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Summary

Conformal invariance is one concept that is common to many areas of theoretical
physics; from critical phenomena in statistical and condensed matter systems,
through the description of particle physics at long distances, to quantum gravity
via the holographic principle. Conceptually, conformal symmetry is characterized
by transformations that preserves angles, which include rotations, translations, as
well as coordinate-dependent dilatations.

In modern times, it is believed that generic quantum field theories (QFT)
are parametrized by coupling constants that vary continuously along an RG flow,
starting and ending at fixed points. At both fixed points, the symmetries of the
QFT are upgraded to angle preserving transformations, thus becoming a Con-
formal Field Theory (CFT). An alternate approach for studying QFTs is then
to start from a CFT corresponding to either fixed point and flowing back to the
non-conformal regime. The reason this is a viable strategy is that conformal sym-
metry fixes all the observables of the theory up to a set of numerical coefficients
called CFT data, and furthermore imposes consistency conditions that, if solved,
completely characterize the space of valid CFTs. The quest for solving these consis-
tency conditions is called the conformal bootstrap program, and was first proposed
in the 1970s [7, 8]. Moreover, CFTs can be defined mathematically in a rigorous
way which is a considerable improvement when compared to the usual Lagrangian
description of QFTs.

In two dimensions, the group of conformal transformations is enhanced by an
infinite amount of symmetries which allowed the complete solution of a large class
of theories—the minimal models—in the 1980s [9]. However, for arbitrary dimen-
sions, it took more than 20 years for explicit solutions to the bootstrap equations
to appear. The main reasons for this delay are the lack of mathematical results
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describing the kinematic functions involved in the bootstrap equations—conformal
partial waves—as well as the absence of appropriate numerical and analytical tech-
nology for solving these equations.

Since then, the literature has exploded with many new developments and re-
sults on CFTs using the bootstrap philosophy. Nonetheless, the bootstrap program
is far from complete. In particular the conformal partial waves describing spin-
ning fields are not fully understood yet. Furthermore, the application of current
techniques to discover possible new theories in higher dimensions, as well as un-
covering universal properties and their connection to quantum gravity, are yet to
be explored. Finally, in order to achieve a complete classification of CFTs in arbi-
trary dimensions, more efficient and powerful techniques for solving the bootstrap
equations will need to be developed.

In this thesis we discuss two improvements in the computation of spinning
partial waves in closed form for arbitrary space-time dimensions. Then applying
two analytical bootstrap techniques for constraining spinning four point functions,
we compute some universal constraints on the CFT data related to the conformal
stress-tensor. In the context of holography this result shows the attractive nature
of the gravitational interactions in AdS. Finally, we apply CFT techniques to
provide a dictionary between spinning partial waves and geodesic objects living in
AdS.

xiv



Samenvatting

Conforme invariantie komt voor in een groot aantal deelgebieden van de theoreti-
sche natuurkunde; van kritische systemen in statistische fysica en gecondenseerde
materie, via de beschrijving van deeltjesfysica op grote lengteschalen, tot quan-
tumzwaartekracht door middel van het holografisch principe. Conceptueel gezien
is een conforme symmetrie een transformatie die hoeken behoudt, zoals rotaties,
translaties en coördinaatafhankelijke dilataties.

Vandaag de dag denkt men dat algemene quantumveldentheorieën (QFT) ge-
parametriseerd worden door koppelingsconstantes die continu variëren langs een
RG-flow, die begint en eindigt op een stationair punt. Op beide stationaire punten
worden de symmetrieën van de QFT uitgebreid tot hoekgetrouwe transformaties
en wordt de theorie een conforme veldentheorie (CFT). Een alternatieve methode
om QFT’s te bestuderen bestaat er dan uit om te beginnen vanuit een CFT,
die correspondeert met één van de stationaire punten, en langs de RG-flow terug
te ‘stromen’ naar het niet-conforme regime. Deze methode heeft kans van sla-
gen doordat conforme symmetrie alle observabelen van de theorie vastlegt op een
verzameling numerieke coëfficiënten na (die de CFT-data genoemd worden) en bo-
vendien consistentievereisten oplegt die, als ze opgelost kunnen worden, de ruimte
van valide CFT’s volledig vastlegt. De zoektocht naar de oplossing van deze con-
sistentievereisten staat bekend als de conforme bootstrap en werd voor het eerst
geopperd in de jaren zeventig [7, 8]. Bovendien kunnen CFTs wiskundig rigou-
reus gedefinieerd worden, een flinke verbetering ten opzichte van de gebruikelijke
Lagrangiaanse beschrijving van QFTs.

De groep van conforme transformaties wordt in twee dimensies uitgebreid met
een oneindige hoeveelheid symmetrieën Dit maakt het mogelijk dat in de jaren
tachtig een grote klasse van theorieën—de minimal models—volledig werd op-
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gelost [9]. Voor willekeurige dimensies duurde het echter meer dan twintig jaar
voordat expliciete oplossingen van de bootstrapvergelijkingen werden gevonden. De
voornaamste redenen voor deze vertraging zijn het gebrek aan wiskundige resulta-
ten over de kinematische functies die een rol spelen in de bootstrapvergelijkingen—
conforme partiële golven—en het gebrek aan geschikte numerieke en analytische
technieken om deze vergelijkingen op te lossen.

Sindsdien heeft er een explosie van nieuwe ontwikkelingen en resultaten over
CFT’s in de literatuur plaatsgevonden, gevoed door de bootstrap-filosofie. Desal-
niettemin is het bootstrap-programma verre van compleet. De conforme partiële
golven die velden met spin beschrijven zijn bijvoorbeeld nog niet volledig begrepen.
Bovendien zijn de huidige technieken nog niet toegepast op zowel de zoektocht naar
nieuwe theorieën in hogere dimensies als het ontdekken van universele eigenschap-
pen en hun verband met quantumzwaartekracht. Tenslotte moeten efficiëntere en
krachtigere technieken om de bootstrapvergelijkingen op te lossen worden ontwik-
keld om een volledige classificatie van CFT’s in willekeurige dimensies te kunnen
geven.

In dit proefschrift behandelen we twee verbeteringen in de berekening van
partiële golven met spin in gesloten vorm voor willekeurige ruimtetijddimensie.
Door twee analytische bootstrap-methodes toe te passen om vierpuntsfuncties met
spin te begrenzen kunnen we bepaalde universele begrenzingen op de CFT-data
gerelateerd aan de conforme stresstensor berekenen. In de context van holografie
toont dit resultaat de aantrekkende werking van de zwaartekrachtsinteracties in
AdS. Tenslotte passen we CFT-technieken toe om een woordenboek tussen partiële
golven met spin en geodetische objecten in AdS te geven.

xvi



1 Introduction:
Conformal field
theories in d > 2

On techniques for studying and solving the space of consistent
conformal field theories in general dimensions

The objective of this chapter is to introduce the relevant concepts for this thesis,
in a detailed and self-consistent way. The information that we present ranges from
basic concepts in conformal field theory (CFT) to state-of-the-art techniques from
the modern literature on higher dimensional CFTs.

1.1 Review of basic concepts

The first section concerns basic information regarding conformal field theories in
arbitrary dimensions including symmetry generators, conformal representations,
the conformal algebra, etc. This is commonly found in books and lecture notes,
e.g. [10–13], hence readers familiar with this material may skip it. The discussion
of modern CFT concepts starts in section 1.2.

1.1.1 Symmetries, Ward identities, charge generators, and
correlation functions

Consider a Lie group G. The action of an element g ∈ G on the coordinates
xµ ∈ Rd, for arbitrary d can be written as

gxµ = eθ
aTaxµ = xµ + θaTax

µ +O(θ2). (1.1)

1



1. Introduction: Conformal field theories in d > 2

For a field φ in a representation ρ of G we can define a similar action:

(gφ)(x) = eθ
aρ(Ta)φ(x) = φ(x) + θaρ(Ta)φ(x) +O(θ2). (1.2)

One can also define a “full” transformation, where both the field and coordinates
are transformed at once:

(gφ)(gx) = eθ
a∆(Ta)φ(x) = φ(x) + θa∆(Ta)φ(x) +O(θ2). (1.3)

This can be connected to the previous definitions by noticing

φ(x) = φ(g−1gx) = φ(gx)− θa(Taxµ)∂µφ(gx) +O(θ2), (1.4)

which implies that, at first order,

(gφ)(gx)− φ(gx) = θa∆(Ta)φ(x)− θa(Taxµ)∂µφ(gx) +O(θ2)
= θa∆(Ta)φ(gx)− θa(Taxµ)∂µφ(gx) +O(θ2), (1.5)

where in the second line we used the fact that θa∆(Ta)[φ(gx) − φ(x)] = O(θ2).
Thus, comparing with (1.2) leads to

ρ(Ta)φ(x) = ∆(Ta)φ(x)− (Taxµ)∂µφ(x) (1.6)

Let us now compute how the action S,

S =
∫
ddxL(φ(x), ∂µφ(x)), (1.7)

transforms under g. For simplicity of notation we define

x′µ ≡ gxµ, φ′(x′) ≡ (gφ)(gx), F(φ(x)) ≡ eθ
a∆(Ta)φ(x). (1.8)

Hence, under g, we have

S′ =
∫
ddx′L(φ′(x′), ∂′µφ′(x′)) =

∫
ddx′L(F(φ(x)), ∂′µF(φ(x)))

=
∫
ddx

∣∣∣∣∂x′∂x

∣∣∣∣L(F(φ(x)), ∂x
ν

∂x′µ
∂νF(φ(x))

)
. (1.9)

Now at first order, the determinant of the Jacobian can be approximated by

det(1 +M) ≈ 1 + TrM ⇒
∣∣∣∣∂x′∂x

∣∣∣∣ = 1 + ∂µ (θaTaxµ) +O(θ2). (1.10)

Therefore, at first order in θ (assuming θ depends on x),

S′ =
∫
ddx (1 + ∂µ (θaTaxµ))

× L
(
φ(x) + θa∆(Ta)φ(x),

(
δνµ − ∂µ (θaTaxν)

)
∂ν (φ(x) + θa∆(Ta)φ(x))

)
= L − jµa ∂µθa + {· · · }θa, (1.11)

2



1.1. Review of basic concepts

where

jµa =
[
∂L
∂∂µφ

∂νφ− δµνL
]
Tax

ν − ∂L
∂∂µφ

∆(Ta)φ(x). (1.12)

Assuming the action is symmetric under rigid transformations g, then terms mul-
tiplying θa add up to zero . Meaning that if the action obeys the equations of
motion, then the change in the action must be

0 = S′ − S = −
∫
ddxjµa ∂µθ

a =
∫
ddxθa∂µj

µ
a (1.13)

for arbitrary θa(x). In other words, a continuous symmetry implies a conserved
current j

∂µj
µ
a = 0. (1.14)

In terms of correlators, symmetries can be expressed in terms of the so-called
Ward identities. Consider the correlator

〈φ(x1) · · ·φ(xn)〉 = 1
Z

∫
Dφ φ(x1) · · ·φ(xn)e−S[φ]. (1.15)

Applying an infinitesimal transformation to the field

φ(x)→ φ′(x) = φ(x) + θaρ(Ta)φ(x) (1.16)

implies

〈φ(x1) · · ·φ(xn)〉 = 1
Z

∫
Dφ′ φ′(x1) . . . φ′(xn)e−S[φ′]

= 1
Z

∫
Dφ{φ(x1)+θaρ(Ta)Φ(x1)} · · · {φ(xn)+θaρ(Ta)φ(xn)}e−S[φ]−

∫
ddxθa(x)∂µjµa

≈ 〈φ(x1) · · ·φ(xn)〉+
∑
i

θa(xi)〈φ(x1) · · · ρ(Ta)φ(xi) . . . φ(xn)〉

−
∫
ddxθa(x)∂µ〈jµaφ(x1) · · ·φ(xn)〉. (1.17)

In the first identity we relabeled the field variable, in the second identity we used
(1.13) and assumed the measure is invariant Dφ′ = Dφ. Expressing the summation
as an integral∑

i

θa(xi)〈φ(x1) · · · ρ(Ta)φ(xi) · · ·φ(xn)〉 =∫
ddxθa(x)

∑
i

〈φ(x1) · · · ρ(Ta)φ(xi) · · ·φ(xn)〉δ(x− xi), (1.18)
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1. Introduction: Conformal field theories in d > 2

leads to the Ward identity

∂µ〈jµaφ(x1) · · ·φ(xn)〉 =
∑
i

〈φ(x1) · · · ρ(Ta)φ(xi) · · ·φ(xn)〉δ(x− xi). (1.19)

Integrating this expression provides a way to compute how quantum field operators
transform under symmetry generators, i.e. the quantum version of (1.3). Let V
be a volume containing one and only one field of the correlator, say φ(x1), then∫

V

ddx∂µ〈jµaφ(x1) · · ·φ(xn)〉 = 〈Qa[∂V ]φ(x1) · · ·φ(xn)〉

= 〈(ρ(Ta)φ(x1)) · · ·φ(xn)〉, (1.20)

where we defined

Qa[∂V ] =
∫
∂V

dsµj
µ
a . (1.21)

As long as ∂V does not cross other points, we are free to deform it. Let us take
∂V to be a thin box bounded by

t− < t1 < t+, t1 = x0
1 (1.22)

and spatial infinity. We can then write the surface as the difference of two “time”
slices ∂V = ∂V+−∂V−. Writing the correlator as a time-ordered expectation value

〈φ(x1) · · ·φ(xn)〉 = 〈0|T{φ(t1, x1) · · ·φ(tn, xn)} |0〉 , (1.23)

implies that the difference Qa[∂V+]−Qa[∂V−] becomes a commutator [Qa, φ(x1)].
More precisely,

〈0|T{[Qa, φ(t1, x1)] · · ·φ(tn, xn)} |0〉 = 〈(Qa[∂V+]−Qa[∂V−])φ(x1) · · ·φ(xn)〉
= 〈(ρ(Ta)φ(x1)) · · ·φ(xn)〉

= 〈0|T{(ρ(Ta)φ(t1, x1)) · · ·φ(tn, xn)} |0〉 , (1.24)

where in the second line we used (1.20). Therefore

[Qa, φ(x)] = ρ(Ta)φ(x). (1.25)

Note that this result is independent of our choice of quantization (1.22) since we
will always end up enclosing x1, regardless of which coordinate we pick as time.
Exponentiating this result, shows how the field transformation (1.2) translates into
operator valued fields:

(gφ)(x) = eθ
aQaφ(x)e−θ

aQa = eθ
aρ(Ta)φ(x). (1.26)
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1.1. Review of basic concepts

To be more explicit about the relation (1.25), let us write for a moment the Qa
as Q(ρ(Ta)). Then, via the Jacobi identity and (1.25), we have a relation between
commutators of Q and commutators of ρ(T ): 1

[Q(ρ(T 1
a )), Q(ρ(T 2

b ))] = Q(−[ρ(T 1
a ), ρ(T 2

b )]). (1.27)

Another way of integrating the Ward identities, gives differential equations
for correlators. Integrating over the whole volume, the left hand side of (1.19)
vanishes by Stokes’ theorem, assuming the 〈jµa · · · 〉 goes to zero at infinity. This
implies then that ∑

i

〈φ(x1) · · · ρ(Ta)φ(xi) · · ·φ(xn)〉 = 0. (1.28)

Not that this is the infinitesimal version of

〈φ(x′1) · · ·φ(x′n)〉 = 1
Z

∫
Dφ′ φ′(x′1) . . . φ′(x′n)e−S[φ′]

= 1
Z

∫
Dφ F(φ(x1)) . . .F(φ(xn))e−S[φ]

= 〈F(φ(x1)) · · · F(φ(xn))〉, (1.29)

where in the first identity we relabeled the field variable, in the second identity we
assumed Dφ′ = Dφ and that the action is symmetric.

1.1.2 Conformal transformations and the algebra of gener-
ators

Consider d-dimensional coordinates xµ, µ = 1, . . . , d, with metric tensor ηµν . A
conformal transformation is a diffeomorphism

xµ → x′µ = eθ
aTaxµ, (1.30)

which rescales the metric by a position dependent factor

ηµν → Λ(x)ηµν . (1.31)

At first order in θ, the coordinate transformation (1.30) induces the following
change in the metric:

ηµν → η′µν = ∂xρ

∂x′µ
∂xσ

∂x′ν
ηρσ = ηµν − (ηρν∂µ + ηρµ∂ν) θaTaxρ +O(θ2). (1.32)

1Note that the repeated action of Q, reverses the order of ρ(T ); [Q(ρ(T 1
a )), [Q(T 2

b ), φ(x)]] =
ρ(T 2

b )ρ(T 1
a )φ(x). This is the reason why there is a negative sign on the right hand side of (1.27).
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1. Introduction: Conformal field theories in d > 2

It is easy to check that (1.31) then implies(
ηρν∂µ + ηρµ∂ν −

2
d
ηµν∂ρ

)
θaTax

ρ = 0. (1.33)

The most generic solution to this equation is given by

θaTax
µ = αµ + ωµνx

ν + γxµ + 2(β · x)xµ − βµx2, (1.34)

where the parameters α, ω, γ, and β correspond to translations, rotations, dilata-
tions, and special conformal transformations (SCT), respectively. Comparing this
expression with (1.1) we find the form of θa and Ta: 2

θa = {αµ, 1
2ω

µν , γ, βµ}, (1.35)

Ta = {pµ,mµν , d, kµ}. (1.36)

where

pµ = ∂µ, mµν = xν∂µ − xµ∂ν ,
d = xµ∂µ, kµ = 2xµx · ∂ − x2∂µ. (1.37)

Exponentiating (1.34) for each different parameter produces the finite version of
the conformal transformations:

translation : xµ → xµ + aµ

rotation : xµ → Λµνxν

dilatation : xµ → λxµ (1.38)

SCT : xµ → xµ − bµx2

1− 2b · x+ b2x2 .

Given the form of Ta we can compute ρ(Ta) using (1.6). For simplicity let
us assume that the field does not change under the full transformation (1.3), i.e.
(gφ)(gx) = φ(x), then

ρ(Ta) = {Pµ,Mµν , D,Kµ}, (1.39)

where

Pµ = −∂µ, Mµν = xµ∂ν − xν∂µ,
D = −xµ∂µ, Kµ = −2xµx · ∂ + x2∂µ. (1.40)

2Note that the 1
2 factor next to ω is to compensate for the double counting when contracting

both indices.
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1.1. Review of basic concepts

With these results we obtain the conformal algebra:

[D,Pµ] = Pµ, [D,Kµ] = −Kµ,

[Kµ, Pν ] = 2ηµνD − 2Mµν ,

[Pρ,Mµν ] = ηµρPν − ηνρPµ, [Kρ,Mµν ] = ηµρKν − ηνρKµ, (1.41)
[Mµν ,Mρσ] = ηνρMµσ − ηµρMνσ + ηµσMνρ − ηνσMµρ.

Note that different conventions of the conformal algebra correspond to different
conventions for the transformation (1.2). For example, the conventions of [12] are
recovered by sending the generators ρ(Ta) defined here to −iρ(Ta).

The field generators (1.40) can be mapped to the generators JAB , A = 1, · · · , d, d+
1, d+ 2 of SO(d+ 1, 1) via

Mµν = Jµν , Pµ = −Jd+1µ + Jd+2µ,

Kµ = −Jd+1µ − Jd+2µ, D = Jd+1d+2, (1.42)

satisfying

[JAB , JCD] = ηBCJAD − ηACJBD + ηADJBC − ηBDJAC , (1.43)

with metric ηAB = diag(1, 1, . . . , 1,−1). This map will be very useful later.

1.1.3 Conformal representations and correlators

Recall that the symmetry generators in (1.40) are valid for fields satisfying (gφ)(gx) =
φ(x). However, for more generic fields, these results are modified according to
(1.6). Our aim is to compute (1.25) for each conformal generator.3 Let us write
the charge Qa, associated to ρ(Ta), with the same symbol but with a hat on top,
e.g. ρ(Ta) = Mµν → Qa = M̂µν . A trick to compute [Qa, φ(x)] is to study the
case [Qa, φ(0)] and then use P̂ to translate back to an arbitrary position. More
precisely, using (1.26), it is easy to check that

[Qa, φ(x)] = [Qa, e−x
µP̂µφ(0)ex

µP̂µ ] = e−x
µP̂µ [ex

µP̂µQae
−xµP̂µ , φ(0)]ex

µP̂µ

= e−x·P̂
[
Qa + [x · P̂ , Qa] + 1

2 [x · P̂ , [x · P̂ , Qa]] + · · · , φ(0)
]
ex·P̂ , (1.44)

where in the second line we used Hausdorff formula

eABe−A = B + [A,B] + 1
2! [A, [A,B]] + · · · . (1.45)

3Note that in the literature, one finds that the commutator notation [Q,φ] is often exchanged
by Qφ. One can understand the latter as surrounding φ with the charge Q in the path integral,
which is equivalent to the commutator notation as discussed in subsection 1.1.1.
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1. Introduction: Conformal field theories in d > 2

Recall that the commutators between Q are given in (1.27).

For rotations, let us suppose φ is in an irreducible representation of SO(d) with
matrix generators Sµν , then

[M̂µν , φ(0)] = −Sµνφ(0), (1.46)

where the form of S depends on the representation of φ; for example for a spin `

tensor

(Sµν)b1,··· ,b`a1,··· ,a` = (−ηµa1δ
b1
ν + ηνa1δ

b1
µ )δb2a2

. . . δb`a` + . . .

+ δb1a1
. . . δb`−1

a`−1
(−ηµa`δb`ν + ηνa`δ

b`
µ ). (1.47)

For dilatations and SCT, let us suppose4

[D̂, φ(0)] = −∆φ(0), [K̂µ, φ(0)] = −Kµφ(0), (1.48)

respectively. The algebra between −∆ , −Kµ, −Sµν must be the same as the full
algebra (1.41) with the translation generator removed. In particular

[∆, Sµν ] = 0, [∆,Kµ] = Kµ (1.49)

Because φ is in an irreducible representation of SO(d) and ∆ commutes with Sµν ,
then ∆ must be proportional to the identity. Furthermore, the commutator with
Kµ implies Kµ = 0. This representation is called conformal primary and is labeled
by the SO(d) Dynkin labels and the conformal dimension ∆.

Let us assume for a moment that φ(0) is not a primary, i.e. [K̂µ, φ(0)] 6= 0.
This implies that

[D̂, [K̂µ, φ(0)]] = [[D̂, K̂µ], φ(0)] + [K̂µ, [D̂, φ(0)]] = −(−1 + ∆)[K̂µ, φ(0)]. (1.50)

Hence K acts like a lowering operator for the conformal dimension. Given that
physical theories have bounded conformal dimensions (more on that later), acting
repeatedly with K must end when we hit a primary operator. On the other hand,
by a similar calculation,

[D̂, [P̂µ, φ(0)]] = −(1 + ∆)[P̂µ, φ(0)], (1.51)

which implies that P rises the dimension. Operators of the form Pµ1Pµ2 · · ·φ(0)
are called descendants of φ(0). A conformal multiplet is then the collection of a
primary with all its descendants.

4The negative sign on these commutators is because, as seen in (1.40), the action on the fields
is inverse to that of the coordinates (1.37).
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1.1. Review of basic concepts

Putting the previous results together, leads to the action of the quantum gen-
erators on primaries φ(x):

[P̂µ, φ(x)] = −∂µφ(x), (1.52)

[M̂µν , φ(x)] = (xµ∂ν − xν∂µ)φ(x)− Sµνφ(x), (1.53)

[D̂, φ(x)] = −x · ∂φ(x)−∆φ(x), (1.54)

[K̂µ, φ(x)] = (−2xµxν + x2δνµ)∂νφ(x) + 2xν(−∆δµν + Sµν)φ(x). (1.55)

Note that the right hand side of these expressions gives the general version of
ρ(Ta) in (1.40), c.f. (1.25). Using (1.6), we extract the action of ∆(Ta) =
{P̃µ, M̃µν , D̃, K̃µ} on the fields:

P̃µ = 0, M̃µν = −Sµν ,
D̃ = −∆, K̃µ = 2xν(−∆δµν + Sµν). (1.56)

Using these on (1.3) along with the finite coordinate transformations (1.38) allows
us to write the finite version of the full field transformation:

(gφ)(gx) = Ω(x)−∆R(Σ(x)−1)φ(x), (1.57)

where

∂gxµ

∂xν
= Ω(x)Σµν(x), ΣTΣ = 1, Σµν(x) ∈ SO(d), (1.58)

and R is the SO(d) representation acting on the field indices. For completeness,
the scale and rotation factors for each transformation are

Ω(x) =


1 translation
1 rotation
λ dilatation

1
1−2b·x+b2x2 SCT

(1.59)

Σµν(x) =


δµν translation
Λµν rotation
δµν dilatation
δµν − 2bµxν + 2Ω(x)(xµ − x2bµ)(bν − b2xν) SCT

(1.60)

Using the previous results for ρ(Ta) in (1.28), leads to a set of differential
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1. Introduction: Conformal field theories in d > 2

equations for the conformal correlators of primaries:∑
i

∂

∂xµi
〈φ(x1) · · ·φ(xn)〉 = 0,

∑
i

(
xiµ

∂

∂xνi
− xiν

∂

∂xµi
− Siµν

)
〈φ(x1) · · ·φ(xn)〉 = 0,

∑
i

(
−xµi

∂

∂xµi
−∆i

)
〈φ(x1) · · ·φ(xn)〉 = 0,

∑
i

(
(−2xiµxiν + x2

i δ
ν
µ) ∂

∂xνi
+ 2xνi (−∆iδµν + Siµν)

)
〈φ(x1) · · ·φ(xn)〉 = 0,

(1.61)

whereas the finite constraints are given by (1.29) and (1.57)

〈φ(x′1) · · ·φ(x′n)〉 =
(∏

i

Ω(xi)−∆iRi
(
Σ(xi)−1)) 〈φ(x1) · · ·φ(xn)〉 (1.62)

1.1.4 The stress tensor

Using (1.12) we can compute the currents associated to conformal transformations
via (1.37) and (1.56):

Tµν = ∂L
∂∂µφ

∂νφ(x)− δµνL, (1.63)

(Mµν)ρ = xνT
ρ
µ − xµT ρν + ∂L

∂∂ρφ
Sµνφ(x), (1.64)

(D)ρ = xνT ρν + ∂L
∂∂ρφ

∆φ(x), (1.65)

(Kµ)ρ = 2xµxνT ρν − x2T ρµ + 2xν ∂L
∂∂ρφ

(∆δµν − Sµν)φ(x). (1.66)

The last term in (Mµν)ρ can be removed in a consistent way,5 which makes the
stress tensor symmetric under the exchange of indices. In some cases, the last
term (D)ρ can also be removed in a similar way [12], implying that conformal
invariance is a consequence of scale invariance and Poincare symmetry. As shown
later, removing the second term of (D)ρ makes the stress tensor traceless, which

5This is done by adding the divergence of the so-called Belifante tensor B to the definition
of the stress-tensor: Tµν → Tµν + ∂ρBρµν , where B is antisymmetric in the first two indices.
The reason we can do this is that both the classical conservation law and the Ward identity are
unchanged. Then it is easy to find a suitable expression for B which cancels the last term of
(Mµν)ρ. See [12] for a full derivation.
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in turn implies conformal invariance. This is easily seen from equation (1.13) and
(1.33):∫

ddxTµν∂µθν = 1
2

∫
ddxTµν(∂µθν + ∂νθµ) = 1

d

∫
ddxTµµ ∂ · θ = 0. (1.67)

See [14–21] for recent developments on the topic of how scale invariance is related
to conformal invariance.

For the moment, let us assume that

(Mµν)ρ = xνT
ρ
µ − xµT ρν , (1.68)

(D)ρ = xνT ρν . (1.69)

Then, from the point of view of the Ward identity (1.19), classical conservation,
symmetry, and tracelessness conditions for the stress tensor are promoted to

∂

∂xµ
〈Tµν · · · 〉 = −

∑
i

δ(x− xi)
∂

∂xνi
〈· · · 〉, (1.70)

∂

∂xρ
〈
(
xνT

ρ
µ − xµT ρν

)
· · · 〉 = 〈(Tµν − Tνµ) · · · 〉 = −

∑
i

δ(x− xi)Siµν〈· · · 〉, (1.71)

∂

∂xρ
〈xνT ρν · · · 〉 = 〈Tµµ · · · 〉 = −

∑
i

δ(x− xi)∆i〈· · · 〉, (1.72)

where · · · represents φ(x1) · · ·φ(xn).

1.2 Embedding space and polynomial encoding

The map (1.42) suggests that there exists a coordinate map (embedding) where
the conformal group acts linearly, as SO(d+1, 1), in d+2 dimensional space. Thus
when computing conformal transformations, instead of applying each type of trans-
fomration in (1.38) separately, one applies a single SO(d+ 1, 1) rotation followed
by a simple coordinate constraint, as explained later. As we will see below, this
is useful when calculating correlators given that the conformal constraints (1.62)
simplify greately when the symmetry group is SO(d + 1, 1). Furthermore, con-
tracting coordinate indices with arbitrary polarization vectors results in a simpler
framework for manipulating tensorial quantities (note that this last technique is
not unique to embedding formalism, but the combination results in a very efficient
framework for doing conformal field theory).

The main idea of the embedding formalism, first proposed by [22], is to map the
Rd coordinates xµ, µ = 1, . . . , d into the coordinates PA, A = 1, . . . , d, d+ 1, d+ 2
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1. Introduction: Conformal field theories in d > 2

living in a subspace Md+1,1 ⊂ Rd+1,1. In order for this to work, we need to
impose that the action of SO(d+ 1, 1) onMd+1,1 is closed. A subspace of Rd+1,1

that satisfies such condition is the light-cone P 2 = 0. However, this is still d + 1
dimensional. To reduce one dimension further, we can look at a fixed section of
the cone P+ = f(Pµ), where we defined light-cone coordinates

P± = P d+2 ± P d+1. (1.73)

But clearly, SO(d + 1, 1) transformations will send points within that section to
a different one in general. Thus the correct subspace Md+1,1 is the space of null
rays

P 2 = 0, P ∼ λP, (1.74)

and the map is

xµ = Pµ, x2 = P+P−. (1.75)

To check that the action of SO(d + 1, 1) on Md+1,1, indeed corresponds to a
conformal transformation in Rd, we can use a nice trick from [11]: First notice
that the metric on a fixed section is, by (1.75),

dPAdPA = dPµdPµ − dP+dP−
∣∣∣∣
Pµ=xµ,P+=f(x),P−=x2/P+

. (1.76)

This is invariant under the action of SO(d+ 1, 1). However, to stay in P+ = f(x)
we need to apply a position dependent scaling P → λ(P )P . The metric then
changes to

dPAdPA →
∂λ(P )PA

∂PB
∂λ(P )PA
∂PC

dPBdPC = λ(P )2dPAdPA, (1.77)

provided P 2 = 0 (and consequently P · dP = 0). If f(P ) = const then dP 2 = dx2,
and so the result above is just the definition of a conformal transformation (1.31).
Without loss of generality, we fix the section to f(P ) = 1, so that

Pµ = xµ, P d+1 = 1− x2

2 , P d+2 = 1 + x2

2 . (1.78)

Now consider lifting the field φ(x) toMd+1,1 via projection φ(x) = P(x)Φ(P ).6
Then φ(x) is a conformal field if

[ĴAB ,Φ(P )] = (PA∂B − PB∂A)Φ(P )− S̃ABΦ(P ), (1.79)
6The embeddig of both bosonic and fermionic fields has been described in many papers [23–36].
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corresponds to φ(x) satisfying (1.52)–(1.55). The map between Ĵ and the con-
formal generators is given in (1.42). With this definition of φ, the commutators
are

[P̂µ, φ(x)] = P(−∂µ + S̃d+1µ − S̃d+2µ)P−1φ(x), (1.80)

[M̂µν , φ(x)] = P(xµ∂ν − xν∂µ − S̃µν)P−1φ(x), (1.81)

[D̂, φ(x)] = P(−x · ∂ − ∆̃− S̃d+1d+2)P−1φ(x), (1.82)

[K̂µ, φ(x)] = P
(
−2xµx · ∂ + x2∂µ − 2∆̃xµ + S̃d+1µ + S̃d+2µ

)
P−1φ(x), (1.83)

where we used

∂Φ(P )
∂xµ

= ∂Φ(P )
∂Pµ

− Pµ
(

∂

∂P d+1 −
∂

∂P d+2

)
Φ(P ), (1.84)

PA
∂Φ(P )
∂PA

= −∆̃Φ(P ). (1.85)

Matching these with (1.52)–(1.55) leads to the constraint

P · ∂Φ(P ) = −∆Φ(P ), (1.86)

as well as a set of differential equations for the projector P(x):7

∂µP + P
(
S̃d+1µ − S̃d+2µ

)
= 0, (1.87)

(xν∂µ − xµ∂ν + Sµν)P − PS̃µν = 0, (1.88)
x · ∂P − PS̃d+1d+2 = 0, (1.89)

(2xµx · ∂ − x2∂µ − 2xνSµν)P + P(S̃d+1µ + S̃d+2µ) = 0. (1.90)

For a field in the `-tensor representation, with S̃ given by the straightforward
extension of (1.47) to embedding indices, the projector satisfying the previous
equations is

P = ∂PA1

∂xµ1
· · · ∂P

A`

∂xµ`
, where ∂PA

∂xµ
= (δαµ ,−xµ, xµ), (1.91)

with the caveat that (1.90) is (assuming ` = 1 for simplicity)

((2xµx · ∂ − x2∂µ)δρσ − 2xν(Sµν)ρσ)PAρ
+ PBσ ((S̃d+1µ)AB + (S̃d+2µ)AB) = 2δσµPA, (1.92)

therefore we must impose that Φ(P ) is transverse on each index as well

PArΦ(P )A1···A` = 0, ∀r = 1, . . . , `. (1.93)
7These equations are true when acting on Φ(P ).
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1. Introduction: Conformal field theories in d > 2

The elements in the projector P satisfy the following properties

∂PA

∂xµ
PA = 0,

∂PA

∂xµ
∂PB

∂xµ
= ηAB + PAP̄B + PBP̄A, where P̄A = (0,−1, 1). (1.94)

This means that the embedding of fields is not unique; tensors differing by terms
proportional to PA project to the same field on Rd. Also, the tracelessness and
symmetric properties of the indices of tensors on Md+1,1 are carried over to Rd.

1.2.1 SO(d) representation conventions

Before moving forward to the polynomial encoding of the tensor indices, let us
define our conventions for SO(d) representations. Lie algebra representations are
labeled by weight vectors λ with dimension given by the rank of the algebra. A
convenient basis for λ is the so-called Dynkin basis

λ = [a1, . . . , an], (1.95)

where the Dynkin labels ai are integers with ai ≥ 0 and n is the rank of the
algebra. The rank-n algebras related to the SO(d) group are

Bn ↔ SO(2n+ 1), (1.96)
Dn ↔ SO(2n). (1.97)

The fundamental weights are given by āi = [0, . . . , 0, 1, 0, . . . , 0], i.e. only ai = 1
and the rest are zero. These correspond to antisymmetric tensors of i indices, with
the following exceptions: for Bn, ān is the fundamental spinor representation, and
for Dn, the two chiral spinors are ān−1 and ān. For a weight λ, we define the
signature Y (λ), defined as Y (λ) = (y1, . . . , yn), where

yi =
n∑
j=i

λj −

{
λn
2 for Bn
λn−1+(1+2δin)λn

2 for Dn

(1.98)

and yi ∈ Z ∀ i for bosonic representations, or yi ∈ Z + 1
2 ∀ i for fermionic. In

this work we are concerned with bosonic representations only. Therefore we can
graphically represent Y (λ) with a Young diagram, where yi is the length of the
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1.2. Embedding space and polynomial encoding

i-th row from top to bottom.8 The relation between rows yi is

0 ≤ yn ≤ yn−1 ≤ · · · ≤ y1, for Bn, (1.99)
0 ≤ |yn| ≤ yn−1 ≤ · · · ≤ y1, for Dn. (1.100)

1.2.2 Encoding tensors with polynomials

In order to simplify calculations with tensors, it is useful to contract all indices
with polarization vectors z. For symmetric traceless tensors it is enough to use
one polarization vector

φµ1···µ`(x)→ φ(x, z) ≡ zµ1 · · · zµ`φµ1···µ`(x). (1.101)

However, for mixed-symmetric tensors, one can either introduce Grassmann po-
larisations to implement the antisymmetrisation between rows of the Young dia-
gram [29], or use different vectors zi and implement the antisymmetrisation man-
ually [37]. Here we follow the latter approach. For a field in the representation
ρ = (`1, . . . , `n), we define

φµ1···µ`1µ`1+1···µ|ρ|(x)→ φ(x, z1, z2, . . . zn)

≡ (z1)µ1 · · · (z1)µ`1 (z2)µ`1+1 · · · (zn)µ|ρ|φµ1···µ`1µ`1+1···µ|ρ|(x), (1.102)

where |ρ| =
∑
i `i. Now irreducible representations must be traceless, which im-

plies

δαβ
∂2

∂(zi)α∂(zj)β φ(x, z1, . . . , zn) ∝ trace of φ = 0, ∀ i, j. (1.103)

Therefore we can ignore terms O(zi ·zj) in φ(x, z1, . . . ), or equivalently, set zi ·zj =
0.

Now the mixed-symmetric properties of ρ imply that symmetrizing any of the
indices of row j with all indices of row i vanishes, whenever i < j [29,37]. In other
words,

zi · ∂

∂zj
φ(x, z1, . . . ) = 0, ∀ i < j. (1.104)

8Note that diagrams with a number of rows equal to n may or may not be irreducible.
For example, in Dn, diagrams of height n split into self-dual and anti-self-dual representations
(yn > 0 and yn < 0 respectively). Unless otherwise specified, we will assume that d is sufficiently
large so that Young diagrams are irreducible.
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1. Introduction: Conformal field theories in d > 2

In embedding space, we promote ziµ → ZiA, so that φ(x, z1, · · · )→ Φ(P,Z1, · · · ).
Recall that terms proportional to PA project to zero, therefore

Zi · P = 0, ∀i. (1.105)

Note that we can project an encoded polynomial onMd+1,1 to the corresponding
encoded polynomial on Rd, by choosing a particular value of ZA. More explicitly,
from the projector (1.91), we have 9

ZA = zµ
∂PA

∂xµ
= (zα,−z · x, z · x), (1.106)

which implies

φ(x, z1, . . . ) = Φ(P,Z1, . . . )
∣∣
PA=

(
xα, 1−x

2
2 , 1+x2

2

)
,(Zi)A=((zi)α,−zi·x,zi·x). (1.107)

It is easy to check that for this definition of ZA, the traceless condition carries
over

Zi · Zj = 0. (1.108)

In summary, a field φ(x, z1, . . . , zn) in the conformal representation [∆, ρ =
(`1, . . . , `n)] is lifted to a field Φ(P,Z1, . . . , Zn), where

P 2 = Zi · P = Zi · Zj = 0, ∀i, j, (1.109)

and the field satisfies the following differential equations

P · ∂
∂P

Φ = −∆Φ, (1.110)

Zi · ∂

∂Zi
Φ = `iΦ, ∀i, (1.111)

P · ∂

∂Zi
Φ = 0, ∀i, (1.112)

Zi · ∂

∂Zj
Φ = 0, ∀i < j. (1.113)

Note that these are equivalent to the following field transformation rule

Φ(λP, α1Z1 + β1P, α2Z2 + β2P + γ2,1Z1, α3Z3 + β3P + γ3,1Z1 + γ3,2Z2, . . . )

= λ−∆

(
n∏
i=1

(αi)`i
)

Φ(P,Z1, Z2, . . . ). (1.114)

9Here the coordinates are labeled XA = (Xα, Xd+1, Xd+2).
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1.3. Correlation functions in embedding space

1.3 Correlation functions in embedding space

Recall that general correlation functions transform as (1.29), where the specific
case for conformal symmetry is given in (1.62). As seen in the previous section,
conformal primaries are encoded by SO(d+ 1, 1) tensors transforming as (1.114).
Therefore, the embedding version of (1.62) for primaries [∆i, ρi], i = 1, . . . ,m is

G
(
λiPi;αjiZ

j
i + βjiPi + γj,ki Zki

∣∣
0<k<j

)
=

 m∏
i=1

λ−∆i
i

h(ρi)∏
j=1

(αji )
(ρi)j

G(Pi;Zji ),

(1.115)

where h(ρi) is the number of rows in the Young digram ρi, (ρi)j represents the
number of boxes in the j-th row of ρi, and

G(Pi;Zji ) ≡ 〈Φ(P1, Z
j
1)Φ(P2, Z

j
2) · · ·Φ(Pm, Zjm)〉,

Φ(Pi, Zji ) ≡ Φ(Pi, Z1
i , Z

2
i , . . . Z

h(ρi)
i ). (1.116)

1.3.1 Scalar constraints

Let us suppose for a moment that all fields in G are scalar [∆i, (0)]. Then G must
only be made out of terms Pij ≡ −2Pi · Pj ,10 with i 6= j. Then (1.115) has the
following solutions for m = 2, 3, 4:

cΦ1δΦ1,Φ2K
∆1
2 (P1, P2), K∆1

2 (P1, P2) = 1
P∆1

12
, (1.117)

λΦ1,Φ2,Φ3K
∆i
3 (Pi), K∆i

3 (Pi) = 1

P
∆1+∆2−∆3

2
12 P

∆1+∆3−∆2
2

13 P
∆2+∆3−∆1

2
23

, (1.118)

K∆i
4 (Pi)f(U, V ), K∆i

4 (Pi) =

(
P24
P14

)∆12
2
(
P14
P13

)∆34
2

P
∆1+∆2

2
12 P

∆3+∆4
2

34

, U = P12P34

P13P24
, V = P14P23

P13P24
,

(1.119)

where ∆ij ≡ ∆i − ∆j , c and λ are arbitrary constants, and f is an arbitrary
function.

10It will be clear why we use this normalization later.
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1. Introduction: Conformal field theories in d > 2

1.3.2 Spinning constraints

Now for generic spinning fields [∆i, ρi], i = 1, . . . ,m, we can combine the previous
scalar results into an ansatz

G(Pi;Zji ) = K∆i
m (Pi)Q(Pi, Zji ), (1.120)

with Q a scale invariant function: Q(λiPi;Zji ) = Q(Pi, Zji ), satisfying the spinning
constraints

Q
(
Pi;αjiZ

j
i + βjiPi + γj,ki Zki

∣∣
0<k<j

)
=

 m∏
i=1

h(ρi)∏
j=1

(αji )
(ρi)j

Q(Pi;Zji ). (1.121)

Note that, in general, Q can have more than one solution. Each solution is called
a tensor structure. The form of Q can be constructed out basic building blocks,
by contracting the exterior products of Pi with Zji [4],

Bni (Pi, Zji ) ≡ Pi ∧ Z1
i ∧ Z2

i ∧ · · · ∧ Zni , (1.122)

with an appropriate normalization so that each building block—and hence Q—is
scale invariant. This is easy to understand, since

Bni

(
Pi, α

j
iZ

j
i + βjiPi + γj,ki Zki

∣∣
0<k<j

)
=

 n∏
j=1

(αji )

Bni (Pi, Zji ). (1.123)

So in order to get the correct exponents (ρi)j , we must include several Bni , for
particular values of n. Let us now see some particular examples. The simplest
building block corresponds to the case with one spin-1 field. That is

V
(Z1
i )

i,jk ≡ 2
B0
j ·B1

i ·B0
k√

PijPikPjk
= PikZ

1
i · Pj − PijZ1

i · Pk√
PijPikPjk

, (1.124)

where V (Z1
i )

i,jk = −V (Z1
i )

i,kj . For two spin-1 fields,

H
(Z1
i ,Z

1
j )

ij ≡ −
B1
i ·B1

j

Pij
= Z1

i · Z1
j + 2

Z1
i · PjZ1

j · Pi
Pij

, (1.125)

where H(Z1
i ,Z

1
j )

ij = H
(Z1
j ,Z

1
i )

ji . One can check that any contraction of B’s to form a
structure of n spin-1’s, with n ≥ 3, can be written in terms of H and V [31].

For higher representations, one can produce more complicated contractions
of B, or, alternatively, use the basis of building blocks {V,H} with a manual
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1.3. Correlation functions in embedding space

antisimetrization. The simplest case is that of one antisymmetric spin-2 field and
one vector:

−
B1
j ·B2

i ·B0
k√

PijPikPjk
= V

([Z1
i )

i,jk H
(Z2
i ],Z1

j )
ij , (1.126)

where we the antisymmetrization is only among polarizations of the same coordi-
nate Zi, and it is defined without a numerical prefactor:
T [µ1···µl] =

∑
σ∈Sl sgn(σ)δµσ(1)

ν1 · · · δµσ(l)
νl T ν1···νl . For two spin-2 antisymmetric fields,

there are two options:

−2
3
B2
i ·B2

j

Pij
= H

([Z1
i ,Z

1
j )

ij H
(Z2
i ],Z2

j )
ij ,

−4
(B0

k ·B2
i ·B0

j ) · (B0
i ·B2

j ·B0
k)

PijPikPjk
= V

([Z1)
i

i,jk V
([Z1

j )
j,ik H

(Z2
i ],Z2

i ])
ij . (1.127)

As an example, let us take a term of the form

Q =
(
H

(Z1
1 ,Z

1
2 )

12

)`1−`2 (
H

([Z1
1 ,Z

1
2 )

12 H
(Z2

1 ],Z2
2 )

12

)`2
. (1.128)

Then, by (1.123), it transforms as

Q→

 2∏
i=1

2∏
j=1

(αji )
`j

Q, (1.129)

which corresponds to a tensor structure of two fields in the ρ = (`1, `2) represen-
tation of SO(d). From the point of view of the basis {V,H}, we can understand
this as follows; the term (. . . )`2 means that H joins the first `2 boxes on the first
and second rows of ρ1 with those of ρ2, while (· · · )`1−`2 joins of the last `1 − `2
boxes in the first row of ρ1 with those of ρ2.

For general representations, one can write all the tensor structures in Q via
contractions of B’s,11 but we will use the basis of H and V here.

Building and counting tensor structures

Let us describe how to build and count tensor structures out of V ’s and H’s, by
looking at the Young diagrams of the field representations. We follow an argument
similar to that in [29], but we will arrive at the more formal counting formula
from [38].12

11Here we are ignoring parity odd structures, which are contracted with the antisymmetric
ε-tensor. See [31, 38] for more details.

12In that work, the conformal frame formalism was used to arrive at the formula.
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1. Introduction: Conformal field theories in d > 2

Consider a correlator of fields Φi in representations [∆i, ρi]. In the basis of
building blocks V and H, Vi fills a box of the Young diagram ρi, while Hij connects
two boxes between diagrams ρi and ρj . Therefore each tensor structure appearing
in Q(Pi, Zji ), corresponds to a linearly independent filling/connection of all boxes
between all ρi.

Of course this process has to be done in a consistent way, as to respect the
Young symmetry of each ρi. For example, there cannot be two identical Vi’s
in the same column of the Young diagram. Hence, for a fixed row j, there are
(ρi)j − (ρi)j+1 ≥ 0 boxes that admit identical Vi’s, with coordinates (j, (ρi)j+1 +
1), (j, (ρi)j+1+2), . . . , (j, (ρi)j). Given that each row is symmetrized, let us assume
that we start filling the row’s boxes from right to left. Then, for each filling
configuration, the empty boxes constitute a valid and independent Young diagram
λ, with following property

(ρi)1 ≥ λ1 ≥ (ρi)2 ≥ λ2 ≥ (ρi)3 ≥ · · · . (1.130)

But this is the condition that the representations in ResSO(d)
SO(d−1)ρi must satisfy.

More precisely, the branching rules for dimensional reduction are given by

ResBnDnρ =
⊗

ρ1≥λ1≥ρ2≥λ2≥···≥ρn≥|λn|

λ, i.e. SO(2n+ 1)→ SO(2n), (1.131)

ResDnBn−1
ρ =

⊗
ρ1≥λ1≥ρ2≥λ2≥···≥λn−1≥|ρn|

λ, i.e. SO(2n)→ SO(2n− 1). (1.132)

Here, we are assuming that the dimension d is large enough so that both branching
rules are the same (e.g. if ρn = 0).

So far we have looked at the filling of ρi with identical Vi’s. However, in
(n ≥ 4)-point correlators, there are n− 2 independent Vi [31] (e.g. V1,23 and V1,24
in a four-point correlator13). We proceed by considering the possible fillings of the
remaining empty diagrams ResSO(d)

SO(d−1)ρi with the next V ′i , and so on. Thus, the
possible ways we can fill a diagram ρi with n−2 independent Vi’s, is in one to one
correspondence with

ResSO(d)
SO(d+2−m)ρi, m = min(d+ 2, n). (1.133)

Finally, the remaining empty box diagrams (if any) are connected in a con-
sistent way, via the building blocks H. If we think of each diagram as a tensor,
then each independent configuration of box connections, corresponds to the differ-
ent ways of contracting the tensor indices into a scalar. The number of possible

13Note that V1,34 is a linear combination of the other two by (1.184).
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1.4. Two- and three-point functions

contractions is then the multiplicity of the singlet in the tensor product of repre-
sentations. Therefore the number of linearly independent tensor structures in an
n-point function is (

n⊗
i=1

ResSO(d)
SO(d+2−m)ρi

)SO(d+2−m)

, (1.134)

where (ρ)G projects out the singlets in G. This is the same formula that was found
in [38], which is consistent with that of [29].

1.3.3 Projecting correlators to Rd

To project embedded polynomial expressions into Rd, we use (1.106) and (1.78)
to derive the following results

Pij ≡ −2Pi · Pj = x2
ij , Zki · Pj = −zki · xij , Zki · Zlj = zki · zlj , (1.135)

where xij ≡ xi − xj . Then the building blocks V and H project to

V
(Zli)
i,jk = (zli)µk(ijk)

µ , (1.136)

H
(Zki ,Z

l
j)

ij = (zki )µm(ij)
µν (zlj)ν , (1.137)

where

k(ijk)
µ =

x2
ij(xik)µ − x2

ik(xij)µ√
x2
ijx

2
ikx

2
jk

,

m(ij)
µν = δµν − 2(xij)µ(xij)ν

x2
ij

. (1.138)

1.4 Two- and three-point functions

1.4.1 Two-point function

From the discussion of the previous section, a tensor structure of two fields Φi, Φj
can only contain building blocks Hij . Therefore their two-point function must be
non-zero, only when their SO(d) representations are the same. Then the two-point
function of a field Φ in the representation [∆, (`1, `2, . . . , `n)] is

〈Φ(P1)Φ(P2)〉 = cΦK∆
2

(
n−1∏
i=1

(Hi
12)`i−`i+1

)
(Hn

12)`n (1.139)
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1. Introduction: Conformal field theories in d > 2

where we defined

H`
ij ≡ H

([Z1
i ,Z

1
j )

ij · · ·H(Z`i ],Z
`
j )

ij . (1.140)

This corresponds to two Young diagrams (1`) (using standard notation (kn) =

(
n times︷ ︸︸ ︷

k, k, . . . , k)), joined by Hij ’s.

For example, for operators O in the symmetric-traceless representation (`), we
have

〈O(P1)O(P2)〉 = cΦK∆
2

(
H

(Z1,Z2)
12

)`
(1.141)

1.4.2 Three-point functions

For three representations, no general formula is known for the solution of (1.121).
But we can construct the tensor structures case by case, with the algorithm de-
scribed in 1.3.2. Let us define the analogues of (1.140):

V1,`
ij,k ≡ V

([Z1
i )

i,jk H
(Z2
i ,Z

1
j )

ij · · ·H
(Z`i ],Z

`−1
j

)
ij , (1.142)

V2,`
ij,k ≡ V

([Z1
i )

i,jk V
([Z1

j )
j,ik H

(Z2
i ,Z

2
j )

ij · · ·H(Z`i ],Z
`
j ])

ij . (1.143)

Here, V1,` corresponds to a Young diagram ρi = (1`), where one of the boxes is
filled with Vi,jk and the other ` − 1 boxes are joined to the boxes of ρj = (1`−1)
with Hij . While V2,` corresponds to two diagrams (1`) with ` − 1 boxes joined
with Hij , and one box of ρi (ρj) filled with Vi,jk (Vj,ik) respectively.

In the rest of this subsection, we write the relevant three-point functions that
will be useful later in this work. Their generic form is, by (1.120),

〈Φ1(P1, Z
i
1)Φ2(P2, Z

i
2)Φ3(P3, Z

i
3)〉 = K∆i

3

∑
l

λlQl(Pi, Zji ), (1.144)

where the sum is over all independent solutions of (1.121), λ are called three-point
function constants, and the fields Φi are in representations [∆i, ρi]. We specify the
SO(d) representations ρ1, ρ2, ρ3 before each expression.

(`2, `3), (0), (`1, `2, `3)

λK∆i
3

(
V1,1

31,2

)`1−`2 (
V1,2

31,2

)`2−`3 (
V1,3

31,2

)`3
, (1.145)
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1.4. Two- and three-point functions

(`2 + 1, 0), (0), (`1, `2, 0)

K∆i
3

(
λ1V2,1

31,2 + λ2H1
31

)(
V1,1

31,2

)`1−`2−1 (
V1,2

31,2

)`2
, (1.146)

(`2, `3 + 1), (0), (`1, `2, `3)

K∆i
3

(
λ1V2,2

31,2 + λ2H2
31

)(
V1,1

31,2

)`1−`2 (
V1,2

31,2

)`2−`3−1 (
V1,3

31,2

)`3
, (1.147)

(`2 + 1, `3 + 1), (0), (`1, `2, `3)

K∆i
3

(
λ1V2,2

31,2V
2,1
31,2 + λ2V2,2

31,2H1
31 + λ3H2

31V
2,1
31,2 + λ4H2

31H1
31

)
×
(
V1,1

31,2

)`1−`2−1 (
V1,2

31,2

)`2−`3−1 (
V1,3

31,2

)`3
, (1.148)

(`2 + 2, 0), (0), (`1, `2, 0)

K∆i
3

(
λ1
(
V2,1

31,2

)2
+ λ2H1

31V
2,1
31,2 + λ3 (H1

31
)2)(V1,1

31,2

)`1−`2−2 (
V1,2

31,2

)`2
,

(1.149)

(`2, `3 + 2), (0), (`1, `2, `3)

K∆i
3

(
λ1
(
V2,2

31,2

)2
+ λ2H2

31V
2,2
31,2 + λ3 (H2

31
)2)

×
(
V1,1

31,2

)`1−`2 (
V1,2

31,2

)`2−`3−2 (
V1,3

31,2

)`3
, (1.150)

(`2, `3 + 1, 1), (0), (`1, `2, `3)

K∆i
3

(
λ1V2,3

31,2V
2,2
31,2 + λ2V2,3

31,2H2
31 + λ3H3

31V
2,2
31,2 + λ4H3

31H2
31

)
×
(
V1,1

31,2

)`1−`2 (
V1,2

31,2

)`2−`3−1 (
V1,3

31,2

)`3−1
. (1.151)

For the cases with one trivial representation (0), it is easy to check that the
number of structures matches (1.134), for generic values of `i. Consider the rep-
resentations ρ = (ρ1, ρ2, ρ3) and σ = (σ1, σ2, σ3). Given that the tensor product
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1. Introduction: Conformal field theories in d > 2

of two identical representations gives a scalar, then we need to count number of
diagrams that are shared between ResSO(d)

SO(d−1)ρ and ResSO(d)
SO(d−1)σ. In other words,

we need to find λ = (λ1, λ2, λ3) such that

ρ1 ≥ λ1 ≥ ρ2 ≥ λ2 ≥ ρ3 ≥ λ3 ≥ 0 ∧ σ1 ≥ λ1 ≥ σ2 ≥ λ2 ≥ σ3 ≥ λ3 ≥ 0. (1.152)

The number of solutions is then given by

(min(ρ3, σ3) + 1)(min(ρ2, σ2)−max(ρ3, σ3) + 1)(min(ρ1, σ1)−max(ρ2, σ2) + 1).
(1.153)

In particular, taking ρ1 = `2 + i, ρ2 = `3 + j, ρ3 = k and σ1 = `1, σ2 = `2, σ3 = `3,
gives

(i+ 1)(j + 1)(k + 1) (1.154)

tensor structures, where we assumed k ≤ `3, `3 + j ≤ `2, `2 + i ≤ `1. This is
consistent with the number of terms in the expressions above.

Note that there is a class of spinning three-point functions with the minimum
number of tensor structures, i.e. one, which we will call ‘seed-like three-point
functions’. From the previous discussion it is easy to see that these have SO(d)
representations (`1, `2, . . . , `n), (`2, . . . , `n), (0).

