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Preface

The study of neutrinos is an indispensable limb of particle physics which conceives

several unsolved questions yet to be addressed: both experimentally and theoreti-

cally. In simple words, the essence of neutrino physics phenomenology lies in how

to explain the nine physical parameters related to neutrino masses, mixing angles

and CP violation. The explanation involves : “Why the parameters appear as

they do ?” and “How these parameters can be visualized in certain frame-works

?” In addition, it embraces the prediction of those parameters also which are not

yet observed or measured precisely in experiments. All these interesting aspects

persuade one to look beyond the standard model of particle physics. A first prin-

ciple to answer to the former question is still concealed. Our endeavor centers

round the possibilities to look into the second prospect. Mostly our work involves

the data from the neutrino oscillation experiments. In our analysis, either the

two Majorana phases remain covered or in some special occasion we switch to the

CP conserving scenarios. We know that the neutrino oscillation experiments keep

the ordering of neutrino masses indeterminate. In other words, three different

orderings “Normal”, ”Inverted” and “Quasi-degenerate” are equally possible. The

“Neutrino mass matrix” is a very important tool for the theorists, because it gives

the information of both masses and mixing angles (and the CP phases). A proper

parametrization of the same is requisite because it is essential not only in the

oscillation phenomenon and neutrino-less double beta decay scenarios but also in

cosmology. In a different approach, we can start from a proper parametrization of

lepton mixing matrix also which embraces the information of mixing angles (and

the CP phases) only.

The first part of the thesis is devoted to a proper parametrization of the neutrino

mass matrix and the latter part is attributed to the estimation of lepton mixing

matrix only.

1



Introduction 2

Whether the neutrino mass matrix is dominated by “Randomness” or certain

flavor symmetry is there to dictate the same is still an open question. But in the

thesis we are guided by the second possibility. In fact the flavour symmetries can

not answer to all the unsettled issues and the related frameworks are subjected to

correction. For example, A4 and S4 discrete flavor symmetries are associated with

2-3 symmetry of neutrino mass matrix, which in turn predicts a vanishing reactor

angle. But the present oscillation data rules out this possibility. How to bring

about similar needful modifications to a certain framework and the necessity to

look beyond the existing models are discussed in this thesis.

Our strategy is model-independent and perspective is “bottom-up”. The Thesis

is organized as follows.

• The first chapter discusses the general aspects of neutrino physics, like Dirac

and Majorana nature of neutrino, flavor oscillation, matter effects, different

theoretical aspects etc.

• The second chapter highlights the importance of proper parametrization of

Quasi-degenerate neutrino mass matrix based on µ−τ symmetric framework,

with minimum number of parameters in the basis where charged lepton mass

matrix is diagonal (or non-diagonal).

• The third chapter discusses the restraints or the sum rules that a neutrino

mass matrix may encounter, if at least one of the mixing angles is connected

to the corresponding mass ratio (a scenario similar to the case of quarks).

• The fourth chapter tries to modify the TBC and hence the TBM mixing by

considering the contribution both from neutrino and charged lepton sectors.

• The fifth chapter highlights the possibilities to construct a framework where

Cabibbo angle from quark sector can seed the parametrization both in

charged lepton and neutrino sector in the light of BL mixing.

• In the sixth chapter, the concluding remarks are made.



Chapter 1

Introduction: Brief overview of

Neutrinos

1.1 Introduction

The Standard Model (SM) of electro-weak and strong interactions is an profuse

theory that describes how the elementary particles behave and the way they inter-

act. The recent discovery of Higgs particle has declared the triumph of Standard

model. But strong reasons are there to think beyond the same, not only from

particle physics point of view but from cosmology as well. The Standard Model is

unable to explain the inflation, dark matter and dark energy. On the other hand

the inter conversion among the neutrinos from the three generations of flavors

strongly supports for a finite nonzero neutrino mass and establishes conclusively

that the neutrinos mix in a similar fashion as the quarks do (though the mixing

is more intense for neutrinos than that for quarks). This is the first evidence that

provides enough motivation to trace the footprints of new physics.

The SM cuddles three families of fermions. Each family of fermions contains two

distinct types of quarks: “up-quark” with electric charge Q = 2/3 and “down-

quark” with, Q = −1/3, and the two leptons: charged leptons with Q = −1

and neutrinos Q = 0. We have three replicas of such a family. But the particles

from different families, sharing the same quantum number posses different mass.

For example, the masses of the up quarks are mu ∼ 2.3+0.7
−0.5MeV , mc ∼ 1.275 ±

0.025GeV and mt ∼ 173.21± 0.51± 0.71GeV (from direct measurement)[2]. The

3



Chapter 1 4

down quarks and the charged leptons have got similar masses: md ∼ 4.8+0.5
−0.3MeV ,

ms ∼ 95± 5MeV , mb ∼ 4.18± 0.03GeV , me ∼ 0.511MeV , mµ ∼ 105.658MeV

and mτ ∼ 1776.82 ± 0.16MeV [2]. The origin of the fermion masses are due

to the Yukawa interaction which couples the left-handed and right-handed chiral

components of specific fermion field. But in SM, in contrast to the charged leptons,

the right handed chiral components of neutrino field are missing and hence they

are deprived of masses.

In 1930, the American Physicist Wolfgang Pauli first introduced the idea of neu-

trinos. The motivation behind this idea was to compensate the apparent violation

of energy in the nuclear beta- decay experiments. In beta-decay, a neutron from an

unstable nucleus converts itself to a proton with the emission of an electron. The

electron is expected to carry discrete energy like other radioactive processes like

α-decay or γ emission. But in contrary to that the electron shows a continuous

spectrum. So this problem can be forsaken if there is some particle (neutrino)

which takes away some portion of the energy. According to Pauli, neutrino must

be mass-less and must carry a spin of 1/2 (so that angular momentum is conserved

) and electrically neutral and weakly interacting. As they are electrically neutral

and a have a feeble interaction with matter, Pauli expected that hardly this par-

ticle could be detected. But in 1956, Clyde Cowan and Fred Reines detected the

antineutrino emitted from a nuclear reactor, through inverse β decay processes, at

Savannah River in South Carolina, USA.

The first signature that the neutrinos posses finite mass came from an experiment

conducted by an American scientist Raymond Davis Jr. during the detection

of solar neutrinos. It was found that the flux of the solar neutrinos was only

one-third of what is predicted by the theories. This observation bewildered the

physicists. Pontecorvo in 1957, first introduced the idea of “Neutrino oscillation”,

a phenomenon where the particular flavor of neutrino can convert itself to another.

Independently, this idea was developed by Maki, Nakagawa and Sakata in 1962.

Based on this idea of neutrino oscillation, some Russian researchers Mikheyev and

Smirnov suggested that the solar neutrinos which are none other than the electron

neutrinos (νe) are changing into some other forms like “ντ” or “νµ” which are

unfounded in Davis’s experiment. The theory they presented involves resonant

enhancement of the oscillation due to matter effect within the sun (MSW effect).

In 1998, the Japanese experiment Super-Kamiokande first witnessed the existence
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of neutrino oscillation. When the cosmic rays strike the upper surface ofthe atmo-

sphere, the so called muon neutrinos (are also called atmospheric neutrinos ) are

generated. Since the neutrinos pass the earth easily, the Super-Kamiokande was

able to detect the neutrinos from above and below. The experiment revealed that

the number of neutrinos coming from above are as expected, but this is not true

for the neutrinos appearing from below. The number is just half of the expected

one. This is because half of the muon neutrinos are converted into tau neutrinos

while traversing through earth.

It was the Sudbury Neutrino Observatory (SNO) in Canada which finally con-

firmed the flavor conversion of the “solar neutrinos”. The SNO data finally re-

moved the doubts related with Solar model. The electron neutrinos are produced

at the standard rate in Sun, but during transit, they oscillate into muon and tau

neutrinos, and only one third of the original flux of the electron neutrinos can be

detected on earth.

1.2 Theoretical motivation behind the neutrino

mass

The “mass-term” is a a part of the Lagrangian which associates the left-handed and

right-handed counterparts of a field [3]. We encounter two possibilities : “Dirac

mass term” and “Majorana mass term” respectively,

Dirac Mass term m(ψ̄R ψL + h.c), (1.1)

Majorana Mass term M(ψ̄L
c
ψL + h.c). (1.2)

The Dirac term accounts for the mass generation in quarks and the charged leptons

while, the latter is pertinent in the context of neutral leptons, i.e, the neutrinos.

The Dirac mass term is in harmony with the lepton number conservation. Since the

Majorana condition makes a particle and an antiparticle indistinguishable [4, 5],

the associated mass term violates the lepton number conservation by two units.

In the above expression, ψc or equivalent terms represent the charge-conjugation

state of the field ψ. The name “Majorana field” was originally attributed to a

completely neutral fermionic field which can be constructed from a Dirac field,
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say χ by impelling the Majorana condition,

χc = ±χ. (1.3)

1.2.1 The massless neutrinos

Let us consider the Dirac-spinor [3],

ψ =

[

ξ

η

]

, (1.4)

from which two component Weyl spinors ψL and ψR are generated as illustrated

in the following,

ψL =
1

2
(1− γ5)ψ =

[

0

η

]

, ψR =
1

2
(1 + γ5)ψ =

[

ξ

0

]

, (1.5)

where all the γ s are in accordance with the Weyl representation. On similar

footing the charge conjugated field, ψc = iγ2ψ∗ is set up. Now, out of these two

Weyl spinors, two fields,

χ = ψL + ψc
L, (1.6)

ω = ψR − ψc
R, (1.7)

are constructed which respects the Majorana condition in Eq. (1.3). The kinetic

term corresponding to the Weyl spinors is shown below,

L = i ψ̄Rγ
µ∂µψR + i ψ̄Lγ

µ∂µψL, (1.8)

now transforms into,

L =
i

2
(χ̄γµ∂µχ+ ω̄γµ∂µω). (1.9)

1.2.2 The Majorana neutrinos

If there exists only one Weyl field, say χ, then it can be made massive only through

the Majorana mass term [3–5]. We present the Lagrangian along with the mass
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term,

L =
i

2
χ̄γµ∂µχ− 1

2
mχ̄χ, (1.10)

where the mass m is real. A generalized choice of χ,

χ = eiαψL + eiβψc
L, (1.11)

which satisfies the Majorana condition in the extended sense,

χc = e−i(α+β)χ, (1.12)

leads to a Lagrangian,

L = i ψ̄Lγ
µ∂µψL − M

2
ψ̄c
LψL + h.c, (1.13)

where, the mass, M = mei(α−β), is complex and by redefining ψL the phase term

can be quenched. The second term violates the lepton number conservation.

1.2.3 The Dirac neutrinos

If there are two Weyl fields, there may exist a mass term that conserves the lepton

number. If, ψ
(1)
L and ψ

(2)
L are two Weyl fields, the mass term can be constructed

as shown in the following,

L = −mij

2
ψ

(i)c
L ψj

L + h.c, (1.14)

which is the generalization of the mass term in Eq. (1.13). Provided, the diagonal

mass terms mii = 0, the lepton number, Li − Lj, can be made conserved. On

defining two fields, ψL and ψR as ψL = ψ
(i)
L and ψR = [ψ

(j)
L ]c, we obtain the

conventional Dirac mass term,

L = −mψψ = −m(ψ̄LψR + ψ̄RψL). (1.15)

On assigning ψ
(i)
L and ψ

(j)c
L different flavors, say, ψ

(1)
L = νeL and ψ

(2)
L = νµL, we

obtain a Dirac mass term with off-diagonal elements [3].
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1.2.4 The massive neutrinos in the standard model

The above discussion, leads to the inference that following any of the mechanisms,

the massive neutrinos can be embraced in the Electro-weak theory [6, 7]. If there

exists νR field in addition to νL, then through Yukawa coupling, a Dirac mass

term,

Lmass = fννRφlL, (1.16)

can be instituted. And, if there exists no right handed counterpart νR, then the

Majorana mass term as shown in the following,

L =
1

2
G lcL lL

φφ

M
, (1.17)

is the only mean to incorporate neutrino mass in the standard framework. The

Majorana neutrino mass will appear as shown below,

mν = G
〈φ2

0〉
M

. (1.18)

But, this mass term (see Eq. (1.17)) is necessarily non-renormalisable and is as-

sessed as an effective interaction. The term, M is called the effective mass. This

interaction transpires from more fundamental interactions at a higher energy scale

and accounts for the smallness of mν . In Eq. (1.18) if, M →∝, then, mν → 0.

1.2.5 See-saw mechanism

The problem of understanding the smallness of neutrino masses plays the central

role in the study of neutrino physics. The simplest possibility to understand the

effective interaction as shown in Eq. (1.17) is perhaps the “See-Saw” mechanism [8–

12]. The GUT scenarios initiate some framework where both Dirac and Majorana

neutrinos coexist. Let us present the simple Lagrangian in support of this context,

L = fνR νL〈φ0〉+ M

2
νcR νR + h.c. (1.19)

With the heavy field (M ≫ 〈φ〉) being integrated out, the Feynman diagram
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Figure 1.1: The Feynman diagram for See-saw mechanism responsible for neutrino
mass

shown in Fig. (1.1), generates,

Leff =
f 2

2M
φ0φ0 νcL νL, (1.20)

The same can be obtained by diagonalizing the mass matrix as shown below,

(
νL νR

0 m

m M

)

νL

νR
, (1.21)

where, we see a mixing between the two left handed and the right handed sectors

and with the Dirac mass, m = f〈φ〉, we obtain,

mνL ≃ m2

M
. (1.22)

The Dirac mass responsible for the mixing between νL and νR is probably of the

order of the mass of other charged particles. The smallness of the mass of left

handed neutrino, mνL , is owing to the large mass-scale, M . This mechanism plays

a very significant role in Grand Unified Theories, where it is possible to relate the

Dirac mass, m and the charge −2/3 quarks.

1.3 Neutrino Mixing

Here we present a comparative study between the Dirac and Majorana neutrinos.

If the neutrinos are of “Dirac-type”, then the corresponding mass term assumes
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the form [3],

Lmass = mνR νL + h.c,

= ναRmαβν
β
L + h.c. (1.23)

The mass matrix (mαβ) is diagonalized using two unitary matrices U and V and

the Lmass is presented as shown below,

Lmass = νR
i V †iαmαβUβj ν

j
L + h.c,

= νiRmiiν
i
L + h.c, (1.24)

where να (or, equivalent terms) represent the flavor eigenstates of the weak inter-

action and νi represents the mass eigenstates, which are related to each other in

the following way,

ναL = Uαiν
i
L, (1.25)

ναR = Vαiν
i
R. (1.26)

And, we have,

V †mU = mdiag. (1.27)

where, U and V are the two unitary matrices. Similarly, we diagonalize the Ma-

jorana mass term,

Lmass = − 1

2
ναT
L C−1mαβ ν

β
L + h.c,

= − 1

2
νi TL C−1 Uiαmαβ Uβj ν

j
L + h.c,

= − 1

2
νi TL C−1miiν

i
L + h.c. (1.28)

In contrast to the previous case, we experience a single unitary transformation for

Majorana scenario as shown below,

ναL = Uαiν
i
L, (1.29)

and we see, that the unitary matrix U , appears twice in the mass term. We have,

U †mU = mdiag. (1.30)
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This is to be emphasized that in contrast to the Dirac neutrino mass matrix, the

Majorana mass matrix is symmetric in general. The flavor states να’s are the

eigenstates of weak interaction and appear in the laboratory experiments, while

the mass eigenstate, νi are prominent in the oscillation experiments.

1.3.1 The Weak interaction Lagrangian

In weak interaction, only the left handed fields appear and the corresponding

Lagrangian is shown as in the following,

Lint =
g√
2
W+

µ

[

νeL νµL ντL

]

γµ







eL

µL

τL






. (1.31)

Now following Eq. (1.25) (or, Eq. (1.29) ), Lint, is expressed in terms of the neutrino

mass eigenstates, νiL,

Lint =
g√
2
W+

µ

[

ν1L ν2L ν3L

]

γµ U †







eL

µL

τL






,

(1.32)

where U is termed as lepton mixing matrix or UPMNS (Pontecorvo-Maki-Nakagawa-

Sakata) [13, 14]. In discussion so far, we have assumed the charged lepton mass

matrix to be diagonal.

1.3.2 Parametrization of U

The lepton mixing matrix U is an unitary matrix. We consider the general case

[15] when U is an n × n matrix, and any unitary matrix can be represented as

U = eiH , where H is a n×n Hermatian matrix which has got n2 independent real

parameters. The number of angles required to parametrize H is the same to that

used to parametrize a n × n orthogonal matrix, say O. Again, we can present,

O = eA. The orthogonality conditions, OTO = 1 compels, A to be antisymmetric.

Hence, the matrix, A has got n (n−1)/2 real non diagonal elements. This indicates
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that U has got,

Nθ =
n (n− 1)

2
, (1.33)

number of angles. Hence, the number of phases required to characterize, U is,

Nφ = n2 −Nθ =
n (n+ 1)

2
. (1.34)

Considering the scenario, where only three generations of neutrinos (i.e., n = 3 )are

allowed, we require three angles (Nθ = 3) and six phases (Nφ = 6) to parametrize

the lepton mixing matrix. We present U [16],

U = Ψ1R23R13 Ψ2R12 Ψ3, (1.35)

where, Rij s are the orthogonal matrices, and Ψis are the diagonal matrices con-

taining the phases, where,

R23 =







1 0 0

0 c23 s23

0 −s23 c23






, R13 =







c13 0 s13

0 1 0

−s13 0 c13






, R12 =







c12 s12 0

−s12 c12 0

0 0 1






(1.36)

Ψ1 =







ei φ1 0 0

0 ei φ2 0

0 0 ei φ3






, Ψ2 =







1 0 0

0 ei φ4 0

0 0 1






, Ψ3 =







ei φ5 0 0

0 ei φ6 0

0 0 1






,(1.37)

where, cij = cos θij and sij = sin θij. The θij s are the three independent Eu-

ler’s rotation angles. If we deal with the Dirac neutrinos, we have the Lint (See

Eq.(1.32)) appear as in the following,

Lint =
g√
2
W+

µ

[

ν1L ν2L ν3L

]

γµ Ψ†3R
T
12 Ψ

†
2R

T
13R

T
23 Ψ

†
1







eL

µL

τL






,

=
g√
2
W+

µ

[

ν1L ν2L ν3L

]

γµ







e−i φ5 0 0

0 e−i φ6 0

0 0 1






RT

12 Ψ
†
2R

T
13R

T
23 Ψ

†
1







eL

µL

τL







(1.38)
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By redefining, ν1L ↔ ν1Le
i φ5 and ν2L ↔ ν2Le

i φ6 , the diagonal phase matrix Ψ3 can

be omitted from U .

Lint =
g√
2
W+

µ

[

ν1L ν2L ν3L

]

γµRT
12 Ψ

†
2R

T
13R

T
23 Ψ

†
1







eL

µL

τL






,

=
g√
2
W+

µ

[

ν1L ν2L ν3L

]

γµRT
12 Ψ

†
2R

T
13R

T
23







e−i φ1 0 0

0 e−i φ2 0

0 0 e−i φ3













eL

µL

τL







(1.39)

Again, in the similar fashion, Ψ1 is eliminated by redefining, eL ↔ eLe
i φ1 , µL ↔

µLe
i φ2 and τL ↔ τLe

i φ3 . Hence,

Lint =
g√
2
W+

µ

[

ν1L ν2L ν3L

]

γµRT
12 Ψ

†
2R

T
13R

T
23







eL

µL

τL






. (1.40)

From the above exercise, we understand that for Dirac type neutrinos, we can

express the lepton mixing matrix in terms of three angles and one phase.

Dirac neutrino : U = U (θ12, θ13, θ23, φ4). (1.41)

But the situation differs if the neutrinos are of Majorana type. The charged lepton

fields can easily absorb Ψ1. And let us say, neutrino mass eigenstates, νiL, absorbs

Ψ3, as before. But, in the Majorana mass term, νiL appears twice. The mass

term appears closely to the form, νi TL UT mU νiL. Hence, although we remove

the phases, φ5 and φ6 from U , it will appear in the mass matrix. The another

alternative is to keep Ψ3, as it is in U which leads to,

Lint =
g√
2
W+

µ

[

ν1L ν2L ν3L

]

γµ







e−i φ5 0 0

0 e−i φ6 0

0 0 1






RT

12 Ψ
†
2R

T
13R

T
23







eL

µL

τL






,(1.42)

and,

Majorana neutrino : U = U (θ12, θ13, θ23, φ4, φ5, φ6) (1.43)
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We have now nine (or seven) parameters and estimation of which at low energies

will determine whether the neutrinos are of Majorana or Dirac type. Hence a

suitable parametrization of U is the part and parcel of neutrino physics. This will

help to deal with the experimental data and interpreting the underlying physics.

1.3.2.1 Standard parametrization scheme

The Particle Data Group (PDG) adopted a parametrization of U which is called

the Standard parametrization [2]. According to this parametrization, U is de-

scribed as the product of three consecutive rotation matrices multiplied with a

diagonal matrix containing phases.

U = R23 (θ23 : 0)U13(θ13 : δ)R12 (θ12 : 0)P ; (1.44)

where,

U13 =







c13 0 s13 e
−i δ

0 1 0

−s13 ei δ 0 c13






, P =







ei α 0 0

0 ei β 0

0 0 1






, (1.45)

where δ is called the Dirac-type phase and α and β are called the Majorana phases.

For Dirac neutrinos, α, β = 0. The lepton mixing matrix, U , is presented as in

the following,

U =







c12c13 c13s12 s13e
−iδ

−c23s12 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12c23s13e
iδ −c12s23 − c23s12s13e

iδ c13c23













ei α 0 0

0 ei β 0

0 0 1






.(1.46)

The angles, θ12, θ13 and θ23 are called the three mixing angles.

1.3.2.2 Symmetric parametrization scheme

Besides the standard parametrization there is also another parametrization scheme

called Symmetric [17] which describes U in the following way,

U = U23 (θ23 : ω23)U13(θ13 : ω13)R12 (θ12 : ω12); (1.47)
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where,

U23 =







1 0 0

0 c23 s23 e
−i ω23

0 −s23 ei ω23 c23






, (1.48)

U13 =







c13 0 s13 e
−i ω13

0 1 0

−s13 ei ω13 0 c13






, (1.49)

U12 =







c12 s12 e
−i ω12 0

−s12 ei ω12 c12 0

0 0 1






. (1.50)

All the phases appearing in U are physical. The “Symmetric” parametrization

differs from the “Standard” one, in expressing the Dirac and Majorana CP phases.

