided for more details. The reader
familiar with these developments can skip to Section 5.2. Although our main
interest are the new AdS4/CFT3 dualities, we will give a brief review of the
more familiar AdS5/CFT4 dualities first.

AdS5/CFT4 dualities
The earliest example of AdS/CFT originated from the study of N coincident
D3-branes in a smooth manifold in type IIB supergravity. It was argued by
Maldacena that in the ’t Hooft large N limit the gauge theory living on the
world-volume of D3-branes, namely N = 4 SYM with gauge group SU(N),
is dual to Type IIB strings on AdS5 × S

5. Soon after Klebanov and Witten
[48] constructed a simple generalization by considering D3-branes probing a
conical singularity rather than a smooth space. (In fact, they considered as an
example the conifold singularity, which we briefly encountered in Chapter 3 as
a GLSM.) The effect of the singularity is to replace the internal space S5 by the
less-symmetric base of the conifold and, as a consequence, the dual theory is
an N = 1 theory, rather than an N = 4 theory. For more general singularities,
the near-horizon geometry of D3-branes is of the form AdS5 × Y5 where Y5 is
a five-dimensional Sasaki-Einstein manifold [96]. A Sasaki-Einstein manifold
is a manifold that is both Sasakian and Einstein. A Riemannian manifold
(M, g) is Sasakian if and only if its metric cone gc = dr

2 + r
2
g with r > 0

is Kähler. Similarly, a manifold is tri-Sasakian if and only if its metric cone
is hyperkähler. The metric g is usually refered to as the base of the cone gc.
See, e.g., [97] for a nice review on Sasaki-Einstein manifolds. The five-sphere
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S
5 and the base T

1,1 (of topology S
2 × S

3) of the conifold are two simple
examples of Sasaki-Einstein manifolds. With the discovery [98] of an infinite
family of five-dimensional Sasaki-Einstein metrics, a plethora of AdS5/CFT4

became available for studying. The field theories were identified with the IR
fixed points of quiver gauge theories with gauge group SU(N)2p.

A similar sequence of developments has been followed by the study of M2-
branes, and the AdS4/CFT3 dualities they lead to. We describe this next.

AdS4/CFT3 dualities
Although it was understood early on that the study of M2-branes would lead
to realizations of AdS4/CFT3, the world-volume gauge theories of M2-branes
were much more elusive than their four-dimensional counterparts. This has
finally been elucidated in [99] (inspired by the work [100–103]). The identifi-
cation of the correct gauge theory in [99] was based on the observation that
the moduli space of N M2-branes probing a C

4
/Zk singularity coincides with

the moduli space of a certain three-dimensional superconformal Chern-Simons
(CS) matter theory. This theory has a U(N)×U(N) gauge group at CS levels
(−k, k). In the N = 2 superspace formulation the theory is coupled to bifun-
damental chiral superfields (A1, A2) and anti-bifundamental chiral superfields
(B1, B2). This is now commonly referred to as the ABJM theory. The field
content of the theory is usually summarized by a quiver diagram, as shown in
Figure 5.1.

−k k

(A1, B1)

(A2, B2)

Figure 5.1: Quiver diagram for ABJM theory. Each node corresponds to
a U(N) gauge group at CS levels −k and k. Each edge corresponds to a
bifundamental chiral field and an anti-bifundamental chiral field.

The identification of the moduli spaces led the authors to conjecture that
the CS matter theory describes the low energy limit of M2-branes probing the
orbifold geometry. Since the near-horizon geometry of this system is AdS4 ×

S
7
/Zk, it was conjectured that in the large N limit the superconformal CS

field theory is dual to M-theory on this background.
Following the initial breakthrough of ABJM by now a plethora of AdS4/CFT3

dualities have been constructed [104]. Just as the case for D3-branes, these
arise from considering M2-branes probing more general conical singularities,
whose near-horizon geometry is AdS4 × Y7, where Y7 is a seven-dimensional
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tri-Sasaki-Einstein manifold. The dual field theories are simple extensions
of ABJM corresponding to n-node quiver gauge theories with gauge groups
U(N1) × ... × U(Nn) at CS levels k1, ..., kn and bifundamental matter fields
Aa and Ba with a = 1, ..., n. The moduli spaces of these theories are eight-
dimensional manifolds given by toric hyperkähler quotients that are cones over
Y7, as explained in [104]. As discussed in previous chapters, these moduli
spaces can be realized by GLSMs. As before, the field content of these the-
ories is summarized by a quiver diagram that now consists of n nodes and
edges connecting them according to the matter content. The ABJM theory
corresponds to the simple case of a circular quiver with n = 2.

Having identified the dual field theories it became possible to use the grav-
itational properties of M2-branes to predict the strongly-coupled behavior of
the field theories. A rather intriguing prediction [105] from gravitational con-
siderations was the scaling with N of the free energy F ∼ N

3/2. For an
arbitrary compact space Y the gravitational free energy (in the large N limit)
is given by [106, 107]

F = N
3/2

�
2π6

27Vol(Y7)
+ o(N3/2) , (5.1.1)

where Vol(Y7) is the volume of the compact manifold Y7. The geometry of this
manifold depends on the quiver data, in particular the CS levels.

To test this prediction a non-perturbative method is needed. This is where
the power of localization comes into play.

Localization
The idea of localization was introduced by Witten in [108]. It is based on the
fact that under certain situations the semiclassical approximation to the path
integral becomes exact. If the theory is invariant under the action of a certain
operator Q which squares to a bosonic symmetry, the path integral receives
contributions only from configurations which are annihilated by Q. Recently,
following the work of Pestun [109] there has been extensive work developing
methods of localization in various dimensions [109–114]. Unlike the original
localization procedure introduced by Witten, these new localization techniques
are not based on a topological twist, but rather on placing the field theory on
a curved space, typically the round sphere S

d (more general curved spaces can
be considered; a systematic treatment is performed in [115]).

We are interested in the case of three dimensions to apply this method
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to the CS matter theories discussed above. Kapustin, Willett and Yaakov
[110] applied localization in three dimensions to calculate the exact partition
function on S

3 for theories with N ≥ 2 supersymmetry. By definition, the free
energy is given by

F = − log |ZS3 | . (5.1.2)

Thus, if the AdS4/CFT3 dualities described above are correct, (5.1.2) should
match the gravitational expression (5.1.1). This brings us to the main subject
of this chapter.

Volumes of Sasaki-Einstein manifolds
As we have mentioned above, one of the most intriguing predictions from
gravitational considerations was the scaling with N of the free energy. One of
the first applications [106] of localization in three dimensions was to reproduce
this scaling for the ABJM theory and matching the coefficient predicted by
(5.1.1). In the ABJM case, the volume of the Sasaki-Einstein manifold is
simply Vol(Y7) = Vol(S7

/Z
k) = Vol(S7)/k. We wish to point out in this

simple example that the volume of the Sasaki-Einstein manifold depends on
the CS level.

If the field theory is described by a more complex quiver, the Sasaki-
Einstein manifold is not a simple orbifold as in the case of ABJM and the
computation of the volume might be more involved. In fact, in many cases
these volume are not known. A simple class of theories that one can consider
[107, 116–118] are circular quivers like the one in Figure 5.2.

Figure 5.2: Circular quiver diagram. Each node ‘a’ corresponds to a U(Na)
gauge group with CS level ka and the edges to bifundamental matter.

The free energy for these quivers was computed in [107] as a function of
the CS levels ka = qa+1−qa and by comparing it with the gravitational energy,
it was shown that

Vol(Y )

Vol(S7)
=

�
(V,E)∈T

�
(a,b)∈E |qa − qb|�

p

a=1 [
�

p

b=1 |qa − qb|]
, (5.1.3)
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where the sum in the numerator is over the set T of all tree graphs with p

nodes. This was corroborated in [119] by comparison with the explicit calcu-
lations of the volumes of toric Sasaki-Einstein manifolds [120] (see also [121]
for a calculation in type-IIB supergravity).

As shown in [122], the circular quivers are actually an example of a more
general class of quiver theories which have a nice large N limit, i.e., long-range
forces between eigenvalues in the matrix model cancel. In fact, quiver theories
for which this happens are in one-to-one correspondence with the extended
ADE Dynkin diagrams with circular quivers corresponding to the �A-class.

Figure 5.3: �Dn quiver diagram.

In this chapter we focus on theories with �Dn quivers, such as the one in
Figure 5.3. By solving certain matrix models we compute the free energy
leading us to conjecture that the volume of the Sasaki-Einstein manifolds is
given by

Vol(Y )

Vol(S7)
=

�
R+

det(α1...αn)2
�

n

a=1 |αa · p|

8(n− 2) (
�

n

a=1 |pn|)
�

n

a=1 [
�

n

b=1 (|pa − pb|+ |pa + pb|)− 4|pa|]
,

(5.1.4)
where R+ is an n-subset of positive roots αa of Dn and the CS levels are
ka = αa · p. Similarly to the corresponding formula (5.1.3) for circular quivers,
we show that the numerator in (5.1.4) can be expressed as a sum over certain
graphs known as signed graphs.

The relevant tri-Sasaki Einstein manifold Y is the base of the hyperkähler
cone given by the H

4n−8
///U(1)n−1×SU(2)n−3 hyperkähler quotient2. To the

best of our knowledge, the volumes of these tri-Sasaki Einstein manifolds have
not been computed independently.

Although we do not discuss exceptional quivers in full detail, we give the
free energy for �E6,

�E7,
�E8 in Appendix D.3 for completeness.

2Note that the quaternionic dimension of this quotient is (4n−8)−(n−1+3(n−3)) = 2
as it should be.
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5.2 Preliminaries
We will consider quiver Chern-Simons gauge theories involving products of
unitary groups only, i.e., G = ⊗aU(naN), coupled to bifundamental chiral su-
perfields (Aa, Ba). According to [110], the partition function of these theories
on S

3 is localized on configurations where the auxiliary scalar fields σa in the
N = 2 vector multiplets are constant N × N matrices. Thus, evaluating the
free energy amounts to solving a matrix model.

Matrix Model
We denote the eigenvalues of σa in each vector multiplet by λa,i, i = 1, ..., Na.
The partition function is then given by [110]

Z =

� �
�

a,i

dλa,i

�
Lv({λa,i})Lm({λa,i}) =

� �
�

a,i

dλa,i

�
exp [−F ({λa,i})] ,

(5.2.1)
where the contribution from vector multiplets is

Lv =
d�

a=1

1

Na!

�
�

i>j

2 sinh[π(λa,i − λa,j)]

�2

exp

�
iπ

�

a,j

kaλ
2
a,j

�
,

and from matter multiplets is

Lm =
�

(a,b)∈E

�

i,j

1

2 cosh[π(λa,i − λb,j)]

�

c

�
�

i

1

2 cosh[πλc,i]

�n
f
c

.

The first product in Lm is due to bifundamental fields while the second one
is due to fundamental flavor fields, where n

f

c
is the number of pairs of flavor

fields at the node labeled by the index c.

