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Abstract. We give a status report on the progress in modelling extreme mass-ratio inspiral
(EMRI) evolution using the gravitational self-force formalism.

1. Introduction

Extreme mass ratio inspirals (EMRIs) are black hole binaries where there primary object is a
supermassive black hole of 10°-10® Solar masses and the secondary object a stellar massive black
hole of 10-60 Solar masses. EMRIs have been identified as key potential source for the LISA
mission[1, 2]. In contrast to comparable mass black hole binaries, EMRIs evolve very slowly
spending a._large number 103-10° orbital cycles in the LISA sensitivity band before finally
merging As a consequence matched filtering can be used to make unprecedented accurate
measurements of the orbital parameters of the systems obtaining typical relative errors of 1 part
in 103-10* [3]. Beside the masses, spins, eccentricity, and inclination, it will also be possible to
measure some of the higher gravitational multipoles of the primary object allowing tests of the
no-hair theorem of general relativity [4].

In order to realize such measurements we need accurate theoretical models for the evolution
of EMRIs. However the modelling of EMRIs introduces some novel complications. On the one
hand, the large disparity in length and time scales (essentially of order the mass-ratio) makes
the application of full numerical relativity unrealistic. On the other hand, EMRIs are highly
relativistic making post-Newtonian models unreliably. Instead of these familiar cornerstones
black hole binary modelling, the modelling of EMRIs requires the application of multi time and
length scale perturbation methods to obtain a systematic expansion of the binary motion in
terms of the ratio of the two masses. At zeroth order, the secondary object follows a free falling
geodesic. Higher order corrections then take the form of an effective force generated by the
secondary’s own gravitational field, the gravitational self-force (GSF).

In this note we summarize the current progress in modelling EMRIs using gravitational self-
force.

2. Modelling requirements

Population models suggest that EMRIs, unlike comparable mass binaries, can enter the LISA
sensitivity band with significant eccentricity e < 0.8, and almost any spin configuration.
Consequently, to provide accurate waveforms for matched filtering we need the ability to model
the evolution of an EMRI with generic eccentricity, inclination and spins up to an phase accuracy
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of less than ~ 0.1 radian over the course of the full evolution covering 10*-10° radians. How far
do we need to go in the systematic expansion of the equations of motion to achieve this? This
can be answered using a two time scale expansion [5].

For this purpose it has proven useful to adopt coordinates on the binary phase space using
an osculating elements scheme. At zeroth order, the spacetime can be approximated by the
background (Kerr) spacetime generated by the primary object. Each point in the binary phase
space can then be identified by a geodesic tangent to that point. To identify each geodesic we
need a set of invariants P (e.g. semi-latus rectum, eccentricity, and inclination). A further three
phases ¢ are then needed to identify the (radial, polar, azimuthal) position along the geodesic.
In first order form, the formal expansion of the equations of motions then become,

i(r) = &(P)+eqi(P.q) +€3(P,q) + O() (1)

—

q
B(r) = €Gi(P,q) + &Go(B,) + O(e), 2)

where € is the mass-ratio and the g; and éz encode the self-force corrections to the motion.
Hinderer and Flanagan [5] performed a multi-timescale analysis of the solutions of this system
leading to a systematic post-Adiabatic expansion of the phase evolution.

2.1. Adiabatic approximation

The leading term in the expansion, is the adiabatic approximation, where we only include the
orbit averaged changes (G1)(P) to the orbital invariants P, which can be calculated using the
gravitational wave flux to infinity and down the horizon. This approximation contains all the
terms in the phase evolution up to O(¢~!). Consequently, we expect a phase error of at least
O(1) over a full inspiral. In fact, orbital resonances (see below) increase this error to O(e/2).
This might be accurate enough for the detection of EMRI signals in the LISA data, but will
certainly not be enough for accurate parameter estimation.

2.2. 1-Post Adiabatic correction

The next (full) step in the expansion of the phase evolution is the 1-post-adiabatic (1PA)
approximation, which includes all terms in the phase evolution up to O(€?), leading a phase
error of at most O(e!/?), which should be enough for accurate parameter estimation. Hinderer
and Flanagan [5] showed that to obtain the 1PA approximations one needs the full oscillatory
first order corrections, Gy (]3, q) and g‘l(ﬁ, q), and the orbit average second order change to P,
(G2)(P). The former can be obtained from a local first order metric perturbation, whereas the
later requires second order perturbation theory.

