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ABSTRACT 

We compute the differential cross section for the process 

e+p+e+p R 

where pR is a nucleon resonance characterized by parity, spin J, 

and mass 53. The two inelastic form factors describing this cross a- 
section are expressed in terms of three smplitudes characterizing the 

(p,p,) electromagnetic vertex. The kinematic and analytic structure 

of these three amplitudes as a function of q2 are discussed. The 

case of the 33 resonance is discussed in some detail. 
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I. INTRODUCTION 

The study of inelastic electron-proton scattering is likely to in- 

crease in importance as a probe of the structure of the nucleon as higher 

energies and momentum transfers become available. Furthermore, from both 

the experimental and theoretical standpoint, excitation of resonant states 

(isobars) of the nucleon will be of particular interest. We here review 

and extend (1,2,2) the phenomenological description of such a process, 

giving the general vertex and differential cross section for e-+ p +e + p R' 

where pR is a nucleon resonance characterized by parity nR, spin J, and 

mass M. We find the snalogue of the description of elastic e-p scattering 

by't?he Rosenbluth formula; our main result is the following expression 

for the cross section, where only the final electron is detected, and 

where the initial particles are unpolarized 

da 
dR = I 4s2 sin4 g m 1'26 sin2 ' 1 

92+Etap 
lab 

C P 2q*2 m2 

(1.1) 

Here E and 19 are incident electron energy and scattering angle, and M and 

m are isobar and nucleon masses, respectively. q2.= 4s~' sin2 ' * p 1s the 

invariant four-momentum transfer, while q*2 is the magnitude of the three- 

momentum transfer from the electron in the isobar rest frame: 

*2 1 
9 =q2+- 

4M" 
- m2 - q2 2 

I 
(1.2) 
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this frame is especially convenient for the kinematical analysis of the 

process. The form factors fc and f, are the analogues of GE and GM for 

elastic scattering, and are functions of q2. 

For q2 = 0 the transverse form factors f* are related to the phcto- 

absorption cross section integrated over the resonance 

1 ay(u) do = s iq1,12+ If-';] q2=o 

Lab; over resonance 

Detailed properties of the form factors fc, f, are highly model 

dependent. 
a- 

However, in the limit q*+O (which implies qo+M-m) the form 

factors have simple threshold behaviors: 

1) 1+ 3- 5+ Normal parity1 transitions 2 -+T , 2 ,.... 

J-3 
f+- q" 2 

2) 
+ 1- 3+ 5- Abnormal parity transitions g -+F , p , 2 ,***’ 

few q*J$ 

f+m ,*J-$ 
0.5) 

Unfortunately, these threshold properties may not be of use, because 

only spacelike momentum transfers are available experimentally, and it is 

not clear whether the threshold behavior still persists there. For example, 

if we use the nonrelativistic reduction to nuclear physics (m, M --+ m) then 

_ *-*:* 
_- - 
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t:e know from the Bessel functions involved 

fcW (q*R)L for q*R < L 

where L = J + ' 2 depending on the parity and R is the radius of the target. 

On the other hand, kinematics [Eq. (1.2)] tells us 

9” ’ _ g (M-m) 

Taking (M-m) N 2uL as is roughly the case experimentally (cl is the pion 

mass), we find 

1 
R5.$- 

in order that threshold behavior still persist for spacelike q2. This 
a- 

is a rather small interaction radius. 

For the normal parity transitions, we find sn additional relation 

between fc and f, valid near threshold, which is an additional test on - - 

&he spin-parity assignment and the assumption of dominance of the thres- 

hold behavior. This relation 
, 

z g+; q. Ifc I’ 

lf+)2+ If- 1' - q*2 

(1.6) 

0.7) 

is well-known in nuclear physics. In particular it is the relation which 

allows one to get photon lifetimes for electric transitions from Coulomb 

excitation. 

The rest of this paper is devoted to the details of deriving the cross 

section and to discussion, as best as we can on general grounds alone, of 

what behavior might be expected of the form factors. 
-M 

(1.8) 

(1.9) 
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In Section II, we write down the general electromagnetic vertex 

function between isobar and the nucleon. Two representations are used. 

The first is the Jacob-Wick (4) helicity representation, written down 

in the isobar rest frame. In the second we explicitly describe the isobar 

by a generalized spinor wave function (2) 

ly**c( 

'r 
3-k (pi= 1,...,4; r = 1,...4) (1.10) 

In each instance three form factors are involved. 

In Section III, we square the matrix element and sum over spins to 
.a- 

obtain the cross section, using again both the helicity and spinor wave 

function methods. The connection between the two approaches is then . 

._ established. 

In Section IV, the threshold behavior of the form factors is derived. 

In Section V, we review the analytic properties of the form factors expected . 
from Feynman diagram considerations. Unlike elastic scattering, complex 

singularities appear and the form factors need not be real. Indeed in 

certain circumstances the phase of the form factor is determined by the 

Watson final-state theorem, and we discuss how this comes about. Finally, 

in Section VI, we summarize briefly implications of some models for the 

3+ 
P resonance, in particular that of Fubini, Nambu and Wataghin (6) and 

ofGourdin and Salin (I). 