Large N Limit and �ADE Classification
Following [107, 122], we assume that the eigenvalue distribution becomes dense
in the large N limit, i.e., λa,i → λa(x) with a certain density ρ(x). In this
limit the free energy becomes a 1-dimensional integral which we evaluate by
saddle point approximation. We also assume that the eigenvalue distribution
for a node with Na = naN is given by a collection of na curves in the complex
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plane labeled by λa,I(x) with I = 1, ..., na and write the ansatz

λa,I(x) = N
α
x+ i ya,I(x) . (5.2.2)

The density ρ(x) is assumed to be normalized, i.e.,
�

dxρ(x) = 1 , (5.2.3)

which will be imposed through a Lagrange multiplier µ. As explained in [122],
the leading order in N in the saddle point equation is proportional to the com-
bination 2na−

�
b|(a,b)∈E nb. The requirement that this term vanishes is equiva-

lent to the quiver being in correspondence with simply laced extended Dynkin
diagrams, leading to the ADE classification. To next order in N , the saddle
point equation contains a tree-level contribution and a 1-loop contribution.
Assuming that

�
a
naka = 0, the requirement that these two contributions are

balanced leads to α = 1/2, which is ultimately responsible for the N
3/2 scaling

of the free energy3. Finally, the Lagrangian to be extremized reads

F = N
3/2

�
dxρ(x)

�
πnF |x|+ 2πx

�

a

na�

I=1

kaya,I(x)

+
ρ(x)

4π

�
d�

a=1

na�

I=1

na�

J=1

arg
�
e
2πi(ya,I−ya,J−1/2)

�2

−

�

(a,b)∈E

na�

I=1

nb�

J=1

arg
�
e
2πi(ya,I−yb,J )

�2
��

− 2πµN3/2

��
ρ(x) dx− 1

�
,

(5.2.4)

where nF ≡
�

a
n
f

a
na. Evaluating the free energy on-shell gives

F =
4πN3/2

3
µ , (5.2.5)

which can be understood as a virial theorem [119]. Thus, the free energy is
determined by µ, which in turn is determined as a function of the CS levels
from the normalization condition (5.2.3). Note that from (5.1.1) and (5.2.5),
it follows that

Vol(Y )

Vol(S7)
=

1

8µ2
. (5.2.6)

3Alternatively, one can assume that
�

naka �= 0, and choose α = 1/3, which leads to a
massive IIA supergravity dual [116]. We will not consider this case here.
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As mentioned earlier, theories with �Am−1 quiver diagrams have been ex-
tensively studied. Here, we wish to study theories with �Dn quivers as the one
shown in Fig. 5.4. For now we will set n

f

a
= 0, but we will reintroduce flavors

in Section 5.5.

k3

k4k1

k2

k5 k6 · · · kn+1

Figure 5.4: �Dn quiver diagram. Each node ‘a’ corresponds to a U(naN) gauge
group with CS level ka, where na is the node’s comark and we assume that�

a
naka = 0.

It is convenient to relate the CS level k(a) at each node to a root αa, by
introducing a vector p and writing k(a) = αa · p . This way, the condition�

a
naka = 0 is satisfied automatically. Choosing a basis for the roots of �Dn

(see Appendix D.1 for conventions), we have

k1 = −(p1 + p2) , k2 = p1 − p2 , k3 = pn−1 − pn , k4 = pn−1 + pn ,

ki = pi−3 − pi−2 ; i = 5, ..., n+ 1 . (5.2.7)

In the next two sections we will solve the matrix models for various �Dn

quivers and conjecture a general volume formula for arbitrary n.

5.3 Solving the Matrix Models
Here we describe the saddle point evaluation of the free energy (5.2.4). We
show in detail the solution for n = 5, state the result for n = 6, and propose
a general expression that we have checked for n = 7, ..., 10. Finally, we will
relate this expression to the area of a certain polygon.

5.3.1 Explicit Solutions
Extremizing (5.2.4) (with respect to ya,I and ρ) requires an assumption on
the branch of the arg functions. We will always take the principle value and
therefore we assume that

|ya,I − ya,J | < 1 ; |ya,I − yb,J | <
1

2
, if (a, b) ∈ E . (5.3.1)
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Based on numerical results [107, 122], we assume that the na curves for a
given node initially coincide, i.e., |ya,I − ya,J | = 0. Extremizing F under
these assumptions, one finds that the solution is consistent only in a bounded
region away from the origin. This is because as |x| increases, the differences
|ya,I − yb,J | monotonically increase (or decrease), saturating one (or more)
of the inequalities assumed in (5.3.1) at some point. The relation among
the CS levels determines the sequence in which these inequalities saturate.
This saturation will be maintained beyond this point, requiring the eigenvalue
distribution involved either to bifurcate or develop a kink. As an example,
consider the first plot in Fig. 5.5 where we show the eigenvalue distributions
for the �D5 quiver4. It consists of seven regions determined by saturation of
different inequalities. At the end of first region (x = x1), one can see that
y1,1 − y5,2 = −1/2 forcing y5,1 and y5,2 to bifurcate.

x1 x2 x3 x4 . . x7
x

1
2

1

3
2

2

5
2

ya,I�x�

y1,1

y2,1

y3,1

y4,1

y5,1

y5,2

y6,1

y6,2

x1 x2 x3 x4 . . x7
x

Μ

3

Ρ�x�

Figure 5.5: The eigenvalue distribution ya,I(x) (left) for all nodes and density
ρ(x) (right) for the �D5 quiver with CS levels: (k2, k3, k4, k5, k6) = (2, 2, 3, 4, 4).

After a saturation occurs, the total number of independent variables is
reduced by one. Thus, at this point, we remove one variable from the La-
grangian, revise the inequalities and solve the equations of motion again until
a new saturation is encountered. This process is iterated until all ya’s are
related, determining a maximum of (

�
a
na−1) regions or until the eigenvalue

distribution terminates, i.e., ρ(x) = 0. Once the eigenvalue density ρ(x) is
determined in all regions, the value of µ (and therefore F ) is found from the
normalization condition (5.2.3).

The solution to the �D4 quiver consists of five regions and was solved in

4We have used the freedom to add an arbitrary function to the ya,I to set y1,1(x) = 0
in the first region and we solve explicitly only for x ≥ 0 since the eigenvalue distributions
and density are even functions of x.
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Region xi δy(x = xi) ρi(x)

1 µ

3(k2+k3+k4+2k5+2k6)
y1,1 − y5,2 = −

1
2

1
3µ

2 4µ
6k2+9k3+9k4+12k5+18k6

y5,2 − y6,2 = −
1
2

1
3µ

3 2µ
3(2k2+k3+k4+2k5+2k6)

y2,1 − y6,2 = 0 1
3µ

4 2µ
2k2+3(k3+k4+2k5+2k6)

y5,1 − y6,2 =
1
2

1
2µ+ 1

4x(k1 − k2)

5 2µ
2k2+3k3+5k4+4k5+6k6

y4,1 − y6,2 =
1
2 µ+ xk1

6 2µ
2k2+5k3+3k4+4k5+6k6

y3,1 − y6,2 =
1
2

3
2µ+ 1

4x(6k1 − k3 − 3k4 − 2k6)

7 2µ
2k2+3k3+3k4+4k5+6k6

y6,1 − y6,2 = 1 2µ+ x(2k1 − k3 − k4 − k6)

Table 5.1: Key characteristics of the seven regions of the �D5 matrix model:
their boundaries, the saturated inequalities and the eigenvalue densities, as-
suming k6 ≥ k5 ≥ k4 ≥ k3 ≥ k2 ≥ 0.

[122]. Assuming that p1 ≥ p2 ≥ p3 ≥ p4 ≥ 0, it was found that

1

µ2
= −

1

4p1
+

2p1 + 3p2 − p3

(p1 + p2)2
−

1

2(p1 + p2 + p3 − p4)
−

1

2(p1 + p2 + p3 + p4)
.

(5.3.2)

We now discuss the solution to the �D5 quiver, consisting of seven regions.
We assume that k6 ≥ k5 ≥ k4 ≥ k3 ≥ k2 ≥ 0 with k1 = −(k2 + k3 + k4 +2k5 +
2k6) implying p1 ≥ p2 ≥ p3 ≥ p4 ≥ p5 ≥ 0. The solution is summarized in
Table 5.1 and Fig. 5.5 shows the eigenvalue distributions and density (further
details are given in Appendix D.2). From the information given in Table 5.1
and (5.2.3), we find

1

µ2
=−

1

2k2 + 5k3 + 3k4 + 4k5 + 6k6
−

1

2k2 + 3k3 + 5k4 + 4k5 + 6k6

+
4(k3 + k4 + 3k6 − 2k1)

(2k2 + 3k3 + 3k4 + 4k5 + 6k6)2

−
1

9(2k2 + k3 + k4 + 2k5 + 2k6)
−

1

2k2 + 3k3 + 3k4 + 6k5 + 6k6
,

which, using the relations in (5.2.7) gives

1

µ2
=−

1

18p1
−

1

2(p1 + 2p2)
+

(2p1 + 2p2 + 3p3 − p4)

(p1 + p2 + p3)2

−
1

2(p1 + p2 + p3 + p4 − p5)
−

1

2(p1 + p2 + p3 + p4 + p5)
. (5.3.3)
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Similarly, solving the �D6 matrix model as described above leads to a total
of nine regions and integrating the eigenvalue density gives

1

µ2
=−

1

48p1
−

1

6(p1 + 3p2)
−

1

2(p1 + p2 + 2p3)
+

2(p1 + p2 + p3) + 3p4 − p5

(p1 + p2 + p3 + p4)2

−
1

2(p1 + p2 + p3 + p4 + p5 − p6)
−

1

2(p1 + p2 + p3 + p4 + p5 + p6)
,

(5.3.4)

for p1 ≥ p2 ≥ ... ≥ p6 ≥ 0.

5.3.2 General Solution and Polygon Area
By comparing (5.3.2), (5.3.3) and (5.3.4), we propose that the free energy for
�Dn quivers is determined by:

1

µ2
=

1

2

n−3�

a=1

ca�
a−1
b=1 pb + (n− a− 1)pa

+
2
�

n−3
b=1 pb + 3pn−2 − pn−1

��
n−2
b=1 pb

�2

−
1

2

�
1

�
n−1
b=1 pb − pn

+
1�

n

b=1 pb

�
, (5.3.5)

with ca ≡
−2

(n−a−1)(n−a−2) and p1 ≥ p2 ≥ ... ≥ pn > 0. We have verified that
this is correct for the �D7, ...,

�D10 matrix models.
For �A-quivers, it was shown in [119] that Vol(Y ) can be interpreted as the

area of a certain polygon. By rewriting (5.3.5) in a more suggestive form,
we will show that there is a certain polygon (or rather a cone) whose area is
related to Vol(Y ) for �D-quivers as well. This construction will be particularly
useful in Sections 5.5 and 5.6. We start by observing that the denominators
appearing in (5.3.5) can be written as

σ̄a =
n�

b=1

(|pa − pb|+ |pa + pb|)− 4 |pa| ; a = 1, ..., n ,

σ̄0 = 2(n− 2) , σ̄n+1 = 2
n�

b=1

|pb| . (5.3.6)

The first step in rewriting (5.3.5) is to combine consecutive terms to get

Vol(Y )

Vol(S7)
=

1

2

�
1

σ̄0 σ̄1
+

n−1�

a=1

pa − pa+1

σ̄a σ̄a+1
+

pn

σ̄n σ̄n+1

�
, (5.3.7)
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where we have used the relation (5.2.6). The next step is to introduce the
vectors βa = (1, pa) together with β0 = (0, 1) and βn+1 = (1, 0). Defining the
wedge product (a, b)∧ (c, d) = (ad− bc), we can write all the σ̄a’s in (5.3.6) in
terms of γa,b ≡ |βa ∧ βb| as follows

σ̄a =
n�

b=1

(γa,b + γa,−b)− 4γa,n+1 ; a = 0, ..., n+ 1 , (5.3.8)

where we have also defined β−a ≡ (1,−pa). This finally leads to

Vol(Y )

Vol(S7)
=

1

2

n�

a=0

γa,a+1

σ̄a σ̄a+1
. (5.3.9)

Now, let us consider the vectors βa, a = 0, ..., n + 1 as defining a set of
vertices va given by

va = v0 +
�

a−1
b=0 βb ,

where v0 is a base point (undetermined for the moment). This set of vertices
va in turn defines a new set of edges by the equations va ∧ x = 1/2. Then, the
set of intersection points of consecutive edges, given by wa = βa/(2 va ∧ va+1),
together with the origin defines a cone C whose area is given by

Area(C) =
1

8

n�

a=0

βa+1 ∧ βa

(va ∧ va+1)(va+1 ∧ va+2)
. (5.3.10)

The denominators va ∧ va+1 = va ∧ (va + βa) = va ∧ βa =
�
v0 +

�
a−1
b=0 βb

�
∧ βa

depend on the choice of base point v0. Choosing v0 = (−n + 2,−1), we can
set (va ∧ va+1) = −1/2 σ̄a leading to

Vol(Y )

Vol(S7)
= Area(C) . (5.3.11)

We also note that by rescaling the cone C by a factor 2µ, we can actually
interpret ρ(x) as the height of the cone. In Fig. 5.6 we show the rescaled
cone corresponding to the �D5 quiver. The x coordinates of the vertices of
this cone correspond to the location of the kinks in ρ(x) in Fig. 5.5. Thus,
1/2 =

�
dx ρ(x) = 4µ2 Area(C), from where (5.3.11) follows immediately.