2.8. 1/2-PA correction: orbital resonances

The above picture breaks down in the case of a ‘resonance’ between the evolution of the different
orbital phases, i.e. the situation where two or more phases evolve in tandem. A resonance allows
normally oscillatory terms in the equations of motion to build up coherently over many orbits
leading to an O(el/ 2) amplification of certain oscillatory effects [6], leading to the introduction
of a 1/2-PA term in the phase evolution. The evolution of certain extrinsic parameters that
miss a leading order average term such as the center-of-mass velocity, is in fact dominated by
this correction [7, [§.

3. State-of-the-art
A dedicated community—informally knwown as the “Capra community”—has formed around
the challenge of modelling EMRIs using the gravitational self-force formalism. The first major
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breakthrough in the formalism came with the introduction of the MiSaTaQuWa [9][10] formula
for the calculation of the first order self-force. In the two decades since, a solid rigorous
theoretical framework has arisen for the systematic definition of the perturbative corrections
to the equations of motion of EMRIs [11][12].

3.1. Flux calculations .

The orbital averaged changes to the constants of motion, <G1>(]3), can extracted directly from
the average gravitational wave flux to infinity and down the horizon [13, 14 [15]. The fluxes of
energy and angular momentum can easily be extracted from solutions of the Teukolsky equation
[16]. With some more effort changes to the Carter can be obtained as well [I7]. Techniques
for obtaining numerical solutions to the Teukolsky equation have been developed [18, [19, 20]
that allow for the calculation of the averaged fluxes sourced by arbitrary geodesics, and thereby

(G1)(P).

3.2. First-order

The first order corrections Gy (P, ) and g1 (P, §) to the equations of motion split into two distinct
parts. The first is the so called ‘spin force’ and depends only on the spin of the secondary and
is independent of the metric perturbation it generates. The analytic expression for this force
was formulated already in 1951 by Papapetrou [2I]. The second is the gravitational self-force
proper, which depends on the metric perturbation generated by the secondary, but is insensitive
to its spin.

Various practical techniques have been developed for calculating the gravitational self-
force [22]. In the case of a Schwarzschild primary, the first calculations for circular [23] and
eccentric [24] orbits were published in 2007 and 2011, respectively. We now have a wide range
of techniques [23][24][25], 26], 27, 28] 29] using both time domain and frequency domain methods
and a variety of regularization methods for calculating the gravitational self-force on generic
geodesics in Schwarzschild spacetime.

Calculation of the self-force in Kerr spacetime for a long time was considered a major problem
of the program, because the linearized Einstein equation is not separable on a Kerr background.
This issue can be circumvented by reconstructing the metric perturbation from solutions of the
Teukolsky equation. We now have a rigorous understanding [30} [BI] of how the self-force can be
obtained from such a reconstructed metric. After much preliminary work [32, 33] 34} 35}, [36], we
can now calculate the gravitational self-force for any equatorial orbit around a Kerr black hole
[37. [38], with no obvious obstructions for extending the calculations to generic (inclined) orbits.

3.3. Second-order GSF

Calculation of the second order self-force remains one of the major outstanding challenges of the
self-force program, but much progress has been made. The formalism for the calculation of the
second order self-force is now in place [39] 40, 4T}, 42, 12), [43], and major steps are being made
towards solving practical obstructions [44], 45] for the first numerical calculations.

3.4. Evolution

Although a fully consistent 1PA evolution of an EMRI requires the orbit averaged second order
self-force, it is of practical use to study the implementation of an osculating elements scheme
sourced by only the first order force. In the case of a non-spinning Schwarzschild primary, the
entire EMRI parameter space has now been covered with first order self-force data, allowing the
evolution of inspirals [46, [47]. For example, this allows us to gauge the error made by using just
using the adiabatic approximation to several tens of radians over a full inspiral.
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3.4.1. Resonances 'The occurrence of orbital resonances acts as a further complication to the
evolution of EMRIs. From symmetry considerations, it is clear that resonances can only impact
the evolution for inspirals that are both inclined and eccentric. The general impact of a resonance
of the EMRI evolution has been studied [0}, 48], 49], and can be characterized by a jump in the
evolution of the orbital invariants at the resonance, the size of which can be obtained from the
orbit averaged quantities (G1) [49].

