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ABSTRACT 
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i. INTRODUCTION 

In the sense used in this paper, "current algebra" means a program of 

studying elementary particle physics and quantum field theory from the viewpoint of 

Lie algebra theory. Specifically, we are concerned with the existence and mathe- 

matical properties of certain infinite dimensional Lie algebras whose representa- 

tions might serve to define the states of physically interesting field-theoretic 

dynamical systems. As proposed by M. Gell-Mann [6], this study seems to offer 

the simplest and most natural method for understanding the observed elementary 

particle symmetries and using them to derive further, deeper facts about the 

elementary particles. We refer to the books by Adler and Dashen [i] and Renner [16] 

for further motivation concerning the "physics" of current algebras. Here, we will 

mainly be concerned with various mathematical questions which are suggested by the 

broad program. This paper will report on work in progress. 

To give a quick idea of what is involved, proceed as follows: 

Choose the following range of indices; 

1 ~ a,b ~ n; 1 ~ i,j ~ 3 

Let x = (xi), y = (yi) denote 3-vectors, i.e., elements of R3; Consider "symbols" 

Va(X) satisfying relations of the following form: 

[Va(X),Vb(Y)] = CabeVc(X)6(x - y) + dabci~i(Vc(X)~(x - y)) + ... (i.i) 

(The terms ... will mean terms involving higher order derivatives.) 

Now, the "Lie algebra" defined symbolically by (i.I) can be defined in a 

more precise mathematical way as follows. Introduce the set of C , real-valued 

functions f: R 3 ÷ R, denoted by :F: Since such functions can be added, 

multiplied, and multiplied by real scalars, F is a commutative, associative alge- 

bra, with the real numbers, R, as field of scalars. For f E F, introduce the 

following symbol: 

Va(f) = f Va(X)f(x)dx (1.2) 

Then, the rules (i.i) transcribe following the usual calculational rules for gener- 

alized functions into the following expressions: 

[Va(fl),Vb(f2)] = CabcVc(flf2 ) - dabcVc(3i(fl)f2) + ... (1.3) 

We can now give mathematical structure to these formulas. Let F be the real 

vector space spanned by the symbols :v (f): Then (1.3) defines a skew- 
a 

symmetric, real bilinear map :F x F ÷ F: that defines a Lie algebra like structure 

on F. (We do not necessarily require that it satisfy the Jacobi identity; typical- 

ly, however, a quotient algebra will satisfy the Jacobi identity. See Section 6 

for further comments on this point.) 
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Further, F is an F-module, with multiplication by an f E F defined as 

follows: 

f(Va(f')) = Va(ff') (1.4) 

Now, the bracket [ , ] defined by (1.3) is not an arbitrary R-bilinear map. 

Roughly, it involves a differential expression in the F-module structure. To make 

this precise, we will, in Section 2, give an abstract algebraic definition of a 

"differential operator" purely within the category of F-modules. 

Now, in the "currents" of Lagrangian quantum field theory, one finds 

among the "v (x)" expressions labeled as follows: a 

v~(x), i ~ ~,~ ~ m; 0 ~ ~,~ ~ 3 (1.5) 

is an "internal symmetry" index ~ is a "space-time" index. Typically, these 

objects are determined--at least in a formal way--by well-known formulas from the 

Lagrangian and the Lie algebra of an internal symmetry transformation group. (See 

[9] for a discussion of the algebraic properties of these rules.) For example, for 

the "Sugawara model", [3, 9, 18, 21], the following relations are satisfied: 

[V~(x), Vg(y)] = c ~ V~(x)~(x - y) (1.6) 

[V~(x), V2(y)] = 0 (1.7) 

, ~ (x y) + %~ x (x y) (i.8) [V~(x) V~(y)] = c ByVi(x)~ - ~B~i~ - 

In (1.5-1.7) "c " are the structure constants of a semisimple compact Lie ' ~y 

algebra (with respect to a Lie algebra basis that is orthonormal with respect to 

the Killing form), and % is a free parameter. 

2. DIFFERENTIAL OPERATORS ON MODULES 

As indicated in the introduction, in order to have a "definition" of 

current algebras as mathematical objects, independently of their usual association 

with quantum field theory, it is desirable to have a definition of "differential 

operator" valid for arbitrary modules. (There is, in the mathematical literature, 

a definition for sections of vector-bundles. See [15].) Indeed, this is a question 

of independent mathematical interest. In this section we will give such a 

definition.* 

Let F be an arbitrary commutative, associative algebra with the real 

numbers as field of scalars, and with an identity element denoted by "i"° Denote 

This definition is also known to M. Atiyah. 
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F-modules by F,F', .... What is desired, for each integer r ~ 0, is a "functor" 

assigning to each pair (F,F') another F-module Dr(F,F'), which may be thought 

of as the "r-th order differential operators from F to F'." We will, in fact, 

define Dr(F,F ') by induction on r. 

First, for r = 0, let D0(F,F ') be the set of F-linear maps: F ÷ F', 

i.e. an element D E D0(F,F ') is an R-linear map: F ÷ F' such that: 

D(fy) = fD(y) for f ~ F, ~ E F 

Suppose now that D is an arbitrary R-linear map: F ÷ F'. 

R-bilinear map: F x F ÷ F' as follows. 

D(f,y) = D(fy) - fD(y) for f E F, y E F (2.2) 

For fixed f E F, define Df as a R-linear map: r ÷ F' as follows 

Of(y) = D(f,¥) (2.3) 

(2.1) 

Define an 

Definition 

Suppose that Dr-I(F,F ') is defined. Then, Dr(F,F ') consists of the 

R-linear maps D: F ÷ F' such that, for each f ~ F, the map Df belongs to 

Dr-I(F,F'). 

We must now show that Dr(F,F ') defined in this way has the usual 

properties one would expect to justify calling it the "F-module of r-th order 

differential operators". 

Theorem 2.1 

If D E Dr(F,F'), D' ~ Ds(F',F"), then 

D'D 6 Dr+s(F,F '') 

Let 

Then, 

Proof. Proceed by induction on r + s. 

D" = D'D 

For r + s = 0, it is evident. 

D~(y) = D"(fy) - fD"(y) = D'(D(fy)) - fD'D(y) 

= D'(Df(y) + fD(y)) - fD'D(y) = D'(Df(y)) + DiD(y) 

This proves the following basic formula: 

(D'D)f = D'Df + D~D (2.4) 
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By induction hypothesis, the right hand side of (2.4) belongs to Dr+S-l(F,F'), 

hence D'D belongs to Dr+s(F,F'). 

Now, let us determine DI(F,F'). (Note that F may be considered as 

an F-module.) Given D E DI(F,F'), set 

fl = D(1) (2.5) 

Define D' 6 D(F,F') as follows: 

D'(f) = D(f) - fl = Df(1) (2.6) 

Theorem 2.2 

D' is a derivation of F, into r', i.e. 