This construction is analogous to the polygon for the �A-quiver [119]. The
vectors βa in that case correspond to the (1, qa) charges of five-branes involved
in the brane description of the theory. The addition of the two extra vectors
β0 and βn+1 in the present case seems to suggest that one should also include
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ρ(x)

Figure 5.6: Schematic cone for the �D5-quiver. The height of the cone gives
the density ρ(x) in the regions defined by the x coordinates of the vertices wa.

(0, 1) and (1, 0) branes in the description of these theories.
We would like to comment that solving the matrix model under a differ-

ent ordering of the p’s amounts to permuting them correspondingly in the
expression (5.3.9). Moreover, regardless of the sign and ordering of p’s, the
denominators appearing in the expression for Vol(Y ) are always given by the
σ̄’s in (5.3.8). In the next section we will propose a general expression, which
is valid for any value of the CS levels and is explicitly invariant under Seiberg
duality.

5.4 General Formula for �Dn Quivers
It was shown in [123, 124] that the free energy is invariant under a generalized
Seiberg duality [125, 126]. For ADE quivers, Seiberg duality can be reinter-
preted as the action of the Weyl group, which acts by permuting and changing
the sign of an even number of p’s in the case of �D-quivers. Thus, we would like
to have an expression for Vol(Y ) that does not assume any particular relation
among CS levels and is explicitly invariant under Seiberg duality. It was pro-
posed in [122] that this can be written as a rational function whose numerator
is given by

�
R+

det(α1...αn)2
�

n

a=1 |αa · p|, where R+ denotes all n-subsets
of positive roots. Note that under Weyl transformations the σ̄a’s defined in
(5.3.8) are simply shuffled among each other. Based on this, we propose that
the general expression for the volume corresponding to �Dn quivers is given by

Vol(Y )

Vol(S7)
=

�
R+

det(α1...αn)2
�

n

a=1 |αa · p|

2
�

n+1
a=0 σ̄a

. (5.4.1)

As we will prove below, (5.4.1) reduces to (5.3.9) when the CS levels are
ordered.
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We recall that in the corresponding formula for �A-quivers, the numerator
could be interpreted as a sum over tree graphs [107]. In a similar way, we
will show now that the numerator of (5.4.1) can be interpreted as a sum over
certain graphs known as signed graphs [127] (see also [128–130] and references
therein). A graph Γ = (V,E) consists of a set of vertices V and a set E of
unordered pairs from V (the edges). A signed graph (Γ, σ) is a graph Γ with a
signing σ : E → {+1,−1} associated to each edge. With these definitions, we
can associate a signed graph to each term in the numerator of (5.4.1). Recall
that the roots αa for Dn are of the form (ei ± ej), where ei are the canonical
unit vectors of dimension n and i �= j. To a root of the type (ei − ej) we
associate a positive edge (σ = 1) connecting the nodes i and j in the graph,
and to a root of the type (ei + ej) we associate a negative edge (σ = −1).
Then, we think of the matrix I = (α1... αn) as an incidence matrix for a
diagram with n vertices and n edges5. Due to Euler’s theorem, such graphs
must contain loops. If the graph contains more than one loop then it must
be disconnected. Loops are naturally associated a sign as well, given by the
product of the signs of all the edges forming the loop. As we shall explain
below, the determinant in (5.4.1) selects diagrams containing only negative
loops. Some examples of diagrams contributing to the numerator for �D4 are
shown in Fig. 5.7, where dashed lines represent negative edges and solid lines
positive ones.

– –
– –

– –

Figure 5.7: Some signed graphs contributing to the numerator for �D4. The first
diagram, for example, contributes a term 4|(p1+p2)(p2−p3)(p3−p4)(p4−p1)|.

To understand why the determinant vanishes for diagrams with positive
loops, it is useful to introduce the operation acting on graphs called ‘switching’.
Switching is defined with respect to a vertex v ∈ V , and it acts by reversing
the signs of all the edges connected to that vertex. This operation preserves
the value of (det I)2 since it corresponds to multiplying some rows and columns
of the incidence matrix I by −1. It is easy to see that by various switching
operations one can turn any loop with an even number of negative edges into
a loop made entirely of positive edges. Then, det I will vanish simply because
the columns in I associated to these edges add up to zero. On the other hand,

5Note that due to the absence of roots of the form 2ei, one should not consider edges
starting and ending on the same node.
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if there are an odd number of negative edges in the loop, the above argument
does not apply. In fact, one can easily check that (det I)2 = 4 for each negative
loop. Thus, we can also write (5.4.1) as

Vol(Y )

Vol(S7)
=

�
(V,E,σ)∈T − 4L−

�
(a,b)∈E |pa − σpb|

2
�

n+1
a=0 σ̄a

, (5.4.2)

where T − denotes the set of signed diagrams with n vertices and n edges (con-
nected or disconnected) and no positive loops, L− is the number of negative
loops in the diagram, and σ the sign of the corresponding edge. Using a gener-
alized matrix-tree formula, we now show that (5.4.2) in fact reduces to (5.3.9)
for pa > pa+1.

5.4.1 Generalized Matrix-tree Formula
We define the n× n adjacency matrix A for a signed graph by:

Aaa =
n−1�

b=1

(γa,b + γa,−b) , Aab = −γa,b + γa,−b .

The generalized matrix-tree formula [130] states that

detA =
�

(V,E,σ)∈T − 4L−
�

(a,b)∈E |pa − σpb| . (5.4.3)

By row and column operations we can bring A into the tri-diagonal form:

A =





σ̄1 + σ̄2 + 2γ12 −σ̄2 0 · · · · · · 0

−σ̄2 σ̄2 + σ̄3 + 2γ23 −σ̄3 · · · · · ·
...

0 −σ̄3
. . . . . . ...

...
...

... . . . . . . −σ̄n−1 0
... · · · · · · −σ̄n−1 σ̄n−1 + σ̄n + 2γn−1,n −σ̄n

0 · · · · · · 0 −σ̄n
1
2 (σ̄n + σ̄n+1)





Using the fact that the determinant of tri-diagonal matrices satisfies a recursion
relation, we have

detA =
1

2
(σ̄n + σ̄n+1) detAn−1 − σ̄

2
n
detAn−2 , (5.4.4)

detAa = (σ̄a + σ̄a+1 + 2γa,a+1) detAa−1 − σ̄
2
a
detAa−2 , (5.4.5)
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where Aa denotes the a× a sub-matrix of A for a = 1, ..., n− 1. Then, using
the identities: σ̄a+1 − σ̄a = −2(n− 2− a)γa,a+1 and

a−1�

d=0

(n− 2− d)γd,d+1

σ̄d σ̄d+1
=

1

2 σ̄a

,

we can show that the recursion relation (5.4.5) is solved by

detAa−1 =
a�

b=0

σ̄b

a−1�

d=0

(a− d)γd,d+1

σ̄d σ̄d+1
. (5.4.6)

Using (5.4.6) in (5.4.4), we have

detA =
1

2

n+1�

b=0

σ̄b

��
1 +

σ̄n

σn+1

� n−1�

d=0

(n− d)γd,d+1

σ̄d σ̄d+1
−

2σ̄n

σ̄n+1

n−2�

d=0

(n− 1− d)γd,d+1

σ̄d σ̄d+1

�

=
1

2

n+1�

b=0

σ̄b

n−1�

d=0

�
2
γd,d+1

σ̄d σ̄d+1
+

�
σ̄n+1 − σ̄n

σ̄n+1

�
(n− 2− d)γd,d+1

σ̄d σ̄d+1

�

=
n+1�

b=0

σ̄b

�
n−1�

d=0

γd,d+1

σ̄d σ̄d+1
+

1

2

4γn,n+1

σ̄n+1

1

2σ̄n

�

=
n+1�

b=0

σ̄b

n�

d=0

γd,d+1

σ̄d σ̄d+1
.

Finally, substituting (5.4.3) in (5.4.2) leads to

Vol(Y )

Vol(S7)
=

detA

2
�

n+1
b=0 σ̄b

=
1

2

n�

d=0

γd,d+1

σ̄d σ̄d+1
,

recovering the expression (5.3.9).

5.5 Flavored �Dn Quivers and the F-theorem
The F-Theorem [116] states that the free energy (5.1.2) decreases along RG
flows and is stationary at the RG fixed points of any three-dimensional field
theory (supersymmetric or not). Thus, F gives a good measure of the number
of degrees of freedom, in analogy with the c-function in two dimensions and
the anomaly coefficient, a in four dimensions. This theorem was first tested
in a variety of field theories [131–133] and recently it has been proven in [134,
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135] for any three-dimensional field theory by relating F to the entanglement
entropy of a disk-like region. Here we check that it holds for the the class
of theories we have discussed. We trigger the RG flow by adding massive
non-chiral fundamental flavors in the UV. By integrating out non-chiral flavor
fields, there is no effective shift in the CS levels. Thus, we are interested in
comparing F (ki;nF ) to F (ki; 0). The addition of nF �= 0 in (5.2.4) introduces
no additional complications and the matrix model is solved as explained in
section 5.3. We solved the flavored �Dn matrix model for n = 4, ..., 9 leading
us to

Vol(Y )

Vol(S7)
=

1

2

�
γ01

σ̄0(σ̄1 + nF )
+

n�

a=1

γa,a+1

(σ̄a + nF )(σ̄a+1 + nF )

�
. (5.5.1)

By comparing (5.5.1) with (5.3.9), it is clear that F (ki;nF ) ≥ F (ki; 0) verifying
that

FUV ≥ FIR ,

in accordance with the F-theorem.
In terms of the polygon construction discussed in Section 5.3.2, adding

flavor corresponds to adding the vector βF = (0, nF/2) between β0 and β1.
Then, (5.5.1) has the same form as (5.3.9) with b = F, 1, ..., n in the definition
(5.3.8).

5.6 Unfolding �Dn to �A2n−5

Here we provide a check of the formula (5.3.9), based on the folding/unfolding
trick discussed in [136], which relates the free energy of various quiver gauge
theories when some CS levels are identified. It can be used to change the gauge
groups from unitary to orthosymplectic without changing the quiver or it can
be used to change the quiver without changing the type of gauge group. Here
we will deal with the latter use, as it relates the free energy of �D-quivers to
that of �A-quivers.

When the external CS levels of a �Dn quiver are identified, it can be unfolded
to an �A2n−5 quiver, as shown in Fig. 5.8. Each internal node in the �D quiver
is duplicated to give two nodes with the same CS level, while the four external
nodes combine to give two nodes with doubled CS levels. Each node in the �A
quiver corresponds to a U(2N) gauge group and the condition

�
a
naka = 0

is automatically satisfied in the unfolded quiver. Using this, it can be shown
that in the large N limit, ZD =

√
ZA and therefore the free energies are related

by FD = 1
2FA. Here we verify explicitly this proportionality by comparing the
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formula (5.3.9) to the corresponding formula for �A2n−5.