For the case where all three operators Oi are in the symmetric-traceless repre-
sentation (`i), a solution to (1.121) can be written as follows [31]

Q(Pi, Zi)

=
∑
ni≥0

Cn1,n2,n3 × (V1,23)`1−n2−n3(V2,31)`2−n3−n1(V3,21)`3−n1−n2Hn1
12H

n3
13H

n2
23 ,

li − nj − nk ≥ 0, ∀ i, j, k, (1.155)

where we omitted the explicit dependence on the polarization Z, and C are the
three-point function constants. Note that, as shown in [31], in d = 3 not all of
these terms are independent. For higher dimensions, the number of structures is
given by

N(`1, `2, `3) = 1
6(`1 +1)(`1 +2)(3`2−`1 +3)− 1

24p(p+2)(2p+5)− 1
16(1− (−1)p) ,

(1.156)
with `1 ≤ `2 ≤ `3 and p = max(0, `1 + `2− `3). One can check that this expression
matches (1.134). For example, for `1 = 0 the formula reduces to N(0, `2, `3) =
`2 + 1, which is consistent with (1.154).
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1.4. Two- and three-point functions

1.4.3 Conserved operators

A fundamental property of a unitary theory is that all states in its Hilbert space
have positive norm. For the case of conformal field theories, the spectrum of
states splits into multiplets, each of which is a collection of a primary with all
its descendants (recall from subsection 1.1.3 that descendants are constructed by
applying the translation operator P onto the primary). Imposing positvity on
the descendant states then restricts the possible conformal dimensions ∆ of the
primaries [39–42]. More precisely,

∆ ≥ d− 2
2 , (1.157)

for scalar operators, whereas

∆ ≥ (ρ)1 − h(ρ) + d− 1 (1.158)

for operators in the ρ ∈ SO(d) representation, where (ρ)i is the number of boxes
in the i-th row of ρ and h(ρ) is the number of total rows. It turns out that this
bound is saturated by conserved currents. To see this consider a tensor gµ1...µ|ρ| in
representation ρ of SO(d). This can be recovered by a transverse tensor GA1...A|ρ

in embedding space by contracting its indices Ai with the projector P defined in
(1.91). Therefore the divergence of g is given by

∂
µ|ρ|
x gµ1...µ|ρ| = ∂

µ|ρ|
x PA1...A|ρ|

µ1...µ|ρ| GA1...A|ρ| (1.159)

which includes a term where the derivative hits P and a term where it acts on G.
From (1.91) and (1.94) it is easy to check that (see [29] for the full derivation)

0 = ∂
µ|ρ|
x gµ1...µ|ρ| = PA1...A|ρ|−1

µ1...µ|ρ|−1 RA1...A|ρ|−1 , (1.160)

RA1...A|ρ|−1

=
(
∂
A|ρ|
P − 1

P · P̄
[
(P̄ · ∂P )PA|ρ| + ((ρ)1 − h(ρ) + d−∆− 1) P̄A|ρ|

])
GA1...A|ρ| ,

(1.161)

where the second term vanishes since G is transverse,14 and last term must be
zero given that the contraction with P̄ is not SO(d+ 1, 1) invariant. Thus (1.158)
is saturated as promised.

Moreover, from the point of view of the Ward identities (1.19), having a con-
served operator in a correlator, gives additional constraints. In general, these

14Strictly speaking the contraction with P may not vanish exactly, but up to a term O(P 2).
Then the derivative P̄ ·∂P gives O(P̄ ·P ) which cancels the denominator, thus preserving SO(d+
1, 1) invariance.
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1. Introduction: Conformal field theories in d > 2

constraints will produce relations between the different tensor structures Q (c.f.
(1.120)), thereby reducing the ‘degrees of freedom’ of the correlator. Further re-
cent developments on properties of correlation functions for conserved currents
can be found in [38, 43, 44]. Let us now see an example for three-point functions.
Consider a three-point function of two traceless-symmetric spin-2 tensors and a
scalar. By equation (1.149) this is

G∆1,∆2,∆3|2,2,0 =
(
αH2

12 + βH12V1,23V2,31 + γV 2
1,23V

2
2,31
)
K∆1,∆2,∆3

3 . (1.162)

Now assuming the stress tensors are conserved, this implies that ∆1 = ∆2 = d,
and (in the language of encoded polynomials)

(∂P ·D)G∆1,∆2,∆3|2,2,0 = 0, (1.163)

where D is defined in (5.5). Applying the derivative then results in the following
relations

α = 4h(h− 1)(2h+ 1)− 4∆3h(2h− 1) + ∆2
3(2h− 1)

2∆3(∆3 + 2)(h− 1) γ , (1.164)

β = −2 + 4h2 + ∆3 − 2h(∆3 + 1)
(h− 1)(∆3 + 2) γ ,

where h = d/2. Therefore in this case, G has only one independent tensor struc-
ture, labeled by a single coefficient γ.

1.5 Weight shifting operators

Now we discuss a formalism that allows us to transform the representations of
conformal fields. The first instance of this idea was found in [45] in terms of three-
point functions, but it was later understood more formally in [46]. In this section,
we follow the exposition of [46].

The basic idea is that tensoring a finite-dimensional representation Ω of SO(d+
1, 1) with a conformal primary φ, decomposes into irreducible representations dif-
ferent to that of φ. More explicitly, a field in the tensor product space can be
written as

φ̃(x) = eA ⊗DA(x)φ(x), (1.165)

where eA, A = 1, . . . ,dim Ω are basis vectors of Ω. Then by choosing a specific
form of DA, we can ‘transform’ the conformal representation of φ to a different
one. However, note that DA(x)φ(x) is a conformal primary with an extra index,
associated to the finite-dimensions representation Ω.
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1.5. Weight shifting operators

For a given SO(d + 1, 1) representation Ω and a field φ in [∆, ρ], the possible
choices of D are in one to one correspondence with the irreducible components of
Ω⊗ [∆, ρ]. To compute this tensor product, we first need to know what conformal
representations correspond to Ω, given by its decomposition to the subalgebra
SO(1, 1)× SO(d):

Ω→
⊗

i=−(Ω)1,...,(Ω)1

[i, ωi], (1.166)

which is a sum over 2(Ω)1 +1 terms (recall (Ω)1 is the number of boxes in the first
row of Ω). Then the tensor product is

Ω⊗ [∆, ρ] =
⊗

i=−(Ω)1,...,(Ω)1

⊗
λ∈ωi⊗ρ

[∆ + i, λ]. (1.167)

Let us work out a simple example with Ω = (1)→ [−1, (0)]⊕ [0, (1)]⊕ [1, (0)]
and [∆, ρ] = [∆, (0)]. The formula (1.167) then predicts the existence of three
representations: [∆ − 1, (0)], [∆, (1)], [∆ + 1, (0)]. We can find these primaries
from (1.165), by imposing [1⊗Kµ +Kµ ⊗ 1, φ̃] = 0. These are

O−(0) = eA ⊗ ψA(0)φ(0),
Oµ(0) = eA ⊗ (∆φ∂µψA(0) + ψA(0)∂µ)φ(0),
O+(0) = eA ⊗

(
∆φ(2∆φ − d+ 2)∂2ψA(0)

+d(2∆φ − d+ 2)∂µψA(0)∂µ + dψA(0)∂2)φ(0), (1.168)

where the dimension of ψ is −1. Note that here ψ is not a physical field but
just a mathematical construct. In the next subsection we define its value in the
embedding formalism.

In summary, for a given finite dimensional representation Ω of SO(d + 1, 1),
there is a set of associated weight-shifting operators D : [∆, ρ] → [∆ + i, λ] ∈
Ω⊗ [∆, ρ].

1.5.1 Embedding space construction

As seen in the previous example, DA is constructed in such a way that when
applied to φ, it produces a primary in a different representation. Here we describe
how this is done in embedding space, introduced in section 1.2. This subsection
is based on [4] and generalizes the construction of [46] to arbitrary bosonic SO(d)
representations.
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1. Introduction: Conformal field theories in d > 2

Consider an embedded field Φ(P ;Zj) in representation [∆, ρ], satisfying (1.110)–
(1.113):

(P · ∂P + ∆) Φ = 0,
(
Zi · ∂Zi − (ρ)i

)
Φ = 0, P · ∂ZiΦ = Zi · ∂ZjΦ

∣∣
i<j

= 0.
(1.169)

Then in order for DAΦ to be in the representation [∆ + i, λ], we must impose

([P · ∂P ,DA] + iDA) Φ = 0,
(
[Zi · ∂Zi ,DA] + {(ρ)i − (λ)i}DA

)
Φ = 0,

[P · ∂Zi ,DA]Φ = [Zi · ∂Zj ,DA]Φ
∣∣
i<j

= 0. (1.170)

Furthermore, DA must be interior on the subspace P 2 = Zi · P = Zi · Zj = 0. In
other words, for every independent test function t(P ;Zj) = O(P 2, Zi · P,Zi ·Zj),
in the same representation as Φ, we demand DAt(P ;Zj) = O(P 2, Zi · P,Zi · Zj).
The test functions can be written in terms of the basis Bm, defined in (1.122), as

t(P ;Zj) = (Bm ·Bn) fmn(P ;Zj))
∣∣
0≤m≤n, (1.171)

where Bm · Bn = O(P 2, Zi · P,Zi · Zj) is in the representation [−2, (2m, 1n−m)],
and consequently, fmn is in [∆ + 2, ρ− (2m, 1n−m)]. Note that we do not need to
know fmn explicitly, as the interior condition can be re-written as

[DA, Bm ·Bn]fmn(P ;Zj)
∣∣
0≤m≤n = O(P 2, Zi · P,Zi · Zj). (1.172)

We will write the explicit form of the operators DA for SO(d) representations
with h(ρ) ≤ 3 in chapter 3. For now, notice that in the example (1.168), the
embedded operator associated to ψA is simply PA (it trivially satisfies (1.170) and
(1.172)).

1.5.2 Three-point function differential basis

Now we describe the implications of computing correlation functions that include
weight-shifting operators DA. Consider weight-shifting operators D(a)

i : [∆′i, ρ′i]→
[∆i, ρi], where the upper index (a) labels which operator it is from the decomposi-
tion (1.167), and the lower index means it depends on Pi. Inserting this operator
into a correlator, produces a quantity that transforms as a conformal correlator
with an extra index associated to a finite-dimensional representation

eA ⊗D(a)
iA 〈Φ1 · · ·Φ′i · · ·Φj · · ·Φn〉. (1.173)

Notice that eA ⊗ D(a)
iA Φ′i ∈ [∆, ρ] by definition. Therefore the quantity above

has the same transformation properties as the correlator 〈Φ1 · · ·Φi · · ·Φj · · ·Φn〉.
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1.5. Weight shifting operators

Alternatively, we could have chosen a different operator

eA ⊗D(b)
jA〈Φ1 · · ·Φi · · ·Φ′j · · ·Φn〉, (1.174)

in such a way that the resulting representations are the same to those of (1.173).
Hence there must be a linear relation between the two bases:

D(a)
iA 〈Φ1 · · ·Φ′i · · ·Φj · · ·Φn〉 =

∑
Φ′
j
,b

αΦ′
j
,bD

(b)
jA〈Φ1 · · ·Φi · · ·Φ′j · · ·Φn〉, (1.175)

where Φ′j ∈ Ω⊗ Φj . Specializing to three-point functions this then implies

D(b)
kA〈ΦiΦjΦ

′
k〉(a) =

∑
Φ′
i
∈Ω⊗Φi,m,n

{
Φi Φj Φ′i
Φk Ω Φ′k

}ab
mn

D(n)
iA 〈Φ

′
iΦjΦk〉(m), (1.176)

where the coefficients {· · · } are called 6j symbols, and we included an index in
the correlator to label tensor structures, i.e.,

〈Φ1Φ2Φ3〉 =
∑
a

λa〈Φ1Φ2Φ3〉(a). (1.177)

Now notice that the weight-shifting operator D(a)
iA D

(b)A
i : Φ′i → Φ′′i is associated

to a scalar representation of SO(d + 1, 1). Therefore, according to (1.167), this
operator must be proportional to the identity:

D(a)
iA D

(b)A
i =

(
Φ′i

Φi Ω

)ab
δΦ′

i
,Φ′′
i

(1.178)

Thus, contracting (1.176) with D(c)A
i on both sides gives

D(c)
i · D

(b)
k 〈ΦiΦjΦ

′
k〉(a) =

∑
m,n

{
Φi Φj Φ′i
Φk Ω Φ′k

}ab
mn

(
Φ′i

Φi Ω

)cn
〈Φ′iΦjΦk〉(m).

(1.179)

This is a very powerful relation because it maps different three-point function
representations by acting with differential operators on two points. This will be
exploited later on.

The particular case where Φi and Φ′k are scalars, and Φ′i and Φk are symmetric
traceless tensors was first studied in [45]. Given the large amount of literature
that uses this differential basis, we will use it instead of re-writing everything in
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1. Introduction: Conformal field theories in d > 2

terms of the new basis (1.179). In [45] they define a basis of 5 operators:15

D1 ij ≡−
1
2Pij

(
Zi ·

∂

∂Pj

)
− (Zi · Pj)

(
Pi ·

∂

∂Pj

)
− (Zi · Zj)

(
Pi ·

∂

∂Zj

)
+ (Zj · Pi)

(
Zi ·

∂

∂Zj

)
,

D2 ij ≡−
1
2Pij

(
Zi ·

∂

∂Pi

)
− (Zi · Pj)

(
Pi ·

∂

∂Pi

)
+ (Zi · Pj)

(
Zi ·

∂

∂Zi

)
,

H
(Zi,Zj)
ij as in (1.125). (1.180)

The operator D1 ij increases the spin at position i by one and decreases the di-
mension by one at position i; D2 ij increases the spin at position i by one and
decreases the dimension by one at position j. Hij increases the spin by one at
both i and j and leaves the conformal dimensions unchanged.

Finally, note that (1.179) is not limited to increasing spin, it can also be used
for lowering it. See [46] for more details and applications.

1.6 Four-point functions and conformal blocks

Consider the four-point function 〈Φ1Φ2Φ3Φ4〉, with fields Φi(Pi;Zji ) in represen-
tations [∆i, ρi]. From equations (1.119) and (1.120), this is given by

〈Φ1Φ2Φ3Φ4〉 = K∆i
4 (Pi)

∑
k

Qk(Pi, Zji )fk(U, V ), (1.181)

where sum runs over all independent tensor structures which includes a total of( 4⊗
i=1

ResSO(d)
SO(d−2)ρi

)SO(d−2)

(1.182)

elements, assuming d ≥ 3. Similar to the three-point function case, we will build
the functions Qk by antisymmetrizing the basis {H,V } from (1.124) and (1.125).
Note that, although we can write three different V ’s for each position i

{Vi,jk, Vi,jl, Vi,kl}, (1.183)

only two are linearly independent, due to√
PilPjkV

(Zni )
i,jk +

√
PijPklV

(Zni )
i,kl −

√
PikPjlV

(Zni )
i,jl = 0. (1.184)

15Here we use a slightly different notation that emphasizes what each operator is doing. In [45]
they call Dii and Dij what we call D1 ij and D2, ij respectively.
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1.6. Four-point functions and conformal blocks

A conformal partial wave WO is defined as the contribution of a primary op-
erator O (and its descendants) to the four-point function. In other words,

〈Φ1Φ2Φ3Φ4〉 =
∑
O

ΛOWO(Pi), (1.185)

where ΛO are expansion constants. On the other hand, from (1.181), we have

WO(Pi) = K∆i
4 (Pi)

∑
k

Qk(Pi, Zji )gOk(U, V ), (1.186)

where we defined

fk(U, V ) =
∑
O

ΛOgOk(U, V ). (1.187)

The functions gO are called conformal blocks. Given the simple relation between
these and the partial waves (1.186), sometimes the terms are interchanged in the
literature. However, the main difference is that the conformal blocks only depend
on the invariant cross-ratios U, V , while the partial waves carry the four-point
tensor structures as well as the kinematic factor K.

In the following subsections we will discuss several techniques for computing
conformal partial waves (conformal blocks), known in the literature. However, this
by no means an exhaustive list. See [30, 34–37, 47–61] and references therein for
other developments in conformal block technology.

1.6.1 Conformal partial waves I: The OPE

Consider two fields φ1(x1), φ2(x2) in a configuration where x1 and x2 are close to
each other. One can approximate the product of φ1φ2 (by product we mean a pair
of operators inserted in a correlator) as a sum over all local operators U at x2:

φ1(x1)× φ2(x2) =
∑
U
f12U (x12)U(x2). (1.188)

Now, because of conformal symmetry, we can reorder the sum over U in terms of
conformal primaries and descendants∑

U
→

∑
O primaries

∑
α=O,PO,PPO,...

, (1.189)

where P · · ·PO represents the action of the translation generator (1.52). From
the integrated Ward identity (1.20), this is equivalent to applying derivatives to
the correlator, so we can write

φ1(x1)× φ2(x2) =
∑
O
λ12OFO(x12, ∂x2)O(x2), (1.190)
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1. Introduction: Conformal field theories in d > 2

where the function F generates the sum over the descendants. This is the con-
formal operator product expansion (OPE) and has a finite radius of convergence.
More precisely, it converges as long the closest operator to φ1(x1) is φ2(x2) [62,63].

The explicit form of F can be obtained by imposing consistency when inserted
in correlators. For example, inserting (1.190) in 〈φ1φ2O〉 implies

〈φ1(x1)φ2(x2)O(x3)〉 = λ12OFO(x12, ∂x2)〈O(x2)O(x3)〉, (1.191)

for all primaries O appearing in the OPE φ1 × φ2 3 O. Then using the explicit
form of the two- and three-point functions (1.139), (1.144), one can fix the form
of F . Note that if the coefficient in the two-point function cO is normalized to
one, then the constant λ is the same as the one appearing inside the three-point
function. Hence the term three-point function constant is interchangeable with
OPE coefficient.

For non-scalar operators, the generalization of (1.190) is straightforward:

φ1 µ1···µ`1 (x1)φ2 ν1···ν`2 (x2) =
∑
O

∑
k

λk12OF
k
O µ1···µ`1 ;ν1···ν`2

(x12, ∂x2) · O(x2),

(1.192)

where k counts the different tensor structures in 〈φ1φ2O〉, and the indices of O
are contracted with F .

Now consider the four-point function 〈φ1φ2φ3φ4〉 and replace the pairs φ1φ2,
φ3φ4 by their OPE expansions (1.192), to obtain

〈φ1φ2φ3φ4〉 =
∑
O

∑
r,s

λr12Oλ
s
34OW

rs
O (xi), (1.193)

where

W rs
O (xi) = CrO(x12, ∂x2)CsO(x34, ∂x4)〈O(x2)O(x4)〉 (1.194)

is the conformal partial wave contribution from the primary O in the (12)(34)
channel. Inserting the OPE in different pairs of operators will produce different,
yet consistent, expansions for the four-point function. However, note that only two
channels will have intersecting regions of convergence. For example, for (12)(34)
and (14)(23), we can choose the position of Φ2 and Φ3 such that Φ2 is closest to
Φ1, and Φ3 is closest to Φ2.

Using this idea, conformal partial waves can be computed in principle [64–66].
However, in practice we use more efficient techniques that do not require the
explicit knowledge of the OPE, as we review in the next subsections.
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1.6. Four-point functions and conformal blocks

1.6.2 Conformal partial waves II: The Casimir

Consider the three-point function 〈Φ1Φ2Φ3〉 and apply (1.28) for the embedding
generator J (1.42)

(J1AB + J2AB)〈Φ1(P1)Φ2(P2)Φ3(P3)〉 = −J3AB〈Φ1(P1)Φ2(P2)Φ3(P3)〉. (1.195)

Then, defining the Casimir differential operator J2
12 ≡ − 1

2 (J1
AB + J2

AB)(J1AB +
J2AB), we have

J2
12〈Φ1(P1)Φ2(P2)Φ3(P3)〉 = −1

2J3
ABJ3AB〈Φ1(P1)Φ2(P2)Φ3(P3)〉

= CΦ3〈Φ1(P1)Φ2(P2)Φ3(P3)〉, (1.196)

where in the last identity we used the property of the Casimir operator C, [C,Φ(x)] =
CΦΦ(x), with

C = −1
2JABJ

AB = D(D − d)− PµKµ − 1
2MµνM

µν , (1.197)

C = ∆(∆− d) + SµνS
µν . (1.198)

For a tensor field Φ in the representation [∆, (`1, `2, · · · )], the eigenvalue SµνSµν
is given by [52,67],

SµνS
µν =

bd/2c∑
i=1

`i(`i + d− 2i). (1.199)

See also appendix F of [37] for a derivation of this result.

Another way of understanding (1.197) is by inserting the OPE of Φ1Φ2 in
the three-point function. This implies that the action of the Casimir differential
operator J2

12 on Φ1×Φ2 can be replaced by the Casimir eigenvalue of Φ3 ∈ Φ1×Φ2.
Therefore applying J2

12 on (1.194) leads to(
J2

12 − CO
)
W rs
O (Pi) = 0. (1.200)

Then by the relation (1.186), this translates into a coupled system of differential
equations for the conformal blocks grsOk(U, V ). Given that the Casimir differential
operator is second order, proper boundary conditions must be imposed on gO.
These are obtained by taking the asymptotic limit of (1.194) when x12, x34 → 0.

The Casimir differential equation for gO was solved in closed form for even
dimensions d and Φi = [∆i, (0)], in [68]. For operators in arbitrary representa-
tions, recursion relations from the Casimir equations were obtained in [56]. As a
reference, higher order Casimir operators can also be used for studying conformal
blocks. See for example [47,69].
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1. Introduction: Conformal field theories in d > 2

1.6.3 Conformal partial waves III: Shadow projectors

Writing the four-point function as an expectation value, we have

〈Φ1Φ2Φ3Φ4〉 =
∑
Ψ

〈0|Φ1Φ2 |Ψ〉 〈Ψ|Φ3Φ4 |0〉
〈Ψ|Ψ〉 , (1.201)

where we have inserted a complete set of states 1 =
∑

Ψ
|Ψ〉〈Ψ|
〈Ψ|Ψ〉 . Now, using con-

formal symmetry, we can reorder the sum over Ψ in terms of conformal primaries
and descendants

〈Φ1Φ2Φ3Φ4〉 =
∑

O primaries

∑
α=O,PO,PPO,...

〈Φ1Φ2α〉〈αΦ3Φ4〉
〈αα〉

, (1.202)

just like we did for the OPE in subsection 1.6.1. The sum over α could also be
generated via derivatives, but that is no better than (1.194). Instead, to obtain a
more useful expression note that, the commutation properties of the Casimir imply
that the three-point functions 〈· · ·α〉 have the same eigenvalue CO. Furthermore,
we see that (1.196) holds for arbitrary values of P3. Therefore both

∑
α=O,PO,PPO,...

〈Φ1Φ2α〉〈αΦ3Φ4〉
〈αα〉

(1.203)

and

NO
∫
dPdP ′〈Φ1Φ2O(P )〉 ·

(
〈O(P )O(P ′)〉|∆O→∆̃O

)
· 〈O(P ′)Φ3Φ4〉, (1.204)

satisfy the Casimir differential equation with the same eigenvalue. The function
inside the integral was chosen so that they have the same transformation properties
under the conformal group. Here we defined ∆̃ = d−∆, and the dots · imply that
the indices of O(P ) in the three-point function are contracted with those of O(P )
in the two-point function (the same for O(P ′) ).

The non-local operator with dimension ∆̃ is called the shadow operator [28,
70–72], and is defined by

Õ(P ) =
∫
dP ′

(
〈O(P )O(P ′)〉|∆O→∆̃O

)
· O(P ′). (1.205)

However, the expressions (1.203) and (1.204) are still not equivalent. This is
because we have not yet imposed the correct boundary conditions on (1.204). An
elegant way of doing this, from [28], is to demand that under the monodromyM :
P12 → e4πiP12, the integral picks up a factor e2πi∆O (as opposed to e2πi(d−∆O),
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1.6. Four-point functions and conformal blocks

which is the other solution). The reason for this is that in the x12 → 0 expansion,
(1.194) has a common factor (x2

12)
∆O

2 .

In summary, we have found two equivalent expressions for the projector PO in

1 =
∑

O primaries
PO. (1.206)

These are

PO =
∑

α=O,PO,PPO,...

|α〉 〈α|
〈αα〉

= NO
∫
dP |O(P )〉 · 〈Õ(P )| , (1.207)

where it is understood that when inserting the integral in a four-point function, a
monodromy projection must be applied. Note that the coefficient NO is fixed by
demanding

〈OPO · · · 〉 = 〈O · · · 〉. (1.208)

The partial waves are then given by the insertion of PO in the four-point
function:

〈Φ1Φ2Φ3Φ4〉 =
∑
O
〈Φ1Φ2POΦ3Φ4〉 =

∑
O,r,s

λr12Oλ
s
34OW

rs
O (Pi), (1.209)

where

W rs
O (Pi) =

∑
t

(M34O)stNO
∫
dP 〈Φ1Φ2O(P )〉(r) · 〈Õ(P )Φ3Φ4〉(t)

∣∣∣∣
M=e2πi∆O

,

(1.210)

and the mixing matrices (M34O)st relate the OPE coefficients λ34O with λ34Õ:∑
s

λs34O(M34O)st = λt
34Õ

. (1.211)

Using (1.205), the mixing matrices can be computed via∑
p

λp
12Õ
〈Φ1Φ2Õ(P )〉(p) =

∑
r,p

λr12O(M12O)rp〈Φ1Φ2Õ(P )〉(p)

=
∑
r

λr12O

∫
dP ′

(
〈O(P )O(P ′)〉|∆O→∆̃O

)
· 〈Φ1Φ2O(P ′)〉(r). (1.212)

1.6.4 Spinning partial waves via weight-shifting operators

Another approach for computing conformal blocks, in particular for the case where
the four-point functions include fields in tensor representations of SO(d) (also
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1. Introduction: Conformal field theories in d > 2

known as spinning correlators), was first demonstrated in [45]. It exploits the
relation (1.179) (however they used the basis (1.180)) for writing the spinning
conformal blocks by applying differential operators on scalar conformal blocks
(i.e. those in the expansion of four-point functions with scalar fields). However,
as discussed below, this is not the complete story. This technique only relates
conformal blocks whose exchanged operators are in the same representation. For
example, starting with scalar blocks, the class of spinning conformal blocks derived
in this way is associated to the exchange of traceless symmetric operators. Whereas
in general, spinning four-point functions may contain contributions from traceless
operators with different index symmetry.16

Nevertheless, it turns out that, exploiting other properties of the weight-shifting
operators from section 1.5, results in an algorithm for—in principle—generating
all spinning conformal blocks via the application of differential operators [46]. We
reproduce this algorithm in the rest of this subsection.

Let us introduce the following notation for the shadow projector (1.207),

PO ≡ |O〉 ./ 〈O| , (1.213)

which makes its action more explicit. Then the partial wave (1.210), corresponding
to the exchange of the primary O, is

W rs
O = 〈Φ1Φ2O〉(r) ./ (s)〈OΦ3Φ4〉. (1.214)

Inverting the relation (1.179) for a seed-like three-point function 〈ΦiΦjO〉 (c.f.
subsection 1.4.2), results in an expression of the form

〈Φ′iΦ′jO〉(a) = D
(a)Φ′iΦ

′
j

ΦiΦj 〈ΦiΦjO〉, (1.215)

where

D
(a)Φ′iΦ

′
j

ΦiΦj : ΦiΦj → Φ′iΦ′j . (1.216)

Therefore we can write

〈Φ′1Φ′2O〉(r) ./ (s)〈OΦ′3Φ′4〉 = D
(r)Φ′1Φ′2
Φ1Φ2

D
(s)Φ′3Φ′4
Φ3Φ4

〈Φ1Φ2O〉 ./ 〈OΦ3Φ4〉, (1.217)

where the partial wave on the right hand side is called ‘seed partial wave’ (note
that it does not carry any extra indices because only one tensor structure appears
in each three-point function). For O in the symmetric traceless representation

16This can be understood easily by looking at all possible non-zero three-point functions related
to the OPE. For example (1.145) is non-zero for generic values of `i, implying that the OPE
[∆1, (`2, `3)]× [∆2, (0)] contains an operator in the representation [∆, (`1, `2, `3)].
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1.6. Four-point functions and conformal blocks

(STT), O = [∆, (`)], and Φi = [∆i, (0)] a scalar, the expression above reproduces
the result in [45], however in the new basis of weight-shifting operators. In this
case, the right hand side becomes the scalar partial wave studied in [64, 68, 69].
Note that (1.217) does not capture all possible spinning partial waves, since it
does not explain how to compute the seed blocks 〈Φ1Φ2O〉 ./ 〈OΦ3Φ4〉, for non-
symmetric traceless O. One cannot simply apply an operator of the type D

(a)Φ′iO
′

ΦiO
that changes the representation of O, because the operation ./ integrates over all
positions of O. Hence a different approach must be used, which we describe now.

Taking (1.176) with Φj = 1 and Φi = Φ′k = O, Φk = Φ′i = O′ gives a relation
between two bases of Ω⊗ Φi for two-point functions:

D(b)
2A〈O(P1, Z

j
1)O(P2, Z

j
2)〉 =

∑
a

{
O 1 O′
O′ Ω O

}·b
·a
D(a)

1A 〈O
′(P1, Z

j
1)O′(P2, Z

j
2)〉,

(1.218)

where D(b) : O → O′ and D(n) : O′ → O. Then using the properties of the shadow
projector

〈O| = 〈OO〉 ./ 〈O| ,
|O′〉 = |O′〉 ./ 〈O′O′〉, (1.219)

in the previous expression, implies

〈OD(b)
A O〉 ./ 〈O

′O′〉 =
∑
a

{
O 1 O′
O′ Ω O

}·b
·a
〈OO〉 ./ 〈D(a)

A O
′O′〉. (1.220)

Therefore we obtain an identity that exchanges the position of the weight-shifting
operator within the projector ./:

|D(b)
A O〉 ./ 〈O

′| =
∑
a

{
O 1 O′
O′ Ω O

}·b
·a
|O〉 ./ 〈D(a)

A O
′| . (1.221)

Furthermore, combining (1.221) with (1.178) gives a relation that changes the
representation of O in ./ to O′:

|D(m)
A O〉 ./ 〈D(n)AO| =

∑
a

{
O 1 O′
O′ Ω O

}·m
·a
|O〉 ./ 〈D(a)

A D
(n)AO|

= Nmn |O〉 ./ 〈O| , (1.222)

where

Nmn =
∑
a

{
O 1 O′
O′ Ω O

}·m
·a
(
O
O′ Ω

)an
. (1.223)
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1. Introduction: Conformal field theories in d > 2

Then using this result, the partial wave associated with O can be written as

〈Φ1Φ2O〉(a) ./ (b)〈OΦ3Φ4〉 = N−1
mn〈Φ1Φ2D(m)

A O〉(a) ./ (b)〈D(n)AOΦ3Φ4〉

= N−1
mn

∑
Φ′1∈Ω⊗Φ1,Φ′4∈Ω⊗Φ4

∑
r,s,t,u

{
Φ1 Φ2 Φ′1
O′ Ω O

}am
rs

{
Φ4 Φ3 Φ′4
O′ Ω O

}bn
tu

×D(s)
1 · D

(u)
4 〈Φ′1Φ2O′〉(r) ./ (t)〈O′Φ3Φ′4〉. (1.224)

where we used (1.176) in the second line. Then 〈Φ′1Φ2O′〉(r) ./ (t)〈O′Φ3Φ′4〉 can
be written in terms of a seed partial wave WO′ via (1.217). In particular, if O′ is
a symmetric traceless tensor, and we pick Φi such that 〈Φ1Φ2O〉(a) ./ (b)〈OΦ3Φ4〉
is a seed, then (1.224) provides a way to write any seed partial wave in terms of
scalar partial waves.

1.7 Bootstrap

Earlier in 1.6.1, it was elucidated that the four-point function can be reduced to
a combination of two-point functions via the insertion of the OPE. More gener-
ally, inserting one OPE in an n-point function, leads to an expression that de-
pends on the representations of the operators exchanged in the OPE [∆i, ρi], the
OPE coefficients λj , and (n − 1)-point functions. By repeating this procedure,
the (n − 1)-point functions are reduced to two-point functions, which are com-
pletely determined by conformal symmetry. Therefore, knowledge of the ‘CFT
data’ {[∆i, ρi], λj} associated to a theory, is enough to completely determine any
n-point function.

Inserting the OPE in different orders between different pairs of operators leads
a different expression of the same n-point function. If two or more expansions
have a common region of convergence, then they must agree—this is called OPE
associativity—, leading to non-trivial constraints for the CFT data in general. It
is then important to understand the properties of the OPE when inserted into
correlators, which we describe in this section.

1.7.1 OPE coefficient relations

Recall from subsection 1.6.1 that, up to a two-point function normalization, the
coefficients that appear in the OPE are the same as the three-point function con-
stants. Hence, by associativity, different insertions of the OPE in a three-point
function leads to relations between OPE coefficients. More precisely, consider the
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1.7. Bootstrap

three-point function 〈Φ1Φ2Φ3〉. In our notation, the coefficient associated to the
operator Φ3 appearing in the Φ1 × Φ2 OPE is, λΦ1Φ2Φ3 . By associativity, insert-
ing the OPE in (12) must be consistent with inserting it in (13) and (23). This
then gives linear relations between the OPE coefficients λΦ1Φ2Φ3 , λΦ1Φ3Φ2 , and
λΦ2Φ3Φ1 . Moreover, the OPE is symmetric under Φ1 × Φ2 → Φ2 × Φ1, so that
λΦσ(1)Φσ(2)Φσ(3) is related to λΦ1Φ2Φ3 , with σ any permutation of the three points.
From (1.144) we have∑

l

λlΦ1Φ2Φ3
QlΦ1Φ2Φ3

(Pi, Zji ) =
∑
l′

λl
′

Φσ(1)Φσ(2)Φσ(3)
Ql
′

Φσ(1)Φσ(2)Φσ(3)
(Pσ(i), Z

j
σ(i))

=
∑
l′,l

λl
′

Φσ(1)Φσ(2)Φσ(3)
(MΦi

Φσ(i)
)l
′lQlΦ1Φ2Φ3

(Pi, Zji ), (1.225)

or

λlΦ1Φ2Φ3
=
∑
l′

λl
′

Φσ(1)Φσ(2)Φσ(3)
(MΦi

Φσ(i)
)l
′l, (1.226)

where we used the fact that K∆1∆2∆3
3 (P1, P2, P3) is invariant under the simulta-

neous permutation of two P and two ∆. Note that the form of the matrix M
depends on how we define the tensor structures Q for the permuted case.

1.7.2 Bootstrap equations

So far, OPE associativity in three-point functions resulted in somewhat trivial
constraints for OPE coefficients. This is because, not only is the kinematic factor
K3 invariant under permutations, but all the OPE coefficients depend on the same
triplet of operators. For four-point functions, however, the partial wave expan-
sion involves all the OPE coefficients of operators appearing in each channel, and
additionally, the conformal blocks depend on the operator dimensions and spins
in a non-trivial way [64, 68, 69]. This suggests that OPE associativity produces
non-trivial constraints for the CFT data, and furthermore, solving them provides
a way to classify the space of consistent CFTs. This is called the conformal boot-
strap program, and it has already produced numerous successful studies in both
numerical and analytical fronts. For a concise review on current results from the
conformal bootstrap see [73]. A more detailed overview of the state-of-the-art
developments in bootstrap technology has recently appeared in [74].

For four-point functions, there are three independent partial wave expansions
(or channels): (12)(34) or s channel, (14)(23) or t channel, (13)(24) or u channel.
However, convergence of the OPE expansion (ij)(kl) is guaranteed only if there is a
sphere containing the points i, j, which does not intersect a sphere containing k, l.
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1. Introduction: Conformal field theories in d > 2

Thus for a given configuration of points i, j, k, l, only two of the three channels
converge. Nonetheless, it turns out that partial waves in a given channel can
be analytically continued to a larger region of regularity, by applying conformal
transformations which do not change the cross-ratios U , V [48, 63].

Note that for fermionic fields, different channels might be equal up to a sign
due to the Grassmann nature of the fields [34]. Here we focus on bosonic quantities
only. Imposing OPE associativity—also known as crossing symmetry in the con-
text of four-point functions—on the partial waves (1.185) then implies the so-called
bootstrap equations∑
O

Λ12;34
O WΦ1Φ2Φ3Φ4

O (P1, P2, P3, P4;Zj1 , Z
j
2 , Z

j
3 , Z

j
4)

=
∑
O′

Λ14;23
O′ WΦ1Φ4Φ2Φ3

O′ (P1, P4, P2, P3;Zj1 , Z
j
4 , Z

j
2 , Z

j
3)

=
∑
O′′

Λ13;24
O′′ WΦ1Φ3Φ2Φ4

O′′ (P1, P3, P2, P4;Zj1 , Z
j
3 , Z

j
2 , Z

j
4), (1.227)

where Λij;klO is the matrix of OPE coefficients λrijOλsklO as in (1.193). These equa-
tions can be re-casted in terms of conformal blocks via (1.186). Note that in
order completely ‘solve a CFT’ one needs to solve (1.227) for all possible fields Φi.
Generically, including more correlators, results in stronger constraints. Compare
for example [53,75] with [50,76]. At this point is important to realize that in order
to study the implications of the bootstrap equations (1.227) in their current form,
it is essential to have enough knowledge and control over the partial waves W in
coordinate representation. Alternative approaches also exist [57–59,77–87], where
the partial waves are mapped into a different space via, e.g. integral transforms.

Similar to the three-point function case, we can also look at the constraints
arising from exchanging the order of the OPE Φi×Φj → Φj×Φi, so-called exchange
symmetry. However, from the discussion of the previous subsection, and the partial
wave expansion (1.193), it is easy to see that these constraints are solved term by
term in O, leading to ‘trivial’ restrictions on the form of WO. Nonetheless, these
relations are useful when computing new spinning partial waves, as they provide
sanity checks.

1.7.3 Light-cone limit

Solving the bootstrap equations (1.227) is a difficult task because it is an infinite
system of equations in an infinite number of variables. Nevertheless, approaches
for successfully extracting useful information do exist, as reviewed in [73, 74]. In
particular, it is possible to study the bootstrap equations analytically in certain
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1.7. Bootstrap

interesting limits that still capture different universal features of the theory. These
include the large dimension limit [63], the light-cone limit [2, 88–106], as well as
the Regge limit [80,107–112].

Here we focus on the light-cone limit. This is defined by taking the following
limit of the cross-ratios17

u� v < 1, (1.228)

and re-organizing the sum over primaries in (1.227)—parametrized by dimensions
∆ and spins `—as a sum parametrized by twists τ = ∆ − ` and spins ` [88, 89].
The result is that the minimal twist contributions from the s-channel are only
reproduced by double-trace operators of large spin in the t-channel. Let us see an
example in detail.

Let us focus on the scalar correlator case 〈ΦiΦjΦkΦl〉, where the bootstrap
equation (for s = t) is∑
O
λijOλklOg

∆ij ,∆kl

O (u, v) = u
∆k+∆l

2 v−
∆j+∆k

2
∑
O
λilOλkjOg

∆il,∆kj

O (v, u). (1.229)

It is useful to introduce a different set of variables

u = zz̄, v = (1− z)(1− z̄). (1.230)

Now the light-cone limit is reproduced by taking small z, so that z̄ = (1−v)+O(z)
and u = z(1 − v) + O(z2). When matching the bootstrap equation (1.229), we
work in the variables z and v.

In the s-channel, the scalar conformal blocks have the following behavior around
u = 0 [64]

g
∆ij ,∆kl

τ,` (u, v) = uτ/2f ij,klτ,` (1− v)(1 +O(u)), (1.231)

f ij,klτ,` (1− v) = (1− v)`2F1(τ2 + `− ∆ij

2 ,
τ

2 + `+ ∆kl

2 , τ + 2`; 1− v). (1.232)

From this expression, it is clear that the leading order contributions in u will be
given by operators with minimal twist τm.

In the t-channel the large spin scalar blocks factorize into [88,99]

g
∆il,∆kj

τ,` (v, u)
`�1, z`2.O(1)

u�v<1= f
∆il,∆kj

1 (`, z)f∆il,∆kj

2 (τ, v)(1 +O(1/
√
`,
√
z)),
(1.233)

17There are just the projection of the embedded cross ratios U and V from (1.119) to Rd.

41



1. Introduction: Conformal field theories in d > 2

where u ≈ z(1− v) and

f
∆il,∆kj

1 (`, z) = π−
1
2 22``

1
2 z

∆il−∆kj
4 K∆kj−∆il

2
(2`
√
z), (1.234)

f
∆il,∆kj

2 (τ, v)

= 2τv τ2
(1− v)d/2−1 2F1

(
τ − d+ 2−∆il

2 ,
τ − d+ 2 + ∆kj

2 , τ − d+ 2; v
)
. (1.235)

This limit holds for even dimensions d ≥ 2 as long as the sum over ` only receives
contributions in the region where the product `2z is kept fixed. Note that some-
times, different normalizations of the conformal block are used. For example, by
multiplying f ij,klτ,` and f

∆il,∆kj

1 (`, z) with a factor of (−2)−`. However, this will
only change the normalization of the OPE coefficients for the large spin operators
in the t-channel.

Using these results we can demand that both sides of (1.229) match order by
order in z and v, and fix the spectrum and OPE coefficients of the large spin
operators in the t-channel.

s-channel

Expanding the functions fτ,` around v = 0 gives the following

∑
O
λijOλklOg

∆ij ,∆kl

O (u, v)
|u|�|v|<1
≈ δI∈φi×φj +

∑
τm,`m

λij(τm,`m)λkl(τm,`m)

× z
τm
2 (1− v)

τm
2 +`mΓ(τm + 2`m)

Γ( τm2 + `m − ∆ij

2 )Γ( τm2 + `m + ∆ij

2 )

∞∑
k=0

( τm2 + `m − ∆ij

2 )k( τm2 + `m + ∆ij

2 )k
(k!)2 vk

× [2ψ(k + 1)− ψ(τm2 + `m + k − ∆ij

2 )− ψ(τm2 + `m + k + ∆ij

2 )− ln(v)]
(1.236)

provided |v| < 1, ∆kl −∆ij = 0,18 and we used u ≈ z(1 − v). The term δI∈φi×φj
gives a 1 if the identity operator can be exchanged (i.e. if φi × φj = 1 + . . . ) and
0 otherwise.

18There are further expansions of this type when ∆kl −∆ij is a positive integer, but for our
purposes we will not assume this. As far as I know there are no closed form expansions for
arbitrary ∆kl −∆ij .
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t-channel

For the t-channel we get

u
∆k+∆l

2

v
∆j+∆k

2

∑
O
λilOλkjOg

∆il,∆kj

O (v, u)
`�1, z`2.O(1)

u�v<1≈ z
∆k+∆l

2 (1− v)
∆k+∆l

2

v
∆j+∆k

2

δI∈φi×φl

+ z
∆k+∆l

2 (1− v)
∆k+∆l

2

v
∆j+∆k

2

∑
τ

(∑
`

λil(τ,`)λkj(τ,`)f
∆il,∆kj

1 (`, z)
)
f

∆il,∆kj

2 (τ, v),

(1.237)

where the delta is now 1 when φi×φl = 1 + . . . . Notice that the OPE coefficients
λil(τ,`)λkj(τ,`) need to, at least, cancel the terms in f1(`, z) that contribute to the
`2z � 1 region of the sum over `,19 namely the 22` term. The factor in parenthesis
is then a finite expression depending on z only, which must match the powers of z
in (1.236).

However, at this point, f2 has a power series expansion for small v, that does
not reproduce the ln(v) term in (1.236). To do it, we assume that the allowed
values of τ have a particular pattern, say τ ≈ τ(n) + γ(n, `),20 where γ(n, `) is a
small correction—an anomalous dimension—that depends on n and `. Then we
replace the sum over τ by a sum over n and expand the terms that depend on τ

around small γ(n, `). Clearly, ln(v) will arise from terms of the form vg(τ).

Here we write the expansion of the OPE coefficients λil(τ,`)λkj(τ,`) around
γ(n, `) = 0, as

λil(τ,`)λkj(τ,`) = λil(τ(n),`)λkj(τ(n),`) + λil(τ(n),`)λkj(τ(n),`)C
il,kj(n, `), (1.238)

λil(τ(n),`)λkj(τ(n),`)C
il,kj(n, `) ≡ γ(n, `)[∂γλil(τ(n)+γ,`)λkj(τ(n)+γ,`)]γ=0. (1.239)

Putting these results into (1.237) gives

u
∆k+∆l

2

v
∆j+∆k

2

∑
O
λilOλkjOg

∆il,∆kj

O (v, u)
`�1, z`2.O(1)

u�v<1≈ z
∆k+∆l

2 (1− v)
∆k+∆l

2

v
∆j+∆k

2

δI∈φi×φl

+ z
∆k+∆l

2 (1− v)
∆k+∆l

2

v
∆j+∆k

2

∑
n

(∑
`

λil(τ(n),`)λkj(τ(n),`)f
∆il,∆kj

1 (`, z)

×
[
1 + Cil,kj(n, `) + γ(n, `)

τ ′(n)
d

dn

])
f

∆il,∆kj

2 (τ(n), v). (1.240)

19This is because f1(`, z) is only valid for fixed z`2, and thus we want the sum to be dominated
by that region. The term 22` blows up for large ` making the `2z � 1 sector significant.

20This is equivalent to assuming that for each ` there is only one exchanged operator with
twist τ(n) + γ(n, `). Otherwise we would need to parametrize the twist pattern by an additional
index.
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Notice that acting d
dn on vn produces vn ln(v) as expected.

Matching the bootstrap equation

By matching (1.236) and (1.240), one can compute the large ` spectrum as well
as the behavior of the OPE coefficients in the t-channel. We assume the OPE
coefficients factorize at large ` into λil(τ(n),`)λkj(τ(n),`)

`�1
≈ Nil,kj(n)Lil,kj(`), and

perform the sum over ` at zero-th order in γ. This is done by approximating the
sum by an integral, and using [88,96]∫ ∞

0
dl lαKν(2l

√
z) = z−(α+1)/2

4 Γ(1 + α− ν
2 )Γ(1 + α+ ν

2 ), (1.241)

where 1 + α − ν > 0 and 1 + α + ν > 0. The correct value of α (which in turn,
fixes Lil,kj(`)) is obtained by matching leading order of (1.236) in z (i.e. the 1).21

With the z dependence out of the way, we fix Nil,kj(n) and τ(n) by checking that
the v dependence agrees on both sides. In other words, performing the sum over
n in (1.240) must match the identity in (1.236).

Matching the subleading terms zτm/2,22 fixes the anomalous dimensions γ(n, `),
as well as the OPE corrections Cil,kj(n, `) in terms of the OPE coefficients of the
minimal twist operator λij(τm,`m)λkl(τm,`m). In particular, let us concentrate on
the ln(v) terms. Writing the form of the anomalous dimensions as

γ(n, `) = γn
`p(τm) , (1.242)

and matching the zτm term, fixes the exponent p(τm). Whereas matching the
factors vk multiplying ln(v), fixes the form of γn (one has to pick γn such that
performing the full sum over n reproduces (1.236), order by order in v). Following
the same procedure for the non-log terms fixes the OPE corrections Cil,kj(n, `).

1.8 Lorentzian CFT and causality

So far, we have focused on conformal field theories in Euclidean space Rd because,
from the point of view of physical observables (correlators), it is known that a
Lorentzian theory that is unitary, causal, and Lorentz invariant is in one-to-one

21Note that the first term on the right hand side of (1.240) is subleading in z for unitary
theories ∆i > 0, c.f. subsection 1.4.3, so we can ignore it.

22Here we have to assume that the first term on the right hand side of (1.240) is subleading
in z with respect to zτm/2. In other words ∆m − `m < ∆k + ∆l. For example if ∆k = ∆l = ∆
and the minimal twist operator is the stress tensor, then we have d− 2 < 2∆, which is just the
unitarity bound for scalars.
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1.8. Lorentzian CFT and causality

correspondence with a Euclidean theory satisfying reflection positivity, crossing
symmetry, Euclidean invariance, and certain growth conditions [113–118]. How-
ever, this does not explain what exactly happens to the Euclidean theory when
causality is violated. It turns out that by studying this question, combined with
the bootstrap philosophy, one gains more insight into the space of consistent CFT
data [94].

1.8.1 Causality

Causality is the statement that local field operators may only have an effect on
others within their light-cones. In other words, in Lorentzian signature xi =
(ti, x1

i , . . . , x
d−1
i ) ∈ R1,d−1,

[φ1(x1), φ2(x2)]
∣∣
x2

12>0 = 0. (1.243)

Recall from section 1.3 that conformal correlators develop singularities whenever
x2
ij = 0. In the Euclidean theory, with coordinates xi = (x0

i , x
1
i , . . . , x

d−1
i ) ∈ Rd,

this only happens when xi = xj . Hence we have crossing symmetry [φi(xi), φj(xj)] =
0 as long as the points are not coincident. On the other hand, in Lorentzian
signature, singularities appear when touching the light-cone of other operators
(ti − tj)2 =

∑
k(xki − xkj )2.

One can try mapping the Euclidean correators to Minkowski space, by an-
alytically continuing one arbitrary direction, say x0

i → eiαx0
i , at the expense

of making the correlators multivalued. Imposing causality in this setting, then
means that for timelike separated operators, their commutator must be given by
the discontinuity across the branch cut of the light-cone singularity. It is easier
to understand this statement with an example. Consider the two-point function
〈φ(0)φ(x)〉 = (x2)−∆, with x = (x0, x1). After analytic continuation x0 → eiαx0,
it becomes e−2iα∆((x0)2 − (x1)2)−∆, with e−2iα = −1. For timelike operators
x0 > x1, there are many α that send x0 above the singularity x0 = ix1. One
option is following the path α ∈ [0, π/2], hitting the imaginary axis from the right.
Another option is to send x0 → −x0 and then follow the path α ∈ [0,−π/2], hit-
ting the imaginary axis from the left. Note that the branch cut (whose direction
we have to set in order for the analytic continuation to make sense) has to be
crossed by one of the two paths. The difference between the two paths is then

〈φ(0)φ(x)〉|first − 〈φ(0)φ(x)〉|second =
(
e−iπ∆ − eiπ∆) ((x0)2 − (x1)2)−∆. (1.244)

If we set our interpretation such that the first path corresponds to a time-ordered
correlator, while the second path is anti-time-ordered, then we arrive at the ex-
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1. Introduction: Conformal field theories in d > 2

pected result:

〈[φ(0), φ(x)]〉
∣∣
x2<0 =

(
e−iπ∆ − eiπ∆) ((x0)2 − (x1)2)−∆ 6= 0 (1.245)

On the other hand, if the operators are spacelike x0 < x1, then none of the paths
crosses the branch cut, which means that all analytic continuations live in the
same sheet of the multivalued correlator. In other words,

〈[φ(0), φ(x)]〉
∣∣
x2>0 = 0. (1.246)

For a correlator with more operators, the same idea applies; different time order-
ings correspond to different paths around light-cone singularities.

Another way of making sense of the analytic continuation is the the iε recipe.
A correlator in the following time order

〈φ1(t1, x1) · · ·φn(tn, xn)〉, (1.247)

is computed by the following euclidean correlator

lim
εj→0
〈φ1(t1 − iε1, x1) · · ·φn(tn − iεn, xn)〉, (1.248)

where we take the metric to be R1,d−1 and ε1 > · · · > εn > 0. This has the
effect of moving the position of the light-cone singularities out of the imaginary
axis in a particular way, which is equivalent to the previous discussion in terms of
continuation paths.

In summary, whenever the branch points of the correlator coincide with the
light-cone singularities, causality is guaranteed. In the first sheet of the Lorentzian
correlator (i.e. the one that embeds the Euclidean region), causality then follows
from the form of the Euclidean correlator (the fact that it is singular at coincident
points). However, after crossing a branch cut into another sheet, it is not obvious
that the singularities will remain at the same place. Therefore a way to test for
causality, is to check that correlators in the second sheet are not singular away
from light-cones. Combining this idea with bootstrap techniques, it was shown
in [94] that causality implies non-trivial constraints on OPE coefficients of light
operators in scalar correlators. This was later generalized to spinning correlators
in [2, 95].

1.8.2 Constraints from causality

Now we review the argument of [94] for constraining the CFT data in the four-
point functions of scalars:23

G(z, z̄) = 〈φ(0)O(z, z̄)O(1)φ(∞)〉. (1.249)
23Here φ(∞) implies limx→∞ x2∆φφ(x).
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1.8. Lorentzian CFT and causality

Here the light-cone coordinates z, z̄ are defined in (1.230). More precisely, plugging
the coordinates

x1 = (0, 0), x2 = (x0
2, x

1
2), x3 = (0, 1), x4 = (0,∞), (1.250)

into the cross-ratios results in

u = zz̄, v = (1− z)(1− z̄), z = ix0
2 + x1

2, z̄ = −ix0
2 + x1

2. (1.251)

Analytically continuing x0
2 → it2 then implies z = −t2 + x1

2, z̄ = t2 + x1
2. Note

that z̄ = z∗ in the Euclidean case, while in Lorentzian signature they are indepen-
dent. We take this continuation as the first sheet of G(z, z̄). As discussed in the
previous subsection, the other analytic continuation (which crosses the branch cut
of φ(0)), differs by a clockwise rotation around the light-cone z = 0: z → ze−2πi.
Hence the second sheet is G(ze−2πi, z̄).

The idea now is to check that the correlator is analytic in a region close to the
light-cone of O(1), (z, z̄) ∼ (1, 1), for both sheets (and hence causal). Following,
[94] we define

z = 1 + σ, (1.252)
z̄ = 1 + ησ, (1.253)

where σ is complex with Im(σ) ≥ 0 and |σ| ≤ R, while η is real and satisfies
0 < η � R� 1. On the σ plane, this corresponds to a half disc above σ = 0. We
refer to this as region D.

Now we define the normalized four-point functions on the first and the second
sheet as

Gη(σ) ≡ 〈φ(0)O(z, z̄)O(1)φ(∞)〉
〈φ(0)φ(∞)〉〈O(z, z̄)O(1)〉 = (ησ2)∆OG(1 + σ, 1 + ησ), (1.254)

Ĝη(σ) ≡ 〈φ(0)O(ze−2πi, z̄)O(1)φ(∞)〉
〈φ(0)φ(∞)〉〈O(z, z̄)O(1)〉 = (ησ2)∆OG((1 + σ)e−2πi, 1 + ησ).

(1.255)

In what follows, we show that both of these are analytic in D, and finite at σ = 0.
As seen in 1.7.2, we can expand G(z, z̄) in the s, t, and u channels respectively:

G(z, z̄) = (zz̄)− 1
2 (∆O+∆φ)

∑
O
λφOOλOφOg

∆φO,−∆φO

∆O,`O (z, z̄), (1.256)

G(z, z̄) = [(1− z)(1− z̄)]−∆O

∑
O
λOOOλφφOg

0,0
∆O,`O (1− z, 1− z̄), (1.257)

G(z, z̄) = (zz̄) 1
2 (∆φ+∆O)

∑
O
λφOOλOφOg

∆φO,−∆φO

∆O,`O (1/z, 1/z̄). (1.258)
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1. Introduction: Conformal field theories in d > 2

The form of the prefactors indicate that these expansions converge for |z| < 1,
|1−z| < 1, and |z| > 1 respectively. The analyticity of Gη(σ) in D is then a direct
consequence of the convergence of the t-channel expansion. Furthermore, in the
limit z, z̄ → 1 with (1 − z)/(1 − z̄) fixed (equivalently, σ → 0 with η fixed), the
t-channel has an expansion in conformal dimension [68,69]

Gη(σ) = 1 +
∑
∆,`

a∆,`η
1
2 (∆−`)σ∆, (1.259)

where the sum is over all primaries and descendants appearing in φ×φ. For unitary
theories, ∆ > 0 (c.f. subsection 1.4.3), this implies that Gη(0) = 1 is finite.

On the second sheet, the transformation z → ze−2πi can have a nontrivial
effect on the t-channel sum. Thus analyticity of Ĝ is not guaranteed from the
convergence of (1.257). For example, in the light-cone limit z̄ → 1 with z fixed
(equivalently, η → 0 and σ finite), the t-channel expansion is, c.f. (1.236),

G(z, z̄) = [(1−z)(1−z̄)]−∆O

(
1 +

∑
Om

λm(1− z̄) 1
2 (∆m−`m)g̃∆m,`m(1− z) + . . .

)
,

(1.260)
where λm = λOOOmλφφOm is the coefficient of the contributions of minimal twist
operators Om. From (1.236),24 one can check that g̃∆m,`m(1 − z) is regular on
the first sheet around z = 1, but develops singularities on the second sheet due to
the log term. More precisely, applying z → ze−2πi to the corresponding version of
(1.236) and then taking the z → 1 limit, gives the following expression for Ĝη(σ)
in η � |σ| � 1:

Ĝη(σ) = 1− iλ̂m
η

1
2 (∆m−`m)

σ`m−1 + . . . , (1.261)

where Om is the minimal twist operator of largest spin and

λ̂m = λm ×
21−`mπΓ(∆m + `m)2

(∆m + `m − 1)Γ( 1
2 (∆m + `m))4 . (1.262)

Due to these singularities, the convergence on the first sheet does not imply conver-
gence on the second sheet. However, this does not mean that Ĝη(0) is divergent,
as we will see below.

