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Abstract. This paper reviews a construction called iterant algebra that reconstructs Clifford 
algebra and matrix algebra from the point of view of the symmetric group acting on vectors as 

ordered lists of their components. This algebraic background is then used to discuss the 

braiding of Majorana Fermions, the structure of the Dirac equation and the form of the the 

version of the Dirac equation due to Majorana. 

1. Introduction 

The simplest discrete system corresponds to the square root of minus one, when the square root of 
minus one is seen as an oscillation between plus and minus one. Thinking about the square root of 

minus one in this way, as an iterant, is explained below. Discrete systems can be embedded in non-

commutative systems where discrete derivatives are replaced by commutators. This observation 

genralizes iterants and is explained at the end of Section 2 of the present paper. Iterant algebra 
generalizes matrix algebra and can be used to formulate the Clifford algebra for Majorana Fermions. 

This paper is a sequel to [8] and [5-8, 11-17] and it uses material from these papers. In this paper we 

give a very concise formulation of the basic concepts for our approach to iterants, Majorana Fermion 
operators and the Dirac equation. We have taken formulations in our previous papers and written them 

in the most condensed possible manner. These results in overlap with these papers, but the 

formulations are original to the present work. A further background of previous work of the author is 

given in the following references [1-4, 10, 19]. 
Section 2 is an introduction to the process algebra of iterants and how the square root of minus one 

arises from an alternating process. Section 3 discusses how Clifford algebras are fundamental to the 

structure of Fermions and how braiding is related to the Majorana Femions. Section 4 discusses the 
structure of the Dirac equation and how the nilpotent and the Majorana operators arise naturally in this 

context. This section provides a link between our work and the work on nilpotent structures and the 

Dirac equation of Peter Rowlands [22]. We end this section with an expression in split quaternions for 
the Majorana Dirac equation in one dimension of time and three dimensions of space. The Majorana 

Dirac equation can be written as follows: 

ˆ ˆ ˆˆ 0ηη ε εη εηηm ψ
t x y z

    
     

    
 

where η  and ε  are the simplest generators of iterant algebra with 
2 2 1η ε   and 0ηε εη  , and ε̂ , 

η̂  form a copy of this algebra that commutes with it. This combination of the simplest Clifford algebra 
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with itself is the underlying structure of Majorana Fermions, forming indeed the underlying structure 

of all Fermions. 

2. Iterants 
An iterant is a sum of elements of the form 

 1 2, ,..., na a a σ  

where  1 2, ,..., na a a  is a vector of scalars (usually real or complex numbers) and σ  is a permutation 

on n  letters. Such elements are themselves sums of elements of the form 

 0,0,...,0,1,0,...,0 iσ e σ  

where the 1 is in the i -th place. The vectors ie  are the basic idempotents that generate the iterants 

with the help of the permutations. 

If  1 2, ,..., na a a a , then let σa  denote the vector with its elements permuted by the action of σ : 

     1 2
, ,..., .σ

σ σ σ n
a a a a 

 
 

If a  and b  are vectors then their elementary product ab  denotes the vector where   i ii
ab a b , and 

a b  denotes the vector where   i ii
a b a b   . Then products and sums are defined by the formulas 

below: 

    
   

,σaσ bτ ab στ

ka σ k aσ




 

for a scalar k , and 

 a b σ aσ bσ    

where vectors are multiplied as above and we take the usual product of the permutations. All of matrix 

algebra and more is naturally represented in the iterant framework. See [17]. 

If η  is the order two permutation of two elements, then    , ,
η

a b b a . We can define 

 1, 1i η   

and then 

           2 21, 1 1, 1 1, 1 1, 1 1, 1 1,1 1, 1 1
η

i η η η              . 

In this way the complex numbers arise naturally from iterants. One can interpret  1, 1  as an 

oscillation between 1  and 1  and η  as denoting a temporal shift operator. The  1, 1i η   is a time 

sensitive element and its self-interaction has square minus one. In this way iterants can be interpreted 

as a formalization of elementary discrete processes. 