-5 - 



II. STRUCTURE OFTREVEB'IM 

The general process of electron excitation of the nucleon is illus- 

trated in Fig. 1. We are primarily interested in the case where the final 

nucleon state is a nucleon isobar characterized by a spin J, parity xR, and 

mass M. The problem then is to study the nucleon-isobar electrormgnetic 

vertex 

< P'IJ&O))P > 

where I P > is the Heisenberg state vector of the initial nucleon and 

IP’ > that of the final nucleon system (they are both eigenstates of the 

four momentum operator,PV). JV(0) is the electromagnetic current operator 

of 't&e strongly interacting system evaluated at the space-time point 

X = 0. 
P 

In analyzing the nucleon-isobar electromagnetic vertex, it is most 
._ 

convenient to work in the rest frame of the final isobar. In this frame, 

the final state is an eigenstate of angular momentum J, the spin of the 

isobar. We shall use two methods to analyze the vertex. The first is the 

helicity analysis of Jacob and Wick (A) and the second is an explicit con- 

struction of.the wave function of the isobar in the spirit of Rarita and 

Schwinger (8). We present both methods since, although they lead to the 

same result, they tend to emphasize different aspects of the problem and 

hence give one some additional insight. We start with the helicity 

analysis (2). 

-6- 
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Helicity Analysis 

In the rest frame of the isobar the quantity we want to study is 

< fiRJM Jp(0) s* X > 
I I 

where X is the helicity of the initial nucleon and q* = L = P is its momen- V 

turn. We now want to use angular momentum conservation and the fact that 

J(0) transforms as a vector under rotation while Jo(O) transforms as a k 
scalar. Our final state is already an eigenstate of angular momentum. The 

problem is therefore to expand the initial nucleon state in eigenstates of 

angular momentum. From the work of Jacob and Wick, one knows immediately 

how to do this. The basic theorem is that 

One gets the appropriate energy-angular momentum-helicity eigenstate by 

integrating the momentum eigenstate over solid angles and using as a 

weighting function the rotation matrices BJ". ( We follow the angular 
ml 

momentum notation of Edmonds (g).) The final9 
q 

in the argument of the 

8' J functions is merely a definition of the overall phase of the states 
mx 

(w eiW q) as discussed in Jacob and Wick. The completeness'properties of 

the J Q' allow us to invert this relation 
mh 

(2.1) 

(2.2) 
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and give us the needed result. That is 

< .R’j+,)o,(~~ > = 

It is convenient at this point to introduce eigenstates of parity. From 

the work of Jacob and Wick the parity operator z acting on the nucleon 

state gives 

h 

fi I qjmh > = (-l)j-+(qjm - X > . 

We can therefore introduce the parity eigenstates 

I qfijm > = 1 
J-F- L 

lqjmh > + (-l)j-+lqjm -X> 1 
a-- 

The problem is therefore reduced to studying the matrix elements 

where only the appropriate value of n can contribute. We can now use the 

Wigner-Eckart Theorem to extract the M dependence of the matrix elements.= 

< XRJMzP(0) qnjm > 
I I 

Since in this case j = J, J+l there are three independent reduced matrix 

elements which are each functions of 1~1 = q*. We also have for the 

fourth component 

< xRJ ItJ,(O)ll sd > 

and only get a contribution here if J = j. There is, however, still one 

(2.4) 

(2.5) 

(2.6 > 

(2.7) 

relation between these four reduced matrix elements which comes from the 

_-. - -8 - 



continuity equation for the nucleon electromagnetic current 

Using 

(2.8) 

(2.9) 

and the formulae of Edmonds for combining two 4 functions one finds after 

a little algebra that the continuity equation says 

a-- 
1 (s)' (j*lOljlJ$) < WI/ J(0) [/q*nj > = 2 < flRJ I/Jo(0)[(q*'J > (2.10) 
j 9 

and therefore only three of the reduced matrix elements are independent and 

the electromagnetic nucleon-isobar (spin J) vertex is characterized by 

three independent form factors. This result is well-known in nuclear physics, 

for electron excitation &+ +J 'rrR 
can take place by one Coulcanb, one trans- 

verse electric and one transverse magnetic multipole. The result was first 

given in covariant form by Durand, de Celles, and Marr (1). 

It is convenient for our later work to define the linear combination 

with p = + 1, 0 and 

fc = (A)' < nRJ[]Jo(0)[/dinJ > (s)" (2.12) 

-9- 



The continuity equation then simply eliminates f, 

fo = + fc 
9 

(2.13) 

and the transformation has the further property that 

Spinor Wave Function Analysis \ 

As an alternative to the helicity description given above, we may 

write the vertex function in terms of a general spinor wave function 

describing a particle of spin J. This wave function 

l l +J-+ 

(P,h) (r = I,..., 4; pa = 1, 2, 3, 4) 

is-the generalization of the Dirac spinor for J = 4 (where there are no 

indices p> and the Rarita-Schwinger wave function for spin 3/2. It is3 

1) Symmetric under any permutation of indices %. 

2) Zero upon contraction of any pair of indices pa. 

3) A solution of the Dirac equation 

-w 

_-. 
-  

(iy*P + m)rs Yp 
.=*,-+ 

-0 

4) "Orthogonal' to ycL and PI1; 

5) Normalized 

’ l l pJ-’ 

2 (P,h) YPl 
l ,-$ 

(PJ) = 1 

(2.15) 

(2.16) 

(2.17) 
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Our task is to reconstruct the electromagnetic vertex function in this 

language in analogy to the conventional (11) relativistic treatment of, - 

say, the proton vertex. From the helicity description we know that there 

will be three independent form factors; our choice of spinor covariants 

will be motivated ex post facto. The choice we do make has the convenient --- 

property that cross terms between the different form factors vanish when 

the amplitude is squared and spins are summed in constructing the cross 

section. So without further ado, we write for the general form of the 

vertex function for normal parity transitions l/2+ -9 3/2-, 5/2+, . . . 

9-1 (-P*q -E-P s”> g,h2> 
1 

x 

! 