24Note that (1.236) is an s-channel expansion, so we need to apply z → 1 − z̄, z̄ → 1 − z to
make it compatible with (1.260).
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1.8. Lorentzian CFT and causality

Positivity to the rescue

Reflection positivity in radial quantization (see e.g. [10,11]) states that 〈f | f〉 ≥ 0,
where

|f〉 ≡
∫ 1

0
dr1

∫ 2π

0
dθf(r1, θ1)O(r1e

iθ1 , r1e
−iθ1)φ(0) |0〉 , (1.263)

for arbitrary f(r, θ). In fact, following [28, 49, 88], this can be further refined by
inserting the projector PO from (1.207), and still have positivity:

〈f |PO|f〉 ≥ 0. (1.264)

It was shown in [94] that 〈f | f〉 ≥ 0 implies the s-channel expansion can be written
as

G(z, z̄) = (zz̄)− 1
2 (∆O+∆φ)

∑
h,h̄>0

ah,h̄z
hz̄h̄, ah,h̄ ≥ 0. (1.265)

Additionally, this can be checked explicitly in d = 4, using the closed form confor-
mal blocks of [64]. The refined condition 〈f |PO|f〉 ≥ 0 implies that each partial
wave is also a positive coefficient expansion:

λOφOλφOOg
∆φO,−∆φO

O (z, z̄) = z−az̄−b
∑

p,q∈Z+

bp,qz
pz̄q, bp,q ≥ 0, (1.266)

where the powers a, b depend on the scaling dimensions.

Recall that in Euclidean signature (z̄ = z∗), the s-channel expansion converges
for |z| < 1. Therefore the positivity of ah,h̄ implies that in Lorentzian signa-
ture, the sum still converges for independent complex variables |z|, |z̄| < 1. More
precisely,∣∣(zz̄) 1

2 (∆O+∆φ)G(z, z̄)
∣∣ =

∣∣∣∣ ∑
h,h̄>0

ah,h̄z
hz̄h̄
∣∣∣∣ ≤ ∑

h,h̄>0

ah,h̄|z|
h|z̄|h̄, |z|, |z̄| < 1.

(1.267)
Thus Ĝη(σ) is analytic in the region D ∩ {|z|, |z̄| < 1}. Actually, using radial
coordinates [48], it is shown in [94], that the region of convergence for the s-
channel expansion can be expanded to the whole complex plane excluding [1,+∞).
In other words, Ĝη(σ) is analytic in D/[0, R].

The same line of arguments hold for the u-channel expansion in terms of 1/z
and 1/z̄. This results in the analyticity of Ĝη(σ) in D/[−R, 0]. Hence Ĝη(σ) is
analytic in D.25

25The branch cuts of G(z, z̄) with respect to z are chosen as follows. The first branch cut
originates from z = 1 and lies in the lower half plane. The second branch cut originates from
z = 0 and lies in the negative real axis. The branch cuts on the z̄ plane are chosen in the same
way.
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1. Introduction: Conformal field theories in d > 2

Restricting to σ ∈ R, leads to the inequality |Ĝη(σ)| ≤ Gη(σ), or equivalently

Re(Gη(σ)− Ĝη(σ)) ≥ 0, σ ∈ [−R,R]. (1.268)

Bounds from analyticity

Analyticity of both Gη(σ) and Ĝη(σ) in the region D implies that no poles are
picked up by the contour integral around D:∮

∂D

dσσkGη(σ) =
∮
∂D

dσσkĜη(σ) = 0, (1.269)

for any k > −1. The contour is a sum of the half circle S and the real line segment
[−R,R]. In particular, for `m ≥ 2 we can write the sum rule

Re
∮
∂D

dσσ`m−2(Ĝη(σ)−Gη(σ)) = 0. (1.270)

However, from (1.259) and (1.261), the part of the integral along the semicircle
picks up the residue of the pole in σ:

Re
∫
S

dσσ`m−2(Ĝη(σ)−Gη(σ)) = πλ̂mη
1
2 (∆m−`m) +O(R`m−1), (1.271)

where we used the identity

Re i
∫
S

dσσn = −πδn,−1. (1.272)

Finally, from the sum rule (1.270) and the positivity property (1.268), we obtain
for `m > 126

λ̂m = 1
π

lim
R→0

lim
η→0

η−
1
2 (∆m−`m)

∫ R

−R
dσσ`m−2 Re(Gη(σ)− Ĝη(σ)) ≥ 0, (1.273)

where λ̂m ∝ λOOOmλφφOm .

Note that if Om is the stress tensor, then (1.273) gives a trivial constraint
the OPE coefficients λOOTλφφT , as it can also be derived using the Ward identity
(1.20). However, as we will see in chapter 4, reproducing this argument for spinning
correlators leads to nontrivial constraints.

26Otherwise the dots in (1.261) dominate and the integral may not be well defined.
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1.9 Preview of the main results

In this introduction we illustrated the concepts and techniques that constitute the
backbone of the thesis. We started from the basic properties that characterize
conformal field theories (CFTs), and then moved to a formalism which encodes
the conformal symmetry into the linear action of the orthogonal group. Using
this language, we discussed how the two- and three-point correlation functions
of the theory are fixed due to the symmetries of the CFT. Related to this, we
reviewed a useful technique for transforming the representations of the fields inside
correlators via the action of derivatives with respect to the coordinates. Then we
moved to four-point functions and described several techniques to expand these
objects in terms of conformal partial waves and the numerical parameters that
determine each theory—the CFT data. Next using the associativity properties
of this expansion we reviewed how this can be translated into self-consistency
conditions—the bootstrap equations—that every well-behaved CFT must satisfy.
Finally, we showed two analytical techniques for extracting universal information
regarding the CFT data: one of them is based on solving the bootstrap equations
in a particular kinematic limit (the light-cone limit), and the other exploits the
positivity and analyticity of the partial wave expansions to derive constraints for
causal theories.

Moving forward, the thesis is structured as follows

• in chapter 2 we explicitly construct all conformal blocks required for the four-
point function of two scalars and two vectors, in closed form. In particular
this includes the conformal block associated to the exchange of an operator
with mixed symmetry, in terms of the usual conformal blocks for traceless-
symmetric operators.

• in chapter 3 we use the weight-shifting operator formalism to construct a
recursion for computing all the spinning seed partial waves that can appear
in the four-point function of traceless-symmetric tensors in closed form. The
recursion connects these mixed-symmetric seed partial waves to the usual
traceless-symmetric ones in a finite number of steps, given by the number of
boxes in the second and third rows of the mixed-symmetric Young diagram.

• in chapter 4 we apply both the light-cone bootstrap, as well as causality ar-
guments to constrain the following spinning four-point functions: two scalars
and two conserved spin-1 currents (J), two scalars and two vectors (V ), and
two scalars and two conserved spin-2 tensors (T ). For each case, solving
the light-cone bootstrap determines the spectrum of the infinite towers of
large spin double-trace operators, as well as their anomalous dimensions and
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1. Introduction: Conformal field theories in d > 2

OPE coefficients in terms of the stress-tensor CFT data. From causality, we
derive constraints for the OPE coefficients λJJT , λV V T , and λTTT . Then
combining both results shows that the anomalous dimensions of the large
spin double-trace operators have a definite sign.

• finally in chapter 5 we show how spinning partial waves appear in AdS grav-
ity. In particular we demonstrate how spinning Witten diagrams decompose
in terms of spinning partial waves, and we develop a formalism for gener-
ating gravitational bulk interactions directly from the different OPE tensor
structures. Given the nature of the duality this also provides a technique for
computing spinning partial waves using holography.
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2 Scalar-Vector
conformal blocks

On conformal blocks for the four-point function of two scalars
and two vectors

Conformal blocks are an essential ingredient for studying conformal field the-
ories. They are universal in the sense that the they provide a basis for expanding
the four-point functions of any theory, in terms of CFT data. Therefore they must
be generic enough to encode the kinematic dependence of four points in any pos-
sible interacting conformal theory, in any space-time dimension. This makes the
computation of conformal blocks in closed form quite difficult. In this chapter,
based on [1], we provide explicit expressions for all spinning conformal blocks in
the four-point function of two scalars and two vectors.

2.1 Introduction

As discussed in section 1.6 there exist several techniques for computing conformal
blocks, each with their advantages and disadvantages. The first instance of an
explicit closed form solution was given in [68, 68, 69]. In those articles, the au-
thors obtained closed form expressions for conformal blocks of four scalars (also
referred to as scalar blocks) in even dimensions d. Furthermore, they showed that
the OPE, Casimir, and shadow projector techniques (see subsections 1.6.1, 1.6.2
and 1.6.3 respectively, for details) give consistent results. Later, as mentioned in
subsection 1.6.4, the spinning conformal blocks associated to symmetric-traceless
(STT) operators O = [∆O, (`)] were first derived using the differential operators
defined in (1.180).
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2. Scalar-Vector conformal blocks

However, for spinning four-point functions, operators in representations other
than STT can be exchanged. In [28, 29] it was shown, using the shadow operator
method, that conformal blocks associated to the exchange of A = [∆A, (k + 1, 1)]
(with fixed k) can be calculated as a (finite) sum of scalar blocks evaluated at
zero spin. In principle, this can be implemented on a computer but the numerical
evaluation of these blocks is quite resource intensive, due to the fact that the
number of terms in the sum increases rapidly with the spin of A. In numerical
computations one might get away with if the maximum spin of A is not too
large, but this approach is hopeless in the analytic bootstrap, where one needs to
have control over the conformal blocks at very high spin (c.f. subsection 1.7.3).
Later in [37], recursion relations for spinning conformal blocks for mixed-symmetric
exchanges were given, by exploiting the recursive properties of the integrand in
the shadow integral (1.210). However, these are recursions in the length of the
first row of the exchanged representation.

The main objective of this chapter is to use the shadow projector technique
to find an explicit and closed form expression for the conformal block associated
to the mixed-symmetric operator A (for arbitrary k), in the four-point function
of two scalars and two vectors, and whose ‘complexity’ does not increase with k.
Note, from the discussion of 1.6.4, that this corresponds to a seed spinning block,
and thus can be used to generate spinning conformal blocks of other correlators
which exchange A. This result is achieved by writing the contractions appearing
in the shadow integrand in a way that resembles conformal blocks associated to
the symmetric traceless representation. In passing we re-derive expressions for
these symmetric traceless blocks by applying differential operators acting on scalar
blocks, as in subsection 1.5.2.

This chapter is organized as follows. In section 2.3 we write explicit expres-
sions for the relevant three-point functions that appear in the conformal partial
waves, when written in the shadow formalism. Using these we then compute the
mixing matrices and numerical normalization of the shadow projector. Section 2.4
presents the main tool for expressing the conformal block associated to the the
mixed-symmetric representation A, in terms of conformal blocks in the symmetric
representation O. In section 2.5 we put all the results together and compute the
symmetric traceless conformal blocks for the four-point functions 〈φφφφ〉, 〈φvφφ〉,
〈φφφv〉, and 〈φvφv〉. Finally, we present the main result of this chapter, which is
a closed form expression for the conformal blocks 〈φvφv〉 in the mixed-symmetric
representation A, in terms of the symmetric ones. We conclude in section 2.6. De-
tails, identities, definitions, and extended computations are written in appendices
A, B, C, D, E, F, G, and H.
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2.2 Overview and conventions

In this chapter we will use so-called physical coordinates xµ ∈ Rd rather than the
embedding formalism from section 1.2. Conformal correlators in physical space
are obtained from the embedded version via the projections in subsection 1.3.3.
Notice that these expressions are still contracted with polarization vectors zji . The
full expressions in terms of open indices are obtained by applying a proper dif-
ferential operator that implements the SO(d) symmetry. For symmetric traceless
representation this is given by [31,119]

Da =
(
d

2 − 1 + z · ∂
∂z

)
∂

∂za
− 1

2za
∂2

∂z · ∂z
. (2.1)

Then the non-contracted tensor is

fa1,...,a` = 1
`!(d/2− 1)`

Da1 · · ·Da`f(z). (2.2)

For the representation (`, 1), the relevant differential operator was computed in
[37]. However, here we will construct the tensor structures ‘by hand’ by projecting
the indices of the tensor structures to the relevant SO(d) representations, and
using the physical space building blocks {m, k} from (1.138):

k(ijk)
a =

x2
ij (xik)a − x2

ik (xij)a(
x2
ijx

2
ikx

2
jk

)1/2 , (2.3)

m
(ij)
ab = δab −

2
x2
ij

(xij)a (xij)b . (2.4)

In appendix A, we write several useful formulae and identities for these building
blocks.

The main object of interest is the four-point function 〈φvφv〉. From (1.181)
and the algorithm described in subsection 1.3.2, this is given by

〈φ1(x1)v2 a(x2)φ3(x3)v4 b(x4)〉

= K∆i
4

[
q0(u, v)m(24)

ab + q11(u, v)k(214)
a k

(412)
b + q12(u, v)k(214)

a k
(432)
b

+q21(u, v)k(234)
a k

(412)
b + q22(u, v)k(234)

a k
(432)
b

]
. (2.5)

More precisely, the two Young diagrams can be either connected with m, or
filled with k. Given that there are two types of k for each box, we arrive at the
tensor structures above.
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The partial waves for fab are, by (1.210),1

W rs
O =

∑
t

(M34O)stNO

×
∫
ddx0 〈φ1(x1)v2 a(x2)Ob1···b`(x0)〉(r)

〈
φ3(x3)v4 b(x4)Õb1···b`(x0)

〉(t)
∣∣∣∣
M=e2πi∆O

,

(2.6)

and the conformal blocks can be read off from (1.186). It is easy to see from
the counting formula (1.134), that there are two classes of non-zero three-point
functions involving a scalar and a vector. In particular, one of the three-point
functions is given by (1.146) with `2 = 0, and the other is (1.145) with `2 =
1, `3 = 0. This means that O can be of two types. One is the the totally
symmetric traceless tensor of spin `, Oa1···a`(x), which includes scalars and vectors
as special cases. The other type is a mixed symmetry tensor Aa1a2b1···bk(x) which
is completely traceless, is antisymmetric in a1 and a2, is totally symmetric in the
bi, and vanishes when antisymmetrized over any three indices. In terms of SO(d)
representations, Oa1···a` ∈ (`), while Aa1a2b1···bk ∈ (k + 1, 1) . For each of these
cases we construct projectors onto the given representation in Appendix B. For
Oa1···a` and Aa1a2b1···bk we use projectors

Π(`) b1···b`
a1···a` , and Π̃(k) c1c2d1···dk

a1a2b1···bk , (2.7)

respectively.

Our plan of action for finding a closed form for WA in terms of partial waves
WO, is the following:

• calculate the mixing matrices M and normalization factors N in (2.6),

• compute the integrand of (2.6) for O = A, and find a way to relate it to
integrands of O = O,

• write the partial waves WO in terms of conformal blocks gO and use the
previous result to give an expression for gA in terms of gO.

1Recall from the discussion of subsection 1.6.3 that the integral must pick up a factor e2πi∆O
under the monodromy M : x2

12 → e4πix2
12, in order for the partial wave to have the desired

boundary conditions.
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2.3 Mixing matrices and normalization factors

2.3.1 Three-point functions

For the sake of clarity, we reproduce the relevant three-point functions from sub-
section 1.4.2 in physical space. The symbols φ, v, O, and A represent scalar,
vector, symmetric traceless, and mixed-symmetric traceless fields respectively. We
also write the explicit form of (1.179) for each case, which allows us to write 〈φvO〉
in terms of 〈φφO〉.

Case 〈φφO〉:

〈φ1(x1)φ2(x2)Oa1···a`(x3)〉 = λ12OS
λ
a1···a`(xi; ∆i), (2.8)

where we defined

Sλa1···a`(xi; ∆i) =
(
x2

12
) 1

2 (−∆1−∆2+∆O) (
x2

13
) 1

2 (−∆1+∆2−∆O) (
x2

23
) 1

2 (∆1−∆2−∆O)

×Π(`) b1···b`
a1···a` k

(312)
b1

· · · k(312)
b`

. (2.9)

Case 〈φvO〉:

〈φ1(x1)va(x2)Ob1···b`(x3)〉 = α12OS
α
a b1···b`(xi; ∆i) + β12OS

β
a b1···b`(xi; ∆i), (2.10)

where

Sαa b1···b`(xi; ∆φ,∆v,∆O)

≡
(
x2

12
) 1

2 (−∆φ−∆v+∆O) (
x2

13
) 1

2 (−∆φ+∆v−∆O) (
x2

23
) 1

2 (∆φ−∆v−∆O)

×Π(`) c1···c`
b1···b` k(213)

a k(312)
c1 · · · k(312)

c`

= 1
2 (1−∆O)

[
m(12) c

a

(
∂

∂xc1
+ 2 (∆φ − 1)

(x12)c
x2

12

)
Sλb1···b`(xi; ∆φ − 1,∆v,∆O)

+
(

∂

∂xa2
− 2 (∆v − 1)

(x12)a
x2

12

)
Sλb1···b`(xi; ∆φ,∆v − 1,∆O)

]
, (2.11)
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and

Sβa b1···b`(xi; ∆φ,∆v,∆O)

=
(
x2

12
) 1

2 (−∆φ−∆v+∆O) (
x2

13
) 1

2 (−∆φ+∆v−∆O) (
x2

23
) 1

2 (∆φ−∆v−∆O)

×Π(`) c1···c`
b1···b` m(23)

ac1 k
(312)
c2 · · · k(312)

c`

= ∆φ −∆v −∆O + `+ 1
`

Sαa b1···b`(xi; ∆φ,∆v,∆O)

− 1
`

(
∂

∂xa2
− 2 (∆v − 1)

(x12)a
x2

12

)
Sλb1···b`(xi; ∆φ,∆v − 1,∆O), (2.12)

as can be verified by explicit computation. Note that if ` = 0, then we only have
the first term in (2.10).

Case 〈φvA〉:

〈φ(x1)va(x2)Ab1b2c1···ck(x3)〉 = γφvA
(
x2

12
) 1

2 (−∆φ−∆v+∆A) (
x2

13
) 1

2 (−∆φ+∆v−∆A)

×
(
x2

23
) 1

2 (∆φ−∆v−∆A) Π̃(k) d1d2e1···ek
b1b2c1···ck m

(23)
ad1

k
(312)
d2

k(312)
e1 · · · k(312)

ek
. (2.13)

2.3.2 Normalization factors

According to (1.207) and (1.208), we compute the normalization factor NO by
demanding

〈Oa1···a`(x3)ϕ1(x1)ϕ2(x2)〉 = 〈Oa1···a`(x3)POϕ1(x1)ϕ2(x2)〉 , (2.14)

which leads to (see appendix E)

NO = π−d
(∆O + `− 1) (d−∆O + `− 1) Γ(∆O − 1)Γ(d−∆O − 1)

Γ(∆O − d
2 )Γ(d2 −∆O)

. (2.15)

Similarly, for the mixed symmetry case we obtain

NA = π−d
(∆A + k) (d−∆A + k) Γ(∆A)Γ(d−∆A)

(∆A − 2) (d−∆A − 2) Γ(∆A − d
2 )Γ(d2 −∆A)

. (2.16)

Note that N is independent of ∆1 and ∆2, as it should be.

2.3.3 Computation of mixing matrices

In physical space, the definition of the shadow operators (1.205) for O and A are

Õa1···a`(x1) = Π(`) b1···b`
a1···a`

∫
ddx0

(x2
01)d−∆O

m
(01) c1

b1
· · ·m(01) c`

b`
Oc1···c`(x0), (2.17)
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Ãb1b2c1···ck(x3) = Π̃(k) d1d2e1···ek
b1b2c1···ck

×
∫

ddx0

(x2
03)d−∆A

m
(03) f1

d1
m

(03) f2
d2

m(03) g1
e1 · · ·m(03) gk

ek
Af1f2g1···gk(x0). (2.18)

Then to compute the mixing matrices M in

∑
s

λsO(MO)st = λt
Õ
, (2.19)

we will use equation (1.212).

Case 〈φφÕ〉:

Consider first the case where Oa1···a` is symmetric traceless, and the other two
operators are scalars φ1 and φ2. The three-point function with Õ is, by (2.8)

〈
φ1(x1)φ2(x2)Õa1···a`(x3)

〉
= λÕ

(
x2

12
) 1

2

(
−∆1−∆2+∆

Õ

) (
x2

13
) 1

2

(
−∆1+∆2−∆

Õ

)
×
(
x2

23
) 1

2

(
∆1−∆2−∆

Õ

)
Π(`) b1···b`
a1···a` k

(312)
b1

· · · k(312)
b`

, (2.20)

where ∆Õ = d −∆O. Inserting the definition of the shadow operator (2.17) and
performing the integral leads to 2

λÕ = πd/2
Γ(∆O − d

2 )Γ(∆O + `− 1)
Γ(∆O − 1)Γ(d−∆O + `)

×
Γ( 1

2 (d+ ∆1 −∆2 −∆O + `))Γ( 1
2 (d−∆1 + ∆2 −∆O + `))

Γ( 1
2 (∆1 −∆2 + ∆O + `))Γ( 1

2 (−∆1 + ∆2 + ∆O + `))
λO, (2.21)

where we are taking λO = λ12O. The mixing matrix is then just a number given
by (2.19).

Case 〈φvÕ〉:

Next, we consider symmetric traceless O(x3), but in a three-point function with a
scalar φ(x1) and a vector va(x2). In this case, the OPE coefficients of (2.10) get

2Details on the computation of these integrals are given in appendix E
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mixed:

αÕ = πd/2

×
Γ( 1

2 (d+ ∆φ −∆v −∆O + `+ 1))Γ( 1
2 (d−∆φ + ∆v −∆O + `− 1))Γ(∆O − d

2 )
Γ( 1

2 (∆φ −∆v + ∆O + `+ 1))Γ( 1
2 (−∆φ + ∆v + ∆O + `+ 1))Γ(∆O)

× Γ(∆O + `− 1)
Γ(d−∆O + `)

[
1
2 ((∆O + `− 1) (d−∆O − 1)− (∆O − 1) (∆φ −∆v))αO

−
(

∆O −
d

2

)
(∆φ −∆v + ∆O + `− 1)βO

]
, (2.22)

βÕ = πd/2

×
Γ( 1

2 (d+ ∆φ −∆v −∆O + `− 1))Γ( 1
2 (d−∆φ + ∆v −∆O + `− 1))Γ(∆O − d

2 )
Γ( 1

2 (∆φ −∆v + ∆O + `+ 1))Γ( 1
2 (−∆φ + ∆v + ∆O + `+ 1))Γ(∆O)

× Γ(∆O + `− 1)
Γ(d−∆O + `)

[
`

2

(
∆O −

d

2

)
(∆φ −∆v)αO + 1

4 (∆φ −∆v + ∆O + `− 1)

× ((∆O − 1) (d−∆O + `− 1)− (d−∆O − 1) (∆φ −∆v))βO] . (2.23)

Then the mixing matrix

α
φvÕ = M α

α αφvO +M β
α βφvO, β

φvÕ = M α
β αφvO +M β

β βφvO, (2.24)

can be read off from (2.22) and (2.23).

Case 〈φvÃ〉:

Finally, we turn to the mixed symmetry operator Ab1b2c1···ck(x3). Similar tech-
niques to those employed above, results in

γÃ = πd/2
Γ(∆A + k)Γ(∆A − d

2 )Γ( 1
2 (d+ ∆φ −∆v −∆A + k + 1))

Γ(∆A)Γ(d−∆A + k + 1)Γ( 1
2 (∆φ −∆v + ∆A + k + 1))

×
Γ( 1

2 (d−∆φ + ∆v −∆A + k + 1))
Γ( 1

2 (−∆φ + ∆v + ∆A + k + 1))
(∆A − 2) γA. (2.25)
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2.4 The mixed-symmetric shadow integral

We now turn our attention to the integral (2.6) for the case O = A,

WA = M34ANA

×
∫
ddx0 〈φ1(x1)v2 a(x2)Ab1···b`(x0)〉 ·

〈
φ3(x3)v4 b(x4)Ã(x0)

〉∣∣∣∣
M=e2πi∆A

.

(2.26)

From the three-point function (2.13), we see that the integrand includes the fol-
lowing contraction of tensor structures(

γ12Am
(20)
ac1 k

(012)
c2 k

(012)
d1

· · · k(012)
dk

)
× Π̃(k) c1c2d1···dk

e1e2f1···fk

(
γ34Ãm

(40) e1
b k(034) e2k(034) f1 · · · k(034) fk

)
. (2.27)

Now using (2.125), (2.128), and (2.129), as well as other identities from appendices
A and B, allows us to rewrite this contraction as(

γ12Am
(20)
ac1 k

(012)
c2 k

(012)
d1

· · · k(012)
dk

)
× Π̃(k) c1c2d1···dk

e1e2f1···fk

(
γ34Ãm

(40) e1
b k(034) e2k(034) f1 · · · k(034) fk

)
= 1

2γ12Aγ34Ã

√
x2

02x
2
04x

2
12x

2
34

x2
01x

2
03

{
k + 2
k + 1pd,k+1(t) ∂2t

∂xa2∂x
b
4

− ∂2

∂xa2∂x
b
4

[
1

(k + 1) (k + 2)pd,k+2(t)

+ k + 2
(d+ 2k) (d+ 2k − 2) (d+ k − 2)pd,k(t)

]}
, (2.28)

where pd,`(t) is proportional to the Gegenbauer polynomials (see (2.98)), and t is
given by

t = k(012) · k(034) = 1
2
(
x2

01x
2
02x

2
03x

2
04x

2
12x

2
34
)−1/2

×
(
−x2

01x
2
03x

2
24 + x2

01x
2
04x

2
23 + x2

02x
2
03x

2
14 − x2

02x
2
04x

2
13
)
. (2.29)

In appendix C we give more details and motivation for how we arrive at this
expression.

As a comparison, using (2.8) and (2.10), the integrals (2.6) for the symmetric
traceless exchange O = O in 〈φφφφ〉, 〈φvφφ〉, 〈φφφv〉 and 〈φvφv〉, are of the form

W rs
O =

∑
t

(M34O)stNO
(
Sra 00 ◦`,∆O Stb 00

)
, (2.30)
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where we defined

(
SraPQ ◦`,∆O StbRS

)
≡
∫
ddx0S

r
a c1···c`(x1, x2, x0; ∆1 + P,∆2 +Q,∆O)

× St c1···c`b (x3, x4, x0; ∆3 +R,∆4 + S, d−∆O), (2.31)

for r, t ∈ {α, β, λ}. Given the form of the structures S, these contractions are
given in terms of the polynomials pd,`(t) and its derivatives ∂tpd,`(t), as shown in
(2.96) and (2.103).

To see that (2.28) is indeed a combination of the traceless symmetric con-
tractions

(
SraPQ ◦`,∆O StbRS

)
, notice that, the terms in (2.28) corresponding to

derivatives of t with respect to xi, produce the tensor structures from three-point
functions of operators with spin (this is not surprising since we can increase the
spin of three-point functions by the action of derivatives as in (2.11), (2.12)). More
precisely,

∂t

∂xa2
=
(

∂

∂xa2
k(012) b

)
k

(034)
b = −

√
x2

01
x2

02x
2
12

[(
m20 · k(034)

)
a

+ tk(201)
a

]
, (2.32)

∂2t

∂xa2∂x
b
4

=

√
x2

01x
2
03

x2
02x

2
04x

2
12x

2
34

(
m

(24)
ab − 2

√
v

u
k(214)
a k

(432)
b

)
− 1

2
x2

01x
2
03x

2
24 + x2

01x
2
04x

2
23 + x2

02x
2
03x

2
14 + x2

02x
2
04x

2
13

x2
02x

2
04x

2
12x

2
34

k(201)
a k

(403)
b

+

√
x2

03x
2
14

x2
04x

2
12x

2
24x

2
34
k(201)
a k

(412)
b −

√
x2

03x
2
23

x2
04x

2
24

x2
01x

2
24 + x2

02x
2
14

x2
02x

2
12x

2
34

k(201)
a k

(432)
b

−

√
x2

01x
2
14

x2
02x

2
24

x2
03x

2
24 + x2

04x
2
23

x2
04x

2
12x

2
34

k(214)
a k

(403)
b +

√
x2

01x
2
23

x2
02x

2
12x

2
24x

2
34
k(234)
a k

(403)
b .

(2.33)

Combining these expressions with (2.103), we obtain also

∂2

∂xa2∂x
b
4
pd,`(t)

= `2

√
x2

01x
2
03

x2
02x

2
04x

2
12x

2
34

(
m(20)
ac1 + k(201)

a k(012)
c1

)(
m

(40) d1
b + k

(403)
b k(034) d1

)
× k(012)

c2 · · · k(012)
c`

Π(`) c1···c`
d1···d` k(034) d2 · · · k(034) d` . (2.34)

Putting these results together leads to an expression for the mixed-symmetric
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partial wave, in terms of integrals from symmetric partial waves (2.30):

WA = NAM34A

{
1
2
k + 2
k + 1

[(
m

(24)
ab − 2

√
v

u
k(214)
a k

(432)
b

)(
Sλ00 ◦k+1 S

λ
00
)

−1
2

1√
x2

12x
2
34

(
x2

24

(
Sαa− 1

2
1
2
◦k+1 S

α
b− 1

2
1
2

)
+ x2

23

(
Sαa− 1

2
1
2
◦k+1 S

α
b 1

2 −
1
2

)
+x2

14

(
Sαa 1

2 −
1
2
◦k+1 S

α
b− 1

2
1
2

)
+ x2

13

(
Sαa 1

2 −
1
2
◦k+1 S

α
b 1

2 −
1
2

))
−

√
x2

14
x2

24
k

(412)
b

(
Sαa 1

2 −
1
2
◦k+1 S

λ
00

)
+

√
x2

23x
2
24

x2
12x

2
34
k

(432)
b

(
Sαa− 1

2
1
2
◦k+1 S

λ
00

)
+x2

14

√
x2

23
x2

12x
2
24x

2
34
k

(432)
b

(
Sαa 1

2 −
1
2
◦k+1 S

λ
00

)
+

√
x2

14x
2
24

x2
12x

2
34
k(214)
a

(
Sλ00 ◦k+1 S

α
b− 1

2
1
2

)
+x2

23

√
x2

14
x2

12x
2
24x

2
34
k(214)
a

(
Sλ00 ◦k+1 S

α
b 1

2 −
1
2

)
−

√
x2

23
x2

24
k(234)
a

(
Sλ00 ◦k+1 S

α
b 1

2 −
1
2

)]

−1
2
k + 2
k + 1

[
(Sαa 00 ◦k+2 S

α
b 00)−

(
Sαa 00 ◦k+2 S

β
b 00

)
−
(
Sβa 00 ◦k+2 S

α
b 00

)
+
(
Sβa 00 ◦k+2 S

β
b 00

)]
− 1

2
k2 (k + 2)

(d+ 2k) (d+ 2k − 2) (d+ k − 2)

×
[
(Sαa 00 ◦k Sαb 00)−

(
Sαa 00 ◦k S

β
b 00

)
−
(
Sβa 00 ◦k Sαb 00

)
+
(
Sβa 00 ◦k S

β
b 00

)]}
.

(2.35)

Note that all the contractions (S ◦ S) have the same dependence on ∆A, and thus
we omitted it to save space.

To generalize this technique to other mixed-symmetric representations, one
would need to write the corresponding tensor structure contractions (like (2.28)),
as total derivatives of the symmetric contraction pd,k and undifferentiated polyno-
mials times derivatives of t—then the relation of these expressions to those from
symmetric exchanges would follow in analogy to our case. We believe that it will
be possible to do this in more general situations, but this has not been definitively
established. However, to support this conjecture, we present the contraction for
[k + 1, 1, 1] in appendix C, which has an analogous form.

2.5 The closed form conformal blocks for 〈φvφv〉

Given the expression for the mixed-symmetric partial wave in (2.35), computing
the mixed-symmetric conformal blocks involves inverting the definition for the
symmetric contractions (2.30), and writing WO in terms of conformal blocks via
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(1.186). We describe such calculation in this section. For completeness, we also
give explicit expressions for the spinning symmetric blocks in terms of scalar blocks.

Conformal block definitions

Using (1.185) and (1.186), we write the relevant conformal blocks expansions,
where the tensor structures are constructed with the algorithm of subsection 1.3.2.
These are

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 = K∆i
4

∑
O
λ12Oλ34O g(u, v; ∆i; `,∆O), (2.36)

〈φ1(x1)va(x2)φ3(x3)φ4(x4)〉

= K∆i
4

∑
O
λ34O

[(
α12Og

αλ
1 (u, v) + β12Og

βλ
1 (u, v)

)
k(214)
a

+
(
α12Og

αλ
2 (u, v) + β12Og

βλ
2 (u, v)

)
k(234)
a

]
, (2.37)

〈φ1(x1)φ2(x2)φ3(x3)va(x4)〉

= K∆i
4

∑
O
λ12O

[(
α34Og

λα
1 (u, v) + β34Og

λβ
1 (u, v)

)
k(412)
a

+
(
α34Og

λα
2 (u, v) + β34Og

λβ
2 (u, v)

)
k(432)
a

]
. (2.38)

For 〈φ1(x1)v2 a(x2)φ3(x3)v4 b(x4)〉, the conformal block expansion is given by (2.5),
with

q0 =
∑
O

(
α12Oα34Og

αα
0 + α12Oβ34Og

αβ
0 + β12Oα34Og

βα
0 + β12Oβ34Og

ββ
0

)
+
∑
A
γ12Aγ34Ag

γγ
0 , (2.39)

qij =
∑
O

(
α12Oα34Og

αα
ij + α12Oβ34Og

αβ
ij + β12Oα34Og

βα
ij + β12Oβ34Og

ββ
ij

)
+
∑
A
γ12Aγ34Ag

γγ
ij . (2.40)

2.5.1 Conformal blocks for 〈φφφφ〉

First we start with the case of four (not necessarily identical) scalars. The con-
formal block expansion (2.36) is related to partial waves by (1.185), which in turn
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we write as (2.6). This implies that

K∆i
4 λ12Oλ34Og(u, v; ∆i; `,∆O) = NOλ12Oλ34Õ

(
Sλ00 ◦`,∆O Sλ00

)
, (2.41)

where we used the definition (2.31). From the results of Appendix B and the
explicit form of Sλ in (2.9), we see that relevant contraction of tensor structures
k is given by

k(012)
a1

· · · k(012)
a`

Π(`) a1···a`
b1···b` k(034) b1 · · · k(034) b` = pd,`(t), (2.42)

with t defined in (2.29).

Let us now define integrals

I
(`)
α,β,γ,δ =

∫
ddx0 pd,`(t)

(x2
01)α (x2

02)β (x2
03)γ (x2

04)δ
. (2.43)

For ` = 0 this integral is evaluated in (2.153). With this definition and the
expressions (2.15) and (2.21), we write the conformal block g as

g(u, v; ∆i; `,∆O) = π−d/2

×
Γ( 1

2 (d+ ∆3 −∆4 −∆O + `))Γ( 1
2 (d−∆3 + ∆4 −∆O + `))Γ(∆O + `)

Γ( 1
2 (∆3 −∆4 + ∆O + `))Γ( 1

2 (−∆3 + ∆4 + ∆O + `))Γ(d−∆O + `− 1)

× Γ(d−∆O − 1)
Γ(d2 −∆O)

(
x2

12
) 1

2 ∆O (
x2

13
) 1

2 (∆3−∆4) (
x2

14
) 1

2 (∆1−∆2−∆3+∆4) (
x2

24
) 1

2 (−∆1+∆2)

×
(
x2

34
) 1

2 (d−∆O)
I

(`)
1
2 (∆1−∆2+∆O), 12 (−∆1+∆2+∆O), 12 (d+∆3−∆4−∆O), 12 (d−∆3+∆4−∆O).

(2.44)

Note that the prefactor (x2
12)∆O/2 already has the desired behavior under the

monodromy M : x2
12 → e4πix2

12, so we will want to pick out the terms from the
integral which are invariant under M.

If we expand the polynomial pd,`(t) using (2.97) from Appendix B then the
integral is simply a sum functions fα,β,γ,δ defined in Appendix D (for even dimen-
sions d, it can be written in terms of hypergeometric functions, see (2.163)). For
example, in the case ` = 0, then pd,0(t) = 1, and we have

g(u, v; ∆i; 0,∆O) = Γ(∆O)
Γ(d2 −∆O)

×
Γ( 1

2 (d−∆3 + ∆4 −∆O))u 1
2 ∆Ov

1
2 (−∆3+∆4−∆O)

Γ( 1
2 (∆1 −∆2 + ∆O))Γ( 1

2 (−∆1 + ∆2 + ∆O))Γ( 1
2 (−∆3 + ∆4 + ∆O))

× f̂ 1
2 (∆1−∆2+∆O), 12 (−∆1+∆2+∆O), 12 (d+∆3−∆4−∆O), 12 (d−∆3+∆4−∆O)(uv−1, v−1),

(2.45)
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2. Scalar-Vector conformal blocks

where f̂ is defined in (2.156). Again, the u∆O/2 factor behaves correctly under the
monodromy M, and thus the conformal block g(u, v) is given by the monodromy
invariant piece of f̂ , which we call f (see (2.157)).

The formula above shows explicity that g(u, v; ∆i; `,∆O) depends on the dif-
ferences ∆1 − ∆2 and ∆3 − ∆4 only. Thus we adopt a condensed notation that
will be useful below:

g`;P,Q(u, v) = g(u, v; ∆1 + P,∆2,∆3 +Q,∆4; `,∆O). (2.46)

Here P and Q, allows us to write conformal blocks where the difference in confor-
mal dimensions is shifted by integer amounts. In this notation the dependence on
the ∆i and ∆O is implicit.

For ` > 0 one can exploit the recursion relations (2.101) to expand the numer-
ator of the integrand in (2.43). As shown in [64], this results in

g`;0,0(u, v) = ∆O + `− 1
d−∆O + `− 2

×
[

1
2
d+ ∆3 −∆4 −∆O + `− 2

∆3 −∆4 + ∆O + `− 2 u−1/2 (g`−1;1,−1(u, v)− g`−1;−1,−1(u, v))

+1
2
d−∆3 + ∆4 −∆O + `− 2
−∆3 + ∆4 + ∆O + `− 2 u−1/2 (vg`−1;−1,1(u, v)− g`−1;1,1(u, v))

− (∆O + `− 2) (d+ ∆3 −∆4 −∆O + `− 2) (d−∆3 + ∆4 −∆O + `− 2)
(d−∆O + `− 3) (∆3 −∆4 + ∆O + `− 2) (−∆3 + ∆4 + ∆O + `− 2)

× (`− 1) (d+ `− 4)
(d+ 2`− 4) (d+ 2`− 6)g`−2;0,0(u, v)

]
. (2.47)

In d = 2 the recursion can be solved explicitly in terms of hypergeometric functions,
and in higher even dimensions solutions can also be constructed [68, 69]. At any
rate, here we will assume that these conformal blocks are known, and we will
express the new conformal blocks in terms of these.

2.5.2 Conformal blocks for 〈φvφφ〉

Now for the case of three scalars, and a vector in position two, the conformal
blocks are (c.f. (2.37), (1.185), and (2.6))

K∆i
4 λ34O

[(
α12Og

αλ
1 + β12Og

βλ
1

)
k(214)
a +

(
α12Og

αλ
2 + β12Og

βλ
2

)
k(234)
a

]
= NOλ34Õ

(
α12O

(
Sαa 00 ◦`,∆O Sλ00

)
+ β12O

(
Sβa 00 ◦`,∆O Sλ00

))
. (2.48)
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2.5. The closed form conformal blocks for 〈φvφv〉

Then, expressing Sα and Sβ in terms of Sλ as in (2.11) and (2.12), and pulling
the differential operators outside of the integral, allows us to express grλi in terms
of differential operators acting on g. This leads to

gαλ1 = 1
2 (1−∆O) [(1−∆1 + ∆v + (1− v) (∆3 −∆4) + 2v (1− v) ∂v − 2uv∂u)

×g(u, v; ∆1 − 1,∆v,∆3,∆4; `,∆O)
+ (1 + ∆1 −∆v − 2u∂u) g(u, v; ∆1 + 1,∆v,∆3,∆4; `,∆O)] , (2.49)

gαλ2 =
√
uv

2 (1−∆O) [(∆3 −∆4 + 2u∂u + 2v∂v) g(u, v; ∆1 − 1,∆v,∆3,∆4; `,∆O)

−2∂vg(u, v; ∆1 + 1,∆v,∆3,∆4; `,∆O)] , (2.50)

Similarly,

gβλ1 = ∆1 −∆v −∆O + `+ 1
`

gαλ1 (u, v; ∆1,∆v,∆3,∆4; `,∆O)

− 1
`

(1 + ∆1 −∆v − 2u∂u) g(u, v; ∆1 + 1,∆v,∆3,∆4; `,∆O), (2.51)

gβλ2 = ∆1 −∆v −∆O + `+ 1
`

gαλ2 (u, v; ∆1,∆v,∆3,∆4; `,∆O)

+ 2
√
uv

`
∂vg(u, v; ∆1 + 1,∆v,∆3,∆4; `,∆O). (2.52)

Note that as with the scalar blocks, the expressions only depend on the differ-
ence ∆1 − ∆v and ∆3 − ∆4, not on the weights individually. The other crucial
property of these expressions is that the operators which act on g on the right
hand side involve only integer powers of

√
u, so they are all invariant under the

monodromyM. Therefore the results above have the correct boundary conditions.

2.5.3 Conformal blocks for 〈φφφv〉

When the vector is in the fourth position, the calculation is very similar to the
previous case. The conformal blocks are computed with

K∆i
4 λ12O

[(
α34Og

λα
1 + β34Og

λβ
1

)
k(412)
a +

(
α34Og

λα
2 + β34Og

λβ
2

)
k(432)
a

]
= NOλ12O

(
α34Õ

(
Sλ00 ◦`,∆O Sαa 00

)
+ β34Õ

(
Sλ00 ◦`,∆O S

β
a 00

))
. (2.53)
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2. Scalar-Vector conformal blocks

Note that α34Õ and β34Õ must be expanded using (2.22) and (2.23). The results
are

gλα1 =
√
u

2 (∆O − 1) [(1−∆3 + ∆v − 2u∂u − 2v∂v)

×g(u, v; ∆1,∆2,∆3 − 1,∆v; `,∆O)
+ (1−∆1 + ∆2 + ∆3 −∆v + 2v∂v) g(u, v; ∆1,∆2,∆3 + 1,∆v; `,∆O)] , (2.54)

gλα2 =
√
v

2 (1−∆O) [(1−∆3 + ∆v − 2u∂u + 2 (1− v) ∂v)

×g(u, v; ∆1,∆2,∆3 − 1,∆v; `,∆O)
+ (1 + ∆3 −∆v − 2u∂u) g(u, v; ∆1,∆2,∆3 + 1,∆v; `,∆O)] , (2.55)

gλβ1 = ∆3 −∆v −∆O + `+ 1
`

gλα1 (u, v; ∆1,∆2,∆3,∆v; `,∆O)

+
√
u

`
(1−∆1 + ∆2 + ∆3 −∆v + 2v∂v) g(u, v; ∆1,∆2,∆3 + 1,∆v; `,∆O),

(2.56)

gλβ2 = ∆3 −∆v −∆O + `+ 1
`

gλα2 (u, v; ∆1,∆2,∆3,∆v; `,∆O)

−
√
v

`
(1 + ∆3 −∆v − 2u∂u) g(u, v; ∆1,∆2,∆3 + 1,∆v; `,∆O), (2.57)

which again, only depend on the differences ∆1−∆2 and ∆3−∆v, and they have
the correct boundary conditions.
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2.5. The closed form conformal blocks for 〈φvφv〉

2.5.4 Symmetric conformal blocks for 〈φvφv〉

For two scalars at positions 1 and 3, and two vectors at positions 2 and 4, we
follow a completely analogous procedure as above which leads to

gαα0 = 1
2 (1−∆O)

[
1√
v
gαλ2;`;0,−1 −

√
ugαλ1;`;0,1 −

√
vgαλ2;`;0,1

]
, (2.58)

gαα11 =
√
u

2 (1−∆O)
[
− (1−∆3 + ∆4 − 2u∂u − 2v∂v) gαλ1;`;0,−1

+ (∆1 −∆2 −∆3 + ∆4 − 2v∂v) gαλ1;`;0,1
]
, (2.59)

gαα12 =
√
v

2 (1−∆O)
[
(1−∆3 + ∆4 − 2u∂u + 2 (1− v) ∂v) gαλ1;`;0,−1

+ (1 + ∆3 −∆4 − 2u∂u) gαλ1;`;0,1
]
, (2.60)

gαα21 =
√
u

2 (1−∆O)
[
− (1−∆3 + ∆4 − 2u∂u − 2v∂v) gαλ2;`;0,−1

− (1−∆1 + ∆2 + ∆3 −∆4 + 2v∂v) gαλ2;`;0,1
]
, (2.61)

gαα22 =
√
v

2 (1−∆O)

[(
1− 1

v
−∆3 + ∆4 − 2u∂u + 2 (1− v) ∂v

)
gαλ2;`;0,−1

+ (2 + ∆3 −∆4 − 2u∂u) gαλ2;`;0,1
]
, (2.62)

where in the spirit of (2.46), we used the following condensed representation

grsi;`;P,Q = grsi (u, v; ∆1 + P,∆2,∆3 +Q,∆4; `,∆O), r, s ∈ {λ, α, β}. (2.63)

The other components αβ, βα, and ββ are given in appendix F.

Actually, the combination which occurs in the four-point function

α12Oα34Og
αα
p + α12Oβ34Og

αβ
p + β12Oα34Og

βα
p + β12Oβ34Og

ββ
p , (2.64)

has a remarkably simple form if written in terms of scalar blocks. This is

A1A2D−−p g`;−1,−1+A1B2D−+
p g`;−1,1+B1A2D+−

p g`;1,−1+B1B2D++
p g`;1,1, (2.65)

where

A1 = 1
2 (∆O − 1)

(
α12O + (∆1 −∆2 −∆O + `+ 1) β12O

`

)
, (2.66)

A2 = 1
2 (∆O − 1)

(
α34O + (∆3 −∆4 −∆O + `+ 1) β34O

`

)
, (2.67)

B1 = 1
2 (∆O − 1)

(
α12O + (∆1 −∆2 + ∆O + `− 1) β12O

`

)
, (2.68)

B2 = 1
2 (∆O − 1)

(
α34O + (∆3 −∆4 + ∆O + `− 1) β34O

`

)
, (2.69)

and D±±p are differential operators given in a table in appendix H.
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2. Scalar-Vector conformal blocks

2.5.5 Mixed-symmetric conformal blocks for 〈φvφv〉

Finally, we arrive at the conformal blocks of two vectors and two scalars, associ-
ated to the exchange of the mixed-symmetric operator A. Our starting point is
expression (2.35). To evaluate the contractions (S ◦ S), we first combine (1.186)
with the conformal block expansions at the beginning of this section to obtain the
corresponding expressions in terms of conformal blocks. Plugging these into (2.30)
we obtain (

Sλ00 ◦`,∆A Sλ00
)

= K∆i
4

NO
(
λ34Õ/λ34O

)g`;0,0∣∣∣∣
∆O→∆A

(2.70)

where NO, λ34Õ, and g`;0,0 are given by (2.15), (2.21), and (2.46) respectively.
Similarly,

(
SαaPQ ◦`,∆A Sλ00

)
= K∆1+P,∆2+Q,∆3,∆4

4

NO
(
λ34Õ/λ34O

)∣∣∣
∆1→∆1+P,∆2→∆2+Q

×
[
gαλ1;`;P−Q,0k

(214)
a + gαλ2;`;P−Q,0k

(234)
a

] ∣∣∣∣
∆O→∆A

, (2.71)

(
Sλ00 ◦`,∆A SαaRS

)
= K

∆1,∆2,∆3+R,∆4+S
4

NO

×
[((

M−1) α
α

∣∣∣
∆3→∆3+R,∆4→∆4+S

)(
gλα1;`;0,R−Sk

(412)
a + gλα2;`;0,R−Sk

(432)
a

)
+
((

M−1) α
β

∣∣∣
∆3→∆3+R,∆4→∆4+S

)(
gλβ1;`;0,R−Sk

(412)
a + gλβ2;`;0,R−Sk

(432)
a

)] ∣∣∣∣
∆O→∆A

,

(2.72)

(
SraPQ ◦`,∆A SsbRS

)
= K

∆1+P,∆2+Q,∆3+R,∆4+S
4

NO

×
∑
p,l

((
M−1) s

l

∣∣∣
∆1→∆1+P,∆2→∆2+Q,∆3→∆3+R,∆4→∆4+S

)
grlp;`;P−Q,R−St

p
ab

∣∣∣∣
∆O→∆A

,

(2.73)

where the sums are over l ∈ {α, β}, p ∈ {0, 11, 12, 21, 22}, the tensor structures
are

t0ab = m
(24)
ab , t11

ab = k(214)
a k

(412)
b ,

t12
ab = k(214)

a k
(432)
b , t21

ab = k(234)
a k

(412)
b , t22

ab = k(234)
a k

(432)
b , (2.74)
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and M is given in (2.24). Plugging in these results into (2.35), and collecting all
the different tensor structures finally leads to

gγγ0 (u, v; ∆1,∆2,∆3,∆4; k,∆A)

= 1
2
k + 2
k + 1

[
C1gk+1;0,0 −

1
2
√
u

(
C2
(
gαα0;k+1;−1,−1 + gαα0;k+1;1,−1

)
+C3

(
gαβ0;k+1;−1,−1 + gαβ0;k+1;1,−1

)
+ C4

(
vgαα0;k+1;−1,1 + gαα0;k+1;1,1

)
+C5

(
vgαβ0;k+1;−1,1 + gαβ0;k+1;1,1

)) ]
− 1

2
k + 2
k + 1

[
C6
(
gαα0;k+2;0,0 − gβα0;k+2;0,0

)
+ C7

(
gββ0;k+2;0,0 − g

αβ
0;k+2;0,0

)]
− 1

2
k2 (k + 2)

(d+ 2k) (d+ 2k − 2) (d+ k − 2)
[
C8
(
gαα0;k;0,0 − gβα0;k;0,0

)
+ C9

(
gββ0;k;0,0 − g

αβ
0;k;0,0

)]
,

(2.75)

gγγ11 (u, v; ∆1,∆2,∆3,∆4; k,∆A) = 1
2
k + 2
k + 1

[
− 1

2
√
u

(
C2
(
gαα11;k+1;−1,−1 + gαα11;k+1;1,−1

)
+C3

(
gαβ11;k+1;−1,−1 + gαβ11;k+1;1,−1

)
+C4

(
vgαα11;k+1;−1,1 + gαα11;k+1;1,1

)
+ C5

(
vgαβ11;k+1;−1,1 + gαβ11;k+1;1,1

))
−C1g

αλ
1;k+1;1,0 + C2√

u
gλα1;k+1;0,−1 + C3√

u
gλβ1;k+1;0,−1 + C4v√

u
gλα1;k+1;0,1 + C5v√

u
gλβ1;k+1;0,1

]
− 1

2
k + 2
k + 1

[
C6
(
gαα11;k+2;0,0 − gβα11;k+2;0,0

)
+ C7

(
gββ11;k+2;0,0 − g

αβ
11;k+2;0,0

)]
−1

2
k2 (k + 2)

(d+ 2k) (d+ 2k − 2) (d+ k − 2)
[
C8
(
gαα11;k;0,0 − gβα11;k;0,0

)
+ C9

(
gββ11;k;0,0 − g

αβ
11;k;0,0

)]
,

(2.76)

gγγ12 (u, v; ∆1,∆2,∆3,∆4; k,∆A)

= 1
2
k + 2
k + 1

[
−2
√
v

u
C1gk+1;0,0 −

1
2
√
u

(
C2
(
gαα12;k+1;−1,−1 + gαα12;k+1;1,−1

)
+C3

(
gαβ12;k+1;−1,−1 + gαβ12;k+1;1,−1

)
+ C4

(
vgαα12;k+1;−1,1 + gαα12;k+1;1,1

)
+C5

(
vgαβ12;k+1;−1,1 + gαβ12;k+1;1,1

))
+ C1

√
v

u

(
gαλ1;k+1;−1,0 + gαλ1;k+1;1,0

)
+ C2√

u
gλα2;k+1;0,−1 + C3√

u
gλβ2;k+1;0,−1 + C4v√

u
gλα2;k+1;0,1 + C5v√

u
gλβ2;k+1;0,1

]
− 1

2
k + 2
k + 1

[
C6
(
gαα12;k+2;0,0 − gβα12;k+2;0,0

)
+ C7

(
gββ12;k+2;0,0 − g

αβ
12;k+2;0,0

)]
−1

2
k2 (k + 2)

(d+ 2k) (d+ 2k − 2) (d+ k − 2)
[
C8
(
gαα12;k;0,0 − gβα12;k;0,0

)
+ C9

(
gββ12;k;0,0 − g

αβ
12;k;0,0

)]
,

(2.77)
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gγγ21 (u, v; ∆1,∆2,∆3,∆4; k,∆A) = 1
2
k + 2
k + 1

[
− 1

2
√
u

(
C2
(
gαα21;k+1;−1,−1 + gαα21;k+1;1,−1

)
+C3

(
gαβ21;k+1;−1,−1 + gαβ21;k+1;1,−1

)
+ C4

(
vgαα21;k+1;−1,1 + gαα21;k+1;1,1

)
+C5

(
vgαβ21;k+1;−1,1 + gαβ21;k+1;1,1

))
− C1g

αλ
2;k+1;1,0 − C4

√
vgλα1;k+1;0,1 − C5

√
vgλβ1;k+1;0,1

]
− 1

2
k + 2
k + 1

[
C6
(
gαα21;k+2;0,0 − gβα21;k+2;0,0

)
+ C7

(
gββ21;k+2;0,0 − g

αβ
21;k+2;0,0

)]
−1

2
k2 (k + 2)

(d+ 2k) (d+ 2k − 2) (d+ k − 2)
[
C8
(
gαα21;k;0,0 − gβα21;k;0,0

)
+ C9

(
gββ21;k;0,0 − g

αβ
21;k;0,0

)]
,

(2.78)

gγγ22 (u, v; ∆1,∆2,∆3,∆4; k,∆A) = 1
2
k + 2
k + 1

[
− 1

2
√
u

(
C2
(
gαα22;k+1;−1,−1 + gαα22;k+1;1,−1

)
+C3

(
gαβ22;k+1;−1,−1 + gαβ22;k+1;1,−1

)
+ C4

(
vgαα22;k+1;−1,1 + gαα22;k+1;1,1

)
+C5

(
vgαβ22;k+1;−1,1 + gαβ22;k+1;1,1

))
+C1

√
v

u

(
gαλ2;k+1;−1,0 + gαλ2;k+1;1,0

)
− C4

√
vgλα2;k+1;0,1 − C5

√
vgλβ2;k+1;0,1

]
− 1

2
k + 2
k + 1

[
C6
(
gαα22;k+2;0,0 − gβα22;k+2;0,0

)
+ C7

(
gββ22;k+2;0,0 − g

αβ
22;k+2;0,0

)]
−1

2
k2 (k + 2)

(d+ 2k) (d+ 2k − 2) (d+ k − 2)
[
C8
(
gαα22;k;0,0 − gβα22;k;0,0

)
+ C9

(
gββ22;k;0,0 − g

αβ
22;k;0,0

)]
.

(2.79)

The constants appearing above are written in appendix G.

2.5.6 A note on using these results

One important detail is that, with our definition of the shadow integral (2.6), in
the limit u→ 0, followed by v → 1, the scalar blocks (2.41) are c`u

1
2 (∆O−`)(1−v)`

with c` = (−1/2)`. Some authors use different normalizations, e.g. c` = 1.
However, since the expressions for gγγ involve sums of scalar conformal blocks
at different spins `, then using a normalization differentthan ours will produce
incorrect results.

2.6 Discussion

In this chapter we studied the conformal block decomposition of the four-point
function of two scalars and two vectors, 〈φvφv〉, in general spacetime dimension d.
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2.6. Discussion

We computed the conformal blocks associated to the exchange of symmetric trace-
less operators O, by applying differential operators to scalar blocks as described in
subsection 1.5.2. Furthermore we found that the conformal blocks of the mixed-
symmetric operator A can also be written in this way, with the difference that
they have shifted spins k,k + 1,k + 2.

We have verified numerically that our results satisfy the correct behavior under
exchange symmetry mentioned at the end of subsection 1.7.2. Furthermore, we
have checked that in d = 3, the mixed-symmetric conformal blocks become the
parity-odd conformal blocks [31, 45, 91] as expected from (2.120). It would be
interesting to understand our results in the context of holography, and particularly
to compare with the bulk geometric quantities from [120].

A natural next step is to apply our results in the conformal bootstrap program
to seek bounds on the CFT data of theories with vectors in their spectrum. This
has partially been achieved analytically, using light-cone and causality techniques
of sections 1.7.3 and 1.8. These results, based on [2], are presented in chapter 4.
However, numerical results would also be interesting. In particular when the vec-
tors are conserved, it could constrain theories with continuous global symmetries
and their spectra of charged scalars.