A more general approach to discrete processes [18] includes this interpretation of iterants and the 
square root of negative unity. The more general approach is worth reprising in this context. Given a 

sequence of discrete algebraic elements  0,1,...tX t   (we take them to be associative but not 

necessarily commutative for this discussion), we define an invertible shift operator J  so that 

1

1t tX J X J

   

Then one can define a discrete derivative   by the equation 

 1t t

t

J X X
X

t

 
 


. 
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Note that, since 1t tJX X J  , this discrete derivative satisfies 

 ,tt t
t

X JX J JX
X

t t


  

 
. 

Thus   is represented as a commutator and satisfies the Leibniz rule 

     AB A B A B    . 

This means that we can shift the analysis of discrete systems to non-commutative worlds where all 

derivatives are represented by commutators. This is the subject of [18] and a number of our earlier 
papers. 

3. Clifford Algebra, Majorana Fermions and Braiding 

In Fermion algebra one has annihiliation operators ψ  and their conjugate creation operators 
†ψ . One 

has  
2

2 †0ψ ψ   and a fundamental commutation relation 

† † 1ψψ ψ ψ  . 

Pairs of such operators such as ψ  and φ , anti-commute: 

ψφ φψ  . 

Majorana Fermion operators c  that satisfy †c c  so that they are their own anti-particles. There is a 

lot of interest in such operators in relation to quasi-particles. They are related to braiding and to 
topological quantum computing. See [21] where researchers found quasiparticle Majorana Fermions in 

edge effects in nano-wires. The Fibonacci model that we discuss in [6] is also based on Majorana 

particles, related to collective electronic excitations. If P  is a Majorana Fermion particle, then P  can 

interact with itself to either produce itself or to annihilate itself. This is the simple “fusion algebra” for 

this particle. One can write 2 1P P   to denote the two possible self-interactions the particle P . The 

patterns of interaction and braiding of such a particle P  give rise to the Fibonacci model. 

Majorana operators are related to standard Fermion operators. The algebra for Majorana operators is 
†c c  and ' 'cc c c   if c  and 'c  are distinct Majorana Fermion operators with 2 1c   and 2' 1c  . A 

standard Fermion operator is composed from two Majorana operators via 

 

 †

' / 2,

' / 2.

ψ c ic

ψ c ic

 

 
 

Similarly one can make two Majorana operators from any single Fermion operator. If you take a set of 
Majoranas 

 1 2 3, , ,..., nc c c c  

then there are braiding operators that act on the vector space with these kc  as the basis. The operators 

are mediated by algebra elements 

 

 

1

1

1

1 2 ,

1 2 .

k k k

k k k

τ c c

τ c c







 

 
 

The braiding operators are 

   1 2 1 2:   , ,..., , ,...,k n nT Span c c c Span c c c  

via 

  1

k k kT x τ xτ . 
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Figure 1: Braiding Action on a Pair of Fermions 

 

The braiding is summarized by these formulas: 

 

 

1

1

,

,

k k k

k k k

T c c

T c c







 
 

and kT  is the identity otherwise. This gives a very unitary representaton of the Artin braid group, and it 

can be used to produce universal quantum computing in the presence of key local unitary operators. 

See Figure 1 for a depiction of this in relation to the topology of a belt that connects the Fermion 

particles. The relationship with the belt depends upon the fact that in quantum mechanics one must 
represent rotations of three dimensional space as unitary transformations. See [9]. In the Figure, the 

belt does not know which of the two Fermions to endow with the phase change, but the clever algebra 

above makes this decision. It is remarkable that fundamental topology occurs at the level of the 
Majorana Fermion operators. 

Now we make contact between the iterants and the algebra of the Majorana Fermion operators. Let 

 1, 1e   . Then  2 1,1 1e    and    1, 1 1,1eη η η eη      . Thus 

2

2

1,

1,

e

η




 

and 

eη ηe  . 

We regard the basic iterants e  and η  as a fundamental pair of Majorana Fermions. 