The equivalence of the two parametrization schemes says,

δ = ω13 − ω12 − ω23, (1.51)

α = ω12 + ω23, (1.52)

β = ω23. (1.53)

Both the parametrization schemes are equally relevant, but the Standard parametriza-

tion is the most preferred one. Here we want to emphasize on an important point

that we are working in a basis where charged lepton mass matrix is assumed to be

diagonal (in general termed “Flavor-basis”). In this basis, only neutrino mixing

contributes towards the final lepton mixing matrix, U . For further discussion, we

refer to Eq. (1.29), for which the three generations of neutrinos can be represented

in the following fashion,







νeL

νµL

ντL







︸ ︷︷ ︸

=







Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3







︸ ︷︷ ︸







ν1

ν2

ν3







︸ ︷︷ ︸

(1.54)

|ναL〉 U |νi〉 (1.55)

The above expressions indicate that the left handed flavor eigenstates are just the

linear superposition of neutrino mass eigenstates. For example,

|νeL〉 = Ue1|ν1〉+ Ue2|ν2〉+ Ue3|ν3〉. (1.56)
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Figure 1.2: The flavor changing process involving να → νβ from source to detector.

Certain observable parameters like, θ13, θ12, θ23 and δ can be derived out from the

above expression of U in the following way,

sin2 θ13 = |Ue3|2, (1.57)

sin2 θ13 =
|Ue2|2

1− |Ue3|2
, (1.58)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
, (1.59)

δ = −Arg [Ue3], (1.60)

which are in accordance with the Standard parametrization.

Next we shall discuss several possibilities to measure the unknown quantities like

the three mass parameters, three mixing angles and the three phases. The neutrino

oscillation experiments deal with the mass parameters, mixing angles and the

Dirac CP phase, whereas, the experiments like neutrino-less double beta decay

experiments deal with the mass parameters and the Majorana phases.

1.4 Neutrino Oscillation

Let us consider a weak interaction process where a neutrino (να) and a charged

lepton (lα) with certain flavor α [3, 18–34] are engendered. The neutrino, transits
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through a finite macroscopic distance L from the source (where it is produced) and

interacts with the target, and finally begets a charged lepton (lβ) with a different

flavor β. So, during the advance, να has evolved to νβ. This phenomenon which

involves the change in neutrino flavor is called, να → νβ, oscillation (See Fig.(1.2)).

1.4.1 Oscillation Probability

In the intermediate state, the neutrino may attain any of the mass eigenstates νi.

In other words, the neutrinos are produced and detected as flavor eigenstates and

they transit as a coherent superposition of neutrino mass eigenstates [18, 19, 35,

36]. Hence, the probability amplitude A (να → νβ) is the product of the following

three individual amplitudes as shown below,

• U∗
αi

at the source. This contribution is the outcome of the fact that να is a

linear superposition of νi s,

• Uβi
appears at the target due to the similar reason discussed above,

• e−im
2

i

L

2E , due to the travel by a distance L with energy E.

After proper transformation, we obtain the expression of probability, P (να → νβ)

for neutrino-neutrino oscillation processes as shown in the following [18, 19],

P(να → νβ) = |A(να → νβ)|2

= δαβ − 4
∑

i>j

Re(U∗α i Uβ i Uα j U
∗
β j) sin

2

[

∆m2
ij

L

4E

]

+2
∑

i>j

Im(U∗α i Uβ i Uα j U
∗
β j) sin

2

[

∆m2
ij

L

2E

]

, (1.61)

where, ∆m2
ij = m2

i −m2
j . The above expression for oscillation probability holds

good for any number of neutrino mass eigenstates. We emphasize on the following

important features.

• Neutrino oscillation depends on the mass-squared difference parameter, ∆m2
ij.

If the mass eigenvalues are zero or strictly degenerate, P(να → νβ) = δαβ,

indicating no oscillation. In other words, if there is oscillation the state νi

has to be massive.
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• P oscillates as function of L/E.

• On assuming CPT invariance, we have,

P(να → νβ) = P(νβ → να); (1.62)

Again, following Eq. (1.61), we can produce, P(νβ → να : U) = P(να →
νβ : U∗), leading to the following relation [18],

P(να → νβ : U) = P(να → νβ : U∗); (1.63)

This says that if U is replaced by U∗, the probability of occurrence of, να →
νβ and that for να → νβ are equal. But certainly they will diverge if U

is not real [18]. This signifies a violation of CP symmetry in the neutrino

oscillation processes.

P(να → νβ)− P(να → νβ) = 4
∑

i>j

Im(U∗α i Uβ i Uα j U
∗
β j) sin

2

[

∆m2
ij

L

2E

]

.

(1.64)

The discussion so far concerns the propagation of neutrinos through vacuum only.

In the next section we shall discuss briefly the influence of matter on neutrino

oscillation.

1.4.2 Matter Effect

The properties of neutrinos, concerning the mixing angles and the effective masses

are affected if it travels through certain medium [37, 38]. The difference between

the coherent forward scattering amplitudes (on nucleons and electrons)for different

neutrinos is interpreted in terms of “n”,a quantity equivalent to the refractive

index in Optics. A Sterile neutrino which does not interact has n = 1. In matter

all formulae carrying the neutrino momentum “p” is modified by “n p”. This

introduces an additional phase factor in the neutrino wave function. The neutrino

mass matrix is also modified. For example, the 1-1 elementmee, is modified to [18],

m2
ee → m2

ee − 2p2 (ne − nµ) = m2
ee + 2

√
2GF Ne p, (1.65)
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where, GF is the Fermi Constant and Ne is the electron density. Hence, after

diagonalization, the mass matrix will lead to certain mass eigenstates which are

different from those obtained in vacuum.

Let us look into the probability expression for two neutrino scenario (say, νe → νµ)

in vacuum,

P(νe → νµ) = sin2 2θ sin2

[

∆m2 L

4E

]

. (1.66)

If matter effect is taken into consideration, the mixing angle, θ and ∆m2 is mod-

ified as shown in the following,

sin2 2θ → sin2 2θ

sin2 2θ +
(

cos 2θ − 2
√
2GF Ne E
∆m2

)
2
, (1.67)

∆m2 → ∆m2

√
√
√
√sin2 2θ +

(

cos 2θ − 2
√
2GF NeE

∆m2

)

2. (1.68)

This is to be noted that since νµ and ντ have same neutral current interaction

with ordinary matter, the νµ − ντ oscillations are invariant under Matter effect.

Because of the difference in signs of the scattering amplitudes for neutrinos and

antineutrinos, the concerned matter effects are also different. This in turn can

conceal the CP violation effects.

1.4.2.1 MSW Effect

From the above discussion, it is clear that the effective neutrino mass (similarly,

the mixing angles also) changes as a function of the neutrino energy. For certain

matter density, two neutrino mass eigenstates may turn degenerate also in this

modified scenario. In the present scenario, the oscillation parameters may undergo

a resonance condition, producing maximal oscillation even if the vacuum oscillation

amplitude is small. The neutrinos when travel through the interior of Sun faces

continuously varying matter density. In this course, a certain resonant point is

achieved when a complete flavor conversion takes place; i.e, all νe become νµ and

vice-versa. This is known as “Mikheyev-Smirnov-Wolfenstein” (MSW) effect [39–

42].
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1.4.3 Neutrino Oscillation-Detection

Following the oscillation probability expression in Eq. (1.61), we see that the neu-

trino detection is possible through two different ways [18, 43]:

• Appearance channel- detection of νβ in the beam of να, provided α 6= β,

• Disappearance channel-disappearance of να into other flavors.

This is to be emphasized that the neutrino flavor is defined by the charged lepton

produced in the charged current interaction. Hence for an appearance measure-

ment, it implies that the neutrino energy is sufficient enough to produce the final

state charged lepton. Below, we shall put forward some essential equations related

to the detection of neutrino oscillation in several neutrino experiments.

Accelerator neutrino experiments: (E ∼ 1GeV , L ∼ 1 −
1000 km)

We have the following probability equations used in the accelerator experiments [2],

P(νµ → ντ ) = sin2 2θ23 cos4 θ13 sin
2

[

∆m2
32

L

4E

]

, (1.69)

P(νµ → νe) = sin2 2θ13 sin2 θ23 sin
2

[

∆m2
32

L

4E

]

, (1.70)

P(νe → νµ) = sin2 2θ13 sin2 θ23 sin
2

[

∆m2
32

L

4E

]

, (1.71)

P(νe → ντ ) = sin2 2θ13 cos2 θ23 sin
2

[

∆m2
32

L

4E

]

, (1.72)

where, the angle θ13 and CP violation effect are neglected. But the present and

future long baseline experiments are sensitive to nonzero θ13 and δ. Including δ

and low mass scale, the expression for P(νµ → νe) is modified to,

P(νµ → νe) = sin2 θ23 sin2 2θ13 sin
2

[

∆m2
32

L

4E

]

+ cos2 θ23 sin2 2θ13 sin
2

[

∆m2
21

L

4E

]

+cos θ13 sin 2θ12 sin 2θ13 sin 2θ23 sin

[

∆m2
32

L

4E

]

sin

[

∆m2
21

L

4E

]

×
(

cos δ cos

[

∆m2
32

L

4E

]

± sin δ sin

[

∆m2
32

L

4E

])

, (1.73)
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where the negative sign appears for neutrinos and for antineutrinos it is positive.

Experiments involved: KARMEN, LSND, LBNE, MINOS, MINOS+,

NOvA, NuMI, T2K etc.

Reactor neutrino experiments: (E ∼ 1MeV , L ∼ 1− 100 km)

The oscillation probability is expressed as [2],

P(νe → νe) = 1− cos4 θ13 sin2 2θ12 sin
2

[

∆m2
21

L

4E

]

− cos2 θ12 sin2 2θ13 sin
2

[

∆m2
31

L

4E

]

− sin2 θ12 sin2 2θ13 sin
2

[

∆m2
32

L

4E

]

. (1.74)

The νe have the energy close to 4MeV . For short distances, L < 5 km, the above

expression is modified to,

P(νe → νe) = 1− sin2 2θ13 sin
2

[

∆m2
32

L

4E

]

. (1.75)

Experiments involved: CHOOZ, DAYA BAY, Double Chooz, Kam-

LAND, RENO etc.

Solar (E ∼ 1MeV , L ∼ 1.5 × 108 km) and Atmospheric neu-

trino (E ∼ 1GeV , L ∼ 104 km) experiments

The solar neutrino experiments are concerned with νe disappearance channel and

are sensitive to ∆m2
21 and θ12. Solar neutrinos are highly influenced by matter

effect. The pp (7Be) have mean energy of 0.2MeV (0.9MeV ) and these neutrinos

are little influenced by matter . But the 8B neutrinos having mean energy of the

order of 10MeV are subjected to the matter effect. These are produced and exit

Sun as ν2 mass eigenstate and do not undergo vacuum oscillation [43]. Therefore

on reaching earth, the solar neutrinos are “effectively incoherent”. Hence the

survival probability is given as in the following,

〈P(νe → νe)〉 = f1 cos
2 θsol + f2 sin

2 θsol, (1.76)
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where f1 and f2 are the fractions of neutrinos that are ν1 and ν2 respectively,

satisfying the relation, f1+ f2 = 1. Due to MSW effect f2 ≈ 0.9, for 8B neutrinos.

Atmospheric neutrino experiments deal with νµ disappearance channel and are

sensitive to θ23 and ∆m2
32. In vacuum, the survival probability is given as [43],

P(νµ → νµ) = 1− 4|Uµ3|2|Uµ1|2 sin2

[

∆m2
31

L

4E

]

− 4|Uµ3|2|Uµ2|2 sin2

[

∆m2
32

L

4E

]

−4|Uµ2|2|Uµ1|2 sin2

[

∆m2
21

L

4E

]

(1.77)

For experiments at the atmospheric L/E (around 500 km/GeV ), we have

P(νµ → νµ) ≈ 1− 4|Uµ3|2(1− |Uµ3|2) sin2

[

∆m2
µµ

L

4E

]

, (1.78)

where, ∆m2
µµ is the effective atmospheric ∆m2 for νµ disappearance channel,

∆m2
µµ ≡ |Uµ1|2|∆m2

31|+ |Uµ2|2|∆m2
32|

|Uµ1|2 + |Uµ2|2
. (1.79)

Experiments involved: Homestake, SAGE, Gallex, SK, SNO, MACRO

In the next section we shall summarize the results of the neutrino oscillation

experiments.

1.4.4 Present status of the oscillation parameters

The oscillation experiments comprehend six observational parameters: the three

mixing angles, θ12, θ23, θ13 , Dirac CP violating phase, δ and the mass square

differences, ∆m2
21 and |∆m2

31|. But the experiments are unable to ascertain the

three individual masses m1, m2 and m3. It is found that the mass eigenstate ν2

is more massive than ν1. Again, the ignorance of the exact sign of ∆m2
31, leads to

two possibilities: either, m3 > m1 (Normal), or m3 < m1 (Inverted). Besides,

there are two possibilities for θ23: either θ23 > π/4 or, θ23 < π/4. The central
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Parameter central value 1σ range 2σ range 3σ range

∆m2

21

[
10−5 eV 2

]
7.60 7.42− 7.79 7.26− 7.99 7.11− 8.18

|∆m2

31
|
[
10−3 eV 2

]
(NH) 2.48 2.41− 2.53 2.35− 2.59 2.30− 2.65

|∆m2

31
|
[
10−3 eV 2

]
(IH) 2.38 2.32− 2.43 2.26− 2.48 2.20− 2.54

sin2 θ12 0.323 0.307− 0.339 0.292− 0.357 0.278− 0.375

sin2 θ23 (NH) 0.567 (0.467) .439− 0.599 0.413− 0.623 0.392− 0.643
sin2 θ23 (IH) 0.573 .530− 0.598 0.432− 0.621 0.403− 0.640

sin2 θ13 (NH) 0.0234 .0214− 0.0254 0.0195− 0.0274 0.0177− 0.0294
sin2 θ23 (IH) 0.0240 .0221− 0.0259 0.0202− 0.0278 0.0183− 0.0297

δ/π (NH) 1.34 0.96− 1.98 0− 2 0− 2
δ/π (NH) 1.48 1.16− 1.82 0− 0.14 & 0.81− 2.0 0− 2

Table 1.1: The observational parameters of neutrino oscillation experiments
for Normal (NH) and Inverted (IH) ordering of neutrino masses [1].

values of the observational parameters are depicted below [1].

∆m2
21 = 7.6× 10−5 eV 2, (1.80)

|∆m2
31| = 2.48× 10−3 eV 2 (NH), (1.81)

= 2.38× 10−3 eV 2 (IH), (1.82)

θ12 = 34.630, (1.83)

θ13 = 8.790 (NH), (1.84)

= 8.910 (IH), (1.85)

θ23 = 48.850 (43.100) (NH), (1.86)

= 49.200 (IH), (1.87)

δ = 1.34 π (NH), (1.88)

= 1.48 π (IH), (1.89)

and a summary encompassing the 1σ, 2σ and 3σ range of the observational param-

eters are presented in Table. (1.1). The limitations of the oscillation experiments

lies in incapability of predicting the absolute scale of neutrino masses and the

Majorana CP violating phases.
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Figure 1.3: The neutrino-less double β decay process

1.5 Towards the absolute neutrino mass scale

Several strides to realize the absolute scale of neutrino masses are discussed very

briefly in this section. They are as in the following [2, 44],

• The observation of the end-point of 3H β decay spectrum

We define a quantity called “effective electron neutrino mass”,

mβ =
√

m2
1|Ue1|2 +m2

2|Ue2|2 +m2
3|Ue3|2. (1.90)

According to the Troitzk experiment [45], mβ < 2.05 eV . Similar results

are obtained in the Mainz experiment [46] which says, mβ < 2.05 eV . The

future prospect of KATRIN experiment [47] is to achieve a sensitivity of

mβ ∼ 0.20 eV .

• The neutrino-less double β decay (0ν2β): A successful observation of

0ν2β decay process will give credence to the Majorana nature of neutrinos.

The Feynman diagram of the same is shown in Fig. (1.3)

This process involves the prediction of following quantity termed “effective

mass of 0ν2β decay ”,

mβ = |m1Ue1
2 +m2Ue2

2 +m3Ue3
2|,

= |m1 c
2
12c

2
13e

2iα +m2 c
2
13s

2
12e

2iβ +m3 s
2
13e

−2iδ| (Standard),(1.91)
= |m1 c

2
12c

2
13 +m2 c

2
13s

2
12e

2iω12 +m3 s
2
13e

2iω13 | (Symmetric),(1.92)

which directly entails the two Majorana CP violating phases. There was a

claim of a signal mββ = 0.11− 0.56 eV at 95% confidence level [48] but was
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criticized [49, 50]. A more refined result is awaited from the experiments

such as GREDA [51].

• Large Scale structures in the early universe : The contribution of the

relic neutrinos towards the density of universe is connected with a quantity
∑
mi = |m1| + |m2| + |m3|. In 2013, Planck Collaboration put forward

their results which on considering the contribution from Baryon Acoustic

Oscillation (BAO)comes out to be [52],

∑

mi < 0.23 eV. (1.93)

1.6 Majorana CP violating phases, α and β

In Eq. (1.64), we have already discerned the possibilities to experience the signature

of CP violation in scenarios, involving the να → νβ or να → νβ oscillations. In

a much more elegant way, we define a term called Jarlskog invariant parameter

JCP [53, 54],

JCP = Im[UαiUβjU
∗
αjU

∗
βi]

= c12s12c
2
13s13c23s23 sin δ. (1.94)

The CP violating antisymmetry between P(να → νβ) and P(να → νβ) can high-

light only the Dirac CP violating Phase, δ. As it was pointed out that although

the 0ν2β decay processes can substantiate the Majorana CP phases, yet cannot

envisage the phases. The future long baseline experiments are trying to probe δ

with higher precision. A more challenging task will be to predict α and β. A

systematic analysis encompassing the να → νβ and να → νβ oscillation processes

can shed light in this regard. Concerning the CP antisymmetry that may arise be-

tween the oscillation probabilities, P(να → νβ) and P(να → νβ), certain “Jarsklog

like parameters” [55], V ij
αβ are defined as shown in the following,

V ij
αβ = Im[UαiUβiU

∗
αjU

∗
βj]. (1.95)
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These parameters satisfy the following relations,

V ij
αβ = V ij

βα = −Vji
αβ = −Vji

βα (1.96)

We present a few of these parameters like ,

V12
ee = c212s

2
12c

4
13 sin 2(α− β), V13

ee = c212c
2
13s

2
13 sin 2(δ + α) (1.97)

V23
ee = s212c

2
13s

2
13 sin 2(δ + β), ..... (1.98)

...etc. The details of similar parameters are illustrated in Ref [55]. In the limit,

δ = 0, we have J = 0. But V ij
αβ s are in general non-vanishing. In this limit,

there is no signature of CP violation in ν − ν or ν − ν oscillation, a strong CP

violation may transpire in ν − ν oscillation processes. Also, in the limit θ13 = 0,

the parameters which involve Ue3, like, J , V13
ee , V23

ee , V13
eµ, V13

eτ ..etc. are extinguished.

Only if the Majorana nature of neutrinos is confirmed in 0ν2β decay experiments,

these CP phases like α and β can be planned to be figured out in distant future

experiments involving neutrino-antineutrino oscillations.

1.7 The Theory underlying?

We see that the neutrino oscillation experiments have confirmed the neutrinos as

massive. This in turn triggers the possibilities to look beyond Standard model of

particle physics. Not only the issue of masses but also the elucidation of other

parameters like the mixing angles and the CP violating phases are the part and

parcel of this puzzle. We abridge the several questions that the theorists have to

nourish as in the following,

• Why neutrino masses are so small?

• What is exact ordering of neutrino masses ?

• Why the lepton mixing differs a lot from that of quarks?

• θ13 ∼ θc, where θc is the Cabibbo angle, What does it imply?

• θ23 >
π
4
or, θ23 <

π
4
?

• Neutrinos are Dirac or Majorana particles?
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• Do sterile neutrinos exist?

But till now there is no thoroughgoing framework that can vindicate all the issues

simultaneously. We are still in a journey and the goal is far away. The theorists

in general adopt two strategies to attack the problem : “Bottom-up” and “Top-

down”. The first standpoint is somewhat an expedition from a smaller picture to

a wider landscape, while the second viewpoint is exactly opposite to the former.

Bottom-up strategies start with the observation. For example, under this approach

one may try to construct the neutrino mass matrix in the basis charged lepton

mass matrix is diagonal. The information of masses and mixing are collected from

the oscillation data. Taking into account the Renormalization group equations,

one tries to establish the neutrino mass matrix at the new scale physics. Also, one

can try to relate the neutrino mass matrix with possible flavor symmetry groups

and if needed can try to include the mechanism of symmetry violation also [56, 57].

On the contrary, for Top-down approaches, the underlying motivation is inde-

pendent of neutrino phenomenology. This includes -Grand unified theory, TeV

scale theory, Extra-dimension or string theories etc, which are used to predict

the parameters and the textures of neutrino mass matrix etc. But both of the

standpoints “Top-down” and “Bottom-up” must coincide at particular occasion.

It seems impossible to unveil the hidden physics entirely based on observation. At

some point of time one has to embrace some apriori reasoning motivated by GUT

or super-symmetry etc. Similarly, working solely from top-down perspective, may

hide some important elements, where Bottom-up strategies may assist. Hence both

of the strategies are important. We put forward briefly some important pathways

in relation with Top-down and Bottom-up approaches.

1.7.1 Top-Down approach

• Anarchy approach

This approach assumes that the large leptonic mixing results from the lack

of structure [58]. The allowed mass matrix is filled with random numbers.

In fact, the earlier result, θ13 = 0, was against this viewpoint. But present

observation that θ13 is not at all vanishing, but indeed large (θ13 ∼ 90) clearly

enhances the present stand-point. Since the anarchy approach predicts only
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the probabilities and not specific numerals, it will be too hard to substantiate

this stand through experiments.

• Family symmetries

With family symmetry Gfamily, the Standard model symmetry is extended

to,

G = SU(3)C × SU(2)L × U(1)Y ×Gfamily, (1.99)

provided the Lagrangian remain invariant under the following transforma-

tion,

lL → XLlL, lR → XRlR, νR → XRνR, (1.100)

where, lL, lR and νR are the left-handed lepton doublet, right-handed charged

lepton singlets and the right handed Majorana neutrinos respectively, and

XL, XR and Xν are certain representations belonging to the group Gfamily.

This approach tries to explain the mixing properties and the mass hierarchies

related to quarks and leptons. In this regard, some discrete flavor symmetry

groups like A4, S4 etc. [59–71] are very popular.

• Grand Unified Theories

The SU(5) GUT group is the simplest of all [72]. The original model does not

hold the right handed neutrinos and the original model is extended to encom-

pass the same. However, The SO(10) [73]group automatically accommodate

the right-handed neutrinos and the other fifteen fermions of the standard

model. The right-handed neutrinos get mass via breaking of B-L subgroup

of SO(10) symmetry. The left-right symmetric SO(10) is a very attractive

tool and predicts small neutrino masses via see-saw mechanism.

• Extra Dimension and String Theories

The motivation of small mass and large mixing can be understood from

the string theory point of view also. In one approach, the smallness of

Dirac type neutrinos are explained in terms of the small overlap of neutrino

wave function with four dimensional brane [74, 75]. Again from a different

perspective, the “instanton effect” [76, 77] in string theory may account for

the small neutrino masses and large lepton mixing.
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1.7.2 Bottom-Up approach

• Bi-Maximal mixing

This mixing pattern posits [78],

θPMNS
12 = 450, θPMNS

23 = 450, θPMNS
13 = 00. (1.101)

In the light of present experimental results, certainly the θ12 and θ23 are to

be corrected.