A potential further complication would occur if the self-force dynamics of an EMRI could
get locked in a sustained resonance, leading to major qualitative change to the evolution of the
orbit over the inspiral time scale. The conditions necessary for such resonant locking to occur
were studied [49], and based on the (limited) available data [20] it appears unlikely that they are
satisfied anywhere in the parameter space. Moreover, if they could one would expect resonant
locking to occur only in a small fraction (proportional to €'/2) of all EMRIs [49].

4. Interaction with other modelling approaches

In the absence of fully modelled gravitational waveforms produced by EMRISs, it is important to
be able to compare intermediate results between different calculations; both between different
self-force calculations and between completely different modelling approaches such as post-
Newtonian (PN) theory, Numerical relativity (NR), and effective one body (EOB) theory. This
requires the identification and calculation of coordinate invariant (physical) observables that are
completely independent of the used approximation scheme.

The gravitational wave fluxes are an example of such quantities and have long been used
compared between different approaches. However, they are completely insensitive to the
subtleties of the conserved dynamics. This requires different invariants such as the Detweiler-
Sago-Barack redshift invariant [25, 24], the frequency shift of the inner most stable orbit
[50, 51, (2], the periapsis advance of (nearly) circular orbits [53, 24] [52], and corrections to
the precession of the secondary spin [54], 55].

Calculation of such quantities has allowed valuable validation of the self-force formalism.
Successful comparison between self-force and numerical relativity results has, for example, taught
use that even at first order some self-force results remain fairly accurate at even comparable
mass-ratios [56}, 57, 58| 59].

In recent years, self-force results have become increasingly useful in aiding the development
of other modelling approaches. Self-force calculations have allow the calculation of the linear in
mass-ration part of the post-Newtonian expansionist to very high (22.5) PN order, both through
numerical [60, 61, 62, 63, 64, 65, 37, 52] and analytical [66] 67, 68, 69, [70, (71} 72, [73, (74}, [75 [76]
techniques. Moreover, highly accurate self-force calculations of periapsis advance [52] have
allowed to discriminate between competing derivations of the 4PN equations of motion.

Finally, self-force calculations of various invariants have allowed calibration of various EOB
potentials [77, [78, [69, [71], [79} [80].

5. Outlook
Although much progress has been made in the modelling of EMRIs over the last two decades, a
lot of work remains to be done. We should soon have the calculation tools to calculate the first-
order gravitational self-force on arbitrary geodesic orbits. However, it will still be a challenge to
fill the entire four dimensional EMRI parameter space with data, since high eccentricity/high
inclination data points currently take up to 1000s of CPU hours. We will need to both ncreases
in efficiency of the calculation, and optimize the strategy for covering the entire parameter space.
At second order, calculational methods are still in its infancy. Once the simplest case of the
calculation of the second order self-force on (quasi-)circular orbits on a Schwarzschild background
has been achieved, this will need to be extended to general orbits on Kerr backgrounds.
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Achieving high enough computational efficiency to fill the parameter space with second order
data will be an even greater challenge than at first order.

Having covered the EMRI parameter space with self-force data, we will be in a position
to model the evolution of EMRIs. The basic techniques for this have been implemented and
tested. A remaining open question concerns the fact that formally the self-force is not just
a local function of the parameter space, but depends on the entire past history of the EMRI
system. By approximating the local self-force by that generated by a tangent geodesic, we are
making an error of currently unknown size. This needs to be validated by comparison with time
domain self-consistent evolution of an EMRI. Techniques for this are being developed. Initial
investigations with scalar toy models suggest this error may be negligible.

Finally, once inspiral evolutions can be computed, waveforms need to be generated. Time
domain integration of the Teukolsky equation over an entire inspiral will be costly and slow. In
principle, it should be possible to synthesize the waveform from frequency domain data using
a two timescale expansion. It remains to be seen if this can be done fast enough to generate
waveforms on-the-fly for LISA data analysis. It is likely that effective surrogate (kludge) models
will need to be developed for data analysis purposes.
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