Unfolding
−−−−−→

k
�

k
�

k

k

k5 k6 · · · kn+1 2k�

2k

k5 k6 · · · kn+1

k5 k6 · · · kn+1

Figure 5.8: Unfolding �Dn to �A2n−5. Each node in the �A quiver corresponds to
a U(2N) gauge group.

Let us first look at the formula for the �Dn quiver when external CS levels
are identified, i.e., k1 = k2 = k and k3 = k4 = k

�. Due to the relations in
(5.2.7), this is ensured by setting p1 = pn = 0. Thus, we need the solution
to the matrix model with the ordering p2 ≥ ... ≥ pn−1 ≥ pn ≥ p1 ≥ 0. As
mentioned at the end of Section 5.3, this is given by permuting the p’s in
(5.3.9) accordingly. Then, setting p1 = pn = 0 gives

Vol(YD)

Vol(S7)
=

1

2

�
p2

σ̄
2
2

+
n−2�

a=2

γa,a+1

σ̄a σ̄a+1
+

pn−1

(σ̄n−1)2

�
. (5.6.1)

Now we wish to compare this expression with the corresponding one for
�A2n−5 [119], namely

Vol(YA)

Vol(S7)
=

1

2

2n−4�

a=1

γa,a+1

σa σa+1
, (5.6.2)

where σa =
�2n−4

a=1 |qa − qb|, γa,b = |qa − qb| and
�2n−4

a=1 qa = 0. The identifi-
cation of opposite CS levels in the �A2n−4 quiver leads to qa = −q2n−3−a (see
Appendix D.1 for details). Then, we assume that q1 ≥ ... ≥ qn−2 ≥ 0 ≥ qn−1 ≥

... ≥ q2n−4 and

σa =
n−2�

b=1

|qa− qb|+
2n−4�

b=n−1

|qa− qb| =
n−2�

b=1

(|qa− qb|+ |qa+ qb|) ; a = 1, ..., n− 2 .
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Noting that σa = σ̄a and qa = pa+1 for a = 1, ..., n− 2, we have

Vol(YA)

Vol(S7)
=

1

2

�
n−3�

a=1

γa,a+1

σa σa+1
+

γn−2,n−1

σn−2 σn−1
+

2n−5�

a=n−1

γa,a+1

σa σa+1
+

γ2n−4,2n−3

σ2n−4 σ2n−3

�

=
n−3�

a=1

γa,a+1

σ̄a σ̄a+1
+

qn−2

(σ̄n−2)
2 +

q1

σ̄
2
1

=
p2

σ̄
2
2

+
n−2�

a=2

γa,a+1

σ̄a σ̄a+1
+

pn−1

(σ̄n−1)2
. (5.6.3)

Thus, comparing (5.6.3) to (5.6.1) we have

Vol(YD) =
1

2
Vol(YA) . (5.6.4)

This relation can also be seen clearly in terms of the areas of the corre-
sponding polygons, as shown in Fig. 5.9 (the cone as defined in Section 5.3.2
has been doubled along the dotted line for visual clarity). The outer polygon
corresponds to the �A-quiver with opposite CS levels identified and the shaded
region on the left represents the polygon corresponding to a general �D-quiver;
when p1 = pn = 0, this shaded region expands to fill half of the outer polygon
on the right.

Unfolding
−−−−−→

Figure 5.9: Polygons associated to the �D4 quiver (shaded region) and �A3 quiver
(outer polygon). Upon unfolding, Area(PD) = 1/2Area(PA).

Recalling that the nodes of the unfolded �A-quiver correspond to U(2N)

93



gauge groups, we verify that

FD

FA

=
N

3/2

(2N)3/2

�
Vol(YA)

Vol(YD)
=

1

2
.

5.7 Discussion
In this chapter we have studied three-dimensional �Dn quiver Chern-Simons
matter theories by using the localization method of Kapustin, Willet and
Yaakov in the large N limit. These field theories are believed to be dual
to M-theory on AdS4 × Y , where Y is a tri-Sasaki Einstein manifold. We
have explicitly solved the corresponding matrix models for various values of
n, leading us to conjecture a general expression for the free energy and there-
fore for the volume of the corresponding space Y given in (5.4.1). We have
shown that the numerator of this expression can be interpreted as a sum over
a class of graphs with edges that carry a sign, known as signed graphs. Using
a generalized matrix-tree formula, we prove that for a particular ordering of
CS levels, it can also be interpreted as the area of a certain polygon, given by
(5.3.9). When external CS levels in the �Dn quiver are identified, the area of
this polygon becomes half the area of the polygon corresponding to the �A2n−5

quiver, in accordance with the unfolding procedure. We have also studied the
addition of massive flavor fields, showing that when they are integrated out,
the area of the corresponding polygon always increases (thereby decreasing
F ), in accordance with the F-theorem.

The relevant tri-Sasaki Einstein space for a �Dn quiver is the base of the
hyperkähler cone defined by the quotient H4n−8

///U(1)n−1×SU(2)n−3. To the
best of our knowledge, the volumes of these spaces have not been computed.
Thus, (5.4.1) can be considered as an AdS/CFT prediction for these volumes.
A possible approach to proving the conjectured expression for the free energy
would be to find the general solution to the matrix model, perhaps in terms of
the polygon construction presented above, as it has been done for the �A-quiver
in [119]. Some questions which have not been addressed here are whether
there is a group theory interpretation of the volume formula and whether its
denominator can be written in a form that is universal for any ADE quiver.
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Appendix A

General N = (2, 2) GLSM’s

A.1 Semichiral Quotient
Here we give the necessary elements and sketch the proof of (2.3.7). As men-
tioned in the text, the requirement

{J+, J−} = c I (A.1.1)

implies the set of equations
�
K

−1
LR

CRRK
−1
RL

, Js

�
= 0 , (A.1.2)

JsK
−1
LR

JsKRL +K
−1
LR

JsKRLJs +K
−1
LR

CRRK
−1
RL

CLL = c I . (A.1.3)

We define the potential K̂ by

K̂(Xi

l
,X

i
�

r
) = K(Xi

l
,X

i
�

r
;Xα + V

α)− tαV
α
, (A.1.4)

from where the standard relation of second derivatives

K̂µν = Kµν −KµαK
−1
βα

Kβν (A.1.5)

follows, where µ = (i, i�, ī, ī�) labels the 4N coordinates. From now on we
suppress obvious indices, writing (L,R) = (l, r, α). Capital letters refer to the
manifold M, while lower-case are coordinates on M̂ and α labels coordinates
which are gauged away. We decompose the relevant matrices as

KLR =

�
Klr Klα

Kβr Kβα

�
, KLL =

�
Kll Klα

Kβl Kβα

�
, CLL =

�
Cll Clα

Cβl Cβα

�
, Js =

�
Ĵ 0
0 j

�
,
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with Ĵ
2 = −1 and j

2 = −1 and

Cll = [Ĵ , Kll], Cβα = [j,Kβα] ,

Clα = ĴKlα −Klαj , Cβl = jKβl −KβlĴ , (A.1.6)

(and similarly for CRR). The inverse matrices are given by

K
−1
RL

≡ (KLR)
−1 =

�
K̂

−1
lr

−K̂
−1
lr

KlαK
−1
βα

−K
−1
βα

KβrK̂
−1
lr

T
αβ

�
(A.1.7)

and K
−1
LR

= (K−1
RL

)t and where

K̂lr = Klr −KlαK
−1
βα

Kβr, (A.1.8)

T
αβ = K

−1
βα

+K
−1
δα

KδrK̂
−1
lr

KlγK
−1
βγ

. (A.1.9)

(Here we have changed the notation slightly to mean K̂
−1
lr

= (K̂lr)−1, K−1
βα

=
(K−1)αβ, etc.). Similarly, we also have

Ĉrr = Crr −

�
Ĵ , KrβK

−1
αβ

Kαr

�
, Ĉll = Cll −

�
Ĵ , KlβK

−1
αβ

Kαl

�
.(A.1.10)

We would like to prove that the structure (A.1.1) is preserved under the
quotient, namely that

{Ĵ+, Ĵ−} = cI, (A.1.11)

follows from (A.1.1) or, equivalently, that
�
K̂

−1
rl

ĈrrK̂
−1
lr

, Ĵ

�
= 0, (A.1.12)

ĴK̂
−1
rl

ĴK̂rl + K̂
−1
rl

ĴK̂rlĴ + K̂
−1
rl

ĈrrK̂
−1
lr

Ĉll = c I. (A.1.13)

Since a bi-Hermitean manifold with c constant and |c| < 2 is a hyper-Kähler
manifold, it follows as a corollary that the semi-chiral quotient of a hyper-
Kähler manifold is hyper-Kähler.

We divide the calculation into two parts, first proving the off-diagonal
equation (A.1.12) and then the diagonal equation (A.1.13).
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First we prove that (2.3.8) leads to (A.1.12)

K
−1
LR

CRRK
−1
RL

=

�
K̂

−1
rl

−K̂
−1
rl

KrβK
−1
αβ

−K
−1
αβ

KαlK̂
−1
rl

T
βα

��
Crr Crγ

Cαr Cαγ

��
K̂

−1
lr

−K̂
−1
lr

KlδK
−1
λδ

−K
−1
λγ

KλrK̂
−1
lr

T
γλ

�

=

�
A B

C D

�
(A.1.14)

where

A ≡ K̂
−1
rl

(Crr −KrβK
−1
αβ

Cαr − CrγK
−1
λγ

Kλr +KrβK
−1
αβ

CαγK
−1
λγ

Kλr)K̂
−1
lr

On the other hand,

{K
−1
LR

CRRK
−1
RL

, Js} =

��
A B

C D

�
,

�
Ĵ 0
0 j

��
=

�
{A, Ĵ} Bj + ĴB

CĴ + jC {D, j}

�
= 0

so we find
�
A, Ĵ

�
=

�
K̂

−1
rl

(Crr −KrβK
−1
αβ

Cαr − CrγK
−1
λγ

Kλr +KrβK
−1
αβ

CαγK
−1
λγ

Kλr)� �� �
≡C̄rr

K̂
−1
lr

, Ĵ

�
= 0.

Using the definitions (A.1.6) after some cancellations we find

C̄rr = Crr −

�
Ĵ , KrβK

−1
αβ

Kαr

�
= Ĉrr

and therefore
�
K̂

−1
rl

ĈrrK̂
−1
lr

, Ĵ

�
= 0 (A.1.15)

as we wanted to prove. Now we show that (2.3.9) leads to (A.1.13). In (2.3.9)
there are three terms.
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The first one reads

JsK
−1
LR

JsKRL =

�
Ĵ 0
0 j

��
K̂

−1
rl

−K̂
−1
rl

KrβK
−1
αβ

−K
−1
αβ

KαlK̂
−1
rl

T
βα

� �
Ĵ 0
0 j

��
Krl Krγ

Kαl Kαγ

�

=

�
ĴK̂

−1
rl

(ĴKrl −KrβK
−1
αβ

jKαl) ĴK̂
−1
rl

(ĴKrγ −KrβK
−1
αβ

jKαγ)

j(−K
−1
αβ

KαlK̂
−1
rl

ĴKrl + T
βα
jKαl) j(−K

−1
αβ

KαlK̂
−1
rl

ĴKrγ + T
βα
jKαγ)

�

≡

�
a1 a2

a3 a4

�
.