+ 2ie 
p 

1 
cq3ypcxqpSy g2(q2) 

+M q Y'SY, g,(s') + g3(q2 
1 (. 

where the pseudovector S 
CI 

is defined by 

S = ie 
P pvha pqc v x u : 

i UPA 

For abnormal parity transitions the only change that need be made is 

the replacement 

(2.18) 

(2.19) 

@,x) -+ Ys u(w) 

- 11 - 
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For spin l/2 final states the spinor Y has no indices pcx and conse- 

quently the coefficient of g2 does not make sense. In this case there 

are only the two form factors g and g . 
1 3 

Indeed q2gL and g3 

correspond to the electric and magnetic form factors s and GM used 

in the proton elastic vertex function. 

To proceed toward obtaining a cross section in terms of these form 

factors it is convenient to specialize to the rest frame of the isobar. 

From property (5) the lower components (r = 3,4) as well as the time 

components (p, = 4) of the isobar spinor vanish in this frame, and it 

is easy to go to a two-component "Pauli spinor" formalism for both 

isobar and proton. Upon carrying out this reduction we obtain,4 for 

normal parity transitions, 

X + [ (2 x 3 xga 1 2g2(q2) 

+& [iz- 
I. 

2 x 51 [g2h2) + g3h2)] 

x0) 

(2.21) 

This will be the most useful form for calculating the spin sums, 

which are most easily done in the isobar rest frame. We caution the 

reader not to infer too hastily the %hreshold behavior," i.e., the 

behavior for low q*, from this formula; this is discussed in more detail 

in Section IV. 

For abnormal parity transitions we make the replacement in Eq. (2.21) 

(2.22) 
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III. CROSS SECTIONS 

The cross sections for the process illustrated in Fig. 1 can be 

written in standard fashion as (l.2) 

da =2# d3p' 1 --W IV 
2E' q4 kLv 

(3.1) 

where 

N CLV = - 3 Tr y,(m$ - iy*p) y,(m$ - ir*p') 

(3.2) 
= 2 I P,P; + P,PL - ~pv(P-p’ + m2) 1 

p and p' are the initisl and final lepton four-momenta, m is the nu‘cleon 

mass and rnt is the lepton mass. The covariant tensor W 
CLV 

is given by 

W I.Lv = (2430 c c S(4)(p-p'-q) < PIJ,(o)(P'> < P'IJI-,(o)IP > (E) 
initial final 

(3.3) 

where L? is the normalization volume, E is the energy of the target, 

c 
indicates an average over nuclear orientations. From general 

initial considerations of covariance, parity conservation, and current 

conservation, 

4J.wclV = Wllv% = 0 , 

the tensor W yv is known to have the form (13) 

(3.4) 

W I&! 
PV = w1(q2,q*p) Epv - ( J s2 

+ w2(q2,q4 L m2f+#v-~5j . 
- 13 - *_ -.s, 



The cross section in the laboratory frame is given by 

- p p' case-2m. w1 I II I -rV 

(3.6) 

+ EE' + lpl[p'l COB 8 +mi dU W2 
3 

If we neglect the lepton mass this formula simplifies 

d2a 402e2 2e 
= - - cos 

d.Q'dE' q4 m 
2 se + ~l(si?,q-P) tan 5 1 (3.7) 

a q2 = 2e ~E'C sin z 

Knowledge of W PV 
also gives us the total photoabsorption cross section 

._ - - 
iy = $ 1 VW ep Wclv eV = wWI(O, - k*P) 

PO1 

(3.8) 

where the kinematics are illustrated in Fig. 2. 

We now proceed to calculate the covariant tensor W P-V 
and then 

the cross sections. We must evaluate 

d3P' 
W 

PV 
z&f- 

E' 
@(P-PI-q) 3 1 1 < fiRJMIJ,$O)(qA > < qhIJv(0)IflRJM > 

AM 

We see that we can take out 
d3P' 'r S4(P-P'-q)m2 as a factor if 

the final state is an isobar and we .define 

d3P' 
W =- 

pv El 
S4(P-PI-q) m2Tclv (3JO) 

_- - 14 - 



I 

We can now use the general form of W 
PV 

or T 
PV 

to simplify the 

calculation. Since there are only two general form factors T1 and 

T2 we need only two relations to determine these.quantities. We can 

therefore campute 

and 

- - From the general form of T 
PV 

T = Tlh2) spv - itA! 
WV 

s2 
+ T,(q2) m% Pv - 2 

s2 
p-3q 

CL q2 P 
, 

it follows that in our special frame we can write 

T l-v = 3T 1 - !f? 5 T2 = [lf+i2 + If-12 - 5 lfc12]$ 
m2 

and 

(3.11) 

(3.W 

(3.13) 

(3.14) 

(3.15) 

-- 
- 15 - 
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These equations give one the two necessary relations and we can 

solve to get 

T =A 22 f 
( 

2 
2 2 *4 c Q I I + -$ (If+l’ + If-13) 

(3.16) 

(3.17) 

Inserting our expressions for W1 and W2 [c.f. Eqs. (3.5), (3.10) 

and (3.13)] in the formula for the cross section, Eq. (3.7), we find 

(3.18) 

X [-$ /%I2 + ($ + 5 tan2 ii) (lf+12 + lf-121] 

This formula is our main result.' We see that one can only measure the 

combination (lf+12 + If-l') in experiments where only the final electron 

is detected. The Coulomb and transverse form factors can be separated 

experimentally by doing experiments at fixed q2 and varying 8 or by 

looking at 8 = 180' where only the transverse form factors contribute. 

Taking the limit m + -, M/m +l reduces the above formulae to that 

usually used in analyzing electron excitation of nuclei. Frcm Eq. (3.8) 

we have for the photoabsorption cross section integrated over the isobar 

_- - 16 - 



resonance 

s uy(co)aW = 4tr2c2 
over resonance M;! - m2 " ( lf+12 + lf-l~2)q2;o (3.19) 

This expression gives us the tra:nsverse form factors evaluated at one 

momentum transfer, namely q2 = 0. 