D'(ff') = D'(f)f' + fD'(f') for f, f' 6 F (2.7) 

Proof. By assumption, Df is a zero-th order operator, i.e., an F-linear 

map: F + F, hence: 

Df(f') = Df(1)f' (2.8) 

Df(f') = (D(f) - fD(1))f' = Df(1)f' 

Then, 

But also, 

Df(f') = D(ff') - fD(f') = Dff,(1) + ff'D(1) - f(Df,(1) + f'D(1)) 

Combining these two formulas gives: 

Dff,(1) = Dff'Df(1) + fDf,(1) 

In view of (2.6), this proves (2.7). 

Theorem 2.3 

DI(F, F ' ) is a direct sum of the subspace D0(F,F ') and the space of 

derivations of F into F', i.e., an "inhomogeneous" first order operator can be 

written in a unique way as a sum of a zero-th order operator and a "homogeneous" 

first order operator. 

DI(F,r'). 

then that 

Proof. Theorem 2.2 shows that the sum of these two spaces spans 

We must show that they have no non-zero elements in common. Suppose 

D E DO(F,F ') is a derivation. Then, 

D(ff') = fD(f') + f'D(f) = ff'D(1) = 2ff'D(1) , 

(2.9) 
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forcing :D(1) = 0:, which forces :D = 0: . 

Suppose now that F,F' are F-modules, and that 

ential operator. For y 6 F, set: 

DY(f) = D(fy) 

Thus, D Y can be considered on an R-linear map = F + P'. 

Theorem 2.4 

D: F ÷ F' is a differ- 

If D E Dr(F,F'), then, for fixed y, D ¥ belongs to D(F,F'). 

(2.10) 

Thus, 

Set f' = I: 

Hence, 

But, 

Df(f') = D(ff') - fD(f') 

D(ff') = Xf(f') + Df(1)f' + fD(f') 

D(f) = Df(1) + fD(1) 

D(ff') = Xf(f') + Df(1)f' + fD(f') = Xf,(f) + Df,(1)f + f'D(f) 

(2.13) 

(2.14) 

Proof. Again, by induction on r. For f' 6 F, 

(DY)f(f') Y = DY(ff ') - fDY(f ') = D(ff'y) - fD(ff'y) 

= Df(f'y) = (Df)Y(f'), i.e. (Df) Y = (DY)f (2.11) 

r-1 
By induction hypothesis, since Df E D (F,P'), then (Df) Y E Dr-I(F,F'), hence 

(2.11) proves that (DY)f 6 Dr-I(F,F'), which shows that D Y ~ Dr(F,F'). 

Definition 

D E DI(F,F ') is a homogeneous first order differential operator if, for 

each ~ ~ F, D t E DI(F,F ') is a derivation of F into F' 

Now we turn to the description of D2(F,F'). Given f 6 F, by Theorem 

2.2 there is a derivation: F ÷ F' such that 

Df(f') = Xf(f') + Df(1)f' (2.12) 
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Subtracting, 

i.e. 

Xf(f') - Xf,(f) = f'(Df(1) - D(f)) + f(D(f') - Df,(1)) 

= using (2.14) f'fD(1) - ff'D(1) = 0 

Xf(f') = Xf,(f) (2.15) 

Theorem 2.5 

Xff, = fXf, + f'Xf , for f, f' E F (2.16) 

Proof. 

Xff,(f") = using (2.15), Xf,,(ff') = Xf,,(f)f' + fXf,,(f') 

= Xf(f")f' + fXf,(f") = (f'Xf + fXf,)(f") 

This proves (2.16). 

Remark. Let V(F,F') denote the F-module of derivations of F into 

F' Then, (2.16) says that the map :f + Xf: defined by D determines an 

element of V(F,V(F,F')). 

We can now leave as an exercise to the reader showing that the decomposi- 

tion (2.12) characterizes second order differential operators. One can also 

proceed further to study higher order operators by the same methods. 

3. ALGEBRAIC STUDY OF SCHWINGER TERMS 

Consider the "Sugawara model" commutation relations, (1.6-1.8). The 

second term on the right hand side of (1.8) is, of course, called a "Schwinger 

term". We will now attempt an analysis, in the language of Section 2, of this 

particular sort of "Schwinger term". 

Let F be an F-module. Suppose that [ , ] is an R-bilinear map 

:F x F + F: of the following form: 

[yi,Y2 ] = [yi,Y2]0 + ~D(Yi,Y2) , for yi,y 2 ~ P (3.1) 

where [ , ]0 is an F-bilinear map :F x F ÷ F: which is a Lie algebra structure, 

and where D is a skew-symmetric, R-bilinear map :F x F ÷ F: that is a homogen- 

eous first order differential operator. % is a real parameter. 
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We will now investigate the validity of the Jacobi identity for [ , ] 

assuming that it is true for [ , ]0" For YI' T2' Y3 £ F set: 

T(Yi,T2,Y3) = [yI,[T2,T3]] - [[yi,Y2],T3] - [y2,[Yi,Y3]] (3.2) 

= [YI'[Y2'T3 ]] + Yl - [T2'[TI'Y3]] + [Y3'[YI'T2]] (3.3) 

Thus, (3.2) exhibits the relation of T to the "Jacobi identity", while (3.3) 

indicates how T is formed by permuting i, 2, and 3 in the expression 

[yl,[Y2,Y3]]. Then, the following formula holds: 

1 
= ~ 6ijk[Y i, [Tj ,Yk ] ] (3.4) 

We will now compute this explicitly, using (3.1). 

[yI,[T2,T3]] = [TI,[Y2,T3]0 + ~D(T2,T3)] 

= [Tl,[Y2,Y3]0]0 + %D(T l,[Y2,Y3]0 ) 

+ %[YI'D(Y2'Y3 )]0 + %2D(YI'D(Y2'Y3)) (3.5) 

Combining (3.4) and (3.5), together with the fact that the Jacobi identity is valid 

for [ , ]0' gives the following formula: 

1 
T = ~ ~ Eijk[D(Yi,[Yj,Yk] 0) + [Yi,D(Tj,y-~)]0 + ~D(Yi,D(yj,Yk))] (3.6) 

Then, if :T = 0: for all ~, we have 

Eijk(D(Yi ,[Yj,Ykl0 ) + [Yi,D(yj,Yk)]0 ) = 0 (3.7) 

EijkD(Yi,D(yj,Yk ) = 0 (3.8) 

Condition (3.7) is a cocycle-type condition. (See [8] for an explanation of the 

relation between the "deformation" of Lie algebra structures and Lie algebra 

cohomology theory.) It is not too clear what is the "general" meaning of condition 

(3.8), although certain simple ways of satisfying it can be readily presented. 