The second term

K
−1
LR

JsKRLJs =

�
K̂

−1
rl

−K̂
−1
rl

KrβK
−1
αβ

−K
−1
αβ

KαlK̂
−1
rl

T
βα

��
Ĵ 0
0 j

��
Krl Krγ

Kαl Kαγ

��
Ĵ 0
0 j

�

=

�
K̂

−1
rl

(ĴKrlĴ −KrβK
−1
αβ

jKαlĴ) K̂
−1
rl

(ĴKrγj −KrβK
−1
αβ

jKαγj)

−K
−1
αβ

KαlK̂
−1
rl

ĴKrlĴ + T
βα
jKαlĴ −K

−1
αβ

KαlK̂
−1
rl

ĴKrγj + T
βα
jKαγj

�

≡

�
b1 b2

b3 b4

�
,

and the third term

K
−1
LR

CRRK
−1
RL

CLL = �
K̂

−1
rl

−K̂
−1
rl

KrβK
−1
αβ

−K
−1
αβ

KαlK̂
−1
rl

T
βα

��
Crr Crδ

Cαr Cαδ

�

×

�
K̂

−1
lr

−K̂
−1
lr

Kl�K
−1
γ�

−K
−1
�δ

K�rK̂
−1
lr

T
δγ

��
Cll Clλ

Cγl Cγλ

�

=

�
K̂

−1
rl

(Crr −KrβK
−1
αβ

Cαr) K̂
−1
rl

(Crδ −KrβK
−1
αβ

Cαδ)

−K̂
−1
αβ

KαlK̂
−1
rl

Crr + T
βα
Cαr −K

−1
αβ

KαlK̂
−1
rl

Crδ + T
βα
Cαδ

�

×

�
K̂

−1
lr

(Cll −Kl�K
−1
γ�

Cγl) K̂
−1
lr

(Clλ −Kl�K
−1
γ�

Cγλ)

−K̂
−1
�δ

K�rK̂
−1
lr

Cll + T
δγ
Cγl −K

−1
�δ

K�rK̂
−1
lr

Clλ + T
δγ
Cγλ

�

≡

�
c1 c2

c3 c4

�
.

We have in total four equations, but it is enough to focus only on the two

a1 + b1 + c1 = c , (A.1.16)
a2 + b2 + c2 = 0 . (A.1.17)
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We will show below that (A.1.13) follows from these two equations. Let us
first simplify the expression for c1,

c1 = K̂
−1
rl

(Crr −KrβK
−1
αβ

Cαr)K̂
−1
lr

(Cll −Kl�K
−1
γ�

Cγl) (A.1.18)

+K̂
−1
rl

(Crδ −KrβK
−1
αβ

Cαδ)(−K̂
−1
�δ

K�rK̂
−1
lr

Cll + T
δγ
Cγl) .

Using (A.1.6) we have

c1 = K̂
−1
rl

([Ĵ , Krr]−KrβK
−1
αβ

(jKαr −KαrĴ))K̂
−1
lr

([Ĵ , Kll]−Kl�K
−1
γ�

(jKγl −KγlĴ))

+ K̂
−1
rl

(ĴKrδ −KrβK
−1
αβ

jKαδ)

×(−K̂
−1
�δ

K�rK̂
−1
lr

[Ĵ , Kll] + (K−1
γδ

+K
−1
βδ

KβrK̂
−1
lr

KlαK
−1
γα

)(jKγl −KγlĴ)) .

We omit in what follows all the terms involving Cll and Crr and consider them
at the end. We have then

c
�
1 = K̂

−1
rl

(KrβK
−1
αβ

(jKαr −KαrĴ))K̂
−1
lr

(Kl�K
−1
γ�

(jKγl −KγlĴ))

+ K̂
−1
rl

(ĴKrδ −KrβK
−1
αβ

jKαδ)

×((K−1
γδ

+K
−1
βδ

KβrK̂
−1
lr

KlαK
−1
γα

)(jKγl −KγlĴ)) ,

a1 + b1 + c
�
1 = {Ĵ , K̂

−1
rl

(ĴKrl −KrβK
−1
αβ

jKαl)}

+K̂
−1
rl

(KrβK
−1
αβ

(jKαr −KαrĴ))K̂
−1
lr

(Kl�K
−1
γ�

(jKγl −KγlĴ))

+K̂
−1
rl

(ĴKrδ −KrβK
−1
αβ

jKαδ)

×(K−1
γδ

+K
−1
βδ

KβrK̂
−1
lr

KlαK
−1
γα

)(jKγl −KγlĴ) .

We will simplify this expression considerably by grouping terms by the number
of j�s and Ĵ

�
s. First the terms involving only jj:

jj : K̂
−1
rl

KrβK
−1
αβ

jKαrK̂
−1
lr

Kl�K
−1
γ�

jKγl

−K̂
−1
rl

KrβK
−1
αβ

jKαδ(K
−1
γδ

+K
−1
βδ

KβrK̂
−1
lr

KlαK
−1
γα

)jKγl .

The first and last terms cancel, leaving only

jj : K̂
−1
rl

KrβK
−1
αβ

Kαl .
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Now we look at terms with Ĵ Ĵ ,

Ĵ Ĵ : {Ĵ , K̂
−1
rl

ĴKrl}+ K̂
−1
rl

KrβK
−1
αβ

KαrĴK̂
−1
lr

Kl�K
−1
γ�

KγlĴ (A.1.19)

−K̂
−1
rl

ĴKrδ(K
−1
γδ

+K
−1
βδ

KβrK̂
−1
lr

KlαK
−1
γα

)KγlĴ

using (A.1.8) and after some manipulations, we are left with

Ĵ Ĵ : {Ĵ , K̂
−1
rl

ĴK̂rl}+ ĴK̂
−1
rl

ĴKrαK
−1
βα

Kβl (A.1.20)

−K̂
−1
rl

[Ĵ , KrβK
−1
αβ

Kαr]K̂
−1
lr

KlαK
−1
γα

KγlĴ . (A.1.21)

Now we look at terms involving Ĵj + jĴ

Ĵj + jĴ :− {Ĵ , K̂
−1
rl

KrβK
−1
αβ

jKαl} − K̂
−1
rl

KrβK
−1
αβ

jKαrK̂
−1
lr

Kl�K
−1
γ�

KγlĴ

− K̂
−1
rl

KrβK
−1
αβ

KαrĴK̂
−1
lr

Kl�K
−1
γ�

jKγl

+ K̂
−1
rl

ĴKrδ(K
−1
γδ

+K
−1
βδ

KβrK̂
−1
lr

KlαK
−1
γα

)jKγl

+ K̂
−1
rl

KrβK
−1
αβ

jKαδ(K
−1
γδ

+K
−1
βδ

KβrK̂
−1
lr

KlαK
−1
γα

)KγlĴ

after some cancellations, we are left with

Ĵj + jĴ : −[Ĵ , K̂−1
rl

]KrβK
−1
αβ

jKαl − K̂
−1
rl

[KrβK
−1
αβ

Kαr, Ĵ ]K̂
−1
lr

Kl�K
−1
γ�

jKγl .

Now we include the Cll and Crr terms we had left out before

Crr : −K̂
−1
rl

CrrK̂
−1
lr

Kl�K
−1
γ�

(jKγl −KγlĴ) (A.1.21)

This term, combined with the last Ĵ Ĵ term and the last Ĵj + jĴ term gives

K̂
−1
rl

ĈrrK̂
−1
lr

KlαK
−1
γα

(KγlĴ − jKγl) (A.1.22)

Now let us look at the Cll term

Cll : −K̂
−1
rl

KrβK
−1
αβ

(jKαr −KαrĴ)K̂
−1
lr

Cll (A.1.23)

−K̂
−1
rl

(ĴKrδ −Krδj −KrβK
−1
αβ

[j,Kαδ])K
−1
�δ

K�rK̂
−1
lr

Cll

which after some cancellations gives

Cll : K̂
−1
rl

[KrβK
−1
αβ

Kαr, Ĵ ]K̂
−1
lr

Cll (A.1.23)

and the CrrCll term

CrrCll : K̂
−1
rl

CrrK̂
−1
lr

Cll (A.1.24)
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Combining these last two gives

K̂
−1
rl

ĈrrK̂
−1
lr

Cll . (A.1.25)

Putting all the terms we have together, we get

a1 + b1 + c1 = {Ĵ , K̂
−1
rl

ĴKrl}+ K̂
−1
rl

ĈrrK̂
−1
lr

Cll (A.1.26)
+K̂

−1
rl

KrβK
−1
αβ

Kαl + ĴK̂
−1
rl

ĴKrαK
−1
βα

Kβl

−[Ĵ , K̂−1
rl

]KrβK
−1
αβ

jKαl + K̂
−1
rl

ĈrrK̂
−1
lr

KlαK
−1
γα

(KγlĴ − jKγl)

the first line in this equation starts looking like what we want to have. Using
Cll = Ĉll + [Ĵ , KlαK

−1
βα

Kβl] we have

a1 + b1 + c1 = {Ĵ , K̂
−1
rl

ĴKrl}+ K̂
−1
rl

ĈrrK̂
−1
lr

Ĉll +∆ = c , I (A.1.25)

with

∆ = K̂
−1
rl

ĈrrK̂
−1
lr

[Ĵ , KlαK
−1
βα

Kβl] + K̂
−1
rl

KrβK
−1
αβ

Kαl + ĴK̂
−1
rl

ĴKrαK
−1
βα

Kβl

−[Ĵ , K̂−1
rl

]KrβK
−1
αβ

jKαl + K̂
−1
rl

ĈrrK̂
−1
lr

KlαK
−1
γα

(KγlĴ − jKγl) .

Thus, to prove (A.1.13), we must show that ∆ = 0. This, we will show below,
follows from (A.1.17), but first we simplify the expression for ∆. Part of the
first term and the last term in this expression cancel and after some other
manipulations, we have

∆ = K̂
−1
rl

ĈrrK̂
−1
lr

(ĴKlαK
−1
βα

−KlαK
−1
βα

j)Kβl (A.1.24)

+[Ĵ , K̂−1
rl

](ĴKrαK
−1
βα

−KrαK
−1
βα

j)Kβl .

Now, we see that

a2 = ĴK̂
−1
rl

(ĴKrλ −KrβK
−1
αβ

jKαλ) ,

b2 = K̂
−1
rl

(ĴKrλ −KrβK
−1
αβ

jKαλ)j

while c2 is given by

c2 = K̂
−1
rl

(Crr −KrβK
−1
αβ

Cαr)K̂
−1
lr

(Clλ −Kl�K
−1
γ�

Cγλ)

+K̂
−1
rl

(Crδ −KrβK
−1
αβ

Cαδ)(−K
−1
�δ

K�rK̂
−1
lr

Clλ + T
δγ
Cγλ)
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and using (A.1.6), we find

c2 = K̂
−1
rl

(Crr −KrβK
−1
αβ

(jKαr −KαrĴ))K̂
−1
lr

(ĴKlλ −Kl�K
−1
γ�

jKγλ)

+K̂
−1
rl

(ĴKrδ −KrβK
−1
αβ

jKαδ)(K
−1
βδ

KβrK̂
−1
lr

(KlαK
−1
γα

jKγλ − ĴKlλ)

+K
−1
γδ

[j,Kγλ]) .

Now we proceed similarly, grouping terms with Ĵ
�
s and j

�
s in a2 + b2 + c2.

After simplifications, the only terms remaining in jj are

jj : K̂
−1
rl

KrβK
−1
αβ

Kαλ (A.1.20)

while for Ĵ Ĵ we are left with

Ĵ Ĵ : ĴK̂
−1
rl

ĴKrλ + K̂
−1
rl

ĈrrK̂
−1
lr

ĴKlλ (A.1.21)

The Ĵj + jĴ terms are

Ĵj + jĴ : −[Ĵ , K̂−1
rl

](KrβK
−1
αβ

jKαλ)− K̂
−1
rl

ĈrrK̂
−1
lr

Kl�K
−1
γ�

jKγλ

These constitute all the terms. Putting them all together, we arrive at

a2 + b2 + c2 = [Ĵ , K̂−1
rl

](ĴKrλ −KrβK
−1
αβ

jKαλ) (A.1.21)

+K̂
−1
rl

ĈrrK̂
−1
lr

(ĴKlλ −Kl�K
−1
γ�

jKγλ) = 0 .