This last relation can be used to give an approximate formula for 

the inelastic electron scattering cross section at small q2, the 

Weizgcker-Williams approximation. Keeping terms of order q2 in the 

last bracket in Eq. (3.18) we find 

a.- 
do = 

dS1 lab 
q2+ 0 

Wave Function Description 

We may also compute W 
1 

and W2 in terms of the form factors g , g 
1 2 

and g and obtain a connection between them and the magnitudes of fc 
3 

and f, . We return to Eqs. (3.9) and (3.10) for the expression for T 
pV’: 

vp T pv = s L < PX~Jv(0)(P'x' > < P'V~JV(0)~PX > (3.21) 

We choose to evaluate T 
ClV 

in the isobar rest frame to facilitate doing 

the spin sums. We first construct explicitly the state x, . ..cxJ p 
for the case of the spin aligned along some axis 8. Were the z-&s 

- 17 - 



150 lie along s, we would clearly have 

where 

& =- 1 
a v(l , +I, 0) 

(3.22) 

(3.23) 

and X= (i). The sum over h' may be replaced by 

--f (2Jtl) dnS 
4x 

l,.r33, an average over orientations of 8. Upon inserting Eqs. (3.22), 

(3.23), and (2.21) into (3.21) and summing out the spins of initial proton, 

we find, for normal parity transitions 

x -(g*$* 

[ 

X 

1 E'hq q -- 
) M" 

+,q* 

L 

[-$.$ ['" ;-%q*] 

gl+ci* x  g) l G x $) 2g2+i (s**g)a*EX ^9(g2+g3) 1 
g:t@x 3 l (4 x E') 2g;-i - - (cb^q)a*@ x ^Q(g*+g*) 

---- -23 

1 

(3.24) 

- 18 - 



The integrations and traces are now straightforward; cross terms between 

different gi rancel out, and after some calculation we find6 

ET e'= 2( E+m)(q “(2J4!! 

P w v km2 2J-3 (2J)!! I I 
2 

gl 

(3=25) 

We insert the factor Q2 to take into account abnormal parity transitions, 

in which case the expressions Eqs. (3.24) and (3.25) contain an extra factor 

due to the 7 : 
5 

. (3.26) 

& $ $, g, .  .  .  

- - 

To liberate Eq. (3.25) from the isobar rest frame, we compare it with 

Eq. (3.13) and identify 

(2J+l)!: g 2 
2J!! I I 1 

(3.27) 

(3.28) 

-w 

_-  
-  
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I 

In terms of the f's, we thus find 

[ If+12 + If-J2 ] = v. @gp I@+ lg212 + ($ 
(3.29) 

I 2 

(3.30) 

We again caution the reader not to read off the threshold (low q") 

behavior of the cross section from these formulae; detailed discussion 

of this point is in Section IV. 

_- - 20 - 



Iv. THRESROLD BEHAVIOR 

Prom our general discussion of the nucleon-isobar electromagnetic 

vertex we can extract the dependence on q* as q*+O and 90 +M-m. 

This dependence is very usefuL in nuclear physics as it allows one to 

identify the multipolarity of the transitions involved. It also allows 

one to predict which transitions will become important as the momentum 

transfer to the nucleon is increased. In the case of the nucleon however, 

the applicability to physical situations is not so straightforward, as 

discussed in the introduction. 

Sninor Wave Function Method 

In the limit q* -+O, we search for those spinor covariants, ,iinear 

a- combinations of the ones appearing in Eq. (2.18), which contain the few- 

est possible powers of q*. Considering first the case of normal parity, 

we find that the amplitude 

< P'h' J1ev PA >threshold = ; 
I I 

(4.1) 

is the only (gauge invariant) vertex which behaves as q*J-3/2 as 

q* +o. Thus, provided go # 0 for q* = 0, this amplitude dominates 

all others for sufficiently small q*. Upon reducing this expression 

to the isobar rest frame and then re-expressing the amplitude in terms 

of form factors Q,, g2' Q, we find 

M 
g1 = - Q, F U 
g2 = - g3 = + 

go% 

2(s*)2 

(4.2) 

(4.3) 
- y--i* 
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and in terms of fc and f, we find the threshold behavior 

If+( * + If-12 N (q*)2J-3 

as well as the important relation 

lf+12 + If-l2 2 
2J+l 'o + 

I I f * ( 4) 
25-17 

C 
9 

(4.4) 

( 
1+ 3- 5+ -5 + z”‘- > (4.5) 

(4.6) 

which follows from Eqs. (4.2), (4.3), (3.29), and (3.30). 

If this threshold behavior persists in the physical region of space- .+- 
like momentum transfers (i.e., this amplitude is still the dominant 

one), we may relate forward and backward scattering at the same 

-momentum transfer q2, - - and test the spin-parity assignment of the resonance 

as well as the hypothesis that the threshold behavior dominates. 

Returning to Eq. (l.l), 

da - = 
dR "threshold" 4c 

The assumption going into this result is that the "threshold amplitude" 

Eq. (4.1) is dominant for physically accessible q2 . Notice that any 

q2 dependence in go(q2) cancels out in the ratio in Eq. (4.6). 

_- - 22 - 



For abnormal parity transitions, it is not possible to find a 

threshold amplitude such as Eq. (4.1) which behaves as (q*) J-3/* . 