Let us attempt to solve relations (3.7-3.8) with a special Ansatz 

which may be thought of as a general case of the Sugawara conditions (1.6-1.8). 

Namely, let us suppose that there is a fixed element labeled "Y0" of F such 

that: 

[F,yo] 0 = 0 (3.9) 

Suppose also that there is a homogeneous 1-differential operator d: F x F ÷ F 

such that: 

D(Yi,Y2) = d(Yl,Y2)¥0 , for TI,T 2 E F , (3.10) 

d(Yl,Y2 ) = -d(Y2, Y1 ) (3.11) 
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d(Y0,y) = 0 , for y 6 r (3.12) 

Then, (3.12) guarantees that (3.8) is satisfied. (3.7) is the only condition that 

needs to be taken into account. Note that, in view of (3.9) and (3.11), (3.7) 

takes the following form: 

d(Yl,[Y2,Y3] 0) - d([Yi,Y2]0,Y3) - d(Y2,[Yi,X3] 0) = 0, (3.13) 

for yi,Y2,y 3 6 F 

4. THE SYMBOL OF DIFFERENTIAL OPERATORS ON VECTOR BUNDLES 

We now aim to put the conditions found in Section 3 for the existence of 

"current algebras" on a slightly different foundation. Let M be a manifold. 

(See [14] for the notations and ideas of differential geometry to be used here.) 

Let F be the algebra of C ~ real valued functions on M. As is well known, 

differential-geometric ideas can be described in two "languages", that of F-modules 

and that of vector bundles over M. It is important to be able to pass back and 

forth between them. The "symbol" of a differential operator expresses the 

operator-defined generally in the F-module language of Section 2 in terms of 

vector bundles. 

Let ~: E + M be a map between manifolds that defines E as a vector 

bundle over M. Let F(E) denote the space of cross-section map: M ÷ E. Such 

cross-section maps can be added (because the fibers of ~ are vector spaces) and 

multiplied by functions in F, i.e. F(E) is an F-module. 

Suppose D E Dr'(F(E),F(E')). Given a point p E M, we will define the 

symbol of D at p, denoted by o(p,D): as an element of the fiber of a vector 

bundle defined over M, which depends on r. 

For r = 0, proceed as follows. D is then an F-linear map: F(E) ÷ F(E'). 

Lemma 4. i 

If y E F(E) vanishes at p, so does D(~). 

Proof. Suppose first that y can be written as: 

f E F, and f(p) = 0. Then, 

D(X) = D(fy I) = fD(x I) , 

hence 

fYl' where YI E F(E), 

D(y)(p) = f(p)D(Xl)(p) = 0 
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Using the local product structure for the vector bundle and a partition 

of unity for M, one sees that an arbitrary y E F(E) that vanishes at p can be 

written as the sum of elements of the form :f¥1:' hence the lemma is proved. 

Let E(p) = -l(p), E'(p) = l-l(p) denote the fiber of the vector 

bundles over E. Then, the point-evaluation map defines R-linear map: F(E) + E(p), 

F(E') ÷ E'(p). Lermna 4.1 shows that D (an element of D0(F(E), F(E')) passes to 

the quotient to define a linear map which we define as o(p,D) of E(p) ÷ E'(p). 

Now, suppose r = i, and D E DI(F(E), F(E')). For f 6 F, define 

D0(F(E),F(E')) as in Section 2. For p E M, let M denote the vector Df 
, P 

space of cotangent vectors at p, i.e. M is the dual space to the tangent space 
P 

M to M at p. Then, df(p), the va~ue at p of the differential of f, is an 
P , 

element of M . 
P 

Lemma 4.2 

If f(p) = 0 and df(p) = 0, then o(p,Df) = 0. 

Proof. For y 6 F(E), recall that 

Df(y) = D(fy) - fD(y) 

Thus, since f(p) = 0, 

Df(y)(p) = D(fy)(p) 

As we have proved, the map f ÷ D(fy) is a first order differential operator on 

f. Hence, if also df(p) = 0, then all first order derivatives of f vanish at 

p, hence: Df(y)(p) = 0. From the definition of O(p,Df), we see that it is zero. 

Thus, let e E Mp, v E E(p). Let f ~ F be a function which vanishes 

at p, such that: 

df(p) = 0 

Thus, we see from Lemma 4.2 that o(p,Df)(v) ~ E'(p) only depends on e. Let us 

denote this element as follows: 

o(p,D)(e,v) = a(p,Df)(v) (4.1) 

It is readily seen that (4.1) defines o(p,D) as bilinear map: M x E(p) ÷ E'(p). 
P 

This map is the symbol of D at p. 

One can continue inductively to define the symbol of an r-th oraer 

operator. It is a multilinear map, 

o(p,D) = M o ... oM x E(p) ÷ E'(p) 
P P 

(See [7, 15].) Here, o denotes "symmetric tensor product". However, for our 

immediate purpose in discussing "Schwinger terms" that only involve first order 
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derivatives of delta functions--it suffices to deal with the cases r = 0 or i, 

hence we will restrict our attention to these cases. 

5. THE SYMBOL ASSOCIATED WITH CURRENT ALGEBRAS 

Suppose now that M is a manifold; that ~: E + M is a vector bundle 

over M; that F = the algebra of C ~, real valued functions on M; and that F(E) 

is the F-module of C ~ cross-sections of E. Suppose that [ , ] is an R-bilinear, 

first-order differential operator :F(E) x F(E) ÷ F(E): on F(E) that makes F(E) 

into a "current algebra". (Thus, in the situation suggested by quantum field 

theory, M will be R 3, which can be identified with a space-like hypersurface in 

R 4, the manifold of space-time.) Let us suppose that: 

[yi,Y2 ] = D0(Yi,Y2) + kDl(Yi,Y2) , for yi,Y2 E F(E) , (5.1) 

where D O and D 1 are zero and first order homogeneous differential operators: 

F(E) x F(E) ÷ F(E), and where % is a real parameter. (Notice that we are chang- 

ing our notations slightly from those used in Section 3. To make the identifica- 

tion, change [yi,Y2] 0 to D0(Yi,Y2) , D(Yi,Y2) to Dl(Yi,Y2)). Let us also 

suppose that D0(Yi,y 2) satisfies the Jacobi identity; i.e., 

D0(Yi,D0(Y2,Y3)) = D0(D0(Yi,Y2 ),Y3) + D0(Y2,D0(Yl,¥3) ) (5.2) 

D0(YI'Y2 ) = -D0(Y2'YI ) (5.3) 

Now, for p £ M, the symbol o(p,D 0) is a bilinear map: 

E(p) x E(p) + E(p). The conditions (5.2-5.3) pass to the quotient to define 

analogous conditions on the symbol. Namely, they express the fact that o(p,D 0) 

for each p 6 M defines a Lie algebra structure on the fiber E(p), i.e. E is a 

"bundle of Lie algebras". Let us then denote the Lie algebra bracket defined on 

E(p) by ~(p,~0 ) by the notation: [ , ]p. 