So far it is not known if the methods presented in this chapter can be general-
ized to other mixed-symmetric representations. From the form of the contraction
(2.141), it is plausible that this can be done for (k+ 1, 1, 1) too. However, this has
not been checked explicitly yet. It would be interesting to understand the con-
nection between these contraction formulas and the formalism of subsection 1.6.4,
where the mixed-symmetric blocks are computed via the application of differential
operators acting on a pair of coordinates across different OPEs.
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2. Scalar-Vector conformal blocks

Appendix A: Building blocks and identities

In this chapter, the physical space is flat Rd with Euclidean signature. Indices a, b, etc.,
are raised and lowered with the Kronecker delta δab. From the fact that xij + xjk = xik,
we can show the physical space version of (1.184)

k(ik`)
a = −

√
x2
i`x

2
jk

x2
ijx

2
k`

k(ijk)
a +

√
x2
ikx

2
j`

x2
ijx

2
k`

k(ij`)
a . (2.80)

Using the basic identity that

xij · xk` = 1
2
(
−x2

ik + x2
i` + x2

jk − x2
j`

)
, (2.81)

we can prove identities

k(ijk) · k(i`m) = 1
2
(
x2
ijx

2
ikx

2
i`x

2
imx

2
jkx

2
`m

)−1/2(
−x2

ijx
2
i`x

2
km + x2

ijx
2
imx

2
k` + x2

ikx
2
i`x

2
jm − x2

ikx
2
imx

2
j`

)
, (2.82)

m
(ij)
ab k

(jk`) b = −

√
x2
ikx

2
j`

x2
ijx

2
k`

k(ijk)
a +

√
x2
i`x

2
jk

x2
ijx

2
k`

k(ij`)
a , (2.83)

and
δcdm(ik)

ac m
(kj)
db = m

(ij)
ab − 2k(ijk)

a k
(jik)
b . (2.84)

As special cases of these fomulae, we have(
k(ijk))2 = 1, m

(ij)
ab k

(jik) b = k(ijk)
a , δcdm(ij)

ac m
(ji)
db = δab. (2.85)

One more useful identity is

∂

∂xak
k

(ijk)
b = −

√
x2
ij

x2
ikx

2
jk

(
m

(ki)
ab + k(kij)

a k
(ijk)
b

)
. (2.86)

Appendix B: Lorentz representation projectors

We will be grouping tensor operators by their representations under SO(d). There is
a large body of work on irreducible representations of SO(d) (for instance see the nice
discussion in [29] and references therein), but we really don’t need the full power of this
theory for the current work.

Consider a tensor with n indices. It must transform as a sub-representation of the
tensor product d⊗n of n copies of the d-dimensional vector representation. To distinguish
the different irreducible representations I which appear in the decomposition of d⊗n, we
can use projectors, ΠI a1···an

b1···bn . Being projectors, these must satisfy

ΠI a1···an
c1···cn ΠJ c1···cn

b1···bn = δIJΠI a1···an
b1···bn . (2.87)
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2.6. Discussion

The projectors are built exclusively with Kronecker deltas δaibj , δaiaj , or δbibj .

Below, we will need the projectors for the totally symmetric traceless representation
of spin ` (i.e. with ` indices), and also for a mixed symmetry representation with k + 2
indices which we will describe below.

Totally symmetric: Consider first the projector onto totally symmetric traceless
representations, Π(`) a1···a`

b1···b` . By the symmetries of the problem, it must have the form

Π(`) a1···a`
b1···b` = A0δ

(a1
(b1 · · · δ

a`)
b`)

+
b`/2c∑
i=1

Aiδ
(a1a2 · · · δa2i−1a2iδ(b1b2 · · · δb2i−1b2iδ

a2i+1
b2i+1

· · · δa`)
b`)
,

(2.88)
where the Ai are constants. For ` ≥ 2, taking the trace with δb`−1b` we get

A0δ
(a1
(b1 · · · δ

a`−2
b`−2)δ

a`−1a`)

+
b`/2c∑
i=1

Ai

{
(`− 2i) (`− 1− 2i)

` (`− 1) δ(a1a2 · · · δa2i+1a2i+2δ(b1b2 · · · δb2i−1b2iδ
a2i+3
b2i+1

· · · δa`)
b`−2)

+2i (d+ 2`− 2i− 2)
` (`− 1) δ(a1a2 · · · δa2i−1a2iδ(b1b2 · · · δb2i−3b2i−2δ

a2i+1
b2i−1

· · · δa`)
b`−2)

}
. (2.89)

Thus tracelessness requires

Ai = − (`+ 2− 2i) (`+ 1− 2i)
2i (d+ 2`− 2− 2i) Ai−1, for 1 ≤ i ≤ b`/2c, (2.90)

or

Ai = (−1)i
`!Γ( d2 + `− i− 1)

22i (`− 2i)!i!Γ( d2 + `− 1)
A0. (2.91)

Finally, we can fix A0 by the condition that Π2 = Π, i.e.

Π(`) a1···a`
c1···c` Π(`) c1···c`

b1···b` = Π(`) a1···a`
b1···b` . (2.92)

In fact we only need to check the leading terms, not the subleading traceless terms,
because the latter can’t contribute to the former when we square. Then since

δ
(a1
(c1 · · · δ

a`)
c`)
δ

(c1
(b1 · · · δ

c`)
b`)

= δ
(a1
(b1 · · · δ

a`)
b`)
, (2.93)

we require A2
0 = A0, and hence we should take A0 = 1, and we can write

Π(`) a1···a`
b1···b` =

b`/2c∑
i=0

(
−1

4

)i `! Γ( d2 + `− i− 1)
i! (`− 2i)! Γ( d2 + `− 1)

× δ(a1a2 · · · δa2i−1a2iδ(b1b2 · · · δb2i−1b2iδ
a2i+1
b2i+1

· · · δa`)
b`)
. (2.94)
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2. Scalar-Vector conformal blocks

These projectors obey certain recursion relations. With the explicit expressions for
coefficients above, one can show that

Π(`) a1···a`
b1···b` = δ

(a1
(b1 Π(`−1) a2···a`)

b2···b`)
− (d+ `− 4) (`− 1)

(d+ 2`− 6) (d+ 2`− 4)δ
(a1a2δ(b1b2Π(`−2) a3···a`)

b3···b`)
.

(2.95)

Now we can define polynomials pd,`(t) by

Xa1 · · ·Xa`Π
(`) a1···a`
b1···b` Y b1 · · ·Y b` =

(
X2Y 2)`/2 pd,`(t), t = X · Y√

X2Y 2
. (2.96)

Explicitly, using (2.94), we have

pd,`(t) =
b`/2c∑
i=0

(
−1

4

)i `!Γ( d2 + `− i− 1)
i!(`− 2i)!Γ( d2 + `− 1)

t`−2i. (2.97)

These are related to the more familiar Gegenbauer polynomials by

pd,`(t) =
`!Γ( d2 − 1)

2`Γ( d2 + `− 1)
C

( d2−1)
` (t). (2.98)

They obey a simple differential identity,

p′d,`(t) = `pd+2,`−1(t), (2.99)

and also

pd+2,`(t) = pd,`(t) + ` (`− 1)
(d+ 2`− 2) (d+ 2`− 4)pd+2,`−2(t). (2.100)

We can also prove a recursion relation for fixed d from (2.95),

pd,`(t) = tpd,`−1(t)− (d+ `− 4) (`− 1)
(d+ 2`− 4) (d+ 2`− 6)pd,`−2(t). (2.101)

The first few of these polynomials are

p0 = 1, p1 = t, p2 = t2 − 1
d
, p3 = t3 − 3

d+ 2 t,

p4 = t4 − 6
d+ 4 t

2 + 3
(d+ 2)(d+ 4) , p5 = t5 − 10

d+ 6 t
3 + 15

(d+ 4)(d+ 6) t. (2.102)
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We will also need the result of the following partial contractions of Π(`),

Xc1 · · ·Xc`−1Π(`) ac1···c`−1
bd1···d`−1

Y d1 · · ·Y d`−1 = 1
`2

∂

∂Xa

∂

∂Y b

[(
X2Y 2)`/2 p`(t)]

= 1
`2

(
X2Y 2) `−1

2
[
δab ∂t +

(
XaXb
X2 + Y aYb

Y 2

)(
(`− 1) ∂t − t∂2

t

)
+ XaYb√

X2Y 2

(
`2 − (2`− 1) t∂t + t2∂2

t

)
+ Y aXb√

X2Y 2
∂2
t

]
p`(t)

= 1
`

(
X2Y 2) `−1

2
[
δab pd+2,`−1(t) + (`− 1)

(
XaXb
X2 + Y aYb

Y 2

)
(pd+2,`−1(t)− tpd+4,`−2(t))

+ XaYb√
X2Y 2

(
`pd,`(t)− (2`− 1) tpd+2,`−1(t) + (`− 1) t2pd+4,`−2(t)

)
+ (`− 1) Y aXb√

X2Y 2
pd+4,`−2(t)

]
.

(2.103)

Mixed symmetry: Now we would like to find projectors onto the mixed symmetry
representations that we need for the scalar-vector bootstrap. Recall that these tensors are
antisymmetric in their first two indices, totally symmetric in their remaining k indices,
they vanish when antisymmetrized over any three indices (this condition is trivial unless
the three are the first two indices plus one more), and are completely traceless. We
will write the corresponding projectors Π̃(k) a1a2b1···bk

c1c2d1···dk with tildes to distinguish from the
totally symmetric case considered above.

For k = 0, the only index structure compatible with antisymmetry is

Π̃(0) a1a2
c1c2 = A0 (δa1

c1 δ
a2
c2 − δ

a1
c2 δ

a2
c1 ) . (2.104)

Imposing Π̃2 = Π̃ then implies A0 = 1/2.

For k = 1, there are three terms compatible with the antisymmetry in the ai and the
ci,

Π̃(1) a1a2b
c1c2d

= A0 (δa1
c1 δ

a2
c2 − δ

a1
c2 δ

a2
c1 ) δbd+B0

(
δa1
c1 δ

a2
d δbc2 − δ

a1
c2 δ

a2
d δbc1 − δ

a1
d δa2

c1 δ
b
c2 + δa1

d δa2
c2 δ

b
c1

)
+ C1

(
δa1bδc1dδ

a2
c2 − δ

a1bδc2dδ
a2
c1 − δ

a2bδc1dδ
a1
c2 + δa2bδc2dδ

a1
c1

)
. (2.105)

Demanding that this vanish on antisymetrizing [a1a2b] leads to the constraint

2A0 − 4B0 = 0, (2.106)

while demanding that it vanishes when we trace with δc2d gives

A0 +B0 + (d− 1)C1 = 0. (2.107)

Finally, demanding that Π̃2 = Π̃ requires

2A2
0 + 4B2

0 = A0, 4A0B0 − 2B2
0 = B0, and 4A0C1 + 4B0C1 + 2 (d− 1)C2

1 = C1.

(2.108)
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The unique non-vanishing solution to these constraints is that

A0 = 1
3 , B0 = 1

6 , C1 = − 1
2 (d− 1) , (2.109)

so

Π̃(1) a1a2b
c1c2d

= 1
3 (δa1

c1 δ
a2
c2 − δ

a1
c2 δ

a2
c1 ) δbd+

1
6
(
δa1
c1 δ

a2
d δbc2 − δ

a1
c2 δ

a2
d δbc1 − δ

a1
d δa2

c1 δ
b
c2 + δa1

d δa2
c2 δ

b
c1

)
− 1

2 (d− 1)
(
δa1bδc1dδ

a2
c2 − δ

a1bδc2dδ
a2
c1 − δ

a2bδc1dδ
a1
c2 + δa2bδc2dδ

a1
c1

)
. (2.110)

For k > 1, the following structure is the most general consistent with antisymmetry
of the ai and ci, symmetry of the bi and di, and symmetry between upper and lower
indices,

Π̃(k) a1a2b1···bk
c1c2d1···dk

=
bk/2c∑
i=0

Ai (δa1
c1 δ

a2
c2 − δ

a1
c2 δ

a2
c1 ) δ(b1b2 · · · δb2i−1b2iδ(d1d2 · · · δd2i−1d2iδ

b2i+1
d2i+1

· · · δbk)
dk)

+
b(k−1)/2c∑

i=0

Bi

(
δa1
c1 δ

a2
(d1
δ

(b1
|c2| − δ

a1
c2 δ

a2
(d1
δ

(b1
|c1| − δ

a1
(d1
δa2
|c1δ

(b1
c2| + δa1

(d1
δa2
|c2δ

(b1
c1|

)
× δb2b3 · · · δb2ib2i+1δd2d3 · · · δd2id2i+1δ

b2i+2
d2i+2

· · · δbk)
dk)

+
b(k+1)/2c∑

i=1

Ci

(
δa1(b1δc1(d1δ

|a2|
|c2| − δ

a1(b1δc2(d1δ
|a2|
|c1| − δ

a2(b1δc1(d1δ
|a1|
|c2| + δa2(b1δc2(d1δ

|a1|
|c1|

)
× δb2b3 · · · δb2i−2b2i−1δd2d3 · · · δd2i−2d2i−1δ

b2i
d2i
· · · δbk)

dk)

+
bk/2c∑
i=1

Di

(
δa1(b1δc1(d1δ

|a2|
d2

δb2|c2| − δ
a1(b1δc2(d1δ

|a2|
d2

δb2|c1| − δ
a2(b1δc1(d1δ

|a1|
d2

δb2|c2|

+δa2(b1δc2(d1δ
|a1|
d2

δb2|c1|

)
δb3b4 · · · δb2i−1b2iδd3d4 · · · δd2i−1d2iδ

b2i+1
d2i+1

· · · δbk)
dk)

+
bk/2c∑
i=1

Ei

(
δa1(b1δ(d1d2δ

|a2|
|c1 δ

b2
c2| − δ

a1(b1δ(d1d2δ
|a2|
|c2 δ

b2
c1| − δ

a2(b1δ(d1d2δ
|a1|
|c1 δ

b2
c2|

+δa2(b1δ(d1d2δ
|a1|
|c2 δ

b2
c1| + δ(b1b2δc1(d1δ

|a1
|c2|δ

a2|
d2
− δ(b1b2δc2(d1δ

|a1
|c1|δ

a2|
d2
− δ(b1b2δc1(d1δ

|a1
d2
δ
a2|
|c2|

+δ(b1b2δc2(d1δ
|a1
d2
δ
a2|
|c1|

)
δb3b4 · · · δb2i−1b2iδd3d4 · · · δd2i−1d2iδ

b2i+1
d2i+1

· · · δbk)
dk).

(2.111)

Demanding this vanish when we antisymmetrize over [a1a2b1], when we trace with
δdk−1dk , and when we trace with δc2dk fixes everything up to one constant A0 which
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can then be fixed by the condition that Π̃2 = Π̃. The result is that

Bi = k − 2i
2 Ai, (2.112)

Ci = −k − 2i+ 2
d+ k − 2

[
i (d+ k − 1)
d+ 2k − 2i + 1

2

]
Ai−1, (2.113)

Di = i (d+ 2k)
d+ k − 2Ai, (2.114)

Ei = −iAi, (2.115)

while the Ai are given by
A0 = 1

k + 2 , (2.116)

and the recursion
Ai = − (k − 2i+ 1) (k − 2i+ 2)

2i (d+ 2k − 2i) Ai−1, (2.117)

solved by

Ai =
(
−1

4

)i k! Γ( d2 + k − i)
(k + 2) i! (k − 2i)! Γ( d2 + k)

. (2.118)

For d ≤ 4, the story so far is not quite complete.

In d = 2, these mixed symmetry tensors labeled by k are equivalent to spin-k sym-
metric traceless tensors, with the map

Aa1a2b1···bk = εa1a2Ob1···bk , Oa1···ak = 1
2 ε
b1b2Ab1b2a1···ak . (2.119)

In d = 3 similarly, there is an isomorphism between mixed symmetry labeled by k

and traceless symmetric of spin k + 1, via

Aa1a2b1···bk = ε c
a1a2 Ob1···bkc + k

2
(
ε c
a1(b1 O|a2|b2···bk)c − ε c

a2(b1 O|a1|b2···bk)c
)
, (2.120)

and
Oa1···ak+1 = 1

k + 2 ε
c1c2

(a1
A|c1c2|a2···ak+1). (2.121)

Finally, in d = 4 we don’t have to worry about any isomorphisms of this sort, but we
instead need to recognize that our mixed symmetry representations are in fact reducible.
To split the two pieces apart, we can define

Π(±) a1a2
b1b2

= 1
4
(
δa1
b1
δa2
b2
− δa1

b2
δa2
b1
± εa1a2

b1b2

)
, (2.122)

and then define

Π̃(k±) a1a2b1···bk
c1c2d1···dk = Π(±) a1a2

e1e2 Π(±) f1f2
c1c2 Π̃(k) e1e2b1···bk

f1f2d1···dk . (2.123)

As in the symmetric case, we will need to consider the result of contracting these
projectors with vectors X and Y , so we consider the expression

Xc1 · · ·Xck+1Π̃(k) ac1···ck+1
bd1···dk+1

Y d1 · · ·Y dk+1 . (2.124)
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The free indices a and b can only be carried by a Kronecker delta δab or by the vectors Xa

and Y a. Moreover, the expression must be symmetric under simultaneous interchange
of X with Y and a with b, and it must be identically zero when we contract with Xa or
with Y b. These conditions imply that it must have the form

Xc1 · · ·Xck+1Π̃(k) ac1···ck+1
bd1···dk+1

Y d1 · · ·Y dk+1

=
(
X2Y 2) k+1

2

[(
−δab + XaXb

X2 + Y aYb
Y 2 − XaYb√

X2Y 2
t

)
fk−1(t)+(

−δab t+ Y aXb√
X2Y 2

)
gk(t)

]
, (2.125)

for some polynomials fk−1(t) and gk(t) of degree k − 1 and k respectively, with t =
X · Y/

√
X2Y 2 as before. These polynomials can be determined by explicit contraction

of (2.111) and use of the solutions for coefficients determined above. The result is

fk−1(t) = 1
2

b k−1
2 c∑
i=0

(
−1

4

)i k!Γ( d2 + k − i)
i! (k − 2i− 1)! (d+ k − 2) Γ( d2 + k)

tk−2i−1, (2.126)

and

gk(t) = −1
2

b k2 c∑
i=0

(
−1

4

)i k! (d+ k − 2i− 2) Γ( d2 + k − i)
i! (k − 2i)! (d+ k − 2) Γ( d2 + k)

tk−2i. (2.127)

Actually, these can be recast in terms of the polynomials pd,`(t) which we defined in the
symmetric case (and which are related to the usual Gegenbauer polynomials),

fk−1(t) = 1
2 (k + 1) (d+ k − 2)p

′′
d,k+1(t) = k

2 (d+ k − 2)pd+4,k−1(t), (2.128)

gk(t) = − 1
2 (k + 1) (d+ k − 2)

(
(d− 2) p′d,k+1(t) + tp′′d,k+1(t)

)
= − 1

2 (d+ k − 2) ((d− 2) pd+2,k(t) + ktpd+4,k−1(t)) , (2.129)

where a prime denotes the derivative with respect to the argument t.

Appendix C: Mixed symmetric contractions

In general one expects that the contraction of the projector Π[λ] associated to some Young
symmetry λ is given by

Xf1 · · ·XfkΠ[λ]e1···enf1···fk
g1···gnh1···hk Y h1 · · ·Y hk =

∑
i

Ti(X,Y )e1···eng1···gnPi(t), (2.130)

where Ti are tensor structures made out of combinations of X, Y , and the Kronecker
delta, and P polynomials on t ≡ X·Y√

X2Y 2 . In the previous section we showed this, ex-
plicitly, for [k + 1, 1]. More generally, from the work of [121–123] (see also [37]), one can
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understand this expression as the result of a particular differential operator (say in X)
acting on the symmetric contraction of λ1 indices

Xf1 · · ·XfkΠ[λ]e1···enf1···fk
g1···gnh1···hk Y h1 · · ·Y hk = D[λ]e1···en

g1···gn (X)Hλ1(X · Y )λ1 , (2.131)

where

Hλ1(X · Y )λ1 = Xf1 · · ·Xfλ1
Π[λ1]f1···fλ1
h1···hλ1

Y h1 · · ·Y hλ1 = (X2Y 2)λ1/2pd,λ1(t), (2.132)

and λ1 is the length of the top row of the Young pattern [λ] (in our case this is k+ 1). In
the context of conformal blocks, the extra indices ej are contracted with m(10), m(20), and
the indices gj with m(30), m(40). Furthermore, X ≡ k(012), Y ≡ k(034) with X2 = Y 2 = 1.
Thus a generic contraction with Ti

m10 · · ·m10m20 · · ·m20 · Ti(k(012), k(034)) ·m(30) · · ·m(30)m(40) · · ·m(40), (2.133)

can include combinations of 1- and 2-index elements

m
(i0)
ab k

(012) b, m
(i0)
ab k

(034) b, m
(i0)
ab m

(0j) b
c, (2.134)

with i, j = 1, 2, 3, 4. The result presented in this chapter suggests that one can write the
contractions (2.133) as derivatives of t only. For example, for (2.125) we have

m(20)
ae T e1 cm

(04) c
b = m(20)

ae (tδec − k(012)
c k(034) e)m(04) c

b

=
√
x2

02x
2
04x

2
12x

2
34

x2
01x

2
03

(
t

∂2t

∂xa2∂x
b
4
− ∂t

∂xa2

∂t

∂xb4

)
. (2.135)

m(20)
ae T e2 cm

(04) c
b

= m(20)
ae

(
(t2 − 1)δec + k(012)

c k(012) e + k(034)
c k(034) e − t(k(012)

c k(034) e + k(034)
c k(012) e)

)
m

(04) c
b

=
√
x2

02x
2
04x

2
12x

2
34

x2
01x

2
03

(
(t2 − 1) ∂2t

∂xa2∂x
b
4
− t ∂t

∂xa2

∂t

∂xb4

)
, (2.136)

where we have extracted T1 and T2 by rewriting (2.125) as

− T a1 b (tfk−1 + gk) + T a2 bfk−1(t), (2.137)

and we picked the particular combinations because fk−1 and tfk−1 +gk are just constant
multiples of pd+4,k−1 and pd+2,k respectively. These results rely on the fact that

∂k
(0ij)
c

∂xaj
= −

√
x2

0i
x2

0jx
2
ij

(
m(0j)
ac + k(j0i)

a k(0ij)
c

)
, (2.138)

and the key observation is that the particular combinations of δ, k(012), k(034), that
appear in Ti, are such that the terms k(j0i)

a cancel out, leaving only the terms m(0j) that

81



2. Scalar-Vector conformal blocks

we want. This leads to

m(20)
ac k

(012)
d1

· · · k(012)
dk+1

Π̃(k) cd1···dk+1
ef1···fk+1

m
(04) e

bk
(034) f1 · · · k(034) fk+1

=
√
x2

02x
2
04x

2
12x

2
34

x2
01x

2
03

1
2(d+ k − 2)

(
k

(
(t2 − 1) ∂2t

∂xa2∂x
b
4
− t ∂t

∂xa2

∂t

∂xb4

)
pd+4,k−1

+(d− 2)
(
t

∂2t

∂xa2∂x
b
4
− ∂t

∂xa2

∂t

∂xb4

)
pd+2,k

)
. (2.139)

Equation (2.28) then follows from the chain rule and simple Gegenbauer identities listed
in appendix B.

As an extra result, we present the contraction under the projector Π[k+1,1,1] associated
to the Young pattern [k + 1, 1, 1]. Using techniques from [121–123] one obtains

P [k+1,1,1]e1e2
c1c2 ≡ Xf1 · · ·Xfk+1Π[k+1,1,1]e1e2f1···fk+1

c1c2d1···dk+1
Y d1 · · ·Y dk+1

∝ (k + 1)(X2Y 2)
k+1

2

(k + 3)(d+ k − 3) δ
[d
c1δ

f ]
c2δ

e1
[g δ

e2
h]

(
(d− 3)δgd

[
tδhf − 2 XfY

h

√
X2Y 2

]
pd+2,k(t)

+2k

[
δgd

(
(t2 − 1)δhf

2 + XfX
h

X2 −
t
(
XfY

h + YfX
h
)

√
X2Y 2

+ YfY
h

Y 2

)
− XdYfX

gY h

X2Y 2

]
pd+4,k−1

)
.

(2.140)

Thus from the previous discussion one finds that

m(10)
ae1 m

(20)
be2
P [k+1,1,1]e1e2
c1c2 m(30) c1

c m
(40) c2
d

= x2
02x

2
04x

2
12x

2
34

x2
01x

2
03

m
(12)
ab′ m

(34)
cd′

{
∂2t

∂xb2∂x
[d|
4

∂2t

∂xb
′

2 ∂x
|d′]
4

pd,k+1 − 2 ∂2t

∂x
[b|
2 ∂x

[d|
4

∂2

∂x
|b′]
2 ∂x

|d′]
4

×
[

1
(k + 2)(k + 3)pd,k+2 + (k + 1)

(d+ 2k)(d+ 2k − 2)(d+ k − 3)pd,k
]}

, (2.141)

where in the second term, the square bracket notation is indicating that b (d) is antisym-
metrized with b′ (d′).

This is one of the two new contractions that appear in the conformal blocks for the
[k + 1, 1, 1] exchange in 〈V V V V 〉. Those conformal blocks are left for future work.

Appendix D: Integrals

Much of the material in this appendix follows [28].

The basic building block for our integrals is∫
dDx0

(∑
i

aix
2
0i

)−d
= 21−dπ

d+1
2

Γ( d+1
2 )

(∑
i<j

aiajx
2
ij

)−d/2
, (2.142)
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along with the Feynman-Schwinger trick which uses the identity

1∏n

i=1 X
ci
i

=
Γ(
∑n

i=1 ci)∏n

j=1 Γ(cj)

(
n∏
k=2

∫ ∞
0

dµk µ
ck−1

)
1(

X1 +
∑n

`=2 µ`X`
)∑n

m=1
cm
. (2.143)

Three-point integrals: Suppose α+ β + γ = d. Then the integral

Iα,β,γ(x1, x2, x3) =
∫

dDx0

(x2
01)α (x2

02)β (x2
03)γ

, (2.144)

will be a conformal scalar of weight α, β, and γ under conformal transformations of x1,
x2, and x3 respectively. To evaluate the integral, we first use (2.143) and then (2.142) to
write

Iα,β,γ(x1, x2, x3) = Γ(d)
Γ(α)Γ(β)Γ(γ)

∫
dDx0

∫ ∞
0

ds sβ−1
∫ ∞

0
dt tγ−1 1

(x2
01 + sx2

02 + tx2
03)d

= 21−dπ
d+1

2 Γ(d)
Γ(α)Γ(β)Γ(γ)Γ( d+1

2 )

∫ ∞
0

ds sβ−1
∫ ∞

0
dt tγ−1 (sx2

12 + tx2
13 + stx2

23
)−d/2

. (2.145)

To perform the remaining integrals, we recall one of the representations of the beta
function ∫ ∞

0
du

ux−1

(1 + u)x+y = Γ(x)Γ(y)
Γ(x+ y) . (2.146)

Then

Iα,β,γ(x1, x2, x3)

= 21−dπ
d+1

2 Γ(d)
Γ(α)Γ(β)Γ(γ)Γ( d+1

2 )

∫ ∞
0

ds sβ−1 (sx2
12
)−d/2 ∫ ∞

0
dt tγ−1

(
1 + t

(
x2

13 + sx2
23

sx2
12

))−d/2
= 21−dπ

d+1
2 Γ(d)

Γ(α)Γ(β)Γ(γ)Γ( d+1
2 )

×
(
x2

12
)γ− d2 ∫ ∞

0
ds sβ+γ− d2−1 (x2

13 + sx2
23
)−γ ∫ ∞

0
duuγ−1 (1 + u)−d/2

=
21−dπ

d+1
2 Γ(d)Γ( d2 − γ)

Γ(α)Γ(β)Γ( d+1
2 )Γ( d2 )

(
x2

12
)γ− d2 (x2

13
)−γ ∫ ∞

0
ds sβ+γ− d2−1

(
1 + s

x2
23
x2

13

)−γ
=
πd/2Γ( d2 − γ)

Γ(α)Γ(β)
(
x2

12
)γ− d2 (x2

13
)β− d2 (x2

23
) d

2−β−γ
∫ ∞

0
dv vβ+γ− d2−1 (1 + v)−γ

=
πd/2Γ( d2 − γ)Γ(β + γ − d

2 )Γ( d2 − β)
Γ(α)Γ(β)Γ(γ)

(
x2

12
)γ− d2 (x2

13
)β− d2 (x2

23
) d

2−β−γ

= πd/2
Γ( d2 − α)Γ( d2 − β)Γ( d2 − γ)

Γ(α)Γ(β)Γ(γ)
(
x2

12
)γ− d2 (x2

13
)β− d2 (x2

23
)α− d2 , (2.147)

where we have also made use of the duplication formula for the gamma function, which
in this case tells us

Γ(d2 )Γ(d+ 1
2 ) = 21−d√πΓ(d). (2.148)
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Similarly, we will need to evaluate

Iαβγ;a1···an(x1, x2, x3) = Π(n) b1···bn
a1···an

∫
dDx0

(x2
01)α (x2

02)β (x2
03)γ

k
(302)
b1

· · · k(302)
bn

, (2.149)

which for α + β + γ = d will be a conformal scalar of weight α (β) under conformal
transformations of x1 (x2), and a traceless symmetric tensor of conformal weight γ under
transformations of x3. We compute by doing a binomial expansion of the k(302)’s,

Iαβγ;a1···an(x1, x2, x3) = Π(n) b1···bn
a1···an

n∑
k=0

n!
k! (n− k)! (−1)k

(
x2

23
)n−2k

2 (x23)b1 · · · (x23)bk

×
∫

dDx0

(x2
01)α (x2

02)β+n
2 (x2

03)γ+n−2k
2

(x03)bk+1
· · · (x03)bn

= Π(n) b1···bn
a1···an

n∑
k=0

n!
k! (n− k)! (−1)k

(
x2

23
)n−2k

2 (x23)b1 · · · (x23)bk

×
Γ(γ − n

2 )
2n−kΓ(γ + n

2 − k)
∂

∂x
bk+1
3

· · · ∂

∂xbn3
Iα,β+n

2 ,γ−
n
2

(x1, x2, x3)

= πd/2Π(n) b1···bn
a1···an

n∑
k=0

n−k∑
m=0

n!
k!m! (n− k −m)! (−1)k

×
Γ( d2 + n−m− k − α)Γ( d2 −

n
2 +m− β)Γ( d2 + n

2 − γ)
Γ(α)Γ(β + n

2 )Γ(γ + n
2 − k)

×
(
x2

12
)γ−n2− d2 (x2

13
)β+n

2−m−
d
2
(
x2

23
)α−n2 +m− d2 (x13)b1 · · · (x13)bm (x23)bm+1

· · · (x23)bn

= πd/2Π(n) b1···bn
a1···an

n∑
m=0

n!
m! (n−m)! (−1)n−m

Γ( d2 − α)Γ( d2 + n
2 − β)Γ( d2 + n

2 − γ)
Γ(α)Γ(β + n

2 )Γ(γ + n
2 )

×
(
x2

12
)γ−n2− d2 (x2

13
)β+n

2−m−
d
2
(
x2

23
)α−n2 +m− d2 (x13)b1 · · · (x13)bm (x23)bm+1

· · · (x23)bn

= πd/2Π(n) b1···bn
a1···an

Γ( d2 − α)Γ( d2 + n
2 − β)Γ( d2 + n

2 − γ)
Γ(α)Γ(β + n

2 )Γ(γ + n
2 )

×
(
x2

12
)γ− d2 (x2

13
)β− d2 (x2

23
)α− d2 k(312)

b1
· · · k(312)

bn
,

(2.150)

where we used the identity

N∑
k=0

N !
k! (N − k)! (−1)k Γ(x− k)

Γ(y − k) = (−1)N Γ(x−N)Γ(y − x+N)
Γ(y)Γ(y − x) , (2.151)

with N = n−m, x = d
2 + n−m− α, and y = γ + n

2 .
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We will also need one more result along these lines,

Iα,β,γ;a;b1···bn = Π(n) c1···cn
b1···bn

∫
dDx0

(x2
01)α (x2

02)β (x2
03)γ

k(203)
a k(302)

c1 · · · k(302)
cn

= Π(n) c1···cn
b1···bn

{ √
x2

23

2β + n− 1
∂

∂xa2
Iα,β− 1

2 ,γ+ 1
2 ;c1···cn + 2β − 1

2β + n− 1
(x23)a√
x2

23

Iα,β− 1
2 ,γ+ 1

2 ;c1···cn

+ nm
(23)
ac1

2β + n− 1Iα,β,γ;c2···cn

}
= πd/2Π(n) c1···cn

b1···bn

Γ( d2 − α)Γ( d2 + n−1
2 − β)Γ( d2 + n−1

2 − γ)
Γ(α)Γ(β + n+1

2 )Γ(γ + n+1
2 )

(
x2

12
)γ− d2 (x2

13
)β− d2

×
(
x2

23
)α− d2 [(d

2 + n− 1
2 − β

)(
d

2 + n− 1
2 − γ

)
k(213)
a k(213)

c1 + n

2

(
d

2 − α
)
m(23)
ac1

]
× k(312)

c2 · · · k(312)
cn . (2.152)

In this case we made use of (2.86).

Four-point integrals: As with the previous section, we start with integrals of the
form

Iα,β,γ,δ(x1, x2, x3, x4) =
∫

dDx0

(x2
01)α (x2

02)β (x2
03)γ (x2

04)δ
, (2.153)

where α+ β + γ + δ = d. Using (2.142) and (2.143) we can show

Iα,β,γ,δ = 21−dπ
d+1

2 Γ(d)
Γ(α)Γ(β)Γ(γ)Γ(δ)Γ( d+1

2 )

∫ ∞
0

ds sβ−1
∫ ∞

0
dt tγ−1

∫ ∞
0

dq qδ−1

×
(
sx2

12 + tx2
13 + qx2

14 + stx2
23 + sqx2

24 + tqx2
34
)−d/2

. (2.154)

After a change of variables we can do one of the three integrals, giving us a result

Iα,β,γ,δ = πd/2
Γ( d2 − δ)

Γ(α)Γ(β)Γ(γ)
(
x2

14
)−α (

x2
23
)δ− d2 (x2

24
) d

2−β−δ
(
x2

34
) d

2−γ−δ

× f̂α,β,γ,δ(uv−1, v−1), (2.155)

where we have defined

f̂α,β,γ,δ(z1, z2) =
∫ ∞

0
ds sβ−1

∫ ∞
0

dt tγ−1 (sz1 + tz2 + st)
δ−α−β−γ

2 (1 + s+ t)−δ ,

(2.156)
and u and v are the usual invariant cross-ratios defined in (1.119).

As explained in Section 2.5.1, the monodromy projection requires us to keep only the
terms in f̂α,β,γ,δ(z1, z2) which are invariant under z1 → e4πiz1. In [28] it is shown how
to do this very elegantly using contour deformation arguments, with the result that the
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invariant pieces are given precisely by

fα,β,γ,δ(z1, z2) = f̂α,β,γ,δ(z1, z2)
∣∣∣
monodromy−invariant

= sin(πδ)
sin(π2 (γ + δ − α− β))

∫ ∞
0

ds sβ−1
∫ ∞
s+1

dt tγ−1 (st+ tz2 − sz1)
δ−α−β−γ

2 (t− s− 1)−δ .

(2.157)

The function fα,β,γ,δ(z1, z2) obeys several easily verified identities (also f̂ obeys the same
identities),

∂

∂z1
fα,β,γ,δ(z1, z2) = δ − α− β − γ

2 fα+1,β+1,γ,δ(z1, z2), (2.158)

∂

∂z2
fα,β,γ,δ(z1, z2) = δ − α− β − γ

2 fα+1,β,γ+1,δ(z1, z2), (2.159)

as well as

fα,β,γ,δ(z1, z2) = fα+1,β,γ,δ+1(z1, z2)+fα,β+1,γ,δ+1(z1, z2)+fα,β,γ+1,δ+1(z1, z2), (2.160)

and

fα,β,γ,δ(z1, z2) = fα,β+1,γ+1,δ(z1, z2) + z1fα+1,β+1,γ,δ(z1, z2) + z2fα+1,β,γ+1,δ(z1, z2).
(2.161)

When α + β + γ + δ is an even integer, which we will call 2h (so h = d/2 in the
four-point integral above, and this would be valid in even dimensions), then fα,β,γ,δ can
actually be evaluated explicitly in terms of hypergeometric functions. First we change
from z1 and z2 to a complex variable x related by

z1 = xx̄

(1− x) (1− x̄) , z2 = 1
(1− x) (1− x̄) , (2.162)

and then it can be shown [28,64] that

fα,β,γ,δ(z1, z2) = Γ(α)Γ(1− h+ β)Γ(1− δ)Γ(h− γ)Γ(γ + δ − h)
Γ(δ)Γ(h− δ)Γ(1 + h− γ − δ) ((1− x) (1− x̄))h−δ

×
( 1
x− x̄ (x∂x − x̄∂x̄)

)h−1
[2F1(1− h+ β, 1− δ, 1 + h− γ − δ;x)

×2F1(1− h+ β, 1− δ, 1 + h− γ − δ; x̄)] . (2.163)

Appendix E: Mixing matrices and normalization factors

For the case of two scalars and a symmetric traceless tensor, inserting (2.17) into (2.8)
leads to〈

φ1(x1)φ2(x2)Õa1···a`(x3)
〉

= Π(`) b1···b`
a1···a`

∫
dDx0

(x2
03)d−∆O

m
(03) c1

b1
· · ·m(03) c`

b`

×
(
λO
(
x2

01
) 1

2 (−∆1+∆2−∆O) (
x2

02
) 1

2 (∆1−∆2−∆O) (
x2

12
) 1

2 (−∆1−∆2+∆O)

×Π(`) d1···d`
c1···c` k

(012)
d1

· · · k(012)
d`

)
. (2.164)
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Since (as reviewed in Appendix A) m(03) c
a m

(03)
bc = δab, and since Π(`) removes traces, it

follows that

Π(`) b1···b`
a1···a` m

(03) c1
b1
· · ·m(03) c`

b`
Π(`) d1···d`
c1···c` k

(012)
d1

· · · k(012)
d`

= Π(`) b1···b`
a1···a` yb1 · · · yb` , (2.165)

where

ya = m
(03)
ab k(012) b =

(√
x2

01x
2
23

x2
03x

2
12
− x2

02x
2
13√

x2
01x

2
03x

2
12x

2
23

)
k(302)
a +

√
x2

02x
2
13

x2
01x

2
23
k(312)
a . (2.166)

Expanding in a trinomial expansion, we then obtain〈
φ1(x1)φ2(x2)Õa1···a`(x3)

〉
= λOΠ(`) b1···b`

a1···a`

`∑
k=0

`−k∑
m=0

`!
k!m! (`− k −m)! (−1)m

×
(
x2

12
) 1

2 (−∆1−∆2+∆O−k−m) (
x2

13
) 1

2 (`−k+m) (
x2

23
)k− `2 k(312)

b1
· · · k(312)

b`−k−m

× I 1
2 (∆1−∆2+∆O+`−2k), 12 (−∆1+∆2+∆O−`+k−m),d−∆O+ k+m

2 ;b`−k−m+1···b`
(x1, x2, x3)

= πd/2λOΠ(`) b1···b`
a1···a` k

(312)
b1

· · · k(312)
b`

`∑
k=0

`−k∑
m=0

`!
k!m! (`− k −m)! (−1)m

×
Γ( 1

2 (d−∆1 + ∆2 −∆O − `) + k)Γ( 1
2 (d+ ∆1 −∆2 −∆O + `) +m)Γ(∆O − d

2 )
Γ( 1

2 (∆1 −∆2 + ∆O + `)− k)Γ( 1
2 (−∆1 + ∆2 + ∆O − `) + k)Γ(d−∆O + k +m)

×
(
x2

12
) 1

2 (d−∆1−∆2−∆O) (
x2

13
) 1

2 (−∆1+∆2+∆O−d) (x2
23
) 1

2 (∆1−∆2+∆O−d)

= πd/2Π(`) b1···b`
a1···a` k

(312)
b1

· · · k(312)
b`

(
x2

12
) 1

2

(
−∆1−∆2+∆

Õ

) (
x2

13
) 1

2

(
−∆1+∆2−∆

Õ

)
×
(
x2

23
) 1

2

(
∆1−∆2−∆

Õ

)
Γ(∆O − d

2 )Γ(∆O + `− 1)
Γ(∆O − 1)Γ(d−∆O + `)

×
Γ( 1

2 (d+ ∆1 −∆2 −∆O + `))Γ( 1
2 (d−∆1 + ∆2 −∆O + `))

Γ( 1
2 (∆1 −∆2 + ∆O + `))Γ( 1

2 (−∆1 + ∆2 + ∆O + `))
λO,

(2.167)

where we use the notation and results for integrals defined in Appendix D, and we
evaluated the sums, first over m and then over k, using the identities

N∑
k=0

N !
k! (N − k)! (−1)k Γ(x+ k)

Γ(y + k) = Γ(x)Γ(y − x+N)
Γ(y +N)Γ(y − x) , (2.168)

which is equivalent to (2.151), and

N∑
k=0

N !
k! (N − k)!

1
Γ(x+ k)Γ(y − k) = Γ(x+ y +N − 1)

Γ(x+N)Γ(y)Γ(x+ y − 1) . (2.169)

Thus comparing with (2.20) one can read off (2.21).
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Now for a scalar, a vector, and a traceless symmetric tensor we have

〈
φ(x1)va(x2)Õb1···b`(x3)

〉
= Π(`) c1···c`

b1···b`

×
∫

dDx0

(x2
03)d−∆O

m(03) d1
c1 · · ·m(03) d`

c`

(
x2

01
) 1

2 (−∆φ+∆v−∆O) (
x2

02
) 1

2 (∆φ−∆v−∆O)

×
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x2

12
) 1

2 (−∆φ−∆v+∆O) Π(`) e1···e`
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[
−αOk(201)

a k(012)
e1 + βOm

(20)
ae1

]
k(012)
e2 · · · k(012)

e`
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b1···b`

(
x2

12
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2 (−∆φ−∆v+∆O)

×
∫
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(
x2

01
) 1

2 (−∆φ+∆v−∆O) (
x2

02
) 1

2 (∆φ−∆v−∆O) (
x2

03
)∆O−d

×
[
−αO

(√
x2

03x
2
12

x2
01x

2
23
k(203)
a −

√
x2

02x
2
13

x2
01x

2
23
k(213)
a

)
yc1 + βO

(
m(23)
ac1 − 2k(203)

a k(302)
c1

)]
× yc2 · · · yc` , (2.170)

using identities from Appendix A.

We then proceed as before, performing trinomial expansions on the ya’s, perform the
integrals using the results of Appendix D, and the identities (2.168) and (2.169). This
results in (2.22) and (2.23).

Related to these integration techniques is the determination of the normalization
factor NO that appears in the shadow projector PO. As discussed in the main text, this
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is fixed by requiring

〈ϕ1(x1)ϕ2(x2)Oa1···a`(x3)〉 = 〈Oa1···a`(x3)POϕ1(x1)ϕ2(x2)〉

= NO
∫
dDx0 〈Oa1···a`(x3)Ob1···b`(x0)〉

〈
Õb1···b`(x0)ϕ1(x1)ϕ2(x2)

〉
= NOλ12ÕΠ(`) c1···c`

b1···b` Π(`) d1···d`
a1···a`

∫
dDx0

(
x2

12
) 1

2 (d−∆1−∆2−∆O) (
x2

01
) 1

2 (−∆1+∆2+∆O−d)

×
(
x2

02
) 1

2 (∆1−∆2+∆O−d) k(012)
c1 · · · k(012)

c`

(
x2

03
)−∆O m

(03) b1
d1
· · ·m(03) b`

d`

= NOλ12ÕΠ(`) b1···b`
a1···a`

(
x2

12
) 1

2 (d−∆1−∆2−∆O)
∫
dDx0

(
x2

01
) 1

2 (−∆1+∆2+∆O−d)

×
(
x2

02
) 1

2 (∆1−∆2+∆O−d) (x2
03
)−∆O yb1 · · · yb`

= NOλ12ÕΠ(`) b1···b`
a1···a`

(
x2

12
) 1

2 (−∆1−∆2+∆O) (
x2

13
) 1

2 (−∆1+∆2−∆O) (
x2

23
) 1

2 (∆1−∆2−∆O)

× k(312)
b1

· · · k(312)
b`

Γ( d2 −∆O)
Γ(d−∆O − 1)

Γ(d−∆O + `− 1)
Γ(∆O + `)

×
Γ( 1

2 (∆1 −∆2 + ∆O + `))
Γ( 1

2 (d+ ∆1 −∆2 −∆O + `))
Γ( 1

2 (−∆1 + ∆2 + ∆O + `))
Γ( 1

2 (d−∆1 + ∆2 −∆O + `))

= 〈ϕ1(x1)ϕ2(x2)Oa1···a`(x3)〉NOπd

×
Γ(∆O − d

2 )Γ( d2 −∆O)
(∆O + `− 1) (d−∆O + `− 1) Γ(∆O − 1)Γ(d−∆O − 1) ,

(2.171)

where we read off (2.15).

Appendix F: αβ, βα, and ββ components of the 〈SV SV 〉 blocks

Here we write the additional conformal block components that appear for ` > 0. These
are expressed in condensed notation where the blocks on the LHS, as well as the αα blocks
on the right-hand-sides have unshifted arguments, grsp (u, v; ∆1,∆2,∆3,∆4; `,∆O). The
others follow the conventions in the main text

gαβ0 = ∆3 −∆4 −∆O + `+ 1
`

gαα0 + 1
`

[√
ugαλ1;`;0,1 +

√
vgαλ2;`;0,1

]
,

gαβ11 = ∆3 −∆4 −∆O + `+ 1
`

gαα11 −
1
`

√
u (∆1 −∆2 −∆3 + ∆4 − 2v∂v) gαλ1;`;0,1,

gαβ12 = ∆3 −∆4 −∆O + `+ 1
`

gαα12 −
1
`

√
v (∆3 −∆4 + 1− 2u∂u) gαλ1;`;0,1, (2.172)

gαβ21 = ∆3 −∆4 −∆O + `+ 1
`

gαα21 −
1
`

√
u (∆1 −∆2 −∆3 + ∆4 − 1− 2v∂v) gαλ2;`;0,1,

gαβ22 = ∆3 −∆4 −∆O + `+ 1
`

gαα22 −
1
`

√
v (∆3 −∆4 + 2− 2u∂u) gαλ2;`;0,1,
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gβα0 = ∆1 −∆2 −∆O + `+ 1
`

gαα0 + 1
`

[
gλα1;`;1,0 +

√
u

v
gλα2;`;1,0

]
,

gβα11 = ∆1 −∆2 −∆O + `+ 1
`

gαα11 −
1
`

(∆1 −∆2 + 2− 2u∂u) gλα1;`;1,0,

gβα12 = ∆1 −∆2 −∆O + `+ 1
`

gαα12 −
1
`

(∆1 −∆2 + 1− 2u∂u) gλα2;`;1,0, (2.173)

gβα21 = ∆1 −∆2 −∆O + `+ 1
`

gαα21 + 1
`

√
u

v
2v∂vgλα1;`;1,0,

gβα22 = ∆1 −∆2 −∆O + `+ 1
`

gαα22 −
1
`

√
u

v
(1− 2v∂v) gλα2;`;1,0,

gββ0 = (∆1 −∆2 −∆O + `+ 1) (∆3 −∆4 −∆O + `+ 1)
`2

gαα0

+∆1 −∆2 −∆O + `+ 1
`2

[√
ugαλ1;`;0,1 +

√
vgαλ2;`;0,1

]
+∆3 −∆4 −∆O + `+ 1

`2

[
gλα1;`;1,0 +

√
u

v
gλα2;`;1,0

]
− 1
`2
√
u (∆1 −∆2 + 1− 2u∂u − 2v∂v) g`;1,1,

gββ11 = (∆1 −∆2 −∆O + `+ 1) (∆3 −∆4 −∆O + `+ 1)
`2

gαα11

−∆1 −∆2 −∆O + `+ 1
`2

√
u (∆1 −∆2 −∆3 + ∆4 − 2v∂v) gαλ1;`;0,1

−∆3 −∆4 −∆O + `+ 1
`2

(∆1 −∆2 + 2− 2u∂u) gλα1;`;1,0

+ 1
`2
√
u (∆1 −∆2 + 1− 2u∂u) (∆1 −∆2 −∆3 + ∆4 − 2v∂v) g`;1,1,

gββ12 = (∆1 −∆2 −∆O + `+ 1) (∆3 −∆4 −∆O + `+ 1)
`2

gαα12

−∆1 −∆2 −∆O + `+ 1
`2

√
v (∆3 −∆4 + 1− 2u∂u) gαλ1;`;0,1

−∆3 −∆4 −∆O + `+ 1
`2

(∆1 −∆2 + 1− 2u∂u) gλα2;`;1,0

+ 1
`2
√
v (∆1 −∆2 + 1− 2u∂u) (∆3 −∆4 + 1− 2u∂u) g`;1,1, (2.174)
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gββ21 = (∆1 −∆2 −∆O + `+ 1) (∆3 −∆4 −∆O + `+ 1)
`2

gαα21

−∆1 −∆2 −∆O + `+ 1
`2

√
u (∆1 −∆2 −∆3 + ∆4 − 1− 2v∂v) gαλ2;`;0,1

+∆3 −∆4 −∆O + `+ 1
`2

√
u

v
2v∂vgλα1;`;1,0

− 1
`2

u√
v

2v∂v (∆1 −∆2 −∆3 + ∆4 − 2v∂v) g`;1,1,

gββ22 = (∆1 −∆2 −∆O + `+ 1) (∆3 −∆4 −∆O + `+ 1)
`2

gαα22

−∆1 −∆2 −∆O + `+ 1
`2

√
v (∆3 −∆4 + 2− 2u∂u) gαλ2;`;0,1

−∆3 −∆4 −∆O + `+ 1
`2

√
u

v
(1− 2v∂v) gλα2;`;1,0

− 1
`2
√
u2v∂v (∆3 −∆4 + 1− 2u∂u) g`;1,1,

Appendix G: Mixed symmetric constants

The constants appearing in the mixed-symmetric conformal blocks are defined by

C1 =
NAγ34Ã/γ34A(

NOλ34Õ/λ34O
)
k+1 00

= d−∆A − 1
d−∆A − 2 , (2.175)

C2 = NAγ34Ã/γ34A
(
N−1
O
(
M−1) α

α

)
k+1− 1

2
1
2

= (∆A − 1) (d−∆A + k)− (d−∆A − 1) (∆3 −∆4 − 1)
(d−∆A − 2) (d−∆3 + ∆4 −∆A + k + 1) , (2.176)

C3 = NAγ34Ã/γ34A

(
N−1
O
(
M−1) α

β

)
k+1− 1

2
1
2

= (k + 1) (d− 2∆A) (∆3 −∆4 − 1)
(d−∆A − 2) (d−∆3 + ∆4 −∆A + k + 1) (∆3 −∆4 + ∆A + k − 1) (2.177)

C4 = NAγ34Ã/γ34A
(
N−1
O
(
M−1) α

α

)
k+1 1

2 −
1
2

= (∆3 −∆4 + ∆A + k + 1) ((∆A − 1) (d−∆A + k)− (d−∆A − 1) (∆3 −∆4 + 1))
(d−∆A − 2) (d+ ∆3 −∆4 −∆A + k + 1) (−∆3 + ∆4 + ∆A + k − 1) ,

(2.178)

C5 = NAγ34Ã/γ34A

(
N−1
O
(
M−1) α

β

)
k+1 1

2 −
1
2

= (k + 1) (d− 2∆A) (∆3 −∆4 + 1)
(d−∆A − 2) (d+ ∆3 −∆4 −∆A + k + 1) (−∆3 + ∆4 + ∆A + k − 1) , (2.179)
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C6 = NAγ34Ã/γ34A

(
N−1
O

((
M−1) α

α
−
(
M−1) β

α

))
k+2 00

=(d−∆A + k) (∆3 −∆4 + ∆A + k + 1)
(d−∆A − 2) (∆A + k + 1)

× (d−∆A − 1) (d−∆A + k + 1)− (∆A − 1) (∆3 −∆4)
(d+ ∆3 −∆4 −∆A + k + 1) (d−∆3 + ∆4 −∆A + k + 1) ,

(2.180)

C7 = NAγ34Ã/γ34A

(
N−1
O

((
M−1) β

β
−
(
M−1) α

β

))
k+2 00

= d−∆A + k

d−∆A − 2

× (d−∆A − 1) (∆A + k + 1) (d−∆A + k + 1)− (∆A − 1) (∆3 −∆4)2

(∆A + k + 1) (d+ ∆3 −∆4 −∆A + k + 1) (d−∆3 + ∆4 −∆A + k + 1) , (2.181)

C8 = NAγ34Ã/γ34A

(
N−1
O

((
M−1) α

α
−
(
M−1) β

α

))
k 00

= (∆A + k) ((d−∆A − 1) (d−∆A + k − 1)− (∆A − 1) (∆3 −∆4))
(d−∆A − 2) (d−∆A + k − 1) (−∆3 + ∆4 + ∆A + k − 1) , (2.182)

C9 = NAγ34Ã/γ34A

(
N−1
O

((
M−1) β

β
−
(
M−1) α

β

))
k 00

=
(∆A + k)

(
(d−∆A − 1) (∆A + k − 1) (d−∆A + k − 1)− (∆A − 1) (∆3 −∆4)2)

(d−∆A − 2) (d−∆A + k − 1) (∆3 −∆4 + ∆A + k − 1) (−∆3 + ∆4 + ∆A + k − 1) .

(2.183)

In computing these constants we have used notation where a subscript on a quantity
in parentheses, (f)k′ P Q means that we should evaluate f (which is given in terms of
three-point function data) for external fields of dimensions ∆3 + P and ∆4 +Q, and an
exchange operator of spin ` = k′ and dimension ∆O = ∆A.

Appendix H: Operators appearing in symmetric exchange
blocks

Define

δ1 = ∆3 −∆4 + 2u∂u + 2v∂v, δ2 = ∆1 −∆2 −∆3 + ∆4 − 2v∂v,

δ3 = 2v∂v, δ4 = ∆1 −∆2 − 2u∂u − 2v∂v. (2.184)

Then the operators which appear in the expression (2.65) are

D−−0 =
√
u (δ1 − 1) , D−+

0 =
√
u (δ2 − 2) , D+−

0 = −
√
u

v
δ3, D++

0 = −
√
u (δ4 + 1) ,

(2.185)

D−−11 = −
√
u (δ2 + v (δ1 + 1)) (δ1 − 1) , D−+

11 = −
√
u (δ2 + v (δ1 + 1)) (δ2 − 2) ,

D+−
11 =

√
u (δ1 − 1) (δ3 + δ4 + 1) , D++

11 =
√
uδ2 (δ3 + δ4 + 1) , (2.186)
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D−−12 = − 1√
v

(δ3 − v (δ1 − 1)) (δ2 + v (δ1 − 1)) ,

D−+
12 =

√
v (δ2 − 2 + v (δ1 + 1)) (δ2 − δ4 − 1) ,

D+−
12 = 1√

v
(δ3 − v (δ1 − 1)) (δ3 + δ4 + 1) , D++

12 = −
√
v (δ2 − δ4 − 1) (δ3 + δ4 + 1) ,

(2.187)

D−−21 = u
√
v (δ1 − 1) (δ1 + 1) , D−+

21 = u
√
v (δ1 + 1) (δ2 − 2) ,

D+−
21 = − u√

v
(δ1 − 1) δ3, D++

21 = − u√
v
δ2δ3, (2.188)

D−−22 =
√
u (δ3 − v (δ1 + 1)) (δ1 − 1) , D−+

22 = −
√
uv (δ1 + 1) (δ2 − δ4 − 1) ,

D+−
22 = −

√
u

v
(δ3 − 2− v (δ1 − 1)) δ3, D++

22 =
√
u (δ2 − δ4 − 1) δ3. (2.189)
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3 Seeds for spinning
partial waves

On seed spinning conformal partial waves for four-point functions
of generic traceless-symmetric tensors in arbitrary dimensions

The main obstacle for studying correlators of spinning operators, in the context
of the bootstrap program, is that the spinning partial waves for the exchange
of operators in mixed-symmetric SO(d) representations are not readily available
in arbitrary dimensions d. In this chapter, based on [4], we give a closed form
expression for any spinning seed conformal partial wave that can appear in the
four-point function of traceless-symmetric operators in arbitrary dimensions d.

3.1 Introduction

As discussed previously in section 1.7, conformal partial waves play a crucial role
in the bootstrap program. In chapter 2 we presented the computation of spinning
(seed) conformal blocks for the exchange of an operator in the (`, 1) representation
of SO(d). However, for generic spinning four-point functions, other representations
can also be exchanged (see footnote 16). In this chapter we extend the results of
chapter 2 by giving an expression for the seed partial wave associated to an ex-
changed operator in the representation (`1, `2, `3) for 0 < `3 ≤ `2 ≤ `1. This
is the most general operator that can be exchanged in the four-point function of
traceless-symmetric operators. To understand why, we can use expression (1.134)
for a three-point function between the representations (l1), (l2), and (`1, `2, `3). In
order to construct a singlet from the tensor product, we need to restrict the three-
row diagram down to two rows by filling the `3 boxes in the bottom with V . Finally
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we contract the boxes of (l1) and (l2) with the remaining two rows `1 and `2 respec-
tively (after restriction, if required). However, if the mixed-symmetric operator has
four rows or more, then this procedure is null since one of the traceless-symmetric
representations will end up antisymmetrized.

In contrast with chapter 2, where the shadow projector technique was em-
ployed, here we use the weight-shifting operator formalism discussed in subsection
1.6.4. Our main result is a couple of recursion relations for the seed partial wave
of (`1, `2, `3), that lowers the number of boxes in the second and third rows, one
unit at a time. Hence the number of recursive steps to go from spinning seed par-
tial wave in the (`1, `2, `3) representation to the usual scalar (seed) partial wave
of [68,69] is `2 +`3. By combining the result presented in this chapter with (1.217)
one can write all spinning partial waves involved in the four-point function of
traceless-symmetric operators.