This comes about because the y i coupling large and small components 5 
of the spinors, gives a factor q*z*g. There are, however, two in- 

dependent smplitudes which have the threshold behavior (q*) J-1/2 . The 

first is Eq. (4.1) with u(P,X) + y5u(P,X). A second may be taken to be 

(4.8) 

This means, in particular, that there will be no constraint relating 

f to 
C 

f+ near threshold such as Eq, (4.6). The threshold behaviors 

we do obtain for this case are evidently 
a-~ 

I I fc ,= N (q*fJ+l (4.9) 

I I ft = N (s+)*J-l 

1+ lf For the case of F +p transitions, 

(4.10) 

only two form factors occur 

(g, must vanish) and similar considerations as before lead to threshold 

behaviors 

I I fc 2 - h*)* 
I I f, 2 - (q*12 

I I fc 2 - (q*12 

I I f;=w 1 

1+ 1+ 
P 3 

1+ 1- 
P -2 

(4.11) 

(4.2) 

- 23 - ---.aB 



Helicity Representation: 

The entire q* dependence of the reduced matrix elements is con- 

tained in the nucleon state vectors I q*A > . One can give an explicit 

construction of this state by using the fact that the state vectors form 

a basis for an infinite dimensional unitary representation of the Poincare/ 

group l That is, there is a unitary operator e n;ZZ which "boosts" us from 

the rest frame of the particle to a momentum q* in the z direction. We 

write 

I q*A > = e Qiz 
I OA > 

a-- 

where 

q* s* 
.Q = tanh-l v - - 

(q+ + m2)2 q*+o m 

(4.13) 

(4.14) 

The operator 4 which generates our Iorentz transformation in the 

z direction (g = i3, where M 
PV 

is the covariant angular momentum 

tensor), is a polar vector operator under spatial rotations and reflec- 

tions. If we now go back to the fundamental theorem 

where 

gwy = e 
GzCX i3 e p ,iJzY (4.16) 

_-, - 24 - 



is the finite rotation operator and think of letting q*'+O we see 

that we must let tz act enough times in the expansion of the exponen- 

tial so that we can get ta basis for the j th representation of the rota- 

tion group. If it doesn't appear enough times, the integration over 6-q 

will give zero. Furthermore, since 2 is a polar vector it must act 

enough times to give us a state of the correct parity, which is what we 

eventually want. Since each time a ^Kz acts, it carries with it a 
* 

power of 
( 1 ii- we can read off the q* dependence in the .various 

cases. We find (L) 

a) Normal Parity Transitions: i/2+ + 3/2-, 5/2+, 7/2- . . . etc. 

fc w (q*) J-l/* 

f* w (q*)J-3/* 
(4.17) 

b) Abnormal Parity Transitions: l/2+ *l/2-, 3/2+, 5/2-, 7/2+... etc. 

fc cy (q*) J+e 

f * hr (q*)J-112 
(4.18) 

A little care is necessary in the case of l/2+ +1/2' transitions 

for if J = l/2, then 

f+ Z 0 J= 112 (4.19) 

and there are only two form factors. Furthermore in the case of 

1/2+ 4/2+ transitions, the q* +O limit of the electric monopole 

operator which is just 1, the total charge, cannot cause transitions; 

- 25 - 



therefore the threshold behavior in this case 

(4.20) 

One might be tempted to conclude f'rom these arguments that the 

expansion parameter for the threshold behavior is $. However, this 

argument is invalid since, at least in nuclear physics, it is known 

that the relevant quantity is the size of the target and not the re- 

ciprocal of its mass. 

In the case of normal parity transitions the relation (4.6) between 

the transverse and coulomb form factors follows from the continuity 

equation, for if we write 

a.- 

< flRJ 11 Jo(O) I( q*fiJ ’ = acq*Jt 

< fiRJ 
- II 

$0) 
II 

+e q*rrJ - 1 > = atq 
- - 

then the continuity equation (2.10) gives 

S$ 

q* +o 

1 

and one finds from Eqs. (2.11) and (2.12) 

or 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

!.L.P&Z ,Z5(qo[ (: 1 t) N",l,TitY transitions 

(4.25) 
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In the abnormal parity case q* 5[ J-1 > and 

< "RJ 11 L(O) 11 q * x J > both go as J-1/2 q* and the continuity 

equation therefore does not determine If+12 + If-l2 in terms of 

I I fc 2. 

-1 

-- 
- 27 - 



v. ANALYTIC PRoPERTIE 

The analytic properties of the form factors gi(q2) are more ccmplex 

than the form factors F,(q2) and F2(q2) of elastic electron-proton 

scattering. Not only is there the cut for timelike q2 C - %J'(P e m) 

but there are complex singularities which appear for isobar masses large 

enough to cause instability. The form factors then beccme complex. The 

complete analytic properties of an arbitrary vertex graph with an unstable 

particle on one leg are unknown; however, it is known that there are no 

singularities in the upper half q2 plane. In addition the triangle 

diagram has been extensively studied; we here review the situation for the 

kinematics appropriate to this problem. We consider the diagram shown in 
a- 

Fig. 3 as a function of q2 for real M2. The Landau singularities (14) 

are the normal thresholds q2 = - 4p2, M2 = (m+C1)=, and the 'anomalous" 

threshold given by 

det ki*kj = 

2 
-P’ ‘p= - 5 

-,=d m= -I- p= - M= 
2 'P2 2 

+$ m2+ 2-M2 P 
2 -m2 

= 0 

(5 .I> 

The solution of this equation is 

2 q2 = -2~’ - k- (M2-m2-p2) 2 i 
2m" 

(5 02) 
.- 

_- 



On general grounds, from the Nambu representation(lk),we know that for 

M2 = m2 there is no anomalous threshold, and the singularities consist 

only of a cut in the q2 plane from - 4~~ to - =. As Ma is increased the 

anomalous singularity emerges into the physical sheet (we take the minus 

sign in Eq. 5.2) and moves down to q2 = -2p2asM+m+p. For 

M > m + CL the singularity moves into the lower half q2 plane as shown 

in Fig. 4, and again this is dictated by the Nambu representation. If 

we give the particle a width, Ms + (M-II')=, the singularity moves to 

the right. 