4. The Dirac Equation and Majorana Fermions 

We now construct the Dirac equation. If the speed of light is equal to 1 (by convention), then energy 

E , momentum p  and rest mass m  are related by the (Einstein) equation 
2 2 2E p m  . 

Dirac constructed his equation by looking for an algebraic square root of 
2 2p m  so that he could 

have a linear operator for E  that would take the same role as the Hamiltonian in the Schroedinger 

equation. We will get to this operator by first taking the case where p  is a scalar (we use one 
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dimension of space and one dimension of time.). Let E αp βm   where α  and β  are elements of a 

possibly non-commutative, associative algebra. Then 

 2 2 2 2 2E α p β m pm αβ βα    . 

Hence we satisfiy 
2 2 2E p m   if 

2 2 1α β   and 0αβ βα  . This is the Clifford algebra pattern 

and we can apply the iterant algebra generated by e  and η . Then, with the quantum operator for 

momentum is i
x





 and the operator for energy is i
t




, we have the Dirac equation 

ψ ψ
i iα βmψ

t x

 
  

 
. 

Let 

O i iα βm
t x

 
  

 
 

so that the Dirac equation takes the form 

 , 0Oψ x t  . 

Now note that 
     i px Et i px Et

Oe E αp βm e
 

   . 

We let 

 E αp βm     

and let 

 U βα E αp βm βα βαE βp αm        , 

then 
2 2 2 2 0U E p m     . 

This nilpotent element leads to a (plane wave) solution to the Dirac equation. We have that 

Oψ ψ   

for 
 i px Et

ψ e


 . It follows that 

  2 0O βα βαψ βα βαψ U ψ      , 

from which it follows that 
 i px Et

ψ βαUe


  

is a (plane wave) solution to the Dirac equation. 

This calculation suggests that we multiply the operator O  by βα  on the right, obtaining the operator 

D Oβα iβα iβ αm
t x

 
   

 
, 

and the equivalent Dirac equation 

0Dψ  . 

For the specific ψ  above we have     2 0
i px Et i px Et

D Ue U e
 

  . Rowlands [22] does this trick in the 

context of quaternion algebra. Here we use the split quaternions. We regard this method of 
construction via the split quaternions as fundamental since it connects the Dirac equation to the 

process algebra and iterants by which we have begun this development. Note that the solution to the 

Dirac equation that we have found is expressed in Clifford algebra or iterant algebra form. It can be 
articulated into specific vector solutions by using an iterant or matrix representation of the algebra. 

We see that the algebra element U βαE βp αm    with 2 0U   is the core of this plane wave 

solution to the Dirac equation. A natural non-commutative algebra arises directly from articulation of 
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discrete process and can be regarded as essential information in a Fermion. It is natural to compare this 

algebra structure with algebra of creation and annihilation operators that occur in quantum field 

theory. 
If we let 

 i px Et
ψ e


  

(reversing time), then  

  †Dψ βαE βp αm ψ U ψ     , 

This gives a definition of †U  corresponding to the anti-particle for Uψ . 

We have 

U βαE βp αm    

and 
†U βαE βp αm     

Note that  

     
2 2† 2 2 22 4 4U U βp αm p m E      , 

and 

   
2 2† 22 4U U βαE E     . 

Thus 

 
2

2 † 0U U   

and 
† † 24UU U U E  . 

This is a direct appearance of the Fermion algebra corresponding to the Fermion plane wave solutions 

to the Dirac equation. Furthermore, the decomposition of U  and †U  into the Majorana Fermion 

operators corresponds to 
2 2 2E p m  . Normalizing by dividing by 2E  we have 

βp αm
A

E


  

and 

B iβα . 

so that 
2 2 1A B   

and 

0AB BA  . 

then 

 U A Bi E   

and 

 †U A Bi E  , 

articulating the Fermion operators in terms of the simpler Clifford algebra of Majorana operators (split 

quaternions once again). 