This chapter is organized as follows. In section 3.2 we extend the discussion
of subsection 1.6.4 in order to give a simplified version of (1.224) for the case of
seed partial waves, which results in an expression that relates seed partial waves
in different representations. Then we specialize to the case where the exchanged
representation is (`1, `2, `3), and pose the required intermediate calculations needed
to write its recursion. In the following two sections we carry out the intermediate
steps; in section 3.3 we compute the vector weight-shifting differential operators for
three-row representations, and in section 3.4 we calculate the required coefficients
relating 2- and 3-point functions between different representations. In section 3.5
we write the final recursion relations and we conclude in section 3.6.

3.2 Seed conformal partial waves

In subsection 1.6.4 we reviewed an algorithm based on [46] for computing the
spinning partial wave of an exchanged operator in some representation [∆, ρ],
in terms of derivatives acting on the spinning partial wave for an operator in
[∆′, ρ′]. The generic equation is (1.224). In particular, if the representations
of the external operators Φi are chosen such that all the three-point functions
appearing in (1.224) have only one independent tensor structure (which we call
seed-like), then it provides a relation between seed partial waves associated to
different exchanged representations. However, as shown in [46] there is a more
efficient algorithm for computing seed partial waves, which we review first.

Let us consider an exchanged operator O = [∆, ρ] and four external operators
Φi where ϕ2 ≡ Φ2 = [∆2, (0)] and ϕ4 ≡ Φ4 = [∆4, (0)] are scalars, while Φ1 =
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[∆1, ρ1] and Φ3 = [∆3, ρ3] are in particular representations such that the three-
point functions 〈Φ1ϕ2O〉 and 〈Φ3ϕ4O〉 have a unique tensor structure. This can
be achieved, for example, by setting ρ1 and ρ3 to be ρ with the first row removed.

Now focusing on one three-point function, say 〈Φ1ϕ2O〉, we can apply (1.179)
for the case where both correlators have a unique tensor structure. Explicitly,

D(n)
1 · D(m)

0 〈Φ′1ϕ2O〉 = Cmn〈Φ1ϕ2O〉, (3.1)

where D(n)
1 : Φ′1 → Φ1 and D(m)

0 : O → O, and the choice of m,n is not unique;
the only condition is that 〈Φ′1ϕ2O〉 remains seed-like and that the Young diagram
of O is contained in that of O. Next, using (1.221) and (1.176) leads to

〈Φ1ϕ2O〉 ./ 〈OΦ3ϕ4〉 = C−1
mn

∑
Φ′3∈Ω⊗Φ3,a,b,c

{
Φ3 ϕ4 Φ′3
O Ω O

}·c
ab

{
O 1 O
O Ω O

}·m
·c

×D(n)
1 · D(b)

3 〈Φ′1ϕ2O〉 ./ 〈OΦ′3ϕ4〉(a), (3.2)

where now D(b)
3 : Φ′3 → Φ3. However, notice that 〈OΦ′3ϕ4〉(a) is not seed-like. Thus

we need to invert (1.179) to write this three-point function in terms of seed-like cor-
relators. In other words, to reproduce the tensor structures (a) we must find a lin-
ear combination of contracted weight–shifting operators:

∑
e,Φ′′3
W(a)

(e) D
(e)Φ′3ϕ4
Φ′′3ϕ′4

〈OΦ′′3ϕ′4〉,
such that the SO(d) representations of Φ′′3 correspond to the Young diagram of O
with the first row removed, and that ϕ′4 remains a scalar. Using this we obtain an
expression that relates two seed partial waves from different representations:

〈Φ1ϕ2O〉 ./ 〈OΦ3ϕ4〉 = C−1
mn

∑
Φ′3∈Ω⊗Φ3,Φ′′3 ,a,b,c,e

{
Φ3 ϕ4 Φ′3
O Ω O

}·c
ab

{
O 1 O
O Ω O

}·m
·c

×W(a)
(e)D

(n)
1 · D(b)

3 D
(e)Φ′3ϕ4
Φ′′3ϕ′4

〈Φ′1ϕ2O〉 ./ 〈OΦ′′3ϕ′4〉. (3.3)

The advantage of this expression over (1.224) is that we have chosen a fixed Φ′1
such that one of the three-point functions is already seed-like, thereby avoiding
the application of an extra operator D .

3.2.1 Connecting all seeds recursively

The objective of this chapter is then to use (3.3) in order to give a recursive
expression for the spinning seed partial wave associated to the exchange of an
operator in the representation (`1, `2, `3), 0 < `3 ≤ `2 ≤ `1. Given that (3.3)
allows us to write the seed partial wave for O in terms of partials waves for O,
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abbreviated O → O, then wee need to construct two classes of recursions:

I : (`1, `2, `3)→ (`1, `2, `3 − 1) ,
II : (`1, `2)→ (`1, `2 − 1) .

One can then compose several of these to go down to the symmetric traceless
representation: (`1, `2, `3)→ · · · → (`1, `2)→ · · · → (`1), which is the well-known
scalar partial wave of [68,69].

In what follows, we describe the necessary calculations in order to achieve this.

Recursion I

Let us first consider the case O = [∆, (`1, `2, `3)]→ O = [∆, (`1, `2, `3 − 1)], which
implies Ω = (1). To have a seed partial wave, we choose Φ1 = [∆1, (`2, `3)],
Φ3 = [∆3, (`2, `3)]. From the discussion above, in order to preserve the seed-like
structure of the first three-point function on the right hand side of (3.3), we need
an operator such that D(n)

1 : Φ′1 = [∆1, (`2, `3 − 1)]→ Φ1. The other derivative in
(3.3) sends D(b)

3 : Φ′3 → Φ3, where the explicit values for Φ′3 are, by (1.167),

Φ′3 ∈ (1)⊗ [∆3, (`2, `3)] = [∆3 − 1, (`2, `3)]⊕ [∆3, (`2 + 1, `3)]⊕ [∆3, (`2, `3 + 1)]
⊕ [∆3, (`2, `3, 1)]⊕ [∆3, (`2 − 1, `3)]⊕ [∆3, (`2, `3 − 1)]⊕ [∆3 + 1, (`2, `3)]. (3.4)

Here we are taking the most generic case where the `i are such that all the Young
diagrams are valid. However, notice that when inserting these representations into
the three-point function 〈Φ′3φ3O〉, not all three-point functions are non-zero. In
particular 〈[∆3, (`2−1, `3)][∆4, (0)][∆, (`1, `2, `3−1)]〉 = 0. Finally, the differential
operators D

(e)Φ′3ϕ4
Φ′′3ϕ′4

must be such that

D
Φ′3ϕ4
Φ′′3ϕ′4

: [∆′′3 , (`2, `3 − 1)]× [∆′4, (0)]→ (1)⊗ [∆3, (`2, `3)] 3 Φ′3 × [∆4, (0)].

Recursion II

Now for O = [∆, (`1, `2)]→ O = [∆, (`1, `2 − 1)], we have a very similar situation
except the terms are simpler. The initial representations are Φ1 = [∆1, (`2)],
Φ3 = [∆3, (`2)], and the choice of Φ′1 is given by D(n)

1 : Φ′1 = [∆1, (`2 − 1)]→ Φ1.
The representations Φ′3 that appear in the sum and in D(b)

3 : Φ′3 → Φ3 are

Φ′3 ∈ (1)⊗ [∆3, (`2)] = [∆3 − 1, (`2)]⊕ [∆3, (`2 + 1)]
⊕ [∆3, (`2, 1)]⊕ [∆3, (`2 − 1)]⊕ [∆3 + 1, (`2)], (3.5)
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3. Seeds for spinning partial waves

where now all the three-point functions with Φ′3 are non-zero. The differential
basis for 〈OΦ′3ϕ4〉 is, in this case,

D
Φ′3ϕ4
Φ′′3ϕ′4

: [∆′′3 , (`2 − 1)]× [∆′4, (0)]→ (1)⊗ [∆3, (`2)] 3 Φ′3 × [∆4, (0)].

Currently, there are no known generic results for the 6j symbols nor for the
weight-shifting operators that are required to achieve our objective in general
dimensions. Therefore before setting up the recursion relations, we need to:

• compute the 8 vector weight-shifting differential operators for mixed-symmetric
representations of three rows 1

• compute the two- and three-point 6j symbols appearing on the right hand
side of (3.3), as well as the overall coefficient Cmn

• find a differential basis to write the second three-point function of (3.3) so
that the right hand side is written in terms of seed partial waves only

• put everything together and write both recursions I and II.

We present these results in the remaining of the chapter.

3.3 Mixed-symmetric weight shifting operators

We proceed now to computing all the vector weight-shifting differential operators
acting on general SO(d) representations of at most three rows: [∆, ρ = (`1, `2, `3)].
The defining properties of a weight-shifting operator that maps DA : [∆, ρ] →
[∆ + i, λ], are given by (1.170). In summary, the weights of the operator must be
such that it changes the homogeneity of P and Zj by i and (ρ)i − (λ)i, respec-
tively. Furthermore, it must respect the mixed-symmetric properties of the SO(d)
representation, it must be transverse, and interior to the null-cone. The latter
condition is summarized in (1.172).

The first step to construct the operators is then to define a basis of monomials
with which one can modify any weight of the conformal representation by one unit.

1From (3.4) it might seem like we only need 7 operators. However, D needs to map two-row
diagrams to one of the representations in Φ′3 with three rows. Therefore we need an extra one
that increases the number of boxes in the third row.
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3.3. Mixed-symmetric weight shifting operators

Inspired by equation (2.44) in [46], a convenient basis is given by 2

M(T )AB =
(
cδAB + TA∂BT

)
, (3.6)

where c is a constant, and T symbolizes any of the embedding space vectors P ,
Zj . By construction, the action of M(T ) does not alter any of the conformal
weights. Therefore contracting M with P or ∂P decreases or increases the confor-
mal dimension ∆ respectively. On the other hand, the contraction of M with Zj

or ∂Zj increases or decreases the number of boxes in the j-th row `j respectively.
Constructing the weight-shifting operators for each case is clear now; depending
on how the operator is supposed to alter the conformal weights, we start with any
of P,Zj , ∂P , ∂Zj and contract it with many different M until the other conditions
are satisfied. Note that although there are several ways of contracting the indices
between different M , not all of them are useful. For example if we contract two
M depending on the same vector T like M(T )ABM(T ) C

B , produces a term pro-
portional to T ·∂T . However since all the fields are homogeneous, this will become
a numerical weight when it hits the field. Similarly, one can find contractions
that produce terms that vanish due to transversality and mixed symmetry. By
making a sensible ansatz and demanding that the properties mentioned before are
satisfied, then fixes all the coefficients. The results are presented below.

Case [∆, (`1, `2, `3)]→ [∆ + 1, (`1, `2, `3)]:

D+(000)
M = 1

a22a30(−1− a30 + a33)
(
a00δ

A
M + PM∂

A
P

) (
a01δ

B
A + Z1

A∂
B
Z1

)
×
(
a02δ

C
B + Z2

B∂
C
Z2

) (
a03δ

D
C + Z3

C∂
D
Z3

) (
(a31 − a01) δED + Z3E∂Z3D

)
×
(
(a21 − a01) δFE + Z2F∂Z2E

) (
(a13 − a03) δGF + Z1G∂Z1F

)
∂PG. (3.7)

Case [∆, (`1, `2`3)]→ [∆− 1, (`1 + 1, `2, `3)]:

D−(000)
M = XM . (3.8)

Case [∆, (`1, `2, `3)]→ [∆, (`1 + 1, `2, `3)]:

D0(+00)
M =

(
(a00 − a10) δAM + PM∂

A
P

)
Z1
A. (3.9)

2During the final preparation of this chapter, a paper appeared [124] which computed the
weight-shifting operators for diagrams of two rows in a similar way. Setting `3 = 0 in our results
reproduces theirs, up to normalizations.
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3. Seeds for spinning partial waves

Case [∆, (`1, `2, `3)]→ [∆, (`1 − 1, `2, `3)]:

D0(−00)
M = 1

a13a22(a30 − a10)
(
a10δ

A
M + PM∂

A
P

) (
a11δ

B
A + Z1

A∂
B
Z1

) (
a12δ

C
B + Z2

B∂
C
Z2

)
×
(
a13δ

D
C + Z3

C∂
D
Z3

) (
(a30 − a10) δED + Z3E∂Z3D

)
×
(
(a20 − a10) δFE + Z2F∂Z2E

)
∂Z1F . (3.10)

Case [∆, (`1, `2, `3)]→ [∆, (`1, `2 + 1, `3)]:

D0(0+0)
M = 1

a11 − a12

(
(a00 − a20) δAM + PM∂

A
P

) (
(a11 − a12) δBA + Z1

A∂
B
Z1

)
Z2
B .

(3.11)

Case [∆, (`1, `2, `3)]→ [∆, (`1, `2 − 1, `3)]:

D0(0−0)
M = 1

a22a23

(
a02δ

A
M + PM∂

A
P

) (
a12δ

B
A + Z1

A∂
B
Z1

) (
a22δ

C
B + Z2

B∂
C
Z2

)
×
(
a32δ

D
C + Z3

C∂
D
Z3

) (
(a30 − a20) δED + Z3E∂Z3D

)
∂Z2E . (3.12)

Case [∆, (`1, `2, `3)]→ [∆, (`1, `2, `3 + 1)]:

D0(00+)
M = 1

a22 − a23

(
(a00 − a03) δAM + PM∂

A
P

) (
(a11 − a13) δBA + Z1

A∂
B
Z1

)
×
(
(a22 − a23) δCB + Z2

B∂
C
Z2

)
Z3
C . (3.13)

Case [∆, (`1, `2, `3)]→ [∆, (`1, `2, `3 − 1)]:

D0(00−)
M = 1

a23a33

(
a03δ

A
M + PM∂

A
P

) (
a13δ

B
A + Z1

A∂
B
Z1

) (
a23δ

C
B + Z2

B∂
C
Z2

)
×
(
a33δ

D
C + Z3

C∂
D
Z3

)
∂Z3D. (3.14)

Here we defined the constants aij as

aij = 1 + i+ j + δij − (`i + `j + d), `0 ≡ −∆, (3.15)

and we defined some overall normalization in some cases to make the 6j sym-
bols more compact. However, one can easily reabsorb these constants. Note that
each of these operators depend on the representation they act on. However, one
can produce representation-independent expressions by removing the overall nor-
malizations and substituting the coefficients −∆ and `i by P · ∂P and Zi · ∂Zi
respectively.
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3.4. Computation of coefficients

3.4 Computation of coefficients

Having the explicit expressions for the weight-shifting operators, we can start com-
puting the 6j symbols required for writing (3.3). All of this follow from straight-
forward but tedious application of (1.179) and its reduction to two-point functions
(1.218). All the required expressions for two- and three-point functions are explic-
itly written in section 1.4.

3.4.1 Two-point 6j symbols

The 6j symbols from two-point functions in (3.3) is computed via (1.218). It is
easy to check that

∂Zi1 · ∂Zj1 〈[∆, ρ](P1, Z
k
1 )[∆, ρ](P2, Z

l
2)〉 = O(X2

2 , Z
m
2 ·X2, Z

m
2 · Zn2 ), (3.16)

∂Zi1 · ∂P1〈[∆, ρ](P1, Z
k
1 )[∆, ρ](P2, Z

l
2)〉 = O(X2

2 , Z
m
2 ·X2, Z

m
2 · Zn2 ), (3.17)

hence we can ignore all the terms containing these derivatives in the weight-shifting
differential operators which reduces the complexity of the computation to a mini-
mum. Performing the computation results in

{
[∆, (`1, `2 − 1)] 1 [∆, (`1, `2, )]

[∆, (`1, `2)] (1) [∆, (`1, `2 − 1)]

}•0(0+)

•0(0−)

= − (∆ + `2 − 2)
`2(`2 + 1)(d− 3−∆ + `2)(d− 4 + `1 + `2) , (3.18)

for the recursion II, and

{
[∆, (`1, `2, `3 − 1)] 1 [∆, (`1, `2, `3)]

[∆, (`1, `2, `3)] (1) [∆, (`1, `2, `3 − 1)]

}•0(00+)

•0(00−)

= (∆ + `3 − 3)(`3 − `1 − 2)
`3(d− 4−∆ + `3)(d− 5 + `1 + `3) , (3.19)

for the recursion I.

3.4.2 Three-point 6j symbols

To compute the three-point function 6j symbols, we use (1.179), where the ‘bub-
ble’ coefficients are defined in (1.178). The advantage of this expression compared
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3. Seeds for spinning partial waves

to (1.176) is that it does not involve a sum over different three-point functions on
the right hand side, and moreover it only involves conformally invariant quanti-
ties.3 The bubble coefficients can be read off from (1.178) by applying it to the
corresponding two-point function, i.e.

D(a)
i · D

(b)
i 〈Φ

′
i(Pi)Φ′i(Pj)〉 =

(
Φ′i

Φi (1)

)ab
〈Φ′i(Pi)Φ′i(Pj)〉, (3.20)

where D(b)
i : Φ′i → Φi and D(a)

i : Φi → Φ′i.

Now we present a few of the required 6j symbols for recursion I in (3.3). Some
of the expressions are quite lengthy so we have compiled the complete list into a
Mathematica file which can be found at [125].{

[∆3, (`2)] [∆4, (0)] [−1 + ∆3, (`2)]
[∆, (`1,−1 + `2)] (1) [∆, (`1, `2)]

}• 0(0−0)

1 +(000)

=
(−6 + d)(∆−∆3 + ∆4 + `1)`2(1 + `2)(−5 + d+ `2)(−4 + d+ 2`2)

2(d− 2∆3)(−2 + d−∆3)(−3 + ∆3)(−2 + ∆3)(−1 + d−∆3 + `2)(−1 + ∆3 + `2)(−6 + d+ 2`2)
,

(3.21)

{
[∆3, (`2)] [∆4, (0)] [−1 + ∆3, (`2)]

[∆, (`1,−1 + `2)] (1) [∆, (`1, `2)]

}• 0(0−0)

2 +(000)

=
(−6 + d)`2(1 + `2)(−5 + d+ `2)(−3 + d−∆ + ∆3 −∆4 + `2)(−4 + d+ 2`2)

2(d− 2∆3)(−2 + d−∆3)(−3 + ∆3)(−2 + ∆3)(−1 + d−∆3 + `2)(−1 + ∆3 + `2)(−6 + d+ 2`2)
,

(3.22)

{
[∆3, (`2)] [∆4, (0)] [∆3, (−1 + `2)]

[∆, (`1,−1 + `2)] (1) [∆, (`1, `2, )]

}• 0(0−0)

1 0(+00)

=
`2(1 + `2)(−5 + d+ `2)(−2 + d−∆ + `2)(−2 + d−∆3 + `2)(−3 + d+ `1 + `2)(−4 + d+ 2`2)2

(−3 + d+ `2)(−1 + d−∆3 + `2)(−1 + ∆3 + `2)(−6 + d+ 2`2)(−2 + d+ 2`2)
,

(3.23)

{
[∆3, (`2)] [∆4, (0)] [∆3, (`2, 1)]

[∆, (`1,−1 + `2)] (1) [∆, (`1, `2)]

}• 0(0−0)

1 0(0−0)

= −
(−∆ + ∆3 −∆4 − `1)(−∆ + ∆3 + ∆4 + `1)(−1 + `2)`2(−5 + d+ `2)(−4 + d+ 2`2)

4(−2 + ∆3)(2− d+ ∆3)(−3 + d+ `2)(−6 + d+ 2`2)
, (3.24)

{
[∆3, (`2)] [∆4, (0)] [∆3, (1 + `2)]

[∆, (`1,−1 + `2)] (1) [∆, (`1, `2)]

}• 0(0−0)

1 0(−00)

= −
(−6 + d)(∆− ∆3 −∆4 − `1)(∆−∆3 + ∆4 + `1)`2(−5 + d+ `2)(−4 + d+ 2`2)

2(2 + `2)(−3 + d+ `2)(−1 + d−∆3 + `2)(−1 + ∆3 + `2)(−6 + d+ 2`2)(−2 + d+ 2`2)
.

(3.25)
3The one disadvantage of this method is that, for some cases, contracting two weight-shifting

operators and applying it to a three-point function is computationally intensive. For those cases,
one can use (1.176) and solve for the missing 6j symbols.
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3.4. Computation of coefficients

3.4.3 Normalization coefficient

Now we want to compute the coefficients Cmn in (3.3), given by

C0(0+)0(+0)〈[∆1, (`2)](P1, Z
k
1 )[∆2, (0)](P2)[∆, (`1, `2)](P0, Z

l
0)〉

= D0(+00)
1 · D0(0+0)

0 〈[∆1, (`2 − 1)](P1, Z
k
1 )[∆2, (0)](P2)[∆, (`1, `2 − 1)](P0, Z

l
0)〉,
(3.26)

for the recursion II, and

C0(00+)0(0+)〈[∆1, (`2, `3)](P1, Z
k
1 )[∆2, (0)](P2)[∆, (`1, `2, `3)](P0, Z

l
0)〉

= D0(0+)
1 ·D0(00+)

0 〈[∆1, (`2, `3−1)](P1, Z
k
1 )[∆2, (0)](P2)[∆, (`1, `2, `3−1)](P0, Z

l
0)〉,
(3.27)

for the recursion I. This results in

C0(0+)0(+0) = (∆ + `2 − 2)(∆1 + `2 − 2), (3.28)

C0(00+)0(0+) = (`3 − `1 − 2)(`3 − `2 − 2)
(`3 − `2 − 1) (∆ + `3 − 3)(∆1 + `3 − 3). (3.29)

3.4.4 Differential basis

The last ingredient for the recursion (3.3) is to find a differential basis

〈Φ′3ϕ4O〉(a) =
∑
e,Φ′′3

W(a)
(e) D

(e)Φ′3ϕ4
Φ′′3ϕ′4

〈Φ′′3ϕ′4O〉, (3.30)

where the operators D are built out of contractions of weight-shifting differential
operators:

Da;b
ij ≡ (Dai · Dbj). (3.31)

In particular, for the recursion I these must implement the transformations

[∆′4, (0)]× [∆′′3 , (`2, `3 − 1)]→ [∆4, (0)]×



[∆3 − 1, (`2, `3)]
[∆3, (`2 + 1, `3)]
[∆3, (`2, `3 + 1)]
[∆3, (`2, `3, 1)]

[∆3, (`2 − 1, `3)]
[∆3 + 1, (`2, `3)]

, (3.32)
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3. Seeds for spinning partial waves

whereas for the recursion II we need

[∆′4, (0)]× [∆′′3 , (`2 − 1)]→ [∆4, (0)]×


[∆3 − 1, (`2)]
[∆3, (`2 + 1)]
[∆3, (`2, 1)]

[∆3 + 1, (`2)]

. (3.33)

Note that ∆′′3 and ∆′4 are generally given by ∆3 + i and ∆4 + j, respectively, for
arbitrary i, j ∈ Z. In principle, adding enough weight-shifting operator contrac-
tions, we can have a differential basis with i = j = 0 at the expense of increasing
the order of derivatives. In here we will keep the order to a minimum, thus for the
cases where (3.32) and (3.33) require changing the spin weights by two units, we
use the following basis

D+(00);(a)
43 D+(00);(b)

43 , D+(00);(a)
43 D−(00);(b)

43

D−(00);(a)
43 D+(00);(b)

43 , D−(00);(a)
43 D−(00);(b)

43 . (3.34)

On the other hand, for the cases in (3.32) and (3.33) where the spin weights change
by one unit, we use

D+(00);(b)
43 , D−(00);(b)

43 . (3.35)

Therefore the differential operators that implement (3.32) and (3.33) must be
either

〈Φ′3ϕ4O〉(a) =W(b)(c);(a)
Φ′3ϕ4O;1 D

+(00);(b)
43 D+(00);(c)

43 〈Φ′−b−c3 ϕ
−2(0)
4 O〉

+W(b)(c);(a)
Φ′3ϕ4O;2 D

+(00);(b)
43 D−(00);(c)

43 〈Φ′−b−c3 ϕ4O〉

+W(b)(c);(a)
Φ′3ϕ4O;3 D

−(00);(b)
43 D+(00);(c)

43 〈Φ′−b−c3 ϕ4O〉

+W(b)(c);(a)
Φ′3ϕ4O;4 D

−(00);(b)
43 D−(00);(c)

43 〈Φ′−b−c3 ϕ
2(0)
4 O〉, (3.36)

or

〈Φ′3ϕ4O〉(a) =W(c);(a)
Φ′3ϕ4O;1D

+(00);(c)
43 〈Φ′−c3 ϕ

−1(0)
4 O〉

+W(c);(a)
Φ′3ϕ4O;2D

−(00);(c)
43 〈Φ′−c3 ϕ

1(0)
4 O〉, (3.37)

where the short hand notation of an operator φ with a superscript a means that a
numerical factor has been added to the conformal weights of the representation of
φ = [∆, (`)]. For example if a = 0(+1) then the representation of φ−a is [∆, (`−1)],
etc. All the coefficients W for both recursions are given in [125]. Here we give one
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3.5. Seed partial wave recursion relations

example to elucidate the form of these expressions:

〈[∆3−1, (`2)][∆4, (0)][∆, (`1, `2−1)]〉(2) =
1

2(d− 2∆4)(`1 − `2 + 1)(∆ + `2 − 2)(∆3 + `2 − 3)

×
( (d− 6)(∆4 −∆3 −∆ + `1 − 2`2 + 4)

(∆4 − d+ 2)(∆4 − d+ 1)(∆4 − 3)(∆4 − 2)
D+(00);0(+0)

43 Σ0,−1

+(∆−∆3 + ∆4 + `1)(∆3 + ∆4 + `1 −∆− 2)(∆3 + ∆4 + 2`2 − `1 − 4)D−(00);0(+0)
43 Σ0,1

)
× 〈[∆3 − 1, (`2 − 1)][∆4, (0)][∆, (`1, `2 − 1)]〉, (3.38)

where Σa,b increases the dimension of ∆3 by a and the dimension of ∆4 by b.

3.5 Seed partial wave recursion relations

Putting everything together results in the following recursion relations

Recursion I

W(`1,`2,`3)

=
(
d̄1Σ0,−2 + d̄2Σ−1,−1 + d̄3Σ−1,1 + d̄4 + d̄5Σ1,−1 + d̄6Σ1,1 + d̄7Σ0,2)W(`1,`2,`3−1),

(3.39)

where Σ is defined the same way as above and the differential operators d̄i are
given by

d̄1 = v̄11D0(0+);−(00)
13 D+(00);0(+0)

43 D+(00);0(0+)
43 +v̄12D0(0+);0(0−)

13 D+(00);0(0+)
43 D+(00);0(0+)

43

+ v̄13D0(0+);0(00−)
13 D+(00);0(00+)

43 D+(00);0(0+)
43 , (3.40)

d̄2 = v̄2D0(0+);+(00)
13 D+(00);0(0+)

43 , d̄3 = v̄3D0(0+);+(00)
13 D−(00);0(0+)

43 ,

d̄5 = v̄5D0(0+);−(00)
13 D+(00);0(0+)

43 , d̄6 = v̄6D0(0+);−(00)
13 D−(00);0(0+)

43 , (3.41)

d̄4 = v̄41D0(0+);0(0+)
13 + v̄42D0(0+);0(−0)

13 D−(00);0(+0)
43 D+(00);0(0+)

43

+ v̄43D0(0+);0(−0)
13 D+(00);0(+0)

43 D−(00);0(0+)
43 + v̄44D0(0+);0(0−)

13 D−(00);0(0+)
43 D+(00);0(0+)

43

+v̄45D0(0+);0(0−)
13 D+(00);0(0+)

43 D−(00);0(0+)
43 ,+v̄46D0(0+);0(00−)

13 D−(00);0(00+)
43 D+(00);0(0+)

43

+ v̄47D0(0+);0(00−)
13 D+(00);0(00+)

43 D−(00);0(0+)
43 , (3.42)

d̄7 = v̄71D0(0+);0(−0)
13 D−(00);0(+0)

43 D−(00);0(0+)
43 +v̄72D0(0+);0(0−)

13 D−(00);0(0+)
43 D−(00);0(0+)

43

+ v̄73D0(0+);0(00−)
13 D−(00);0(00+)

43 D−(00);0(0+)
43 . (3.43)
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Recursion II

W(`1,`2,0)

=
(
d1Σ0,−2 + d2Σ−1,−1 + d3Σ−1,1 + d4 + d5Σ1,−1 + d6Σ1,1 + d7Σ0,2)W(`1,`2−1,0),

(3.44)

where the differential operators di are

d1 = v11D0(+0);0(−0)
13 D+(00);0(+0)

43 D+(00);0(+0)
43

+ v12D0(+0);0(0−)
13 D+(00);0(+0)

43 D+(00);0(0+)
43 , (3.45)

d2 = v2D0(+0);+(00)
13 D+(00);0(+0)

43 , d3 = v3D0(+0);+(00)
13 D−(00);0(+0)

43 ,

d5 = v5D0(+0);−(00)
13 D+(00);0(+0)

43 , d6 = v6D0(+0);−(00)
13 D−(00);0(+0)

43 , (3.46)

d4 = v41D0(+0);0(+0)
13 + v42D0(+0);0(−0)

13 D−(00);0(+0)
43 D+(00);0(+0)

43

+v43D0(+0);0(−0)
13 D+(00);0(+0)

43 D−(00);0(+0)
43 +v44D0(+0);0(0−)

13 D−(00);0(+0)
43 D+(00);0(0+)

43

+ v45D0(+0);0(0−)
13 D+(00);0(+0)

43 D−(00);0(0+)
43 , (3.47)

d7 = v71D0(+0);0(−0)
13 D−(00);0(+0)

43 D−(00);0(+0)
43

+ v72D0(+0);0(0−)
13 D−(00);0(+0)

43 D−(00);0(0+)
43 . (3.48)

For both cases, the coefficients v̄ij and vij are numerical factors depending on the
conformal weights of both the external and exchanged operators. The explicit
form of these coefficients is given in [125].

3.6 Discussion

The main results in this chapter are the recursion relations (3.39) and (3.44).
These allow us to write any spinning seed partial wave W[∆,(`1,`2,`3)] in terms
of the scalar partial waves W[∆,(`1)] of [68, 69]. Note that in its current form,
W[∆,(`1,`2,`3)] appears in the four-point function

〈[∆1, (`2, `3)][∆2, (0)][∆3, (`2, `3)][∆4, (0)]〉, (3.49)

which can be related to the partial wave of the same representation in

〈[∆1, (l1)][∆2, (l2)][∆3, (l3)][∆4, (l4)]〉, (3.50)
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for arbitrary li via (1.217). We do not present the explicit expressions for doing
that here, since in general, the operators in a representation [∆, (`1, `2, `3)] can
appear in more than one four-point function of traceless-symmetric operators. For
example, [∆, (`, 2)] appears in both 〈T1φ2T3φ4〉 and 〈V1V2V3V4〉, where φ, V , and
T represent a scalar, a vector and a spin-2 tensor respectively [37]. Nonetheless, it
would be interesting to set up these equations for particular interesting cases such
as for four conserved spin-2 tensors.

In the process of deriving (3.39) and (3.44) we also computed useful quantities
in the context of the weight-shifting operator formalism, first coined in [46] (also
reviewed in section 1.5). These include the computation of many coefficients that
relate two- and three-point functions in different representations, given partially in
section 3.4. The full set of coefficients can be found in [125] in a more usable form.
Another result is the computation of explicit weight-shifting operators associated
to the vector representation for operators of up to three rows, given in section 3.3.

From the factorized form of these weight-shifting operators, it seems like a gen-
eralization to arbitrary number of rows should be feasible. It could be useful to
first understand how each of the terms in parenthesis behaves under (1.170) and
then figure out how to construct the coefficients in general. The basis of coeffi-
cients used in section 3.3 seems to shed some light onto the possible generalization;
namely, one of the indices in aij corresponds to the polatization of each term in
parenthesis (P for i = 0), while the other index is the label of the polarization
whose weight is being altered by the differential operator.4 Another interesting
generalization is to consider the weight-shifting operators for finite-dimensional
representations other than the vector. As seen in subsection 3.4.4, we used prod-
ucts of vector weight-shifting operators in order to change the conformal weights
of a single field by more than one unit. However, this generically increases the
order of derivatives. By constructing higher representation weight-shifting opera-
tors, one could achieve the same result with less derivatives. A known example of
this is the differential operator D1 ij , defined in (1.180), which is of order one in
derivatives but deceases the dimension by one and increases the spin by one, for
traceless-symmetric fields.

It would be interesting to use (3.39) and (3.44) to compute all conformal blocks
of 〈TTTT 〉 in arbitrary dimensions d. This can then be used in both numerical
and analytical approaches to the bootstrap program for finding universal bounds
on the CFT data of conformal field theories. The firs step in this direction has
already been taken in d = 3 by [126] , where bounds on the stress-tensor OPE
coefficients and the central charge where found numerically, and when assuming

4There are some exceptions to that rule for the terms given by a difference of coefficients.
Nevertheless, they also show an interesting pattern.
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3. Seeds for spinning partial waves

gaps in the spectrum of lower spin operators, it reduces the space of consistent
theories to a finite region in CFT data space.

The bootstrap equations (1.227) are usually set up in terms of conformal blocks
(1.186). This implies passing the derivatives of (3.39) and (3.44) through the ki-
netic factorK4 as well as the four-point tensor structuresQ, to obtain an expression
involving derivatives with respect to the cross-ratios U, V from (1.119). However,
in its present form, this is not easy to do given the large order in derivatives. As
mentioned before, this could be simplified by using higher representation mixed-
symmetric operators. An alternative is to use the conformal symmetry to fix the
coordinates Pi to a two-dimensional region, known as the conformal frame [38],
and map the derivatives to this space. A similar technique was applied successfully
in [126], and it could reduce the computational load when computing derivatives.
The final result in terms of U and V then applies to any configuration of points
due to conformal symmetry.
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4 Analytic bounds
from spinning

correlators

On analytic constraints from causality and light-cone bootstrap
for correlators with spin

Even though conformal symmetry places a large amount of constrains on quan-
tum field theories, carving out the space of consistent CFT data is no easy task.
In order to get a handle on this problem, many tools have been developed both
analytical and numerical. In this chapter, based on [2], we employ two analytical
techniques to extract non-trivial universal information for conformal field theories
in arbitrary dimensions.

4.1 Introduction

Among the many bootstrap approaches, here we will focus on analytical tech-
niques. In particular we explore two techniques. One of them involves studying
the bootstrap in the lightcone limit, presented in subsection 1.7.3. This reveals a
direct relation between couplings of low-twist operators and the asymptotic behav-
ior of CFT spectra at large spin [88–92,96–99,102,127–129]. The other technique,
presented in section 1.8 (based on [94]) uses the fact that CFT unitarity/reflection
positivity implies both causality and sum rules, leading to constraints on the signs
of products of OPE coefficients. These constraints are closely related to the bound
on chaos [130,131] as discussed in the context of CFT correlators in [132–135].

As a result, we obtain that the ‘conformal collider bounds’, first derived in [136],
must hold in any unitary, parity-preserving conformal field theory with a unique
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4. Analytic bounds from spinning correlators

stress energy tensor. In addition, by relating these bounds to the anomalous
dimensions of high spin double-trace operators we find that the dual gravitational
theory must be attractive.

For context let us quickly review the conformal collider bounds as proposed
in [136]. We first produce a localized perturbation via the insertion of an operator
O near the origin and then we measure the integrated energy flux in a fixed spatial
direction ~n at infinity, using a ’calorimeter’ E(~n). In a CFT this corresponds to

〈E(~n)〉 ≡ 〈OE(~n)O〉
〈OO〉

, (4.1)

where the energy flux is given by

E(~n) = lim
r→∞

r2
∫ ∞
−∞

niT
0i(t, r~n)dt, (4.2)

with T the stress-tensor. Then the assumption of [136] is that these ’calorimeters’
should measure positive energies and thus 〈E(~n)〉 ≥ 0. In CFT language this means
that the possible values of the OPE coefficients in the three-point function 〈OTO〉
must be constrained. This is a very strong statement since the bounds are theory-
independent. For example, for O = T in d = 4, the OPE coefficients of 〈TTT 〉 are
related to the conformal trace anomaly charges a and c on a general background
[137]. Thus positivity of the integrated energy flux implies the conformal collider
bounds

31
18 ≥

a

c
≥ 1

3 , (4.3)

which are universal for any 4d CFT with a stress-tensor.

Note that in [136], assuming the positivity of 〈E(~n)〉 leads to the conformal
collider bounds. However, here they will be a consequence of CFT first principles,
such as unitarity, associativity of the operator algebra, and causality.

This chapter is organized as follows. In section 4.2 we present the four-point
functions of interest as well as their conformal block expansion characteristics for
different OPE channels. In section 4.3 we use the light-cone bootstrap to find how
the spectrum of large-spin double-twist operators must be related to the minimal
twist operators, in order for the CFT to be consistent. In particular we find their
twist, anomalous dimensions, and OPE coefficients in terms of the twist and OPE
coefficients of the stress-tensor. In section 4.4 we use causality arguments for
spinning correlators in order to obtain constraints on particular combinations of
OPEs involving the stress-tensor. Finally in section 4.5 we combine the results of
the previous two sections to conclude that the anomalous dimensions of large-spin
double-twist operators must have a fixed sign. We conclude in section 4.6. Details
and extensions of our computations are presented in appendices A, B, and C.

110



4.2. Spinning conformal block expansions

4.2 Spinning conformal block expansions

The objects of study in this chapter are the spinning correlators 〈JφφJ〉, 〈V φφV 〉,
and 〈TφφT 〉, where the symbols φ, J , V , and T represent a scalar φ = [∆φ, (0)],
a conserved vector J = [∆J = d − 1, (1)], a non-conserved vector V = [∆V , (1)],
and the stress-tensor T = [∆T = d, (2)] respectively. Recall from section 1.6 that
for generic symmetric traceless spinning fields O(`i)

i (xi, εi) = Oµ1...µ`εµ1 . . . εµ` ∈
[∆i, (`i)], the four-point has the following s-channel conformal block expansion

〈O`11 (x1, ε1)O`22 (x2, ε2)O`33 (x3, ε3)O`44 (x4, ε4)〉 =

K∆i
4

∑
O,a,b,p

λa12Oλ
b
34Og

∆12,∆34
O,a,b,p (z, z̄)Qp(xi, εi), (4.4)

where the polarizations ε satisfy the properties defined in subsection 1.2.2, and the
cross-ratios z, z̄ are given in (1.230). Additionally, O runs over the operators in
O1×O2, a(b) runs over the three-point function structures of 〈O1O2O〉(〈O3O4O〉),
and p runs over the four-point function tensor structures Qp. Analogous expan-
sions can be written for the t- and u-channels. In particular, for 〈JφφJ〉, we define
the correlator 1

GµνJ (z, z̄) ≡ 〈Jµ(0)φ(z, z̄)φ(1)Jν(∞)〉, (4.5)

where the configuration of points is as in equations (1.250) and (1.251), and con-
sider the following channel decompositions

s-channel: GµνJ (z, z̄) = (zz̄)− 1
2 (∆φ−∆J )

∑
O
λJφOλφJOg

∆Jφ,∆φJ ,µν
O (z, z̄)

= GµνJ,STT (z, z̄) +GµνJ,A(z, z̄), (4.6)

t-channel: GµνJ (z, z̄) = [(1−z)(1−z̄)]−∆φ

∑
O,b

λbJJOλφφOg
0,0,µν
O,b (1−z, 1−z̄),

(4.7)

where we have absorbed the tensor structures Qp into the conformal blocks g, since
in our configuration they will also become functions of z and z̄ (which is not true for
generic configurations). In addition, as seen in chapter 2, the J ×φ OPE contains
in general two families of operators. Thus we split the full contribution of each
family to the four-point function into GµνJ,STT (z, z̄) and GµνJ,A(z, z̄), where STT ≡
O[`] = [∆O[`] , (`)] is traceless and symmetric, and A ≡ O[`,1] = [∆O[`,1] , (`, 1)]
has a pair of antisymmetrized indices and the other (` − 1) indices symmetrized.

1Here we define O(∞) as limx→∞ x2∆OO(x).
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4. Analytic bounds from spinning correlators

In this case J is a conserved current, so ∆J = d − 1 (c.f. subsection 1.4.3). In
the J × J OPE, operators with spin can appear with two independent parity-
preserving tensor structures, while scalars have a unique tensor structure. Thus
the index b accounts for that. Note that the u-channel is similar to the s-channel
with z → 1/z, z̄ → 1/z̄, but we will not need it explicitly.

Similarly, for the case of a non-conserved current V , 〈V φφV 〉, we have

GµνV (z, z̄) ≡ 〈V µ(0)φ(z, z̄)φ(1)V ν(∞)〉, (4.8)

s-channel: GµνV (z, z̄) = (zz̄)− 1
2 (∆φ−∆V )

∑
O,a,b

λaV φOλ
b
φVOg

∆V φ,∆φV ,µν
O (z, z̄)

= GµνV,STT (z, z̄) +GµνV,A(z, z̄), (4.9)

t-channel: GµνV (z, z̄) = [(1− z)(1− z̄)]−∆φ

∑
O,c

λcV VOλφφOg
0,0,µν
O,b (1− z, 1− z̄),

(4.10)

where ∆V is not fixed. As seen in chapter 2 the φ× V OPE has two independent
tensor structures for general spinning O, so the indices a, b run over {1, 2}. On
the other hand, c runs over tensor structures in the V × V OPE. For example for
O = T , c ∈ {1, 2, 3}.

Finally, for the stress-tensor case 〈TφφT 〉,

GµνρσT (z, z̄) ≡ 〈Tµν(0)φ(z, z̄)φ(1)T ρσ(∞)〉, (4.11)

s-channel: GµνρσT (z, z̄) = (zz̄)− 1
2 (∆φ−∆T )

∑
O
λTφOλφTOg

∆Tφ,∆φT ,µνρσ
O (z, z̄)

= GµνρσT,STT (z, z̄) +GµνρσT,A (z, z̄) +GµνρσT,B (z, z̄), (4.12)

t-channel: GµνρσT (z, z̄)

= [(1− z)(1− z̄)]−∆φ

∑
O,b

λbTTOλφφOg
0,0,µνρσ
O,b (1− z, 1− z̄), (4.13)

where conservation of T implies ∆T = d (c.f. subsection 1.4.3). In general d ≥
4, there are three types of operators in the T × φ OPE, so we split the four-
point function into GµνρσT,STT (z, z̄), GµνρσT,A (z, z̄), and GµνρσT,B (z, z̄), where STT and
A are defined above, and B ≡ O[`,2] = [∆O[`,2] , (`, 2)] has two pairs of indices
antisymmetrized and the other (`− 2) indices symmetrized. The index b in (4.13)
sums over the the different tensor structures for operators in the T × T OPE.
For general operators O with spin, b runs over three different parity-preserving
structures in d ≥ 4, whereas a scalar O has a unique tensor structure.
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4.3 The light-cone bootstrap

4.3.1 Overview

First we look at the light-cone bootstrap technique presented in subsection 1.7.3.
The main idea is to study the bootstrap equation (1.227) for the s- and t-channels,
in the light-cone limit 2

z̄ → 1, z finite. (4.14)

The t-channel expansion is then organized as a sum over twists τ = ∆ − ` and
spins `, where the leading order contribution is given by the identity operator (zero
twist). Using the particular t-channel expansions (4.7), (4.10), (4.13) we see that
this corresponds to a power law singularity (1 − z̄)−∆φ . On the other hand, the
s-channel expansions (4.6), (4.9), (4.12) contain at most a ln(1 − z̄) singularity,
as seen in subsection 1.7.3. Therefore to reproduce this singularity, the s-channel
must contain infinite large-spin operators as established in [88].

In what follows, we study the implications of this technique for the partic-
ular spinning correlators mentioned in the previous section. The algorithm for
extracting information regarding the large-spin operators is already described in
subsection 1.7.3 for scalar four-point functions. In our case, the four-point func-
tions carry the spin of the external operators, thus we apply the same algorithm
for the different components. The relevant spinning conformal blocks for each case
are computed in appendix A, in terms of the well-known scalar conformal blocks.

4.3.2 Bounds from 〈JφφJ〉

We will work with two polarizations of the 4-point function (following [91]), G++
J

and GttJ , where + is in the direction of z (i.e. ε = (i, 1, 0, 0, . . . )), and t is transverse
to the z plane (e.g. ε = (0, 0, 1, 0, . . . ), etc.). Recall that the s-channel expansion
contains contributions from both GJ,STT and GJ,A, but as shown in (4.117) and
(4.108), G++

J,A is subleading with respect to G++
J,STT in the light-cone limit (at finite

z), while both GttJ,STT and GttJ,A contribute equally to GttJ . In other words, when
matching singularities in (1− z̄), the following ‘triangular structure’ holds:

G++
J = G++

J,STT

GttJ = GttJ,STT +GttJ,A. (4.15)
2Note that in 1.7.3 we took the small z limit, so the roles of the s- and t-channels are reversed

here.
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4. Analytic bounds from spinning correlators

This means that when solving the light-cone bootstrap constraints, we first fix the
CFT data for STT from the ++ polarization, and then plug that result into the
tt polarization to fix the CFT data for A.

Leading order matching

To reproduce the singularity from the identity at leading order in (1 − z̄), the
s-channel expansion (4.6) must contain two families of large spin double-twist
operators: [Jφ][`]n,` ∈ STT , with the schematic form Jµ1∂(µ2 . . . ∂µ`)∂2nφ, and
[Jφ][`,1]

n,` ∈ A, with the schematic form J [µ1∂(µ2]∂µ3 . . . ∂µ`)∂2nφ. In the ` → ∞
limit, the anomalous dimensions of these operators vanish as a power law in ` and
their twists must be of the form

τ[Jφ][`]
n,`

∣∣
`→∞ = d− 2 + ∆φ + 2n, (4.16)

τ[Jφ][`,1]
n,`

∣∣
`→∞ = d− 1 + ∆φ + 2n, (4.17)

where n ≥ 0 is a finite integer. Furthermore, the large ` asymptotics of the OPE
coefficients for double twist operators are fixed to (see Appendix B for a formula
to do the sum over n)

(λ
Jφ[Jφ][`]

n,`

)2 =
(1− d

2 + ∆φ)n(d2 − 1)n
4nn!(∆φ + n− 1)n

(λ
Jφ[Jφ][`]0,`

)2, (4.18)

(λ
Jφ[Jφ][`,1]

n,`

)2 =
(1− d

2 + ∆φ)n(d2 )n
4nn!(∆φ + n)n

(λ
Jφ[Jφ][`,1]

0,`
)2, (4.19)

where

(λ
Jφ[Jφ][`]0,`

)2 = CJ
√
π2−∆φ−d+5

2`Γ(∆φ)Γ(d) `
1
2 (2∆φ+2d−7), (4.20)

(λ
Jφ[Jφ][`,1]

0,`
)2 = CJ

√
π(d/2− 1)2−∆φ−d+4

2`Γ(∆φ)Γ(d) `
1
2 (2∆φ+2d−5). (4.21)

Next-to-leading order matching

The next-to-leading order contribution in the t-channel comes from the stress
tensor conformal block, which will contain a log(z) term.3 Given that the s-channel
blocks are proportional to z

τ
2 , it is clear that adding an anomalous dimension

τ → τ + γ and expanding for small γ reproduces the log(z). This implies that at
3This block is computed via a different operator (4.152) acting on the scalar block, thus the

log term appears in analogy with (1.236)
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next order in O(1/`), the twists of the large-spin double-twist operators must be
given by

τ[Jφ][`]
n,`

= d− 2 + ∆φ + 2n+
γ[Jφ][`]n
`d−2 + . . . , (4.22)

τ[Jφ][`,1]
n,`

= d− 1 + ∆φ + 2n+
γ[Jφ][`,1]

n

`d−2 + . . . . (4.23)

The factor `d−2 is chosen such that after the large spin sum in the s-channel, we
get the correct (1 − z̄) factor multiplying the log(z) term in the t-channel stress
tensor block.

At this point the (1− z̄) dependence is compatible on both sides. What is left
is to perform the sum over n and demand that the terms zk log(z) match for all
k. For this to work, the n-dependent coefficients γn in (4.22) and (4.23) must be

γ[Jφ][`]n
=

(−1)nn!Γ(∆φ − d
2 + 1)Γ(∆φ + n− d

2 + 1)
(d2 − 1)nΓ(d2 + 1)2 γ[Jφ][`]0

×
n∑
i=0

(−1)i(i+ 1)2
d
2
(∆φ + n− 1)i

(n− i)!Γ(∆φ − d
2 + 1 + i)2 3F2

(
−i,−i,∆φ − d
−d2 − i,−

d
2 − i

; 1
)
, (4.24)

γ[Jφ][`,1]
n

=
(−1)nn!Γ(∆φ − d

2 + 1)Γ(∆φ + n− d
2 + 1)

(d2 )nΓ(d2 + 1)2 γ[Jφ][`,1]
0

×
n∑
i=0

(−1)i(i+ 1)2
d
2
(∆φ + n)i

(n− i)!Γ(∆φ − d
2 + 1 + i)2 3F2

(
−i,−i,∆φ − d
−d2 − i,−

d
2 − i

; 1
)
, (4.25)

where

γ[Jφ][`]0
= λφφT

(d− 2)Γ(d+ 1)Γ(d+ 2)Γ(∆φ)
[
dΓ
(
d
2
)
CJ − 4π d2 λJJT

]
16π d2

√
CTCJΓ

(
d
2 + 1

)3 Γ
(
−d2 + ∆φ + 1

) , (4.26)

γ[Jφ][`,1]
0

= λφφT
Γ(d+ 1)Γ(d+ 2)Γ(∆φ)

[
2(d− 1)π d2 λJJT − (d− 2)Γ

(
d
2 + 1

)
CJ

]
4π d2
√
CTCJ(d− 2)Γ

(
d
2 + 1

)3 Γ
(
−d2 + ∆φ + 1

) .

(4.27)

Details of this calculation are given in Appendix B. Our conventions for the OPE
coefficients and the two-point function normalizations CJ and CT are given in
Appendix C.
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4.3.3 Bounds from 〈V φφV 〉

We now generalize the above discussion to external non-conserved operators (4.8),
for unitary V , i.e. ∆V > d−1. For symmetric traceless O, the three-point function
〈V φO〉, can be computed as

(b1D1 12Σ1,0 + b2D2 12Σ0,1) V `3

P
1
2 (∆V +∆φ−∆O−`)

12 P
1
2 (∆V +∆O+`−∆φ)

13 P
1
2 (∆φ+∆O+`−∆V )

23

,(4.28)

where Dl ij are in (1.180) and Σi,j increases the dimension of the operator at 1(2)
by i(j). Using these, one can compute the conformal blocks as in Appendix A. For
mixed-symmetric A = [∆A, (`, 1)], the three-point function 〈V φA〉 has one tensor
structure, as in the conserved case (c.f. (1.145)). In this case, the conformal blocks
are the same as the ones for conserved V .

Leading order matching

Matching the identity block in the t-channel leads again to the existence of two
classes of large spin double-twist operators [V φ][`]n,` and [V φ][`,1]

n,` , with twists

τ[V φ][`]
n,`

∣∣
`→∞ = τV + ∆φ + 2n, (4.29)

τ[V φ][`,1]
n,`

∣∣
`→∞ = τV + 1 + ∆φ + 2n. (4.30)

In addition, the effect of the b1 term must be subleading at small (1− z̄). Therefore
the relevant OPE coefficient is b2 ≡ λ

V φ[V φ][`]
n,`

. For this case we also find the
analogous triangular structure for polarizations (4.15). For n = 0, we find that
the z dependence is matched whenever the OPE coefficients are

(λ
V φ[V φ][`]0,`

)2 =
√
π2−∆V −∆φ+4

Γ(∆V + 1)Γ(∆φ)`
1
2 (2∆V +2∆φ−5), (4.31)

(λ
V φ[V φ][`,1]

0,`
)2 =

√
π(∆V − 1)2−∆V −∆φ+2

Γ(∆V + 1)Γ(∆φ) `
1
2 (2∆V +2∆φ−3), (4.32)

where we normalized the two-point function 〈V V 〉 as

〈V µ(x)V ν(0)〉 = Iµν(x)
x2∆V

12
. (4.33)

Next-to-leading order matching

For the next-to-leading order matching, the t-channel conformal block is computed
by differential operator that changes 〈φφT 〉 → 〈V V T 〉. That is

〈V V T 〉 =
(
e1D1 12D1 21 + e2D2 12D2 21 + e3H12

)
Σ1,1 V 2

3

P
∆V −d/2−1
12 P

d/2+1
13 P

d/2+1
23

.(4.34)
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The relation between the basis ei and the basis used in [138] is

e1 = a3, e2 = −2a2 − a3, e3 = a1 − 2(d/2− 1)a2 + a3(1− d), (4.35)

where the Ward identity additionally imposes the condition

a1 = −(∆V − d+ 1)(a2 + a3). (4.36)

This implies that at next order in O(1/`), the large spin double-twist operators
[V φ] must have twists

τ[V φ][`]
n,`

∣∣
`→∞ = τV + ∆φ + 2n+

γ[V φ][`]n
`d−2 + . . . , (4.37)

τ[V φ][`,1]
n,`

∣∣
`→∞ = τV + 1 + ∆φ + 2n+

γ[V φ][`,1]
n

`d−2 + . . . , (4.38)

where

γ[V φ][`]0
= λφφT

Γ(d+ 2)Γ(∆φ)Γ(∆V + 1)
4
√
CTΓ

(
d
2 + 1

)2 Γ
(
−d2 + ∆φ + 1

)
Γ
(
−d2 + ∆V + 2

)
×
[
a2
(
d2 − 6d+ 4∆V + 4

)
+ 4a3(−d+ ∆V + 1)

]
, (4.39)

γ[V φ][`,1]
0

= λφφT
Γ(d+ 2)Γ(∆φ)Γ(∆V + 1)

2
√
CT (∆V − 1)Γ

(
d
2 + 1

)2 Γ
(
−d2 + ∆φ + 1

)
Γ
(
−d2 + ∆V + 2

)
×
[
2a2

(
−d∆V + d+ ∆2

V − 1
)

+ a3
(
−d∆V + 2d+ 2∆2

V − 2
)]
. (4.40)

4.3.4 Bounds from 〈TφφT 〉

Now we repeat the same calculation for 〈TφφT 〉. In contrast with the vector cases,
now we four external indices. However, similar to the previous cases, we show in
appendix A that at the s-channel expansion has the following triangular structure
in the light-cone limit

G++++
T = G++++

T,STT ,

G+3+3
T = G+3+3

T,STT +G+3+3
T,A ,

G34
T = G34

T,STT +G34
T,A +G34

T,B , (4.41)

where G34
T ≡ 1

2 〈(T
33 − T 44)φφ(T 33 − T 44)〉 so that we can ignore all trace terms

in the four-point function tensor structures, thus simplifying our analysis.

Again, using this structure we can obtain the light-cone bootstrap constraints
for each type of exchange operator separately.
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4. Analytic bounds from spinning correlators

Leading order matching

At leading order in (1 − z̄), matching the identity implies the existence of large
spin operators with the following twist values:

τ[Tφ][`]
n,`

∣∣
`→∞ = d− 2 + ∆φ + 2n, (4.42)

τ[Tφ][`,1]
n,`

∣∣
`→∞ = d− 1 + ∆φ + 2n, (4.43)

τ[Tφ][`,2]
n,`

∣∣
`→∞ = d+ ∆φ + 2n. (4.44)

Next we perform the sum over n which leads to large ` asymptotics of the double
twist OPE coefficients:

(λ
Tφ[Tφ][`]

n,`

)2 =
(1− d

2 + ∆φ)n(d2 − 1)n
4nn!(∆φ + n− 1)n

(λ
Tφ[Tφ][`]0,`

)2, (4.45)

(λ
Tφ[Tφ][`,1]

n,`

)2 =
(1− d

2 + ∆φ)n(d2 )n
4nn!(∆φ + n)n

(λ
Tφ[Tφ][`,1]

0,`
)2, (4.46)

(λ
Tφ[Tφ][`,2]

n,`

)2 =
(1− d

2 + ∆φ)n(d2 + 1)n
4nn!(∆φ + n+ 1)n

(λ
Tφ[Tφ][`,2]

0,`
)2, (4.47)

where

(λ
Tφ[Tφ][`]0,`

)2 = CT

√
π2−∆φ−d+6

Γ(∆φ)Γ(d+ 2)2−`` 1
2 (−7+2∆φ+2d), (4.48)

(λ
Tφ[Tφ][`,1]

0,`
)2 = CT

√
π(d− 1)2−∆φ−d+5

Γ(∆φ)Γ(d+ 2) 2−`` 1
2 (2∆φ+2d−5), (4.49)

(λ
Tφ[Tφ][`,2]

0,`
)2 = CT

√
πd(d− 1)2−∆φ−d+2

Γ(∆φ)Γ(d+ 2) 2−`` 1
2 (2∆φ+2d−3). (4.50)

Details on the summation over n are given in appendix B.