Now, to express the fact that (5.1) defines a Lie algebra structure on 

F(E) for each %, one must impose condition (3.7) and (3.8). The symbol at p of 

the differential operator D 1 may be defined as follows: 

o(P,Dl)(6,Vl,V2) = Dl(fYi,Y2)(p) , (5.4) 

where f E F satisfies: f = O, df(p) = 0; v = yl(p), v 2 = y2(p). 

Suppose now that YI' Y2' Y3 are elements of F(E), with: 

yi(p) = v i 

Then (3.7) implies the following conditions: 

6ijk[Dl(fYi,D0(fYj,Yk) ) + D0(fYi,Dl(fYj,Yk))] = 0 (5.5) 
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In turn, this implies the following condition on the symbol: 

~ijk([Vio(P,Dl)(0,vj,vk)] p - ~(p,D l)(e,[vj,vk]p,v i) = 0 (5.6) 

In turn, (5.6) readily interpretable in terms of Lie algebra cohomology, namely, 

the following result holds. 

Theorem 5.1 

For each 0 6 M 
P 

consider the skew-symmetric bilinearmap 

~G = (Vl'V2) ÷ °(P'Dl)(e'Vl'V2) (5.7) 

of E(p) x E(p) ÷ E(p) as a 2-cocycle associated with the adjacent representation 

of the Lie algebra structure defined on E(p) by the bracket [ , ]p. Then, 

condition (5.6) expresses the fact that ~0 is a 2-cocycle. 

This result illustrates the general technique one may use. Now, let us 

turn to consideration of more special sets of current algebras, immediate general- 

ization of the Sugawara model relation, (1.7-1.9). 

6. MODELS WITH C-NUMBER SCHWINGER TERMS 

Suppose now that F = F(R3), the C ~, real valued functions :x ÷ f(x): 

of a real 3-vector x. Let F be an F-module. Suppose that ~ is a real 

subspace of F which has a real Lie algebra structure, denoted by :[ , ]:. Also 

suppose that there is an element, denoted by "i", of F, which is linearly 

independent from G. (Thus, the multiples FI are the "c-number" in the title of 

this section.) Let us suppose that there is an algebra structure for F, whose 

bracket is also denoted by [ , ] such that: 

[fX,f'Y] = ff'[X,Y] + Bi(X,Y)(~i(f)f' 

- ~i(f')f)l , for X, Y ~ G,f,f' E F (6.1) 

Here, the B i are symmetric, bilinear maps: ~ x G ÷ R. Again, notice that the 

Sugawara model relations, (1.7-1.9), are of this form. Our aim in this section is 

to investigate the conditions for Jacobi-identity type relations. 

Thus, for X, Y, Z E G,f,f',f" 6 F set 

T(X,Y,Z; f,f',f") = [fX,[f'Y,f"Z]] - [f'Y,[fX,f"Z]] 

[ [fX, f'Y], f"Z] (6.2) 
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Now, 

[fX,[f'Y,f"Z]] = [fX,f'f"[Y,Z] + Bi(X,Y)(~i(f')f" - ~i(f"f')] 

= ff'f"[X,[Y,Z]] + Bi(X,[Y,Z])(~i(f)f'f" - ~'(f'f")f)l (6.3) 

Now, our goal in this section is not to derive the sort of condition 

considered in Section 5, but, a more general case that we can explain as follows. 

Notice that T given by (6.2) is always a multiple of the element "i" 

of F. Now, we are ultimately interested in linear representations of the [ , ]- 

algebra structure on F, i.e. assignment of linear operators to elements of F in 

which the bracket [ , ] goes over into operator commutator. In order that this be 

possible, it is not essential that the Jacobi identity be satisfied, i.e., T 

be zero, in F, but that it be zero modulo a certain ideal zero. Now, for the 

sake of physical applications, it is desirable that all elements of the form fl, 

where f is a compact support function in F such that :j f(x)dx = 0:, go over 

into the zero operator. Putting these remarks together, we see that it is 

desirable that T satisfy the following condition: 

S T(X,Y,Z; f,f',f")(x)dx = 0 

for X,Y,Z E G; f,f',f" compact support functions (6.4) 

We shall call condition (6.4) the up-to-a divergence Jacobi identity. Presumably, 

the general symbol-type condition derived in Section 5 can be generalized to deal 

with this condition, but in this case it is just as easy to proceed directly; the 

general conditions will be investigated in a later publication. 

In fact, notice from (6.3) that after integrating by parts 

[fX,[f'Y,f"Zl(xldx = (~ ff'f"(x)dxl[X,'[Y,Z]l 

+ 2Bi(X ,[Y,Z]) ~ (~i(f)f'f")(x)dx 

Hence, 

T(X,Y,Z; f,f',f")(x)dx = 2(Bi(X,[Y,Z]) ~ ~i(f)f'f"dx 

- 2Bi(Y,[X,Z]) ~ ~i(f') ff''dx + 2Bi(Z,[X,Y]) f ~i(f") ff'dx 

= , after integrating by parts, 2Bi(X,[Y,Z]) ~ 8i(f)f'f"dx 

+ 2Bi(Y,[X,Z]) ~ (f'~i(f) f'' + f'f~i(f")dx 

+ 2Bi(Z,[X,Y]) f ~i(f') f''dx 

Thus, in order that (6.4) be satisfied, we must have the following 

relations. 

Bi(X,[Y,Z]) + Bi(Y,[X,Z]) = 0 , for X,Y,Z 6 G (6.5) 
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Now, the skew-symmetry of the [ , ] bracket on F requires that B. be 
i 

a symmetric real valued form on ~ x ~. Thus, condition (6.5) requires that BI, 

B2, B 3 be symmetric bilinear forms on ~ that are invariant under the adjoint 

representation. For example, the Killing form on ~ is a candidate. More 

generally, it is known that each second order Casimir operator for ~ corresponds 

to such a form [13]. Thus, we see that the calculations of this section provide a 

general method for constructing one class of "current algebras" which satisfy the 

Jacobi identity up to a divergence. In fact, by specializing ~ and the form B. 
i 

suitably one obtains the Sugawara model relations, (1.7-1.9). (There the ~ is 

non-semisimple the direct sum of an abelian ideal and a subalgebra. It would 

perhaps be interesting to discuss the physical situations whose G itself is 

semisimple.) 

Remark. In summary, we have provided in Sections 2-6 samples (without a 

definitive discussion) of the sort of work that must be done in order to classify 

"current algebras", from a purely algebraic point of view. 