This is precisely the combination that appears in ∆ and therefore

∆ = 0

hence proving (A.1.13). Thus, finally

{Ĵ+, Ĵ−} = c I , (A.1.20)

as we wanted to prove.

A.2 T-duality
Here we give some of the details leading to (2.4.12) and (2.4.15). Writing the
Legendre transform as

K(Xi) = F (V α)−
1

2
V

α
δαiX

i
, (A.2.1)
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where we defined

X
i
≡

�
i(XL − X̄L + XR − X̄R),−i(XL − X̄L − XR + X̄R),−(XL + X̄L + XR + X̄R)

�
,

we find the standard relation of second derivatives

Kij = −
1

2
δiα(F

−1)αβδβj . (A.2.1)

Explicitly inverting the general 3× 3 matrix Fαβ and using these relations in
the definition (2.2.7), one finds

c =
2 (FV φV φ + FV χV χ + 2FV �V �)

FV φV φ − FV χV χ
. (A.2.2)

The important point now is that the Laplace equation (Fφφ̄ + Fχχ̄ = 0) trans-
lates into

cos2(θ)FV φV φ + sin2(θ)FV χV χ + FV �V � = 0 , (A.2.3)

which is a direct consequence of how the gauging was performed in (2.4.10)
(i.e., the charges of the fields). Using (A.2.3) in (A.2.2) finally leads to

c = −2 cos(2θ) . (A.2.4)

To prove (2.4.15) it is more convenient to redefine the fields so that the Killing
vector acts by translations. Note that this is allowed due to the chirality
properties of the components of the Killing vector. This, of course, does not
preserve the form of the Laplace equation, but instead turns into 1

|kφ|2Fφφ̄ +
1

|kχ|2Fχχ̄ = 0. Using this in (A.2.2) leads to (2.4.15).

A.3 Reduction to N = (1, 1)

To reduce to N = (1, 1) (here we follow mostly [18, 23, 24]), one decomposes
the N = (2, 2) gauge covariant superderivatives into their real and imaginary
part, namely

∇± =
1

2
(D± − iQ±) , ∇̄± =

1

2
(D± + iQ±) . (A.3.1)

Here D± are N = (1, 1) derivatives, which satisfy the algebra

{D±,D±} = iD±± , (A.3.2)
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where D±± is the gauge-covariant space derivative and Q± generate the non-
manifest supersymmetries. We perform the reduction of the matter fields
XL,XR in the covariant approach. That is, we define

X̂R = e
−VLe

i
¯̃
V
XR , (A.3.3)

¯̂
XR = X

†
R
e
−iṼ

,

so that there are no factors eV anywhere. For instance, ¯̂XRX̂R = X
†
R
e
−iṼ

e
−VLe

i
¯̃
V
XR =

X̄Re
VRXR and the Lagrangian is simply (dropping the hats)

K = X̄LXL + X̄RXR + α(X̄LXR + X̄RXL) . (A.3.3)

Next, one imposes the fields to be gauge-covariantly semichiral and defines
components with gauge-covariant Q±’s, i.e.,

XL = XL

�� , Q+XL = iD+XL , Q−XL

�� = Ψ− , (A.3.4)
XR = XR

�� , Q−XR = iD−XR , Q+XR

�� = Ψ+ . (A.3.5)

The reduction of the semichiral vector multiplet is given by

d
1 =

�
F+ F̄

� �� , d
2 =

�
F̃+ ¯̃

F

� �� , d
3 = i

�
F− F̄− F̃+ ¯̃

F

� �� ,

f =− i

�
F− F̄+ F̃−

¯̃
F

� �� ,

from where

F
�� = 1

2

�
d
1 +

i

2
(f − d

3)

�
, F̃

�� = 1

2

�
d
2 +

i

2
(f + d

3)

�
. (A.3.6)

From the definitions F = i{∇̄+, ∇̄−} and F̃ = i{∇̄+,∇−}, one can solve for
the commutation relations

{Q+,D−} = ∓(d1 + d2),

{D+, Q−} = ∓(d1 − d2) , (A.3.6)
{Q+, Q−} = ±d3 ,

{D+,D−} = f ,

where the upper(lower) sign is chosen for positive(negative) charge. These
are used repeatedly when reducing the matter fields, and the appropriate sign
must be chosen depending on the charge of the field it acts on. Note that f is
the usual field strength which, in two dimensions, is a total derivative giving
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the topological charge.

A.4 SU(2) symmetry
As described in the text, the action (2.5.1) is invariant under the global SU(2)
transformations which rotate (X(1)

, X
(2)) and the cross-ratio (2.5.21) is a nat-

ural radial coordinate. At a fixed radius R, we can reach any point by a
finite SU(2) transformation from a single point X

0
L
, X

0
R
. We take X

0
L
= 0

and X
0
R
=

√
R2 − 1. Thus, by acting with a finite SU(2) transformation, an

arbitrary point is parameterized as

XL =
b

ā
, XR =

aρ+ b

ā− b̄ρ
, (A.4.1)

where we have defined ρ
2 ≡ R

2−1. By means of this identification, the natural
remaining invariants are given by the Cartan 1-forms on the group manifold.
Consider a group element g of SU(2),

g =

�
a b

−b̄ ā

�
, |a|

2 + |b|
2 = 1 . (A.4.2)

The (real) invariant 1-forms σ
i are defined by

g
−1
dg = i

�
σ
3

σ
1 + iσ

2

σ
1 − iσ

2 −σ
3

�
. (A.4.3)

In the parameterization (A.4.2), we have

σ
1 = Im(ādb− bdā) , σ

2 = −Re(ādb− bdā) , σ
3 = −i(āda+ bdb̄) . (A.4.4)

The constraint |a|2 + |b|2 = 1 ensures the reality of σ
3. From (A.4.1) and

(A.4.4) we find

dXL =
1

ā2
(iσ1

− σ
2) ,

dXR =
1

(ā− ρb̄)2
�
2iρσ3 + i(1− ρ

2)σ1
− (1 + ρ

2)σ2 + dρ
�
. (A.4.4)

These are the expressions which allow us to rewrite the Eguchi-Hanson metric
in an explicitly SU(2)-invariant form. Another well-known property of Eguchi-
Hanson is that its complex structures are preserved by the SU(2) (in the Taub-
NUT case they form a triplet). The Lie derivative along ξ of a (1, 1) tensor
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such as a complex structure is given by

LξJ± = ξJ± − [∂ · ξ, J±] , ∂ · ξ ≡

�
∂Lξ

L 0
0 ∂Rξ

R

�
, (A.4.5)

where

∂Lξ
L
≡

�
∂lξ

l 0
0 ∂l̄ξ̄

l

�
, ∂Rξ

R
≡

�
∂rξ

r 0
0 ∂r̄ξ̄

r

�
. (A.4.6)

The equations from LξJ+ = 0 read

ξ
µ
∂µ(K

−1
RL

CLL)− (∂Rξ
R
K

−1
RL

CLL −K
−1
RL

CLL∂Lξ
L) = 0 ,

ξ
µ
∂µ(K

−1
RL

JsKLR)− [∂Rξ
R
,K

−1
RL

JsKLR] = 0 , (A.4.6)

and similarly for J−, exchanging R by L. We verified that these equations are
satisfied by explicit calculations from the potential (2.5.13).

A.5 Constrained semichiral quotient
To understand the kind of geometry that such models lead to, we will reduce
to N = (1, 1). We do this in the covariant formalism and we find:

Q+Q−Kmatter =2id
�
X̄LXL + X̄RXR + α(X̄LXR + X̄RXL) + t φ̄ φ− s

�

− 2irf + LΨ,X + Lφ̄φ

with

LΨ,X =− 2iΨ̄−D+XL + 2iΨ−D+X̄L + 2iΨ̄+D−XR − 2iΨ+D−X̄R

+ α
�
Ψ̄+Ψ− − Ψ̄−Ψ+ + iΨ−D+X̄R + iΨ̄+D−XL − iΨ̄−D+XR − iΨ+D−X̄L

�

+ α
�
D+X̄LD−XR +D+XLD−X̄R

�
− αf(X̄LXR − X̄RXL)

and Lφ̄φ the usual Lagrangian. From the equation of motion for d, we have
the constraint

X̄LXL + X̄RXR + α(X̄LXR + X̄RXL) + t φ̄ φ− s = 0 . (A.5.0)

To see what the geometry is, it is convenient to define

XL = X + Y , XR = −X + Y , (A.5.0)
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and then the vacuum manifold is given by

|X|
2(1− α) + |Y |

2(1 + α) + t φ̄φ− s = 0 , (A.5.0)

which is non-compact (assuming that α2
> 1 as required for the original metric

to be positive definite).
Let us look now at the kinetic terms. Integrating out the auxiliary spinor

superfields Ψ±, we find

LΨ(X),X = −
1

4

�
d
2
θEµν(D+X

µ)(D−X
ν) , (A.5.0)

where
Eµν = E

(V=0)
µν

+ δEµν , (A.5.0)

with

E
(V=0)
µν

= −4





0 −2 0 −
4
α
+ α

−2 0 −
4
α
+ α 0

0 −α 0 −2
−α 0 −2 0



 , δEµν = −4





0 0 0 α

0 0 α 0
0 −α 0 0
−α 0 0 0





in the basis X
µ = (XL, X̄L, XR, X̄R). Note that there is an additional term

with respect to what one would get for a flat ungauged potential, which only
contributes to the b-field1.

A.6 Quotient Rules
The quotient rules state that dualizing along a U(1) isometry parameterized
by θ, the dual metric and b-field are given by

g̃θθ =
1

gθθ
, g̃θµ =

Bθµ

gθθ
, g̃µν = gµν +

BθµBθν − gθµgθν

gθθ

B̃θµ =
gθµ

gθθ
, B̃µν = Bµν +

gθµBθν − Bθµgθν

gθθ

1Note also that E(V=0) is symmetric (i.e., there is no b-field) when α2 = 2. However,
adding the additional term, the b-field now vanishes for α2 = 1. This is the reason we will
recover the usual metrics for α → 1.
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As a simple exercise, let us consider the duality between the Taub-NUT metric
and the smeared NS5 brane:

ds
2
TN

= H(r)dr · dr +
1

4H(r)
(dθ +w · dr)2 , B = 0 , (A.6.0)

where H(r) = 1
g2

+ 1
2r . Dualizing along θ gives

g̃θθ = 4H(r) , g̃θi = 0 , g̃ij =

�
H(r)δij +

1

4H(r)
wiwj

�
−

1

4H(r)
wiwj = H(r)δij

B̃θi = wi , B̃ij = 0.

which gives
ds

2
NS5 = H(r)(dr · dr + 4 dθ2) , Bθi = wi . (A.6.0)
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Appendix B

Useful Formulae

Here we collect some useful formulas to reduce the action of a GLSM involv-
ing the chiral and the vector multiplet to component fields in the covariant
approach.