• Tri-Bimaximal mixing

According to this mixing pattern [79],

θPMNS
12 = sin−1

(
1√
3

)

, θPMNS
23 = 450, θPMNS

13 = 00. (1.102)

The two mixing angles, θPMNS
13 and θPMNS

23 are congruous with the 1σ range

of experimental data. This mixing pattern can be considered as a plausible

leading order structure.

• Golden-Ratio

For, Golden ratio mixing [80–82], the θ12 is presented as,

tan θ12 =
1

φ
, where, φ =

1 +
√
5

2
, (1.103)

gives, θ12 = 31.70, There is another version of Golden ratio scheme which

says, cos θ12 = φ/2, i.e., θ12 = 360 [83, 84].

• Tri-Bimaximal Cabibbo mixing

This mixing pattern [85] which assumes,

θPMNS
12 = sin−1

(
1√
3

)

, θPMNS
23 = 450, θPMNS

13 =
θc√
2
, (1.104)

can be considered as a good starting point for model-builders.

• Bi-Trimaximal mixing

According to this mixing pattern [86],

sin θPMNS
12 = sin θPMNS

23 =

√

8− 2
√
2

13
≈ 0.591 sin θPMNS

13 = 0.211.(1.105)
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• Bi-Large mixing

In this case [87], the reactor angle is taken to be the seed for solar and

atmospheric angles.

sin θPMNS
13 = ǫ, sin θPMNS

23 = a λ, sin θPMNS
12 = s λ, (1.106)

where, a ≃ s. In particular, for, ǫ = λ, where, λ = sin θc ∼ 0.22, we have

a = s ≃ 3.

• QLC relations

The quark-lepton complementarity (QLC) establishes a tie-in between the

quark and lepton mixing angles [88–90],

θPMNS
12 + θc = 450, (1.107)

It is found that by multiplying Bi-maximal mixing matrix times the CKM

mixing matrix, the above relation can be obtained. In the light of present

measurement, we have a new QLC relation [91],

θPMNS
13 =

θc√
2
, (1.108)

which propounds the signature of an underlying GUT.

1.8 Scope of the Thesis

From the discussion above, we understand that a vivid idea of neutrino mass order-

ing is still lacking and a specific choice of the same is model-dependent. In other

words, all the three possible orderings, involving Normal, Inverted, and Degener-

ate spectrum are relevant from phenomenological point of view. If the ordering

is strictly “Normal” or “Inverted”, then on setting the lowest mass eigenvalue to

zero, in either of the two cases, one can make the parametrization simpler. But,

if the spectrum is degenerate, the parametrization is comparatively challenging.

Besides, the two Majorana phase parameters are still in the dark. For simplic-

ity, we shall concentrate only to the Majorana CP conserving scenarios. Besides,

the octant where θ23 must lie is uncertain. In the thesis, we shall try to address

the problems related with large reactor angle, the uncertainty associated with the
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octant of atmospheric angle and a successful prediction of Dirac-type CP violat-

ing phase. Also the issues such as the relevance of µ-τ symmetry, Tri-bimaximal

mixing, and the requirement (and the possibilities) to go beyond the same will be

discussed.

The “Neutrino mass matrix” conceives the information of both: masses, mixing

angles and the (three) CP phases. On the, other hand, the “Lepton mixing matrix”

carries the information of mixing angles and (one or three)CP phases. In the

first half of the thesis, a proper parametrization of the neutrino mass matrix is

emphasized on and in the latter half, different ways to parametrize the PMNS

matrix is discussed. The study we put forward is kept model-independent and a

bottom-up perspective is followed throughout. The thesis is organized as in the

following.

• In the second chapter, the importance of the Quasi-degenerate neutrino mass

models along with a proper parametrization of the related neutrino mass

matrices in the µ-τ symmetric environment is discussed. The six different

cases associated with Quasi-degenerate (QDN) neutrino models are studied.

The related mass matrices, mν
LLs are parametrized with two free parameters

(α, η), standard Wolfenstein parameter (λ) and input mass scale is chosen,

m0 ∼ 0.08 eV . The µ-τ symmetry cannot engender the nonzero θ13. In this

regard, the charged lepton correction is taken into consideration. Four in-

dependent building block matrices, I0, I1, I2 and I3 are highlighted in order

to parametrize the neutrino mass matrix with µ-τ -symmetric texture. This

building blocks treat all ranges of solar angle equally. But certain condi-

tion involving the suppression of the number free parameters restricts the

BM mixing but allows both TBM and TBM deviated scenarios with ease.

In this work, the solar mixing angle is controlled from neutrino sector and

the other two angles, the reactor and atmospheric ones are controlled from

the charged lepton sector. In the framework of oscillation experiments, cos-

mological observation and future experiments involving the phenomena like

β-decay and 0νββ decay, the six different QDN models are appraised and

hardly, any reason to discard any one of the QDN mass models is unfounded.

The QDNH-TypeA model shows strong preference for sin2 θ12 = 0.32. The

present work leaves a scope to extend the search of most favorable QDN

mass model from observed baryon asymmetry of the Universe.
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• In the third chapter, we try to look into the texture of neutrino mass matrix

beyond the µ-τ symmetry. In the quark sector, the mixing angles are related

to the quark mass ratios. In this chapter, it is tried to see whether a similar

tie-up between the mixing angles and the neutrino mass ratio is possible

or not. The oscillations experiments at present have confirmed the large

value of the reactor angle. So we cannot decline the possibility that sin θ13

and
√

m1/m3 are correlated, ǫ ∼ sin θ13 ∼
√

m1/m3. At the same time,

we have the other possibility: η ∼ sin θ23 ∼
√

m2/m3. But the prospect,

sin θ12 ∼
√

m1/m2, is not realized in the light of present data from oscillation

experiments. Again, the remaining two possibilities are not realizable simul-

taneously. So, unlike quarks, the apprehension of the correlation between

the mixing angles and mass ratios is partial in the neutrino sector. This

ansatz cannot answer to the hierarchy problem of neutrinos, but constrains

the parametrization of neutrino masses and mixing in several ways, and

hints for a predictive framework. Two different parametrization schemes:

ǫ-based and η-based, are developed. When the above ansatz and the related

constraints are induced in the general neutrino mass matrix in flavor basis,

five different hierarchy dependent textures are encountered. The number

of independent parameters in the mass matrices are found to be ≤ 4. For

simplicity, all the parameters in the neutrino mass matrix are kept real.

• In the fourth chapter, certain possibilities to amend the Tri-bimaximal mix-

ing are invoked. The TBM mixing is partially successful in predicting the

mixing angles, θ12 and θ23 which are found to be consistent within 1σ error

limit. But the observed rector angle deviates a lot from the TBM predic-

tion. It is seen, θ13 ≈ θTBM
13 + O(θc) , θ12 ≈ θTBM

12 − O(θCKM
23 ) and θ23 ≈

θTBM
23 ± O(θCKM

23 ). Next to TBM mixing scheme, it is the Tribimaximal-

Cabibbo mixing, which predicts a non-zero reactor angle, θ13 ∼ O(θc). In

order to bring about the correction to TBM mixing, we consider the contri-

bution both from the neutrino and charged lepton sector. The contribution

from neutrino sector is motivated by an unique feature of µ-τ symmetry

by which one can control θ12 with ease. In another approach, instead of

considering the correction from neutrino sector, we use a CKM-like charged

lepton diagonalizing matrix. In the former approach, the information of the

Dirac-type CP violating phase, δCP is suppressed. In the latter approach, a
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correlation can be seen between sin2 θ12 and δCP . This leads to a precise pre-

diction of θ12 and δCP is found close to 1.5 π. The TBM deviated scenarios

concerning both θ23 ≥ 450 and θ23 ≤ 450, are discussed.

• In the fifth chapter, the importance of Bi-Large neutrino mixing in the light

of recent oscillation data is discussed. Bi-large neutrino mixing is motivated

in the F-Theory GUT and has geometrical origin. The Bi-large neutrino

mixing says, sin θ13 ≃ θc and sin θ12 = sin θ23 = ψλ, where, ψ is an unknown

parameter. But in the present scenario, the solar and atmospheric angles are

not at all equal. We try to modify the same by considering the charged lepton

correction. The GUT models relate the charged lepton and the down-type

quark mass matrices. According to SO(10) GUT, we can choose, Me ∼Md,

whereas, the correlation, Me ∼MT
d is motivated in SU(5) GUT. Depending

upon this we can choose, either, Ul ≈ VCKM , or Ul ≈ V †CKM respectively.

The neutrino mixing matrix, UBL is parametrized in terms of ψ, λ and phase

δ. For, Ul, both the “exact-CKM” and “CKM-like” textures are taken into

consideration. The latter differs from the former concerning the inclusion

of certain extra phases. If, Ul holds exact CKM texture, there are only

two unknown parameters: ψ and δ. In terms of observed θ12 and θ13, the

quantities ψ and δ are parametrized. The other observables like, θ23 and δCP

are treated as the prediction of certain frame-works. If Ul follows exact CKM

texture, the contribution towards the observed δCP appears solely from the

neutrino sector. On the other hand, both charged lepton and neutrino sectors

contribute towards δCP , if Ul is CKM-like. Even if the neutrino sector does

not accord to δCP , the charged lepton sector can lead the latter. The analysis

embraces both kinds of possibilities, θ23 ≤ 450 and θ23 ≥ 450. Concerning

the generalized CKM-like correction, the analysis addresses both standard

and symmetric parametrization.

• In the sixth chapter, the motivation, results and shortcomings related with

the works presented in Chapters 2-5, are summarized. The different prospects

to extend the investigation in several areas are also discussed.
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Quasi-degenerate Neutrino mass

models and their significance: A

model independent investigation

The prediction of possible ordering of neutrino masses relies mostly on the model

selected. Alienating the µ− τ interchange symmetry from discrete flavour symme-

try based models, turns the neutrino mass matrix less predictive. But this inspires

one to seek the answer from other phenomenological frameworks. We need a proper

parametrization of the neutrino mass matrices concerning individual hierarchies.

In the present work, we attempt to study the six different cases of Quasi-degenerate

(QDN) neutrino models. The related mass matrices, mν
LL are parametrized with

two free parameters (α, η) and standard Wolfenstein parameter (λ). The input

mass scale m0 is selected around ∼ 0.08 eV . We begin with a µ − τ symmet-

ric neutrino mass matrix tailed by a correction from charged lepton sector. The

parametrization accentuates the existence of four independent texture zero building

block matrices which are common to all the QDN models under µ − τ symmet-

ric framework. These remain invariant irrespective of any choice of solar angle.

In our parametrization, the neutrino sector controls the solar angle, whereas the

reactor and atmospheric angles are dictated by the charged lepton sector. In the

framework of oscillation experiments, cosmological observation and future experi-

ments involving β-decay and 0νββ experiments, all QDN models are tested and a

reason to rule out anyone out of the six models is unfounded. A strong preference

for sin2 θ12 = 0.32 is observed for QDNH-TypeA model.

34
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2.1 Introduction

One of the most challenging riddles of neutrino physics is to trace out the exact

ordering of the absolute neutrino masses. The Quasi degenerate hierarchy [92–105]

among all the three possibilities, refers to the scenario when the three mass eigen-

values are of similar order, m1 ∼ m2 ∼ m3. As the solar mass squared difference

(∆m2
21) is positive and the the sign of atmospheric mass squared difference (∆m2

31)

is unspecified, we encounter two divisions of QDN patterns: they are,

• “ Quasi-degenerate Normal Hierarchy (QDNH) type” : m1 . m2 . m3,

• “Quasi-degenerate Inverted Hierarchy type” (QDIH): m3 . m1 . m2.

Besides, the remaining possibilities are strict “Normal hierarchy” (NH): m1 <<

m2 << m3, m1 ∼ 0 and “Inverted hierarchy” (IH): m3 << m1 << m2, m3 ∼ 0.

The two Majorana phases (α, β) are admitted to the diagonalized neutrino mass

matrix md
LL, where, m

d
LL = diag(m1,m2 e

iα,m3 e
iβ) [106]. On adopting the CP

conserving cases, three subclasses corresponding to each model is generated. The

CP parity patterns of the sub classes are :

• Type IA: md
LL = diag (+m1,−m2,+m3),

• Type IB: md
LL = diag (+m1,+m2,+m3) and,

• Type IC: md
LL = diag (+m1,+m2,−m3).

The QDN model were very often forsaken [107, 108] in view of the neutrino-less

double β decay experiments and cosmological data. The range of absolute neu-

trino mass scale, m0 was chosen as, 0.1 eV − 0.4 eV [109] in earlier QDN models.

But, the Cosmological data in concern with the sum of the three absolute neu-

trino masses, Σ|mi| ≤ 0.28 eV [110], strongly abandons any possibility of quasi-

degenerate neutrinos to exist with absolute mass scale more than 0.1 eV . The Σmi

corresponding to strict NH and IH scenarios are approximately 0.06 eV and 0.1 eV

respectively. Hence the validity of both the models are beyond dispute. In the

context of cosmological observation on Σmi and the future experiments, we shall

try to look into the possibilities related to the reanimation of the QDN models,

with comparatively lower mass scale, m0 . 0.1 eV .



Regarding the three unknown absolute masses, only two relations involvingm2
i=1,2,3

are known so far. In NH and IH models, this problem can be easily overcome as the

lowest mass (eitherm1 orm2) is set to zero. In case of QDN model, we consider the

largest mass m0 as a input. Besides, there are also three mixing angles: reactor

(θ13), solar (θ12) and atmospheric (θ23). A general neutrino mass matrix mν
LL

carries the information of all these six quantities. For a phenomenological analysis

of the QDN model, a suitable parametrization ofmν
LL is an essential part. We shall

try to design the general neutrino mass matrix,mν
LL with minimum numbers of free

parameters. As a first approximation, mν
LL is assumed to follow µ− τ symmetry

[60, 79, 111–114]. This symmetry keeps θ12 arbitrary and hence can handle both

Tri-Bimaximal(TBM) mixing and deviation from it as well [103–105, 115, 116].

This characteristic feature of µ − τ symmetry bears immense phenomenological

importance. The expected deviations to θ13 = 0 and θ23 = π/4, are controlled

from charged lepton sector[16, 117–126].

We hope, this investigation on QDN mass models will serve as a platform for our

future study of Baryogenesis and leptogenesis [103–105, 127]. This investigation

will require the knowledge of the texture of left handed neutrino mass matrices,

mν
LL.

2.2 Need for parametrization of a general µ − τ

symmetric mass matrix.

The present neutrino oscillation data reports the lepton mixing angles, θ23 ∼ 400

and θ13 ∼ 90 [128–134] which are undoubtedly deviated from what TBM mixing

and BM mixing says: θ23 = 450 and θ13 = 00. A neutrino mass matrix which

satisfies these properties (of BM/TBM mixing)[78, 79, 111, 135–139], in the basis

where charged lepton mass matrix, ml
LL is diagonal, ml

LL = diag(me,mµ,mτ ),

exhibits a µ − τ interchange symmetry. With a permutation matrix, T which

conducts a flavor interchange µ ↔ τ , we express the texture of a µ− τ symmetric

mass matrix as in the following [140, 141],

36
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T Mµτ T = Mµτ ,=⇒ Mµτ =









x y y

y z w

y w z









, (2.1)

where,

T =









1 0 0

0 0 1

0 1 0









. (2.2)

We experience another form Mµτ [142], different from that in Eq.(2.1),

Mµτ =









x y −y

y z w

−y w z









. (2.3)

The matrix element is invariant under the flavor interchange of µ ↔ −τ . The

permutation matrix responsible for this symmetry is T ′.

T ′Mµτ T
′ = Mµτ ,=⇒ Mµτ , (2.4)

where,

T ′ =









1 0 0

0 0 −1

0 −1 0









. (2.5)

The presence of a −ve sign before y in the 1-3 the element of Mµτ (see Eq.(2.3))

ensures the positivity of the mixing angles.

Except the maximal atmospheric and vanishing reactor angle, µ−τ symmetry has

no further prediction. Different discrete symmetry groups are very often combined

with µ − τ interchange symmetry in order to obtain a predictive neutrino mass

matrix [143]. For example, in the original Altarelli-Feruglio model [65, 144], the

neutrino mass matrix takes the form (see Eq.(2.1)),
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Mµτ =









a+ 2
3
b − b

3
− b

3

− b
3

2
3
b a− b

3

− b
3

a− b
3

2
3
b









, (2.6)

the mass eigenvalues are m1 = a + b, m2 = a and m3 = b − a which gives,

∆m2
sol = (−b2 − 2ab) and ∆m2

atm = −4ab. Since it is known that ∆m2
sol > 0,

which implies ab < 0. Hence, a and b must have opposite signs which in turn says,

∆m2
atm > 0. This model advocates for normal hierarchy of the absolute neutrino

masses. In addition, it supports for TBM mixing: θ12 = sin−1(1/
√
3). Similarly, a

neutrino mass matrix of following kind (see Eq.(2.1)),

Mµτ =









0 a a

a b c

a c b









, (2.7)

can be related with an interesting mixing scheme called Golden ratio [145] and

dictates the mass pattern to be of normal hierarchy type.

One of the most interesting property of the µ− τ (interchange) symmetry which

is very often neglected is the arbitrariness of the solar angle θ12. With a proper

choice of the parameters, x, y, w and z, θ12 is controlled with the following relation

[60], intrinsic to Mµτ in Eq.(2.1),

tan 2θ12 =
2
√
2y

x− w − z
. (2.8)

For, Mµτ in Eq.(2.3) the expression for tan 2θ12 is,

tan 2θ12 =
2
√
2y

x+ w − z
(2.9)

It seems that µ−τ symmetry is more natural and BM and TBMmixing schemes are

certain special cases of this symmetry. In fact ,the recent result sin2 θ12 ∼ 0.32 [132]

deviated a little from TBM prediction (sin2 θ12 = 0.33), can be accommodated

within the µ − τ symmetry regime [103–105, 115, 116]. Neglecting the small

deviations (though significant) for θ23 and θ13, we first approximate, mν
LL = Mµτ

and the charged lepton diagonalizing matrix, UeL = I.
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This is an undeniable fact that the predictions of a suitable order of absolute

neutrino masses are not unique and differs with the choice of models. Keeping aside

all the models, which associate Mµτ with different discrete flavour symmetries,

here we concentrate on a general parametrization of Mµτ . The idea behind this

decoupling is not to overlook the necessity of different symmetry groups, but to

look into the subtle aspects of µ− τ symmetry, starting from a phenomenological

point of view. Here we emphasize on the facts that µ − τ interchange symmetry

is not partial to any hierarchy of absolute neutrino masses and has a good control

over the solar angle. In the Refs. [146, 147], we put forward another possible way

to parametrize the neutrino mass matrix based on µ-τ symmetry.

In the present article, concerning the parametrization of the µ−τ symmetric mass

matrices for different hierarchical cases, we shall stick to the second convention

(see Eq.(2.3)).

2.3 Invariant building blocks of µ− τ symmetric

mass matrix

We want to draw attention on the general texture of Mµτ s satisfying BM [78, 135,

136] and TBM [79, 111, 137–139] mixing schemes.

MBM
µτ =









x y y

y z x− z

y x− z z









, (2.10)

MTBM
µτ =









x y y

y z x+ y − z

y x+ y − z z









. (2.11)

It is to be noted that the above two forms of Mµτ ’s are in accordance with the

first convention (see Eq.(2.1)). In terms of the three parameters x, y and z, the

respective mass matrices can be decomposed with certain building block matrices

Ix, I
BM,TBM
y and Iz in the following way.

MBM
µτ = xIx + yIBM

y + zIz, (2.12)

MTBM
µτ = xIx + yITBM

y + zIz. (2.13)
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Where,

Ix =









1 0 0

0 0 1

0 1 0









, Iz =









0 0 0

0 1 −1

0 −1 1









, (2.14)

IBM
y =









0 1 1

1 0 0

1 0 0









, ITBM
y =









0 1 1

1 0 1

1 1 0









. (2.15)

There is a distinct change in the texture of Iy, as the mixing pattern transits from

BM to TBM. IBM
y and ITBM

y have the diagonalizing matrices, UBM = R23(θ23 =

−π/4).R13(θ13 = 0).R12(θ12 = −π/4) and UTBM = R23(θ23 = −π/4).R13(θ13 =

0).R12(θ12 = sin−1(1/
√
3)) respectively and thus carry the signatures of respective

models. For, Ix,z the diagonalizing matrices are, Ux,y = R23(θ23 = −π/4) .

We insist on the possibility of finding out certain building blocks of Mµτ that

will remain invariant at the face of any mixing schemes (BM or TBM) or simply

independent of any θ12 in general. With this idea, four such independent texture-

zero matrices, Ii=0,1,2,3 are posited (see Table.(2.1)). On considering the fact that

a general Mµτ is capable of holding four free parameters at the most (if α and β

are specified ), we parametrize Mµτ for QDNH-Type IA case in the following way.

Mµτ =I0 − (β − α

2
)I1 + 2α(η2 − 1

4
)I2 + αη(1− 2η2)1/2I3. (2.16)

=









α− β − 2αη2 −αη(1− 2η2)
1

2 αη(1− 2η2)
1

2

−αη(1− 2η2)
1

2
1
2
− β

2
+ αη2 1

2
+ β

2
− αη2

αη(1− 2η2)
1

2
1
2
+ β

2
− αη2 1

2
− β

2
+ αη2









(2.17)

Here, α, β and η are three free parameters and the mass matrix is normalized

with input parameter m0. The parameters, α and β are related with absolute

masses of three neutrinos. The quantity, m0 signifies the largest neutrino mass.

It can be seen that whatever may be the changes in mixing schemes, the basic

building blocks are not affected. The free parameter η dictates the solar angle.

η = 1/2, 1/
√
6, correspond to BM and TBM mixing respectively. In contrast to
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Ii Idiagi Ui

I0
1
2





0 0 0
0 1 1
0 1 1









0 0 0
0 0 0
0 0 1









1 0 0
0 1√

2
1√
2

0 − 1√
2

1√
2





I1
1
2





2 0 0
0 1 −1
0 −1 1









1 0 0
0 1 0
0 0 0









1 0 0
0 1√

2
1√
2

0 − 1√
2

1√
2





I2
1
2





−2 0 0
0 1 −1
0 −1 1









−1 0 0
0 1 0
0 0 0









1 0 0
0 1√

2
1√
2

0 − 1√
2

1√
2





I3





0 −1 1
−1 0 0
1 0 0









−
√
2 0 0

0
√
2 1

0 1 0











1√
2

1√
2

0

−1
2

1
2

1√
2

1
2

−1
2

1√
2







Table 2.1: The texture of the invariant building blocks Ii=0,1,2,3, the diagonalized

blocks Idiagi=0,1,2,3 and the corresponding diagonalizing matrices (Ui).