Next-to-leading order matching

Matching the log(z) terms in the t-channel stress-tensor contribution, we get that
the large spin anomalous dimensions are corrected to:

τ[Tφ][`]
n,`

= d− 2 + ∆φ + 2n+
γ[Tφ][`]n
`d−2 + . . . , (4.51)

τ[Tφ][`,1]
n,`

= d− 1 + ∆φ + 2n+
γ[Tφ][`,1]

n

`d−2 + . . . , (4.52)

τ[Tφ][`,2]
n,`

= d+ ∆φ + 2n+
γ[Tφ][`,2]

n

`d−2 + . . . . (4.53)
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4.4. Causality

Finally, performing the sum over n and matching the z dependence in the s- and
t-channels results in the following anomalous dimensions coefficients:

γ[Tφ][`]n
=

(−1)nn!Γ(∆φ − d
2 + 1)Γ(∆φ + n− d

2 + 1)
(d2 − 1)nΓ(d2 + 1)2 γ[Tφ][`]0

×
n∑
i=0

(−1)i(i+ 1)2
d
2
(∆φ + n− 1)i

(n− i)!Γ(∆φ − d
2 + 1 + i)2 3F2

(
−i,−i,∆φ − d
−d2 − i,−

d
2 − i

; 1
)
, (4.54)

γ[Tφ][`,1]
n

=
(−1)nn!Γ(∆φ − d

2 + 1)Γ(∆φ + n− d
2 + 1)

(d2 )nΓ(d2 + 1)2 γ[Tφ][`,1]
0

×
n∑
i=0

(−1)i(i+ 1)2
d
2
(∆φ + n)i

(n− i)!Γ(∆φ − d
2 + 1 + i)2 3F2

(
−i,−i,∆φ − d
−d2 − i,−

d
2 − i

; 1
)
, (4.55)

γ[Tφ][`,2]
n

=
(−1)nn!Γ(∆φ − d

2 + 1)Γ(∆φ + n− d
2 + 1)

(d2 + 1)nΓ(d2 + 1)2 γ[Tφ][`,2]
0

×
n∑
i=0

(−1)i(i+ 1)2
d
2
(∆φ + n+ 1)i

(n− i)!Γ(∆φ − d
2 + 1 + i)2 3F2

(
−i,−i,∆φ − d
−d2 − i,−

d
2 − i

; 1
)
, (4.56)

where

γ[Tφ][`]0,`
= λφφT

22d−5(d− 2)π− d2−1Γ
(
d−1

2
)2 Γ(∆φ)

√
CT (d− 1)Γ

(
−d2 + ∆φ + 1

)
× [(d+ 1)((d− 3)t2 + d− 1) + ((d− 1)d− 4)t4] , (4.57)

γ[Tφ][`,1]
0,`

= λφφT
22d−5π−

d
2−1Γ

(
d−1

2
)2 Γ(∆φ) [(d+ 1)(d(t2 + 2)− 3t2 − 2)− 4t4]
√
CTΓ

(
−d2 + ∆φ + 1

) ,

(4.58)

γ[Tφ][`,2]
0,`

= λφφT
22d−3π−

d
2−1Γ

(
d−1

2
)2 Γ(∆φ) [(d+ 1)(d− t2 − 1)− 2t4]

√
CTΓ

(
−d2 + ∆φ + 1

) . (4.59)

4.4 Causality

4.4.1 Overview

Now we move on to studying the constraints from causality, presented in section
1.8, for 〈JφφJ〉, 〈V φφV 〉, and 〈TφφT 〉. Recall that in Lorentzian signature the
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4. Analytic bounds from spinning correlators

four-point function is multi-valued and has a complex structure of branch points
and branch cuts given by the light-cones of operators within the correlator. Causal-
ity is trivially satisfied in the first sheet of Lorentzian correlators G(z, z̄) (as in,
e.g. (4.5)) that have been analyticity continued from Euclidean ones, following the
recipie of section 1.8. This can be tested by checking that G(z, z̄) is analytic away
from the light-cones. However, constraints on the CFT data appear when requir-
ing that causality holds on the second sheet G(ze−2πi, z̄) also, which is obtained
by taking the operator at z around the branch point at z = 0. In particular, we
want to check that G(ze−2πi, z̄) is analytic in a small region (z, z̄) ∼ (1, 1) near
the light-cone of φ(1). Following the discussion in subsection 1.8.2, the region of
interest is

D = { (σ ∈ C, η ∈ R) | Im σ ≥ 0, |σ| ≤ R ∈ R, 0 < η � R� 1 }, (4.60)

where σ and η are defined by

z = 1 + σ, (4.61)
z̄ = 1 + ησ. (4.62)

With these coordinates, the objects of study are the normalized spinning four-point
functions

GµνJ,η(σ) ≡ (ησ2)∆φGµνJ (1 + σ, 1 + ησ),

ĜµνJ,η(σ) ≡ (ησ2)∆φGµνJ ((1 + σ)e−2πi, 1 + ησ), (4.63)

GµνV,η(σ) ≡ (ησ2)∆φGµνV (1 + σ, 1 + ησ),

ĜµνV,η(σ) ≡ (ησ2)∆φGµνV ((1 + σ)e−2πi, 1 + ησ), (4.64)

and

Gµν,ρσT,η (σ) ≡ (ησ2)∆φGµν,ρσT (1 + σ, 1 + ησ),

Ĝµν,ρσT,η (σ) ≡ (ησ2)∆φGµν,ρσT ((1 + σ)e−2πi, 1 + ησ), (4.65)

for 〈JφφJ〉, 〈V φφV 〉, and 〈TφφT 〉 respectively.

As we saw in subsection 1.8.2, in order to check for analyticity on the second
sheet, one uses reflection positivity of the Euclidean correlator to show that the
s-channel expansion is a polynomial in z, z̄ with positive coefficients. In the case
of scalar correlators this implied that Ĝη is analytic in D, and furthermore that
Re(Gη(σ)− Ĝη(σ)) ≥ 0 for σ ∈ [−R,R].

120



4.4. Causality

Reflection positivity for spinning correlators

For the case of spinning correlators, we consider the following states in the Hilbert
space of radial quantization

|f, ε〉 =
∫ 1

0
dr1

∫ 2π

0
dθ1r

∆J+∆φ

1 f(r1, θ1)φ(r1e
iθ1 , r1e

−iθ1)Jµεµ(0) |0〉 , (4.66)

〈f, ε∗| = 〈0| ε∗νIνρ (∞x̂1)Jρ(∞x̂1)
∫ 1

0
dr2

∫ 2π

0
dθ2r

∆J−∆φ

2 f∗(r2, θ2)φ
(

1
r2
eiθ2 ,

1
r2
e−iθ2

)
,

(4.67)

where
Iµν(x) = ηµν − 2x

µxν

x2 , (4.68)

and f(∞x̂1) ≡ lim
r→∞

f(rx̂1) with x̂1, the unit vector pointing at the x1 = 1
2 (x+ +

x−) direction. In contrast with the scalar case, the inversion tensor Iνρ can get a
sign for different polarizations. In particular I−+ (∞x̂1) = −1, implies that for εµ
pointing in the + direction, reflection positivity 〈f, ε∗| f, ε〉 ≥ 0 leads to a power
series in z, z̄ with negative semidefinite coefficients for the s-channel expansion of
G++
J (z, z̄).

As in the scalar case, these positivity conditions lead to the analyticity of
Ĝ++
J,η (σ) and ĜttJ,η(σ) in D, and furthermore (notice the negative sign in G++

J )

Re(−G++
J,η (σ) + Ĝ++

J,η (σ)) ≥ 0, (4.69)

Re(GttJ,η(σ)− ĜttJ,η(σ)) ≥ 0, σ ∈ [−R,R]. (4.70)

For the case of GV , a completely analogous expression holds. For GT , only G+t+t
T

changes sign:

Re(G++++
T,η (σ)− Ĝ++++

T,η (σ)) ≥ 0, (4.71)

Re(−G+3+3
T,η (σ) + Ĝ+3+3

T,η (σ)) ≥ 0, (4.72)

Re(G34
T,η(σ)− Ĝ34

T,η(σ)) ≥ 0, σ ∈ [−R,R], (4.73)

From the refined positivity condition 〈f, ε∗|PO|f, ε〉 ≥ 0, we see that analyticity
and boundedness still holds for each of the exchanged representations (i.e. STT ,
A, B) that contribute to the s-channel correlator.

Correlators on the second sheet

Note from the previous section that, in the light-cone, (z̄ → 1, z finite), the t-
channel has a log(z) dependence which develops a term proportional to 2πi when
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4. Analytic bounds from spinning correlators

going around z = 0. Therefore, given that the spinning correlators in the t-
channel are obtained by applying differential operators on the scalar correlator,
the spinning expressions for Ĝ can be computed from (1.261) for Om = T , the
stress-tensor. This leads, generically, to 4

Ĝη(σ) = Gη(σ)− iβ η
d
2−1

σ
+ . . . . (4.74)

Then following the integration procedure in subsection 1.8.2 implies

β = 1
π

lim
R→0

lim
η→0

η1− d2
∫ R

−R
dσRe(Gη(σ)− Ĝη(σ)), (4.75)

where the sign of the integrand implies a constraint on the sign of β.

Constraints from different contributions to the s-channel

Recall that in our polarizations, the s-channel has a triangular structure in the
light-cone: (4.15), (4.41). Moreover, using light-cone bootstrap techniques, we
have shown in Appendix A that, order-by-order in (1− z̄), different polarizations
of the same exchanged operator are related to each other. More precisely, for GJ ,
we have that the s-channel expansion must be

G++
J,STT = (1− z̄)−∆φg++

J,STT (z) + (1− z̄)−∆φ+ d
2−1h++

J,STT (z) + · · · ,

GttJ,STT = (1− z̄)−∆φgttJ,STT (z) + (1− z̄)−∆φ+ d
2−1httJ,STT (z) + · · · , (4.76)

with gttJ,STT (z) = g++
J,STT

(z)
2(1−d) and httJ,STT (z) = −h

++
J,STT

(z)
d . Using these results in the

second line of (4.15), implies that the contribution from the operator A is

GttJ,A(z, z̄) = GttJ (z, z̄)−GttJ,STT (z, z̄)

= GttJ (z, z̄)− (1− z̄)−∆φgttJ,STT (z)− (1− z̄)−∆φ+ d
2−1httJ,STT (z)− · · ·

= GttJ (z, z̄)− (1− z̄)−∆φ
g++
J,STT (z)
2(1− d) + (1− z̄)−∆φ+ d

2−1h
++
J,STT (z)
d

− · · · . (4.77)

But from the first line of (4.15), we see that the functions g++
J,STT and h++

J,STT can
be computed from the t-channel expansion of G++

J . Indeed the term g++
J,STT (z)

is the coefficient of (1 − z̄)−∆φ in the identity exchange, while h++
J,STT (z) is the

coefficient of (1− z̄)−∆φ+ d
2−1 in the stress-tensor exchange. Therefore (4.77) pro-

vides a formula for computing the t-channel expansion of GttJ , coming only from
the exchange of the operators A in the s-channel.

4For the cases with the sign reversed, e.g. G++
J , we have −Ĝη(σ) = −Gη(σ)− iβ η

d
2−1

σ
+ . . .

and β = 1
π

limR→0 limη→0 η
1− d2

∫ R
−R dσRe(Ĝη(σ)−Gη(σ)).
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4.4. Causality

With (4.77) we define the normalized t-channel expansion and its continuation
to the second sheet:

GttJ,η,(A)(σ) = (ησ2)∆φGttJ,A(1 + σ, 1 + ησ),

ĜttJ,η,(A)(σ) = (ησ2)∆φGttJ,A((1 + σ)e−2πi, 1 + ησ). (4.78)

From the positivity arguments discussed above, these functions satisfy the same
relations as (4.70). Note that in the ++ polarization, the only contribution is
from STT . Thus G++

J,η,(STT )(σ) is simply G++
J,η (σ). For GV we have a completely

analogous story with gttV,STT (z) = − g
++
V,STT

(z)
2∆V

and httV,STT (z) = − h++
V,STT

(z)
2(∆V +1−d/2) .

While for GT the relations between different polarizations are summarized in table
4.1. Thus the contribution of each s-channel exchange to the t-channel expansion
is computed analogously, and we define the following normalized correlators (for
V we have the same definitions (4.78) with J → V )

G+3+3
T,η,(A)(σ) = (ησ2)∆φG+3+3

T,A (1 + σ, 1 + ησ),

Ĝ+3+3
T,η,(A)(σ) = (ησ2)∆φG+3+3

T,A ((1 + σ)e−2πi, 1 + ησ), (4.79)

G34
T,η,(B)(σ) = (ησ2)∆φG34

T,B(1 + σ, 1 + ησ),

Ĝ34
T,η,(B)(σ) = (ησ2)∆φG34

T,B((1 + σ)e−2πi, 1 + ησ). (4.80)

In the rest of the section we will apply (4.75) and the positivity conditions
presented above to these normalized correlators,5 in order to find bounds on the
OPE coefficients of 〈JJT 〉, 〈V V T 〉, and 〈TTT 〉.

4.4.2 Bounds from 〈JφφJ〉

〈J+φφJ+〉

Using the t-channel spinning conformal blocks for stress tensor exchange, the cor-
relation function on the second sheet Ĝ++

η (σ) at next-to-leading order in η is:

− Ĝ++
J,η (σ) = 2CJ − iλφφT

d(d− 2)Γ(d+ 1)
π
d
2
√
CTΓ

(
d
2 + 1

)3 η d2−1

σ

×
[
2d+2π

d+1
2 Γ

(
d+ 3

2

)
λJJT − πΓ(d+ 2)CJ

]
+ . . . , (4.81)

λφφT = − d∆φ

d− 1
1√
CT

, (4.82)

5One could alternatively use the full t-channel expansion GttJ , and similar for GT , but the
bounds will be weaker as shown in [95].
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4. Analytic bounds from spinning correlators

where the form of λφφT comes from the Ward identities [137].

Note that for this polarization, the positivity condition reverses it sign (4.69),
thus using the integral in footnote 4, we have

πΓ(d+ 2)CJ − 2d+2π
d+1

2 Γ
(
d+ 3

2

)
λJJT

= N lim
R→0

lim
η→0

η1− d2
∫ R

−R
dσRe(−G++

J,η (σ) + Ĝ++
J,η (σ)) ≥ 0, (4.83)

where N is a positive constant. This implies

λJJT ≤
Γ
(
d
2 + 1

)
2π d2

CJ , (4.84)

which is one of the conformal collider bounds, saturated by a theory of free
fermions.

〈J tφφJ t〉

With the arguments of the previous subsection, we compute the normalized con-
tribution from the operator A to the t-channel expansion via (4.77). Then the
continuation to the second sheet, defined in (4.78), results in

ĜttJ,η,(A)(σ) = d− 2
d− 1CJ + iλφφT

2Γ(d+ 2)
π
d
2
√
CTΓ

(
d
2 + 1

)3 η d2−1

σ

×
[
2d+1π

d+1
2 (d− 1)Γ

(
d+ 1

2

)
λJJT − π(d− 2)Γ(d+ 1)CJ

]
+ . . . . (4.85)

Hence by the integral (4.75) and the positivity condition (4.70) (recall that from
the refined positivity condition, the same relation applies to GJ,A)

λJJT ≥
(d− 2)Γ(d2 + 1)

2(d− 1)π d2
CJ . (4.86)

This inequality is the other conformal collider bound on 〈JJT 〉, saturated by a
theory of free bosons.

Note that the supersymmetric conformal collider bounds follow from the gen-
eral bounds derived above [136]. If the current is not the R symmetry current,
then it is contained in a multiplet with a scalar. In this case supersymmetry fixes
λJJT in terms of CJ via [136,137]

λJJT =
d(d− 2)Γ

(
d
2 + 1

)
2(d− 1)2π

d
2

CJ , (4.87)
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4.4. Causality

which satisfies the conformal collider bounds. In d = 4 with N = 1 supersymmetry
and assuming J is the superconformal U(1)R current, then we have6

λJJT = 2(a+ 3c)
9cπ2 CJ ⇒ 3

2 ≥
a

c
≥ 0, (4.88)

where a is the Euler anomaly and c is proportional to the central charge CT (see
appendix C for the precise relation). However, this is not the strongest lower
bound for a

c . A stronger bound, 3
2 ≥

a
c ≥

1
2 , comes from the stress tensor bounds

of subsection 4.4.4. For N = 2 and with J the superconformal SU(2)R current,
we have instead

λJJT = 4(a+ c)
9cπ2 CJ ⇒ 5

4 ≥
a

c
≥ 1

2 , (4.89)

which are the strongest bounds for d = 4 N = 2 theories. Finally for N = 4 we
have a = c, so the bounds are always satisfied.

4.4.3 Bounds from 〈V φφV 〉

Now we repeat the exact same procedure for the non-conserved vector V . We com-
pute the normalized correlator in the second sheet via (4.64) for the ++ polariza-
tion, and use the definitions (4.78) and (4.77), with J → V and the corresponding
polarization ratios, to compute the contribution from A to the t-channel. We find

− Ĝ++
V,η(σ) = 2 + iλφφT

22d+1Γ
(
d+1

2
)

Γ
(
d+3

2
)

√
CTΓ

(
d
2 + 1

)2 η
d
2−1

σ

×
[
a2
(
d2 − 6d+ 4∆V + 4

)
+ 4a3(−d+ ∆V + 1)

]
+ . . . (4.90)

ĜttV,η,(A)(σ) = ∆V − 1
∆V

− iλφφT
4d+1Γ

(
d+1

2
)

Γ
(
d+3

2
)

√
CTΓ

(
d
2 + 1

)2 η
d
2−1

σ

×

[
a3
(
d(∆V − 2)− 2∆2

V + 2
)

+ 2(∆V − 1)a2(d−∆V − 1)
(2(∆V + 1)− d)

]
+ . . . . (4.91)

Using the integral (4.75) (and the one in footnote 4 for the ++ polarization) and
the analogous positivity conditions to (4.69), (4.70), gives the bounds

a2 ≤ 0 & a3 ≥
a2
(
d2 − 6d+ 4∆V + 4

)
4(d−∆V − 1) , (4.92)

or

a2 > 0 & a3 ≥
2a2

(
−d∆V + d+ ∆2

V − 1
)

d(∆V − 2)− 2∆2
V + 2 , (4.93)

6These relations are straightforwardly derived using the covariant formalism of [139, 140] or
in superembedding space [141–149].
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4. Analytic bounds from spinning correlators

where we assumed ∆V > d − 1 satisfies the unitarity bound as a non-conserved
vector.

In [138] it was observed that the bounds derived via deep inelastic scattering
(DIS) are weaker than the bounds derived from the positivity of the energy one-
point function 〈E(~n)〉. Our results coincide with the results of the DIS argument.

4.4.4 Bounds from 〈TφφT 〉

Now for the stress-tensor case, we will parametrize 〈TTT 〉 in general dimensions
by CT , t2, and t4, where CT is the central charge which appears in the 2-point
function of the stress tensor. The relation between t2, t4 and the basis used in [137]
is given in appendix C. The procedure for obtaining the OPE coefficient bounds
is completely analogous to the previous two cases.

〈T++φφT++〉

The t-channel conformal block of the stress energy tensor can be used to compute
the following normalized correlation function on the second sheet, defined in (4.65):

Ĝ++++
T,η (σ) = 4CT + iλφφT

√
CT 2dπ 1

2−
d
2 (d− 2)(d+ 4)Γ

(
d+3

2
)

Γ(d+ 3)
(d2 − 1)3 Γ

(
d
2 + 1

)2 η
d
2−1

σ

× [(d+ 1)((d− 3)t2 + d− 1) + ((d− 1)d− 4)t4] + . . . . (4.94)

Applying the integral (4.75), and reflection positivity (4.71) implies the bound(
1− 1

d− 1 t2 −
2

d2 − 1 t4
)

+ d− 2
d− 1(t2 + t4) ≥ 0. (4.95)

〈T+tφφT+t〉

Now we isolate the G+3+3
T,A contribution by the analogue of (4.77), where G+3+3

T

is computed with the t-channel conformal block, and we use (4.94) to extract the
factors g++++

T,STT and h++++
T,STT . Using the definitions (4.79) we obtain:

− Ĝ+3,+3
T,η,(A)(σ) = d− 1

1 + d
CT + iλφφT

√
CT 2d−3π

1
2−

d
2 Γ
(
d−1

2
)

Γ(d+ 3)
(d+ 1)2Γ

(
d
2 + 1

)2 η
d
2−1

σ

× [(d+ 1)(d(t2 + 2)− 3t2 − 2)− 4t4] + . . . . (4.96)

Then using the footnote 4 and (4.72) implies the bound(
1− 1

d− 1 t2 −
2

d2 − 1 t4
)

+ 1
2 t2 ≥ 0. (4.97)
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〈T ttφφT tt〉

Finally to get the contribution of the B operators, due to the triangular structure
(4.41), we need to subtract the contributions from STT and A. This is done by
a straightforward generalization of (4.77) to include the polarization ratios for A
given in table 4.1. Thus G34

T is computed with the t-channel conformal block of
the stress tensor, and we relate G34

T,STT to G++++
T,STT , G34

T,A to G+3+3
T,A , and compute

the coefficients with (4.94), and (4.96). The result is

Ĝ34
T,B(σ) = (d− 1)2

d(d+ 1)CT + iλφφT

√
CT 22d+1π−

d
2 Γ
(
d+1

2
)2

(d+ 1)Γ
(
d
2 + 1

) η
d
2−1

σ

× [(d+ 1)(d− t2 − 1)− 2t4] + . . . . (4.98)

Then using (4.75) and (4.73) implies the bound(
1− 1

d− 1 t2 −
2

d2 − 1 t4
)
≥ 0. (4.99)

Each of the bounds (4.95), (4.97), and (4.99) corresponds to a conformal collider
bound in general dimensions as can be seen from [150,151]. Furthermore, in d = 3,
there is a degeneracy in tensor structures (see Appendix C) which implies t2 = 0,
and the third bound becomes equivalent to the second. In figure 4.1 we illustrate
the bounds in t2, t4 in a few different dimensions.

In d = 4 these bounds are given by

31
18 ≥

a

c
≥ 1

3 , (4.100)

in the basis a and c, as described in Appendix C. These are also strengthened in
the presence of supersymmetry. For N = 1 supersymmetry, we have the relations

t2 = 6
(

1− a

c

)
, t4 = 0 ⇒ 3

2 ≥
a

c
≥ 1

2 , (4.101)

which is a stronger version of the lower bound that we obtained from subsection
4.4.2 for U(1)R currents. For N = 2, the lower bound is identical to the one in
(4.89) but the upper bound is weaker [152], so there are no new constraints from
〈TTT 〉. Finally for N = 4, where a = c, the bounds are trivially satisfied.

4.5 Mixing light-cone bootstrap with causality

Comparing the anomalous dimensions (4.26) and (4.27) with the inequalities (4.84)
and (4.86), and the negativity of λφφT (4.82) (for unitarity theories), proves that in
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4. Analytic bounds from spinning correlators

Figure 4.1: Conformal collider bounds in several dimensions d. Filled regions correspond
to the allowed values of the parameters t2, t4.

128



4.6. Discussion

the large ` limit, the symmetric traceless double-twist states [Jφ][`]0,` and the mixed
symmetry double-twist states [Jφ][`,1]

0,` have negative anomalous dimensions arising
from the exchange of the stress tensor. In fact, in the regime when `� n ≥ 0, the
formulas (4.24) and (4.25) for γ[Jφ][`]

n,`

and γ[Jφ][`,1]
n,`

respectively, imply that they
are all negative semidefinite because of the conformal collider bounds.

In a quantum gravitational theory in AdS dual to a CFT, the double-twist
states correspond to two-particle bound states and the anomalous dimensions from
the T exchange correspond to the gravitational binding energy between the par-
ticles [88]. Hence the negativity of the anomalous dimensions implies that AdS
gravity is attractive at super-horizon distances. From the point of view of large
N CFTs, it is understood that causality of bulk gravity is related to the col-
lider bounds [150–156] and furthermore the anomalous dimensions of double-twist
states formed from scalars are related to Shapiro time delay (related to causality)
in the bulk [157–160]. Hence bulk causality, collider bounds and attractiveness
of gravity at long distances have been shown to be intimately connected for large
N theories. However, unlike the literature cited above, we have found that the
negativity of the anomalous dimensions is a consequence of unitarity and crossing
symmetry of the CFT alone, and it does not rely on any large N limit. We have
therefore provided a field theoretical proof that the dual gravitational theory in
AdS must be attractive between a scalar particle and a gauge boson separated
at super-horizon distances. Furthermore, because of (4.95), (4.97), (4.99), and
λφφT < 0, the anomalous dimensions (4.54)–(4.59) are all negative too for n > 0
in the ` � n limit. Hence gravity is also attractive between a scalar particle and
a graviton separated by super-horizon distances.

4.6 Discussion

In this chapter, we have successfully applied two analytical methods for constrain-
ing the space of consistent conformal field theories (CFT). In the first part we used
the light-cone bootstrap and found that the strong connection between low-twist
operators and large-spin double-trace operators, first found in [88, 89], still holds
for the spinning correlators 〈JφφJ〉, 〈V φφV 〉, and 〈TφφT 〉. Techniques of this type
have crucial relevance to quantum gravitational theories in AdS. For example, AdS
observables such as binding energies [88, 89, 91, 92] and Eikonal phases [157–159]
are directly related to the anomalous dimensions of classes of CFT operators with
large dimensions and large spin. The fact that this can be achieved shows the
power of the bootstrap methods. In its strongest form, unitarity and crossing
symmetry may contain all necessary information to classify the whole landscape
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of conformal field theories without any extra input. If it is possible to define all
CFTs through the bootstrap method, it would be a significant step forward in the
understanding of strongly coupled quantum field theory as they are connected to
CFTs by renormalization group flows.

In the second part of the chapter we have used constraints from causality of the
Lorentzian CFT to prove that the “conformal collider bounds”, originally proposed
in [136], hold for any unitary parity-preserving conformal field theory (CFT) in
arbitrary dimensions d ≥ 3, where the lowest non-trivial twist operator is a unique
stress tensor. While there was a large amount of evidence suggesting the result
was indeed correct, the material presented here, based on [2], is a proof purely
based on unitarity, conformal symmetry, and quantum field theory axioms.

Interestingly, the combination of both techniques implies that the gravitational
interaction is attractive between two particles separated by super-horizon distances
in AdS, as a direct consequence of the unitarity of the underlying quantum theory.
More generally, once we understand CFTs, we can use them as starting points
to answer important questions in quantum gravity. An especially exciting ques-
tion is the quantum origin of universal features of gravitational interactions, such
as causality, (non-)locality and attractiveness [88–90, 132, 161–163]. The bounds
proved in this chapter are directly related to properties of 3-particle vertices in
the bulk, including at least one graviton [136].
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Appendix A: Spinning Conformal Blocks at Large Spin

In this appendix we derive the relevant s-channel spinning conformal blocks in the light-
cone limit. We find that they can be written as (derivatives of) a single scalar conformal
block. This simplification occurs because the sum over spins in the s-channel is performed
via

∫ ∞
0

d` `αKν(2`
√

1− z̄) = (1− z̄)−(α+1)/2

4 Γ
(1 + α− ν

2

)
Γ
(1 + α+ ν

2

)
, (4.102)

so that terms with higher powers in 1/` result in subleading terms in (1−z̄), for (1−z̄)� 1
and `� 1 with (1− z̄)`2 . 1. Therefore the idea is to count the relative powers of 1/`,
where (1− z̄) has a weight of O(1/`2).

Our strategy will be to write the conformal blocks as differential operators acting
on a basic set of ‘seed’ blocks, following the general approach developed in [1, 29, 30,
34, 45, 54, 55]. For the seed blocks we expect, motivated by the results in [1], that they
can be written as gseed ∼ gscalar + (. . . ), where the term (. . . ) includes STT conformal
blocks of higher-spin correlators (see for example Eq. (4.87) in that paper). Moreover
one can check, using the results of [45], that the spinning blocks in (. . . ) are sub-leading
in 1/` with respect to gscalar.7 For blocks that can be derived from seed blocks, the
simplifications can be inferred by looking at the differential operators of [45] when acting
on seeds.

The projection of these results into different polarizations gives an explicit check of
the the triangular structure (4.41) for finite z. Furthermore, contributions from each
irreducible representation are related by a z-independent factor, at each order in (1− z̄).

Seed Blocks: First we look at the seed conformal blocks for the [`, 1] and [`, 2] rep-
resentations that appear in 〈JφφJ〉 and 〈TφφT 〉 respectively.

Notice that the simplification for [`, 1] can be easily obtained by taking the z̄ → 1,
(1− z̄)`2 . 1 limit in the expressions for gA given in (4.87)–(4.91) of [1]. Nonetheless we
include this calculation given that the logic is the same as for the [`, 2] blocks, where the
explicit expressions are not known yet.

7The differential operators are constructed in such a way that the spin is increased while
maintaining the dimensions of the original three-point function. Thus there are no relative powers
of (1−z̄) coming from the difference in external dimensions (see (4.114)). The sub-leading powers
of ` then come from the matrix transforming the differential basis to the standard one.
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[`, 1] Seed
The integral representation of the [`, 1] conformal block in 〈JφφJ〉 is given by

g
∆Jφ,∆φJ ,µν
A (z, z̄)

=
NA(λ

φJÃ
/λφJA)

X∆i

∫
ddx0 〈Jµ(x1)φ(x2)A(x0)〉Π[`,1]〈Ã(x0)φ(x3)Jν(x4)〉, (4.103)

where the tensor contraction is Π[`,1] = m
(10)
µρ P [`,1] ρ

σ m
(40)σ
ν , with

P [`,1] ρ
σ (k(012), k(034)) ≡ k(012)

ρ1 · · · k(012)
ρ` Π[`,1] ρρ1···ρ`

σσ1···σ` k(034)σ1 · · · k(034)σ` . (4.104)

Here k and m are given in (A.3) and (A.4) of [1] respectively, Ã is a shadow operator,
and the integral has an implicit monodromy projection (as discussed in [28]). Using the
results of [123] we can write this tensor as

P [`,1] ρ
σ (X,Y ) = 1

`+ 1

(
`δρσ + X2∂σ∂

ρ − (`− 1)Xρ∂σ
d+ `− 3 −Xσ∂ρ

)
P [`](X,Y ), (4.105)

where P [`] is the traceless-symmetric contraction of ` indices,

P [`](X,Y ) = Xa1 · · ·Xa`Π
[`] a1···a`
b1···b` Y b1 · · ·Y b` . (4.106)

Notice that derivatives acting on P [`] are structures that appear in STT spinning blocks,
and thus sub-leading with respect to scalar blocks. Therefore keeping only the first term
in (4.105) leads to a single scalar block times a tensor structure,

g
∆Jφ,∆φJ ,µν
A (z, z̄)

=
NA(λ

φJÃ
/λφJA)

NO(λ
φJÕ

/λφJO)g
∆Jφ,∆φJ
(∆A,`)

(z, z̄)
(
m(14)
µν + 2(zz̄)−

1
2 k(124)

µ k(413)
ν

)
+O(1/`), (4.107)

where the prefactor is given in (G.1) of [1]. Notice that this prefactor can always be set
to one by changing the normalization of A. Evaluating the relevant polarizations leads
to

g
∆Jφ,∆φJ ,++
A (z, z̄) = O((1− z̄)1),

g
∆Jφ,∆φJ ,tt
A (z, z̄) = g

∆Jφ,∆φJ
∆A,` (z, z̄) +O(1/`), (4.108)

where the tensor structure of the last term is of order O((1− z̄)0).

[`, 2] Seed
For 〈TφφT 〉 we have

g
∆Tφ,∆φT ,µνρσ
B (z, z̄)

=
NB(λ

φTB̃
/λφTB)

X∆i

∫
ddx0 〈Tµν(x1)φ(x2)B(x0)〉Π[`,2]〈B̃(x0)φ(x3)Tρσ(x4)〉, (4.109)
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where B ∈ [`, 2]. Here the contraction is Π[`,2] = m
(10)
µα1m

(10)
να2P

[`,2]α1α2
β1β2

m
(40) β1
ρ m

(40) β2
σ ,

with [123]

P [`,2]α1α2
β1β2

(X,Y ) =
(
`− 1
`+ 1δ

α1
(β1
δα2
β2) + derivatives

)
P [`](X,Y ). (4.110)

By the same arguments as in the previous case

g
∆Tφ,∆φT ,µνρσ
B (z, z̄)

=
NB(λ

φTB̃
/λφTB)

NO(λ
φT Õ

/λφTO)g
∆Tφ,∆φT
(∆B ,`)

(z, z̄)Π[2]µν;αβ
Π[2]ρσ;γδ

(
m(14)
αγ + 2(zz̄)−

1
2 k(124)

α k(413)
γ

)
×
(
m

(14)
βδ + 2(zz̄)−

1
2 k

(124)
β k

(413)
δ

)
+O(1/`), (4.111)

Notice that we can set the prefactor to one by a suitable normalization of B. Evaluating
the relevant polarizations at lowest order in O(1− z̄) gives

g
∆Tφ,∆φT ,++++
B (z, z̄) = O((1− z̄)2),

g
∆Tφ,∆φT ,+3+3
B (z, z̄) = O((1− z̄)1),

g
∆Tφ,∆φT ,34
B (z, z̄) = g

∆Tφ,∆φT
∆B ,`

(z, z̄) +O(1/`), (4.112)

where the last term’s tensor structure is of order O((1− z̄)0).

Derived Blocks: Now we turn to the conformal blocks that can be obtained from
seeds, by acting with the differential operators Dij of [45].8 The STT exchange in both
〈JφφJ〉 and 〈TφφT 〉 can be computed from the lightcone approximation to the scalar
block [88]

g∆12,∆34
τ,` (u, v)

`�1, (1−z̄)`2.1
v�u<1= f∆12,∆34

1 (`, 1− z̄)f∆12,∆34
2 (τ, u)(1 +O(1/

√
`,
√

1− z̄)),
(4.113)

where v ≈ (1− z̄)(1− u), u ≈ z, and

f∆12,∆34
1 (`, x) =

(
−1

2

)`
π−

1
2 22``

1
2 x

∆12−∆34
4 K∆34−∆12

2
(2`
√
x), (4.114)

f∆12,∆34
2 (τ, u) = 2τu τ2

(1− u) d2−1 2F1

(
τ − d+ 2−∆12

2 ,
τ − d+ 2 + ∆34

2 , τ − d+ 2;u
)
,

(4.115)

with K a modified Bessel function of the second kind. This limit holds for even d ≥ 2
as long as the sum over ` only receives contributions in the region where the product
`2(1 − z̄) is kept fixed. For the [`, 1] exchange in 〈TφφT 〉 the procedure is completely
analogous given that its seed is also a scalar conformal block, as shown in (4.108). In both
cases one can analyze the differential operators and drop derivatives as well as powers of
` and (1− z̄) that produce subleading terms. The results are summarized below.

8It may also be interesting to derive these blocks more directly by expressing the OPE in
embedding space [65].
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STT
For 〈JφφJ〉, the differential operator is(

aL1D11Σ1,0
L +D12Σ0,1

L

) (
aR1 D44Σ0,1

R +D43Σ1,0
R

)
. (4.116)

The aL,R1 terms can be found by imposing conservation, but their effect is subleading in
the lightcone limit. The action of the differential operators on partial waves leads to

g
∆Jφ,∆φJ ,++
∆O,`

(u, v) = 2[v∂v −∆Jφ]g∆Jφ,∆φJ ,tt
∆O,`

(u, v),

g
∆Jφ,∆φJ ,tt
∆O,`

(u, v) = 1
2
√
u[∆Jφ − 1− v∂v]g∆Jφ−1,∆φJ+1

∆O,`
(u, v)(1 +O(1/`)). (4.117)

For 〈TφφT 〉, the differential operator is(
bL1 (D11)2Σ2,0

L + bL2D12D11Σ1,1
L + (D12)2Σ0,2

L

)
×
(
bR1 (D44)2Σ0,2

R + bR2 D43D44Σ1,1
R + (D43)2Σ2,0

R

)
. (4.118)

Similar to the previous case, the contribution of the bL,R1,2 terms are fixed by conservation
and subleading in 1/`. Counting powers in the differential operator gives

g
∆Tφ,∆φT ,++++
∆O,`

(u, v) = 2[v∂v − (∆Tφ + 1)]g∆Tφ,∆φT ,+3,+3
∆O,`

(u, v),

g
∆Tφ,∆φT ,+3+3
∆O,`

(u, v) = [v∂v −∆Tφ]g∆Tφ,∆φT ,34
∆O,`

(u, v),

g
∆Tφ,∆φT ,34
∆O,`

(u, v) = u

2 [(∆Tφ − 2)(∆Tφ − 1)

+ v(4− 2∆Tφ + v∂v)∂v]g∆Tφ−2,∆φT+2
∆O,` (u, v)(1 +O(1/`)).

(4.119)

[`, 1] case
In this case the seed 3-point function is given by (here we are using the formalism

of [29])

〈J(P1;Z1)φ(P2)A(X3;Z3,Θ3)〉 = V
(Θ3)
3 H

(Z1,Θ3)
13 (V (Z)

3 )`−1

P
1
2 (∆φ+∆J−∆A−`)

12 P
1
2 (∆Jφ+∆A+`+2)

13 P
1
2 (∆A−∆Jφ+`)

23

.

(4.120)

To construct 〈T (P1;Z1)φ(P2)A(X3;Z3,Θ3)〉 we act with a linear combination of D11Σ1,0

and D12Σ0,1 and impose conservation. The spinning blocks for this exchange are then
given by acting on partial waves WA with the differential operator(

λL1D11Σ1,0
L +D12Σ0,1

L

) (
λR1 D44Σ1,0

R +D43Σ0,1
R

)
, (4.121)

where

λL1 = λR1 =
(
− (∆φ −∆A + `− 1)(−∆φ + ∆A + d+ `− 1)

(∆φ −∆A)(∆φ + ∆A − d)− (`− 1)(d+ `− 1)

)
. (4.122)
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This leads to

g
∆Tφ,∆φT ,++++
A (u, v) = 0,

g
∆Tφ,∆φT ,+3+3
A (u, v) = 1

2 [v∂v −∆Tφ]g∆Tφ,∆φT ,34
A (u, v),

g
∆Tφ,∆φT ,34
A (u, v) = −1

2
√
u[1−∆Tφ + v∂v]g∆Tφ−1,∆φT+1

∆A,`
(u, v)(1 +O(1/`)),

(4.123)

where we used the approximation given in (4.108).

Polarization Ratios: Now we check that the different polarizations of the 4-point
function G(z, z̄) are related to each other by a z-independent factor. To see this we
perform the sum over spins in the s-channel, via (4.102). For 〈JφφJ〉 this results in

G++
J,STT ∝ −

Γ(d)Γ(∆φ)
24

∑
n

(λ
Jφ[Jφ][`]n

)2Fn(u)

−
Γ( d2 + 1)Γ(∆φ − d

2 + 1)
25 (1− z̄)

d
2−1

∑
n

(λ
Jφ[Jφ][`]n

)2γ[Jφ][`]n
Fn(u) ln(u), (4.124)

GttJ,STT ∝
Γ(d− 1)Γ(∆φ)

25

∑
n

(λ
Jφ[Jφ][`]n

)2Fn(u)

+
Γ( d2 )Γ(∆φ − d

2 + 1)
26 (1− z̄)

d
2−1

∑
n

(λ
Jφ[Jφ][`]n

)2γ[Jφ][`]n
Fn(u) ln(u), (4.125)

where we defined

Fn(u) ≡ 2∆φ+d+2nun

√
π(1− u)1− d2

2F1

(
d

2 + n− 1, d2 + n− 1; ∆φ + 2n;u
)
,

(λ
Jφ[Jφ][`]n

)2 ≡ 2``−
1
2 (2∆φ+2d−7)(λ

Jφ[Jφ][`]
n,`

)2, γ[Jφ][`]n
≡ `d−2γ[Jφ][`]

n,`

,

and used (4.22). The proportionality coefficient is the kinematical term in front of the
4-point function. The ratios GttJ,STT /G++

J,STT are then 1
2(1−d) at order O((1 − z̄)0) and

− 1
d

at order O((1− z̄) d2−1). Similarly, for 〈TφφT 〉 we have

G++++
T,STT ∝

Γ(d+ 2)Γ(∆φ)
24

∑
n

(λ
Tφ[Tφ][`]n

)2Fn(u)

+
Γ( d2 + 3)Γ(∆φ − d

2 + 1)
25 (1− z̄)

d
2−1

∑
n

(λ
Tφ[Tφ][`]n

)2γ[Tφ][`]n
Fn(u) ln(u), (4.126)

G+3+3
T,STT ∝ −

Γ(d+ 1)Γ(∆φ)
25

∑
n

(λ
Tφ[Tφ][`]n

)2Fn(u)

−
Γ( d2 + 2)Γ(∆φ − d

2 + 1)
26 (1− z̄)

d
2−1

∑
n

(λ
Tφ[Tφ][`]n

)2γ[Tφ][`]n
Fn(u) ln(u), (4.127)
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G34
T,STT ∝

Γ(d)Γ(∆φ)
25

∑
n

(λ
Tφ[Tφ][`]n

)2Fn(u)

+
Γ( d2 + 1)Γ(∆φ − d

2 + 1)
26 (1− z̄)

d
2−1

∑
n

(λ
Tφ[Tφ][`]n

)2γ[Tφ][`]n
Fn(u) ln(u), (4.128)

G+3+3
T,A ∝ −Γ(d+ 1)Γ(∆φ)

25

∑
n

(λ
Tφ[Tφ][`,1]

n
)2F̃n(u)

−
Γ( d2 + 2)Γ(∆φ − d

2 + 1)
26 (1− z̄)

d
2−1

∑
n

(λ
Tφ[Tφ][`,1]

n
)2γ[Tφ][`,1]

n
F̃n(u) ln(u), (4.129)

G34
T,A ∝

Γ(d)Γ(∆φ)
24

∑
n

(λ
Tφ[Tφ][`,1]

n
)2F̃n(u)

+
Γ( d2 + 1)Γ(∆φ − d

2 + 1)
25 (1− z̄)

d
2−1

∑
n

(λ
Tφ[Tφ][`,1]

n
)2γ[Tφ][`,1]

n
F̃n(u) ln(u), (4.130)

where the twist for A is given by (4.23) and

F̃n(u) ≡ 2∆φ+d+2nun

√
π(1− u)− d2

2F1

(
d

2 + n,
d

2 + n; ∆φ + 2n+ 1;u
)
,

(λ
Tφ[Tφ][`]n

)2 ≡ 2``−
1
2 (2∆φ+2d−7)(λ

Tφ[Tφ][`]
n,`

)2, γ[Tφ][`]n
≡ `d−2γ[Tφ][`]

n,`

,

(λ
Tφ[Tφ][`,1]

n
)2 ≡ 2`−1`−

1
2 (2∆φ+2d−5)(λ

Tφ[Tφ][`,1]
n,`

)2, γ[Tφ][`,1]
n
≡ `d−2γ[Tφ][`,1]

n,`

.

For this case the ratios are summarized in table 4.1.

Table 4.1: Ratios for the different polarizations of 〈TφφT 〉 in the lightcone limit.

O((1− z̄)0) O((1− z̄) d2−1)
G+3+3
T,STT /G

++++
T,STT − 1

2(d+1) − 1
d+4

G34
T,STT /G

++++
T,STT

1
2d(d+1)

2
(d+2)(d+4)

G34
T,A/G

+3+3
T,A − 2

d − 4
d+2

Appendix B: Anomalous Dimensions for Non-Zero n

In this appendix we generalize our results for anomalous dimensions to n > 0 in the
regime `� n.

〈JφφJ〉: In order to match the identity at all orders in z, we use the summation formula

(1− x)b =
∑
n≥0

xn(b)n(c)n
n!(b+ c+ n− 1)n 2F1(b+ n, b+ n; b+ c+ 2n;x) (4.131)
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in the s-channel expansion. This fixes the OPE coefficients, which we write in terms of
the n = 0 result:

(λ
Jφ[Jφ][`]

n,`

)2 =
(1− d

2 + ∆φ)n( d2 − 1)n
4nn!(∆φ + n− 1)n

(λ
Jφ[Jφ][`]0,`

)2, (4.132)

(λ
Jφ[Jφ][`,1]

n,`

)2 =
(1− d

2 + ∆φ)n( d2 )n
4nn!(∆φ + n)n

(λ
Jφ[Jφ][`,1]

0,`
)2. (4.133)

Now we split the anomalous dimensions as

γ[Jφ][`]
n,`

= γ̃[Jφ][`]n
γ[Jφ][`]0,`

, γ[Jφ][`,1]
n,`

= γ̃[Jφ][`,1]
n

γ[Jφ][`,1]
0,`

, (4.134)

and match the stress-tensor at all orders in z. This leads to the following equations

Γ( d2 − 1)Γ(∆φ − d
2 + 1)( d2 + 1)2

j

(j!)2Γ(∆φ − d
2 + 1 + j)2 3F2

(
−j,−j,∆φ − d
− d2 − j,−

d
2 − j

; 1
)

=
j∑

n=0

(∆φ + 2n− 1)Γ( d2 + n− 1)Γ(∆φ + n− 1)
n!(j − n)Γ(∆φ + n− d

2 + 1)Γ(∆φ + n+ j)
γ̃[Jφ][`]n

, (4.135)

Γ( d2 )Γ(∆φ − d
2 + 1)( d2 + 1)2

j

(j!)2Γ(∆φ − d
2 + 1 + j)2 3F2

(
−j,−j,∆φ − d
− d2 − j,−

d
2 − j

; 1
)

=
j∑

n=0

(∆φ + 2n)Γ( d2 + n)Γ(∆φ + n)
n!(j − n)Γ(∆φ + n− d

2 + 1)Γ(∆φ + n+ j + 1)
γ̃[Jφ][`,1]

n
, (4.136)

where j represents the power of z in the Taylor expansion. Using the techniques of [96,99],
we write γ̃ in terms of terminating hypergeometric functions:

γ̃[Jφ][`]n
=

(−1)nn!Γ(∆φ − d
2 + 1)Γ(∆φ + n− d

2 + 1)
( d2 − 1)nΓ( d2 + 1)2

×
n∑
i=0

(−1)i(i+ 1)2
d
2

(∆φ + n− 1)i

(n− i)!Γ(∆φ − d
2 + 1 + i)2 3F2

(
−i,−i,∆φ − d
− d2 − i,−

d
2 − i

; 1
)
, (4.137)

γ̃[Jφ][`,1]
n

=
(−1)nn!Γ(∆φ − d

2 + 1)Γ(∆φ + n− d
2 + 1)

( d2 )nΓ( d2 + 1)2

×
n∑
i=0

(−1)i(i+ 1)2
d
2

(∆φ + n)i

(n− i)!Γ(∆φ − d
2 + 1 + i)2 3F2

(
−i,−i,∆φ − d
− d2 − i,−

d
2 − i

; 1
)
. (4.138)

One can check that this solves (4.135) and (4.136) order by order in n, for arbitrarily
high values.
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〈TφφT 〉: Following the same steps as in the previous case, we find the OPE coefficients

(λ
Tφ[Tφ][`]

n,`

)2 =
(1− d

2 + ∆φ)n( d2 − 1)n
4nn!(∆φ + n− 1)n

(λ
Tφ[Tφ][`]0,`

)2, (4.139)

(λ
Tφ[Tφ][`,1]

n,`

)2 =
(1− d

2 + ∆φ)n( d2 )n
4nn!(∆φ + n)n

(λ
Tφ[Tφ][`,1]

0,`
)2, (4.140)

(λ
Tφ[Tφ][`,2]

n,`

)2 =
(1− d

2 + ∆φ)n( d2 + 1)n
4nn!(∆φ + n+ 1)n

(λ
Tφ[Tφ][`,2]

0,`
)2. (4.141)

Notice that for [`] and [`, 1], the n-dependence is the same as in 〈JφφJ〉. Finally, we
define anomalous dimensions for n ≥ 0 as

γ[Tφ][`]
n,`

= γ̃[Tφ][`]n
γ[Tφ][`]0,`

, γ[Tφ][`,1]
n,`

= γ̃[Tφ][`,1]
n

γ[Tφ][`,1]
0,`

, γ[Tφ][`,2]
n,`

= γ̃[Tφ][`,2]
n

γ[Tφ][`,2]
0,`

.

(4.142)

For STT and A we find the same equations as in 〈JφφJ〉. Therefore γ̃[Tφ][`]n
= γ̃[Jφ][`]n

and γ̃[Tφ][`,1]
n

= γ̃[Jφ][`,1]
n

. On the other hand, for B we have

Γ( d2 + 1)Γ(∆φ − d
2 + 1)( d2 + 1)2

j

(j!)2Γ(∆φ − d
2 + 1 + j)2 3F2

(
−j,−j,∆φ − d
− d2 − j,−

d
2 − j

; 1
)

=
j∑

n=0

(∆φ + 2n+ 1)Γ( d2 + n+ 1)Γ(∆φ + n+ 1)
n!(j − n)Γ(∆φ + n− d

2 + 1)Γ(∆φ + n+ j + 2)
γ̃[Tφ][`,2]

n
. (4.143)

The solution is

γ̃[Tφ][`,2]
n

=
(−1)nn!Γ(∆φ − d

2 + 1)Γ(∆φ + n− d
2 + 1)

( d2 + 1)nΓ( d2 + 1)2

×
n∑
i=0

(−1)i(i+ 1)2
d
2

(∆φ + n+ 1)i

(n− i)!Γ(∆φ − d
2 + 1 + i)2 3F2

(
−i,−i,∆φ − d
− d2 − i,−

d
2 − i

; 1
)
. (4.144)

Examples: Now using the identities in the appendices of [96, 99] we can rewrite the
terminating hypergeometric and perform the sum over i for specific even dimensions. In
d = 4 we have

γ̃[Tφ][`]n
= 1 + 3n(∆φ + n− 1)(∆φ + n(∆φ + n− 1))

∆φ(∆φ − 1) ,

γ̃[Tφ][`,1]
n

= (n+ 1)(∆φ + n− 1)(∆φ + n(∆φ + n))
∆φ(∆φ − 1) , (4.145)

γ̃[Tφ][`,2]
n

= (n+ 1)(n+ 2)(∆φ + n− 1)(∆φ + n)
2∆φ(∆φ − 1) ,
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whereas in d = 6

γ̃[Tφ][`]n
=

(n+ 1)(∆φ + n− 2)(5n2(n− 1)2 + 2∆φ(5n3 − 5n− 3) + ∆2
φ(5n(n+ 2) + 6))

6∆φ(∆φ − 1)(∆φ − 2) ,

γ̃[Tφ][`,1]
n

= (n+ 1)(n+ 2)(∆φ + n− 2)(∆φ + n− 1)(3∆φ + 2n(∆φ + n))
6∆φ(∆φ − 1)(∆φ − 2) , (4.146)

γ̃[Tφ][`,2]
n

= (n+ 1)(n+ 2)(n+ 3)(∆φ + n− 2)(∆φ + n− 1)(∆φ + n)
6∆φ(∆φ − 1)(∆φ − 2) .

It is easy to check that for ∆φ ≥ d
2 − 1 these expressions are positive for all n.

Appendix C: Correlation Functions of Conserved Operators

In this appendix we will provide more details on the 3-point functions 〈JJJ〉 and 〈TTT 〉.

Tensor Structures: We follow the notation and techniques of [31,45]. See also [91]
for more details on the differential representation on the 3-point functions.

Here we define the basic buildings blocks as

Hij = −2[(Zi · Zj)(Pi · Pj − (Zi · Pj)(Zj · Pi))],

Vi,jk = (Zi · Pj)(Pi · Pk)− (Zi · Pk)(Pi · Pj)
Pj · Pk

. (4.147)

We will use the shorthand V1 = V1,23, V2 = V2,31, and V3 = V3,1,2.

〈JJT 〉: We will normalize the operators as follows:

〈J(P1, Z1)J(P2, Z2)〉 = CJ
H12

P d12
, 〈T (P1, Z1)T (P2, Z2)〉 = CT

H2
12

P d+2
12

. (4.148)

The general form of the 〈JJT 〉 3-point function, after imposing symmetry under
1↔ 2, is given by

〈J(P1;Z1)J(P2;Z2)T (P3;Z3)〉 = αV1V2V
2
3 + β(H13V2 +H23V1)V3 + γH12V

2
3 + ηH13H23

(P12) d2−1(P13) d2 +1(P23) d2 +1
.

Imposing conservation implies

−α− dβ + (2 + d)γ = 0,
−2β + 2γ + (2− d)η = 0. (4.149)

The relation between our basis and that used in [137], see Eqs. (3.11-3.14) is given
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by9

η = 2ẽ, β = −2c̃,

γ = ã− b̃

d
− 4c̃

d
, α = 2ã+ b̃

(
1− 2

d

)
− 8c̃

d
,

(4.150)

They also found that the Ward identity for the stress energy tensor implies

2Sd(c̃+ ẽ) = dCJ . (4.151)

Where Sd is the volume of a (d − 1)-dimensional sphere, Sd = 2π
d
2

Γ( d2 )
. So 〈JJT 〉 is fixed

up to one OPE coefficient, c̃, and CJ . We labeled the parameter c̃ as λJJT in the main
text, following the conventions of [91]. In the rest of this appendix we will also adopt
this convention. To construct the conformal block corresponding to Tµν exchange in the
s-channel of 〈JJφφ〉 we apply the following differential operator on the scalar partial
wave,

DL,T

=
[(

2λJJT−
CJd(d− 2)
(d− 1)Sd

)
D11D22+

(
2λJJT + CJd

2

Sd(1− d)

)
D12D21−2λJJTH12

]
Σ1,1
L .

(4.152)

The conformal block for Tµν exchange in the t-channel of 〈JφφJ〉 is then found by letting
2↔ 4 everywhere in the resulting expression.

Finally, in [136] the parameter a2 was introduced, distinct from the a2 OPE coefficient
used in 〈V V T 〉, which gives the energy distribution for a state created by a conserved
current:

〈E(n)〉ε·j = 1
Sd

(
1 + a2

(
cos2(θ)− 1

d− 1
))

(4.153)

where θ is the angle between the spatial polarization εi and the point on Sd−1 labelled
by ni. Requiring that the energy one point function be positive yields the bounds

−d− 1
d− 2 ≤ a2 ≤ d− 1. (4.154)

The upper bound is saturated in a theory of free bosons and the lower bound is saturated
in a theory of free fermions. The relation between λJJT and a2 is given by

λJJT = −
CJ(d− 2)dπ− d2

(
a2 − d2 + d

)
Γ
(
d
2

)
4(d− 1)3 . (4.155)

9We add tildes to the variables to avoid confusion between these variables, the conformal
anomalies a and c, and the 〈TTT 〉 OPE coefficients.
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〈TTT 〉: In this section we will review the connection between the parametrization
of 〈TTT 〉 in terms of the variables ĉ, ê, and CT as defined in [137], the t2, t4, CT
parametrization used in studies of the energy one point function [151], and the free field
theory results.

We start by defining the following basis of parity-even tensor structures for 〈TTT 〉,

Q1 = V 2
1 V

2
2 V

2
3 , (4.156)

Q2 = H23V
2
1 V2V3 +H13V1V

2
2 V3, (4.157)

Q3 = H12V1V2V
2
3 , (4.158)

Q4 = H12H13V2V3 +H12H23V1V3, (4.159)
Q5 = H13H23V1V2, (4.160)
Q6 = H2

12V
2
3 , (4.161)

Q7 = H2
13V

2
2 +H2

23V
2
1 , (4.162)

Q8 = H12H13H23. (4.163)

In [137] they parametrized the correlation function in general dimensions in terms of
8 variables: â, b̂, b̂′, ĉ, ĉ′, ê, ê′, and f̂ . Labeling the coefficients of Qi by xi, the relation
between the bases is given by

x1 = 8(ĉ+ ê) + f̂ , x2 = −4(4b̂′ + ê′), x3 = 4(2ĉ+ ê), (4.164)
x4 = −8b̂′, x5 = 8b̂+ 16â, x6 = 2ĉ, (4.165)

x7 = 2ĉ′, x8 = 8â. (4.166)

Conservation of the stress-energy tensor implies

x1 = 2x2 + 1
4(d2 + 2d− 8)x4 −

1
2d(2 + d)x7, x8 =

x2 − ( d2 + 1)x4 + 2dx7
d2
2 − 2

, (4.167)

x2 = x3, x4 = x5, x6 = x7,(4.168)

which is consistent with the conservation constraints of [137]. Finally, they found that
solving the Ward identity yields

4Sd
(d− 2)(d+ 3)â− 2b̂− (d+ 1)ĉ

d(d+ 2) = CT . (4.169)

In d > 3 dimensions we can parametrize the parity-even structures in 〈TTT 〉 by ĉ, ê, and
CT , while in d = 3 the H12H13H23 structure is not linearly independent and 〈TTT 〉 is
fixed up to two parameters, 2â− ĉ and CT .