We conclude from this behavior that the foti factors will, for 

kinenalzLca1 reasons, be complex and that they possess complex singularities. 

It is, of course, an open question of how important these are. For the 

33 resonance, this diagram (the "pion current" term) is relatively unim- 

portant. However, for higher resonances such effects may have to be - - 
considered. 

The Final State Theorem and Complex Singularities: 

We have seen in the previous discussion that the triangle diagrams 

develop complex singularities when the mass of the isobar is such that 

it is unstable against pion decay. We know, however, from the general 

-1 

_- 

properties of unitarity and invariance under time reversal that partial 

wave transition amplitudes for a weak process (in this case electromagnetic) 

leading to a strongly interacting pair of particles in the final state 

has a phase equal to the scattering phase shift of those two particles 

at the appropriate energy. Since the complex singularities are intimately 

related to the phase of the production amplitude in the physical region 

it is interesting to see how this connection can come about. To see this 
- *-dam 
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connection we make a very simple model of the scattering and production 

process which Is unitary, invariant under time reversal, and contains a 

triangle diagram. We consider scalar photons, plans, and nucleons since 

the spin complexities are not really relevant to the points under discussion. 

We consider the pion production mechanism to be that of the photcs inter- 

acting with the plon current and ejecting a plon as illustrated in Fig. 5. 

This is often referred to as the "retardation term". The pion can then 

rescatter off the nucleon and we take a point two-pion-two-nucleon 

coupling of strength X to describe this. We then consider s-wave 

electropion production. Now the s-wave pion-nucleon scattering amplitude 

in this model is given by the sum of graphs illustrated in Fig. 6. a.- 

Let us define the basic bubble 

E(Tfl) = - i s k 1 1 
(2n)4 t2+ p"- iv (P-q&)2+ Ms- iq 

(5.3) 

where (P-q)" = - W2, the square of the total energy in the center-of- 

mome;ltum system. Then we know from the analytic properties of Feynman 

diagvm that B(W2) has a spectral representation 

O" B(W2) = $ 
s 

p(u2) du2 

(M+d' u"- w2- iq 
(5.4) 

We also know from unitarity that 

Im B(ti) = ~(0~) = + f12 2 
v-w s 

ZL s(t2+ p2) e(~o)s((P-s-e)2+~)e(Po-B'eb) 
@704 

(5.5) 
.-;;m 
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-1  

_- .  

wh ich  co r responds  to  p u ttin g  th e  In te r m e d i a te  par t ic les o n  th e  m a s s  shel l .  

T h e  scat ter ing amp l i t ude  T(W ') In  th is  m o d e l  is n o w  g i ven  by  

T(W 2 ) =  X  +  X 2  B ($)  +  A 3  B 2 ( W 2 )  +  . . . =  A  
l-A B (W")  

A  =  
O 3  1- i  s 

p($)  d a 2  
( M + p ) 2  a ”-w2-  i’rl 

a n d  s ince  

w e  c a n  wr i te 

Im  1  = - 
T(W 2  )  

? W 2 >  

T(W ”) =  1  e i6  s in  6  
P (W2)  

(5 .7 )  

(5 .9 )  

L e t us  n o w  look  a t th e  e lec t roproduc t ion  ampl i tude .  If w e  first s tudy 

th e  B o r n  te r m  Fo(q2,W 2 ) w e  h a v e  

s 
d %  1  

Fo(q2,W 2 ) =  - 
4 %  t2 +  p 2  

w h e r e  t =  P  - Q  =  q  +  k  a n d  (P -q )2  =  ( Q + k ) 2  =  - W 2 . Th is  fu n c tio n  is 

(5 .9 )  

rea l  fo r  space- l i ke  q 2  (q2  >  0 )  a n d  h a s  th e  analy t ic  p roper t ies  in  q 2  

ind ica ted  in  Fig.  7  fo r  W  Z M  +  u . 

If th e  i sobar  is just u n s ta b l e , W  >  M  +  p , th e r e  is a  c o m p l e x  b r a n c h  

+2- js ! I ! -dEd cut  r unn ing  b e tween  - 
C I 

. A s  W  g o e s  b e l o w  M + p , th e  b r a n c h  

- --& 9 9  
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cut moves onto the real axis as indicated. We shall also need the 

properties of the triangle diagram which we define as 

A(g',@) = - i 
s 

d4-e 1 1 
(25[)4 (&q)’ + p2 - iTJ (p-q-Q2+ M2- iq 

(5JO) 

This diagram has already been studied and has the analytic properties 

indicated in Fig. 4. A(q2,W2) is complex for spacelike q2. We can 

calculate Im A(q2,W2) by again noting that for q2 > 0, the only possible 

real intermediate state is where the final pion and nucleon are on the 
a- 

mass shell 

_ Ima(S21W2) = +&’ - 
- - s2x s d4& 1 

b-d4 w+d2+1-r2 s(~2+lJ2)e(~o)6(( p-q-&)2+I+(Po-qo-~o). 