Mµτ s in Eqs. (2.12)-(2.13), the corresponding mass matrices are,

MBM
µτ = I0 − (β − α

2
)I1 + 0I2 +

1

2
√
2
αI3, (2.18)

MTBM
µτ = I0 − (β − α

2
)I1 −

1

6
αI2 +

1

3
αI3. (2.19)

Here we want to add that with η = 2/5, sin2 θ12 = 0.32 (best-fit)[132] can be

obtained. It can be seen that, I0 + I1 = I, the identity matrix. Also, from

Table.(2.1), this is interesting to note that the diagonalizing matrix of I3 is none

other than UBM .

There are certain significant features of this parametrization. With same building

block matrices, we can extend the parametrization of Mµτ s for other five QDN

and even for the NH and IH cases also. For example, similar to Eq. (2.16), a

rearrangement of the free parameters (α, β, η), and Iis we parametrize Mµτ for

QDIH-Type IA case in the following way.

Mµτ = βI0 −
(

1− α

2

)

I1 + 2α

(

η2 − 1

4

)

I2 + αη
(

1− 2η2
)1/2

I3. (2.20)
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Upon considering β = α, in Eq.(2.16), we get Mµτ satisfying strict NH-Type IA

condition.

Mµτ = I0 −
α

2
I1 + 2α

(

η2 − 1

4

)

I2 + αη
(

1− 2η2
)1/2

I3. (2.21)

Similarly, with β = 0, in Eq.(2.20), we obtain a Mµτ that represents IH-Type IA

case.

Mµτ = 0I0 −
(

1− α

2

)

I1 + 2α

(

η2 − 1

4

)

I2 + αη
(

1− 2η2
)1/2

I3. (2.22)

Similarly, we can formulate the same for other cases also. The details are shown

in Table.(2.2) and Table.(2.3)

In this present approach, the mass parameters and the mixing angle parameters

are decoupled. A single expression of tan 2θ12 for all the eleven cases is,

tan 2θ12 =
2
√
2η(1− 2η2)1/2

1− 4η2
, (2.23)

or, sin2 θ12 = 2η2. (2.24)

.

2.4 The input parameter m0 for QDN model

In either of the two QDN cases, m0 represents the largest absolute neutrino mass.

For QDNH cases, we use the following relations to work out the neutrino masses

mi.

m1 = m0

√

1− ∆m2
atm

m2
0

, (2.25)

m2 = m0

√

1 +
∆m2

sol

m2
0

− ∆m2
atm

m2
0

, (2.26)

m3 = m0. (2.27)
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QDN-NH,IH Mµτ (α, β, η)/m0 mi/m0

QDNH-IA :





α− β − 2αη2 −αη(1− 2η2)
1

2 αη(1− 2η2)
1

2

−αη(1− 2η2)
1

2
1
2
− β

2
+ αη2 1

2
+ β

2
− αη2

αη(1− 2η2)
1

2
1
2
+ β

2
− αη2 1

2
− β

2
+ αη2





= I0 − (β − α
2
)I1 + 2α(η2 − 1

4
)I2 + αη(1− 2η2)1/2I3.

α− β
−β
1

QDNH-IB :





β + 2αη2 − α αη(1− 2η2)
1

2 −αη(1− 2η2)
1

2

αη(1− 2η2)
1

2
1
2
+ β

2
− αη2 1

2
− β

2
+ αη2

−αη(1− 2η2)
1

2
1
2
− β

2
+ αη2 1

2
+ β

2
− αη2





= I0 + (β − α
2
)I1 − 2α(η2 − 1

4
)I2 − αη(1− 2η2)1/2I3

β − α
β
1

QDNH-IC :





β + 2αη2 − α αη(1− 2η2)
1

2 −αη(1− 2η2)
1

2

αη(1− 2η2)
1

2
β
2
− αη2 − 1

2
αη2 − 1

2
− β

2

−αη(1− 2η2)
1

2 αη2 − 1
2
− β

2
β
2
− αη2 − 1

2





= −I0 + (β − α
2
)I1 − 2α(η2 − 1

4
)I2 − αη(1− 2η2)1/2I3

β − α
β
−1

QDIH-IA :





α− 2αη2 − 1 −αη(1− 2η2)
1

2 αη(1− 2η2)
1

2

−αη(1− 2η2)
1

2
β
2
+ αη2 − 1

2
1
2
+ β

2
− αη2

αη(1− 2η2)
1

2
1
2
+ β

2
− αη2 β

2
+ αη2 − 1

2





= βI0 − (1− α
2
)I1 + 2α(η2 − 1

4
)I2 + αη(1− 2η2)1/2I3.

α− 1
−1
β

QDIH-IB :





1− α + 2αη2 αη(1− 2η2)
1

2 −αη(1− 2η2)
1

2

αη(1− 2η2)
1

2
1
2
+ β

2
− αη2 β

2
+ αη2 − 1

2

−αη(1− 2η2)
1

2
β
2
+ αη2 − 1

2
1
2
+ β

2
− αη2





= βI0 + (1− α
2
)I1 − 2α(η2 − 1

4
)I2 − αη(1− 2η2)1/2I3.

1− α
1
β

QDIH-IC :





1− α + 2αη2 αη(1− 2η2)
1

2 −αη(1− 2η2)
1

2

αη(1− 2η2)
1

2
1
2
− β

2
− αη2 αη2 − β

2
− 1

2

−αη(1− 2η2)
1

2 αη2 − β
2
− 1

2
1
2
− β

2
− αη2





= −βI0 + (1− α
2
)I1 − 2α(η2 − 1

4
)I2 − αη(1− 2η2)1/2I3.

1− α
1
−β

Table 2.2: The parametrization of Mµτ for six different QDN cases with three free
parameters (α, β, η) with four basic building blocks Ii=0,1,2,3. m0 is the input parameter.



Chapter 2 44

NH,IH Mµτ (α, η)/m0 mi/m0

NH-IA :





−2αη2 −αη(1− 2η2)
1

2 αη(1− 2η2)
1

2

−αη(1− 2η2)
1

2
1
2
− α

2
+ αη2 1

2
+ α

2
− αη2

αη(1− 2η2)
1

2
1
2
+ α

2
− αη2 1

2
− α

2
+ αη2





= I0 − α
2
I1 + 2α(η2 − 1

4
)I2 + αη(1− 2η2)1/2I3.

0
−α
1

NH-IB :





2αη2 αη(1− 2η2)
1

2 −αη(1− 2η2)
1

2

αη(1− 2η2)
1

2
1
2
+ α

2
− αη2 1

2
− α

2
+ αη2

−αη(1− 2η2)
1

2
1
2
− α

2
+ αη2 1

2
+ α

2
− αη2





= I0 +
α
2
I1 − 2α(η2 − 1

4
)I2 − αη(1− 2η2)1/2I3

0
α
1

NH-IC :





2αη2 αη(1− 2η2)
1

2 −αη(1− 2η2)
1

2

αη(1− 2η2)
1

2
α
2
− αη2 − 1

2
αη2 − α

2
− 1

2

−αη(1− 2η2)
1

2 αη2 − α
2
− 1

2
α
2
− αη2 − 1

2





= −I0 − α
2
I1 − 2α(η2 − 1

4
)I2 − αη(1− 2η2)1/2I3.

0
α
−1

IH-IA :





α− 2αη2 − 1 −αη(1− 2η2)
1

2 αη(1− 2η2)
1

2

−αη(1− 2η2)
1

2 αη2 − 1
2

1
2
− αη2

−αη(1− 2η2)
1

2
1
2
− αη2 αη2 − 1

2





= 0I0 − (1− α
2
)I1 + 2α(η2 − 1

4
)I2 + αη(1− 2η2)1/2I3.

α− 1
−1
0

IH-IB :





1− α + 2αη2 αη(1− η2)
1

2 −αη(1− η2)
1

2

αη(1− η2)
1

2
1
2
− αη2 αη2 − 1

2

−αη(1− η2)
1

2 αη2 − 1
2

1
2
− αη2





= 0I0 − (1− α
2
)I1 + 2α(η2 − 1

4
)I2 + αη(1− 2η2)1/2I3.

1− α
1
0

Table 2.3: The extension of the parametrization to NH and IH models. It can
be seen that only two free parameters α and η are required to parametrize the

mass matrices.
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Figure 2.1: Σmi vs the input parameter m0. Corresponding to the cosmological
upper bound Σmi . 0.28 eV and beyond m0 > 0.05 eV , Σmi is imaginary, we get a
range of m0 as [ 0.05, 0.1 ] eV . The Red stands for QDNH case while Blue signifies the

case of QDIH

For, QDIH cases, we use,

m1 = m0

√

1− ∆m2
sol

m2
0

, (2.28)

m2 = m0, (2.29)

m3 = m0

√

1− ∆m2
sol

m2
0

− ∆m2
atm

m2
0

. (2.30)

Also, we have,

Σmi = |m1|+ |m2|+ |m3|. (2.31)

The present cosmological upper bound on Σmi is 0.28 eV [110] and the best-fit

values of the mass squared differences are approximately: ∆m2
21 ∼ 7.6× 10−5 eV 2

, ∆m2
31 ∼ 2.4 × 10−3 eV 2 [132–134]. From a graphical analysis of Σ |mi| vs. m0

reveals that the absolute mass scale m0 must lie approximately within 0.05 eV −
0.1 eV (Fig.(2.1)). The upper limit of m0 is the direct outcome of the cosmological

upper bound [110]. The lower limit arises because, when m0 . 0.05 eV , m1, m2 for

QDNH case andm3 for QDIH case become imaginary. By studying the variation of

mi and corresponding slopes (dmi/dm0) with respect to m0 (Fig.(2.2)), we expect

that the level of degeneracy is better for m0 > 0.07 eV and approximate the range

of m0 from 0.07− 0.1 eV . For all numerical studies we adhere to m0 ∼ 0.08 eV .
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Figure 2.2: Study of mi vs m0 (top-left: QDNH case, top-right: QDIH case) and
dmi/dm0 vs m0 (bottom-left: QDNH case, bottom-right: QDIH case).

2.5 Endeavor to suppress the number of free pa-

rameters in QDN models

This is clear that only two free parameters α and η are required to parametrize

Mµτ for NH and IH models (see Table.(2.3)); whereas QDN model requires three

(α, β, η) (see Table.(2.2)). The rejection of one parameter for NH and IH cases

is natural. But we shall try to see whether under certain logical ground we can

suppress the number of free parameters for QDN model or not.

We consider the example of QDNH-Type IA case. With m0 ∼ 0.08 eV , we study

the ratio α : β and β : η for the 2σ and 3σ ranges of the three parameters based on

the Global data analysis [133]. The idea behind this approach is to detect whether

there exists a simple linear correlation between the parameters or not.

Fig (2.3)reveals such a quest is not absurd at all and we can assume, α ≅ 2β

and β ≅ 2η. But the first ansatz leads to ∆m2
21 = 0 and turns out insignificant.

We stick to the second ansatz. An immediate outcome is that the parameter η

which is responsible only for the mixing angle θ12 in the earlier parametrization of

Mµτ (α, β, η) is now capable of driving the mass parameters also. In other words,
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Figure 2.3: In order to check the validity of the assumptions: there may lie a linear
correlation between the parameters (α, β, η) for QDNH-IA case, we check graphically
α : β and β : η. The analysis hints for β = 2η and α = 2β. The colour red and blue

stand for the 2σ and the 3σ range respectively.

the arbitrariness of θ12 is now reduced a little. In contrast to Eq.(2.16), for QDNH-

TypeA case, with normalized m0, we have,

Mµτ (α, η) = I0 − (2η − α

2
)I1 + 2α(η2 − 1

4
)I2 + αη(1− 2η2)1/2I3, (2.32)

=









α− 2η − 2αη2 −αη(1− 2η2)
1

2 αη(1− 2η2)
1

2

−αη(1− 2η2)
1

2
1
2
− η + αη2 1

2
+ η − αη2

αη(1− 2η2)
1

2
1
2
+ η − αη2 1

2
− η + αη2









. (2.33)

The ansatz β = 2η is applicable to other remaining QDN cases also (see Ta-

ble.(2.4)). Needless to say, that the suppression of parameters does not affect

tan 2θ12 in Eq.(2.23).

2.6 TBM, deviation from TBM and BM mixing

We experience that Mµτ parametrized with (α, η) (see Table.(2.4)) gives certain

correlation between absolute masses and θ12 ,

sin θ12 =
1√
2

m2

m3

(QDNH case), (2.34)

sin θ12 =
1√
2

m3

m2

(QDIH case). (2.35)
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QDN-NH,IH Mµτ (α, η)/m0 mi/m0

QDNH-IA :





α− 2η − 2αη2 −αη(1− 2η2)
1

2 αη(1− 2η2)
1

2

−αη(1− 2η2)
1

2
1
2
− η + αη2 1

2
+ η − αη2

αη(1− 2η2)
1

2
1
2
+ η − αη2 1

2
− η + αη2





= I0 − (2η − α
2
)I1 + 2α(η2 − 1

4
)I2 + αη(1− 2η2)1/2I3.

α− 2η
−2η
1

QDNH-IB :





2η + 2αη2 − α αη(1− 2η2)
1

2 −αη(1− 2η2)
1

2

αη(1− 2η2)
1

2
1
2
+ η − αη2 1

2
− η + αη2

−αη(1− 2η2)
1

2
1
2
− η + αη2 1

2
+ η − αη2





= I0 + (2η − α
2
)I1 − 2α(η2 − 1

4
)I2 − αη(1− 2η2)1/2I3

2η − α
2η
1

QDNH-IC :





2η + 2αη2 − α αη(1− 2η2)
1

2 −αη(1− 2η2)
1

2

αη(1− 2η2)
1

2 η − αη2 − 1
2

αη2 − 1
2
− η

−αη(1− 2η2)
1

2 αη2 − 1
2
− η η − αη2 − 1

2





= −I0 + (2η − α
2
)I1 − 2α(η2 − 1

4
)I2 − αη(1− 2η2)1/2I3

2η − α
2η
−1

QDIH-IA :





α− 2αη2 − 1 −αη(1− 2η2)
1

2 αη(1− 2η2)
1

2

−αη(1− 2η2)
1

2 η + αη2 − 1
2

1
2
+ η − αη2

αη(1− 2η2)
1

2
1
2
+ η − αη2 η + αη2 − 1

2





= 2ηI0 − (1− α
2
)I1 + 2α(η2 − 1

4
)I2 + αη(1− 2η2)1/2I3.

α− 1
−1
2η

QDIH-IB :





1− α + 2αη2 αη(1− 2η2)
1

2 −αη(1− 2η2)
1

2

αη(1− 2η2)
1

2
1
2
+ η − αη2 η + αη2 − 1

2

−αη(1− 2η2)
1

2 η + αη2 − 1
2

1
2
+ η − αη2





= 2ηI0 + (1− α
2
)I1 − 2α(η2 − 1

4
)I2 − αη(1− 2η2)1/2I3.

1− α
1
2η

QDIH-IC :





1− α + 2αη2 αη(1− 2η2)
1

2 −αη(1− 2η2)
1

2

αη(1− 2η2)
1

2
1
2
− η − αη2 αη2 − η − 1

2

−αη(1− 2η2)
1

2 αη2 − η − 1
2

1
2
− η − αη2





= −2ηI0 + (1− α
2
)I1 − 2α(η2 − 1

4
)I2 − αη(1− 2η2)1/2I3.

1− α
1

−2η

Table 2.4: The parametrization of Mµτ for six different QDN cases with two free
parameters (α, η) with four basic building blocks Ii=0,1,2,3. m0 is the input parameter.
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Considering QDNH case as an example, we find,

∆m2
21 = α(2

√
2 sin θ12 − α)m2

0, (2.36)

∆m2
31 = (1− α +

√
2 sin θ12)(1 + α−

√
2 sin θ12)m

2
0. (2.37)

For all the QDNH cases, we fix the input, m0 = 0.082 eV . TBM condition implies

θ12 = sin−1(1/
√
3). A choice of the free parameter, α = 1.626 (QDNH-IA), We

obtain ∆m2
21 ∼ 7.6× 10−5 eV 2 and ∆m2

31 ∼ 2.32× 10−3eV 2 [132–134].

If we expect a little deviation from TBM mixing, say sin2 θ12 = 0.32 then along

with a choice of α = 1.5929, we obtain ∆m2
21 ∼ 7.6×10−5 eV 2 and ∆m2

31 ∼ 2.49×
10−3eV 2[132]. Similar treatment holds good for the remaining cases also. The

parametrization of the mass matrix with two free parameters (α, η) is compatible

with both TBM mixing and with deviation from TBM as well, and agrees to the

global data [132–134].

But the BM mixing (sin θ12 = 1/
√
2) is somehow disfavoured by all the six QDN

mass models Mµτ (α, η) (see Table.(2.4)). The BM mixing will lead to, m2 = m3,

which implies ∆m2
21 = ∆m2

31. (See Eqs. (2.34)-(2.35) Needless to mention that

this is problem never arises if we adopt the general parametrization with three

free parameters (α, β, η) (see Table.(2.2)).

2.7 Charged lepton correction

We derive the diagonalizing matrix for both Mµτ (α, β, η) (see Table. (2.2)) and

Mµτ (α, η) (see Table.(2.4)) in the exact form as shown below,

UνL =









(1− 2η2)1/2
√
2η 0

−η 1√
2
(1− 2η2)1/2 1√

2

η − 1√
2
(1− 2η2)1/2 1√

2









. (2.38)

Indeed, θ13 is zero and θ23 is π/4. We have to include some extra ingredient in

order to deviate θ13 and θ23 from what Mµτ says.

The mixing matrix in the lepton sector, UPMNS, appears in the electro-weak cou-

pling to the W bosons and is expressed in terms of lepton mass eigenstates. We
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have,

L = −ēLMeeR − 1

2
ν̄Lm

ν
LLν

c
L +H.c, (2.39)

A transformation from flavour to mass basis: U †eLMeUeR = diag(me,mµ,mτ ) and

U †νLm
ν
LLUνR = diag(m1,m2,m3) gives [16, 117–122],

UPMNS = U †eLUνL. (2.40)

As stated earlier, it was assumed UeL = I and hence UPMNS = UνL(η). Probably a

suitable texture of UeL other than I, satisfying the unitary condition, may give rise

to the desired deviation in the mixing angles. The mixing angle, θ12 is controlled

efficiently with µ−τ symmetry. We want to preserve this important property even

though contribution from charged lepton sector is considered.

2.7.1 The charged lepton mixing matrix

In the absence of any CP phases, the charged lepton mixing matrix takes the form

of a general 3× 3 orthogonal matrix. In order to parametrize a 3× 3 orthogonal

matrix we require three rotational matrices of the following form.

R12(θ) =









cθ sθ 0

−sθ cθ 0

0 0 1









, (2.41)

R23(σ) =









1 0 0

0 cσ sσ

0 −sσ cσ









, (2.42)

R23(σ) =









cτ 0 sτ

0 1 0

−sτ 0 cτ









, (2.43)

where, sω = sinω and cω = cosω. We experience nine independent choices of com-

bining these independent rotational matrices in order to generate the general or-

thogonal matrix [148]. Out of all these choices, we prefer R = R12(θ)R31(τ)R23(σ)

in the charged lepton sector, which is different from the standard parametrization

scheme. Again keeping in mind the fact that R−1ij (ω) plays an equivalent role as
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Figure 2.4: Graphical analysis to fix the parameter, τ against the 1σ range of

sin2 θ13 = |Ue3|2.

Rij(ω) [148] in the construction of the general orthogonal matrix, we parametrize

the charged lepton mixing matrix, UPMNS (see Eq.(2.40)),

ŨeL = R̃−112 (θ)R̃
−1
31 (σ)R̃23(τ), (2.44)

and along with the small angle approximation: sω = ω and cω = 1 − ω2/2, we

finally construct the PMNS matrix, of which the three important elements are,

Ue2 ≈ sν12 +
cν
12√
2
(θ − σ)− sν

12

2
(θ2 + σ2), (2.45)

Ue3 ≈ 1√
2
(θ + σ), (2.46)

Uµ3 ≈ 1√
2
− 1√

2
τ − 1

2
√
2
(θ2 + σ2), (2.47)

where sν12 =
√
2η and cν12 =

√

1− 2η2. The choice of the σ, θ and τ are arbitrary.

So that sin θ12 as obtained from Mµτ is not disturbed, the middle term in the

expression of Ue2 must vanish, θ − σ = 0. We choose, θ, σ = λ/2, (λ = 0.2253 ±
0.0007, standard Wolfenstein parameter[149]) and get sin θ13 = |Ue3| = λ/

√
2 [91].

Once, θ and σ are fixed, the choice of τ is guided by the requirement of necessary

deviation of θ23 from the maximal condition. We see, in Fig (2.4). with respect to

1σ range of |Ue3|2, τ centers around τ ∼ 0.1 ∼ λ/2. Finally we model

ŨeL = R̃−112 (λ/2)R̃
−1
31 (λ/2)R̃23(λ/2). (2.48)
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so that,

Ũ †eL ≈









1− λ2

4
λ
2

λ
2

−λ
2
+ λ2

4
1− λ2

4
−λ

2

−λ
2
− λ2

4
λ
2
− λ2

4
1− λ2

4









+O(λ3). (2.49)

2.7.2 Breaking the µ− τ interchange symmetry

Once, the charged lepton contributions are taken into consideration the µ − τ

symmetry will be perturbed. Finally, we obtain, the corrected neutrino mass

matrix, mν
LL(α, η, λ) = Ũ †eL.Mµτ ŨeL. The invariant building blocks Ii=0,1,2,3 (see

Table.(2.1)) of Mµτ will now change to,

Iλi=0,..,3 = Ũ †eL.Ii=0,..,3.ŨeL

= Ii=0,..,3 +∆Iλi=0,..,3 +O(λ3). (2.50)

The matrices ∆Iλi s are listed in Table.(2.5). We consider the case of Mµτ with

two free parameters (α, η) for QDNH-TypeA case (see Eq.(2.32)), as example.

mν
LL(α, η, λ) = Ũ †eL.Mµτ (α, η)ŨeL

= Iλ0 − (2η − α

2
)Iλ1 + 2α(η2 − 1

4
)Iλ2 + αη(1− 2η2)1/2Iλ3 ,

=









α− 2η − 2αη2 −αη(1− 2η2)
1

2 αη(1− 2η2)
1

2

−αη(1− 2η2)
1

2
1
2
− η + αη2 1

2
+ η − αη2

αη(1− 2η2)
1

2
1
2
+ η − αη2 1

2
− η + αη2









+
λ

2

(

1− 2η − α

2

)









λ 1− 1
2
λ 1 + 1

2
λ

1− 1
2
λ −1− 1

4
λ −λ

1 + 1
2
λ −λ 1− 3

4
λ









+αλ

(

η2 − 1

4

)









λ −λ
2

1 + 1
2
λ

−λ
2

1− 3
4
λ 0

1 + 1
2
λ 0 −1− 1

4
λ









+
αηλ

2
(1− 2η2)1/2









0 −1 + λ −1− 1
2
λ

−1 + λ 2 2λ

−1− 1
2
λ 2λ −2









+O(λ3)

(2.51)
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∆Iλi

∆Iλ0 ≈ 1
2λ





λ 1− 1
2λ 1 + 1

2λ
1− 1

2λ −1− 1
4λ −λ

1 + 1
2λ −λ 1− 3

4λ





∆Iλ1 = −∆Iλ0

∆Iλ2 ≈ 1
2λ





λ −1
2λ 1 + 1

2λ
−1

2λ 1− 3
4λ 0

−1
2λ 0 −1− 1

4λ





∆Iλ3 ≈ 1
2λ





0 −1 + λ −1− 1
2λ

−1 + λ 2 2λ
−1− 1

2λ 2λ −2





mν
LL(α, η, λ)

QDNH-IA : (I0 +∆Iλ
0
)− (2η − α

2
)(I1 −∆Iλ

0
) + 2α(η2 − 1

4
)(I2 +∆Iλ

2
) + αη(1− 2η2)1/2(I3 +∆Iλ

3
)

QDNH-IB : (I0 +∆Iλ
0
) + (2η − α

2
)(I1 −∆Iλ

0
)− 2α(η2 − 1

4
)(I2 +∆Iλ

2
)− αη(1− 2η2)1/2(I3 +∆Iλ

3
)

QDNH-IC : −(I0 +∆Iλ
0
) + (2η − α

2
)(I1 −∆Iλ

0
)− 2α(η2 − 1

4
)(I2∆+ Iλ

2
)− αη(1− 2η2)1/2(I3 +∆Iλ

3
)

QDIH-IA : 2η(I0 +∆Iλ
0
)− (1− α

2
)(I1 −∆Iλ

0
) + 2α(η2 − 1

4
)(I2 +∆Iλ

2
) + αη(1− 2η2)1/2(I3 +∆Iλ

3
)

QDIH-IB : 2η(I0 +∆Iλ
0
) + (1− α

2
)(I1 −∆Iλ

0
)− 2α(η2 − 1

4
)(I2 +∆Iλ

2
)− αη(1− 2η2)1/2(I3 +∆Iλ

3
).