7. GENERAL REMARKS ABOUT DYNAMICS 

What we have done so far is, a-priori, without great physical interest, 

since we as yet do not know enough data to make a Lorentz invariant theory. So far, 

we have been dealing with "currents" Ya(X) that are "functions" of a space point 

x. What is needed is some method for constructing objects Ya(X,t) that depend 

on space-time points in a Lorentz covariant manner. 

Now, it is typical of the "current algebra" approach to physics that one 

approaches quantum field theory from the "Heisenberg picture" point of view. Thus, 

instead of regarding Ya(X,t) as "functions" of space time points, one ought to 

introduce test functions F = F(R3), as before, and objects of the following form: 

ya(f,t) = ~ Ya(X,t)f(x) dx 

Thus, if F denotes the F-module spanned by the ya(f), one might expect to see 

"dynamics" defined by curves t ÷ ya(f,t) in F, defined by differential equations, 

say of the form 

~--~ ya(f,t) = [h,Ya(f,t)] , (7.1) 

where h is an element of F (the "Hamiltonian") and where [ , ] is an algebra 

structure on F of the "current algebra" type. 

Unfortunately, this hope is too simple minded. In model situations, (say 

the Sugawara model) h is of the following formal form: 
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h = f habYa (x) Yb (x) dx (7.2) 

Now, the bracket of something quadratic of the form (7.2) with ya(f) goes 

"outside" of F. 

In fact, what is required is a construction of the following type: 

Imbedded r as a submodule of an F-module F' and find an h E F' and a bracket 

[ , ] in F' so that the "dynamics" is given by (7.1). 

In the next few sections we will sketch the construction of such a F' 

in a general situation suggested by the Sugawara model, namely, we will attempt to 

define "polynomial" objects like (7.2) in a consistent algebraic way. 

8. POLYNOMIALS OF CURRENTS 

To see what is involved mathematically in carrying out the construction 

of the F-module F' suggested in Section 7, consider the following Sugawara model 

type of commutation relations: 

[Va(X),Vb(Y) ] = CabcVc(X)~(x - y) - dabi~6(x - y) (8.1) 

symbols :Va(f): for f 6 F = F(R3), as follows: Introduce the 

Va(f) = ~ Va(X)f(x)dx (8.2) 

Let F be the F-module spanned by the Va(f). Then, the bracket in F is 

defined, consistently with (8.1) and (8.2), as follows: 

1 
[Va(f),vb(f')] = CabeVe(ff') + ~ dabi(~i(f)f' - ~i(f')f) (8.3) 

Now, introduce new objects of the following sort: 

Yah(f) = ~ f(X)Va(XlVb(X) dx 

Vabe(f ) = ~ f(X)Va(X)Vb(X)Ve(X)dx (8.4) 

and so forth. 

Also, introduce the "partial derivatives" ~iVa(X),3ijVa(X) , ..., 

so that the following algebraic rules are satisfied: 

(~iVa)(f) = ~ ~iVa(X)f(x)dx = -~ Va(X)~if(x)dx = -Va(~i(f)) (8.5) 

(~i~jVa)(f) = Va(~j3i(f)) (8.6) 

and so forth. 
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Now, 

[Vab(f),Vc(Y)] = ~ f(x)[Va(X)Vb(X),Vc(Y)]dx = ~ f(x)([Va(X),Vc(Y)]Vb(X) 

+ Va(X)[Vb(X),Vc(Y)])dx ~ f(x)([CacdVd(X)6(x - y) - daci~6(x - y)]vb(x ) 

x 

+ Va(X )[cbcdvd(x)~(x - y) - dbci~i ~(x - y)])dx = f(Y)Cacdvd(Y)V b(y) 

+ daci($i(f)(Y)Vb(Y) + f(y)$ivb(Y)) + f(Y)Cbcdva(Y)Vd(Y) 

+ dbci(~i(f)(Y)Va(Y) + f(y)~iVa(Y)) = ~i(f)(y)(daciVb(Y) + dbciVa(Y)) 

+ f(y)(Cacdvd(Y)Vb(Y) + Cbcdva(Y)Vd(Y) + daci~ivb(Y) + dbci~iVa(Y)) 
(8.7) 

In particular, for f,f' 6 F, 

[Vab(f),Vc(f')] = daciVb(~i(f)f') + dbciVa(~i(f)f') + CacdVdb(ff') 

+ CbcdVad(ff' ) + daci~i(Vb)(ff' ) + dbci(SiVa)(ff') (8.8) 

Now, introduce F' as the vector space spanned by all "polynomials" of 

the following form: 

(f) = ~ (x) .v a (x)f(x)dx (8.9) 
v a l ' ' ' a r  va l  "" r 

One can calculate commutation relations of the following form: 

(f,)] (8.i0) 
[val...ar(f),Vbl,..b s 

using the calculations that led into (8.8) as a pattern. Notice that again F' is 

an F-module (multiply f 6 F by v v (f') to get v (ff'), and the 
al..- a r al...a r 

formula for the bracket (8.10) will be of the type that we have called "current 

algebra" bracket, i.e., will involve differential operator: F' x F' + r'. (Notice 

that F' is some sort of generalization "universal enveloping algebra" of a Lie 

algebra.) 

Thus we have explained the algebraic background of the work of 

So~m~erfield and Sugawara [18,21]. They showed that a Lorentz invariant dynamical 

theory could be obtained in which the energy-momentum tensor was a second degree 

polynomial in the currents. Of course, actually solving these equations is 

enormously difficult, with no kind of a procedure or approximation method avail- 

able, and the whole theory is, as of right now, therefore useless from the view 

point of the practical physicist. However, there is an important point of 

principle involved. The Sugawara model--and others that one may construct using 

the generalized procedure sketched here--is a theory in which the dynamics is 

determined completely by the currents. If one believes that the "currents", and 

not the "fields", are the basic mathematical and/or physical objects involved in 
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the interaction and classification of elementary particles, then a theory in which 

the equations of motion can be expressed strictly in terms of the currents is very 

attractive. 

In the Sugawara model, these equations of motion have a very interesting 

classical analogue. Let G be a Lie group, whose Lie algebra is that described 

by the structure constants "Cabc" appearing in the current algebra commutation 

relations. Bardacki and Halpern, for special choices'of G, and the author in 

general, have shown [3, 9] that the Lagrangian which gives rise in the simplest way 

(it is still unknown whether there are other Lagrangians which also do so) to the 

Sugawara model has as its classical externals the space of harmonic maps: R 4 ÷ G, 

in the sense of Eels and Sampson [5]. 

We will briefly explain what is involved here. Eels and Sampson define 

the concept of a harmonic map ~: N ÷ M between two Riemannian manifolds. In this 

case, the system of differential equations defining ~ is a system of elliptic 

partial differential equations--in general, non-linear--which, as the name 

indicates, generalize the concept of "harmonic function". (In fact, the harmonic 

map ~: R n ÷ R, with the Euclidean metric on R n and R, are the harmonic functions 

in the usual sense.) 