B.1 Covariant Approach
We define gauge covariant spinor derivatives satisfying

{∇±, ∇̄±} = 2iD±± , (B.1.1)
[∇±,D±±] = 0 , (B.1.2)

where D±± is the space, gauge covariant, derivative. In these conventions
x± = (x0±x1) and ds

2 = −
1
2(dx+dx−+dx−dx+). We define the field strength:

Σ ≡
1

2
{∇̄+,∇−} . (B.1.3)

From the Jacobi identities, it follows that

�
∇−, 2iD++

�
= −2∇+Σ,

�
∇+, 2iD−−

�
= −2∇−Σ̄ , (B.1.4)

�
∇̄−, 2iD++

�
= −2∇̄+Σ̄,

�
∇̄+, 2iD−−

�
= −2∇̄−Σ . (B.1.5)

B.1.1 Conjugation rules
The operation of conjugation is denoted by (̄) and defined by

Φ̄ ≡ e
2VΦ†

, (B.1.6)
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and

∇̄± = e
2V
∇

†
±e

−2V
. (B.1.7)

Note that with this definition, if ∇±Φ = λ± then (taking the hermitean conju-
gate and inserting e

2V ’s) ∇̄±Φ̄ = λ̄± with λ̄± = e
2V
λ
†
±, just as for Φ. Also, in

the WZ gauge, this implies that the components of Φ̄ are the complex conju-
gates of the components of Φ. One can see easily that this conjugation satisfies
(∇±) = ∇±. This in turn implies, from a Jacobi identity, that

( iD±±) = iD±± . (B.1.8)

B.1.2 Vector multiplet
Note that

F−+ =
1

2i
√
2
(∇̄+∇−Σ̄− ∇̄−∇+Σ) , (B.1.9)

and from the definition of Σ we have

F−+ =
1

4i
√
2

�
∇̄+∇−{∇̄−,∇+} − ∇̄−∇+{∇̄+,∇−}

�
. (B.1.10)

Note that the second term in the parenthesis is the conjugate (in the sense of
“bar” conjugation) of the first one. Lets focus on the first one for now. By
virtue of a Jacobi identity, we have

[∇−, {∇̄−,∇+}] + [∇̄−, {∇+,∇−}] + [∇+, {∇−, ∇̄−}] = 0 , (B.1.11)

and hence

[∇−, {∇̄−,∇+}] = −[∇+, 2iD−−] . (B.1.12)

Thus,

{∇̄+, [∇−, {∇̄−,∇+}]} = −{∇̄+, [∇+, 2iD−−]} (B.1.13)
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and the Jacobi identities:

{∇̄+, [∇+, 2iD−−]} − {∇+, [2iD−−, ∇̄+]}+ [2iD−−, {∇̄+,∇+}] = 0 ,

{∇̄+, [∇+, 2iD−−]} − {∇+, [2iD−−, ∇̄+]} − 4[D−−,D++] = 0 ,

imply

{∇̄+, [∇+, 2iD−−]} = {∇+, [2iD−−, ∇̄+]}+ 4[D−−,D++] . (B.1.12)

Note now the following: Taking the bar of the left expression

({∇+, [∇+, 2iD−−]}) = {∇+, [2iD−−, ∇̄+]} , (B.1.13)

which is exactly the first term on the right-hand side. Thus,

{∇̄+, [∇+, 2iD−−]} − ({∇+, [∇+, 2iD−−]}) = 4[D−−,D++] , (B.1.14)

and finally

F−+ =
1

4i
√
2

�
− 4[D−−,D++]

�
=

i
√
2
[D−−,D++] . (B.1.15)

which is the usual expression for the field strength and a formula we will need
when computing the action to get the correct kinetic term for the matter fields.

B.1.3 Chiral multiplet
We define components using gauge covariant derivatives

Σ| = σ, Σ̄| = σ
∗ (B.1.16)

∇+Σ| = −i

√
2λ̄+, ∇̄−Σ| = −i

√
2λ− (B.1.17)

∇−Σ̄| = i

√
2λ̄−, ∇̄+Σ̄| = i

√
2λ+ (B.1.18)

∇̄−∇+Σ| =
√
2(D3

− iF−+), ∇̄+∇−Σ̄| =
√
2(D3 + iF−+) . (B.1.19)

For Q we define

Q̄ ≡ Q
†
e
2V

, (B.1.20)

and components
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Q| = q, Q̄| = q
∗ (B.1.21)

∇+Q| =
√
2ψ+, ∇−Q| =

√
2ψ− (B.1.22)

∇̄+Q̄| =
√
2ψ̄+, ∇̄−Q̄| =

√
2ψ̄− (B.1.23)

∇−∇+Q| = 2F, ∇̄+∇̄−Q̄| = 2F ∗ (B.1.24)

This way, in WZ gauge, the components of Q̄ are the complex conjugates of
the components of Q.

B.1.4 Action

−4LQ̄Q =

�
∇+∇−∇̄+∇̄−(Q̄Q) =

�
∇+∇−(Q∇̄+∇̄−Q̄)

=

�
∇+

�
∇−Q(∇̄+∇̄−Q̄) +Q(∇−∇̄+∇̄−Q̄)

�

=(∇+∇−Q)(∇̄+∇̄−Q̄)− (∇−Q)(∇+∇̄+∇̄−Q̄)

(∇+Q)(∇−∇̄+∇̄−Q̄) +Q(∇+∇−∇̄+∇̄−Q̄)

• 1: (∇+∇−Q)(∇̄+∇̄−Q̄) = −4|F |2

• 2: −(∇−Q)(∇+∇̄+∇̄−Q̄)

−(∇−Q)(∇+∇̄+∇̄−Q̄) =− (∇−Q)
�
{∇+, ∇̄+} − ∇̄+∇+

�
∇̄−Q̄

=− 4iψ−D++ψ− +
√
2ψ−∇̄+(2Σ̄Q̄)

=− 4iψ−D++ψ̄− + 4iψ−λ+q
∗ + 4ψ−ψ̄+σ

∗

• 3: (∇+Q)(∇−∇̄+∇̄−Q̄)
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(∇+Q)(∇−∇̄+∇̄−Q̄) =(∇+Q)({∇−, ∇̄+} − ∇̄+∇−)∇̄−Q̄

=(∇+Q)(2Σ)∇̄−Q̄− (∇+Q)(∇̄+∇−∇̄−Q̄)

=(∇+Q)(2Σ)∇̄−Q̄− (∇+Q)(∇̄+2iD−−Q̄)

=(∇+Q)(2Σ)∇̄−Q̄

− (∇+Q)([∇̄+, 2iD−−] + 2iD−−∇̄+)Q̄

=(∇+Q)(2Σ)∇̄−Q̄

− (∇+Q)(−2∇̄−Σ + 2iD−−∇̄+)Q̄

=4ψ+σψ̄− −
√
2ψ+(−2(−i

√
2λ−) + 2iD−−ψ̄+)

=4ψ+σψ̄− − 4iψ+λ−q
∗ + 4iψ+D−−ψ̄+

• 4: Q(∇+∇−∇̄+∇̄−Q̄)

∇+∇−∇̄+∇̄−Q̄ =∇+({∇−, ∇̄+} − ∇̄+∇−)∇̄−Q̄

=∇+(2Σ− ∇̄+∇−)∇̄−Q

=∇+(2Σ∇̄−Q̄)−∇+∇̄+∇−∇̄−Q̄

=2(∇+Σ)(∇̄−Q̄) + 2Σ(∇+∇̄−Q̄)−∇+∇̄+2iD−−Q̄

Now,

−∇+∇̄+2iD−−Q̄ =−∇+([∇̄+, 2iD−−] + 2iD−−∇̄+)Q̄

=−∇+(−2∇̄−Σ + 2iD−−∇̄+)Q̄

=2∇+(∇̄−Σ)Q̄−∇+(2iD−−∇̄+Q̄)

=2(∇+∇̄−Σ)Q̄−∇+(2iD−−∇̄+Q̄)

and

−∇+(2iD−−∇̄+Q̄) =− ([∇+, 2iD−−] + 2iD−−∇+)∇̄+Q̄

=− (−2∇−Σ̄ + 2iD−−∇+)∇̄+Q̄

=2(∇−Σ̄)(∇̄+Q̄) + 4D−−D++Q̄

=4iλ̄−ψ̄+ + 4D−−D++Q̄ .

Putting all these terms together, we have
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Q

�
2∇+Σ∇̄−Q̄+ 4ΣΣ̄Q̄+ 2(∇+∇̄−Σ)Q̄ (B.1.25)

+2(∇−Σ̄)(∇̄+Q̄) + 4D−−D++Q̄

�
, (B.1.26)

and projecting we have

4q
�
− iλ̄+ψ̄− + |σ|

2
q
∗ + iλ̄−ψ̄+ +D−−D++q

∗
�
− 2q

√
2(D3

− iF−+)q
∗
.

Now we use the expression for F−+ derived previously:

F−+ =
i
√
2
[D−−,D++] (B.1.27)

to write this term as:

4qD−−D++q
∗ + 2iq

√
2F−+q

∗ = 4qD−−D++q
∗
− 2q[D−−,D++]q

∗

= 2q
�
D−−D++ +D++D−−

�
q
∗

and so we have

4q
�
− iλ̄+ψ̄− + |σ|

2
q
∗ + iλ̄−ψ̄+

�
+ 2q

�
D−−D++ +D++D−−

�
q
∗
− 2

√
2|q|2D3

.

Putting all the terms together, the Lagrangian reads

Lkin = − |Dq|
2 + i(ψ̄−D++ψ− + ψ̄+D−−ψ+) , (B.1.28)

Lyuk = −iq

�
λ̄−ψ̄+ − λ̄+ψ̄−

�
+ σψ̄−ψ+ (B.1.29)

+iq
∗
�
ψ+λ− − ψ−λ+

�
+ σ

∗
ψ̄+ψ− , (B.1.30)

and
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Lpot = |F |
2
− |σ|

2
|q|

2 +
1
√
2
|q|

2
D

3
. (B.1.31)
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Appendix C

Darboux Coordinates

C.1 Projectors
Here we give some details on the Antarctic (ΠN) and Arctic (ΠR) projectors.
They are defined by

ΠN =

�

C0

dζ
�

2πi

1

ζ − ζ �
, ΠR =

�

C0

dζ
�

2πi

1

ζ � − ζ
,

where C0 is a closed contour enclosing the origin. Consider the Laurent ex-
pansion around ζ = 0 of the function f(ζ) =

�∞
m=−∞ cmζ

m. Applying the
projector ΠN , we will need to calculate

�

C0

dζ
�

2πi

ζ
�m

ζ − ζ �
.

Since there is a pole at ζ
� = ζ, we avoid the singularity by moving the pole

slightly outwards in the radial direction. This can be achieved by introducing
the �−prescription �

C0

dζ
�

2πi

ζ
�m

ζ − ζ � + �(ζ + ζ �)
.

If m ≥ 0, there are no singularities enclosed by the contour and the integral
vanishes. If m < 0 the residue is simply ζ

m. Thus, only negative powers
survive: �

C0

dζ
�

2πi

ζ
�m

ζ − ζ �
=

�
0 if m ≥ 0
ζ
m if m < 0

,

or �

C0

dζ
�

2πi

f(ζ �)

ζ − ζ �
=

∞�

m=1

c−m

ζm
. (C.1.-2)
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Using the same �−prescription as above, the action of ΠR on f (ζ) is given by
�

C0

dζ
�

2πi

f(ζ �)

ζ � − ζ
=

∞�

m=0

cmζ
m
. (C.1.-2)

Thus, ΠN + ΠR = 1 as expected. In addition to these, we can construct
other projectors by using appropriate powers of ζ/ζ �. An example of that is
Π̄N , which annihilates the non-positive powers of ζ. Thus the combinations
ΠN ± Π̄N , annihilate only the ζ-independent term.

C.2 c-map
The c-map [75] relates classical hypermultiplet moduli spaces in compactifica-
tions of type II strings on a Calabi-Yau threefold to vector multiplet moduli
spaces via a further compactification on a circle. In [76, 77], it was shown
that the c-map has a natural description in projective superspace. It can be
regarded as taking a vector multiplet from four to three dimensions and rein-
terpreting it as a tensor multiplet when returning to four dimensions. This
is possible because in three-dimensions, a vector multiplet is equivalent to a
tensor multiplet, which can then be dualized into a hypermultiplet in four
dimensions.