QDIH-IC : −2η(I0 +∆Iλ
0
) + (1− α

2
)(I1 −∆Iλ

0
)− 2α(η2 − 1

4
)(I2 +∆Iλ

2
)− αη(1− 2η2)1/2(I3 +∆Iλ

3
).

UPMNS ≈







cν
12
(1− 1

4
λ2) sν

12
(1− 1

4
λ2) λ√

2

− sν
12√
2
− λ

2
(1− λ

2
)(

sν
12√
2
+ cν

12
)

cν
12√
2
+ λ

2
(1− λ

2
)(

cν
12√
2
− sν

12
) 1√

2
− λ

2
√
2

1√
2
(1− λ

2
)sν

12
− λ

2
(1 + λ

2
)cν

12
− 1√

2
(1− λ

2
)cν

12
− λ

2
(1 + λ

2
)sν

12

1√
2
+ λ

2
√
2






,

sν12 =
√
2η, cν12 = (1− 2η2)1/2

Table 2.5: The perturbation to the respective building block matrices, Iis are es-
timated in terms of ∆Iis. The corresponding textures of the corrected mass matrices
mν

LL(α, η, λ) are also described. The lepton mixing matrix which is now modified from

UνL to U†eL.UνL is also presented.
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The details of the texture for other QDN cases are described in Table.(2.5). The

texture of the PMNS matrix, UPMNS = U †eL.UνL, is presented in Table.(2.5). We

obtain,

sin2 θ12 = 2η2 +O(λ3), (2.52)

sin2 θ13 =
1

2
λ2 +O(λ3), (2.53)

sin2 θ23 =
1

2
− 1

2
λ+

1

8
λ2 +O(λ3). (2.54)

2.8 Numerical calculation

We assign certain ranges to the free parameter α and η respectively. Based on

the 1σ range of the physical observable quantities available from Global data

analysis [133], we assign α = 1.5939−1.6239 (QDNH-IA), 0.0080−0.0220 (QDNH-

IB,IC), 1.9945 − 1.9948 (QDIH-IA), 0.0052 − 0.0055 (QDIH-IB,IC) , and η =

0.3814 − 0.4031. The input parameter m0 ∼ 0.08 eV. and λ = 0.2253. We have

now four parameters, out of which α and η are free and the number of unknowns

present is six.

2.8.1 Observable parameters in oscillation experiments and

cosmological observation

We apply the six QDN neutrino mass matrices mν
LL(α, η, λ) to study their rele-

vance in the oscillation experiments. It is found that under a suitable choice of the

free parameters (α, η), all the six QDN models are equally capable of describing

both TBM and TBM-deviated scenarios (see Table.(2.6)) and are indistinguish-

able. QDNH model says, |m1|, |m2| ∼ 0.06 eV , |m3| ∼ 0.08 eV , while |m2|, |m3| ∼
0.08 eV , m1 ∼ 0.06 eV for QDIH case. For both the cases, ∆m2

21 ∼ 7.6× 10−5 eV 2

and ∆m2
31 ∼ 2.4 × 10−3 eV 2. The mixing angle parameters are sin2 θ13 ≃ 0.025,

sin2 θ12 ≃ 0.32 and sin2 θ23 ≃ 0.39. Also Σ|mi| ≃ 0.21 eV (QDNH case) and

Σ|mi| ≃ 0.23 eV (QDIH case).

We study a quantity
√

∆m2
21/

√

∆m2
31, which according to the global data analysis

lies near to 0.2. The correlation plots in the plane
√

∆m2
21/

√

∆m2
31 and sin2 θ12
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QD NH-IA NH-IB NH-IC IH-IA IH-IB IH-IC

α (TBM) 1.626 0.0068 0.0068 1.9946 0.0054 0.0054

α 1.5929 0.0071 0.0071 1.9946 0.0054 0.0054

η (TBM) 0.4083 0.4083 0.4083 0.4083 0.4083 0.4083

η 0.40 0.40 0.40 0.3987 0.3987 0.3987

m0 eV 0.082 0.082 0.082 0.084 0.084 0.084

m1 eV (TBM) 0.06638 0.06639 0.06639 0.08355 0.08355 0.08355

m2 eV (TBM) - 0.06695 0.06695 0.06695 -0.084 0.084 0.084

m3 eV (TBM) 0.082 0.082 -0.082 0.06859 0.06859 -0.06859

m1 eV 0.06502 0.06502 0.06502 0.08355 0.08355 0.08355

m2 eV -0.0656 0.0656 0.0656 -0.084 0.084 0.084

m3 eV 0.082 0.082 -0.082 0.0672 0.0672 -0.0672

∆m2

21
(10−5eV 2) (TBM) 7.645 7.435 7.435 7.60 7.60 7.60

∆m2

31
(10−3eV 2) (TBM) 2.318 2.316 2.316 -2.352 -2.28 -2.28

∆m2

21
(10−5eV 2) 7.605 7.605 7.605 7.60 7.60 7.60

∆m2

21
(10−3eV 2) 2.497 2.497 2.497 -2.464 -2.464 -2.464

Σmi eV (TBM) 0.2153 0.2154 0.2154 0.23613 0.23613 0.23613

Σmi eV 0.21262 0.21262 0.21262 0.23475 0.23475 0.23475

sin2 θ12 0.319 0.319 0.319 0.3195 0.3195 0.3195

sin2 θ13 0.0252 0.0252 0.0252 0.0252 0.0252 0.0252

sin2 θ23 0.3943 0.3943 0.3943 0.3943 0.3943 0.3943
mνe

eV 0.06582 0.06582 0.06582 0.0835 0.0835 0.0835
mee eV 0.02452 0.06590 0.06174 0.03063 0.083625 0.08021

Table 2.6: The study of the six cases of Quasi degenerate neutrino mass model for
both TBM mixing and deviation from TBM mixing. The analysis is done with the
parameters (α, η, λ) and input m0. m0 is fixed at 0.082 eV (QDNH) and 0.084 eV
(QDIH) respectively. The free parameter α is related with absolute masses. The free
parameter η controls both masses and the solar angle. λ = 0.2253, the Wolfenstein
parameter is related with deviation of reactor angle from zero and that for atmospheric

from maximal condition.
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Figure 2.5: The correlation plots in the plane of
√

∆m2

21
/∆m2

31
and sin2 θsol for

different cases of QDNH-IA (top-left), QDNH-IB,IC (bottom-left), QDIH-IA (top-right)
and QDIH-IB,IC (bottom-right). The bounds on

√

∆m2

21
/∆m2

31
are found to be sharp

for QDIH cases. The experimental value of this quantity must lie close to 0.2. For
QDNH-IA case, we obtain a bound on sin2 θsol around a value of 0.32.

for all QDN models are shown in Fig (2.4). We see for QDNH-Type IA case, there

exists a sharp bound on sin2 θ12 around 0.32 which is the experimental best-fit of

sin2 θ12 according to Global data analysis [132].

2.8.2 Absolute electron neutrino mass (mνe) and Effective

Majorana neutrino mass (mee)

Besides the oscillation experiments and the cosmological bound on Σ|mi|, There
are other two important quantities : effective electron neutrino mass, mνe appear-

ing in β-decay and effective Majorana mass mee, appearing in neutrino-less double

β-decay experiment and are useful for the study of nature of the neutrino masses.

mνe = (Σm2
i |Uei|2)1/2, (2.55)

mee = |m1|Ue1|2 +m2|Ue2|2 +m3|Ue3|2|. (2.56)

The results of Mainz [46] and Toitsk[150] Tritium β-decay experiments,we obtain,

mνe < 2.2 eV . The upcoming KATRIN experiment [151], expects the sensitivity
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Figure 2.6: A study of the correlation in the plane of mνe
and Σmi. Left: QDNH

case, Right: QDIH case.

upto mνe ∼ 0.3 eV . In the present work, the QDNH and QDIH models predict,

mνe ∼ 0.07 eV and mνe ∼ 0.08 eV respectively.

The HM group [152–154] and IGEX [50, 155, 156] groups reported the upper limit

of mee to 0.3 − 1.3 eV . The CUORICINO[157] experiment gives an improved

upper bound on mee, mee < 0.23 − 0.85 eV . This is still considered somewhat

controversial[50, 158], and requires independent confirmation. The experiments

such as CUORE [159, 160], GERDA[161], NEMO[162–164] and Majorana[165, 166]

will attempt to improve the sensitivity of the measurement down to about mee ≃
(0.05 − 0.09) eV . Hence in that respect the QDN models are of immense impor-

tance. In our present work, QDNH and QDIH-both Type IB and Type IC models

predict mee ≃ 0.06 eV and mee ≃ 0.08 eV respectively. The predictions given by

Type IA cases of both QDNH and QDIH models are interesting in the sense that

they leave a scope for the future experiments to go down upto a sensitivity of

mee ≃ 0.02 eV and mee ≃ 0.03 eV respectively. The correlation plots are studied

in the plane mνe ( and mee ) and Σ|mi| ( Fig (2.6) and Fig (2.7)).

2.9 Discussion: How to discriminate different

QDN models?

We have tried to bring all the eleven cases involving six QDN, three NH and two IH

cases under same roof of parametrization by introducing four common independent

building block matrices, Ii=0,1,2,3. The idea of fragmentation is guided by the quest

of some mechanism to save the internal texture of Mµτ against the changing solar
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Figure 2.7: A study of the correlation in the plane of mee and Σmi. Top-left:
QDNH-Type IA case; top-right: QDNH-Type IB, IC cases; bottom-left: QDIH-Type

IA case; bottom-right: QDIH-Type IB, IC cases.

angle. The Iis when incorporated with the free parameters in a proper way, lead

to an important feature of Mµτ , sin θ12 =
√
2η. θ12 is expressible in terms single

parameter only, unlike the general Mµτ = Mµτ (x, y, z, w) where θ12 requires the

knowledge of four free parameters (x, y, z, w) (see Eq.(2.8)). This is also interesting

to note that one of the building blocks, I3 has got the same eigenstates as predicted

by BM mixing (see Table.(2.1)). The existence of this invariant textures within

the mass matrix seems to be relevant and we hope that a fruitful investigation is

subjected to the study of underlying discrete flavour symmetry groups.

Charged lepton correction is considered as a significant tool in order to break the

µ − τ symmetry [16, 117–122]. The models where θν13 is very small, contribu-

tions to θ13 is implemented mostly from charged lepton sector. Also, this tool

is very important for those models where θ23 = π/4 and it may provide consis-

tency with the LMA MSW solutions [44]. In GUT scenarios also, one finds in

addition to the breaking of µ− τ symmetry in the neutrino sector, charged lepton

corrections are unavoidable [167, 168]. Regarding the parametrization of UeL, we

have followed a parametrization scheme different from that of standard one. This

step is motivated by the fact that a particular choice of parametrization does not
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affect the final observables, but a suitable choice can make the mathematics eas-

ier. The parametrization of UeL respects the GUT motivated, new QLC relation,

θ13 ∼ θc/
√
2 [91]. In our parametrization UeL does not affect the prediction of θ12

from neutrino sector.

Our work started with the following motivations. They are,

(1) Whether QDN neutrino mass models are equally possible like that of NH and

IH models?

(2) How to discriminate the QDN models?

In the background of the oscillation experiments, we have tried to answer to the

first question by testing the efficiency of each mν
LL(α, η, λ) in predicting the val-

ues of five observational parameters and comparing those with Global data. In

that context we find the existence of QDN neutrinos of both NH and IH pattern

is undisputed. Above all, all the six QDN models sound equally possible (see

Table.(2.6)). Hence only the oscillation experiments are not sufficient enough to

answer to the second question. But here we want to mention that QDNH-Type A

model shows a strong preference for sin2 θ12 = 0.32, which is the best-fit result ac-

cording to Global analysis done by Forero et.al [132], evident from the correlation

plot in Fig(2.5).

We have tried to find out the answer of the second question in the framework

of β-decay and 0νββ-decay experiments. But all the six QDN models predict

the quantities mνe and mee, below the upper bounds of the past experiments and

interestingly they are much closer to the sensitivities expected to be achieved in

the future experiments. In our analysis QDNH-Type−A model leaves a scope for

future experiments to go down upto mee ∼ 0.02 eV .

In section (2.4), it has been shown that QDN nature of neutrinos permits the

mass scale, 0.05 ≤ m0 ≤ 0.1 eV . But, concerning a fair degree of degeneracy, the

range is modified to, 0.07 ≤ m0 ≤ 0.1 eV . The ansatz regarding the correlation,

β : η ≃ 2 plays an important role in the transition from Mµτ (α, β, η) → Mµτ (α, η).

This ansatz holds good for the mass scale m0 ∼ 0.07− 0.09 eV , over the 3σ range

of β and η. If there are three free parameters (α, β, η) present in mν
LL, degrees of

arbitrariness is also quite higher. Although this ansatz restricts the arbitrariness

of θ12 to some extent, yet only two free parameters α and η (with λ = 0.2253 and

input m0 fixed at 0.08 eV ) are sufficient to predict five observational parameters
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(related with oscillation experiments), in close agreement with that of experimental

1σ range of data. The parametrization respects both TBM and small TBM-

deviated cases. In this context the anstaz β = 2η, appears to be relevant and

natural .

We hope that perhaps the cosmological upper bound on Σmi have some rele-

vance with the discrimination of the six models. So long we adhere to Σmi <

0.28 eV [110], both QDNH and QDIH models are safe which predict, Σmi = 0.212

and Σmi = 0.235 respectively for input mass scale m0 ∼ 0.08 eV . But the recent

analysis supports for a tighter upper bound, Σmi < 0.23 eV [52]. If so, the QDIH

model seems to be insecure in our analysis. If we believe the ansatz, β : η = 2 to

be natural, then with lowering the mass scale from 0.08 eV , and controlling α and

η, we can achieve Σmi < 0.23 eV for QDIH case, and also this will favor the TBM

deviated condition. But at the same time, it will give rise to a serious problem that

QDIH model with m0 < 0.08 eV will completely discard θ = sin−1(1/
√
3) (TBM),

because corresponding to that angle, ∆m2
31 will be outside the 3σ range. But the

solar angle θ = sin−1(1/
√
3), is still relevant within 1σ[132]or 2σ[133] range. So

on this basis can we discard QDIH model? But we hope it will be too hurry to

come to any conclusion. There is a possibility that by assuming β : η = c, where

c 6= 2 but c ∼ 2 (which is allowed indeed), and then lowering of m0, may solve

this problem and can make QDIH models safe.

The discussion so far tells that on phenomenological ground, there is no dispute on

the existence of quasi-degenerate neutrinos with mi < 0.1eV , in nature. But the

question whether it is of NH type or IH type, is still not clear. In this regard, we

expect that possible answer may emerge from the observed Baryon asymmetry of

the universe (ηB = 6.5+0.4
−0.5 × 10−10) [103–105, 127]. The calculation of ηB requires

the texture of heavy right handed Majorana neutrino mass matrix, MRR. With a

suitable choice of Dirac neutrino mass matrix, mLR allowed by SO(10) GUT, we

can transit from mν
LL (parametrized so far) to MRR by employing the inversion of

Type I see-saw formula,MRR = −mT
LRm

ν−1

LL mLR. We hope that significant physical

insight can be fetched from this approach and it would be possible to figure out

the most favorable QDN models out of the six. Unlike, in Refs. [103, 104], the

parametrization of mass matrices involves only two free parameters (α, η) and no

other input constant terms which are also different for TBM and TBM deviated

scenarios. The prediction of θ12 involves (η, ǫ, c, d), whereas in our parametrization

it depends on η only. With minimum number of parameters, we have achieved
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a better control over mass matrices. In contrast to Refs. [103, 104], with our

parametrization of mν
LL, certain analytical structure of UνL is also possible. We

hope, this parametrization will be useful for other phenomenological studies also.
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The mixing angle as a function of

neutrino mass ratio

In the quark sector, we experience a correlation between the mixing angles and

the mass ratios. A partial realization of the similar tie-up in the neutrino sector

helps to constrain the parametrization of masses and mixing, and hints for a pre-

dictive framework. We derive five hierarchy dependent textures of neutrino mass

matrix with minimum number of parameters (≤ 4), following a model-independent

strategy.

3.1 Introduction

The neutrino mass matrix plays the central role in the study of neutrino physics, as

it contains the information of both the masses and mixing. In that sense, it is more

fundamental than the PMNS matrix. It is always desirable to derive a texture of

the mass matrix which leads to significant prediction. If the neutrino mass matrix,

Mν follows µ-τ symmetry [112, 142, 169–175] , we obtain two constraints on the

matrix elements; they are: (Mν)12 = (Mν)13 and (Mν)22 = (Mν)33. These two

constraints generate : θ13 = 0 and θ23 = 450. But the µ-τ symmetric texture does

not tell anything about the neutrino mass hierarchy and solar angle. The texture

becomes predictive only when it is associated with certain flavor symmetries [59–

61, 63–66, 69, 176]. On the contrary, the present experimental data strongly rule

out any possibility of a vanishing reactor angle [128–130] and the central value

62
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of θ23 is more than 450 (and is close to 490) [1]. These deviations undoubtedly

questions the credibility of µ-τ symmetry.

Visualization of a more realistic neutrino mixing pattern and mass matrix, de-

mands perturbation to the µ-τ symmetry [177–179]. In the present article we em-

phasize more on the possibility to perceive an exact texture of Mν which is model

independent, with minimum number of efficient elements, than following perturba-

tion techniques. Our approach is bottom-up and inspired by the phenomenology

of quark sector.

3.2 The angle and the mass ratio

The Cabibbo angle (θc) [149, 180] is a parameter which plays a significant role in

describing the quark masses and mixing. It is anticipated that this angle might

be a function of the ratio of down and strange quark masses [181],

sin θc ≃
√

md

ms

. (3.1)

It is an esteemed endeavor of particle physicists to unify the quark and lepton

sectors, or to realize similar kind of happenings in both the sectors otherwise.

Based on this, is it possible to extend a similar idea in the form of an ansatz in

the neutrino sector also, as in the following,

√

mi

mj

= sin θij. (i, j = 1, 2, 3) ? (3.2)

Undoubtedly there are several hurdles which will arise both from the theoretical

and phenomenological perspectives. The reason lies in the difference between the

mixing mechanism in both the sectors. The CKM matrix is very close to unit

matrix and the spectra of “up” and “down” quarks are strongly hierarchical. But,

for neutrinos we are ignorant of the exact hierarchy of the masses. Unlike the

quarks, the mixing is quite large in lepton sector and the PMNS matrix is far from

being an unit matrix.

So long the reactor angle was predicted to be vanishing, such development in

Eq.(3.2) seems obsolete. But, in the light of present data, when, θ13 ∼ θc, one
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Figure 3.1: The evolution of the neutrino mass ratios with respect to the absolute
mass scale for both normal (left)and inverted ordering (right) of the neutrino masses

(Corresponding to 3σ range of ∆m2

21
and ∆m2

31
) are illustrated.

cannot deny the possible existence of the following relation,

√

m1

m3

≃ sin θ13 = ǫ, (say), (3.3)

in the non-degenerate spectrum of neutrino masses, obeying normal ordering (see

Fig.(3.1)). We emphasize that the realization of the ansatz in Eq. (3.2) is not “full”,

but “partial”. Because, it seems impossible to realize all the three possibilities (See

in Eq. (3.2)) simultaneously. For example, if we realize Eq. (3.3), then another

possibility,

√

m2

m3

≃ sin θ23 = η; (3.4)

is ruled out and vice-versa (See Fig. (3.1)). Again, a similar realization in 1-2

sector is forbidden because of the smallness of the solar mass squared difference,

which insists the mass ratio, m1 : m2 to be constant, and this ratio tends towards

unity.

Because of similar reasons, for inverted ordering of the neutrino masses, only the

2-3 realization,

√

m3

m2

≃ sin θ23 = η; (3.5)

is possible.

Now even though there are several clampdowns, a partial realization of the ansatz

(Eq. (3.2)) clutches certain positive aspects like it puts some constraints on the
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parametrization of neutrino masses and mixing. Let us discuss some implications

of the ansatz in Eq. (3.2).

• It categorizes the parametrization in both ways: “ǫ-based” or “η-based”.

• The “ǫ-based” parametrization only encompasses the Normal ordering of the

masses with non-degenerate spectrum (NH-ND), with absolute mass scale,

0.047 eV ≤ m3 ≤ 0.05 eV . This parametrization rules out any possibility of

vanishingm1 (Strict-NH case). Since the reactor angle is not zero as depicted

in Eq. (3.3).

• “η-based” parametrization encompasses both the Normal ordering and in-

verted ordering of neutrino masses with degenerate spectrum (NH-QD and

IH-QD) only, with absolute mass scale, 0.05 eV ≤ m3(m2 ) ≤ 0.067 eV .

• The present ansatz (Eq. (3.2)), rules out the possibility of non-degenerate

inverted spectrum of neutrino masses.

• In the degenerate limit, the ansatz sets the upper limit on the sum of the

neutrino masses, Σmi ≤ 0.17 eV . This prediction is relevant in the light of

present Cosmological observation.