Now, their definition makes perfectly good sense in the case either N or 

M or both are pseudo-Riemannian m~nifolds. For example, take N = R 4, space-time, 

with the Lorentz metric, and take M = G, a compact, semisimple Lie group, with the 

bi-invariant metric defined by the Killing form on G. Then, the differential 

equations defining the harmonic maps are identical with Sugawara's, and form a 

non-linear, hyperbolic system. Unfortunately, very little seems to be known about 

such systems. Perhaps their possible usefulness as equations for elementary 

particles will stimulate some relevant mathematics. 

9. CURRENTS AS FUNCTIONS ON JET SPACES 

Up to this point, all of our efforts have gone into explaining independ- 

ently of quantum field theory the mathematical nature of currents. In fact, one 

of the most useful features of current algebra theory is the fact that it throws a 

new, more algebraic and geometric light on the more traditional aspects of quantum 

field theory. In this section, we will explain how currents arise in the context 

of classical field theory. 

First we must explain briefly the differential geometric notion of a "jet" 

of a mapping. (See [12, 15] for more details.) Let E and M be manifolds, and 

let ~: E ÷ M be a mapping of E onto M. Let N be another manifold. The 

ordered set (E, M, ~, N) is said to define a (local product) fiber space if each 

point p of M has a neighborhood U in which 7: ~-I(u) ÷ U looks like the 
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Cartesian projection map: 

of a product space. 

Let F(E) denote the space of cross-section maps, i.e., 

a map: M + E such that: 

~(p) = p for p 6 M , 

i.e., ~(p) E E(p) = -l(p), the "fiber" of E over p. 

U x N ÷ U. Then, a "fiber space" is a "globalization" 

6 F(E) is 

Now, if E were the product M x N, it should be clear that the elements 

of F(E) can be written precisely in the form: 

p ÷ (p,~'(p)) , 

w h e r e  ~ '  i s  a map:  M ÷ N. Then t h e  n o t i o n  o f  " c r o s s - s e c t i o n "  i s  a " g l o b a l i z a -  

t i o n "  o f  t h e  i d e a  o f  m a p p i n g  b e t w e e n  two s p a c e s .  

S u p p o s e  now t h a t  ~,  ¢ '  a r e  two e l e m e n t s  o f  F ( E ) ,  and  p i s  a p o i n t  o f  

M. Let us say that ~ and ~' agree to the first order at p if: 

a) ~(p) = ~'(p) 

b) In terms of a local product structure in a neighborhood U of p, 

with #, ~' identified with maps: U ÷ N, the partial derivatives of 

and ~' of first order agree at p. 

Definition. Consider the following equivalence relation on M x F(E): 

(p,~) is equivalent to (p',~') if and only if 

a) p = p' 

b) @ and ~' agree to the first order at p. (9.1) 

Then, jI(E), the manifold of first order jets of cross-sections, is defined as the 

quotient of M x F(E) by the equivalence relation given by (9.1). 

As shown in [ii] and [12], the manifold jI(E) is the appropriate one 

for consideration of the calculus of variation problems underlying quantum field 

theory. For example, a "Lagrangian" is just a real-valued function: jI(E) ÷ R. 

If ~ E F(E), denote by jl(~) (its "one-jet") as a mapping: M ÷ jI(E) 

defined as follows: 

jl(@)(p) = equivalence class to which the point (p,~) belongs. (9.2) 

Then, if L: jI(E) ÷ R is a "Lagrangian", if dx is a volume element form for 

M, if ~ E F(E), then: 

L(*) = f L(ji(~)(x))dx (9.3) 
M 

is the value assigned by L to the cross-section ~. 

In order to establish the equivalence with the more usual formulas of 

field theory, we must introduce coordinate systems for M and E. Suppose that 

R 4 . x = (xu), 0 ~ ~, ~ ~ 3, be Euclidean coordinates for R 4. Suppose M Let 

also that (~a) , 1 ~ a, b ~ n, is a coordinate system for the fiber N. 
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We will define a coordinate system, that we will label 

jI(E) in the following way. Suppose that (p,~) is an element of 

will define the values of these functions on this point: 

a) x are the Euclidean coordinates of the point p. 

b) ~a are the q0-coordinates of the point x(p). 

(x ,~a,%~) 

M x F (E). 

f~a(X) 
c) ~a~ are the derivatives ~x of the function x ÷ ~a(X) 

R 4 determine ~ locally as a map: + N. 

Thus, the Lagrangian L becomes a function L(X,~a,~a~) of the 

indicated variables. If ~ 6 F(E), with functions x + (~a(X)) defining 

locally, then (9.2) takes the following more classical form: 

L(~) = T L(X'~a(X)' ~a (x))dx 

for 

We 

which 

(9.4) 

on jI(E) 

Suppose we are given such a Lagrangian 

as follows : 

~L 
L = 
a ~qO a 

~L 
L = a~ ~q0a~ 

L. Define functions La, La~ 

Then, a cross-section determined by functions :x ÷ ~a(X): is an extremal if it 

satisfies the following differential equations (called the Euler-Lagr~ge 

equations): 

~x (La,(X'~(x)'~(x)) = La(X'~(x)'~(x)) (9.5) 

We now proceed to show how "currents" may be defined. Suppose X is a 

vector field on the manifold E (see [14] for differential geometric notions, such 

as vector field) of the following form: 

a (9.6) X = A (x) ~ + Aa(X,q0) ~q0a , 

where A , Aa are functions of the indicated variables. (Geometrically, vector 

fields of the form (9.6) generate one parameter groups of transformations of E 

that act on M and permute the fibers of E over this action; they may be called 

"fiber space automorphisms".) 

We can now define a "prolonged" vector field X' on jI(E) , by the follow- 

ing formula: 

~A ~A ~A ~ a ~ a 
X' = A ~-~D + A --+ (~--- ~aw ~-x--+-- (9.7) a ~a ~ ~ ~% %~) ~a~ 
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V(E) ÷ V(jI(E)), i.e. 

(9. g) 

This prolongation process is a Lie algebra homomorphism: 

[X,Y]' = [X'Y'] , 

if X, Y are vector fields on h of form (9.5). 

Suppose now that f 6 F(M). Then, 

~f 
(fX)' = fX' + ~-~- (A a - q0a A ) (9.9) 

Thus, if L is a Lagrangian, 

~f 
(fX')(L) = fX'(L) + ~-~--(A a -q0a A )La~ (9.10) 

In particular, suppose that 

A = 0; X'(L) = 0 (9.11) 

This means, geometrically, that if the one parameter group of automorphisms of E 

generated by X map the fibers of E into themselves, and the group is a one- 

parameter group of "internal symmetries" of the Lagrangian L, then 

~f 
(fX)' (L) = ~ (AaLa~) (9.12) 

Now, A L = ~ is the very familiar formula in quantum field theory for the a a~ 

"vector current" generated by a one-parameter group of symmetries. 