The relation between this basis and the t2 and t4 basis is given by

ĉ = −
CTπ

− d2 Γ
(
d
2 + 2

)
2(d− 1)3(d+ 1)2(d+ 2)

×
[(
d
(
−3d2 + d+ 2

)
+ 4
)
t4 + (d+ 1)

(
2d4 − d3(t2 + 4) + d2 + d+ 3t2

)]
, (4.170)
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ê =
CTπ

− d2 Γ
(
d
2 + 2

)
4(d− 1)3(d+ 1)2

×
[
(d+ 1)

(
(d− 3)

(
d2 − 3

)
t2 + 2(d− 2)d2 + 2

)
+ (2(d− 5)d2 + 4d+ 12)t4

]
. (4.171)

Finally, as noted in [151], in even dimensions we can parametrize 〈TTT 〉 by its ex-
pressions in free field theories of conformally coupled scalars, fermions, and ( d2−1)-forms:

〈TTT 〉 = ns〈TTT 〉s + nf 〈TTT 〉f + nt〈TTT 〉t, (4.172)

where ns, nf , and nt give the effective number of real scalars, Dirac fermions, and ( d2 −1)
forms, although there may not necessarily be any connection to the actual field content.
The conformal collider constraints can then be written as [150,151],(

1− 1
d− 1 t2 −

2
d2 − 1 t4

)
+ d− 2
d− 1(t2 + t4) ∝ ns ≥ 0, (4.173)(

1− 1
d− 1 t2 −

2
d2 − 1 t4

)
+ 1

2 t2 ∝ nf ≥ 0, (4.174)(
1− 1

d− 1 t2 −
2

d2 − 1 t4
)
∝ nt ≥ 0. (4.175)

The constraints (4.173), (4.174), and (4.175) are equivalent to the constraints derived by
considering 〈T++φφT++〉, 〈T+3φφT+3〉, and 〈(T 33 − T 44)φφ(T 33 − T 44)〉, respectively.
In three dimensions t2 = 0 and the second and third constraints are redundant. Finally
in four dimensions we have [136,137,164]

a

c
= 2ns + 124nt + 22nf

6ns + 72nt + 36nf
, (4.176)

where nt now counts the number of real free vectors, a is the Euler anomaly, and c is
related to central charge CT as c = π4

40CT . The bounds from equations (4.173) and
(4.175) then imply

31
18 ≥

a

c
≥ 1

3 . (4.177)
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5 Gravitational
interactions à la

CFT and vice versa

On the relationship between spinning conformal partial waves and
geodesic Witten diagrams

The main tool that allows conformal field theories to be classified by the boot-
strap program is the decomposition of correlators into conformal partial waves.
In particular, as seen in chapter 4, when these correspond to spinning correlators
one can extract universal information concerning the nature of the dual gravita-
tional theory through the holographic principle. Based on [3], in this chapter we
present the necessary tools to understand how spinning conformal partial waves
are represented in AdS.

5.1 Introduction

Throughout this thesis the recurring theme has been the exploitation of the con-
formal symmetry as an efficient organizational principle for the observables in the
theory. In particular, the conformal block decomposition of four-point correlation
functions is such a principle: it is natural to cast the four point function into por-
tions that are purely determined by symmetries—conformal partial waves—and
the theory dependent CFT data. The aim of this chapter is to apply the efficiency
of the conformal block decomposition to holography: can we organize observables
in AdS gravity as we do in a CFT? This question has been at the heart of holog-
raphy since its conception [165–167], with perhaps the most influential result the
prescription to evaluate CFT correlation functions via Witten diagrams [167]. But

143



5. Gravitational interactions à la CFT and vice versa

only until very recently the concept of conformal partial wave was addressed di-
rectly in holography: the authors in [120] proposed that the counterpart of a CFTd
conformal partial wave is a geodesic Witten diagram in AdSd+1. This is basically
a conventional Witten diagram with a different integration region. Namely the
contact terms of the fields are projected over geodesics rather than integrated over
the entire AdS volume.

The goal of this chapter is twofold: to give a method to evaluate a spinning
conformal partial waves using holography, and to show how Witten diagrams de-
compose in terms of these. The strategy is to employ the techniques of subsection
1.6.4 along the lines of the AdS proposal in [120]. In particular, we will show how
to decode the tensor structures appearing in three point functions and conformal
partial waves in terms of bulk differential operators acting on geodesic diagrams.

This chapter is organized as follows. Section 5.2 is a review of the embedding
space formalism to describe both CFTd and AdSd+1 quantities in a common lan-
guage. The main result is in section 5.3 where we device a differential basis on AdS
that generates three-point tensor structures from bulk objects. This shows how
one can obtain any spinning conformal partial wave via an appropriate geodesic
Witten diagram with perfect agreement with the CFT. In section 5.4 we discuss
certain features of this method by focusing mostly on low spin examples. We first
discuss the relation among gravitational interactions and OPE structures using
geodesic diagrams, and contrast it with the reconstruction done using Witten di-
agrams. Even though there are non-trivial cancellations in the geodesic diagrams
(which do not occur with volume integrals), in section 5.5 we show how to de-
compose four point exchange Witten diagrams in terms of geodesic diagrams. We
conclude in section 5.6. Extended calculations that complement the results of the
main text are written in appendices A and B.

5.2 Embedding space formalism

The simplest way of computing CFT objects is by working on the embedding
space formalism where the index structure of tensor quantities is encoded as ho-
mogeneous polynomials. This has been discussed at length in section 1.2, but
here we include an executive summary to give a better contrast to the embedding
formalism of AdS.

A conformal field φµ1,...,µ`(x), x ∈ Rd of dimension ∆ in the symmetric-
traceless representation (`), is encoded as an embedded polynomial Φ(P,Z), P ∈
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Rd+1,1, where

Φ(λP, αZ + βP ) = λ−∆α`Φ(P,Z), P 2 = Z · P = Z2 = 0, ∀λ, α, β. (5.1)

The original field φ(x, z) is recovered by replacing PA =
(
xα, 1−x2

2 , 1+x2

2

)
and

ZA = (zα,−z · x, z · x). Furthermore, to recover the tensor indices we apply the
differential operator in (2.1) to obtain

φµ1,...,µ`(x) = 1
`!(d/2− 1)`

Dµ1 · · ·Dµ`φ(x, z) (5.2)

This operator is also convenient for other purposes. For example, we can do full
contractions via the polynomial directly: given two encoded tensors in Rd, their
index contraction is

fa1···ang
a1···an = 1

n!(d/2− 1)n
f(x,D)g(x, z) . (5.3)

In the (d+ 2)-dimensional variables we have

fa1···ang
a1···an = 1

n!(d/2− 1)n
F (P,D)G(P,Z) , (5.4)

where
DA =

(
d

2 − 1 + Z · ∂
∂Z

)
∂

∂ZA
− 1

2ZA
∂2

∂Z · ∂Z
. (5.5)

All other definitions regarding embedding formalism, correlation functions, and
partial waves on the CFT side can be found in sections 1.2, 1.3, 1.4, 1.5, and 1.6.

To describe both CFT and AdS quantities in a more homogeneous manner,
it is then useful to formulate the AdS version of the embedding space formalism,
which we present in the rest of this section.

5.2.1 Embedding formalism for AdS

In this exposition of the embedding formalism for AdS we will follow [168, 169].1
Euclidean AdSd+1 in Poincare coordinates is given by the following metric

ds2
AdS = 1

r2

(
dr2 + dxadxa

)
, (5.6)

where we take the AdS radius to be one and a = 1, . . . , d. The isometries of this
metric are given by the SO(d+ 1, 1) group. Therefore following an analysis along
the lines of section 1.2, implies mapping the AdSd+1 coordinates yµ = (r, xa),

1 See also [170–173] for recent work using this formalism in the context of higher spin gravity.
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µ = 1, . . . , d+ 1, to M̃d+1,1 ⊂ Rd+1,1 coordinates Y A, A = 1, . . . , d, d+ 1, d+ 2, in
such a way that the action of SO(d+ 1, 1) on M̃d+1,1 corresponds to isometries in
AdSd+1. In order for this construction to be consistent we have to demand that
SO(d + 1, 1) is closed on M̃d+1,1. As in the case for conformal coordinates, this
can be done by imposing a constraint on the square of the length, i.e. Y 2 = const.
Moreover, this reduces the dimensionality of the space to d+ 1, which is what we
want for AdSd+1. This implies that

Y 2 = −1, Y d+2 > 0, (5.7)

with the map

Y a = xa

r
, Y d+1 = 1− r2 − x2

2r , Y d+2 = 1 + r2 + x2

2r . (5.8)

Pulling the flat Rd+1,1 metric onto M̃d+1,1 is therefore

dY AdYA = dY µdYµ + (dY d+1)2

− (dY d+2)2
∣∣∣∣
Y a= xa

r ,Y
d+1= 1−r2−x2

2r ,Y d+2= 1+r2+x2
2r

= ds2
AdS, (5.9)

which is SO(d+1, 1) invariant and equal to the AdSd+1 metric. The AdS boundary
points are obtained by sending r → 0, which approaches the projective null-cone
(1.74). In other words PA = limr→0 rY

A.

Similar to section 1.2, tensors on M̃d+1,1 are projected back to AdSd+1 space
by

tµ1···µn = ∂Y A1

∂yµ1
. . .

∂Y An

∂yµn
TA1···An(Y ) , (5.10)

where the projectors are

∂Y A

∂r
= −1

r
Y A + P̄A,

∂Y A

∂xb
= 1
r

(δab ,−xb, xb) , (5.11)

and P̄ is defined in (1.94). With these, it is easily shown that ∂Y A

∂yµ YA = 0, which
implies that a tensor of the type TA1···An(Y ) = Y(A1TA2···An)(Y ) is unphysical, i.e.
it has a vanishing projection to AdSd+1. Another consequence of this redundancy
is that the induced AdS metric can be written as

GAB = ηAB + YAYB , (5.12)

which plays a role as a projector.

The next step is to encode symmetric traceless tensors by contracting their
indices with a polarization vector W :

T (Y,W ) ≡WA1 · · ·WAnTA1···An(Y ) . (5.13)
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Then these correspond to encoded AdSd+1 tensors t(y, w) (with w a polarization
in AdS), provided that

1. W 2 = 0—it encodes the tracelessness condition.

2. W · Y = 0—given that Y A projects to zero.

3. T (Y,W + αY ) = T (Y,W )—it makes the tensor transverse to the surface
Y 2 = −1.

4. (Y · ∂Y +W · ∂W + µ)T (Y,W ) = 0 for some given value of µ.2

Note that the transversality condition can be implemented via the induced metric
G:

(GT )A1...An(Y ) ≡ GB1
A1
· · ·GBnAnTB1...Bn(Y ), Y Ai(GT )A1...Ai...An(Y ) = 0.

(5.14)

As on the CFT side, to recover the tensor components we use a projector
analogous to (5.5). Given 3

KA = d− 1
2

(
∂

∂WA
+ YAY ·

∂

∂W

)
+W · ∂

∂W

∂

∂WA

+ YA

(
W · ∂

∂W

)(
Y · ∂

∂W

)
− 1

2WA

(
∂2

∂W · ∂W
+ Y · ∂

∂W
Y · ∂

∂W

)
,(5.15)

we obtain transverse, symmetric and traceless tensor via

TA1···An(Y ) = 1
n!
(
d−1

2
)
n

KA1 · · ·KAnT (Y,W ) . (5.16)

A covariant derivative in AdS is defined in the ambient space M̃d+1,1 as

∇A = ∂

∂Y A
+ YA

(
Y · ∂

∂Y

)
+WA

(
Y · ∂

∂W

)
. (5.17)

When acting on an transverse tensor we have

∇BTA1···An(Y ) = GB1
B GC1

A1
· · ·GCnAn

∂

∂Y B1
TC1···Cn(Y ) , (5.18)

where GAB is the induced AdS metric (5.12). In polynomial notation, the diver-
gence of a tensor can be written as

∇ · (KT (Y,W )) , (5.19)
2For a bulk massive spin-J field in AdSd+1, we have µ = ∆ + J with M2 = ∆(∆− d)− J .
3The form of this projector is chosen so that the transversality condition holds.
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which projects to ∇µtµµ2...µn in AdSd+1. Similarly, index contractions are en-
conded by

tµ1...µn∇µ1 · · · ∇µnφ = 1
n!
(
d−1

2
)
n

T (Y,K)(W · ∇)nΦ(Y ) ,

tµ1...µnf
µ1...µn = 1

n!
(
d−1

2
)
n

T (Y,K)F(Y,W ) , (5.20)

where t and f are symmetric and traceless tensors. Note that for transverse
polynomials, the projector K commutes with covariant derivative:

∇ ·K = K · ∇ . (5.21)

It is useful to notice that for encoded polynomials in embedding space (5.13),
where the tensor is already symmetric, traceless and transverse, the projector K
acquires a simpler form K =

(
d−1

2 + n− 1
)
∂W . Since this will be the case in all

our calculations, we will simply use ∂W to contract indices.

AdSd+1 propagators

Here we follow [169] and review some results of [174]; propagators in the AdS
coordinates can be found in e.g. [175, 176] among many other references. We are
interested in describing the propagator of a spin-J field. In AdS coordinates, this
field is a symmetric tensor that, in addition, satisfies the Fierz conditions

∇2hµ1...µJ = M2hµ1...µJ , ∇µ1hµ1...µJ = 0 , hµµµ3...µJ = 0 . (5.22)

These equations fully determine the AdS propagators, which we now write in the
embedding formalism. The bulk–to–boundary propagator of a symmetric traceless
field of rank J is

G
∆|J
b∂ (Yj , Pi;Wj , Zi) = C∆,J

Hij(Zi,Wj)J

Ψ∆
ij

, (5.23)

where C∆,J is a normalization (which we will ignore), and we defined

Ψij ≡ −2Pi · Yj , Hij(Zi,Wj) ≡ Zi ·Wj + 2(Wj · Pi)(Zi · Yj)
Ψij

. (5.24)

The mass squared is related to the conformal weight ∆ of the dual operator as
M2 = ∆(∆− d)− J . This is the analogue of the CFT two point function (1.141).
It will be also useful to rewrite the bulk–to–boundary propagator as [174]

G
∆|J
b∂ (Y, P ;W,Z) = 1

(∆)J
(DP (W,Z))J G∆|0

b∂ (Y, P ) , (5.25)
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where 4

DP (W,Z) = (Z ·W )
(
Z · ∂

∂Z
− P · ∂

∂P

)
+ (P ·W )

(
Z · ∂

∂P

)
. (5.26)

And it will also be convenient to cast the n-th derivative of G∆|J
b∂ in terms of scalar

propagators:

(W ′ · ∂Y )nG∆|J
b∂ (Y, P ;W,Z)

= 2nΓ(∆ + n)
J∑
i=0

i∑
k=0

(
J

i

)(
i

k

)
(n− k + 1)k

Γ(∆ + i) (W · P )i(W · Z)J−i

× (W ′ · Z)k(W ′ · P )n−k(Z · ∂P )i−kG∆+n|0
b∂ (Y, P ) . (5.27)

The bulk–to–bulk propagator of a spin-J fields can be written as5

G
∆|J
bb (Yi, Yj ;Wi,Wj) =

J∑
k=0

(Wi ·Wj)J−k(Wi · YjWj · Yi)kgk(u) , (5.28)

where u = −1 + Yij/2 and Yij ≡ −2Yi · Yj . The functions gk can be written in
terms of hypergeometric functions via

gk(u) =
J∑
i=k

(−1)i+k
(
i!
j!

)2
h

(k)
i (u)

(i− k)! , (5.29)

where hi is given by a recursion:

hk = ck

(
(d− 2k + 2J − 1)

[
(d+ J − 2)hk−1 + (1 + u)h′k−1

]
+ (2− k + J)hk−2

)
,

h0 = Γ(∆)
2πhΓ(∆ + 1− h) (2u)−∆

2F1

(
∆,∆− h+ 1

2 , 2∆− 2h+ 1,− 2
u

)
,

ck = − 1 + J − k
k(d+ 2J − k − 2)(∆ + J − k − 1)(d−∆ + J − k − 1) , (5.30)

5.3 Spinning geodesic Witten diagrams

The general objective of this section is to use CFT techniques in order to increase
the spin of the external legs of Witten diagrams. Let us consider the three-point

4This differential operator D should not be confused with similar named CFT operators in
(1.215).

5Note that (5.28) is not a homogeneous function of Y . In solving for the bulk-to-bulk operator
the constrain Y 2 = −1 is used, which breaks the homogeneity property of the polynomials in
embedding space.
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Witten diagram for a moment∫
dy G

∆1|0
b∂ (y, x1)G∆2|0

b∂ (y, x2)G∆3|0
b∂ (y, x3) , (5.31)

where the integral is over the AdS volume. It is well known [175] that it repro-
duces the three-point function of scalar operators with dimensions ∆1, ∆2, ∆3.
Therefore exploiting a relation of the type (1.179) allows us to increase the spin of
two legs in a three-point Witten diagram by applying differential operators. This
was done in [174], and more recently, the action of single weight-shifting operators
(discussed in section 1.5) on Witten diagrams was characterized in [124]. More-
over, using the split representation of the bulk–to–bulk propagator [169], these
techiniques carry over to spinning four-point Witten diagrams at tree-level [177].
Applications to two-point spinning loop diagrams are also possible [178].

However, here we take an alternate approach. It turns out that the integral
over the AdS volume in the three-point Witten diagram (5.31) can be reproduced
by a one dimensional integral over a geodesic γij that connects a pair of endpoints
(xi, xj) on the boundary [179], called three-point geodesic Witten diagram:∫

γij

dλG
∆1|0
b∂ (y(λ), x1)G∆2|0

b∂ (y(λ), x2)G∆3|0
b∂ (y(λ), x3) , (5.32)

where the equivalence is regardless the choice of endpoints; different choices just
giving different numerical pre-factors.6 Moreover, it was discovered in [120] that
the restriction of the double-volume integral in the four-point Witten diagram
to a double-line integral over the geodesics γij , γkl (which connect the boundary
points (xi, xj), (xk, xl)) reproduces the conformal partial wave expansion W∆|0 in
the (ij)(kl) channel (as defined in (1.185)):

W∆|0(xi) =W∆|0(xi) ≡
∫
γ12

dλ

∫
γ34

dλ′G
∆1|0
b∂ (y(λ), x1)G∆2|0

b∂ (y(λ), x2)

×G∆|0
bb (y(λ), y′(λ′))G∆3|0

b∂ (y′(λ′), x3)G∆4|0
b∂ (y′(λ′), x4) , (5.33)

where λ is an affine parameter for γ12 and λ′ for γ34. This is the simplest version of
a four-point geodesic Witten diagram: the expression involves bulk–to–boundary
and bulk–to–bulk propagators in AdS projected along geodesics connecting the
endpoints, as depicted in Fig. 5.1. There was also evidence that this map worked
correctly for more general partial waves [120,179].

Our interest here is to explore cases where the legs of the three- and four-
point geodesic Witten diagrams have non-trivial spin. In this section we de-
velop the basis of AdSd+1 differential operators that implement the CFT relation

6The results in [180, 181] as well suggested that (5.32) reproduces correlation functions of
three scalar primaries.
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P1 

P2 P4 

P3 

Y’ Y 

P1 

P2 

Y’ 

P4 

P3 

Y 

P1 

P2 

Y’ Y 

P4 

P3 

Figure 5.1: Examples of geodesic Witten diagrams in AdSd+1. The doted line
indicates that we are projecting the propagators over a geodesic that connects
the endpoints. Straight lines correspond to scalar fields, while wavy lines are
symmetric traceless tensors of spin J . The first diagram corresponds to the scalar
block in (5.33). The middle diagram (with scalar propagator in the exchange) will
be the focus of section 5.3.1 and the last diagram (with a spin-J field exchanged)
is the focus of section 5.3.2.

(1.215) for symmetric-traceless representations, when acting on geodesic integrals
(these are not necessarily three-point Witten diagrams, see Fig. 5.2). There-
fore by (1.217) these give a prescription on how to obtain spinning partial waves
W l1,l2,l3,l4

∆|l (x1, x2, x3, x4) from the geodesic Witten diagram (5.33). We stress that
we will not use local cubic interactions to capture the conformal partial wave in
this section. We postpone to section 5.4 the interpretation of this construction in
terms of cubic interactions in the bulk.

5.3.1 Bulk differential basis: scalar exchanges

Recall from section 1.5.2 that for symmetric-traceless three-point functions, a con-
venient basis of differential operators are

D1 ij , D2 ij , and Hij , (5.34)

defined in (1.180). The operator D1 ij increases the spin at position i by one and
decreases the dimension by one at position i; D2 ij increases the spin at position i
by one and decreases the dimension by one at position j. Hij increases the spin
by one at both i and j and leaves the conformal dimensions unchanged. These
operators we will map to differential operators acting on bulk coordinates, except
for Hij , whose action will remain unchanged. Hij does induce a cubic interaction
and we will discuss its effect in section 5.4.

The action of a single operator in (5.34) on an s-channel conformal partial

151



5. Gravitational interactions à la CFT and vice versa

wave W∆|l(Pi) will affect either the pair (P1, P2) or (P3, P4), but not all points
simultaneously. So let us consider the components in the integral (5.33) that only
depend on γ12—which connects (P1, P2):∫

γ12

dλG
∆1|0
b∂ (Yλ, P1)G∆2|0

b∂ (Yλ, P2)G∆|0
bb (Yλ, Y ′) , (5.35)

where we casted the propagators in embedding space, and used the notation Yλ
to denote the embedded bulk point evaluated at the geodesic.7 Fig. 5.2 depicts
diagramatically the content in (5.35), and we note that Y ′ is not necessarily pro-
jected over γ34. Here G∆1|0

b∂ (Y, P1) ≡ G
∆1|0
b∂ (Y, P1; 0, 0) given in (5.23); in general

we will omit dependence on variables that are not crucial for the equation in hand.

In Poincare coordinates, a geodesic connecting xi with xj is

γij : yµ(λ) = (r(λ), xa(λ)) =
(

(x2
ij)

1
2

2 cosh(λ) ,
xai + xaj

2 + (xij)a

2 tanh(λ)
)
,

xij ≡ xi − xj . (5.36)

The corresponding expression in embedding space is

γij : Y Aλ ≡
e−λPAi + eλPAj√

Pij
, Pij = −2Pi · Pj , (5.37)

where we used (5.8) and (1.78). Replacing these expressions into (5.35) gives

1
(P12)(∆1+∆2)/2

∫ ∞
−∞

dλ e−∆12λG
∆|0
bb (Yλ, Y ′) , ∆12 = ∆1 −∆2 , (5.38)

where we used (5.23). To increase the spin at P1 and/or P2 we would act on
(5.38) with a combination of the differential operators in (5.34). By inspection
of the integral in (5.38), Di jk has only a non-trivial action over the bulk–to–bulk
propagators. In other words

Dk ijG
∆n|0
b∂ (Yλ, Pn) = O(P 2, Z · P ) , n = 1, 2 . (5.39)

Hence, the task ahead is to build a bulk differential operator that acts on the third
leg of the diagram: G∆|0

bb (Yλ, Y ′), and reproduces Dk,ij .

Let us consider a general function G(Yλ · Y ′) (not necessarily a bulk–to–bulk
propagator) with no explicit dependence on Pi (only through the geodesics in Yλ),

7Throughout this chapter, we will use the symbols Y A and WA to denote embedded AdS
points, and their auxiliary polarization vectors, respectively. Whereas PA and ZA denote their
respective CFT counterparts.
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P1 

P2 

Y’ Yλ 
G(Yλ,Y’) 

Figure 5.2: A precursor diagram where two legs are in the boundary and one in the
bulk. This type of object appears at intermediate steps when evaluating conformal
blocks.

and furthermore with no W dependence. Then we want to construct differential
operators D (not to be confused with the weight-shifting operators of section 1.5)
such that

Dk ijG (Yλ · Y ′) = Dk ijG (Yλ · Y ′) , (5.40)

where Dk ij has derivatives with respect to Y ′ only. Moreover, D has to satisfy
the same properties of D. Namely, it has to be: transverse with respect to Pi, of
order one in Zi, of order zero in Y ′, and with the correct transformation properties
under P → λP . Hence the most generic form of D is Y ′AZBi SABC∂CY ′ , where S
is independent of Y ′ and Zi. Assuming S is a function of the flat metric η and
P , then transversality implies that S has two classes of solutions compatible with
(5.40):

SABC = ηAB(Pi)C − (Pi)AηBC ,

SABC =
(
ηAB + 2(Pi)A(Pj)B

Pij

)
(Pj)C − (Pj)A

(
ηBC + 2(Pj)B(Pi)C

Pij

)
. (5.41)

Therefore we can write the dual operators D as

D1 ij = Zi · Y ′ Pi · ∂Y ′ + 1
2ΨiY ′ Zi · ∂Y ′ ,

D2 ij = Hij(Zi, Y ′)Pj · ∂Y ′ + 1
2ΨjY ′Hij(Zi, ∂Y ′) , (5.42)

where Ψij is given in (5.24) and we have defined

Hij(M,N) ≡ H(M,N)
ij , (5.43)
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with H(M,N)
ij as in (1.125). As their name indicate, these operators have the same

properties as their counterparts D. More precisely, D1 ij is increasing the spin by
one and decreasing the dimension by one at position i, while D2 ij increases the
spin at position i by one and decreases the dimension by one at position j.

To verify that D has exactly the same effect as D, it is instructive to go through
some identities. One can show the following relation by direct calculation (notice
that the first operator in the commutator of the left hand side is D and not D)

[Dk ij ,Dk′ i′j′ ]f(Y ′) = [Dk ij ,Dk′ i′j′ ]f(Y ′) . (5.44)

Let us call D1, D2 two generic operators of the form Dk ij , then

D1D2(Yλ · Y ′) = (D1Yλ) · (D2Y
′) + Yλ · (D1D2Y

′)
= Yλ · (D2D1Y

′) + Yλ · ([D1,D2]Y ′)
= Yλ · (D1D2Y

′) = D1D2(Yλ · Y ′) (5.45)

where in the first line we used (5.40) for D2 and the product rule for D1, in the
second line we used (5.40) for D1 in the first term and the fact that D1Y

′ = 0 in
the second, and finally in the third line we used used (5.44). Then for the product
of an arbitrary number of operators,

D1D2 · · ·DnYλ · Y ′ = Yλ · (D2 · · · DnD1Y
′) + Yλ · (D1D2 · · · DnY ′)

= Yλ · (D1D2 · · · DnY ′) = D1D2 · · · DnYλ · Y ′ (5.46)

where in the first line we used the induction hypothesis for n − 1 operators and
in the second line we pushed D1 through and used (5.44) to put everything in
terms of D. The conclusion is that repeated application of boundary derivatives
on geodesic integrals can be replaced by bulk derivatives in reverse order:

Hn12
12 (Dn1

2,12D
n2
2,21D

m1
1,12D

m2
1,21 −D

n1
2,12D

n2
2,21D

m1
1,12D

m2
1,21)

×
∫
γ12

dλG
∆1|0
b∂ (Yλ, P1)G∆2|0

b∂ (Yλ, P2)G∆|0
bb (Yλ, Y ′) = 0 . (5.47)

We just found that the dual of D are derivatives with respect to Y ′. However,
given that the generic form of these differential operators isD(Y ′) = Y ′AZBi SABC∂

C
Y ′ ,

and S is antisymmetric under A↔ C as seen in (5.41), then we have

Y ′AZBi SABC∂
C
Y ′Yλ · Y ′ = −Y Aλ ZBi SABC∂CYλYλ · Y

′

⇒ Dk ij(Y ′)Yλ · Y ′ = −Dk ij(Yλ)Yλ · Y ′ . (5.48)

Using (5.48) it is easy to show that for more derivatives,

Dk1 i1j1(Y ′) · · · Dkn injn(Y ′)Yλ · Y ′ = (−1)nDkn injn(Yλ) · · · Dk1 i1j1(Yλ)Yλ · Y ′ .
(5.49)
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This of course also holds when the derivatives act on G(Yλ · Y ′). It is interesting
to note that the action of a single D(Yλ) on bulk–to–boundary operators is trivial,
i.e.

Dk ij(Yλ)G∆1,2|0
b∂ (Yλ, P1,2) = O(P 2, Z · P ) , (5.50)

which is consistent to how Dk ij acts on bulk–to–boundary propagators at the
geodesic (5.39). However,

Dk′ i′j′(Yλ) · · · Dk ij(Yλ)G∆1,2|0
b∂ (Yλ, P1,2) 6= 0 , (5.51)

because (5.50) relies on properties of the geodesic γ12, and in (5.51) the operation
of taking derivatives with respect to Y does not commute with projecting on γ12.8
Hence, as we generate tensorial structures using D(Yλ), it only acts on Gbb, i.e.

(−1)N
∫
γ12

dλG
∆1|0
b∂ (Yλ, P1)G∆2|0

b∂ (Yλ, P2)Dm2
1,21D

m1
1,12D

n2
2,21D

n1
2,12G

∆3|0
bb (Yλ, Y ′) =

Dn1
2,12D

n2
2,21D

m1
1,12D

m2
1,21

∫
γ12

dλG
∆1|0
b∂ (Yλ, P1)G∆2|0

b∂ (Yλ, P2)G∆3|0
bb (Yλ, Y ′) ,

(5.52)

where N ≡ m1 +m2 + n1 + n2.

From here we see how to cast conformal partial waves where the exchanged
field is a scalar field (dual to a scalar primary O of conformal dimension ∆): the
version of (1.217) in gravitational language is

W l1,l2,l3,l4
∆|0 (Pi;Zi) =W∆|0[Dleft(Yλ),Dright(Y ′λ′)] , (5.53)

where we define

W∆|0[Dleft(Yλ),Dright(Y ′λ′)] ≡
∫
γ12

∫
γ34

G
∆1|0
b∂ (Yλ, P1)G∆2|0

b∂ (Yλ, P2)

×
[
Dleft(Yλ)Dright(Y ′λ′)G

∆|0
bb (Yλ, Y ′λ′)

]
G

∆3|0
b∂ (P3, Y

′
λ′)G

∆4|0
b∂ (P4, Y

′
λ′) . (5.54)

To close this subsection, we record another convenient way to re-write (5.42):

D1 ij(Yλ) = Ψiλ

2 Hiλ(Zi, ∂Yλ) ,

D2 ij(Yλ) = Ψjλ

2 [Hiλ(Zi, ∂Yλ) + 2V∂ i,jλ(Zi)Vb λ,ij(∂Yλ)] , (5.55)

8For D1 21 and D2 12, (5.50) is true without projecting on γ12. Furthermore, (5.51) is true
only if the D’s do not commute. However, we will use (5.52) to treat all the D’s in the same
footing.
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where Hij is given in (5.24), and we defined

V∂ i,jm(Zi) = ΨimZi · Pj − PijZi · Ym√
ΨimΨjmPij

, (5.56)

Vbm,ij(Wm) = ΨjmWm · Pi −ΨimWm · Pj√
ΨimΨjmPij

, (5.57)

which can be viewed as the generalizations of the CFT building block (1.124).

5.3.2 Bulk differential basis: spin exchanges

In the previous subsection we considered the geodesic integral (5.35) where the
bulk–to–bulk propagator has no spin. We now generalize the discussion to include
spin. The prescription given in [120] for spinning exchanged operators is that the
bulk–to–bulk propagator for the spin J field is contracted with the velocities of Yλ
and Y ′λ′ , i.e.

G
∆|J
bb (Yλ, Y ′λ′) ≡ G

∆|J
bb

(
Yλ, Y

′
λ′ ;

dYλ
dλ

,
dY ′λ′

dλ′

)
. (5.58)

This corresponds to the pullback of the propagator (5.28) along both geodesics in
the diagram. Hence, a geodesic diagram that evaluates the conformal partial wave
with a spin exchange is

W∆|J(P1, P2, P3, P4) =∫
γ12

∫
γ34

G
∆1|0
b∂ (Yλ, P1)G∆2|0

b∂ (Yλ, P2)G∆|J
bb (Yλ, Y ′λ′)G

∆3|0
b∂ (Y ′λ′ , P3)G∆4|0

b∂ (Y ′λ′ , P4) .

(5.59)

In manipulating (5.58) to increase the spin of the external legs, we need to
treat the contractions with dYλ

dλ with some care. First, it is important to note
that Dk ij commutes with d

dλ , and hence its action on G
∆|J
bb (Yλ, Y ′λ′) in (5.59) is

straightforward. However, we need to establish how Dk ij acts on (5.58), and this
requires understanding how to cast d

dλ as a covariant operation. It is easy to check
by direct computation that this can be done in two ways:

d

dλ
= −2P−1

12 Ψ2λP1 · ∇Yλ = 2P−1
12 Ψ1λP2 · ∇Yλ . (5.60)

But the commutator of Dk ij with d
dλ will depend on which equality we use. For
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5.4. Gravitational interactions via geodesic diagrams

example

D1 12
dYλ
dλ

= −D1 12(Yλ)(−2P−1
12 Ψ2λP1 · ∇Yλ)Yλ , (5.61)

D2 21
dYλ
dλ

= −D2 21(Yλ)(−2P−1
12 Ψ2λP1 · ∇Yλ)Yλ , (5.62)

which is the expected result by (5.46) and (5.49). Unfortunately, the two other
D’s have the wrong sign relative to (5.46) and (5.49):

D1 21
dYλ
dλ

= D1 21(Yλ)(−2P−1
12 Ψ2λP1 · ∇Yλ)Yλ , (5.63)

D2 12
dYλ
dλ

= D2 12(Yλ)(−2P−1
12 Ψ2λP1 · ∇Yλ)Yλ . (5.64)

Using the other implementation of d
dλ alternates the signs. In order to avoid this

implementation problem, we formally define[
Dk ij(Yλ), d

dλ

]
≡ 0 . (5.65)

This implies that as we encounter quantities that contain explicit derivatives of
λ we will manipulate them by first acting with Dk ij(Yλ) and then taking the
derivative with respect to λ. For instance,

Dk ij
dYλ
dλ
· dY

′
λ′

dλ′
= d

dλ

d

dλ′
Dk ijYλ · Y ′λ′

= − d

dλ

d

dλ′
Dk ij(Yλ)Yλ · Y ′λ′ . (5.66)

Given this implementation of the differential operators, the partial wave in grav-
itational language (5.53) generalizes to spinning exchanges by using (5.58) and
(5.65). This shows that for each partial wave W l1,l2,l3,l4

∆|J (Pi;Zi) in the bound-
ary CFT there is a counterpart geodesic integral in AdS W l1,l2,l3,l4

∆|J (Pi;Zi) that
reproduces the same quantity.

5.4 Gravitational interactions via geodesic dia-
grams

We have given in the previous section a systematic procedure to build the appropri-
ate tensor structures Vi,jk and Hij appearing in conformal partial waves by using
directly bulk differential operators Di jk(Yλ). Using this method, we would like to
identify the gravitational interactions that the operators Di jk(Yλ) are capturing.
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P1 

P2 

P3 
 

P1 

P3 

P2 
 

P1 

P3 

P2 
 

Figure 5.3: Examples of geodesic Witten diagrams in AdSd+1 that capture three
point functions. Straight lines correspond to scalar propagators, while wavy lines
denote symmetric traceless spin-J fields; Pi is the boundary position in embedding
formalism. The dotted line denotes the geodesic over which we integrate. Note
that the second and third diagram only differ by the choice of geodesic.

The identification of tensor structures with gravitational interactions has been
successfully carried out in [173]: all possible cubic vertices in AdSd+1 where
mapped to the tensor structures of a CFTd via Witten diagrams for three point
functions. Here we would like to revisit this identification using instead as a build-
ing block diagrams in AdS that are projected over geodesic integrals rather than
volume integrals; and as we will show below, the geodesic diagrams do suffer from
some non-trivial cancellations for certain derivative interactions.

For the discussion in this section it is sufficient to consider the three-point
geodesic Witten diagram of (5.32). The type of diagrams we will be considering
in this section are depicted in Fig. 5.3, where the dotted line represents which
geodesic we will integrate over. We will first attempt to rebuild interactions using
these geodesic integrals, and at the end of this section we will contrast with the
results in [173].

5.4.1 From the bulk differential basis to cubic interactions

In this subsection we will go through some explicit computations of three point
functions using the method developed in section 5.3.1. Our goal is not to check
that our bulk results match with the CFT values (which they do); our goal is to
illustrate how these operators Di jk(Yλ), and hence (Vi,jk, Hij), map up to local
AdS interactions.

Our seed to all further computation is the three point function of three scalar
primaries K∆1,∆2,∆3

3 (Pi) defined in (1.118). In terms of geodesic integrals, this is
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5.4. Gravitational interactions via geodesic diagrams

given by

K∆1,∆2,∆3
3 (Pi) = c∆1,∆2,∆3

∫
γ12

dλG
∆1|0
b∂ (Yλ, P1)G∆2|0

b∂ (Yλ, P2)G∆3|0
b∂ (Yλ, P3) ,

(5.67)

where

c∆1∆2∆3 = 2Γ(∆3)
Γ
(−∆1+∆2+∆3

2
)

Γ
(∆1−∆2+∆3

2
) . (5.68)

Here we are ignoring the normalization of Gb∂ in (5.23) and the gamma functions
in c∆1∆2∆3 result from the integration over the geodesic γ12. G∆1,∆2,∆3|0,0,0 =
K∆1,∆2,∆3

3 is the CFTd three point function casted as a geodesic integral in AdSd+1.

Example: Vector-scalar-scalar

To start, we consider the three point function of one vector and two scalar operators
as built from scalar operators. Following the CFT discussion in sections 1.4.2 and
1.5.2, in this case there is only one tensor structure which can be written in two
ways:

G∆1,∆2,∆3|1,0,0 = V1,23K∆1,∆2,∆3
3

= 2D1 12

−1−∆1 + ∆2 + ∆3
K∆1+1,∆2,∆3

3

= 2D2 12

−1 + ∆1 −∆2 + ∆3
K∆1,∆2+1,∆3

3 . (5.69)

We would like to extract which local bulk interaction can capture the left hand
side of (5.69). Let us choose the first equality for concreteness. Using (5.52) and
the bulk differential basis definitions (5.55), the bulk calculation is

2c∆1+1∆2∆3

1 + ∆1 −∆2 −∆3

∫
γ12

dλG
∆1+1|0
b∂ (Yλ, P1)G∆2|0

b∂ (Yλ, P2)D1,12(Yλ)G∆3|0
b∂ (Yλ, P3)

= c∆1+1∆2∆3

1 + ∆1 −∆2 −∆3

×
∫
γ12

dλG
∆1+1|0
b∂ (Yλ, P1)G∆2|0

b∂ (Yλ, P2)Ψ1λH1λ(Z1, ∂Yλ)G∆3|0
b∂ (Yλ, P3)

= c∆1+1∆2∆3

1 + ∆1 −∆2 −∆3

×
∫
γ12

dλG
∆1|1
b∂ (Yλ, P1; ∂W , Z1)G∆2|0

b∂ (Yλ, P2)(W · ∂Yλ)G∆3|0
b∂ (Yλ, P3) , (5.70)

where in the second equality we used the definition of the spinning bulk-to-
boundary propagator (5.23). The contraction appearing inside the integral can
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be attributed to the following local AdS interaction

Aµ1φ2∂µφ3 , (5.71)

where φi is a bulk scalar of mass M2
i = ∆i(∆i−d) and the massive vector A1µ has

M2
1 = ∆1(∆1 − d)− 1. It is interesting to note that from this computation alone

we could not infer that there is another potential interaction: Aµ1φ3∂µφ2. This
particular interaction is absent because Aµ1∂µφ2 vanishes when evaluated over the
geodesic γ12 due to (5.50). However, it would have been the natural interaction if
we instead perform the integral over γ13 in (5.70). Hence a natural identification
of the tensor structure in (5.69) with gravitational interactions is

V1,23 : Aµ1φ2∂µφ3 and Aµ1φ3∂µφ2 . (5.72)

If we used gauge invariance we could constraint this combination to insist that
A1 couples to a conserved current (for us, however, the vector A1 is massive).
From the perspective of the usual Witten diagrams, which involve bulk integrals,
these two interactions are indistinguishable up to normalizations, since they can
be related after integrating by parts. In a geodesic diagram one has to take both
into account; in our opinion, it is natural to expect that all pairings of endpoints
Pi have to reproduce the same tensor structure.

Example: Vector-vector-scalar

Moving on to the next level of complexity, we now consider the geodesic integral
that would reproduce the three point function of two spin-1 fields and one scalar
field. There are two tensor structures involved in this correlator, which can be
written as

V1,23V2,13K∆1,∆2,∆3
3 = −4D1 12D1 21K∆1+1,∆2+1,∆3

3
(∆1 −∆2)2 −∆2

3
+ H12K∆1,∆2,∆3

3
−∆1 + ∆2 + ∆3

, (5.73)

and

H12K∆1,∆2,∆3
3 . (5.74)

G∆1,∆2,∆3|1,1,0 is the linear superposition of (5.73) and (5.74).

As it was already hinted by our previous example, the identification of the
interaction will depend on the geodesic we choose to integrate over. To start,
let us consider casting K∆1,∆2,∆3

3 exactly as in (5.67): the geodesic is γ12 which
connects at the positions with non-trivial spin (first diagram in Fig. 5.4). For this
choice of geodesic, the second tensor structure is straightforward to cast as a bulk
interaction integrated over the geodesic. From the definitions (1.125) and (5.24),
one can show that

H12 = H1λ(Z1, ∂W )H2λ(Z2,W ) , (5.75)
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P1 

P2 

P3 
 

P3 

P1 

P2 
 

Figure 5.4: The diagrams here differ by the choice of geodesic. Depending on this
choice, a given interaction will give rise to a different tensor structure.

where the right hand side is evaluated over the geodesic γ12. Replacing this identity
in (5.74), we find

H12K∆1,∆2,∆3
3

= c∆1,∆2,∆3

∫
γ12

G
∆1|1
b∂ (Yλ, P1; ∂W , Z1)G∆2|1

b∂ (Yλ, P2;W,Z2)G∆3|0
b∂ (Yλ, P3) .

(5.76)

This contact term is simply in physical space the interaction

H12 : A1µA
µ
2φ3 . (5.77)

This contraction will be generic every time our tensorial structure involves H12.
In general we will have the following relation

(H12)n = (H1λ(Z1, ∂W )H2λ(Z2,W ))n : h1µ1...µnh
µ1...µn
2 φ3 , (5.78)

where (H12)n generates one of the tensor structures for a tensor-tensor-scalar three
point function, and the natural bulk interaction is the contraction of symmetric
traceless tensors coupled minimally with a scalar.

For the other tensor structure, a bit more work is required. Let us first manip-
ulate the first term in (5.73); using (5.49) we can write

D1 12D1 21G
∆3|0
b∂ (Yλ, P3) = D1 21(Yλ)D1 12(Yλ)G∆3|0

b∂ (Yλ, P3)

= 1
8Ψ1λΨ2λH1λ(Z1, ∂W )H2λ(Z2, ∂W )(W · ∂Yλ)2G

∆3|0
b∂ (Yλ, P3)

+ 1
2H12Ψ2λP1 · ∂YλG

∆3|0
b∂ (Yλ, P3) . (5.79)
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5. Gravitational interactions à la CFT and vice versa

Applying this expression to (5.73) gives9

− 4D1 12D1 21

(∆1 −∆2)2 −∆2
3
K∆1+1,∆2+1,∆3

3

= − 4c∆1+1,∆2+1,∆3

(∆1 −∆2)2 −∆2
3

∫
γ12

G
∆1+1|0
b∂ G

∆2+1|0
b∂ D1,21D1,12G

∆3|0
b∂

= −1
2

c∆1+1,∆2+1,∆3

(∆1 −∆2)2 −∆2
3

∫
γ12

G
∆1|1
b∂ (∂W )G∆2|1

b∂ (∂W )(W · ∂Yλ)2G
∆3|0
b∂

− 1
−∆1 + ∆2 + ∆3

H12K∆1,∆2,∆3
3 . (5.80)

Replacing (5.80) in (5.73) results in

V1,23V2,13K∆1,∆2,∆3
3

= − c∆1+1∆2+1∆3

2((∆1 −∆2)2 −∆2
3)

∫
γ12

G
∆1|1
b∂ (∂W )G∆2|1

b∂ (∂W )(W · ∂Yλ)2G
∆3|0
b∂ . (5.81)

From here we see that another natural relation arises between the tensor structures
and interactions:

V1,23V2,13 : Aµ1A
ν
2∂(µ∂ν)φ3 ∼ Aµ1A

ν
2
(
∇(µ∇ν) + ∆3gµν

)
φ3 . (5.82)

where the sign ∼ here means that the relation is schematic: to rewrite interac-
tions with partial derivatives as covariant derivatives, we are using homogeneity
properties of fields in the embedding formalism in (5.81). In what follows we will
keep most of our expressions in terms of partial derivatives.

Now let us consider building G∆1,∆2,∆3|1,1,0 starting from a geodesic diagram
where we integrate over γ13 instead of γ12 (second diagram in Fig. 5.4). The
diagram with γ12 already suggested as candidate interactions (5.77) and (5.82). If
we integrate those interactions over γ13 we find10∫

γ13

Aµ1A
ν
2∂(µ∂ν)φ3 = 0 , (5.83)

and Aµ1A2µφ3 gives a linear combination of V1,23V2,13 and H12. The identifications
we made in (5.77) and (5.82) are obviously sensitive to the geodesic we select (there
is a non-trivial kernel), and this is somewhat unsatisfactory. We can partially

9The fastest way to reproduce (5.80) from (5.79) is by using the explicit form of G∆3|0
b∂

(Yλ, P3).
An alternative route, which is more general, is to use (5.60): from here we can integrate by parts
and rearrange the terms appropriately. This second route allows us to use (5.81) when at the
third leg of the vertex we have bulk–to–bulk propagators rather than bulk–to–boundary.

10We are being schematic and brief in (5.83): it is implicit that we are using bulk–to–boundary
propagators.
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overcome this pathology by considering a wider set of interactions. By inspection
we find that the tensor structure V1,23V2,13 is simultaneously captured by γ13 and
γ12 by the interactions

V1,23V2,13 : α1A
ν
1A

µ
2∂ν∂µφ3

− β1 ((∆1 + ∆2)φ3∂µA
ν
1∂µA

ν
2 − (1 + ∆1∆2)φ3∂νA

µ
1∂µA

ν
2) . (5.84)

The choice of geodesic affects the overall normalization, controlled by the choice
of constants α1 and β1. When projected over γ12, the terms multiplying β1 are
proportional to H12 and their coefficients are chosen such that they cancel each
other. The interaction multiplying α1 is identically zero when integrated over γ13.
To capture H12 along both γ13 and γ12 we just need

H12 : φ3F1µνF
µν
2 . (5.85)

Here it is important to note we are not using Aµ1A2µφ3 as we did in (5.77), and we
still find the correct result when using γ12. This is because there are many ways
we can cast H12 as bulk quantities along γ12: the relation (5.75) is not unique.
For instance, one can check that

G
∆1|1
b∂ (Yλ, P1; ∂W , Z1)G∆2|1

b∂ (Yλ, P2;W,Z2)

= − 1
2(∆1 + ∆2) (∂W · ∂Y ′)(∂W ′ · ∂Y )G∆1|1

b∂ (Y ′, P1;W ′, Z1)G∆2|1
b∂ (Y, P2;W,Z2)

∣∣
Y=Y ′=Yλ

= − 1
2(1 + ∆1∆2) (∂Y · ∂Y ′)G∆1|1

b∂ (Y ′, P1; ∂W , Z1)G∆2|1
b∂ (Y, P2;W,Z2)

∣∣
Y=Y ′=Yλ

(5.86)

This type of relations are due to the projections over the geodesic, and they gen-
erate quite a bit of ambiguity as one tries to re-cast a given geodesic diagram as
arising from a cubic interaction. Establishing relations such as (5.84) and (5.85)
are not fundamental, and their ambiguity is not merely due to integrating by parts
or using equations of motion. In appendix B we provide further examples on how
to rewrite certain tensor structures as interactions, but we have not taken into
account ambiguities such as those in (5.86). Generalizing (5.84) and (5.85) for
higher spin fields is somewhat cumbersome (but not impossible). We comment in
the discussion what are the computational obstructions we encounter to carry this
out explicit.

5.4.2 Basis of cubic interactions via Witten diagrams

In the above we made use of our bulk differential basis to identify which interactions
capture the suitable tensor structures that label the various correlation functions
in the bulk. It is time now to compare with the results in [173].
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5. Gravitational interactions à la CFT and vice versa

The most general cubic vertex among the symmetric-traceless fields of spin Ji
and mass Mi (i = 1, 2, 3) is a linear combination of interactions [168,182–184]

V3 =
Ji∑

ni=0
g(ni)In1,n2,n3

J1,J2,J3
(Yi)|Yi=Y , (5.87)

where g(ni) are arbitrary coupling constants, and

In1,n2,n3
J1,J2,J3

(Yi) = YJ1−n2−n3
1 YJ2−n3−n1

2 YJ3−n1−n2
3

×Hn1
1 H

n2
2 H

n3
3 TJ1(Y1,W1)TJ2(Y2,W2)TJ3(Y3,W3) . (5.88)

Here TJi(Yi,Wi) are polynomials in the embedding formalism that contain the
components of the symmetric traceless tensor field in AdS. This cubic interaction
is built out of six basic contractions which are defined as11

Y1 = ∂W1 · ∂Y2 , Y2 = ∂W2 · ∂Y3 , Y3 = ∂W3 · ∂Y1 ,

H1 = ∂W2 · ∂W3 , H2 = ∂W1 · ∂W3 , H3 = ∂W1 · ∂W2 . (5.89)

For more details on the construction of this vertex we refer to [168]. What is
important to highlight here are the following two features. First, V3 is the most
general interaction modulo field re-parametrization and total derivatives. Second,
the number of terms in (5.87) is exactly the same as the number of independent
structures in a CFT three point function (1.156).

The precise map between these interactions and tensor structures is in appendix
A of [173] (which is too lengthy to reproduce here). The first few terms give the
following map:12

I0,0,0
1,0,0 = Aµ1 (∂µφ2)φ3 −−−→

bulk
V1,23

I1,0,0
1,1,0 = Aµ1A2µφ3 −−−→

bulk

(
(∆1 −∆2)2 −∆2

3
)
V1,23V2,13

− (−2∆1∆2 + ∆1 + ∆2 −∆3)H12

I0,0,0
1,1,0 = Aµ1 (∂µAν2)∂νφ3−−−→

bulk
(∆1 + ∆2 −∆3 − 2)V1,23V2,13 +H12 (5.90)

In a nutshell this map is done by evaluating suitable Witten diagrams that capture
three point functions and identify the resulting tensor structures. In appendix A

11As mentioned before all derivatives here are partial, but by using the homogeneity of
TJi (Yi,Wi) one can relate them to covariant derivatives.

12Here the notation −−−→
bulk

means that the identification between the interaction and tensor
structure is done via a bulk integral, i.e. a three-point Witten diagram. Similarly, −−→

γij
denotes

an analogous integral over a geodesic.
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we derive specific examples to illustrate the mapping. Using this same basis of
interactions and integrating them along γ12 gives the following map

I0,0,0
1,0,0 = Aµ1 (∂µφ2)φ3 −−→

γ12
0

I1,0,0
1,1,0 = Aµ1A2µφ3 −−→

γ12
H12

I0,0,0
1,1,0 = Aµ1 (∂µAν2)∂νφ3 −−→

γ12
H12 (5.91)

Clearly there is a tension between the tensor structures we assign to an interaction
if we use a regular Witten diagram versus a geodesic diagram. The mismatch is
due to the fact that certain derivatives contracted along γij are null. This reflects
upon that a geodesic diagram is sensitive to the arrangement of derivatives which,
for good reasons, are discarded in (5.87).

Nonetheless, some agreements do occur when considering interactions com-
patible with all geodesic integrations γij . From (5.85) we have (up to overall
normalizations)

φ3F1µνF
µν
2 −−→

γij
H12 (5.92)

If we use these interactions on Witten diagrams, we obtain exactly the same map

φ3F1µνF
µν
2 −−−→

bulk
H12 . (5.93)

The details of the computations leading to (5.93) are shown in appendix A. More-
over, we find that the interaction (5.84), which is V1,23V2,13 for the geodesic Witten
diagram, gives the same tensor structure if we integrate over the bulk, as shown
in (5.135). These relations indicate that it is possible to a have a compatible
map among interactions in geodesic diagrams and Witten diagrams, even though
there is disagreement at intermediate steps. However, from a bulk perspective
the interaction selected in (5.93) is not in any special footing relative to those in
(5.87).

5.5 Conformal block decomposition of spinning
four-point Witten diagrams

For a fixed cubic interaction, there is generically a mismatch among tensor struc-
tures captured by Witten diagrams versus geodesic Witten diagrams. In this
section we will analyse how this affects the decomposition of four-point Witten
diagrams in terms of geodesic diagrams.
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Our discussion is based in the four-point exchange diagram for four scalars
fields done in [120], which we quickly review here. In Fig. 5.5 we represent the
exchange: all fields involved are scalars, where the external legs have dimension
∆i and the exchange field has dimension ∆. The corresponding Witten diagram
is

AExch
0,0,0,0(Pi)

=
∫
dY

∫
dY ′G

∆1|0
b∂ (Y, P1)G∆2|0

b∂ (Y, P2)G∆|0
bb (Y, Y ′)G∆3|0

b∂ (Y ′, P3)G∆4|0
b∂ (Y ′, P4) .

(5.94)

Here “dY ” represents volume integrals in AdSd+1. To write this expression as
geodesic integrals, the crucial observation is that

G
∆1|0
b∂ (Y, P1)G∆2|0

b∂ (Y, P2) =
∞∑
m=0

a∆1,∆2
m ϕm(∆1,∆2;Y ) , (5.95)

where

ϕm(∆1,∆2;Y ) ≡
∫
γ12

G
∆1|0
b∂ (Yλ, P1)G∆2|0

b∂ (Yλ, P2)G∆m|0
bb (Yλ, Y ) . (5.96)

The field ϕm(Y ) is a normalizable solution of the Klein-Gordon equation with a
source concentrated at γ12 and mass M2 = ∆m(∆m − d). The equality in (5.95)
holds whenever

a∆1,∆2
m = (−1)m

m!
(∆1)m(∆2)m

βm(∆1 + ∆2 +m− d/2)m
, ∆m = ∆1 + ∆2 + 2m . (5.97)

The constant βm soaks the choice of normalizations used in (5.96). Replacing
(5.96) twice in (5.94) then gives

AExch
0,0,0,0(Pi) =

∑
m,n

a∆1,∆2
m a∆3,∆4

n

×
∫
γ12

∫
γ34

G
∆1|0
b∂ (Yλ, P1)G∆2|0

b∂ (Yλ, P2)G∆3|0
b∂ (Y ′λ′ , P3)G∆4|0

b∂ (Y ′λ′ , P4)

×
∫
dY

∫
dY ′G

∆m|0
bb (Yλ, Y )G∆|0

bb (Y, Y ′)G∆n|0
bb (Y ′, Y ′λ′) . (5.98)

The integrals in the last line can be simplified by using

G
∆|0
bb (Y, Y ′) = 〈Y | 1

∇2 −M2 |Y
′〉 ,

∫
dY |Y 〉〈Y | = 1 , (5.99)
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Figure 5.5: Four-point exchange Witten diagrams in AdSd+1, where the exchanged
field is a scalar field of dimension ∆. The first diagram corresponds to AExch

0,0,0,0 in
(5.94), the second diagram to AExch

1,0,0,0 in (5.102), and the third diagram to AExch
1,1,0,0

in (5.107).

which leads to∫
dY

∫
dY ′G

∆m|0
bb (Yλ, Y )G∆|0

bb (Y, Y ′)G∆n|0
bb (Y ′, Y ′λ′) =

G
∆|0
bb (Yλ, Y ′λ′)

(M2
∆ −M2

m)(M2
∆ −M2

n)+
G

∆m|0
bb (Yλ, Y ′λ′)

(M2
m −M2

∆)(M2
m −M2

n)+
G

∆n|0
bb (Yλ, Y ′λ′)

(M2
n −M2

∆)(M2
n −M2

m) .

(5.100)

And hence the four-point exchange diagram for scalars is

AExch
0,0,0,0(Pi) = C∆W∆|0(Pi) +

∑
m

C∆m
W∆m|0(Pi) +

∑
n

C∆n
W∆n|0(Pi) , (5.101)

where we organized the expression in terms of the geodesic integral that defines
W∆|0 in (5.33); the coefficients C∆ basically follow from the contributions in (5.98)
and (5.100).

5.5.1 Scalar exchange with one vector leg

Now let us generalize this decomposition to the case where the external legs have
spin. The first non-trivial example is to just add a spin-1 field in one external leg
and all other fields involved are scalar. The diagram is depicted in Fig. 5.5, and
the integral expression is

AExch
1,0,0,0 =

∫
dY

∫
dY ′G

∆1|1
b∂ (Y, P1, Z1, ∂W )

(
W · ∂YG∆2|0

b∂ (Y, P2)
)
G

∆|0
bb (Y, Y ′)

×G∆3|0
b∂ (Y ′, P3)G∆4|0

b∂ (Y ′, P4) , (5.102)
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where we used one of the vertex interactions in (5.87). Using (5.25) and (5.27) we
can rewrite this diagram in terms of the four-point scalar exchange (5.94) as

AExch
1,0,0,0(∆1,∆2,∆3,∆4) = 2∆2

∆1
D2 12AExch

0,0,0,0(∆1,∆2 + 1,∆3,∆4) , (5.103)

and D2 12 is defined in (1.180). From here the path is clear: using the geodesic
decomposition (5.101) and trading D212 by −D2 12(Yλ) we obtain

AExch
1,0,0,0 = C̃∆W1,0,0,0

∆|0 +
∑
m

C̃∆m
W1,0,0,0

∆m|0 +
∑
n

C̃∆n
W1,0,0,0

∆n|0 , (5.104)

with suitable constants C̃ and

W1,0,0,0
∆|0 (∆1,∆2,∆3,∆4) = D2 12W∆|0(∆1,∆2 + 1,∆3,∆4)

= −1
2

∫
γ12

∫
γ34

G
∆1|1
b∂ (Yλ, P1, Z1, ∂W )G∆2|0

b∂ (Yλ, P2)W · ∂YλG
∆|0
bb (Yλ, Y ′λ′)

×G∆3|0
b∂ (Y ′λ′ , P3)G∆4|0

b∂ (Y ′λ′ , P4) , (5.105)

where we used (5.70). It is interesting to note how the interaction gets slightly
modified due to the cancellations that occur in the geodesic integrals: in (5.102)
the derivative is acting on G

∆2|0
b∂ , but the geodesic decomposition moves it to

position of the exchanged field.