3.3 The Parametrization

We can see that although the ansatz, (Eq. (3.2)) cannot solve the hierarchy issue,

yet it can put some constraints on the mass spectrum. This are subjected to the

sensitivities of the future experiments. The ǫ and η based mass spectrum can be

represented in the following way,

Md
ν (ǫ, s) =









sǫ2 0 0

0 sǫ 0

0 0 1









m3, (NH-ND) (3.6)

Md
ν (η, c) =









cη2 0 0

0 η2 0

0 0 1









m3, (NH-QD) (3.7)
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Md
ν (η, c) =









c 0 0

0 1 0

0 0 η2









m2, (IH-QD) (3.8)

where, s and c are O(1) coefficients: ǫ < s < ǫ−1, η < c < η−1. The positivity of

∆m2
21 enforces, c < 1.

We are working in a basis, where the charged lepton mass matrix is diagonal. We

represent the PMNS matrix, U(ǫ) which is “ǫ” motivated as in the following,

U(ǫ, d, f) ≈









1− 1

2
f 2ǫ2 − ǫ2

2
fǫ ǫ

−fǫ− dǫ2 1− 1

2
f 2ǫ2 − d2ǫ2

2
dǫ

−ǫ+ cdǫ2 −dǫ− fǫ2 1− 1

2
d2ǫ2 − ǫ2

2









, (PMNS-I)(3.9)

Where, d and f are O(1) coefficients. We put forward another possible form of

PMNS matrix, which is motivated by η-based parametrization, U(η),

U(η, b, c) ≈











√

2

3
c′ c√

3
bγ

− cκ√
3
−

√

2

3
bγηc′

√

2

3
κc′ − bcγη√

3
η

cη√
3
−

√

2

3
bγκc′ − bcγκ√

3
−

√

2

3
ηc′ κ











(PMNS-II) (3.10)

where, γ(η) = η8, κ(η) = cos sin−1(η) and c′ = (3 − c2)
1

2/2. Let us summarize

some important features of the above two non-familiar parametrization of PMNS

matrix.

• This is to be highlighted that in either of the two possibilities PMNS-I

or PMNS II, a vanishing reactor angle is not possible. If this is so, the

mass eigenvalues will also disappear. Hence, the present parametrization

cannot hold the Tri-Bimaximal (TB) and Bi-maximal (BM) framework in

exact form, which assumes predominantly the reactor angle to be zero.

• ThePMNS-II allows only the possibilities, θ23 > 450 and θ12 . sin−1(1/
√
3).

• The free parameter, ǫ ∼ O(λ) and η ∼ 4λ, where λ is the Wolfenstein

parameter.
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A ≈ −f2sǫ4 + f2sǫ3 − sǫ4 + sǫ2 + ǫ2

B ≈ − 1

2
d2fsǫ4 − dsǫ4 − dǫ4

2
+ dǫ2 − 1

2
f3sǫ4 − 1

2
fsǫ4 − fsǫ3 + fsǫ2

C ≈ −d2ǫ3

2
+ dfsǫ4 − dfsǫ3 − f2sǫ4 − sǫ3 − ǫ3

2
+ ǫ

D ≈ −d2sǫ3 − d2ǫ4 + d2ǫ2 − 2dfsǫ4 + f2sǫ4 − f2sǫ3 + sǫ

E ≈ 1

2
d3sǫ4 − d3ǫ3

2
+ df2sǫ4 − dsǫ2 − dǫ3 + dǫ+ fsǫ4 − fsǫ3

F ≈ d2sǫ3 + d2ǫ4 − d2ǫ2 + 2dfsǫ4 + sǫ4 + ǫ4

4
− ǫ2 + 1

Table 3.1: The elements of the general neutrino mass matrix (Normal
Hierarchy-non-degenerate (NH-ND) case)

3.4 The Texture of the Neutrino mass matrix

Next, we try to understand how the ansatz in Eq. (3.2) will help to understand

the texture of neutrino mass matrix? The ansatz reduces the number of free

parameters, and the number of working parameters are less than that of physical

ones. Hence we expect that the mass matrix is little predictive. To construct the

same, we concentrate on the finding out some exact sum rules to relate different

matrix elements.

Here, we construct the neutrino mass matrix, Mν = U .Mν
d.UT . For a lucid flow

of the present discussion we keep aside the numerical description of the internal

parameters like ǫ, η etc. The details of the same can be found in the Table.(3.4).

We have the general texture of left-handed Majorana neutrino mass matrix, as

shown below.

Mν ∼









A B C
B D E
C E F









. (3.11)

If, the parametrization is ǫ-based, we have Mν = Mν(ǫ, d, f, s) and Mν =

Mν(η, b, c), if it is η-based. We start with the NH-ND case, parametrization

of which is ǫ based. The matrix elements are tabulated in Table. (3.1).
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Choosing the working parameters, (ǫ, d, f , s) properly, we derive the following

exact relations connecting the matrix elements.

Sum rule 1: 2(A+ C)− (E − B) = 0, (3.12)

Sum rule 2: D − (A+ F) = 0, (3.13)

Sum rule 3: 2A− (B + C) = 0, (3.14)

Sum rule 4: 2A− (D − E) = 0, (3.15)

These sum-rules promote a framework with,

θ13 ≈ 8.730, θ23 ≈ 48.960, θ12 ≈ 32.510. (3.16)

Except the solar angle which is consistent with 2σ range (by sacrificing one of the

sum rules, the solar angle can be made precise.), the rest lies within 1σ range.

The above sum rules lead to the following texture,

Mν =









A 2A− C C
2A− C 6A+ C 4 A+ C
C 4A+ C 5A+ C









m3, (Texture-I) (3.17)

where, A > C. It is interesting to note that the Texture-I is nothing but com-

bination of a pattern akin to the modified Fritzsch-like texture of quark mass

matrices [182, 183],









0 2A 0

2A 6A 4A
0 4A 5A









, (3.18)

and, a µ-τ symmetric texture as shown below,









A −C C
−C C C
C C C









. (3.19)

Next, we turn towards another possibility, i.e., the NHQD scenario which is

motivated by η-based parametrization. The matrix elements of the concerned

neutrino mass matrix are illustrated in Table.(3.2).
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A ≈ b2γ2 + c2η2

3
+ 2

3
cη2c′2

B ≈ − 1

3
η{bγ

(

c2η2 − 3
)

+ 2bcγη2c′2 +
√
2(c− 1)cηκc′}

C ≈ 1

3
{bγκ

(

3− c2η2
)

− 2bcγη2κc′2 +
√
2(c− 1)cη3c′}

D ≈ 1

9
η2{c

(√
6bγηc′ +

√
3cκ

)2

+ 3
(

bcγη −
√
2κc′

)2

+ 9}
E ≈ − 1

3
η{−2η2κ (c′)2

(

b2cγ2 − 1
)

+ κ
(

−b2γ2c2η2 + c3η2 − 3
)

+
√
2b(c− 1)cγηc′

(

η2 − κ2
)

}
F ≈ 1

9
η2

(√
3bcγκ+

√
6ηc′

)2

+ 1

9
cη2

(√
3cη −

√
6bγκc′

)2

+ κ2

Table 3.2: The elements of the general neutrino mass matrix (NH-QD case)

As before, we encounter the following exact sum rules,

Sum rule 1: D −F − B = 0, (3.20)

Sum rule 2: 4 E − D = 0, (3.21)

Sum rule 3: 3 C − 2(D −F) = 0, (3.22)

which prescribe the following texture of the neutrino mass matrix guided by three

parameters,

Mν =









A B 2

3
B

B 4E E
2

3
B E 4E − B









m3, (Texture-II) (3.23)

with, 4 E > A > E > B. The above neutrino mass matrix is consistent with the

prediction,

θ12 ≈ 34.080, θ23 ≈ 49.660, θ13 ≈ 100. (3.24)

We see that the above framework predicts a reactor angle, lying slightly above the

experimental observation. Here also, we experience a µ-τ symmetric texture with

a perturbation matrix,









A B B
B 4E E
B E 4E









+









0 0 1

3
B

0 0 0
1

3
B 0 −B









. (3.25)
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Figure 3.2: The illustration of the Sum rules, in the plane b-η for the mass matrices
corresponding to Texture-II (left) and Texture-V (right).

A precise value θ13 ≈ 9.30, consistent within 1σ bound is obtainable at the cost of

sacrificing the Sum rule 2 in Eq. (3.21) (See Fig.(3.2)). The other angles remain

untouched. And, the corresponding texture of the neutrino mass matrix appears

as in the following,

Mν =









A B 2

3
B

B D E
2

3
B E D − B









m3, (Texture-III) (3.26)

with D > A > E > B. The discussion related to the hidden µ-τ symmetric texture

is similar to that for Texture-II. Similarly for the case of Inverted hierarchy

(IH-QD), the matrix elements are shown in Table.(3.3). The realization of the

following sum rules:

Sum rule 1: B − C = 0, (3.27)

Sum rule 2: A+ E − D + B = 0, (3.28)

promote the neutrino mass matrix, Mν , to assume the following texture,

Mν =









A B B
B D D −A− B
B D −A− B F









m2, (Texture-IV). (3.29)

with A > F > D > |B|.



Chapter 3 71

A ≈ b2γ2η2 + c2

3
+ 2

3
cc′2

B ≈ − 1

3
bc2γη − 2

3
bcγηc′2 + bγη3 + 1

3

√
2cκc′ − 1

3

√
2c2κc′

C ≈ − 1

3
bγc2κ− 2

3
bγcκc′2 + bγη2κ− 1

3

√
2cηc′ + 1

3

√
2c2ηc′

D ≈ 1

3
b2c2γ2η2 + 2

3
b2cγ2η2c′2 − 2

3

√
2bcγηκc′ + 1

3

√
22bc2γηκc′ + c3κ2

3
+ 2

3
κ2c′2 + η4

E ≈ 1

3
b2γ2c2ηκ+ 2

3
b2γ2cηκc′2 + 1

3

√
2bγcη2c′ − 1

3

√
2bγcκ2c′ − 1

3

√
2bγc2η2c′ + 1

3

√
2bγc2κ2c′

− 1

3
c3ηκ− 2

3
ηκc′2 + η3κ

F ≈ 1

3
b2γ2c2κ2 + 2

3
b2γ2cκ2c′2 + 1

3

√
22bγcηκc′ − 2

3

√
2bγc2ηκc′ + c3η2

3
+ 2

3
η2c′2 + η2κ2

Table 3.3: The elements of the general neutrino mass matrix (IH-QD case)

The above sum rules, restricts the reactor angle at,

θ13 ≈ 7.10, (3.30)

Which is little lower than what we observe experimentally.The other predictions

are,

θ12 ≈ 34.840, θ23 ≈ 50.760. (3.31)

which are consistent within 1σ. By changing the Sum rules a little, (See Fig.(3.2))

as in the following,

Sum rule 1: B − C = 0, (3.32)

Sum rule 2: A− B − F + E = 0. (3.33)

We can set the reactor angle within the 1σ bound (θ13 ≈ 8.50). The corresponding

neutrino mass matrix appears as in the following,

Mν =









A B B
B D F −A+ B
B F −A+ B F









m2, (Texture-V) (3.34)

Where, A > F > D > |B|.
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Parameters Prediction Texture

NH-ND

ǫ = 0.151859,
f = 3.53882,
d = 4.96783,
s = 1.21652 ,
m3 = 0.0483055 eV .

m1 = 0.00135518 eV ,
m2 = 0.00892393 eV ,
∆m2

21 = 7.78× 10−5 eV 2,
∆m2

31 = 2.33× 10−3 eV 2,
sin2 θ12 = 0.289,
sin2 θ23 = 0.569,
sin2 θ13 = 0.0233,
Σmi = 0.0585846 eV .





A 2A− C C
2A− C 6A+ C 4 A+ C
C 4A+ C 5A+ C





A = 0.0946855, C = 0.038355.

NH-QD

η = 0.762386 ,
b = 1.56568,
c = 0.96663,
m3 = 0.0588 eV .

η = 0.756875,
b = 1.4945,
c = 0.96663,
m3 = 0.0588 eV .

m1 = 0.0330417 eV ,
m2 = 0.0341791 eV ,
∆m2

21 = 7.65× 10−5 eV 2,
∆m2

31 = 2.37× 10−3 eV 2,
sin2 θ12 = 0.315,
sin2 θ23 = 0.581,
sin2 θ13 = 0.0319,
Σmi = 0.126036 eV .

m1 = 0.0325638 eV ,
m2 = 0.0336859 eV ,
∆m2

21 = 7.43× 10−5 eV 2,
∆m2

31 = 2.40× 10−3 eV 2,
sin2 θ12 = 0.314,
sin2 θ23 = 0.573,
sin2 θ13 = 0.0259,
Σmi = 0.12506 eV .





A B 2

3
B

B 4E E
2

3
B E 4E − B





A = 0.581819, B = 0.0636482,

E = 0.203162.





A B 2

3
B

B D E
2

3
B E D − B





A = 0.571196, B = 0.058653,

D = 0.80716, E = 0.208885.

IH-QD

η = 0.774459,
b = 0.950921,
c = 0.989598,
m2 = 0.0612 eV .

η = 0.761187,
b = 1.31518,
c = 0.989553,
m3 = 0.06047 eV .

m1 = 0.0605614 eV ,
m3 = 0.0367071 eV ,
∆m2

21 = 7.75× 10−5 eV 2,
∆m2

31 = 2.32× 10−3 eV 2,
sin2 θ12 = 0.3264,
sin2 θ23 = 0.599,
sin2 θ13 = 0.0151,
Σmi = 0.158464 eV .

m1 = 0.0598426 eV ,
m3 = 0.0350405 eV ,
∆m2

21 = 7.57× 10−5 eV 2,
∆m2

31 = 2.35× 10−3 eV 2,
sin2 θ12 = 0.3264,
sin2 θ23 = 0.579,
sin2 θ13 = 0.0219,
Σmi = 0.155355 eV .





A B B
B D D −A− B
B D −A− B F





A = 0.987095, B = −0.0341297

D = 0.761603, F = 0.840778.





A B B
B D F −A+ B
B F −A+ B F





A = 0.983997, B = −0.0430051

D = 0.759459, F = 0.825692,

Table 3.4: The summary of parametrization and the neutrino mass matrix texture
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3.5 Discussion

In the above discussion, for all the five textures, the parameters are chosen in such

a way that the two observational mass parameters can lie always within the 1σ

boundary of experimental data. Also, it is seen that the number of independent

matrix elements is 2, 3 or 4. Needless to say, that textures we have displayed

are hierarchy dependent and exact. Also, one interesting fact that we see is the

existence of a µ-τ symmetric or partially broken µ-τ symmetric textures is un-

avoidable in the above patterns. But this does not allow us to take the initial

choice of Mν to be µ-τ symmetric. Since, both ǫ-based or η-based parametrization

are reluctant to a assume a vanishing θ13 (which is one of the important traces of

the µ-τ symmetry), certainly, we have to look into some other possibilities.

Trying to understand the underlying flavor symmetry groups or to unveil the first

principle working behind the above textures will be a fascinating exercise for the

model builders. We hope that Refs. [184–187], can provide some important clue

in this line. In order to keep the discussion simple, all the parameters are treated

as real. However, we have stressed on different phenomenological facets when it is

possible to express at least one of the mixing angles in terms of the mass ratio.
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Realistic lepton mixing matrices

deviated from Tri-Bimaximal

condition

A model independent endeavor is attempted to amend the existing Tri-bimaximal

(TBM) mixing scheme in terms of the Wolfestein parameters, λ and A, which

finally leads seven different possible TBM-deviated scenarios. The present inves-

tigation embraces the possibilities both θ23 ≤ 450 and θ23 ≥ 450 in addition to a

non-zero θ13 and Dirac-type CP violating phase. We emphasize on the modifica-

tion to Tri-Bimaximal Cabibbo (TBC) mixing and the utility of µ-τ symmetry in

shifting θ12 a little from sin−1(1/
√
3).

4.1 Introduction

The Tribimaximal mixing (TBM) is a popular neutrino mixing framework, im-

portant both from phenomenological as well as from theoretical point of view

[59–61, 63–69, 79, 176]. It predicts distinctly the solar angle, θ12 = sin−1(1/
√
3) ≈

35.260, consistent within the 1σ error [1]. The present best-fit is slightly lower

than the predicted one, θ12 ≈ 34.630. But, one of the predictions of TBM model,

i.e., reactor angle, θ13 = 0, at the same time, is strictly ruled out by the present

conspicuous observation : θ13 ≈ 90 ∼ O(θc) [128–130]. This interesting observa-

tion on the other hand enhances the possibilities to bridge the quark and lepton

74
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sectors, both from top down and bottom up perspectives. But at the same time,

the TBM mixing becomes apparently irresolute. Clasping the flavor of TBM mix-

ing, a new idea of mixing called Tri-bimaximal Cabibbo mixing (TBC) [85] is put

forward, which differs from the former in anticipating the reactor angle. According

to the latter, θ13 is rather θc/
√
2 [91], than zero. Both the mixing schemes agree

to maximal atmospheric mixing, θ23 = 450 (consistent within 1σ error). In the

present scenario, next to the reactor one, the prediction of atmospheric angle θ23

is very interesting. Upto last year, there was stronger indication for θ23 < 450.

But present results [1] indicate, θ23 ≈ 490. But still the possibility of θ23 ≈ 430 is

not excluded.

We require:

θ13 ≈ θTBM
13

+O(θc). (4.1)

This relation indicates the approximate equivalence between 1-2 and 1-3 mixing

in quark and neutrino sectors respectively. But we want to highlight the following

possible relations,

θ12 ≈ θTBM
12

−O(θ̃), (4.2)

θ23 ≈ θTBM
23

±O(θ̃). (4.3)

where θ̃ = θCKM
23

≈ Aλ2.

Whether these observations are just accidental or they carry the signature of some

underlying theory is subjected to investigation. But the appearance of the two

CKM parameters [149] as a source of correction to the TBM model is interesting.

If we believe in the flavor basis where, UPMNS = UTB, then it appears that the

TB mixing is least credible. But a proper choice of the symmetry basis, UPMNS =

U †l .UTB, (where, Ul is the charged lepton diagonalizing matrix) leaves enough scope

to generate the corrections to original TB platform. In fact, on choosing a CKM-

like Ul, Ul ≈ Rl
12
(θl

12
= θc), one can induce: θ13 = θc/

√
2. Again, another choice

of CKM-like Ul, Ul = Rl
23
(θl

23
= θ̃), leads to,

θ23 =
π

4
− Aλ2. (4.4)
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We posit another possibility, Ul = Rl−1

23
(θl

23
= θ̃) which leads to an important

result,

θ23 =
π

4
+ Aλ2. (4.5)

At the same time, we highlight a rare but efficient possibility [188] that the cor-

rections may even arise from neutrino sector itself, UPMNS = U †l .UTB.W , where

W is the correction matrix in the neutrino sector[189].

4.2 Controlling θ12 from neutrino sector

Next question is how to generate the observed deviation (though small) in solar

angle? We follow the strategy as shown below. If neutrinos mix in the TBM way,

then the concerned neutrino mass matrix follows a particular symmetry called µ-

τ symmetry [59–61, 63–69, 79, 142, 176]. An idiosyncratic characteristic of this

symmetry is that it keeps θ12 free, θ13 = 0 and θ23 = 450. In fact, TBM mixing

is a special case associated with µ-τ symmetry. We want to emphasize on this

salient feature of µ-τ symmetry that allows a small deviation of θ12 from TBM

prediction, leaving the other predictions unhindered. This unique trait most often

illuminates several strategies from model independent perspectives[103, 104, 115,

116, 127, 190, 191].

In Ref.[191], following a model independent scheme, it is shown that a general

µ-τ symmetric matrix can be expressed in terms of four invariant building block

matrices 1 : Mµτ = a I0 + b I1 + c I2 + d I3, where,

I0 =
1

2









0 0 0

0 1 1

0 1 1









, I1 =
1

2









2 0 0

0 1 −1
0 −1 1









, (4.6)

I1 =
1

2









−2 0 0

0 1 −1
0 −1 1









, I2 =









0 −1 1

−1 0 0

1 0 0









. (4.7)

1These building blocks are termed invariant, in the sense, whenever we consider other mixing
patterns consistent with µ-τ symmetry (for both normal as well as inverted ordering), only the
coefficients a, b, c and d are to be changed. For example, a choice, a = 1, b = β − α/2, c = 0
and d = −α/(2

√
2) leads to a µ-τ symmetric mass matrix consistent with Bi-maximal mixing.
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On choosing a = 1, b = β − α/2, c = α/6 and d = −α/3, we obtain the neutrino

mass matrix for normal ordering of the masses, m1 : m2 : m3 = β − α : α : 1,:

MTBM = I0 + (β − α/2)I1 + α/6I2 − α/3I3, which can be reduced further to the

strict normal ordering case on choosing β = α,

MTBM = I0 +
α

2
I1 +

α

6
I2 −

α

3
I3, (4.8)

A choice of α = Aλ ( Where, A = 0.790, λ = 0.2252) and absolute mass scale of

0.0495 eV gives, ∆m2

sol ≈ 7.75×10−5 eV 2 and ∆m2

atm ≈ 2.45×10−3 eV 2. Needless

to say that the diagonalizing matrix of MTBM in eq. (4.8), upto the Majorana

phases is,

UTB =









√

2

3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6

− 1√
3

1√
2









. (4.9)

We note that a µ-τ preserving perturbation of the following kind,

Ms =
ǫα

3

(

I2 +
1

4
I3

)

, (4.10)

to MTBM , in eq. (4.8), induces a least change of O(ǫ2) to the mass eigenvalues

[192], whereas affects the mass eigenstates |ν1〉 and |ν2〉, by an amount O(ǫ). The

state |ν3〉 is kept intact. In view of the mass eigenvalues, the new perturbation

parameter ǫ is expected to be small. The diagonalizing matrix of the new µ-τ

symmetric mass matrix, MTBM +Ms is,

Uν ≈









√

2

3
+ ǫ

2
√
6

1√
3
− ǫ

2
√
3

0

− 1√
6
+ ǫ

2
√
6

1√
3
+ ǫ

4
√
3

1√
2

1√
6
− ǫ

2
√
6

− 1√
3
− ǫ

4
√
3

1√
2









, (4.11)

resembling, s2
12
≈ 1/3(1− ǫ) +O(ǫ2). On tuning ǫ = Aλ2, we see that s2

12
≈ 0.32,

which is in close agreement with the observation. Needless to mention that, θ13

and θ23 remain same as before.