In general then, we might associate to each vector field X of form 

(9.7) the following set of functions on jI(E): 

V X = A L - (9.13) a a~ LaDq°a~A~ 

This method of defining "currents" in classical field theories may be compared to 

the now-classical work of Belinfante and Rosenfeld [4, 17]. Now that we have seen 

that ~currents" at the level of classical field theory may be interpreted as 

functions on the jet spaces, the road is open to use the current commutation 

relations of quantum field theory to define a "Poisson bracket" operation for 

functions on the jet spaces. However, we will not pursue this topic here. Instead, 

we will turn to the study of another related connection between "current algebras" 

and differential geometry. 

i0. REPRESENTATIONS OF GAUGE ALGEBRAS BY DIFFERENTIAL OPERATORS 

Now we turn to the question of representing current algebras in a natural 

geometric way--as differential operators on manifolds. This corresponds, roughly, 

to finding their physical consequences as alassical dynamical systems. The 
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problem of realizing them irreducibly as operators on Hilbert space is related to 

their consequences in quantum mechanics, and is a much more difficult (and still 

unsolved) technical problem. (See the work of Araki, Streater and Wulfsohn [2, 19, 

20].) 

Now, part of our "grand design" is to see how "current algebras" arise 

in a natural geometric way. Indeed, I feel that this study will have interesting 

repercussions in "pure" differential geometry. (Of course, differential geometry 

used to be not unrelated to events in physics. However, there has been a period of 

introspection in the last twenty years, and now most of the active workers in this 

field know nothing of these roots.) Lie algebras first arose in mathematics, in 

the works of S. Lie, as Lie algebras of differential operators on finite 

dimensional manifolds. It is still an interesting, unsolved mathematical problem 

to classify the possible ways a given Lie algebra can so act. In the next few 

sections we will treat a fragment of this problem for the sorts of Lie algebras 

(or their generalizations, i.e., algebras satisfying the Jacobi identity up to a 

divergence) encountered in current algebra theory. In this section, we will treat 

the simplest case--where the "current algebra" contains no "Schwinger terms", 

hence is what might be called a "gauge algebra". Precisely, let us adopt the 

following definition. 

Definition. Let F be a commutative, associative algebra over the real 

numbers, and let F be an F-module. A real Lie algebra structure [ , ] on F is 

said to define a gauge algebra if the bilinear map (yl,Y2) ÷ [yl,Y2 ] of 

F x r ÷ F is also F-linear. 

This concept is most useful when combined with the idea of a "free" 

F-module. 

Definition. Let V be a real subspace of F, and let 

be the linear map constructed as follows: 

a(v)(f) = fv , for v E V, f E F (i0.i) 

(@ denotes the tensor product defined with the real numbers as ground field.) 

Then, F is said to be a free F-module with basis space V if the map ~ defined 

by (i0.i) is an isomorphism. 

The modules which arise as "current algebras" in physical situations are 

usually also "free". If this is the case, and if V is a basis space, let us use 

the following notation; suggested by the physicists' notation: 

v(f) = fv = ~(v @ f) , for f E F, v 6 V (10.2) 

Let ~ be a real Lie algebra. 
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Definition. An F-module F is a fr~e gauge algebra based on the Lie 

algebra of charges ~ if the following conditions are satisfied: 

a) F is a free F-module, with basis subspace V. 

b) F is a gauge Lie algebra, in the sense defined above. 

c) With respect to the Lie algebra bracket [ , ] defined by b), V is a 

Lie subalgebra of the real Lie algebra F. 

d) ~ is isomorphic, as a Lie algebra, to the Lie subalgebra V. 

Now, let us suppose that F = F(R3). Let 7: M ÷ R 3 be a map from a 

manifold M to R 3 that defines M as a fiber space over R 3. If f 6 F = F(R 3) 

is a function on the base space, R 3, then f ÷ ~*(f) defines an imbedding of F 

or a subalgebra of F(M). In turn, this enables us to consider the tensor fields 

on M as F-modules. For example, if X is a vector field on M, i.e., an element 

of V(M), and f E F, we denote by "fX" the product of the function ~*(f) and 

the vector field X. 

Now, suppose that F is a free gauge Lie algebra with the basis Lie 

subalgebra V. Thus, the following com~nutation rules are satisfied: 

[vl(fl),v2(f2)] = [Vl,V2](flf2) , for Vl,V 2 ~ V; fl,f2 ~ F (10.3) 

We will now attempt to find a homomorphism h of the Lie algebra 

F-defined by the commutation rules (10.3) - into the Lie algebra V(M) of vector 

fields on the manifold M. In fact, we will restrict ourselves, at this point at 

least, to the search for h of the following form: 

h(v(f)) = fX + 9.(f)X i (10.4) 
V i V 

For v E V, X and X i are vector fields on M. The map v ÷ X and X i then 
V V V V 

define linear mappings: V ÷ V(M). We will also suppose that 

Xv(~*(f)) = 0 = xi(~*(f)) for v e V, f E F(= F(R3)) (i0 5) 
V ' 

Comparing (10.3-10.5), we can readily write down the conditions that h be a 

Lie algebra homomorphism: 

h([Vl(f l),v2(f2)]) = [h(Vl(fl),h(v2(f2))] = [flXvl + 9i(fl)X$1,f2Xv2 

+ i : flf EXl,  I +  i(flf E41,Xv I + fl i(f )I vl,x  
i 

+ +i(fl)+j(f2 )IX i ,X j ] = h([vl,v2](flf2 )) = v I v 2 flf2X[vl,v2 ] 

i 
+ ~i(flf2)X[vl,v2 ] 

Thus, the conditions that h be a homomorphism read as follows: 

[Xvl,Xv2] = X[v l,v2] (i0.6) 
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i i 
[~1 'X$2 ]  = 0 (10.7) 

• i 

[XvII,Xv2] = X[Vl,V2 ] (10.8) 

(Condition (10.8) can be analyzed further in terms of the cohomology of the Lie 

algebra V but we will not go into that here.) 

In summary, we have presented in this section a geometric method for 

realizing gauge Lie algebras by means of differential operators. Of course, the 

method can be generalized considerably beyond what has been presented in this 

section. What we have done amounts to an illustrative example. Our main immediate 

goal is to lead into the work of the next section on "Schwinger terms". 

ii. Schwinger Terms for Gauge Lie Algebras 

Continue with the notations of Section i0. Let F be a free gauge Lie 

algebra, with basis subalgebra V, i.e., the commutation relations for the Lie 

algebra structure on F take the form (10.3). Let M be, as in Section i0, a 

fiber space over R 3. 