This means that given an N = 2 holomorphic prepotential F (W ) describ-
ing a vector multiplet:

Lv = −Im
��

d
2
θd

2
ϑF (W )

�
, (C.2.0)

there is a corresponding dual projective hypermultiplet Lagrangian G describ-
ing a hyperkähler moduli space given by

Ls =

�
d
2
θd

2
θ̄

�
dζ

2πiζ
G(ζ; η�) =

�
�
∈
θ�

∈
θ̄

�
�ζ

∈π�ζ
Im

�
F(ζη�)

ζ∈

�

=− i

�
d
2
θd

2
θ̄

�
dζ

2πiζ

�
F (ζηe)

ζ2
−F (ζηe) ζ

2

�
.

This expression determines the semiflat projective Lagrangian f
sf in (4.3.9).
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Appendix D

Matrix Models

D.1 Roots of �Am−1 and �Dn

Here we give some useful information about the roots for �A and �D Lie algebras.
For �Am−1 we choose the following root basis

α̃a = ea − ea+1 , a = 1, ...,m− 1 ; θ̃ = −e1 + em ,

where ea are canonical unit vectors of dimension m. For �Dn we choose

αi = ei − ei+1 , i = 1, ..., n− 1 ; αn = en−1 + en , θ = −(e1 + e2) ,

where ei are the unit vectors of dimension n.

α̃n−2θ̃

α̃2n−5 · · · α̃n−1

α̃1 · · · α̃n−3

αn−1

αnθ

α1

α2 · · · αn−2

Figure D.1: Dynkin diagrams for �A2n−5 and �Dn.

In Fig. D.1 we show the affine Dynkin diagrams for the �A and �D Lie
algebras along with the roots associated with every node. At each node, the
CS level is given by α̃ · q and α ·p for �A and �D, respectively. The identification
of opposite CS levels in the �A2n−5 quiver imposes α̃a · q = α̃2n−4−a · q and
hence qa = −q2n−3−a for a = 1, ..., n − 2. With these conventions, unfolding
the �D-quiver to the �A-quiver relates qa = pa+1.
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D.2 �D5

Here we give the detailed solution of the matrix model for the �D5 quiver gauge
theory. As discussed in Section 5.3, there are 7 regions defining a generic
solution of this model. To keep the notation simple, the second index for the
four y’s corresponding to the external nodes is suppressed.

Region 1: 0 ≤ x ≤
µ

3(k2+k3+k4+2k5+2k6)

ρ =
µ

3
;

y1 − y6,2 =
(2k1 − k3 − k4 − 2k6) x

4ρ
,

y2 − y6,2 =
(2k2 − k3 − k4 − 2k6) x

4ρ
,

y3 − y6,2 =
k3x

2ρ
,

y4 − y6,2 =
k4x

2ρ
,

y5,1 − y6,2 = y5,2 − y6,2 = −
(k3 + k4 + 2k6)x

4ρ
,

y6,1 − y6,2 = 0 .
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Region 2: µ

3(k2+k3+k4+2k5+2k6)
≤ x ≤

4µ
6k2+9k3+9k4+12k5+18k6

ρ =
µ

3
;

y1 − y5,2 = −
1

2
,

y2 − y6,2 =
(2k2 − k3 − k4 − 2k6) x

4ρ
,

y3 − y6,2 =
k3x

2ρ
,

y4 − y6,2 =
k4x

2ρ
,

y5,1 − y6,2 = −
1

2
−

(2k1 + k3 + k4 + 2k6) x

4ρ
,

y5,2 − y6,2 =
1

2
+

(2k1 − k3 − k4 − 2k6) x

4ρ
,

y6,1 − y6,2 = 0 .

Region 3: 4µ
6k2+9k3+9k4+12k5+18k6

≤ x ≤
2µ

3(2k2+k3+k4+2k5+2k6)

ρ =
µ

3
;

y1 − y5,2 = −
1

2
,

y2 − y6,2 = −1−
(k1 − k2) x

2ρ
,

y3 − y6,2 = −1−
(2k1 − 3k3 − k4 − 2k6) x

4ρ
,

y4 − y6,2 = −1−
(2k1 − k3 − 3k4 − 2k6) x

4ρ
,

y5,1 − y6,2 = −
3

2
−

k1x

ρ
,

y5,2 − y6,2 = −
1

2
,

y6,1 − y6,2 = −2−
(2k1 − k3 − k4 − 2k6) x

2ρ
.
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Region 4: 2µ
3(2k2+k3+k4+2k5+2k6)

≤ x ≤
2µ

2k2+3(k3+k4+2k5+2k6)

ρ =
µ

2
+

x

4
(k1 − k2) ;

y1 − y5,2 = −
1

2
,

y2 − y6,2 = 0 ,

y3 − y6,2 = −
1

2
+

(2k3 + k4 + k5 + 2k6) x

2ρ
,

y4 − y6,2 = −
1

2
+

(k3 + 2k4 + k5 + 2k6) x

2ρ
,

y5,1 − y6,2 = −
1

2
−

(k1 − k2) x

2ρ
,

y5,2 − y6,2 = −
1

2
,

y6,1 − y6,2 = −1 +
(k3 + k4 + k5 + 2k6) x

ρ
.

Region 5: 2µ
2k2+3(k3+k4+2k5+2k6)

≤ x ≤
2µ

2k2+3k3+5k4+4k5+6k6

ρ = µ+ xk1 ;

y1 − y5,2 = −
1

2
, y2 − y6,2 = 0 ,

y3 − y6,2 =
(3k3 + k4 + 2k6) x

4ρ
,

y4 − y6,2 =
(k3 + 3k4 + 2k6) x

4ρ
,

y5,1 − y6,2 =
1

2
,

y5,2 − y6,2 = −
1

2
,

y6,1 − y6,2 =
(k3 + k4 + 2k6) x

2ρ
.
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Region 6: 2µ
2k2+3k3+5k4+4k5+6k6

≤ x ≤
2µ

2k2+5k3+3k4+4k5+6k6

ρ =
3µ

2
+

x

4
(6k1 − k3 − 3k4 − 2k6) ;

y1 − y5,2 = −
1

2
, y2 − y6,2 = 0 ,

y3 − y6,2 =
1

6
+

(2k3 + k6) x

3ρ
,

y4 − y6,2 =
1

2
, y5,1 − y6,2 =

1

2
, y5,2 − y6,2 = −

1

2
, y6,1 − y6,2 =

1

3
+

(k3 + 2k6) x

3ρ
.

Region 7: 2µ
2k2+5k3+3k4+4k5+6k6

≤ x ≤
2µ

2k2+3k3+3k4+4k5+6k6

ρ = 2µ+ x (2k1 − k3 − k4 − k6) ;

y1 − y5,2 = −
1

2
, y2 − y6,2 = 0 , y3 − y6,2 =

1

2
, y4 − y6,2 =

1

2
,

y5,1 − y6,2 =
1

2
, y5,2 − y6,2 = −

1

2
, y6,1 − y6,2 =

1

2
+

k6x

2ρ
.

Finally, the last saturation occurs at the end of this region with y6,1 = y6,2+1.

D.3 Exceptional Quivers
We have also solved the matrix models for the exceptional quivers �E6,

�E7 and
�E8. They consist of eleven, seventeen and twenty-nine regions respectively.
Here we give the corresponding free energies for a particular ordering of the
CS levels. In Fig. D.2, we show our conventions in labeling the nodes.

k1 k2 k3 k4 k5

k6

k7

k1 k2 k3 k4 k5 k6 k7

k8

k1 k2 k3 k4 k5 k6 k7

k8

k9

Figure D.2: Labeling of Chern-Simons levels for �E6,
�E7 and �E8.
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�E6

The matrix model for �E6 gives:

2

µ2
=
2(4k2 + 11k3 + 8k4 + 4k5 + 6k6 + 4k7)

(2k2 + 5k3 + 4k4 + 2k5 + 3k6 + 2k7)2

−
1

42(3k2 + 6k3 + 4k4 + 2k5 + 5k6 + k7)

−
1

77(13k2 + 12k3 + 8k4 + 4k5 + 3k6 + 2k7)

−
1

3(3k2 + 6k3 + 4k4 + 2k5 + 5k6 + 4k7)

−
9

6k2 + 14k3 + 13k4 + 6k5 + 9k6 + 6k7

−
9

11(6k2 + 14k3 + 13k4 + 12k5 + 9k6 + 6k7)
,

under the assumptions that k6 ≥ k5 ≥ k4 ≥ k3 ≥ k2 ≥ 0 and k7 > 3k2 + 6k3 +
4k4 + 2k5 + 4k6.

�E7

The matrix model for �E7 gives:

2

µ2
=
8k2 + 24k3 + 42k4 + 4(8k5 + 6k6 + 3k7 + 5k8)

(2k2 + 6k3 + 10k4 + 8k5 + 6k6 + 3k7 + 5k8)2

−
1

2k2 + 7k3 + 10k4 + 8k5 + 6k6 + 3k7 + 5k8

−
1

2k2 + 6k3 + 10k4 + 9k5 + 6k6 + 3k7 + 5k8

−
1

180(2k2 + 3k3 + 4k4 + 3k5 + 2k6 + k7 + 2k8)

−
4

15(4k2 + 11k3 + 2(9k4 + 8k5 + 7k6 + 6k7) + 9k8)

−
27

7(6k2 + 17k3 + 28k4 + 24k5 + 20k6 + 9k7 + 15k8)

−
32

21(8k2 + 25k3 + 42k4 + 32k5 + 22k6 + 12k7 + 27k8)
,

under the assumptions that k7 ≥ k6 ≥ k5 ≥ k4 ≥ k3 ≥ k2 ≥ 0 along with
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4k3 + k4 > 2k5 + k6 , k3 + 2k4 + k5 > k7 , k4 + k5 > k6 and 3k8 > 6k3 + 12k4 +
15k5 + 10k6 + 5k7.

�E8

The solution of the matrix model for �E8 gives:

2

µ2
=
8k2 + 24k3 + 48k4 + 74k5 + 92k6 + 48k7 + 64k8 + 32k9
(2k2 + 6k3 + 12k4 + 18k5 + 23k6 + 12k7 + 16k8 + 8k9)2

−
1

3150(2k2 + 3k3 + 4k4 + 5k5 + 6k6 + 3k7 + 4k8 + 2k9)

−
1

2(k2 + 3k3 + 6k4 + 9k5 + 12k6 + 6k7 + 8k8 + 4k9)

−
1

2k2 + 6k3 + 13k4 + 18k5 + 23k6 + 12k7 + 16k8 + 8k9

−
27

7(6k2 + 18k3 + 35k4 + 52k5 + 69k6 + 38k7 + 48k8 + 24k9)

−
108

35(12k2 + 36k3 + 70k4 + 104k5 + 138k6 + 69k7 + 103k8 + 48k9)

−
36

55(12k2 + 36k3 + 70k4 + 104k5 + 138k6 + 69k7 + 103k8 + 68k9)

−
9

154(6k2 + 17(3k3 + 4k4 + 5k5 + 6k6 + 3k7 + 4k8 + 2k9))
,

assuming that k6 ≥ k5 ≥ k4 ≥ k3 ≥ k2 ≥ 0 , k7 > 3k4 + 6k5 + 4k6 , 2k4 +
4k5 + 6k6 + 9k7 > k8 , 2k3 + 4k4 + 6k5 + 8k6 + 4k7 + 6k8 > k9 and 2k9 >

6k3 + 12k4 + 18k5 + 24k6 + 16k7 + 11k8.
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