(5-M 

Now since P-q = 0 in the center-of-momentum system we can write this as -- 

Imn(q'-',w"> 
s2x 

=+8Fo(q2,W2) - 
s 

d4& 6 (t2+, 

@d4 
2)s (p-q-e)2++ e(~o)e(Po-qo~o) 

cw2+P2 

(5.12) 

We can now write the electroproduction amplitude in this model 

F(q2,W2) = Fo(q2,ti) + M(q2$)[1 + xB(We) + X2B2(W-? + ..a] 
(5*13) 

= Fo(q2,ti) + u 
l-J.B(w2) 
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I 

or 

F(s2,w’) = ~ 2 U2-w%~ 1 + Uq2,w2) w 
We now note the important property that for q2 > 0, the imaginary part 

of the numerator vanishes for we find 

(5.14) 

Im T($)-lF(q2,ti) q2>o = Fo(s2J? P(+!) - B Ah2,W"? = 0 (5*15) 

Therefore we conclude that for q2 > 0 

F(s’,W’) q2x, = (F(q2,W2)[ eiB($) (5.16) 

which is just the final state theorem. We also see that as far as the 

analytic properties In q2 are concerned, F(q2,W2) has the complex singu- 

larities of both Fo(q2,W2) and A(q",W'). 
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VI. APPLICATIONS 

As an example of an application of the preceding formalism, we discuss 

briefly electron excitation of the first excited state of the nucleon, the 

T = 3/2, J = j/2 resonance. We first consider the model of Fubini, Nambu, 

and Wataghin,6 in which the photon is absorbed an a nucleon via. an iso- 

vector magnetic dipole interaction. The term so obtained has the same struc- 

ture 7 U'E x c&v)(q? 
3- - as the Born amplitude for absorption of a neutral 

pion of momentum LX 9. The full photoproduction amplitude of the 33 is 

then proportional to the amplitude for flop +N*, the proportionality 

factor being the ratio of Born terms. Because this ratio includes the 

factor Ck)(q2), we find that the inelastic form factor becomes proportional %=- 

to Gp (q2). This is a model-dependent result and may not necessarily be 

the case for higher resonances, where the production mechanism is more pe- 

ripbra and momentum dependent. 

To make a more detailed comparison, we need the Rarita-Schwinger wave 

function for a pion-nucleon system with J = 3/2. This is found to be (in 

the static limit) 

(6.1) 

where & is the momentum of the final pion, and x is the proton spinor. 

In this notation, we find fran Eq. (15) in the paper of Fubini, Nambu, and 

Wataghin 

< p'h' JPeP ph > Qc e I I i633 sin 6 33 ylt*(q x + GM w s2> ur - (6.2) 
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To establish contact with the covariants multiplying our g1(q2), we use 

the following identity (2 = 5 x c) 

(6.3) 

Comparing with Eq. (2.21), we find that 

g, 
=o sy2g 

2 
= q*2g3 a Gv(q2) (6.4) 

For the normalization of g2 and g3 , we may use the covariant 

treatment given by Gourdin and Salin. They treat the isobar as a discrete 
z=- 

state, but use a different set of invariants. They write 

1 
< P - q,h’I J,(O)1 Ph > = v,,(P-q,h')75 

iC 
+ (qY7o - q*76yp) 

- - . 
(6.5) 

C C 

- 4 P2 ( p;%J - (p!q)"J - 5 (ppqy - ml) cvp) 
Cl2 

where Pt = P - q, and i.~ E m J[- (F or real photon processes the last two 

invariants are identical since q2 +O and E q = 0 where E is the PP P 
photon polarization.) Frcan an analysis of photoproduction they give the 

form factors at q2 = 0 as 

c3w = 0.37 

c4w = .c5w = -0.0043 
(6.6) 
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The relation between these two sets of Invariants is merely a matter of 

algebra and judicious use of the Dirac equation and the subsidiary 

condition. The resulting relations are 

(2Pq*2)gl = 2 
P 

C3 + 2 
CL2 [ 

(M2-m2) - q2 
1 

+ 1 (C4+C5) [(@+m2) + q2] 
P2 

(2M?q*")g2 = - 
M+m s2 1 
-c 

--c4+- I-I 3 P2 2P2 
(C4 + Cs) [ W-m21 + q2] (6.7) 

C 5-m2-q2 
(2h*2) (t33-g2) = 2 

( 1 

a2 1 
-- c4+2 

P2 
(C4+C5) 

[ 
(ti-m2) + q2 . 

a.- CL M P 1 
Some kinematic relations are useful in dealing with these quantities. 

-They are: - - 

E + m = (Mtm)2 + q2 
2M 

q. = 2 [$-m2-q2] . 
2M 

We should emphasize at this point that the easiest way of going from 

3. relativistic form of the vertex to a cross section is not to square and 

introduce a projection operator for the spin J particle but to simply 

use the expression above to get the helicity amplitudes f+,fc (or 

equivalently g 
1, 2, 3 

) and the cross section has already been given in 

.w terms of these quantities. This saves a tremendous amount of labor. 
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It is also useful to have an explicit relation between the helicity 

amplitudes which characterize the vertex and the g's. To get this we 

go to the rest frame of the isobar. To compare with the helicity 

representation we first construct nuclear wave functions of definite 

helicity. These are indicated in Table I. 

Table I. 

The Components of the 
Dirac Helicity Wave Functions 

dwp,t 1 fiu(P, 1) 

a(r + s) -b*(r + s) 

b(r + s) a*(r + 6) 

a(r - s) b*(r - s) 

b(r - s) -a "(r - s) 

w -- 
8 2 a = co8 - e 2 

b = sin S e 
+$ 

2 

r = cos X/2 

s‘ = sin X/2 

ctn X/2 = q*/m 

(They are still normalized to u'u = 1.) We can now extract the helicity 
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amplitudes by looking at the coefficients of the appropriate 49 J mx 

functions. The result is simply 

(6.9) 

These amplitudes, when squared, give us the results we obtained previously 

by comparing the cross sections. 

From the integrated photoabsorption cross section we can get a value 

6% the transverse form factors at q2 = 0. The relation is Eq. (3.19) 

s ur(rub = 2.81 x 10'25cm2MeV 
._ 
- Lab 

[If+ I2 + If- I'] 
s2- 

(6.10) 

if we use the following numbers for the 3-3 resonance 

M= 1238hkv=8.86~l. 

m = 938 WV = 6.:72p 

P =m II+ = 139.6 WV . 