Now, let DI(M) denote the Lie algebra of first order inhomogeneous 

differential operators on M. Let us modify the definition (10.4) of h, to define 

the linear mapping h': F ÷ DI(M), as follows: 

h'(v(f)) = fX v + ~i(f)X~ + fk v , for f 6 F, v E V (ii.i) 

In (ii.i), Xv,X $ are vector fields on M; k v is a zero-th order differential 

operator on M, i.e., a function on M. Thus, v ÷ k v defines a linear mapping of 

V ÷ F(M) = D 0(M). 

Let us also suppose that conditions (10.5) are satisfied. (They mean, 

geometrically, that the vector fields Xv,X ~_ are tangent to the fibers of the map 

7: M ÷ E3.) Then, for Vl,V 2 6 V; fl,f2 E F, 

[h'(Vl(fl)),h'(v2(f2))] = flf2[Xvl,Xv2] + 8i(fl)f2[Xv11,Xv2 ] 

i i j 
,x- ]- + fl~i(f2)[Xvl,Xv2] + ~i(fl)~j(f2)[Xvl v 2 fl(f2Xv2(kvl ) 

+ ~i(f2)xi2 (kvl)) (11.2) 

Let us suppose, as in Section i0, that V is a Lie algebra. Thus, using 

(10.3), F can be made into a Lie algebra, with a bracket denoted by [ , ]. Let 

F' be the direct sum of P and F itself. Define a "new" bracket for P', 

denoted by [ , ]', by the following formula: 
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(Si 

[vl(fl),v2(f2)]' = [Vl,V2](flf 2) 

+ ~i(Vl,V2)~i(fl)f 2 - Bi(v2,vl)fl~i(f2) (11.3) 

are bilinear maps: V x V ÷ R. Then, 

h'([vl(fl),v2(f2)]!) = flf2X[vl,v2 ] + ~i(flf2)X~vl,v2 ] 

+ Bi(Vl,V2)~i(fl)f 2 - ~i(v2,vl)fl~i(f2) (11.4) 

Let us now equate (11.2) and (11.4). This imposes the following 

conditions: 

= (11 5) 
[XvI'Xv 2 ] X[vl,v2] 

[X i ,X j ] = 0 (11.6) 
v I v 2 

= i (11.7) 
[ X$1 ' XV 2 ] X[v I ,v 2 ] 

Xvl(kv2) = Xv2(kvl) (ii. 8) 

X$1(kv2) = Bi(Vl,V2) (11.9) 

What we have done now is to find the conditions, namely (11.5-11.9), that 

the set of first order differential operators, of the form (ii.i), satisfy the 

commutation relations whose "abstract" structure relations are given by (11.3). 

Now we turn to the study of more specific structures of this sort, which arise in 

the study of the current algebras of quantum field theory. 

12. THE CURRENT ALGEBRAS OF QUANTUM FIELD THEORY 

Let us now change notations slightly. Choose the following range of 

indices, together with the corresponding summation conventions 

i ~ a, b ~ m; 1 ~ i, j ~ 3; 0 ~ ~, ~ ~ 3 

Let x = (xi) , y = (yi) denote elements of R 3. Let F = F(R 3) be the 

co~mnutative, associative algebra of real-valued functions on R 3. 

Consider objects that are labeled as follows: 

va(x) 

Typically, they are "currents" associated with a Lie algebra of symmetries of a 

physical system. One aspect of the "current algebra" approach to quantum field 
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theory is an attempt to construct Lie algebras from these objects, and investigate 

how these abstract Lie algebras are realized in terms of physical systems. In this 

final section of this paper, I will rework some of the ideas in a previous paper of 

mine [i0], in the algebraic language developed here. 

First of all, for the currents constructed from "Noether's theorem" 

(essentially equivalent to the material presented in Section 9), using the most 

common sort of Lagrangians, the "time" components of the current satisfy the 

following commutation relations: 

a b c 
Iv 0(x),v 0(y)] = CabcV 0(x)~(x - y) (12.1) 

Here, the "c " abc are structure constants of a semisimple Lie algebra ~. 

Second, postulate the following time-space commutation relations: 

[v~(x) b c x ab 
,vj(y)] = CabcVi(X)~(x - y) - ~j(vij(x)6(x - Y)) (12.2) 

ab 
In (12.2) the vij(x,y ) are objects that are model depend~nt. 

o 

Let us put the commutation relations (12.1-12.2) into "module" form. 

Introduce 

v;(f) ° ; v;(x)f(x)ax 

v (f) = ; v (x)f(x)dx 

ab 
vij(fl,f2) = ~ vij(x)fl(x)f2(x)dxdy. (12.3) 

Then, (12.1) - (12.2) take the following form: 

a b c 
[v0(fl),v0(f2)] = CabcV0(flf 2) (12.4) 

[va(fl )0 b c ab ,vj(f2 )] = CabcVi(flf2) + vij(~j(fl ),f2 ) (12.5) 

Let us now try to find realizations of the commutation relations (12.4- 

Let r be an F-module. We will construct a mapping of the objects 12.5). 
a a 

v0(f),vl(f) into the space D0(F,r) of F-linear mappings: r ÷ F. 

Set : 

P(Vo(f)) = fA a + ~i(f)A~. , (12.61 

where Aa' AJ a a re  o p e r a t o r s  i n  Do( I ' , r ) .  Thus, f o l l o w i n g  the  p a t t e r n  d e s c r i b e d  i n  

Section i0, it is readily verified that the following conditions are equivalent to 

(12.4) : 

[Aa,A b] = CabcAC , (12.7) 

a b 
[Ai,A~] = 0 , (12.8) 
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[A~,Ab ] = Cab cAjC 

Now, let us attempt to satisfy (12.5) hy means of the following assignment: 

p(v~(f)) = fB? 
1 

with B a i 6 D0(F,F) Then, 

a b a f2B~ ] [P(v0(fl)),P(vi(f2)] = [fl Aa + ~j(fl)Aj, 

Then, we see that 

provided that: 

(12.9) 

(12. i0) 

a b 
= flf2[Aa,B b] + ~j(fl)f2[Aj,B i] 

p will be a representation of the commutation relations (12.5) 

[Aa,Bb] = CabcBC 

ab f f a b 
vij(fl,f 2) = ~j( i ) 2[Aj,Bi ] 

(12.11) 

(12.12) 

To obtain a model having common features of the"Sugawara model", one can 
ab ab 

further require that the operators [Aj,Bi] commute with the operators A ,B..z A 

method for an explicit realization of these operators in terms of differential 

operators has been presented in [i0], to which we refer for further details. The 

next step in this program would be to search for more general (possibly even the 

most general) realizations of this sort, a task we will attempt in volume III of 

[12]. 
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