An attempt to deviate θ13 and θ23 will certainly break down this symmetry but

the prediction of the latter can be sustained [167, 168]. We shall try to look into

some possible textures of charged lepton diagonalizing matrix.
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We have the TBC mixing matrix, upto the Majorana phases, as in the following,

UTBC ≈









√

2

3
− λ2

2
√
6

1√
3
− λ2

4
√
3

e−iδλ√
2

− 1√
6
− eiδλ√

6

1√
3
− eiδλ

2
√
3

1√
2
− λ2

4
√
2

1√
6
− eiδλ√

6
− 1√

3
− eiδλ

2
√
3

1√
2
− λ2

4
√
2









. (4.12)

. For convenience, we assume that UTBC = U †l1 .UTB, so that we can identify

the contribution from the charged lepton sector responsible for uplifting θ13, We

obtain, Ul1 = U−1
13

(θc/2 : δ).U−1
12

(θc/2 : δ).R23(θ
2

c/8), where

Ul1 ≈









1− λ2

4
−1

2
e−iδλ −1

2
e−iδλ

1

2
eiδλ 1− λ2

8
−λ2

8

1

2
eiδλ −λ2

8
1− λ2

8









. (4.13)

We have seen that the Ul1 contributes only towards a nonzero θ13, and, does not

touch θ12 and θ23 at all. But the consistency with the Global data demands

modification of Ul1 . Based on the earlier discussion, to include the possibility of

θ23 < π/4, a CKM like correction can be associated with Ul1 . We redefine Ul1 (see

Eq. (4.13)) as Ul2 = Ul1 .R23(θ̃), where θ̃ = Aλ2 [126, 193, 194],

Ul2 ≈









1− λ2

4
−1

2
e−iδλ −1

2
e−iδλ

1

2
eiδλ 1− λ2

8
Aλ2 − λ2

8

1

2
eiδλ −Aλ2 − λ2

8
1− λ2

8









, (4.14)

which is capable of generating,

s2
23
≈ 1

2
− Aλ2. (4.15)

In another prescription, we define Ul as, Ul3 = Ul1 .R
−1
23
(θ̃), where,

Ul3 ≈









1− λ2

4
−1

2
e−iδλ −1

2
e−iδλ

1

2
eiδλ 1− λ2

8
−Aλ2 − λ2

8

1

2
eiδλ Aλ2 − λ2

8
1− λ2

8









, (4.16)

gives rise to,

s2
23
≈ 1

2
+ Aλ2. (4.17)
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This is to be emphasized that in eq. (4.11), only θ12 is deviated from TBM pre-

diction, whereas, the Ul’s mentioned in eqs. (4.13)-(4.16)can deviate θ13 and θ23,

leaving the rest undisturbed. We hope that the neutrino mass matrix follows µ-τ

symmetry, consistent with eq. (4.11) and the symmetry is finally broken down with

any of the Ul’s, mentioned in eqs. (4.13)-(4.16). Hence we obtain,

• Case 1: (Ulep)1 = U †l1 .Uν .

(Ulep)1 ≈









√

2

3
− λ2

2
√
6
+ Aλ2

2
√
6

1√
3
− λ2

4
√
3
− Aλ2

2
√
3

eiδλ√
2

− 1√
6
− e−iδλ√

6
+ Aλ2

2
√
6

1√
3
− e−iδλ

2
√
3
+ Aλ2

4
√
3

1√
2
− λ2

4
√
2

1√
6
− e−iδλ√

6
− Aλ2

2
√
6

− 1√
3
− e−iδλ

2
√
3
− Aλ2

4
√
3

1√
2
− λ2

4
√
2









.P, (4.18)

consistent with,

s2
13
≈ λ2

2
, s2

12
≈ 1

3
(1− Aλ2), s2

23
=

1

2
. (4.19)

• Case 2: (Ulep)2 = U †l2 .Uν .

(Ulep)2 ≈









√

2

3
− λ2

2
√
6
+ Aλ2

2
√
6

1√
3
− λ2

4
√
3
− Aλ2

2
√
3

eiδλ√
2

− 1√
6
− e−iδλ√

6
− Aλ2

2
√
6

1√
3
− e−iδλ

2
√
3
+ 5Aλ2

4
√
3

1√
2
− λ2

4
√
2
− Aλ2

√
2

1√
6
− e−iδλ√

6
−
√
3Aλ2

2
√
2

− 1√
3
− e−iδλ

2
√
3
+
√
3Aλ2

4

1√
2
− λ2

4
√
2
+ Aλ2

√
2









.P,

(4.20)

consistent with,

s2
13
≈ λ2

2
, s2

12
≈ 1

3
(1− Aλ2), s2

23
=

1

2
− Aλ2. (4.21)

• Case 3: (Ulep)3 = U †l3 .Uν .

(Ulep)3 ≈









√

2

3
− λ2

2
√
6
+ Aλ2

2
√
6

1√
3
− λ2

4
√
3
− Aλ2

2
√
3

eiδλ√
2

− 1√
6
− e−iδλ√

6
+
√
3Aλ2

2
√
2

1√
3
− e−iδλ

2
√
3
−
√
3Aλ2

4

1√
2
− λ2

4
√
2
+ Aλ2

√
2

1√
6
− e−iδλ√

6
+ Aλ2

2
√
6

− 1√
3
− e−iδλ

2
√
3
− 5Aλ2

4
√
3

1√
2
− λ2

4
√
2
− Aλ2

√
2









.P,

(4.22)

consistent with,

s2
13
≈ λ2

2
, s2

12
≈ 1

3
(1− Aλ2), s2

23
=

1

2
+ Aλ2. (4.23)
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In the above expressions: P = diag {eiα, eiβ, 1}, where α and β are the Majorana

phases. This is evident that the above three cases are the three reformed versions

of TBC mixing.

4.3 CKM-like charged lepton correction

We can think of certain possibilities, where the charged lepton sector itself is

capable of administering all the three mixing angles.

The SO(10) or SU(5) GUT models initiate certain logical choice of Ul. In SO(10)

background, the charged lepton mass matrix is approximated to that of down

type quark, Me ∼ Md. Hence we can approximate, Ul ≈ VCKM . Again SU(5)

based models posit, Me ∼ MT
d . Hence another possibility is, Ul ≈ V †CKM . In

quark sector, the most dominant parameter is θCKM
12

= θc, which is followed by

θCKM
23

= θ̃ = Aλ2. So we can express Ul with 1-2 rotation only or with 2-3 rotation

in addition to the same. As suggested in Ref. [148], we associate a complex phase

parameter δ with 1-2 rotation, so that U12 → U12(θc, δ). We have, the following

four choices of Ul’s,

Ul4 = Ω.Rl
12
(θc).Ω

′ ≈









1− λ2

2
e−iδλ 0

−eiδλ 1− λ2

2
0

0 0 1









, (4.24)

Ul5 = Rl
23
(θ̃).Ω.Rl

12
(θc).Ω

′ ≈









1− λ2

2
e−iδλ 0

−eiδλ 1− λ2

2
Aλ2

0 −Aλ2 1









, (4.25)

Ul6 = Ω.RlT

12
(θc).Ω

′ ≈









1− λ2

2
−e−iδλ 0

eiδλ 1− λ2

2
0

0 0 1









, (4.26)

Ul7 = Ω.RlT

12
(θc)Ω

′.RlT

23
(θ̃) ≈









1− λ2

2
−e−iδλ 0

eiδλ 1− λ2

2
−Aλ2

0 Aλ2 1









.

(4.27)
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where, we have Ω = diag{e−iδ/2, eiδ/2, 1} and Ω′ = Ω†. With these four CKM-like

Ul s, we develop the following landscapes with Uν = UTB.

• Case 4: (Ulep)4 = U †l4 .UTB

(Ulep)4 ≈











√

2

3
+ e−iδλ√

6
− λ2

√
6

1√
3
− e−iδλ√

3
− λ2

2
√
3

− e−iδλ√
2

− 1√
6
+
√

2

3
eiδλ+ λ2

2
√
6

1√
3
+ eiδλ√

3
− λ2

2
√
3

1√
2
− λ2

2
√
2

1√
6

− 1√
3

1√
2











.P (4.28)

which results in,

s2
13

=
λ2

2
, s2

12
≈ 1

3
+

λ2

6
− 2

3
λ cos δ, s2

23
≈ 1

2
− λ2

4
. (4.29)

• Case 5: (Ulep)5 = U †l5 .UTB

(Ulep)5 ≈











√

2

3
+ e−iδλ√

6
− λ2

√
6

1√
3
− e−iδλ√

3
− λ2

2
√
3

− e−iδλ√
2

− 1√
6
+
√

2

3
eiδλ+ λ2

2
√
6
− Aλ2

√
6

1√
3
+ eiδλ√

3
− λ2

2
√
3
+ Aλ2

√
3

1√
2
− λ2

2
√
2
− Aλ2

√
2

1√
6
− Aλ2

√
6

− 1√
3
+ Aλ2

√
3

1√
2
+ Aλ2

√
2











.P,

(4.30)

giving rise to,

s2
13

=
λ2

2
, s2

12
≈ 1

3
+

λ2

6
− 2

3
λ cos δ, s2

23
≈ 1

2
− λ2

4
− Aλ2. (4.31)

• Case 6: (Ulep)6 = U †l6 .UTB

(Ulep)6 ≈











√

2

3
− e−iδλ√

6
− λ2

√
6

1√
3
+ e−iδλ√

3
− λ2

2
√
3

e−iδλ√
2

− 1√
6
−
√

2

3
eiδλ+ λ2

2
√
6

1√
3
− eiδλ√

3
− λ2

2
√
3

1√
2
− λ2

2
√
2

1√
6

− 1√
3

1√
2











.P (4.32)

giving,

s2
13

=
λ2

2
, s2

12
≈ 1

3
+

λ2

6
+

2

3
λ cos δ, s2

23
≈ 1

2
− λ2

4
. (4.33)
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Model θ13 θ12 θ23 δCP/π

1 9.20 35.250 450 –

2 9.20 34.450 42.700 –

3 9.20 34.450 47.300 –

4 9.20 34.630 44.260 1.54

5 9.20 34.630 41.970 1.54

6 9.20 34.630 44.260 1.46

7 9.20 34.630 46.570 1.46

Table 4.1: Summary of all the TBM deviated models.

• Case 7: (Ulep)7 = U †l7 .UTB

(Ulep)6 ≈











√

2

3
− e−iδλ√

6
− λ2

√
6

1√
3
+ e−iδλ√

3
− λ2

2
√
3

e−iδλ√
2

− 1√
6
−

√

2

3
eiδλ+ λ2

2
√
6
+ Aλ2

√
6

1√
3
− eiδλ√

3
− λ2

2
√
3
− Aλ2

√
3

1√
2
− λ2

2
√
2

1√
6
+ Aλ2

√
6

− 1√
3
− Aλ2

√
3

1√
2











.P

(4.34)

giving,

s2
13

=
λ2

2
, s2

12
≈ 1

3
+

λ2

6
+

2

3
λ cos δ, s2

23
≈ 1

2
− λ2

4
+ Aλ2. (4.35)

Here, we want to mention that the Cases 4 and 5, appear in literature in different

ways. We summerize the results of all seven models in Table. (4.1). The interesting

part of the Cases 3 and 7, is that they are very close to the present observation

of θ23 ≈ 490. The other Cases like 2, 4, and 6 are consistent with the other

possibility θ23 ≈ 430. In the Cases 1-3, δCP is a free parameter. The Cases 6

and 7 predict the same to be 1.46 π, which is very close to that from experimental

observation δcp ≈ 1.48 π.
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4.4 Discussion

Trying to relate the CKM and Lepton parameters is an esteemed goal of particle

physics. Though lepton mixing is quite different from that of quarks, yet from

unification point of view, we can expect the presence of some CKM parameters in

the texture of PMNS matrix. The TBM mixing is unable to describe completely

the mixing of leptons. But it provides a strong platform to discern several realistic

models. In the first part of our discussion, we have tried to modify the TBC

mixing by introducing CKM-like correction from charged lepton sector to make

θ23 relevant in view of the experiments. Also we have discussed the possibilities to

slim down θ12 in the µ-τ symmetric regime. Finally, we have tried to amend the

original TBM model by strapping it with different choices of CKM-like charged

lepton diagonalizing matrices. In the present note the approach is bottom-up and

model independent. We hope that a more sophisticated appraisal in this line will

help to unveil the underlying tie-in among quark, charged lepton and neutrino

sectors.
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The Cabibbo angle as a universal

seed for quark and lepton mixings

A model-independent ansatz to describe lepton and quark mixing in a unified way

is suggested based upon the Cabibbo angle. In our framework neutrinos mix in

a “Bi-Large” fashion, while the charged leptons mix as the “down-type” quarks

do. In addition to the standard Wolfenstein parameters (λ, A) two other free

parameters (ψ, δ) are needed to specify the physical lepton mixing matrix. Through

this simple assumption one makes specific predictions for the atmospheric angle as

well as leptonic CP violation in good agreement with current observations.

5.1 Introduction

A striking observation vindicated by recent experimental neutrino data is that the

smallest of the lepton mixing angles is surprisingly large, similar to the largest

of the quark mixing parameters, namely the Cabibbo angle (θc) [1, 132]. An in-

teresting lepton mixing scheme called “Bi-Large” (BL) mixing has been proposed

recently [87] and subsequently studied in Refs [195–197]. This mixing scheme as-

sumes the atmospheric and the solar mixing angles to be equal and proportional to

the reactor angle. In contrast to the Bi-maximal (BM) scenario [78, 136], within

the BL scheme the atmospheric mixing angle does not need to be strictly “Maxi-

mal”, but simply “Large” in general. In summary, BL mixing posits, sin θ13 ≃ λ,

sin θ12 = sin θ23 ∼ λ, where λ = sin θc.

84
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Such BL mixing ansatz can be motivated in string theories. Indeed, in F-theory

motivated Grand Unified Theory (GUT) models, a geometrical unification of

charged lepton and neutrino sectors leads to a mild hierarchy in the neutrino

mixing matrix in which θν12 and θ
ν
23 become large and comparable while θν13 ∼ θc ∼

√
αGUT ∼ 0.2 [198] 1. Understanding the origin of the above relation from first

principles is beyond the scope of this note. We stress however that this ansatz can

be associated to specific flavor symmetries as suggested in Ref.[195] or Ref. [86] ,

rather than being a mere “numerical coincidence”.

A successful framework for attacking the flavor problem constitutes an important

quest in contemporary particle physics. A relevant question arises as to whether

attempted solutions to the flavour problem may indicate foot-prints of unification

or not. In the present note we look into some possible links between quark and

lepton mixing parameters from a phenomenological “bottom-up perspective” 2

In the quark sector the largest mixing is between the flavor states d and s, and

is interpreted in terms of the Cabibbo angle [203] which is approximately 130.

The matrix VCKM is parametrized in terms of three independent angles and one

complex CP phase [17, 204, 205]. A clever approximate presentation was proposed

by Wolfenstein [206], and is by now standard, namely

VCKM =









1− 1
2
λ2 λ Aλ3(ρ− iη)

−λ 1− 1
2
λ2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1









(5.1)

up to O(λ4) where, λ, A, η and ρ are four independent Wolfenstein parameters,

with λ = sin θc ≈ 0.22.

In contrast, the mixing in the lepton sector is very different from quark mixing.

While the solar and atmospheric angles are large: θ12 ≈ 350 and θ23 ≈ 490, the 1-3

mixing parameter in the lepton sector is the smallest and was believed to vanish

according to the earlier results. However in last few years it has been established

[128–130] that this mixing, now precisely measured, is almost as large as the d-s

mixing in quark sector, θ13 ≈ 90 ∼ O(θc). This excludes the simplest proposed

1Neglecting the contribution from the charged lepton sector.
2An earlier alternative in the literature is “Quark-Lepton complementarity (QLC)”[89, 90,

199–202] .



Chapter 5 86

schemes of neutrino mixing, which need to be revised in order to be consistent

with observation [207].

5.2 Parametrization of Bi-Large neutrino mixing

matrix

Up to Majorana phases the Bi-Large mixing factor may be parametrized as follows,

UBL ≈











c
(

1− λ2

2

)

s
(

1− λ2

2

)

λe−iδ

−sc′ − cs′λeiδ c′c− s′sλeiδ s′
(

1− λ2

2

)

s′s− c′cλeiδ −cs′ − c′eiδsλ c′
(

1− λ2

2

)











, (5.2)

with,

J̃CP ≈ −csc′s′λ sin δ. (5.3)

Where, s and s′ represents the sines of solar and atmospheric angles and that c

and c′ represents the cosines of the same respectively. One sees that sin θ12 =

sin θ23 = ψλ, with sin θ13 = λ. With this parametrization it is evident that the

Cabibbo angle is the seed for the mixing in both the quark and the lepton sector.

In what follows we discuss the possible forms of the charged lepton contribution

to the lepton mixing matrix.

5.3 Charged lepton diagonalizing matrix

In simplest SO(10) schemes the charged lepton mass matrix is approximated to

that of down type quarks, Me ∼Md. Hence we have a choice [208],

Type-I Ul = VCKM . (5.4)

Similarly, within simplest SU(5) scheme one expects, Me ∼ MT
d . Hence, we have

another choice,

Type-II Ul = V †CKM . (5.5)
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The physical lepton mixing matrix is simply

Ulep = U †l .UBL.Iφ , (5.6)

where UBL, represents the Bi-Large neutrino mixing matrix and Iφ = diag(eiα, eiβ, 1),

where α and β are the two additional CP violating phases associated to the Majo-

rana nature of the neutrinos [209] 3. One important point that is to be emphasized

on is the position of positive and negative sign before the 1-2 and 2-3 elements

of Uν . If we are working in the basis where Me is diagonal this sign ambiguity

hardly matters. But on the contrary, when we stick to a particular texture of

Ul, a particular sign convention may alter the prediction. So, let us look into the

different possibilities related with the sign of θν12 and θν23. In connection with the

BL mixing for neutrinos, the following four possibilities are prominent.

A s = −s′ = ψλ, (5.7)

B s = s′ = ψλ, (5.8)

C −s = s′ = ψλ, (5.9)

D −s = −s′ = ψλ. (5.10)

Perhaps, it would have been more significant if we redefine the original BL ansatz,

rather in the way, |s| = |s′| = ψλ, than s = s′ = ψλ. If Ul is exactly VCKM (or

V †CKM), we encounter different schemes like: Type-IA, Type-IB, and Type-IIA

etc.

5.3.1 When Ul is exactly VCKM (or, V †CKM)

The Type-I (and Type-II) Ul on association with UBL in Eq. (5.2) generates the

following expressions for mixing angles.

s212 ≈ s2 ∓ 2c′csλ+
(

c′2c2 + s′2s2 − s2
)

λ2, (5.11)

s213 ≈
(

1 + s′2 ∓ 2s′ cos δ
)

λ2, (5.12)

s223 ≈ s′2 + λ2
(

s′4 ∓ 2Ac′s′ ∓ 2s′ 3 cos δ − s′2 ± 2s′ cos δ
)

, (5.13)

3As shown in [210] these phases are physical and affect lepton number violating processes
such as neutrinoless double beta decay [211, 212].
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upto O(λ3). Since 1-3 angle in VCKM (and hence in Ul) is very small, θq13 ∼ O(λ3),

it’s contribution is very little towards the prediction of the above parameters. But

the θq13, masks the CP violating phase in CKM sector and in order to understand

how CKM parameters may contribute towards δCP in lepton sector, we express

JCP upto O(λ3).

JCP ≈ J̃CP ± λ2
(

c2s′ − c2s′ 3 − s 2c′ 2s′
)

sin δ

± λ3cs(Ac′ 2 − As′ 2 − 2c′s′ 2 cos δ ± 3c′s′) sin δ

± Acc′ 2ss′ηλ3. (5.14)

So, here we see that there exists a constant background , Acc′ 2ss′ηλ3 in JCP and

exists even if the internal CP phase δ = 0. But this contributes little towards the

observable JCP . Hence if Ul is exactly VCKM the presence of internal CP phase, δ

is undeniable. We express δCP as in the following,

Type-I : δCP ≈ nπ − tan−1
sin δ

cos δ − s′

+
Ac′λ2

1− 2s′ cos δ + s′2
(η cos δ − ρ sin δ + sin δ − ηs′),(5.15)

Type-II : δCP ≈ nπ − tan−1
sin δ

cos δ + s′

− Ac′λ2

1 + 2s′ cos δ + s′2
(η cos δ − ρ sin δ − ηs′) , (5.16)

In the above expressions only two free parameters ψ and δ are there. How to

choose ψ and δ? In fact, this task is not too complicated. One can choose ψ and δ

in such a way, that any two of the three observable parameters, solar, reactor and

atmospheric mixing angles are consistent with the neutrino oscillation data [1, 132],

while the prediction for the remaining one will determine the tenability of the

model.

First note that the determination of solar and reactor angles is rather stable ir-

respective of the neutrino mass spectrum. Hence it seems reasonable to use solar

and reactor angles for the parametrization of the two unknowns. Hence we fo-

cus upon the predictions for θ23 and δCP , given their current indeterminacy from

global neutrino oscillation data analysis [1].. Although consistent with maximal

mixing, the possibility of θ23 lying within the first octant is certainly not excluded

for normal ordering of neutrino masses. Moreover, probing for CP violation in

the lepton sector is the next challenge for neutrino oscillation experiments. Hence
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Figure 5.1: We show the overlap of the contour-plots corresponding to the central
value,1σ, 2σ and 3σ ranges of s213 and s223 in ψ − δ plane for Type-IA (Top-Left)
and Type-IB (Bottom-Left) schemes. The prediction for s223 and JCP in the over-
lapping region is studied for Type-IA (Top-Right) and Type-IB (Bottom-Right)

respectively.

in addition to the prediction for the atmospheric angle, we use the prediction of

our ansatz for δCP in order to scrutinize the viability of our ansatz, in any of the

above forms. The results are summarized in Table 5.1. For definiteness we present

a detailed discussion concerned only with the results for the Type-IA scheme

(which obeys s = −s′ = ψλ), and similar results can be found for the other cases

in the Table. (5.1). For numerical part, we fix the CKM parameters at their cen-

tral values. In Fig. (5.1) we plot the free parameters δ and ψ. In the left panel

we show the contour plot for s13 (horizontal band) and s12 (vertical band). The

best fit value s212 ≈ 0.323 and s213 ≈ 0.023 [1] correspond to choosing ψ ≈ 3.08
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and δ ≈ 1.23 π. The above choice leads to, θ23 ≈ 470. The CP phase, δCP is

approximately 1.51 π, indicating a maximal CP violation. Similarly, for Type-IB

scheme, which obeys, s = s′ = ψλ, the choice, ψ ≈ 3.08 and δ ≈ 1.765π, gives rise

to the best-fit value of θ13 and θ12. But it predicts, θ23 ≈ 420 and δCP ≈ 1.47 π.

We see that the Type-IA scheme supports θ23 to lie within the second octant and

that Type-IB scheme sets θ23 in the first.