4.1 Writing in the Full Dirac Algebra 

We have written the Dirac equation in one dimension of space and one dimension of time. We here 

translate the formalism to three dimensions of space. Take an independent Clifford algebra generated 

by 1 2 3,  ,  σ σ σ  with 
2 1iσ   for 1,2,3i   and i j j iσ σ σ σ   for i j . Assume that α  and β  as used 

above generate an independent Clifford algebra commuting with the algebra of the iσ . Replace scalar 
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momentum p  by a 3-vector momentum  1 2 3, ,p p p p  and let 1 1 2 2 3 3p σ p σ p σ p σ    . Replace 

x




 with 

1 2 3

, ,
x x x

   
   

   
 and 

p

x




 with p . 

The Dirac equation takes the form: 

ψ
i iα σψ βmψ

t


   


. 

Let 

O i iα σ βm
t


   


 

so the Dirac equation takes the form 

 , 0Oψ x t  . 

By our previous discussion we let 

   
,

i p x Et
ψ x t e

 
  

and construct solutions by applying the Dirac operator to this ψ . The two Clifford algebras interact to 

generalize the nilpotent solutions and Fermion algebra that we have detailed for one spatial dimension 

to this three dimensional case. The modified Dirac operator is  

D iβα β σ αm
t


   


. 

We have that 

Dψ Uψ  

where 

U βαE βp σ αm    . 

Then 2 0U   and Uψ  is a solution to the modified Dirac Equation, as before. We articulate the 

structure of the Fermion operators and locate the corresponding Majorana Fermion operators. Details 

are left to the reader. 

4.2 Majorana Fermions 
We end with a brief discussion making a Dirac algebra that is distinct from the one generated by 

1 2 3,  ,  ,  ,  α β σ σ σ . From the new algebra we obtain an equation that can have real solutions. This was 

the strategy Majorana [20] followed to construct his Majorana Fermions. A real equation can have 

solutions that are invariant under complex conjugation. The solutions can correspond to particles that 

are their own anti-particles. We describe this Majorana algebra in terms of the split quaternions ε  and 

η . For convenience we use the matrix representation given below. The reader of this paper can 

substitute the corresponding iterants. 

1 0 0 1
,  

0 1 1 0
ε η

   
    
   

. 

Let ε̂  and η̂  generate another, independent algebra of split quaternions, commuting with the first 

algebra generated by ε  and η . A totally real Majorana Dirac equation can be written as follows: 

ˆ ˆ ˆˆ 0ηη ε εη εηηm ψ
t x y z

    
     

    
. 

To see that this is a correct Dirac equation, note that 

ˆ ˆ ˆ ˆ
x x y y z zE α p α p α p βm     

(Here the “hats” denote the quantum differential operators corresponding to the energy and 

momentum.) will satisfy 
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2 2 2 2 2ˆ ˆ ˆ ˆ
x y zE p p p m     

if the algebra generated by ,  ,  ,  x y zα α α β  has each generator of square one and each distinct pair of 

generators anti-commuting. We obtain the general Dirac equation by replacing Ê  by i
t




, and ˆ

xp  

with i
x





 (and same for ,  y z ).  

0x y zi iα iα iα βm ψ
t x y z

    
     

    
. 

This is equivalent to 

0x y zα α α iβm ψ
t x y z

    
     

    
. 

We take 

ˆ ˆ ˆˆ,  ,  ,  x y yα ηη α ε α εη β iεηη    , 

These elements satisfy the requirements for the Dirac algebra. Note how we have a significant 

interaction between the commuting square root of minus one  i  and the element ˆ ˆεη  of square minus 

one in the split quaternions. This return to our original considerations about the source of the square 

root of minus one. Both viewpoints combine in the element ˆˆβ iεηη  that makes this Majorana algebra 

work. Since the algebra appearing in the Majorana Dirac operator is constructed entirely from two 

commuting copies of the split quaternions, there is no appearance of the complex numbers, and when 
written out in 2 2  matrices we obtain coupled real differential equations to be solved. This ending is 

actually a beginning of a new study of Majorana Fermions. That will commence in a sequel to the 

present paper. 
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