From the numbers for C3 C C given by Gourdin and Salin in their fit 
9 4, = 

to photoproduction and using the formulae above one finds 

[If+ 1' + 1f-i2]q2a = 0.55 (Gourdin and Salin) (6.11) 

-38- 



This gives 

s uy (w)ti z 1.55 ~lO'~~crn~ MeV l 

Lab 

(6.12) 

This seems a little larger than the value obtained from the experimental 

data (lJ)8 

s 
a7 (cu)du Z 0.96 x 10'2scm2 MeV l 

Lab 
(6.13) 

In the case of the 33 resonance, which SU(~) (and its generalizations) 

classify in the same representation as the nucleon, there exist symmetry 
r- 

arguments relating theoretically the inelastic form factors to elastic 

form factors. For example, the static SU(~) theory predicts 

2x4- <N*+ vz P>=- 
I I 3 pP 

(6.14) 

where p z is the z-component of the magnetic moment operator and 

pP 
= 2.78 is the magnetic moment of the proton in nuclear magnetons. 

We note also the prediction of Salam, Delbourgo and Strathdee (17) on - 

the basis of U(6,6) that 

Q1 = 0 g2 = g3 

and 

(6.15) 

(6.16) 

-1 

_- 
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which reduces to (6.19 in the static limit q2 +O and gives 

jf+12 + If-i2 EJ 0.48 & 4 
( ) 

(6J7) 

This agrees with experiment for a reasonable choice of < m >, the mean 

mass of the 56-plet of SU(~). That g is smallandthat 

/f+12 + [f-l2 N [G'")i2 
1 

is already known. from electroproduction experi- 

ments, so that the U(6,6) prediction is in qualitative agreement with 

the facts. 

As a final application of our general discussion let us consider 

the transition to the J" = j/2- state at 1512 MeV. Cone et al. (2) -- 
have seen this transition. They attempt to analyze it as an El and 

on the basis of purely transverse excitation. a- They find a contradiction 

in that the transverse El form factors go as (q*)2' = con& whereas 3 

their experimental data increases with qs2. One possibility is that 

_ :-the threshold behavior is not valid in the physical region for this 

process. Another possibility, however, is seen from our general "threshold 

formula" for normal parity transitions which for J = j/2 takes the very 

simple form 

do 
--& (3/z - *l/2+) "threshold" 

2 

. (6.18) 

*qz 
+2- - 

m2 P2 
tan2 g . 

I 

We note that Coulomb excitation is actually the dominant process until 

-1 
one gets to the very backward angles and lfc(' w (q*)2 for this 

-kl- 
-- 



transition. The analysis of l/2+ -5/2+ (1688 MeV) can also be carried 

out using our threshold formulae. One would conclude the cross section 

should go like 1 fc12 - (q*)* for this transition. Cone et 'al. have ' -- 

attempted to interpret their data in terms of either a transverse E2, 

If&i' N (q*>e or a transverse M2, 1 f*12 - (q*)4. The data is consis- 

tent with either interpretatiail in this case, and hence also with our 

threshold formula for normal pmity transitions. 

-1 

_- 
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IJST OFFOOTNOTES 

1. 1+ + For the special case p +$ , fc N q*2 and f- N q* ; 

f+ -0 for J=i* 

2. The spherical components of d are J+& = + - $ .(J, k iJ,>, J = Jz. 

3. One of us uses a metric such that v cI = (v, ivo), a*b = ~02 _o",b, . 

The y matrices are hermitian and satisfy r,,y, = 2evv. The 
1 > 

Dirac equation is (iy=P + m) u(P,h) = 0 and we take our spinors 

to be normalized to E(P,Xl) u(P,h) = %A' . Also ys = yly2y3y4 . 

4. Notice that in this frame S = 0 ; 2 = M(g X c$. Also 
4 

a- x+(A) x(h) = 1 . 

5. We can immediately generalize this result to include the contribu- 

tion of states of other spins and parities. For fixed final electron 

energy e' the mass of the final nuclear state $ = -(q - P)2 is 

fixed. Thus if we include all states for fixed $ in the sum 

JR. (3.31, we can always write 

W 1 2 (q2,Mf) = 
J c WJ" (q2,$) 

lY2 
Jr 

J 

and the cross section is simply 

The kinematical factor 
-1 

_-. 

(P2>fq 

1 -1 I 1 + $ sin2 g 

) + 2fT (q2,q) tan2 i 
1 

. 
J 

which comes from 



a 
‘: 

7-w 

-- 

integrating the b-function associated with a  discrete intermediate 

state 

6  [(P-q)2 + I?] = 
s  

g  &*) (PI-P+q) 

over final electron energies E' no longer appears. 

6. Note the identity 2&*0 g  &b I ,a*k - 2.2 ktia + i(z xb~)*s- . CI- 

7. The helicity ampli tudes are defined with an extra phase e ihrp in 

the wave functions as ment ioned in the text. 

8. If we use the revised values of the coupl ing constant given by 

Mathews (l-6) 

c3 (0) = 0.298 

c4 (0) + c5 (0) = 0.0336 

we get 
- - If+]" + If-]" = 0.322 

s qJ-4~ = 0.91 x 10 '25cm2 MeV 
Lab 

in satisfactory agreement with the experimental value quoted in 

(6.13). Mathews' numbers came from using an experimntal value 

s u7(wb = 0.92 x 1o-25 cm2 W V  [Experiment - Mathews] 
Lab 

which thus provides an excellent check on our calculations. 



FIGURE CAPTIONS 

1. Kinematics for inelastic scattering 

2. Electromagnetic vertex for photoproduction of an isobar 

3. 'hiangle diagram 

4. Singularities of the triangle diagram 

5* Model of electroproduction amplitude 

6. Model of S-wave meson-nucleon scattering amplitude 

i. Singularities of the Barn term 
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