In this example it is also worth discussing the generalization of (5.95). Our
decomposition of the bulk–to–boundary operators on position 1 and 2 reads

G
∆1|1
b∂ (Y, P1, Z1, ∂W )W · ∂YG∆2|0

b∂ (Y, P2)

= 2∆2

∆1
D2 12

(
G

∆1|0
b∂ (Y, P1)G∆2+1|0

b∂ (Y, P2)
)

= 2∆2

∆1

∞∑
m=0

a∆1,∆2+1
m D2 12(Y )ϕm(∆1,∆2 + 1;Y )

= −∆2

∆1

∞∑
m=0

a∆1,∆2+1
m

×
∫
γ12

G
∆1|1
b∂ (Yλ, P1, Z1, ∂W )G∆2|0

b∂ (Yλ, P2)W · ∂YλG
∆m|0
bb (Yλ, Y ) . (5.106)

It is interesting to note the different interpretations one could give to the product
Aµ1∂µφ2 (first line) in terms of resulting bulk fields. Very crudely, from the third
line one would like to say that we just have a suitable differential operator acting
on the field, while from the fourth line we would say that the product induces
an interaction integrated along the geodesic. This type of decompositions of bulk
fields would be interesting in the context of developing further a relation between
an OPE expansion in the CFT to local bulk fields as done in [180,181,185].
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5.5.2 Scalar exchange with two vector legs

It is instructive as well to discuss an example with two spin-1 fields as shown in the
third diagram of Fig. 5.5. For sake of simplicity we will use the cubic interaction
A1µA

µ
2φ, which is part of the basis in (5.87). The four-point exchange is

AExch
1,1,0,0 =

∫
dY

∫
dY ′G

∆1|1
b∂ (Y, P1, Z1, ∂W )G∆2|1

b∂ (Y, P2, Z2,W )G∆|0
bb (Y, Y ′)

×G∆3|0
b∂ (Y ′, P3)G∆4|0

b∂ (Y ′, P4) . (5.107)

The new pieces are due to the presence of the spin-1 fields so we will focus on how
to manipulate the propagators at position 1 and 2; the rest follows as in previous
examples. Using (5.25) allows us to remove the tensorial pieces in (5.107) and
recast it in terms of tensor structures. For this case in particular we have

G
∆1|1
b∂ (Y, P1, Z1, ∂W )G∆2|1

b∂ (Y, P2, Z2,W )

= 1
∆1∆2

DP1(∂W , Z1)DP2(W,Z2)G∆1|0
b∂ (Y, P1)G∆2|0

b∂ (Y, P2)

= 1
∆1∆2

DP1(∂W , Z1)DP2(W,Z2)
∞∑
m=0

a∆1,∆2
m ϕm(∆1,∆2;Y ) . (5.108)

From here we can relate the combination of DP ’s acting on ϕm to tensorial struc-
tures:

DP1(∂W , Z1)DP2(W,Z2)ϕm(∆1,∆2;Y ) =

− 2D1 12D1 21

∫
γ12

G
∆1+1|0
b∂ (Yλ, P1)G∆2+1|0

b∂ (Yλ, P2)G∆m|0
bb (Yλ, Y )

−∆1(1−∆2)H12

∫
γ12

G
∆1|0
b∂ (Yλ, P1)G∆2|0

b∂ (Yλ, P2)G∆m|0
bb (Yλ, Y ) . (5.109)

This equality can be checked explicitly from the definitions of each term involved.
From here we can trade Di jk for Di jk, and then further use (5.80) and (5.76) to
write them as smeared interactions. Without taking into account any normaliza-
tions, what we find for the contraction of two gauge fields decomposed in terms of
geodesic integrals is

G
∆1|1
b∂ (Y, P1, Z1, ∂W )G∆2|1

b∂ (Y, P2, Z2,W ) ∼∑
m

∫
γ12

G
∆1|1
b∂ (Yλ; ∂W )G∆2|1

b∂ (Yλ; ∂W )(W · ∂Yλ)2G
∆m|0
bb (Yλ, Y )

+
∑
m

∫
γ12

G
∆1|1
b∂ (Yλ; ∂W )G∆2|1

b∂ (Yλ;W )G∆m|0
bb (Yλ, Y ) , (5.110)
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where we are suppressing as well most of the variables in the propagators. This
example illustrates how more interactions are needed when we decompose a Wit-
ten diagram in terms of geodesic diagrams; or in other words, how the product
expansion of the bulk fields requires different interactions than those used in the
direct evaluation of a three point function. But more importantly, we should high-
light that casting G∆1|1

b∂ (Y, P1, Z1, ∂W )G∆2|1
b∂ (Y, P2, Z2,W ) as local interactions in-

tegrated along a geodesic is ambiguous. Consider as an example the last term in
(5.110). We could have written it in multiple ways due to the degeneracies shown
in (5.86): the product of two gauge fields could be casted as integrals of the in-
teraction of φAµAµ or φFµνFµν or similar contractions. And these interactions
are not related by equations of motion nor field redefinitions. As we discussed in
section 5.4.2, the identifications of gravitational interactions in a geodesic diagram
is not unique and seems rather ad hoc. It would be interesting to understand if
there is a more fundamental principle underlying products such as those in (5.110).

5.5.3 Scalar exchange with four spinning legs

In a nutshell, this is how we are decomposing a four-point scalar exchange Witten
diagram in terms of geodesics diagrams:

1. Consider a cubic interaction In1,n2,n3
J1,J2,0 of the form (5.88), where at position

1 and 2 we place bulk–to–boundary propagators and at position 3 we have
a bulk–to–bulk propagator. From (5.25) and (5.27) we will be able to strip
off the tensorial part of the interaction, i.e. schematically we will have

In1,n2,n3
J1,J2,0 = D · · ·D I0,0,0

0,0,0 . (5.111)

Here “D · · ·D” symbolizes a chain of contractions of operators appearing in
(5.25) and (5.27), and the precise contraction depends on the interaction.
The important feature is that D · · ·D involves only derivatives with respect
to Zi or Pi (and not Y ) which allows us to take this portion outside of the
volume integral in a Witten diagram. Here I0,0,0

0,0,0 is a cubic interaction for
three scalars with the appropriate propagators used, i.e.

I0,0,0
0,0,0 = G

∆1|0
b∂ (Y, P1)G∆2|0

b∂ (Y, P2)G∆|0
bb (Y, Y ′) . (5.112)

2. The map among tensor structures and cubic interactions in [186] implies
that we will always be able to write the combination of D ’s in terms of CFT
operators:

D · · ·DI0,0,0
0,0,0 = D · · ·D I0,0,0

0,0,0 . (5.113)
This tells us which are the tensor structures appearing in the Witten dia-
gram.
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3. Next we can rewrite I0,0,0
0,0,0 as a sum over geodesic integrals via (5.95). This

allows us to trade D for our geodesic operators D(Y ) as given in (5.47):

D · · ·DI0,0,0
0,0,0 = D · · ·D I0,0,0

0,0,0 = D · · ·DI0,0,0
0,0,0 . (5.114)

4. And if desired, we can as well write the action of D on I0,0,0
0,0,0 as an interaction

via the map in (5.143). This gives a more local description of the OPE of the
bulk fields in In1,n2,n3

J1,J2,0 in terms of smeared interactions along the geodesic.

A four-point exchange Witten diagram, where the exchange particle is a scalar
field, is build out of two vertices of the form In1,n2,n3

J1,J2,0 . So, keeping the loose
schematic equalities, we can establish the following chain of equalities

Aexch
J1,J2,J3,J4

∼ DleftDrightAexch
0,0,0,0

∼ DleftDrightAexch
0,0,0,0

∼
∑
m

W∆m|0[Dleft(Yλ),Dright(Y ′λ′)] . (5.115)

where Dleft corresponds to product of differential operators that recast the ver-
tex to the left in terms boundary operators acting on position (P1, P2), and the
analogously for Dright acting on (P3, P4). And in the last line we used (5.101).

5.5.4 Spinning exchanges

In this last portion we will address examples where the exchanged field has spin,
and illustrate how the four-point exchange diagram can be decomposed in terms
of the geodesic integrals. First consider the following Witten diagram

AExch|spin
0,0,0,0 =

∫
dY

∫
dY ′G

∆1|0
b∂ (Y, P1)∂W ·

(
∂YG

∆2|0
b∂ (Y, P2)

)
G

∆|1
bb (Y, Y ′,W, ∂W ′)

×W ′ ·
(
∂Y ′G

∆3|0
b∂ (Y ′, P3)

)
G

∆4|0
b∂ (Y ′, P4) . (5.116)

In this diagram we are using the interaction φ1∂µφ2A
µ on both ends, and it is

depicted in Fig. 5.6. The decomposition of (5.116) in terms of geodesic integrals
was done in [120] and we will not repeat it here—it decomposes roughly into
geodesic Witten diagrams with both scalar and vector exchanges. Next, let us
consider a diagram where the field at position P2 is a massive vector, i.e.

AExch|spin
0,1,0,0 =

∫
dY

∫
dY ′G

∆1|0
b∂ (Y, P1)G∆2|1(Y, P2; ∂W , Z2)G∆|1

bb (Y, Y ′,W, ∂W ′)

×W ′ · ∂Y ′
[
G

∆3|0
b∂ (Y ′, P3)

]
G

∆4|0
b∂ (Y ′, P4) . (5.117)
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This would be the second diagram in Fig. 5.6, and we decided to use the interac-
tion φ1A

µ
2Aµ for the cubic interaction on the left of the diagram. We can relate

(5.117) to (5.116) by noticing the that the bulk–to–boundary operators satisfy the
following series of identities

G
∆1|0
b∂ (Y, P1)G∆2|1

b∂ (Y, P2; ∂W , Z2) = 1
∆2

DP2(∂W , Z2)G∆1|0
b∂ (Y, P1)G∆2|0

b∂ (Y, P2)

= ∆2 − 1
∆2(∆1 − 1)D1 21

[
1
P12

G
∆1−1|0
b∂ (Y, P1)(∂W · ∂Y )G∆2|0

b∂ (Y, P2)
]

− 1
∆2 − 1D2 21

[
1
P12

G
∆1|0
b∂ (Y, P1)(∂W · ∂Y )G∆2−1|0

b∂ (Y, P2)
]

(5.118)

Here we used (5.25), and then using the explicit polynomial dependence ofG∆|0
b∂ (Y, P )

to obtain the equality in the last line. It is interesting to note that we can now
write

AExch|spin
0,1,0,0 = ∆2 − 1

∆2(∆1 − 1)D1 21

[
1
P12
AExch|spin

0,0,0,0 (∆1 − 1,∆2,∆3,∆4)
]

− 1
∆2 − 1D2 21

[
1
P12
AExch|spin

0,0,0,0 (∆1,∆2 − 1,∆3,∆4)
]
. (5.119)

And from here we can proceed by using the explicit decomposition of AExch|spin
0,0,0,0

in terms of geodesic diagrams in [120] and then trading Di jk by Di jk (just as we
we did in the previous examples in this section).13

The manipulations shown here are very explicit for the interaction we have
selected, but they are robust and not specific to the example. We expect that in
general we will be able to carry out a decomposition such as the one in (5.118)
and have generalizations of (5.119) without much difficulty.

5.6 Discussion

Our main result was to give a systematic method to evaluate conformal partial
waves as geodesic integrals in AdS. From the CFT perspective, a spinning confor-
mal partial wave is built from differential operators acting on the scalar conformal

13Note that the factor of P12 can be reabsorbed into bulk–to–boundary propagators projected
along geodesics, i.e

1
P12

G
∆1|0
b∂

(Yλ, P1)G∆2|0
b∂

(Yλ, P2) = G
∆1+1|0
b∂

(Yλ, P1)G∆2+1|0
b∂

(Yλ, P2) .

Hence, as we cast (5.119) as a sum over geodesic integrals, all terms will have a bulk interpreta-
tion.
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P1 

P2 P4 

P3 

Y’ Y 

P1 

P2 

Y’ 

P4 

P3 

Y 

Figure 5.6: Four-point exchange Witten diagrams in AdSd+1, where the exchanged
field is a symmetric tensor field of dimension ∆ and spin J . In (5.116) and (5.117)
we consider explicit examples where J = 1 for the external and exchanged field.

partial wave as seen in subsection 1.6.4; here we presented the analogue of these
differential operators (for symmetric-traceless representations) in AdS and showed
that they reproduce the same effect as in the CFT. More succinctly, we established
that for arbitrary representations [∆i, (li)] and [∆, (l)], we have

W l1,l2,l3,l4
∆|l (Pi;Zi) = DleftDrightW∆|l(P1, P2, P3, P4) =W∆|l[Dleft(Yλ),Dright(Y ′λ′)] ,

(5.120)
where the last equality is a purely AdS object build out of geodesic integrals, while
the left hand side are CFT quantities.

In section 5.4 we saw that the bulk differential operators (which generate three-
point function tensor structures by construction) induce cubic vertex interactions
when acting on three-point geodesic Witten diagrams. A feature of these geodesic
Witten diagrams is that the mapping between CFT tensor structures and cu-
bic interactions depends on which geodesic we integrate over—as in which pair
of boundary points the geodesic joins. This is simple to understand since there
exist interactions which vanish exactly when projected onto a particular choice
of geodesic. Therefore by combining the induced interactions from all possible
geodesics, we can engineer a geodesic-independent mapping between tensor struc-
tures and cubic interactions. Moreover we found that, for the particular cases we
analyzed, the geodesic independent mapping is in agreement with what one would
obtain by integrating over the whole volume (i.e. evaluating the Witten diagram),
and we expect this to hold for generic cases. However, the cubic interactions from
our geodesic-independent mapping are not the same as the basis of cubic vertices
from [173]. This is because projecting onto a particular geodesic does not commute
with partial integration in the full volume integral.
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The immediate use of an object like W∆|l is to evaluate correlation functions
in holography. But relating the geodesic diagrams to regular Witten diagrams
is a non-trivial task: interactions projected on geodesic integrals behave starkly
different to interactions in volume integrals, as mentioned above. This mismatch
between the two objects makes more delicate the decomposition of a Witten di-
agram in terms of geodesics. We carry out explicit examples in section 5.5, and
discuss the general relation when the exchanged field is a scalar. The strategy
we adopt for this decomposition is inspired by the identities used in [173]: one
rewrites all tensorial properties of the interactions among bulk–to–boundary fields
in terms of boundary operators acting on a scalar seed. This allows us to identify
the CFT operators Di jk, and use then our bulk operators Di jk to write a final
answer in terms of a sum of geodesic integrals. As a result, the set of cubic in-
teractions needed to decompose a Witten diagram in terms of geodesic diagrams
is larger than the basis in (5.87). Each individual geodesic integral is, however,
much easier to evaluate.

We have not discussed contact Witten diagrams here, but actually they can be
treated very similarly as we did in section 5.5. The scalar case was done in [120],
so the task is to manipulate the vertex along the lines of the discussion in section
5.5.3: the analog of (5.111) for a quartic interaction would allow us to identify
the suitable tensor structures. Note that in a quartic interaction all propagators
involved are bulk–to–boundary and hence we can strip off its tensorial features.

In subsection 5.3.2 we gave a prescription on how to evaluate conformal partial
waves via geodesic diagrams when the exchanged field has non-trivial spin. And
the general strategy we have adopted in this work allowed us to relate the geodesic
diagrams to Witten diagrams, as we discussed in subsection 5.5.4. From this
method it is not straightforward to infer the gravitational interaction, as we did
in section 5.4, with the main obstacle being the contractions of dY µ/dλ appearing
in the integrand. It might be interesting to improve our prescription, to make this
connection more evident.

Another future direction that would be interesting to pursue is the addition of
loops on the gravitational side. Very little is known about how to evaluate Witten
diagrams beyond tree level, with the exception of the recent work in [187]. It would
interesting to see how the geodesic diagram decomposition of a Witten diagram
is affected by the presence of loops: since the geodesic diagrams are conformal
partial waves, we would expect that loops only modify the OPE coeffcients in the
decomposition and the relation between masses in AdS and conformal dimensions
in the CFT.
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Appendix A: Tensor structures in Witten diagrams

In this appendix we will evaluate three point Witten diagrams explicitly to illustrate
how the tensor structures appear in the final answer. We will focus on the following
interactions:

Aµ1 ∂µ∂νφ2 A
ν
3 , ∂µA

ν
1 φ2 ∂µA

ν
3 , ∂µA

ν
1 φ2 ∂νA

µ
3 . (5.121)

We will do this by using the techniques in [173, 174], where they write the J spinning
bulk to boundary propagator and its derivatives in terms of the scalar propagators. This
allows us to express the three point function of our interest in terms of scalar three point
functions. In our case, we will just need the following identities for the spin-1 case, which
follow from (5.25) and (5.27):

∆G
∆|1
b∂ (Y, P ;W,Z) = DP (W,Z)G∆|0

b∂ (Y, P ) , (5.122)

(W ′ · ∂Y )G∆|1
b∂ (Y, P ;W,Z) = D ′P (W ′,W,Z)G∆+1|0

b∂ (Y, P ) , (5.123)

where DP are differential operators defined as

DP (W,Z) = (Z ·W )
(
Z · ∂

∂Z
− P · ∂

∂P

)
+ (P ·W )

(
Z · ∂

∂P

)
, (5.124)

D ′P (W ′,W,Z) = 2
(

(Z ·W ′)(P ·W ) + ∆(P ·W ′)(Z ·W ) + (P ·W ′)(P ·W )
(
Z · ∂

∂P

))
.

(5.125)

We start by evaluating a Witten diagram using the interaction Aµ1 ∂µ∂νφ2 A
ν
3 . We

have∫
dY G

∆1|1
b∂ (Y, P1; ∂W1 , Z1)G∆3|1

b∂ (Y, P3; ∂W3 , Z3)(W1 · ∂Y )(W3 · ∂Y )G∆2|0
b∂ (Y, P2) .

(5.126)
Here dY denotes an integral over the volume of AdS. Using (5.23) and (5.125) gives

4∆2(∆2 + 1)
∆1∆3

∫
dY DP1(∂W1 , Z1)G∆1|0

b∂ (Y, P1)DP3(∂W3 , Z3)G∆3|0
b∂ (Y, P3)

× (W1 · P2)(W3 · P2)G∆2+2|0
b∂ (Y, P2)

= 4∆2(∆2 + 1)
∆1∆3

DP1(P2, Z1)DP3(P2, Z3)
∫
dY G

∆1|0
b∂ (Y, P1)G∆3|0

b∂ (Y, P3)G∆2+2|0
b∂ (Y, P2)

= 4∆2(∆2 + 1)C∆1,∆2+2,∆3

∆1∆3
DP1(P2, Z1)DP3(P2, Z3)K∆1,∆2+2,∆3

3 , (5.127)

where

C∆1,∆2,∆3 = g
πh

2 Γ
(

∆1 + ∆2 + ∆3 − 2h
2

)
Γ
(∆1+∆2−∆3

2

)
Γ
(∆1+∆3−∆2

2

)
Γ
(∆2+∆3−∆1

2

)
Γ(∆1)Γ(∆2)Γ(∆3) .

(5.128)

Notice that DP1(P2, Z1) = D2,12, and DP3(P2, Z3) = D2,32. Now, applying the differen-
tial operators to the scalar 3-point function we find that tensor structure corresponding
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to the previous diagram is the following linear combination:

Aµ1 ∂µ∂νφ2 A
ν
3 :

∆2(∆2 + 1)(∆1 −∆2 + ∆3 − 2)C∆1,∆2+2,∆3 (H13 + (∆1 −∆2 + ∆3 − 2) V1,23V3,21)
∆1∆3

.

(5.129)

For the interaction ∂µA
ν
1 φ2 ∂µA

ν
3 we have∫

dY (∂W ′ ·∂Y )G∆1|1
b∂ (Y, P1; ∂W , Z1)(W ′ ·∂Y )G∆3|1

b∂ (Y, P3;W,Z3)G∆2|0
b∂ (Y, P2) , (5.130)

which using (5.123) is equivalent to

D ′P1(∂W ′ , ∂W , Z1)D ′P3(W ′,W,Z3)
∫
dY G

∆1+1|0
b∂ (Y, P1)G∆3+1|0

b∂ (Y, P3)G∆2|0
b∂ (Y, P2)

= C∆1+1,∆2,∆3+1D
′
P1(∂W ′ , ∂W , Z1)D ′P3(W ′,W,Z3)K∆1+1,∆2,∆3+1

3 .

(5.131)

Contracting the W ’s in the differential operators gives

D ′P1(∂W ′ , ∂W , Z1)D ′P3(W ′,W,Z3) = (∆1 + ∆3)(Z1 · P3)(Z3 · P1) + ∆1∆3(Z1 · Z3)(P1 · P3)
+ (P1 · P3) ((Z1 · ∂P1)(Z3 · ∂P3) + (1 + ∆3)(P1 · Z3)(Z1 · ∂P1) + (1 + ∆1)(P3 · Z1)(Z3 · ∂P3)) ,

which leads to the following identification

∂µA
ν
1 φ2 ∂µA

ν
3 : C∆1+1,∆2,∆3+1

× ((∆1 −∆2 + ∆3 − 2∆1∆3)H13 − (∆1 −∆2 −∆3)(∆1 + ∆2 −∆3) V1,23V3,21) .
(5.132)

The interaction ∂µAν1 φ2 ∂νA
µ
3 is computed analogously as the previous, but with different

W contractions∫
dY (∂W ′ · ∂Y )G∆1|1

b∂ (Y, P1; ∂W , Z1)(W · ∂Y )G∆3|1
b∂ (Y, P3;W ′, Z3)G∆2|0

b∂ (Y, P2)

= C∆1+1,∆2,∆3+1D
′
P1(∂W ′ , ∂W , Z1)D ′P3(W,W ′, Z3)K∆1+1,∆2,∆3+1

3 .

(5.133)

This contraction of the differential operators gives

D ′P1(∂W ′ , ∂W , Z1)D ′P3(W ′,W,Z3) = ∆1∆3(Z1 ·P3)(Z3 ·P1)+(∆1 +∆3)(Z1 ·Z3)(P1 ·P3)
+(P1·P3) ((Z1 · ∂P1)(Z3 · ∂P3) + (1 + ∆3)(P1 · Z3)(Z1 · ∂P1) + (1 + ∆1)(P3 · Z1)(Z3 · ∂P3)) ,

which applying it to the scalar three point function gives

∂µA
ν
1 φ2 ∂νA

µ
3 : C∆1+1,∆2,∆3+1

(−(∆1 + ∆2 + ∆3 − 2)H13 − (∆1 −∆2 −∆3)(∆1 + ∆2 −∆3) V1,23V3,21) . (5.134)
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5.6. Discussion

Based on these three interactions, we can make the following map

H13 : ∂µA
ν
1 φ2 ∂µA

ν
3 − ∂µAν1 φ2 ∂νA

µ
3 ,

V1,23V3,21 : αAµ1 ∂µ∂νφ2 A
ν
3

− (∆1 + ∆3)∂µAν1 φ2 ∂µA
ν
3 + (1 + ∆1∆3)∂µAν1 φ2 ∂νA

µ
3 , (5.135)

where

α = (∆1 − 1)(∆3 − 1)(∆1 −∆2 + ∆3)(2 + ∆1 −∆2 + ∆3)
(∆1 + ∆2 −∆3)(∆1 −∆2 −∆3) . (5.136)

Modulo normalizations, this identification is compatible with the identification using
geodesic diagrams (5.84) and (5.85).

Appendix B: Tensor-tensor-scalar structures via geodesic di-
agrams

Based on the two examples in sections 5.4.1 and 5.4.1, we can make a general identification
between tensorial structures and a minimal set of gravitational interactions that will
capture them for a fixed choice of the geodesic given by the first diagram in Fig. 5.4. We
saw that the simplest way to identify H12 in the bulk is by an interaction that contracts
indices among symmetric tensors at position 1 and 2, and the V ’s added derivatives on
position 3 with suitable contractions on legs 1 and 2. Hence, it seems like each tensor
structure Hp

12V
q
1,23V

r
2,13K∆1,∆2,∆3

3 is reproduced by a geodesic integral of the form∫
γ12

dλ
H1λ(Z1, ∂W )qH1λ(Z1, ∂W ′)p

Ψ∆1
1λ

H2λ(Z2, ∂W )rH2λ(Z2,W
′)p

Ψ∆2
2λ

(W · ∂Yλ)q+rΨ−∆3
3λ .

(5.137)

This is a claim we can prove. The proof requires the following identities which are easily
obtained by induction:

(W · ∂Yλ)nΨ−∆3
3λ = (−2)n(−∆3 − n+ 1)n(W · P3)nΨ−∆3−n

3λ ,

(Hiλ(Zi, ∂W ))n(W · P3)l = (l − n+ 1)n(W · P3)l−n
(√

Pi3Ψ3λ

Ψiλ
V∂ i,3λ(Zi)

)n
,

H1λ(Z1, ∂W ′)pH2λ(Z2,W
′)p|γ12 = p!Hp

12 . (5.138)

Applying these to the integral gives

2q+rp!q!(−∆3 − q − r + 1)q+r(q + 1)r
(
P13P23

P12

) q+r
2
Hp

12V
q
1,23V

r
2,13

×
∫
γ12

Ψ−∆1
1λ Ψ−∆2

2λ Ψ−∆3−q−r
3λ , (5.139)

where we used √
Pi3Ψ31

Ψi1
V∂ i,31(Zi) = −

√
P13P23

P12

{
V1,23 if i = 1
V2,13 if i = 2

(5.140)
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5. Gravitational interactions à la CFT and vice versa

The remaining integral evaluates to∫
γ12

Ψ−∆1
1λ Ψ−∆2

2λ Ψ−∆3−q−r
3λ = K

∆1,∆2,∆3+q+r
3
c∆1∆2∆3+q+r

, (5.141)

by (5.67). Therefore (5.137) results in

2q+rp!q!(−∆3 − q − r + 1)q+r(q + 1)r
c∆1∆2∆3+q+r

Hp
12V

q
1,23V

r
2,13K∆1,∆2,∆3

3 , (5.142)

which completes the proof. Hence, from the analysis of the integrals over the geodesic
γ12 (which connects the fields with spin), we find the following identification

Hp
12V

q
1,23V

r
2,13 : h

α1···αq
1µ1···µp h

µ1···µpβ1···βr
2 ∂α1 · · · ∂αq∂β1 · · · ∂βrφ3 . (5.143)

As we have noticed in section 5.4.1 this identification is not unique. It is sensitive to
the choice of geodesic, and moreover to redundancies that appear as derivatives are
contracted along γ12 (i.e. generalizations of (5.86)).
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6 Conclusion

The idea of exploiting conformal symmetry to completely solve a CFT dates back
to the early 1970s [7, 8]. However, actual results for the case of d > 2 dimen-
sions only started appearing after the 2008 seminal paper [188]. The two main
ingredients that made this study possible are the development of readily available
expressions for conformal partial waves [64,68,69] as well recasting the conformal
bootstrap equations (1.227) in a way that the CFT data can be solved via known
algorithms (a linear programming problem in the case of [188]). Since then the
bootstrap program literature has moved in two main directions [73,74]:

• numerical: techniques have been developed for obtaining numerical bounds
on CFT data for theories in 3, 4, as well as other dimensions, with and
without global symmetries, as well as supersymmetries. Studies of this type
include the determination of constraints arising from mixing more than one
type of four-point function, as well as correlators with conserved currents.

• analytical: progress has been made for analytically solving the bootstrap
equations in particular limits. This includes studying certain kinematic con-
figurations such as the lightcone and Regge limits, as well as taking large
dimension limits. Other progress involves considering slightly broken sym-
metries in the large N and ε-expansions. Furthermore, techniques exploiting
Lorentzian causality and inversion formulas have also been developed.

One interesting consequence of the non-perturbative constraints from the boot-
strap program is the possibility of gaining insight into features of quantum gravity
via the AdS/CFT correspondence. For example, by studying CFTs in particular
limits that correspond to local high energy scattering deep in the bulk [110, 189].
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6. Conclusion

Another direction is to extend the holographic dictionary by better understand-
ing the connections between the physics of bulk scattering and CFT correla-
tors [3, 120, 124, 177, 178, 190–193]. One can then use bulk intuition to get insight
into the CFT dynamics and inversely use CFT methods to discover nontrivial
physics in the bulk.

Although the bootstrap literature has seen many developments in recent years,
the work is far from done. The ultimate objective is to create a map of the
space of non-trivial CFTs. This involves refining our current understanding of
known CFTs as well as possibly discovering previously unknown theories. Given
that conformal field theories appear in many areas of physics, one expects that
improving the bootstrap technology could lead to breakthroughs in topics such as
quantum gravity, condensed matter systems, and quantum field theory. To achieve
all this we need to improve our current techniques for working with spinning
operators, as well as inventing more efficient numerical and analytical tools for
solving the bootstrap equations.
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[82] V. Gonçalves, J. Penedones, and E. Trevisani, “Factorization of Mellin
amplitudes,” JHEP 10 (2015) 040, arXiv:1410.4185 [hep-th].

[83] R. Gopakumar, A. Kaviraj, K. Sen, and A. Sinha, “A Mellin space
approach to the conformal bootstrap,” JHEP 05 (2017) 027,
arXiv:1611.08407 [hep-th].

[84] M. Hogervorst and B. C. van Rees, “Crossing symmetry in alpha space,”
JHEP 11 (2017) 193, arXiv:1702.08471 [hep-th].

[85] M. Hogervorst, “Crossing Kernels for Boundary and Crosscap CFTs,”
arXiv:1703.08159 [hep-th].

[86] S. Caron-Huot, “Analyticity in Spin in Conformal Theories,” JHEP 09
(2017) 078, arXiv:1703.00278 [hep-th].

187

http://dx.doi.org/10.1038/nphys3761
http://dx.doi.org/10.1038/nphys3761
http://arxiv.org/abs/1805.04405
http://dx.doi.org/10.1007/s10955-014-1042-7
http://dx.doi.org/10.1007/s10955-014-1042-7
http://arxiv.org/abs/1403.4545
http://dx.doi.org/10.1007/JHEP08(2016)036
http://arxiv.org/abs/1603.04436
http://arxiv.org/abs/1603.04436
http://dx.doi.org/10.1007/JHEP03(2011)025
http://arxiv.org/abs/1011.1485
http://dx.doi.org/10.1007/JHEP10(2011)074
http://dx.doi.org/10.1007/JHEP10(2011)074
http://arxiv.org/abs/1107.1504
http://dx.doi.org/10.1007/JHEP11(2011)095
http://arxiv.org/abs/1107.1499
http://dx.doi.org/10.1007/JHEP12(2012)091
http://arxiv.org/abs/1209.4355
http://dx.doi.org/10.1007/JHEP10(2012)032
http://arxiv.org/abs/1112.4845
http://dx.doi.org/10.1007/JHEP10(2015)040
http://arxiv.org/abs/1410.4185
http://dx.doi.org/10.1007/JHEP05(2017)027
http://arxiv.org/abs/1611.08407
http://dx.doi.org/10.1007/JHEP11(2017)193
http://arxiv.org/abs/1702.08471
http://arxiv.org/abs/1703.08159
http://dx.doi.org/10.1007/JHEP09(2017)078
http://dx.doi.org/10.1007/JHEP09(2017)078
http://arxiv.org/abs/1703.00278


Bibliography

[87] C. Sleight and M. Taronna, “Spinning Mellin Bootstrap: Conformal Partial
Waves, Crossing Kernels and Applications,” arXiv:1804.09334 [hep-th].

[88] A. L. Fitzpatrick, J. Kaplan, D. Poland, and D. Simmons-Duffin, “The
Analytic Bootstrap and AdS Superhorizon Locality,” JHEP 12 (2013) 004,
arXiv:1212.3616 [hep-th].

[89] Z. Komargodski and A. Zhiboedov, “Convexity and Liberation at Large
Spin,” JHEP 11 (2013) 140, arXiv:1212.4103 [hep-th].

[90] A. L. Fitzpatrick, J. Kaplan, and M. T. Walters, “Universality of
Long-Distance AdS Physics from the CFT Bootstrap,” JHEP 08 (2014)
145, arXiv:1403.6829 [hep-th].

[91] D. Li, D. Meltzer, and D. Poland, “Conformal Collider Physics from the
Lightcone Bootstrap,” JHEP 02 (2016) 143, arXiv:1511.08025 [hep-th].

[92] D. Li, D. Meltzer, and D. Poland, “Non-Abelian Binding Energies from the
Lightcone Bootstrap,” JHEP 02 (2016) 149, arXiv:1510.07044 [hep-th].

[93] D. Simmons-Duffin, “The Lightcone Bootstrap and the Spectrum of the 3d
Ising CFT,” JHEP 03 (2017) 086, arXiv:1612.08471 [hep-th].

[94] T. Hartman, S. Jain, and S. Kundu, “Causality Constraints in Conformal
Field Theory,” JHEP 05 (2016) 099, arXiv:1509.00014 [hep-th].

[95] T. Hartman, S. Jain, and S. Kundu, “A New Spin on Causality
Constraints,” JHEP 10 (2016) 141, arXiv:1601.07904 [hep-th].

[96] A. Kaviraj, K. Sen, and A. Sinha, “Analytic bootstrap at large spin,”
JHEP 11 (2015) 083, arXiv:1502.01437 [hep-th].

[97] L. F. Alday, A. Bissi, and T. Lukowski, “Large spin systematics in CFT,”
JHEP 11 (2015) 101, arXiv:1502.07707 [hep-th].

[98] L. F. Alday and A. Zhiboedov, “An Algebraic Approach to the Analytic
Bootstrap,” JHEP 04 (2017) 157, arXiv:1510.08091 [hep-th].

[99] A. Kaviraj, K. Sen, and A. Sinha, “Universal anomalous dimensions at
large spin and large twist,” JHEP 07 (2015) 026, arXiv:1504.00772
[hep-th].

[100] M. van Loon, “The Analytic Bootstrap in Fermionic CFTs,” JHEP 01
(2018) 104, arXiv:1711.02099 [hep-th].

[101] E. Elkhidir and D. Karateev, “Scalar-Fermion Analytic Bootstrap in 4D,”
arXiv:1712.01554 [hep-th].

188

http://arxiv.org/abs/1804.09334
http://dx.doi.org/10.1007/JHEP12(2013)004
http://arxiv.org/abs/1212.3616
http://dx.doi.org/10.1007/JHEP11(2013)140
http://arxiv.org/abs/1212.4103
http://dx.doi.org/10.1007/JHEP08(2014)145
http://dx.doi.org/10.1007/JHEP08(2014)145
http://arxiv.org/abs/1403.6829
http://dx.doi.org/10.1007/JHEP02(2016)143
http://arxiv.org/abs/1511.08025
http://dx.doi.org/10.1007/JHEP02(2016)149
http://arxiv.org/abs/1510.07044
http://dx.doi.org/10.1007/JHEP03(2017)086
http://arxiv.org/abs/1612.08471
http://dx.doi.org/10.1007/JHEP05(2016)099
http://arxiv.org/abs/1509.00014
http://dx.doi.org/10.1007/JHEP10(2016)141
http://arxiv.org/abs/1601.07904
http://dx.doi.org/10.1007/JHEP11(2015)083
http://arxiv.org/abs/1502.01437
http://dx.doi.org/10.1007/JHEP11(2015)101
http://arxiv.org/abs/1502.07707
http://dx.doi.org/10.1007/JHEP04(2017)157
http://arxiv.org/abs/1510.08091
http://dx.doi.org/10.1007/JHEP07(2015)026
http://arxiv.org/abs/1504.00772
http://arxiv.org/abs/1504.00772
http://dx.doi.org/10.1007/JHEP01(2018)104
http://dx.doi.org/10.1007/JHEP01(2018)104
http://arxiv.org/abs/1711.02099
http://arxiv.org/abs/1712.01554


Bibliography

[102] P. Dey, A. Kaviraj, and K. Sen, “More on analytic bootstrap for O(N)
models,” JHEP 06 (2016) 136, arXiv:1602.04928 [hep-th].

[103] L. F. Alday and A. Bissi, “Crossing symmetry and Higher spin towers,”
JHEP 12 (2017) 118, arXiv:1603.05150 [hep-th].

[104] L. F. Alday, “Large Spin Perturbation Theory for Conformal Field
Theories,” Phys. Rev. Lett. 119 no. 11, (2017) 111601, arXiv:1611.01500
[hep-th].

[105] P. Dey, K. Ghosh, and A. Sinha, “Simplifying large spin bootstrap in
Mellin space,” JHEP 01 (2018) 152, arXiv:1709.06110 [hep-th].

[106] J. Henriksson and M. Van Loon, “Critical O(N) model to order ε4 from
analytic bootstrap,” arXiv:1801.03512 [hep-th].

[107] D. Li, D. Meltzer, and D. Poland, “Conformal Bootstrap in the Regge
Limit,” JHEP 12 (2017) 013, arXiv:1705.03453 [hep-th].

[108] L. Cornalba, “Eikonal methods in AdS/CFT: Regge theory and
multi-reggeon exchange,” arXiv:0710.5480 [hep-th].

[109] M. S. Costa, T. Hansen, and J. Penedones, “Bounds for OPE coefficients on
the Regge trajectory,” JHEP 10 (2017) 197, arXiv:1707.07689 [hep-th].

[110] D. Meltzer and E. Perlmutter, “Beyond a = c: Gravitational Couplings to
Matter and the Stress Tensor OPE,” arXiv:1712.04861 [hep-th].

[111] L. F. Alday, A. Bissi, and E. Perlmutter, “Holographic Reconstruction of
AdS Exchanges from Crossing Symmetry,” JHEP 08 (2017) 147,
arXiv:1705.02318 [hep-th].

[112] M. Kulaxizi, A. Parnachev, and A. Zhiboedov, “Bulk Phase Shift, CFT
Regge Limit and Einstein Gravity,” arXiv:1705.02934 [hep-th].

[113] J. Schwinger, “ON THE EUCLIDEAN STRUCTURE OF RELATIVISTIC
FIELD THEORY,” PNAS; Proceedings of the National Academy of
Sciences 44 no. 9, (1958) 956–965.

[114] J. Schwinger”, “Euclidean Quantum Electrodynamics,” Physical Review
115 no. 3, (1959) 721–731.

[115] A. S. Wightman, “Quantum field theory and analytic functions of several
complex variables,” Journal of the Indian Mathematical Society 24 no. 3-4,
(1960) 625–677.

189

http://dx.doi.org/10.1007/JHEP06(2016)136
http://arxiv.org/abs/1602.04928
http://dx.doi.org/10.1007/JHEP12(2017)118
http://arxiv.org/abs/1603.05150
http://dx.doi.org/10.1103/PhysRevLett.119.111601
http://arxiv.org/abs/1611.01500
http://arxiv.org/abs/1611.01500
http://dx.doi.org/10.1007/JHEP01(2018)152
http://arxiv.org/abs/1709.06110
http://arxiv.org/abs/1801.03512
http://dx.doi.org/10.1007/JHEP12(2017)013
http://arxiv.org/abs/1705.03453
http://arxiv.org/abs/0710.5480
http://dx.doi.org/10.1007/JHEP10(2017)197
http://arxiv.org/abs/1707.07689
http://arxiv.org/abs/1712.04861
http://dx.doi.org/10.1007/JHEP08(2017)147
http://arxiv.org/abs/1705.02318
http://arxiv.org/abs/1705.02934
http://dx.doi.org/10.1103/PhysRev.115.721
http://dx.doi.org/10.1103/PhysRev.115.721


Bibliography

[116] K. Osterwalder and R. Schrader, “AXIOMS FOR EUCLIDEAN GREEN’S
FUNCTIONS,” Commun. Math. Phys. 31 (1973) 83–112.

[117] K. Osterwalder and R. Schrader, “Axioms for Euclidean Green’s Functions.
2.,” Commun. Math. Phys. 42 (1975) 281.

[118] M. Luscher and G. Mack, “Global Conformal Invariance in Quantum Field
Theory,” Commun. Math. Phys. 41 (1975) 203–234.

[119] V. K. Dobrev, V. B. Petkova, S. G. Petrova, and I. T. Todorov,
“Dynamical Derivation of Vacuum Operator Product Expansion in
Euclidean Conformal Quantum Field Theory,” Phys. Rev. D13 (1976) 887.

[120] E. Hijano, P. Kraus, E. Perlmutter, and R. Snively, “Witten Diagrams
Revisited: The AdS Geometry of Conformal Blocks,” JHEP 01 (2016) 146,
arXiv:1508.00501 [hep-th].

[121] B. Geyer, M. Lazar, and D. Robaschik, “Decomposition of nonlocal light
cone operators into harmonic operators of definite twist,” Nucl. Phys.
B559 (1999) 339–377, arXiv:hep-th/9901090 [hep-th].

[122] B. Geyer and M. Lazar, “Twist decomposition of nonlocal light cone
operators. 2. General tensors of 2nd rank,” Nucl. Phys. B581 (2000)
341–390, arXiv:hep-th/0003080 [hep-th].

[123] J. Eilers, “Geometric twist decomposition off the light-cone for nonlocal
QCD operators,” arXiv:hep-th/0608173 [hep-th].

[124] M. S. Costa and T. Hansen, “AdS Weight Shifting Operators,”
arXiv:1805.01492 [hep-th].

[125] https://github.com/frejonb/
Mixed-symmetric-weight-shifting-operators.

[126] A. Dymarsky, F. Kos, P. Kravchuk, D. Poland, and D. Simmons-Duffin,
“The 3d Stress-Tensor Bootstrap,” JHEP 02 (2018) 164,
arXiv:1708.05718 [hep-th].

[127] L. F. Alday and A. Zhiboedov, “Conformal Bootstrap With Slightly
Broken Higher Spin Symmetry,” JHEP 06 (2016) 091, arXiv:1506.04659
[hep-th].

[128] G. Vos, “Generalized Additivity in Unitary Conformal Field Theories,”
Nucl. Phys. B899 (2015) 91–111, arXiv:1411.7941 [hep-th].

[129] A. L. Fitzpatrick, J. Kaplan, M. T. Walters, and J. Wang, “Eikonalization
of Conformal Blocks,” JHEP 09 (2015) 019, arXiv:1504.01737 [hep-th].

190

http://dx.doi.org/10.1007/BF01645738
http://dx.doi.org/10.1007/BF01608978
http://dx.doi.org/10.1007/BF01608988
http://dx.doi.org/10.1103/PhysRevD.13.887
http://dx.doi.org/10.1007/JHEP01(2016)146
http://arxiv.org/abs/1508.00501
http://dx.doi.org/10.1016/S0550-3213(99)00334-X
http://dx.doi.org/10.1016/S0550-3213(99)00334-X
http://arxiv.org/abs/hep-th/9901090
http://dx.doi.org/10.1016/S0550-3213(00)00227-3
http://dx.doi.org/10.1016/S0550-3213(00)00227-3
http://arxiv.org/abs/hep-th/0003080
http://arxiv.org/abs/hep-th/0608173
http://arxiv.org/abs/1805.01492
https://github.com/frejonb/Mixed-symmetric-weight-shifting-operators
https://github.com/frejonb/Mixed-symmetric-weight-shifting-operators
http://dx.doi.org/10.1007/JHEP02(2018)164
http://arxiv.org/abs/1708.05718
http://dx.doi.org/10.1007/JHEP06(2016)091
http://arxiv.org/abs/1506.04659
http://arxiv.org/abs/1506.04659
http://dx.doi.org/10.1016/j.nuclphysb.2015.07.013
http://arxiv.org/abs/1411.7941
http://dx.doi.org/10.1007/JHEP09(2015)019
http://arxiv.org/abs/1504.01737


Bibliography

[130] S. H. Shenker and D. Stanford, “Stringy effects in scrambling,” JHEP 05
(2015) 132, arXiv:1412.6087 [hep-th].

[131] J. Maldacena, S. H. Shenker, and D. Stanford, “A bound on chaos,” JHEP
08 (2016) 106, arXiv:1503.01409 [hep-th].

[132] J. Maldacena, D. Simmons-Duffin, and A. Zhiboedov, “Looking for a bulk
point,” JHEP 01 (2017) 013, arXiv:1509.03612 [hep-th].

[133] A. L. Fitzpatrick and J. Kaplan, “A Quantum Correction To Chaos,”
JHEP 05 (2016) 070, arXiv:1601.06164 [hep-th].

[134] E. Perlmutter, “Bounding the Space of Holographic CFTs with Chaos,”
JHEP 10 (2016) 069, arXiv:1602.08272 [hep-th].

[135] G. Turiaci and H. Verlinde, “On CFT and Quantum Chaos,” JHEP 12
(2016) 110, arXiv:1603.03020 [hep-th].

[136] D. M. Hofman and J. Maldacena, “Conformal collider physics: Energy and
charge correlations,” JHEP 05 (2008) 012, arXiv:0803.1467 [hep-th].

[137] H. Osborn and A. C. Petkou, “Implications of conformal invariance in field
theories for general dimensions,” Annals Phys. 231 (1994) 311–362,
arXiv:hep-th/9307010 [hep-th].

[138] Z. Komargodski, M. Kulaxizi, A. Parnachev, and A. Zhiboedov,
“Conformal Field Theories and Deep Inelastic Scattering,” Phys. Rev. D95
no. 6, (2017) 065011, arXiv:1601.05453 [hep-th].

[139] J.-H. Park, “N=1 superconformal symmetry in four-dimensions,” Int. J.
Mod. Phys. A13 (1998) 1743–1772, arXiv:hep-th/9703191 [hep-th].

[140] H. Osborn, “N=1 superconformal symmetry in four-dimensional quantum
field theory,” Annals Phys. 272 (1999) 243–294, arXiv:hep-th/9808041
[hep-th].

[141] W. D. Goldberger, W. Skiba, and M. Son, “Superembedding Methods for
4d N=1 SCFTs,” Phys. Rev. D86 (2012) 025019, arXiv:1112.0325
[hep-th].

[142] W. Siegel, “Embedding versus 6D twistors,” arXiv:1204.5679 [hep-th].

[143] M. Maio, “Superembedding methods for 4d N-extended SCFTs,” Nucl.
Phys. B864 (2012) 141–166, arXiv:1205.0389 [hep-th].

[144] S. M. Kuzenko, “Conformally compactified Minkowski superspaces
revisited,” JHEP 10 (2012) 135, arXiv:1206.3940 [hep-th].

191

http://dx.doi.org/10.1007/JHEP05(2015)132
http://dx.doi.org/10.1007/JHEP05(2015)132
http://arxiv.org/abs/1412.6087
http://dx.doi.org/10.1007/JHEP08(2016)106
http://dx.doi.org/10.1007/JHEP08(2016)106
http://arxiv.org/abs/1503.01409
http://dx.doi.org/10.1007/JHEP01(2017)013
http://arxiv.org/abs/1509.03612
http://dx.doi.org/10.1007/JHEP05(2016)070
http://arxiv.org/abs/1601.06164
http://dx.doi.org/10.1007/JHEP10(2016)069
http://arxiv.org/abs/1602.08272
http://dx.doi.org/10.1007/JHEP12(2016)110
http://dx.doi.org/10.1007/JHEP12(2016)110
http://arxiv.org/abs/1603.03020
http://dx.doi.org/10.1088/1126-6708/2008/05/012
http://arxiv.org/abs/0803.1467
http://dx.doi.org/10.1006/aphy.1994.1045
http://arxiv.org/abs/hep-th/9307010
http://dx.doi.org/10.1103/PhysRevD.95.065011
http://dx.doi.org/10.1103/PhysRevD.95.065011
http://arxiv.org/abs/1601.05453
http://dx.doi.org/10.1142/S0217751X98000755
http://dx.doi.org/10.1142/S0217751X98000755
http://arxiv.org/abs/hep-th/9703191
http://dx.doi.org/10.1006/aphy.1998.5893
http://arxiv.org/abs/hep-th/9808041
http://arxiv.org/abs/hep-th/9808041
http://dx.doi.org/10.1103/PhysRevD.86.025019
http://arxiv.org/abs/1112.0325
http://arxiv.org/abs/1112.0325
http://arxiv.org/abs/1204.5679
http://dx.doi.org/10.1016/j.nuclphysb.2012.06.011
http://dx.doi.org/10.1016/j.nuclphysb.2012.06.011
http://arxiv.org/abs/1205.0389
http://dx.doi.org/10.1007/JHEP10(2012)135
http://arxiv.org/abs/1206.3940


Bibliography

[145] W. D. Goldberger, Z. U. Khandker, D. Li, and W. Skiba, “Superembedding
Methods for Current Superfields,” Phys. Rev. D88 (2013) 125010,
arXiv:1211.3713 [hep-th].

[146] Z. U. Khandker and D. Li, “Superembedding Formalism and
Supertwistors,” arXiv:1212.0242 [hep-th].

[147] A. L. Fitzpatrick, J. Kaplan, Z. U. Khandker, D. Li, D. Poland, and
D. Simmons-Duffin, “Covariant Approaches to Superconformal Blocks,”
JHEP 08 (2014) 129, arXiv:1402.1167 [hep-th].

[148] Z. U. Khandker, D. Li, D. Poland, and D. Simmons-Duffin, “N = 1
superconformal blocks for general scalar operators,” JHEP 08 (2014) 049,
arXiv:1404.5300 [hep-th].

[149] Z. Li and N. Su, “The Most General 4D N = 1 Superconformal Blocks for
Scalar Operators,” JHEP 05 (2016) 163, arXiv:1602.07097 [hep-th].

[150] X. O. Camanho and J. D. Edelstein, “Causality constraints in AdS/CFT
from conformal collider physics and Gauss-Bonnet gravity,” JHEP 04
(2010) 007, arXiv:0911.3160 [hep-th].

[151] A. Buchel, J. Escobedo, R. C. Myers, M. F. Paulos, A. Sinha, and
M. Smolkin, “Holographic GB gravity in arbitrary dimensions,” JHEP 03
(2010) 111, arXiv:0911.4257 [hep-th].

[152] D. M. Hofman, “Higher Derivative Gravity, Causality and Positivity of
Energy in a UV complete QFT,” Nucl. Phys. B823 (2009) 174–194,
arXiv:0907.1625 [hep-th].

[153] M. Brigante, H. Liu, R. C. Myers, S. Shenker, and S. Yaida, “The Viscosity
Bound and Causality Violation,” Phys. Rev. Lett. 100 (2008) 191601,
arXiv:0802.3318 [hep-th].

[154] M. Brigante, H. Liu, R. C. Myers, S. Shenker, and S. Yaida, “Viscosity
Bound Violation in Higher Derivative Gravity,” Phys. Rev. D77 (2008)
126006, arXiv:0712.0805 [hep-th].

[155] A. Buchel and R. C. Myers, “Causality of Holographic Hydrodynamics,”
JHEP 08 (2009) 016, arXiv:0906.2922 [hep-th].

[156] J. de Boer, M. Kulaxizi, and A. Parnachev, “AdS(7)/CFT(6),
Gauss-Bonnet Gravity, and Viscosity Bound,” JHEP 03 (2010) 087,
arXiv:0910.5347 [hep-th].

192

http://dx.doi.org/10.1103/PhysRevD.88.125010
http://arxiv.org/abs/1211.3713
http://arxiv.org/abs/1212.0242
http://dx.doi.org/10.1007/JHEP08(2014)129
http://arxiv.org/abs/1402.1167
http://dx.doi.org/10.1007/JHEP08(2014)049
http://arxiv.org/abs/1404.5300
http://dx.doi.org/10.1007/JHEP05(2016)163
http://arxiv.org/abs/1602.07097
http://dx.doi.org/10.1007/JHEP04(2010)007
http://dx.doi.org/10.1007/JHEP04(2010)007
http://arxiv.org/abs/0911.3160
http://dx.doi.org/10.1007/JHEP03(2010)111
http://dx.doi.org/10.1007/JHEP03(2010)111
http://arxiv.org/abs/0911.4257
http://dx.doi.org/10.1016/j.nuclphysb.2009.08.001
http://arxiv.org/abs/0907.1625
http://dx.doi.org/10.1103/PhysRevLett.100.191601
http://arxiv.org/abs/0802.3318
http://dx.doi.org/10.1103/PhysRevD.77.126006
http://dx.doi.org/10.1103/PhysRevD.77.126006
http://arxiv.org/abs/0712.0805
http://dx.doi.org/10.1088/1126-6708/2009/08/016
http://arxiv.org/abs/0906.2922
http://dx.doi.org/10.1007/JHEP03(2010)087
http://arxiv.org/abs/0910.5347


Bibliography

[157] L. Cornalba, M. S. Costa, J. Penedones, and R. Schiappa, “Eikonal
Approximation in AdS/CFT: Conformal Partial Waves and Finite N
Four-Point Functions,” Nucl. Phys. B767 (2007) 327–351,
arXiv:hep-th/0611123 [hep-th].

[158] L. Cornalba, M. S. Costa, J. Penedones, and R. Schiappa, “Eikonal
Approximation in AdS/CFT: From Shock Waves to Four-Point Functions,”
JHEP 08 (2007) 019, arXiv:hep-th/0611122 [hep-th].

[159] L. Cornalba, M. S. Costa, and J. Penedones, “Eikonal approximation in
AdS/CFT: Resumming the gravitational loop expansion,” JHEP 09 (2007)
037, arXiv:0707.0120 [hep-th].

[160] X. O. Camanho, J. D. Edelstein, J. Maldacena, and A. Zhiboedov,
“Causality Constraints on Corrections to the Graviton Three-Point
Coupling,” JHEP 02 (2016) 020, arXiv:1407.5597 [hep-th].

[161] I. Heemskerk, J. Penedones, J. Polchinski, and J. Sully, “Holography from
Conformal Field Theory,” JHEP 10 (2009) 079, arXiv:0907.0151
[hep-th].

[162] A. L. Fitzpatrick and J. Kaplan, “AdS Field Theory from Conformal Field
Theory,” JHEP 02 (2013) 054, arXiv:1208.0337 [hep-th].

[163] A. L. Fitzpatrick, J. Kaplan, and M. T. Walters, “Virasoro Conformal
Blocks and Thermality from Classical Background Fields,” JHEP 11
(2015) 200, arXiv:1501.05315 [hep-th].

[164] M. J. Duff, “Observations on Conformal Anomalies,” Nucl. Phys. B125
(1977) 334–348.

[165] J. M. Maldacena, “The Large N limit of superconformal field theories and
supergravity,” Int. J. Theor. Phys. 38 (1999) 1113–1133,
arXiv:hep-th/9711200 [hep-th]. [Adv. Theor. Math. Phys.2,231(1998)].

[166] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory
correlators from noncritical string theory,” Phys. Lett. B428 (1998)
105–114, arXiv:hep-th/9802109 [hep-th].

[167] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math.
Phys. 2 (1998) 253–291, arXiv:hep-th/9802150 [hep-th].

[168] M. Taronna, Higher-Spin Interactions: three-point functions and beyond.
PhD thesis, Pisa, Scuola Normale Superiore, 2012. arXiv:1209.5755
[hep-th].

193

http://dx.doi.org/10.1016/j.nuclphysb.2007.01.007
http://arxiv.org/abs/hep-th/0611123
http://dx.doi.org/10.1088/1126-6708/2007/08/019
http://arxiv.org/abs/hep-th/0611122
http://dx.doi.org/10.1088/1126-6708/2007/09/037
http://dx.doi.org/10.1088/1126-6708/2007/09/037
http://arxiv.org/abs/0707.0120
http://dx.doi.org/10.1007/JHEP02(2016)020
http://arxiv.org/abs/1407.5597
http://dx.doi.org/10.1088/1126-6708/2009/10/079
http://arxiv.org/abs/0907.0151
http://arxiv.org/abs/0907.0151
http://dx.doi.org/10.1007/JHEP02(2013)054
http://arxiv.org/abs/1208.0337
http://dx.doi.org/10.1007/JHEP11(2015)200
http://dx.doi.org/10.1007/JHEP11(2015)200
http://arxiv.org/abs/1501.05315
http://dx.doi.org/10.1016/0550-3213(77)90410-2
http://dx.doi.org/10.1016/0550-3213(77)90410-2
http://dx.doi.org/10.1023/A:1026654312961, 10.4310/ATMP.1998.v2.n2.a1
http://arxiv.org/abs/hep-th/9711200
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9802109
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a2
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a2
http://arxiv.org/abs/hep-th/9802150
http://arxiv.org/abs/1209.5755
http://arxiv.org/abs/1209.5755


Bibliography

http://inspirehep.net/record/1188191/files/arXiv:1209.5755.pdf.
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