Out of all the possible schemes, we single out only four possibilities: Type-IA,

Type-IIC, Type-IB and Type-IID. The rest fails in predicting the atmospheric

angle precisely within 3σ error. Interestingly, out of the remaining four, the Type-

IA and Type-IIC describes almost similar landscape. And, the same observation

holds good for the schemes Type-IB and Type-IID. The lepton mixing matrix

corresponding to Type-IA scheme is presented as shown in the following,

U ≈









Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3









, (5.17)

where,

Ue1 ≈ c− cλ2 − ceiδsλ2 + csλ, (5.18)

Ue2 ≈ s− λc2 − eiδs2λ2 − sλ2, (5.19)

Ue3 ≈ e−iδλ+ sλ, (5.20)

Uµ1 ≈ As2λ2 +
1

2
csλ2 + cλ+ ceiδsλ− cs, (5.21)

Uµ2 ≈ sλ− 1

2
λ2c2 + c2 − Asλ2c+ eiδs2λ, (5.22)

Uµ3 ≈ e−iδλ2 − Acλ2 + sλ2 − s, (5.23)

Uτ1 ≈ −eiδλc2 − Asλ2c− s2, (5.24)

Uτ2 ≈ Ac2λ2 − ceiδsλ+ cs, (5.25)

Uτ3 ≈ c− Asλ2 − cλ2

2
. (5.26)
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Type ψ δ/π sin2 θ23 δCP/π |JCP |

IA, IIC 3.085+0.145
−0.137 1.234+0.0426

−0.0417 0.5398+0.0419
−0.0382

1.509+0.0615
−0.0533

1.520+0.0655
−0.0566

0.0344+0.0052
−0.0061

0.0333+0.0053
−0.0061

IB, IID 3.085+0.145
−0.137 1.766+0.0417

−0.0426 0.457+0.0481
−0.0445

1.467+0.0303
−0.0312

1.476+0.0305
−0.0314

0.03408+0.0024
−0.0038

0.0332+0.0024
−0.0038

Table 5.1: Summary of the results corresponding to four BL schemes: Type-IA,

IB, IIC and IID are shown. The Type-I and Type-II corresponds to the choices
Ul = VCKM and Ul = V

†
CKM respectively. Also, A, B, C and D are associated with

different sign convention discussed in Eqs. (5.7)-(5.10). Out of all possible combinations
only IA, IB, IIC and IID survive and the rest are ruled out because those do not
reproduce fruitful prediction of θ23. The parameters ψ and δ are calibrated with respect
to the central value ± 3σ range of s12 and s23 and are used to predict the observational

parameters s23 and JCP (or δCP ).

5.3.2 When Ul is CKM-like

Now let us turn towards the scenario, when Ul is not exactly VCKM or V †CKM ,

but CKM-like, which is a more generalized texture of Ul. Without disturbing the

angular part we include two new complex phases φ12 and φ23 in the texture of

VCKM . A simplified texture of such a scenario is presented below.

Type-III Ul =









1− λ2

2
λe−iφ12 Aλ3(ρ− iη)

−λeiφ12 1− λ2

2
Aλ2e−iφ23

Aλ3
(

eiφ12+iφ23 − ρ− iη
)

−Aλ2eiφ23 1









(5.27)

5.3.2.1 The Standard parametrization

The concerned PMNS matrix (motivated by Type-III Ul) predicts,

s213 ≈ λ2
(

1− 2s′ cos (δ − φ12) + s′ 2
)

, (5.28)

s212 ≈ s2 − 2csc′λ cos φ12 + λ2
(

c2c′ 2 − s2 + s2s′ 2
)

, (5.29)

s223 ≈ s′ 2 + λ2(s′ 4 − 2Ac′s′ cos φ23 − 2s′ 3 cos (δ − φ12)

+2s′ cos (δ − φ12)− s′ 2). (5.30)
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Also, we have the expression for Dirac CP phase as in the following,

δCP ≈ nπ − tan−1
(

sin δ − s′ sinφ12

cos δ − s′ cosφ12

)

− λ2

(sin δ−s′ sinφ12)2

1+(cos δ−s′ cos φ12)2

{2Ac
′ sin (φ12 + φ23)− 2Aηc′ − sin δ + s′ sin φ12

2 cos δ − 2s′ cos φ12

+
(2 sin δ − 2s′ sin φ12) (2Aρc

′ − 2Ac′ cos (φ12 + φ23) + cos δ − s′ cos φ12)

4 (cos δ − s′ cosφ12) 2
}

, (5.31)

and, the JCP factor appears as shown below,

JCP ≈ J̃CP + λcsc′s′ 2 sin φ12 + λ2
(

c2s′ − c2s′ 3 − s2c′ 2s′
)

sin (δ − φ12) + Acss′c′ 2ηλ3

+λ3{Acsc′ 2 sin (δ − φ23)− Acsc′ 2s′ sin (φ12 − φ23)− Acsc′ 2s′ sin (φ12 + φ23)

−Acss′ 2 sin (δ + φ23) + Acss′ 3 sin (φ12 + φ23)− csc′s′ 2 sin (2δ − φ12)

+3csc′s′ sin δ − csc′s′ 2 sin φ12 − csc′ sin φ12}. (5.32)

Note, if Ul is VCKM (or, V †CKM), only neutrino sector contributes towards δCP (or,

JCP ). But on the contrary, if Ul is CKM-like, a nonzero δCP is obtainable even if

there is no contribution from the neutrino sector . In the light δ = 0, we concen-

trate on the Type-IIIB̃ scenario, where B̃ designates the sign convention shown

in Eq.(5.8)), followed by the choice, δ = 0. In the absence of δ, the prediction for

θ13 and θ12 are dependent on ψ and φ12 only, whereas for θ23 and δCP , the phase

angle, φ23 plays a dominant role. On choosing ψ ≃ 2.96 and φ12 ≃ 0.233 π, we

obtain sin2 θ13 ≈ 0.023 and sin2 θ12 ≈ 0.323. If, φ23 ≈ π, we obtain θ23 ≈ 450,

δCP ≈ 1.23π and JCP ≈ 0.021 (See Fig. (5.2) and Table. (5.2)).

The corresponding PMNS matrix is shown as in the following,

U ≈









Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3









(5.33)
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Figure 5.2: The Type-IIIB̃ corresponds to the case when Ul is CKM-like and the
s = s′ = ψλ, followed by δ = 0, (No CP contribution from neutrino sector.) Prediction
of s13, s12 and s23 depends on the free parameters ψ and δ. Again, s23 and δCP are also
dependent on φ23. We calibrate ψ and δ in terms of the overlapping of the contour-plots
corresponding to central values, 1σ, 2σ and 3σ ranges of s212 and s213 (Left). We use
these output to predict s23 and δCP . But, s23 and δCP are dependent on φ23 also. We
study the variation for prediction of s223 (Right-Bottom) and δCP (Right-Top) with

respect to φ23.

Type-IIIB̃

ψ 2.955+0.114
−0.103

δ/π 0.233+0.043
−0.0436

s223 0.460+0.030
−0.026 − 0.0411+0.0002

−0.0004 cosφ23

δCP/π 1.235+0.0117
−0.0202 − 0.0017+0.0036

−0.0024 sin φ23 − 0.0145+0.0017
−0.0021 cos φ23

JCP 0.0211+0.0054
−0.0051

Table 5.2: The results corresponding to Type-IIIB̃ are summarized.
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, where,

Ue1 ≈ c− cλ2 + ce−iφ12sλ2 + ce−iφ12sλ, (5.34)

Ue2 ≈ s− e−iφ12λc2 + e−iφ12s2λ2 − sλ2, (5.35)

Ue3 ≈ λ− e−iφ12sλ, (5.36)

Uµ1 ≈ As2λ2 +
1

2
csλ2 + ceiφ12λ− csλ− cs, (5.37)

Uµ2 ≈ sλeiφ12 − 1

2
λ2c2 + c2 − Asλ2c− s2λ, (5.38)

Uµ3 ≈ eiφ12λ2 + Acλ2 − sλ2 + s, (5.39)

Uτ1 ≈ −λc2 + Asλ2c+ s2, (5.40)

Uτ2 ≈ −Ac2λ2 − csλ− cs, (5.41)

Uτ3 ≈ −Asλ2 − cλ2

2
+ c. (5.42)

Again, a similar possibility Type-IIID̃ (where, s = s′ = −ψλ and δ = 0) gives

rise to the same result if we perturb the previous choices of φ12 and φ23 by an

amount of π. For simple visualization, we present the texture of CKM-like Uls

associated with Type-IIIB̃ and Type-IIID̃ scenarios in their respective order as

shown in the following (for, φ23 = π and 2π respectively.),









1− λ2

2
λe−iφ12 0

−λeiφ12 1− λ2

2
−Aλ2

0 Aλ2 1









and









1− λ2

2
−λe−iφ12 0

λeiφ12 1− λ2

2
Aλ2

0 −Aλ2 1









(5.43)

The possibilities like Type-IIIÃ and Type-IIIC̃ schemes fail to fit within the 3σ

error of oscillation data.

If δ is not equal to zero, then we have four unknown parameters: ψ, δ, φ12 and

φ23, which are connected by four equations (see Eqs.(5.28)-(5.31)). It seems that

the parametrization is least predictive.

Let us discuss the Type-IIIB scenario in details. A choice of ψ = 3.01544

(3.08379), δ/π = 0.405362 (0.259755), φ12/π = 0.171825 (0.0256385) and φ23/π =

1.05303 (0.963141), set s212 ≈ 0.323, s213 ≈ 0.023 and δCP/π ≈ 1.34 (1.48) and sets

s223 ≈ 0.518 (0.539). It is found that the prediction of s223 is little constrained. A

similar discussion holds good for other three (CKM-like) Type-III Ul motivated

scenarios also. It is found that for all the three cases, ψ ≃ 3. Choosing the param-

eters, ψ, δ, φ12 and φ23 corresponding to the 1σ or 3σ range of the observational
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Figure 5.3: For the Type-III Ul (having the general CKM-like texture), we see that
the prediction of s13, s12 and JCP (neglecting the O(λ3) contribution ) are dependent
on the three parameters ψ, φ12 and δ. We see that the 3D contour-plots corresponding
to the 3σ range of s213(Left-Top), s

2
12 (Left-middle) and JCP (Left-Bottom) in the

three dimensional plane, ψ-δ-φ12, overlap in a very complicated way (Right). We can
not include the observational parameter s223, because it depends on four parameters
including φ23. The above complexity in the overlapping makes it difficult to obtain a

range of the parameters (ψ, δ, φ12)

parameters is little difficult, and we keep aside this task in the present discussion

(See Fig.(5.3)).

5.3.2.2 The Symmetric parametrization

Till now we are dealing with the parametrization from standard parametrization

point of view. We shall look into the general phase texture in the light of symmetric

parametrization [17].
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We present UBL in the following way,

UBL ≈










c
(

1− λ2

2

)

s
(

1− λ2

2

)

e−iδ12 λe−iδ13

−sc′eiδ12 − s′cλeiδ13−iδ23 cc′ − ss′λe−iδ12+iδ13−iδ23 s′
(

1− λ2

2

)

e−iδ23

ss′eiδ12+iδ23 − cc′λeiδ13 −sc′λeiδ13−iδ12 − cs′eiδ23 c′
(

1− λ2

2

)











;(5.44)

J̃CP ≈ csc′s′λ sin (δ12 − δ13 + δ23) . (5.45)

The mixing angles are,

s213 ≈ λ2
(

1− 2s′ cos (δ13 − δ23 − φ12) + s′ 2
)

, (5.46)

s212 ≈ s2 − 2csc′λ cos (δ12 − φ12) + λ2
(

c2c′ 2 − s2 + s2s′ 2
)

, (5.47)

s223 ≈ s′ 2 + λ2{−2Ac′s′ cos (δ23 − φ23)− 2s′ 3 cos (δ13 − δ23 − φ12)

+2s′ cos (δ13 − δ23 − φ12) + s′ 4 − s′ 2}. (5.48)

But for the present case, it is difficult to have an simplified expression for δCP . We

put forward the following expression for JCP ,

JCP ≈ J̃CP − csc′λs′ 2 sin (δ12 − φ12)

+λ2
(

−c2s′ 3 + c2s′ − s2c′ 2s′
)

sin (δ13 − δ23 − φ12) . (5.49)

Along-with the parameter ψ, we have other five unknowns: φ12, φ23, δ12, δ13

and δ23. But we see that the observational parameters involve the following four

combinations,

δ12 − δ13 + δ23, (5.50)

δ13 − δ23 − φ12, (5.51)

δ12 − φ12, (5.52)

δ23 − φ23, (5.53)
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out of which only following the three combinations are independent,

δ12 − δ13 + δ23, (5.54)

δ12 − φ12, (5.55)

δ23 − φ23. (5.56)

Equivalence of both “standard” and “symmetric” parametrization schemes (See

(5.46)-(5.48) and Eqs.(5.28)-(5.30)) suggests,

δ ←→ δ12 − δ13 + δ23, (5.57)

(Standard) φ12 ←→ φ12 − δ12, (Symmetric) (5.58)

φ23 ←→ φ23 − δ23. (5.59)

So comparing Eq. (5.31) and Eq. (5.60), we can derive an equivalent expression of

δCP for symmetric parametrization scheme also,

δCP ≈ nπ − tan−1

(

sin(δ12 − δ13 + δ23)− s′ sin(φ12 − δ12)
cos(δ12 − δ13 + δ23)− s′ cos(φ12 − δ12)

)

− λ2

(sin(δ12−δ13+δ23)−s′ sin(φ12−δ12))2

1+(cos(δ12−δ13+δ23)−s′ cos(φ12−δ12))2

×

{2Ac
′ sin (φ12 − δ12 + φ23 − δ23)− 2Aηc′ − sin(δ12 − δ13 + δ23) + s′ sin(φ12 − δ12)

2 cos(δ12 − δ13 + δ23)− 2s′ cos(φ12 − δ12)

+
(2 sin(δ12 − δ13 + δ23)− 2s′ sin (φ12 − δ12)) (2Aρc′ − 2Ac′ cos (φ12 − δ12 + φ23 − δ23))

4 (cos(δ12 − δ13 + δ23)− s′ cos(φ12 − δ12)) 2

+
(2 sin(δ12 − δ13 + δ23)− 2s′ sin (φ12 − δ12)) (cos(δ12 − δ13 + δ23)− s′ cos(φ12 − δ12))

4 (cos(δ12 − δ13 + δ23)− s′ cos(φ12 − δ12)) 2
}

(5.60)

As before, we have four unknowns: ψ, δ12 − δ13 + δ23, δ12 − φ12, and δ23 − φ23

. On choosing, ψ = 3.01544 (3.08379), (δ12 − δ13 + δ23)/π = 0.405362 (0.259755),

(δ12 − φ12)/π = 0.171825 (0.0256385) and (δ23 − φ23)/π = 1.05303 (0.963141), we

obtain s212 ≈ 0.323, s213 ≈ 0.023 and δCP/π ≈ 1.34 (1.48) and s223 ≈ 0.518 (0.539).

5.4 Discussion

In summary we proposed a generalized fermion mixing ansatz where the neutrino

mixing is Bi-Large, while the charged lepton mixing matrix is “CKM” or “ CKM-

like”. Inspired by SO(10) and SU(5) unification, we select three charged lepton

diagonalizing matrices, ‘Ul’s (Type-I, II, III) and discuss the phenomenological
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viability of the resulting schemes. All the four models are congruous with best-fit

solar and reactor angles, making definite predictions for the atmospheric angle

and CP phase, which may be further tested in upcoming neutrino experiments. In

particular the Type-4 BL model appears interesting in the sense that it extends the

original BL model to encompass maximal atmospheric mixing. Ours is a “theory-

inspired” bottom-up approach to the flavour problem, that highlights the role of

θc as the universal seed of quark and lepton mixings and incorporates the main

characteristic features of unification models. We have shown how this generalizes

the original Bi-Large ansatz [87] to make it fully realistic. Further investigation on

the physics underlying this ansatz may bring new insights on both fermion mixing

and unification.



Chapter 6

Summary and conclusion

What we have covered

In Chapter 1, we have displayed a summarized picture of neutrinos. Here, we have

highlighted why the research in neutrino physics is important. With a brief his-

torical introduction to neutrinos, we have discussed different theoretical prospects

related with mass generation of neutrinos which includes the discussion of Dirac

and Majorana behavior of neutrinos, and See-Saw mechanism. We have discussed

“Neutrino-mixing” and reviewed the parametrization of PMNS matrix. We have

highlighted briefly the diversity of neutrino oscillation processes involving neutrino-

neutrino oscillation, discussed in short about matter effect and have highlighted

the present status of the observable parameters related with the oscillation exper-

iments. We have reviewed in short on beta-decay, neutrino-less double beta-decay

experiments, cosmological bounds on sum of the three neutrino masses in context

with the measurement of absolute neutrino mass scale. The CP violation arising

due to the Dirac and Majorana nature is discussed in terms of Jarlskog (signifi-

cant for neutrino-neutrino oscillation) and Jarlskog-like parameters (significant for

neutrino-anti neutrino oscillation) respectively. We have underlined two strategies

called “Top-down” and “Bottom-up”, usually followed by the theorists to answer

the unsolved riddles related with neutrinos. And, finally we have featured the

scope of the thesis.

In Chapter 2, we have discussed the phenomenological aspects and the importance

of the so called µ-τ symmetry of neutrino mass matrix. In fact, starting from

different discrete flavour symmetry groups like A4 and S4, one can reach this

99
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symmetry. The important feature of latter is that it keeps θ12 free. It is consistent

with maximal θ23 and vanishing θ13. Once, we switch on to the basis where the

charged lepton mass matrix is non-diagonal, all the mixing angles get deviated.

We assign an unitary texture to the charged lepton diagonalizing matrix in terms

of λ, the Wolfenstein parameter such that it drifts θ13 and θ23 from zero and 450

respectively. And, at the same time, θ12 is kept untouched. In this way, θ12 is

controlled solely from neutrino sector and, θ13 and θ23 are dictated by that of

charged leptons. We put forward six different cases of Quasi-degenerate neutrino

mass matrix, such as QDNH-Type−IA, IB, IC, and QDIH-Type−IA, IB, IC,
where we have used only three parameters: α, η and λ in order to parametrize the

mass matrices. The number of free parameters are lesser than that of observational

ones. The parametrization respects µ-τ symmetry, if λ is absent. The work in this

chapter highlights the existence of four independent building block textures, I0, I1,

I2 and I3, a linear superposition of which begets a general µ-τ symmetric texture.

The present parametrization of degenerate neutrino scenario, supports both TBM

and TBM deviated scenarios, but not the BM mixing case. In order to keep the

discussion simple we have not dealt with the Dirac CP violating phase δCP . But

in fact it can enter the parametrization as an input through the charged lepton

diagonalizing matrix. The present parametrization supports for θ23 ≈ 390. But on

choosing τ = −λ/2, we can propel θ23 to acquire a value greater than 450 (This

possibility is not discussed in Chapter 2). But in Chapter 2, we hardly found a

possibility to discriminate the six QDN cases.

In Chapter 3, we have tried to look into other possibilities to parametrize the neu-

trino mass matrix from a different perspective. This approach takes us beyond the

territory of µ-τ symmetry. The quark sector is completely different from that of

the leptons. The quark mixing angles can be expressed in terms of the correspond-

ing quark mass ratio. In this chapter we have tried to see what will happen if we

consider similar happenings in neutrino sector also. We have found that this is not

impossible in neutrino sector but realization of a similar ansatz is partial. We can

experience only two possibilities,
√
m1 : m3 ≃ sin θ13 and

√
m2 : m3 ≃ sin θ23, but

not simultaneously. This ansatz although cannot answer to the hierarchy issue,

but constrains the mass spectrum in several ways. We put forward two different

parametrization of UPMNS. But more interestingly we found five different hierar-

chy dependent, exact textures of neutrino mass matrix, where the matrix elements

are connected by certain sum rules. For example, we experience a texture which

is a combination of a Fritzsch-like and µ− τ symmetric textures. In this chapter,
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we have considered the basis where charged lepton mass matrix is diagonal and

for simplicity we have considered all the parameters in the mass matrix as real.

In Chapter 4, we have highlighted different possibilities to modify the TBM mix-

ing scenario. The TBC mixing is one of the interesting mixing schemes next

to TBM mixing which differs from the former in view of the prediction of θ13

(θ13 = θC/
√
2). We have tried to mend the existing TBC mixing scheme by

considering the contribution from charged lepton sector and have extended the

original scheme to encompass the cases: θ12 < sin−1(1/
√
3), and θ23 ≤ 450 or

θ23 ≥ 450. The Chapter 4 is related to Chapter 2. We have used the unique fea-

ture of µ-τ symmetric mass matrix to control θ12 from neutrino sector. Whether

θ23 > 450, or θ23 < 450, depends on the choice of a CKM like correction either,

R23 = R−1
23
(Aλ2) or R23 = R23(Aλ

2) respectively. But in this approach, δ, the

Dirac CP violating phase remains as an input. In the next part, we have discussed

two scenarios, where, either Ul = VCKM−like, or Ul = V †CKM−like and all the angles

are now controlled from charged lepton sector. The present approach leads to a

prediction of the Dirac CP phase, δCP ∼ 1.5 π. The present analysis leads to more

realistic textures of UPMNS, deviated from TBM mixing scenario.

In Chapter 5, we have looked into the possibilities to unearth certain framework(s),

where we can find some similarities between the lepton and the quark sectors.

The Bilarge neutrino mixing hints for θ13 = θc. Whereas the SO(10)and SU(5)

GUTs indicate θl
12

= θc. We have tried to construct a framework in symmetry

basis, UPMNS = U †l .UBL. We have assumed that neutrinos mix in the Bi-large

fashion and, have opted for the options: Ul = VCKM , V
†
CKM , Vgeneral−CKM−like.

The aim of this parametrization is to find out one unknown parameter ψ, in the

neutrino sector, and Dirac-CP phase δ. We have discussed all the situations when

δCP can enter the frame-work either through neutrino or charged lepton sector,

and the scenarios where both the sectors contribute towards the CP phase. The

analysis predicts certain possibilities covering the cases: θ23 ≥ 450, θ23 ≤ 450

and δCP ∼ 1.5π or 1.3π etc. The analysis predicts the parameter ψ (which is

an unphysical parameter in our analysis) to be approximately 3. This prediction

coincides with what is worked out in the original reference. In concern with the case

when Ul is a general CKM-like matrix, we have highlighted scenarios encompassing

both “Standard” and “Symmetric” parametrization.
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What we have not covered

• In Chapter 2, we are unable to discriminate the six possible cases of QDN

models. But we expect that an extension of the work to study Baryogenesis

can make this task possible. At the same time, we expect that the analysis

will help to get some idea about the interval of the three CP violating phases.

• We have derived the five different mass matrix textures from a model in-

dependent perspective. We expect that may be these textures are related

to certain flavor symmetry groups and a similar analysis in this line can be

extended in future. Also, the Dirac and Majorana phases are to be taken

into consideration.

• In Chapter 2 and Chapter 4, we have pointed out certain textures of left

handed unitary charged lepton diagonalizing matrices in the light of present

lepton mixing observational parameters. We can extend the work to find out

what could be the texture of left handed charged lepton mass matrix, Ml or

M †
l Ml and to relate the same to certain horizontal symmetries.

• In Chapter 4, we have highlighted the relevance of the ansatz, θν
13

= θl
12

= θc,

which seems important from the unification point of view. As a future scope,

we can try to obtain the same frame-work from a top-down perspective. The

present analysis make certain predictions on δCP . The extension of the same

to Baryogenesis scenario, can provide us the information of Majorana CP

phases.
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